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Abstract

We have developed methods for finding globally optimal solutions to various classes
of nonconvex optimization problems. We have shown that any nonconvex conic quadrat-
ically constrained quadratic program can be lifted to a convex conic optimization prob-
lem. We have shown that a complementarity approach can be used to find sparse
solutions to optimization problems, with promising initial theoretical and computa-
tional results. We have investigated various relaxation approaches to several classes
of problems with complementarity constraints, including linear programs with com-
plementarity constraints, support vector regression parameter selection, bi-parametric
linear complementarity constrained linear programs, quadratic programs with comple-
mentarity constraints, and nonconvex quadratically constrained quadratic programs,
proving various theoretical results for each of these problems as well as demonstrating
the computational effectiveness of our approaches.

1 Introduction

Six papers have been published (see the archival publications section). Four additional
papers have been submitted:

[A] “On QPCCs, QCQPs and Completely Positive Programs”, by L. Bai, J.E. Mitchell,
and J.-S. Pang. Journal submission.

[B] “Complementarity Formulations of `0-norm Optimization Problems”, by M. Feng,
J.E. Mitchell, J.-S. Pang, X. Shen, and A. Wchter. September 23, 2013. Journal submission.

[C] “An Algorithm for Global Solution to Bi-Parametric Linear Complementarity Con-
strained Linear Programs”, by Y.-C. Lee, J.-S. Pang, and J.E. Mitchell. Journal submission.

[D] “Global Resolution of the Support Vector Machine Regression Parameters Selection
Problem”, by Y.-C. Lee, J.-S. Pang, and J.E. Mitchell. Journal submission.

Most of these papers are available from Mitchell’s webpage,

http://www.rpi.edu/~mitchj

Four doctoral students who were partially supported by this grant have graduated from
RPI or UIUC:

• Lijie Bai, On convex quadratic programs with complementarity constraints, August
2013, RPI.

• Tim Lee, Approximations and improvements to semidefinite relaxations of optimiza-
tion problems, August 2013, RPI.

• Yu-Ching Lee, Global solution to parametric complementarity constrained programs
and applications in optimal parameter selection, August 2013, UIUC.

• Bin Yu, A Branch and Cut Approach to Linear Programs with Linear Complemen-
tarity Constraints, August 2011, RPI.
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Further papers are in preparation, including documentation of methods for finding global
optima of linear programs with complementarity constraints. Multiple talks have been given
at conferences and universities.

In paper [A], we show that any quadratically constrained quadratic program is equivalent
to a convex optimization problem. The result requires no assumptions on the boundedness
of the feasible region or on the convexity of the quadratic constraints. The result also holds
if a nonnegativity assumption on the variables is replaced by a more general convex conic
constraint; for example, the result holds if the variables satisfy a second order cone constraint
or if the variables satisfy a semidefiniteness constraint. The proof exploits the relationship
between this class of problems and quadratic programs with complementarity constraints.

The results of [A] show that many important practical problems can be represented
as convex optimization problems through the use of a single lifting. This includes rank-
constrained semidefinite programs. The latter class includes problems such as factor anal-
ysis problems for finding a low-rank covariance matrix, sensor array processing, minimizing
the rank of a Hankel matrix in model identification problems in system theory and signal
processing, problems in systems and control, and combinatorial optimization problems.

The convex optimization problem is not easy to solve, because it is defined over a convex
cone that is hard to work with. Nonetheless, the exact reformulation offers the possibility of
designing new and effective algorithms for solving a broad class of optimization problems.

In paper [B], we developed a nonlinear programming formulation of the problem of min-
imizing the number of nonzero components in the solution of a system of linear equalities
and inequalities, also known as minimizing the L0-norm. This is the problem of compressed
sensing that is currently of great interest. It also arises in the search for sparse solutions
to support vector machine problems in classification. Our method is slower than a linear
programming approximation to the L0-norm problem, but it has the advantage that it often
gives a sparser solution than the L1-norm approximation. This seems to be especially true
when the system involves inequality constraints, as is the case for sparse support vector
machines.

2 On QPCCs, QCQPs and Completely Positive Pro-

grams

The material in this section is drawn from our paper “On QPCCs, QCQPs and Com-
pletely Positive Programs” [2]. The quadratically constrained quadratic program, abbre-
viated QCQP, is a constrained optimization problem whose objective and constraint func-
tions are all quadratic. The specification of the problem also allows linear constraints; we
also allow conic convex constraints on the variables. We focus on QCQPs that may have
several convex quadratic constraints but they have just one nonconvex quadratic constraint
q(x) ≤ 0, and further q(x) ≥ 0 for any x that satisfies the linear and conic constraints:
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minimize
x∈K∩M

f0(x) , ( c0 )Tx+ 1
2
xTQ 0x

subject to q(x) , h + qTx+ 1
2
xTQx ≤ 0

and fi(x) , hi + ( ci )Tx+ 1
2
xTQ ix ≤ 0, i = 1, · · · , I,

(1)

where M = {x ∈ Rn : Ax = b}, where x ∈ K ∩M implies q(x) ≥ 0, and where the
constraints fi(x) ≤ 0, i = 1 . . . , I, are convex.

We denote a QCQP of this form an nSp-QCQP, because it has no Slater point; if I = 0
then we call it an nSp0-QCQP. We show that any QCQP can be expressed in this form
with a convex objective function, generalizing a result for bounded QCQPs in [9]. Thus, the
considered class of QCQPs is broad.

Quadratic programs with (linear) complementarity constraints (QPCCs) are instances of
nSp0-QCQPs:

minimize
x,(x0,x1,x2)

cTx+ 1
2
xTQx

subject to Ax = b and 〈x1, x2〉 ≤ 0

with x0 ∈ K0, x1 ∈ K1, x2 ∈ K1∗,

where K1∗ is the dual cone to K1.

(2)

Such a complementarity constraint renders the QPCC a nonconvex disjunctive program even
if the objective function is convex.

The paper addresses several topics associated with the QPCC and QCQP: existence of
an optimal solution to a QCQP, the formulation of a QCQP as a QPCC, the local optimal-
ity conditions of a class of quadratically constrained nonlinear programs failing constraint
qualifications, and the formulation of a QCQP as a completely positive program. The paper
contains a wealth of new results pertaining to the three classes of problems appearing in the
title; see Figure 1. These results are all for the situation where K is a convex cone. The
upward pointing arrows illustrate relationships where the lower problem can be regarded di-
rectly as an instance of the upper problem. The downward pointing arrows require proof and
in some cases the cone is changed. Collectively, these results add significant insights to the
problems. Most importantly, our study touches on a class of nonconvex programs failing the
Slater constraint qualification and suggests that such problems have an underlying piecewise
structure and can be converted to convex programs by a single lifting of their domain of
definition.

The central problem is the nSp0-QCQP; some QCQPs are already in this form, while
any other can be manipulated into this form. The manipulation also results in a convex
objective function. Provided the objective is copositive on a certain subset of the recession
cone of K ∩ M, an nSp0-QCQP is equivalent to a convex completely positive program.
This extends the recent papers [8, 9] that address the completely positive representations of
binary nonconvex quadratic programs, certain types of quadratically constrained quadratic
programs, and a number of other NP-hard problems. Consequently, we show that any
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QCQP

nSp-QCQP

nSp0-QCQP

Proposition 1
requiring CQ

QPCC

QPCC with bounded comple-
mentarity variables

Binary
QP

Rank-constrained
SDPs [16]

Rank-sparsity decompo-
sition problem

Theorem 6

NLP satisfying Frank-
Wolfe property

Theorem 2, requiring
polyhedral K and ad-
ditional restrictions

Theorem 1

nSp-QCQP with
convex objective

Corollary 1

nSp0-QCQP with
convex objective

Theorem 4

Convex completely
positive program

Theorem 4, if objec-
tive copositive over
subset of recession
cone

[8]

Figure 1: Diagram of results. The notation “p → q” means p is a subclass of q. Theorem,
Proposition, and Corollary numbers refer to the paper [2].

QCQP is equivalent to a convex completely positive program, if we first reformulate it as
an nSp0-QCQP with a convex objective function. Further, a rank constrained SDP is also
equivalent to a convex completely positive program, since it is equivalent to a QPCC over the
semidefinite cone, with a linear objective function. Similarly, the rank-sparsity decomposition
problem is equivalent to a convex program; in many applications, it is desired to split a matrix
into a low rank part and a sparse part, which can help with inference [12].

The existence of an optimal solution to a convex QCQP over the nonnegative orthant is
fully resolved via the classical Frank-Wolfe theorem [5], which states that such a minimization
program, if feasible, has an optimal solution if and only if the objective function of the
program is bounded below on the feasible set. The situation with a nonconvex QCQP is
rather different; the sharpest Frank-Wolfe type existence results for a feasible QCQP with a
nonconvex (quadratic) objective are obtained in [25]. We extend their work as follows:

Theorem 1 Assume the cone K is polyhedral. Then the FW attainment result holds for the
nSp-QCQP (1) if either

1. I ≤ 1 or

5



2. q0(x) is a quasiconvex function on K ∩M.

3 Complementarity Formulations of `0-norm Optimiza-

tion Problems

The material in this section is drawn from our paper “Complementarity Formulations of
`0-norm Optimization Problems” [18].

Denoted by ‖•‖0, the so-called `0-norm of a vector is the number of nonzero components
of the vector. In recent years, there has been an increased interest in solving optimization
problems that minimize or restrict the number of nonzero elements of the solution vector [4,
7, 11, 13, 14, 15, 30, 32]. A simple example of such a problem is that of finding a solution
to a system of linear inequalities with the least `0-norm:

minimize
x∈Rn

‖x ‖0

subject to Ax ≥ b and Cx = d,
(3)

where A ∈ Rm×n, C ∈ Rk×n, b ∈ Rm and d ∈ Rk are given matrices and vectors, respec-
tively. Since this problem is NP-hard, one popular solution approach replaces the nonconvex
discontinuous `0-norm in (3) by the convex continuous `1-norm, leading to a linear program:

minimize
x∈Rn

‖x ‖1

subject to Ax ≥ b and Cx = d.
(4)

Theoretical result are known that provide sufficient conditions under which an optimal so-
lution to (4) is also optimal to (3) [10, 17, 19, 33]. Yet these results are of limited practical
value as the conditions can not easily be verified or guaranteed for specific realizations of
(3); thus in general, optimal solutions to (4) provide suboptimal solutions to (3).

It is our contention that, from a practical perspective, improved solutions to (3) can be
obtained by reformulating the `0-norm in terms of complementarity constraints [24]. This
leads to a linear program with linear complementarity constraints (LPCC) which can be
solved with specialized algorithms that do not depend on the feasibility and/or boundedness
of the constraints [20, 21]. In the event that bounds are known on the solutions of the
problem, the LPCC can be further reformulated as a mixed-integer linear program (MILP).
However, the solution of this MILP is usually too time-consuming for large instances.

As an alternative to the MILP approach, the LPCC can be expressed directly as a
smooth continuous nonlinear program (NLP). It is the main purpose of this research to
examine the quality of solutions computed by standard NLP solvers applied to these smooth
reformulations of the `0-norm. There are two properties of the NLP reformulations that
make them difficult to solve. First, the NLPs are highly nonconvex, and, consequently,
the solutions returned by the NLP solvers depend strongly on the starting point, because
the NLP methods are typically only able to find local minimizers or Karush-Kuhn-Tucker
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(KKT) points, instead of global minimizers. Secondly, the NLPs are not well-posed in the
sense that they do not satisfy the assumptions that are made usually for the convergence
analysis of standard NLP algorithms, such as constraint qualifications. Nevertheless, our
numerical results show that these methods often generate high-quality solutions for the `0-
norm problem (3).

Together, the `0-norm and its complementarity formulation allow a host of minimization
problems involving the count of variables to be cast as disjunctive programs with comple-
mentarity constraints. A general NLP model of this kind is as follows: for two finite index
sets E and I,

minimize
x

f(x) + γ‖x ‖0
subject to ci(x) = 0, i ∈ E
and ci(x) ≤ 0, i ∈ I,

(5)

where γ > 0 is a prescribed scalar and the objective function f and the constraint func-
tions ci are all continuously differentiable. A distinguished feature of this problem is that
its objective function is discontinuous, in fact lower semicontinuous; as such, it attains its
minimum over any compact set, but in general the existence/attainment of an optimal so-
lution is not immediately clear. Among other things, the reformulation presented below
offers a constructive venue for establishing the solvability of the problem, under reasonable
conditions.

We can derive an equivalent formulation as a complementarity problem:

minimize
x, x±, ξ

f(x) + γ T ( 1n − ξ )

subject to ci(x) = 0, i ∈ E
ci(x) ≤ 0, i ∈ I
x = x+ − x−

0 ≤ ξ ⊥ x+ + x− ≥ 0

0 ≤ x+ ⊥ x− ≥ 0

and ξ ≤ 1n,

(6)

where we have used an arbitrary given positive vector γ instead of a scalar γ-multiple
of the vector of ones. This time, the statement involves nonlinear objective and con-
straint functions, giving rise to a Mathematical Program with Complementarity Constraints
(MPCC). It is not difficult to deduce that if x is an optimal solution of (5), then by letting
x± , max(0,±x) and

ξj ,

{
0 if xj 6= 0

1 if xj = 0

}
j = 1, · · · , n, (7)

the resulting triple (x±, ξ) is an optimal solution of (6) with objective value equal to ‖x‖0.
Conversely, if (x±, ξ) is an optimal solution of (6), then x , x+ − x− is an optimal solution
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of (5) with the same objective value as the optimal objective value of (6). The definition (7)
provides a central connection between (5) and its “pieces”.

We may associate with (5) the following smooth NLP with an auxiliary variable ξ, which
we call a half complementarity formulation:

minimize
x, ξ

f(x) + γ T ( 1n − ξ )

subject to ci(x) = 0, i ∈ E
ci(x) ≤ 0, i ∈ I
0 ≤ ξ ≤ 1n and ξ ◦ x = 0.

(8)

The paper contains theorems relating solutions to (5) with KKT points for (6) and (8).
We also examine relaxed formulations of (6) and (8), and show interesting convergence
properties as the relaxation is tightened. In particular, we can show for certain choices of f
and c that any subsequence of local minimizers converges to a solution with strong theoretical
properties.

We give one graph to give a flavor of the computational results in the paper. This is for
a problem of the form

minimize
x∈Rn

‖x ‖0

subject to Ax ≥ b and −M1n ≤ x ≤ M1n,
(9)

where A ∈ Rm×n, b ∈ Rm, and M > 0. The test instances were generated using AMPL’s
internal random number generator, where the elements of A and b are independent uniform
random variables between -1 and 1. Our numerical experiments compare the performance of
different NLP optimization codes when they are applied to the different NLP reformulations.
Because these problems are nonconvex, we also explore the effect of different starting points.

Our numerical study suggests that standard NLP codes are able to generate solutions that
can be significantly better than those obtained by convex approximations of the NP-hard
problem. This is somewhat remarkable because the NLP formulations are highly nonconvex
and the usual constraint qualifications, such as MFCQ, do not hold. Our numerical exper-
iments did not identify a clear winner among the different reformulations of the `0-norm
minimization problems. Similarly, while some NLP codes tended to produce better results
than others, it is not clear which specific features of the algorithms or their implementations
are responsible for finding good solutions. We point out that each software implementation
includes enhancements, such as tricks to handle numerical problems due to round-off error
or heuristics that are often not included in the mathematical description in scientific papers.
Because the NLP reformulations of the `0-problems are somewhat ill-posed, these enhance-
ment are likely to be crucial for the solver’s performance. Once the relevant ingredients of the
reformulation and optimization method have been identified, it might be possible to design
specialized NLP-based algorithms that are tailored to the task of finding sparse solutions
efficiently.
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Figure 2: The sparsest solutions for the 50 random problems using different NLP solvers
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Finally, the numerical study in this paper has been performed using randomly generated
model problems. Future efforts will explore the suitability of the proposed approach for `0-
norm optimization problems arising in particular applications areas including compressive
sensing [11, 15], basis pursuit [7, 14], machine learning [13, 26], and genome-wide association
studies [32].

4 Algorithms for Global Resolution of Mathematical

Programs with Complementarity Constraints

4.1 General methods for convex MPCCs

In the paper “Obtaining tighter relaxations of mathematical programs with complementarity
constraints” [28], we investigated cutting plane approaches to MPCCs. In an effort to find a
global optimum, it is often useful to examine the relaxation obtained by omitting the com-
plementarity constraints. We discuss various methods to tighten the relaxation by exploiting
complementarity, with the aim of constructing better approximations to the convex hull of
the set of feasible solutions to the MPCC, and hence better lower bounds on the optimal
value of the MPCC. Better lower bounds can be useful in branching schemes to find a globally
optimal solution. Different types of linear constraints are constructed, including cuts based
on bounds on the variables and various types of disjunctive cuts. Novel convex quadratic
constraints are introduced, with a derivation that is particularly useful when the number of
design variables is not too large. A lifting process is specialized to MPCCs. Semidefinite
programming constraints are also discussed. All these constraints are typically applicable
to any convex program with complementarity constraints. Computational results for linear
programs with complementarity constraints (LPCCs) are included, comparing the benefit of
the various constraints on the value of the relaxation, and showing that the constraints can
dramatically speed up the solution of the LPCC.

In the paper “Using quadratic convex reformulation to tighten the convex relaxation of
a quadratic program with complementarity constraints” [3], we looked at a preprocessing
technique based on semidefinite programming. Quadratic Convex Reformulation (QCR) is a
technique that has been proposed for binary and mixed integer quadratic programs. In this
paper, we extend the QCR method to convex quadratic programs with linear complementar-
ity constraints (QPCCs). Due to the complementarity relationship between the nonnegative
variables y and w, a term yTDw can be added to the QPCC objective function, where D
is a nonnegative diagonal matrix chosen to maintain the convexity of the objective function
and the global resolution of the QPCC. Following the QCR method, the products of linear
equality constraints can also be used to perturb the QPCC objective function, with the
goal that the new QP relaxation provides a tighter lower bound. By solving a semidefinite
program, an equivalent QPCC can be obtained whose QP relaxation is as tight as possible.
In addition, we extend the QCR to a general quadratically constrained quadratic program
(QCQP), of which the QPCC is a special example. Computational tests on QPCCs are
presented.
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In the paper “On Convex Quadratic Programs with Linear Complementarity Constraints”
[1], we looked at splitting the feasible region into two sets, so as to best exploit an integer pro-
gramming solver and a logical Benders decomposition approach. The paper shows that the
global resolution of a general convex quadratic program with complementarity constraints
(QPCC), possibly infeasible or unbounded, can be accomplished in finite time. The method
constructs a minmax mixed integer formulation by introducing finitely many binary vari-
ables, one for each complementarity constraint. Based on the primal-dual relationship of a
pair of convex quadratic programs and on a logical Benders scheme, an extreme ray/point
generation procedure is developed, which relies on valid satisfiability constraints for the in-
teger program. To improve this scheme, we propose a two-stage approach wherein the first
stage solves the mixed integer quadratic program with pre-set upper bounds on the comple-
mentarity variables, and the second stage solves the program outside this bounded region by
the Benders scheme. We report computational results with our method. We also investigate
the addition of a penalty term yDw to the objective function, where y and w are the com-
plementary variables and D is a nonnegative diagonal matrix. The matrix D can be chosen
effectively by solving a semidefinite program, ensuring that the objective function remains
convex. The addition of the penalty term can often reduce the overall runtime by at least
50%. We report preliminary computational testing on a QP relaxation method which can be
used to obtain better lower bounds from infeasible points; this method could be incorporated
into a branching scheme. By combining the penalty method and the QP relaxation method,
more than 90% of the gap can be closed for some QPCC problems.

4.2 Bi-parametric linear complementarity constrained linear pro-
grams

In the paper “An Algorithm for Global Solution to Bi-Parametric Linear Complementarity
Constrained Linear Programs” [22] we consider the following problem. Given variables x ∈
Rn and y ∈ Rm and parameters q ∈ Rm, N ∈ Rm×n and M ∈ Rm×m, the complementarity
constraints

0 ≤ y ⊥ w := q + Nx + My

can be represented equivalently using the nonconvex quadratic constraint

qTy + yTMy + yTNx ≤ 0

together with nonnegativity restrictions on y and w. In this paper, we focused on problems
with n = 2 and with M positive semidefinite, a situation that arises often in practice (see [23]
for example). We developed a domain partitioning scheme for the problem, branching on x,
and proved finite convergence. We obtained promising computational results on our test
problems.

4.3 Parameter selection in support vector machine regression

The support vector machine (SVM) regression problem has two design parameters: C to
control the regularization and ε to control the width of a regression tube. Previously, we
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have developed an LPCC formulation of the problem of choosing the two parameters [6].
In the paper “Global Resolution of the Support Vector Machine Regression Parameters
Selection Problem” [23], we apply the algorithm of [22] to solve the parameter selection
problem. Through the use of the algorithm, we are able to find globally optimal values of C
and ε.

5 Other Results

In the paper “Convex Quadratic Relaxations of Nonconvex Quadratically Constrained Quadratic
Programs” [29], we extend the technique introduced in [28] for MPCCs to nonconvex QCQPs.
Nonconvex quadratic constraints can be linearized to obtain relaxations in a well-understood
manner. We propose to tighten the relaxation by using second order cone constraints, re-
sulting in a convex quadratic relaxation. Our quadratic approximation to the bilinear term
is compared to the linear McCormick bounds. The second order cone constraints are based
on linear combinations of pairs of variables. With good bounds on these linear combina-
tions, the resulting constraints strengthen the McCormick bounds. Computational results
are given, which indicate that the convex quadratic relaxation can dramatically improve the
solution times for some problems.

We develop a homotopy approach to finding the solution to an LPCC in the paper “A
Globally Convergent Probability-One Homotopy for Linear Programs with Linear Comple-
mentarity Constraints” [31]. A solution of the standard formulation of a linear program
with linear complementarity constraints (LPCC) does not satisfy a constraint qualification.
A family of relaxations of an LPCC, associated with a probability-one homotopy map, pro-
posed here is shown to have several desirable properties. The homotopy map is nonlinear,
replacing all the constraints with nonlinear relaxations of NCP functions. Under mild ex-
istence and rank assumptions, (1) the LPCC relaxations RLPCC(λ) have a solution for
0 ≤ λ ≤ 1, (2) RLPCC(1) is equivalent to LPCC, (3) the Kuhn-Tucker constraint qualifica-
tion is satisfied at every local or global solution of RLPCC(λ) for almost all 0 ≤ λ ≤ 1, (4)
a point is a local solution of RLPCC(1) (and LPCC) if and only if it is a Kuhn-Tucker point
for RLPCC(1), and (5) a homotopy algorithm can find a Kuhn-Tucker point for RLPCC(1).
Since the homotopy map is a globally convergent probability-one homotopy, robust and
efficient numerical algorithms exist to find solutions of RLPCC(1). Numerical results are
included for some small problems.

In the paper “Rebalancing an Investment Portfolio in the Presence of Convex Transaction
Costs including Market Impact Costs” [27], we look at a class of QCQPs arising in financial
optimization. The inclusion of transaction costs is an essential element of any realistic
portfolio optimization. In this paper, we extend the standard portfolio problem to consider
convex transaction costs that are incurred to rebalance an investment portfolio. Market
impact costs measure the effect on the price of a security that result from an effort to buy
or sell the security, and they can constitute a large part of the total transaction costs. The
loss to a portfolio from market impact costs is typically modeled with a convex function that
can usually be expressed using second order cone constraints. The Markowitz framework of
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mean-variance efficiency is used. In order to properly represent the variance of the resulting
portfolio, we suggest rescaling by the funds available after paying the transaction costs. This
results in a fractional programming problem, which can be reformulated as an equivalent
convex program of size comparable to the model without transaction costs. An optimal
solution to the convex program can always be found that does not discard assets. The
results of the paper extend the classical Markowitz model to the case of convex transaction
costs in a natural manner with limited computational cost.
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