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Abstract 
 
 
 
 Efficient, reliable data is necessary to make informed decisions on how to best manage 

aging road assets.  This research explores a new method to automate the collection, processing, 

and analysis of transportation networks using Unmanned Aerial Vehicles and Computer Vision 

technology.  While there are current methodologies to accomplish road assessment manually and 

semi-autonomously, this research is a proof of concept to obtain the road assessment faster and 

cheaper with a vision for little to no human interaction required.  This research evaluates the 

strengths of applying UAV technology to pavement assessments and identifies where further 

work is needed.  Furthermore, it validates using UAVs as a viable way forward for collecting 

pavement information in order to aid asset managers in their sustainment of aging road assets. 

 The system was able to capture road photos suitable for semi automated Pavement 

Condition Index (PCI) processing, however the algorithm resulted in a maximum F-Measure of 

40%. This result is low and indicates the algorithm is not sufficient for fully automated PCI 

classification.  Accurately detecting road defects using computer vision remains a challenging 

problem for future research.  However, using Autonomous UAVs to collect the data is shown to 

be a viable avenue for data collection, and one that is theoretically faster than current methods at 

freeway speeds. 
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INTEGRATING PAVEMENT CRACK DETECTION AND 

ANALYSIS USING AUTONOMOUS UNMANNED 

AERIAL VEHICLE IMAGERY 

 

I. Introduction 

General Issue 

 Many forces are pushing for cheaper implementation of current requirements in the U.S. 

Air Force.  The Air Force is currently reducing its active duty force size by 16,700 by the 

summer of 2015 (Losey 2014).  This reduction is not coming with any additional funding for 

personnel, so the Air Force must continue its current operations with fewer resources.  The Vice 

Chief of Staff of the Air Force General Larry Spencer has been touting programs to find where 

the Air Force can save money and asking every Airmen “can I do it cheaper?” (Pawlyk 2014).  

When resources are restricted, choices must be made on what will be funded.   

One such choice is funding data collection for infrastructure assessment.  Decision making 

preferences are all subject to hyperbolic discounting which is the preference for present payoffs 

over future payoffs. A decision maker, then, will tend to make decisions in his immediate best 

interests rather than future benefits (Laibson 1997, 443-477).  With regards to infrastructure, 

current asset owners value future asset health significantly less than an asset owner in the future.  

Since measurements to support future asset health can be a lower priority in the present, it may 

not be accomplished if there are other higher priority requirements according to the current asset 

owner. 

In order to avoid such decisions, cheaper, more cost effective ways of obtaining asset 

information must be found.  This research explores a method of obtaining reliable data on road 
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conditions via autonomous collection.  Reliable data is required to make economical decisions on 

how to maintain any organization’s transportation networks.  Furthermore, this method should 

reduce time demands on current asset managers.  Reducing time requirements are important as 

reductions in the Air Force workforces have reduced time for employees to collect and recollect 

this data.  Operating an autonomous system will reduce time in data collection and will not force 

decision makers to de-prioritize accomplishing road condition assessments.  Developments 

which make reliable data gathering easier will make data collection more likely to happen and 

will, in turn, make better decisions more likely in the future.  This research explores the use of 

autonomous systems for data collection on road conditions. 

Background 

The United States Air Force currently utilizes Pavement Condition Index (PCI) to measure 

pavement health on its Air Force installations.  There are several different methods of 

accomplishing this index which will be provided and explained in Chapter 2.  While these 

methods do accomplish the requirements of the Air Force, this research intends to explore the 

area of autonomous systems that may reduce the time and cost required for these assessments 

with current methods.  A major cost to consider in performing PCIs is the time needed to operate 

the equipment and assess the distresses in the road.  This research furthers the potential to reduce 

the time spent by the human in the loop and decreases the overall time and cost in making road 

condition assessments.  

Assumptions and Limitations 

Due to the complexity of the problem and the breadth of systems, this research focuses on 

only a portion of the PCI process.  It will only identify cracks; it will not classify their severity or 

what type of crack it is.  The identified cracks are compared with hand identified crack location 
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accomplished by the researcher.  Secondly, this research is limited to the air space a UAV can 

operate.  Current AFIT UAV research operations are only approved at Camp Atterbury, IN, and 

include only one stretch of paved road to the north of Himsel Army Airfield.  This significantly 

reduces the sample size available to this research, but is sufficient for a proof of concept.  Third, 

this research is also limited by image sensor technology that restricts the rate of capture and the 

resolution of the images.  Finally, this research is limited to the meteorological conditions 

present during the flight tests and the number of flights flown.  

Scope 

In order to further the ability to make collecting reliable data easier, this research asks the 

following questions:  

• How can photographic imagery from small UAVs be transformed into pavement 
condition information? 
 

• What are differences in performance between automated UAS and manual ground-based 
methods? 
 

• What errors are made in UAS pavement crack detection? 
 

• What is the effective rate of UAS inspection methods? 
 

• What is the reliability of UAS inspection methods? 
 
This research defines effective rate as recall, or how many of the cracks can be identified from 

the cracks present.  Further, this research defines reliability as precision, or how many of the 

cracks detected are actually cracks.  These are standards used in information retrieval, have been 

adapted for computer vision techniques, and are fully applicable for data collection in road 

condition assessments. 



4 
 

Overview 

 Following this introductory chapter, this thesis provides a literature review in Chapter II 

which discusses the relevant, previous discoveries which have led to this systems possibility.  

Chapter III provides the methodology and provides detail on how the proposed system operates 

in this research.  Chapter IV provides the analysis will which determines how well the system 

worked against the ground truth.  Finally, Chapter V presents conclusions as well as discusses 

future applications and future research. 
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II. Literature Review 

Pavement health and classification, UAV technology, and computer vision techniques are 

well studied areas, and there exists a large body of knowledge for these topics.  The literature 

review contained in this chapter will provides a summary of the work in these areas as well as 

existing work that combines and integrates these topics.  This review begins by defining 

characteristics of a road and how the characteristics determine road health classification.  The 

reader will understand factors that cause roads to deteriorate and how the deterioration appears.  

The review then transitions to how others have attempted to automate characteristic collection, 

identification, and classification of road defects.  This background information discusses how far 

the technology has come to achieve its current state of survey road health.  Next the review 

discusses current UAV uses and known applications in civil engineering.  Finally, current 

attempts to use computer vision techniques that could prove useful to this research are discussed.  

Together, the sections in this chapter give the reader the state-of-the-art status in pavement health 

classification, UAV technology, and computer vision. 

Pavement Health 

Pavement repair has been a concern since humans first began building roads.  In ancient 

Roman times, repair decisions were left to a master road builder’s expertise in order to determine 

when a road should be repaired (Federal Highway Administration 2011: 1).  This method of 

repair and maintenance continued until consolidated road organizations began to emerge. One of 

the first road organizations in North America was formed in 1896 in response to the growth in 

popularity of the automobile (Haas 2001: 3).  These early road organizations were important in 

developing and standardizing pavement designs and construction standards.    
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Knowledge and technology in pavements continued to grow with the modern era of 

pavement management beginning after World War II.  The start of the modern era in pavement 

management came with the American Association of State Highway and Transportation Officials 

(AASHTO) road tests from 1958 to 1961.  The AASHTO road tests defined the characteristics of 

a road which can be measured and then used to predict service life (Haas 2001: 3-4). The 

AASHTO road tests were groundbreaking as they led to a common understanding of how road 

organizations can measure pavement health.  Today, pavement health is categorized by four 

main characteristics: roughness, structural performance, friction and distress.  While these 

principles apply to both concrete and asphalt, the research focuses on asphalt roads.  This 

research focuses on asphalt in order to simplify the computer vision problem to a manageable 

initial level. 

Roughness is a measure of a rider’s comfort while traveling down a road.  Developed in 

1983, and now an established, global standard, transportation engineers use the International 

Roughness Index (IRI) in order to compare roughness measurements from different locations and 

roads. (Sayers, Gillespie, and Queiroz 1986: 26).  A smoother ride is classified with a low IRI 

value, while a bumpy ride is classified with a high IRI value.   

There are two typical ways to measure IRI.  One way is through specially equipped and 

calibrated vehicles that measure the change in vertical profile of the road.  This process can 

present problems as the results will vary between any two data collection attempts.  The 

measuring vehicle cannot maintain its precise characteristics over repeated measurements, and 

this prohibits identical values for each measurement (Shahin 2007: 94).  A second method 

measures the road profile with a laser and mathematically computes the roughness index.  

Measuring the roadway in this direct manner allows for repeatable results.  The use of lasers has 
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become more popular as its relative price has decreased in recent years (Shahin 2007: 94).  

Roughness is an important consideration for rider comfort; however, it by itself is not useful for 

optimizing repair funds (Shahin 2007: 93).  The IRI will increase as the age and use of a road 

continues, unless maintenance and repair options are performed.   

The second Pavement health characteristic of structural performance is determined by the 

different layers of road material as well as the two “foundational” layers of the base course layer 

and underlying soil type.  With current technology, the structural strength of a road cannot be 

measured without being in close physical proximity to the subject.  One method of measurement, 

non destructive testing (NDT), is good for determining strength of a road in its natural 

environment (Shahin 2007: 61).  For asphalt pavements, NDT can determine measures such as 

elastic modulus of each structural layer, allowable loads for a specific number of load 

applications, and overlay thickness design (Shahin 2007: 61).  NDT measures the deflection of 

pavements based on known weight, distance, and loading applications.  The deflection data is 

compared to previously determined models which then predict the structural strength of the road.  

NDT is useful for differentiating different road sections.  Separating road sections allows for 

more accurate modeling of PCI, and allows for specific applications of maintenance and repair at 

the right time for each section. (Shahin 2007: 79).  Properly segmented models allow for a more 

accurate prediction of a road’s PCI decay over time.  

The third health characteristic of roads is friction.  Friction is the ability of the road to 

provide a vehicle with a maneuverable surface.  Friction on a dry paved road is not a major 

factor in pavement health; however, friction becomes important in wet or icy conditions as 

vehicle maneuverability significantly decreases.  The primary reason for determining friction 

information is to identify if a road demonstrates deteriorating skid resistance, which would 
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indicate decreased safety as an increase in accidents is likely to occur (Shahin 2007: 117).  While 

friction is an important characteristic from a safety perspective, this health characteristic does not 

affect economical repair prioritization. 

The final characteristic is pavement distresses which are classified through the Pavement 

Condition Index (PCI).  The PCI was developed by the US Army Corps of Engineers to develop 

a repeatable, objective method of recording distress information (Shahin 2007: 17).  PCI 

identifies different road distresses, defines their severity levels, suggests repair methods of these 

distresses, and identifies possible causes.  PCI is solely determined by the distress data (Shahin 

2007: 17).  Therefore, distress data is extremely important to road service life forecasting.  

Cracking, rutting, and loss off aggregate on the road surface are different forms of distresses.  

Traffic loading, fluctuating temperatures, or poor construction are example causes of pavement 

distresses (Shahin 2007: 43-44). Given that obtaining distress data, and thus PCI information, is 

so important, this research then looks into different methods of collecting distress data over the 

years. 

PCI Methodology 

Unified Facilities Criteria (UFC) 3-270-08, Pavement Maintenance Management, 

governs PCI inspections for asphalt roads.  The inspection process begins by breaking roads into 

similar sections based on its structural composition (thickness and materials), construction 

history, traffic, and PCI (United States Department of Defense 2004: 2-1).  Once roads are 

broken into sections, each section is further broken down into smaller sample units.  Each sample 

unit represents about 2000 sq ft of the road section.  All or some sample units may be evaluated 

to determine the section’s PCI.  UFC 3-270-08 determines the number of sample units required 

based on the number of sample units in a section and the variance in PCIs between the sample 
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units.  Sampling at the rate specified by the UFC yields a PCI for the section that is within 5 

points of the true section PCI (United States Department of Defense 2004: 3-5). 

The current method to determine a PCI requires a trained technician, a hand-odometer, a 

10 ft straight edge and ruler, and a PCI distress guide (United States Department of Defense 

2004: 3-2).  The odometer is to measure each sample unit size.  The ruler and straight edge are to 

measure the characteristics of each distress since different distresses require different types of 

measurement.  The PCI distress guide is used to identify and verify the type and severity of 

distress.  For example, alligator cracking, one type of distress, is characterized by parallel cracks 

in the roadway.  They are found only in load bearing portions of the roadway and their severity is 

defined by how interconnected the cracks are as shown in Figure 1, Figure 2, and Figure 3.  The 

PCI distress guide provides these descriptions and visual depictions for the technician during an 

assessment.  Additionally, each distress is given a deduct value based on its percentage of the 

section and the severity of the distress as shown in Figure 4.  This deduct value chart is also part 

of the PCI distress guide.  In using this chart, the sample unit’s PCI is determined by subtracting 

each deduct value from 100.  The section’s PCI is determined from the weighted average of the 

inspected samples or the average of all the samples in the section. 
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Figure 1 - Low Severity Alligator Cracking  

 

Figure 2 - Medium Severity Alligator Cracking 
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Figure 3 - High Severity Alligator Cracking 

 

Figure 4 - PCI Deduct Value based on Severity and Distress Density of Asphalt Roads 
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Variations of performing PCI Inspections: Manual, Semi-autonomous, and Autonomous 

There are three current methods for completing PCI inspections: manual, semi-

autonomous, and autonomous.  Manual distress identifications by personnel on site were the 

original and only way to accomplish distress identification during early roadway assessments.  

This practice is still used today by many road organizations which involve a trained technician 

on-site determining the proper section size to inspect. This method is the most dangerous and 

usually the most expensive method of distress identification (Elkins et al. 2013, 22).  Although 

this method has shown to have similar results in distress type and quantity as semi autonomous 

collection, it generally results in lower severity classification (Shahin 2007: 54-55). This could 

lead to a lower PCI and could lead to a confusing trend if semi autonomous and manual 

identifications are used interchangeably from year to year.  One study has shown manual 

inspections can cost $0.10/yd2, which is .01 more expensive than semi autonomous inspections 

(Cline, Shahin, and Burkhalter 2003: 4).   

Semi-autonomous classifications are a second method of pavement assessment where 

distress data are collected by a system and is classified later by a human.  A camera captures 

visual images or video of the road and an analyst analyzes this capture for defects in the road.  

This method is available commercially, such as PAVER ImageInspectorTM, and can reduce the 

risk to the pavement inspector (Elkins et al. 2013: 22).  The variability found between this 

method and the manual method is similar to variability between different inspectors.  Although 

variability exists in both methods and is an issue of human judgment and interpretation, the 

assessment reliability is equivalent between the manual and semi-autonomous methods (Shahin 

2007: 54-55).  In understanding the cost of this method, Clark and Cline, Shahin and Burkhalter 
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show that this inspection method is marginally more cost effective at $0.09/yd2. (Clark 2000: 14; 

Cline, Shahin, and Burkhalter 2003: 4). 

Finally, there are fully automated systems that detect cracks in the road.  This method can 

reduce costs, reduce variability between ratings, and reduce man-hours by personnel (Elkins et 

al. 2013, 22). Currently, commercial companies use laser range data to identify and classify road 

cracking with 95% accuracy through using specially equipped trucks travelling at freeway speeds 

(Laurent et al. 2012, 1).  Although a human driver is still required to operate the data collection 

vehicle, this method takes away the need for a human to classify the distresses by automating the 

data processing and analysis.  A separate human analyst at a computer station is no longer 

needed and therefore cuts human workload significantly.  With advances in technology, such as 

an Unmanned Aerial Vehicle (UAV), a new autonomous method may be a feasible alternative to 

performing PCI inspections.  Unfortunately cost data on this method was not available for this 

research. 

Autonomous Inspections with UAVs 

UAVs began shortly following manned flight and have had a long road to its current 

technological state.  Early tests began with unmanned delivery systems beginning as early as 

1925 with the use of a gyroscope to stabilize the flight (Coletta 1987: 64).  While this technology 

was not deployed for World War One, development continued through the interwar years and 

was successfully implemented by both axis and allied forces in World War Two (Keane and Carr 

2013, 558).  UAV use became widespread during the Vietnam War with 3,435 operational 

reconnaissance UAV sorties (Clark 2000: 14).  UAV use continued in the first Persian Gulf War 

providing visual confirmation of target damage and improving naval bombardment targeting 



14 
 

(Keane and Carr 2013: 558).  UAV technology continued to advance as governments saw the 

benefits and uses of this unmanned technology  

 UAVs give governments and other users numerous advantages to manned aircraft and are 

currently in extensive use in current combat operations.  These systems can be attractive to 

governments because they let casualty conscious governments engage in conflicts that might be 

otherwise unpalatable (Davis et al. 2014: 11).  The loss of a UAV is less disastrous politically 

than the loss or possible capture of a countries’ airman.  Furthermore, long endurance times of 

unmanned systems exceed human capabilities and allow for near constant operation.  For 

example, the U.S. Air Force has enough combat UAV aircraft (i.e., Predator and Reaper aircraft) 

to maintain 65 combat air patrols indefinitely (Reed 2013).  This allows for combat units on the 

ground with instantaneous aerial information at anytime during an operation.  However, these 

aircraft have been cited by a top Air Force General as useless in an environment where its 

operations can be interrupted by enemy actions (e.g., jamming or surface to air missiles) (Reed 

2013).  While this does narrowly tailor the usefulness of drones in military contests, they can still 

give significant advantages in uncontested airspace.  Civilian airspace does not have restriction. 

 UAVs have been shown to be useful in many civilian applications.  UAVs can be used 

effectively in damage assessment operations in the immediate aftermath of a natural disaster 

(Tatham 2009: 60-78).  Employing unmanned systems prevents humans from needlessly 

exposing themselves to danger in an unknown environment while still providing first responders 

important information about the disaster area.  In other civil applications, UAVs have also been 

shown to successfully give detailed estimates in earthwork projects (Siebert and Teizer 2014: 1-

14).  This application saves the construction team’s time and labor by negating the need for 

extensive survey points for earthwork estimates.  The saved time could translate to reduced 



15 
 

project costs, an important consideration in budget constrained government work.  Although 

successful and effective, these applications are waiting on Federal Aviation Administration 

approval and are purely experimental at this point (Federal Aviation Administration 2015).  

Further advancements in unmanned aerial vehicles could develop quickly once the legislative 

groundwork occurs.  The application that this research explores is the use of UAV technology to 

autonomously collect imagery of roads for processing with computer vision techniques 

Computer Vision Techniques 

Computer vision is the practice of utilizing a computer to process visual information and 

produce data based on that visual information input.  Engineers began studying computer vision 

as early as 1966, when an instructor assigned a summer project for MIT students to have a 

computer identify objects in a picture and classify them (Papert 1966).  While the assignment 

was originally scheduled to last for the summer, engineers continued to work on the problem.  

Since then, engineers have made many advances in gathering information from visual imagery; 

however, computer vision is still limited with some authors suggesting that the method cannot 

classify objects at the same precision as a two-year old (Szeliski 2010: 3).  Fortunately, engineers 

have developed techniques that allow some possible object detection. 

In using computer vision for crack detection, cracks have certain characteristics that lend 

themselves for identification.  First, cracks generally have low intensity values which allow them 

to be systematically separated from the rest of the image (Giakoumis, Nikolaidis, and Pitas 2006: 

179).  This knowledge can be used to automatically find the intensity level of the cracks in the 

image regardless of the lighting levels.  Once these cracks are detected and identified, they are 

connected by looking at their nearest neighbors.  A nearest neighbor is a pixel that is closest in 
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linear distance to the originating pixel.  If a line is short enough, it probably is a false positive 

and is removed.    The cracks can then be quantified and transformed into PCI information. 

This chapter gives the reader current status in pavement health classification, UAV 

technology, and computer vision. It discusses recent attempts to use computer vision techniques 

on crack detection.  This chapter also discusses current applications of UAV technology in civil 

engineering.  Finally, it discusses road health classifications, where it started, the important 

characteristics in road health classifications, and what methods current practitioners utilize today 

to assess road health.  Pavement health and classification, UAV technology, and computer vision 

techniques are well researched areas and can be combined in new ways to improve road health 

assessment. 
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III. Methodology 

This chapter discusses three aspects of the research method.  First, the equipment used to 

collect the road condition data is discussed.  Details are provided for the camera characteristics 

and the unmanned aerial vehicle (UAV) airframe used.  Processing the data through computer 

vision algorithm is subsequently discussed.  Finally, this chapter discusses how the data was 

evaluated for efficiency in order to answer the original research questions. 

Equipment 

 Many pieces of equipment were utilized in this research.  The research uses a GE 

Prosillica 1660C camera with a 50 mm lens and a doubler for an effective lens of 100mm.  A 

doubler is a lens attachment that doubles the effective focal length of the lens.  The doubling 

allows for double the effective zoom of the lens, which is necessary to achieve the correct sight 

picture of the road from an altitude of 100-200 ft.  The camera connects to a computer via a Cat 

6 Ethernet cable.  The research uses a Next Unit Computing (NUC) computer with an Intel i5 

processor, 1.8 GHz Processor, 120 GB Solid state Hard Drive, 8 GB of RAM, running a Linux 

Ubuntu version 14.1 operating system.  The images were captured using the image acquisition 

toolbox in Matlab® and a script that continuously wrote the images to the hard disk.  The 

research uses a 12-ft Telemaster aircraft running Ardupilot version 3.1 with a ground station 

laptop serving as the controller.  The ground station utilized Mission Planner version 2.6. 

Camera Characteristics 

There are several camera characteristics that were examined in selecting an appropriate 

camera for this research.  The first characteristic examined is camera resolution.  This research 

requires high resolution road images.  Originally, this research planned to use a 16 Megapixel 

camera in order to maximize the image footprint.  However, the maximum frame rate of the 
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camera is 3.3 frames per second (FPS) which significantly reduces the maximum speed of the 

UAV to 10 knots in order to capture the entire road.  This is a slow collection rate and forces the 

UAV to operate extremely close to the aircraft stall speed.  A smaller 3 Megapixel camera was 

chosen instead in order to utilize the higher FPS capability.  This causes a tradeoff: the smaller 

camera needs to take more pictures in order to capture the entire road as compared to the larger 

camera. This tradeoff allows the UAV to operate at a higher speed and results in an overall faster 

capture rate.  The smaller cameras also have a lower minimum exposure time and this smaller 

exposure time is critical in obtaining clear pictures at higher speeds.  Figure 5 illustrates the 

effect of this tradeoff for seven different cameras; each point is the maximum speed at which a 

camera can operate with an acceptable blur. 

 

Figure 5: Maximum Speed of Image Capture Characterized by Megapixels of Camera 

   

The next characteristic examined is exposure time and aperture.  Exposure time is how 

long the image sensor is exposed to the outside subject to capture an image.  Aperture is the area 

of light that is exposed onto the sensor at any given time.  One way of understanding how a 

camera system works is to imagine the camera as a 5 gallon bucket under a faucet.  The exposure 
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time is the amount of time the faucet is open; and the aperture is the flow rate of water from the 

faucet.  If the faucet is left open too long, at too high of a rate, the bucket is over filled.  If the 

faucet is not on long enough, or at too low of a rate, the bucket is not filled and the bucket is not 

usable.  The exposure time and aperture must be adjusted to the right levels so the image sensor 

does not receive too much or too little light.  The rate of light streaming in is controlled by the 

aperture.  The standard measurement in photography is uses an f-number.  Each time the f-

number is doubled, twice the rate of light is allowed onto the image sensor.  A camera with a 

higher resolution will generally require a larger exposure time, and this increased exposure time 

contributes to blur at higher speeds. 

For a picture to be acceptable in the application of crack detection, it must be devoid of 

blur (Nissen 1993).  Blur is calculated in Equation 1 as follows: 

 
ܾ ൌ

߶ݏ݋ܿܵݓ݀
ܹ

 (1) 

   

where 

b  = image blur in mm, preferably <0.0508mm 
d  =exposure duration in seconds 
S  =subject velocity in meters per second 
߶	= angle between direction of motion and film plane in degrees 
w = sensor width in meters 
W =field of view in meters. 
 

A minimum acceptable blur in order to achieve quantifiable results is .0508mm (Nissen 1993).  
The S variable in equation 1 should be maximized so as to cover as much road as quickly as 
possible but at the same time maintaining a blur of less than .0508mm.   

Table 1 shows the maximum speed a camera can move while maintaining coverage of the 

entire road and realizing an acceptable amount of blur.   
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Table 1: Maximum Camera Movement while Maintaining Acceptable Blur 

GE 
1660C 

GT 
1290 

GT 
1910 

GE 
4900 

GX 
3300 

GE4000 GE2040

Speed (Mph) 78.4 61.4 88.6 21.8 64.8 30.0 44.3
Exposure time (ms) 0.068 0.145 0.055 0.020 0.019 0.018 0.040
Blur at Max (mm) 0.050 0.051 0.049 0.047 0.049 0.050 0.050
Mega Pixels 2 1 2 16 8 11 4
Max FPS 34 33 32 3 14 5 15

 

In order to capture the entire road, the images must be captured and transferred at high 

rates into a storage device.  A gigabit Ethernet port is rated to 1000 Mb/s; however the 

researcher’s setup tested to only 139 Mb/s.  While this is slower than the stated bandwidth, it is 

still exceeded required testing.   

After analysis of the different camera characteristics, this research utilized a GE 

Prosillica 1660C camera.  The camera was selected because of the ability to capture road photos 

at high speeds.  However, this camera required interfacing with a computer instead of storing the 

data directly onboard the camera. This interface slows down the capture rate (as opposed to 

storing the data directly on a camera); but this trade-off with the interface allows for 

sophisticated capturing and a higher storage capacity of photos.  This increased capability as a 

result of the required camera-to-computer interface outweighs the drawbacks of increased power 

requirements, overall weight, and increased systems complexity.  An example of increased 

systems complexity was the development of non-manufacturer software.  The interface required 

the use of Matlab® in order to command the camera to capture images and then store those 

images onto the onboard computer.  Matlab® provides a good framework and an algorithm was 

created in order to capture and store the photos from the GigE camera. 
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Airframe 

Multiple airframes were tested 28-29 May 2013 for general airworthiness and potential 

use for aerial photography in support of this research.  Table 2 lists these airframes tested and 

applicable attributes examined in the selection process. 

Table 2: Airframes Considered for Research 

 
Payload 
Space 

Endurance
Weight 

Capacity 
Engine Top Speed 

Raven .25 L 1 Hour 10 oz Electric 10 Km/h
Sig Rascal 110 2 L 1 Hour 4 lbs Gas or electric 40 Km/h

Telemaster 4 L 2 Hour 15 lbs Gas 60 Km/h
 

Table 2 shows the Telemaster, shown in Figure 6, as a suitable option for carrying the 

mission payload of a Prosillica GE 1660 camera with two, 3 cell 2200 milliAmp-hr batteries and 

a small Intel Next Unit of Computing (NUC) computer.  The payload is shown as an observer 

looking towards the ground in Figure 7, and looking towards the sky in Figure 8.  The 

Telemaster has the smallest wing loading than any other fixed wing airframe AFIT currently 

flies.  The small wing loading allows it to maintain control at slower speeds and this allows for 

clearer pictures, as well as more coverage of the road.  It also utilizes flaps, which increase the 

camber of the wing, generating more lift at slower speeds, and therefore lowers the stall speed.  

Finally, the Telemaster has the largest payload capacity, allowing more weight for increased 

photo storage capacity or an additional camera.  Although a second camera was not used in this 

research, this configuration could possibly increase the effective camera footprint in future 

research allowing for more coverage. 
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Figure 6 Telemaster UAV 

 

Figure 7 - Camera Payload Top 
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Figure 8 - Camera Payload Bottom 

In order to verify the plane was overflying the road, the operating system on the computer 

was streamed down to a mobile display utilizing a 5.4 GHz Yellow Jacket transmitter/receiver.  

This allowed the researcher to verify images were being taken of the road while the plane was 

flying.  The entire system was self contained and did not affect the Telemaster’s flight apart from 

being a weighted payload. 

Computer Vision 

Computer vision techniques are required to identify the cracks from the images obtained.  

Thresholding is the process of converting pixel intensity values, which can range from an 8-bit 

integer to a vector of 32-bit integers, to a binary value of one or zero (Szeliski 2010: 127-128).  

A value at the top of the spectrum occurs when the sensor receive the maximum amount of light 
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possible; a value at the bottom of the spectrum occurs when no light is registered by the sensor.  

This is useful for capturing which pixels are part of a crack; but depending on lighting 

conditions, the thresholding level may vary from image to image. .  A solution around this 

problem is to ascertain the different intensity levels immediately around a given pixel since these 

levels should be consistent across nearby pixels.  Under this assumption, pixels in an image can 

be in one of the four possible locations as shown in Figure 9.  If there is no difference in the 

intensity levels around a pixel, such as locations “A” or “D” in Figure 9, a pixel is likely within a 

crack or outside of a crack; if there is a large difference, such as at locations “B” or “C” in Figure 

9, the pixel is likely the edge of a crack (Zou et al. 2012: 231).  For grayscale images, the 

algorithm determines the surrounding intensity level of each pixel to determine which intensity 

to threshold the image. 

 

 

Figure 9 - Pixel Locations Near Cracks (Zou et al. 2012b, 231) 

 

The intensity level of a pixel that has low to no difference between itself and its 

neighbors is the likely intensity of crack pixels in a photo and is the intensity level that the 

picture should be thresholded at.  In practice, thresholding clears a large portion of the noise in 

an image, but the algorithm needs additional methods to further reduce false positives.  Once the 



25 
 

cracks have been identified, gaps in the detection should be connected if they are reasonably 

close, while reducing and false positives.  The crack pixel locations are then connected to other 

crack pixels within 40 pixels of it as an initial estimate of how far pixels could be from each 

other and still be part of a connected crack. 

In order to obtain accurate defect data, crack pixels that are close to each other need to be 

connected while false positives need to be removed.  The data was arranged using a graph by 

plotting potential edge pixels and then allowing edges to be connected between near pixels.  This 

research initially attempted to use an algorithm that compared each point to each other point, 

drawing a line between pixels only if the distance was below 40 pixels as shown in Figure 10.   

  

Figure 10 - Connection Query 

 However, the graph typically held fifteen thousand points and processing time was 

taking upwards of 50 minutes.  A KD-tree method can be used to reduce this processing time.  

The KD-tree is a popular method of indexing multi-dimensional search trees (Szeliski 2010: 

233).  The method splits the search area into four separate areas, checks which area meets the 

search criteria, separates that area into four quadrants and continues until the final value is found 

or comes to the conclusion that there is no point that meets the search criteria (Woolley 2014).  
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Processing time was cut to one minute using this method, significantly improving performance.   

This provided a viable way forward to processing future images. 

In order to further reduce false positives, the method must then take into account how to 

remove extra offshoots, which can be obtained from a minimum spanning tree.  A minimum 

spanning tree takes a fully connected group of nodes and edges and finds the path that connects 

all nodes for the least amount of total distance.  There are two major algorithms for completing a 

minimum spanning tree: Kruskal and Prim-Jarnik (Woolley 2014).  The researcher chose to 

implement Kruskals algorithm as a readily open source program was available.  Kruskal’s 

algorithm proceeds by choosing the smallest distance edge and retaining it only if it connects a 

new node.  Edges connecting already visited nodes are removed.  Once all nodes are connected, 

the algorithm is completed.   

To evaluate success of the algorithm, the two standard measurements of accuracy in 

computer vision (precision and recall) will be used.  Recall is the ratio of the number of true 

positive identifications the algorithm found over the actual number of identification possible 

(Ting 2010: 781).  Precision is the number of true positives found by the algorithm over the total 

number of positives found by the algorithm (Ting 2010: 781).  These two measures account for 

two errors an algorithm might produce and can be combined into an F-measure.   Precision, 

recall, and F-Measure are calculated with the following equations: 

 
Precision ൌ

True	Positives	Found	by	Algorithm
True	Positives	൅False	Positives

 
(2) 

 
Recall ൌ

True	Positives	Found	by	Algorithm
True	Positives ൅ False	Negatives

 
(3) 

 
F‐Measure ൌ

2 ∗ Recall ∗ Precision
Recall ൅ Precision

 
(4) 
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These equations will be used to calculate the error and success rate of the algorithm 

against the ground truth.  Ground truth is established by the researcher hand marking the cracks 

in each picture.  Each pixel that is identified as a crack and is within 15 pixels of a hand 

identified crack will be considered a true positive.  15 pixels was chosen to make sure pixels that 

are reasonably close will be counted as true crack pixels. Any pixel identified as a crack and not 

within 15 pixels will be considered a false positive and added to the denominator of the precision 

calculation.  Any hand identified pixel that is not within 15 pixels of an algorithm identified 

pixel shall be added to the denominator of the recall equation.  The F-Measure is important as it 

is the harmonic mean between precision and recall.  It allows the algorithm to be evaluated while 

accounting for false positive and false negatives, giving a true understanding of how accurate the 

algorithm is.  A human would identify cracks at an F-Measure of near 100; an algorithm shall be 

considered successful if it achieves a F-Measure of at least 95. 

 Finally, one last technique will be used in order to achieve a more accurate result: 

histogram equalization.  Histogram equalization involves spreading out the intensities of the 

grayscale images to the extremes of the possible ranges.  If an images darkest pixel intensity 

value in is 50 and its brightest intensity value is 150, each value will be changed according to its 

relative position in the original image.  Each pixel intensity will subtract the image minimum, be 

multiplied by 255 and divided by the length of the range of intensity values in the original 

images.  This is attempted in order to widen the differences between the crack pixel intensities in 

the image and the non crack pixel intensities.  The above methods will be attempted and the 

results will be discussed in Chapter 4. 

This chapter discusses how the efficiency of the algorithm is determined in order to 

answer the original research questions.  It describes the techniques used to process the road 
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images into road distress data.  Finally it described the necessary characteristics of the payload in 

order to capture road images.  This chapter reviewed all the components of the methodology and 

how it was used to collect data. 
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IV. Results 

Two days, August 22nd and October 30th, of UAV flight occurred at Camp Atterbury, 

Indiana.  Both days were partly cloudy and 71 and 53 degrees, respectively.  The flight path of 

the UAV did not always fly directly above the road, and the images did not always contain the 

road.  Way points were adjusted north and south of the road to attempt to fix this issue, as well as 

differing distances between waypoints, but an exclusive straight-line flight over the road was not 

achieved.  The exposure time and gain settings were varied before each flight in order to obtain 

optimal pictures, however there continued to be visible differences in the lighting conditions of 

the images. 

 

Figure 11 – Road Analyzed 

The imagery collected ranged from ideal to unusable depending on the flight and the 

lighting conditions.  There were a significant number of usable images, and the results of 

processing some images are shown in Figure 12. 
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Figure 12 - Captured, Ground Truth, and Processed Images 
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Figure 13 - Combined Road Photos  
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 The road was 2000 feet long, as shown in the yellow line in Figure 11, and just within 

the researches approved airspace.  The road was chosen because it was the only possible road to 

survey; however, it was an also an ideal road for research with many sections of different 

distresses, as well as some without distresses at all.  The original intent was to combine each 

road photo together in order to capture the complete section in one image.  However, the flight 

path of the UAV did not directly follow the road and led to incomplete coverage as shown in 

Figure 13 - Combined Road Photos 

 The algorithm to find the optimal threshold intensity did not work at the found intensity.  

This was compensated by subtracting the found value by the intensity shift in the x-axis of the 

figures in this chapter.  Due to the algorithm finding too many potential crack pixels, the 

algorithm could not process all the images at the specified intensity level.  At too high of an 

intensity level, the computer is overwhelmed with potential positives within close proximity, and 

thus highly likely false positives.  These images are thrown out, and those images remaining are 

reflected in the analysis and figures in this chapter. 

 

Figure 14 - Precision, Recall, F-Measure of Initial Algorithm 
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 The following are the results of analysis of different variations of my initial algorithm.  

Figure 14 shows the statistics on the original attempt to identify defects in the road.  The highest 

F-Measure achieved was 35, thus further methods were required to improve the effectiveness of 

the algorithm.  Figure 14 shows the results of attempting to account for the different lighting 

situations by utilizing histogram equalization.  Figure 16 shows the results when the algorithm 

was adjusted for finding the nearest neighbor using a set true ground distance rather than a set 

pixel difference.  Finally, Figure 17 shows the results of processing a single flight with the 

clearest lighting setting.  

Figure 14 shows a random sampling of 30 total images; the 30 images were chosen at 

random from a pool of all available road photos from each flight.  The F-Measure reached a peak 

at 35 minus the intensity level found by the initial algorithm.  This indicates the original 

algorithm is either insufficient or the method of capturing images is insufficient.  An acceptable 

F-Measure would be 95 percent as this is the rate expected from a human classifier.  Since the F-

Measure is lower than an acceptable, further efforts were made to increase F-measure.  The next 

effort was to equalize the intensity levels across the image using histogram equalization.  Recall 

that histogram equalization is the attempt to bring the intensity levels of the image to be 

consistent with all portions of the image.  This process ensures an overly dark portion of the road 

is the same color of the rest of the road and is not mistaken for a crack. 



34 
 

 

Figure 15 - Precision, Recall, F-Measure of Histogram Equalization Variation 

Originally, the images were run at the same intensities as the previous trial; however this 

led to a success rate of 6.7 percent.  The images were instead run from different intensities 

starting at the bottom of the intensity scale.  This led to the results as shown in Figure 15.  The F-

Measure is still below 95 percent and did not make a significant difference when compared to the 

original algorithm results.  Further changes are needed to produce an effective F-Measure.   

Next, the images were processed according to a foot as measured in the picture rather 

than a set pixel distance for each pixel.  The research attempted using true foot measurements in 

order to increase the recall of the images by including more possible pixels in the higher 

resolution images, and reducing errors in the lower resolution images.  The true spatial distance 

increases how far the algorithm will look to connect crack pixels on high resolution images, and 

decrease the distance for low resolution images.  The results on this final analysis are shown in 

Figure 16. 
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Figure 16 - Precision, Recall, F-Measure for True Ground Spatial Distance Variation 

Again, the analysis conducted for Figure 16 did not conclude in an acceptable F-Measure.  

None of the previous methods achieved an acceptable rate of success, so one final test was 

conducted to see if the poor numbers were obtained due to different lighting conditions.  The 

results of the final test are shown in Figure 17 .  The figure shows the algorithm results from a 

single flight where lighting settings were the same, as well as relative ground spatial distances.  

While the precision was much higher for each of these pictures, they captured far fewer true 

crack pixels as is shown in the low Recall, and thus obtained similar F-Measure values as the 

previous methods. 
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Figure 17 - Precision, Recall, F-Measure for Isolated Flight 

 This chapter discussed the results of the data collection effort and the effectiveness of the 

algorithm.  Road images were captured at an acceptable resolution with minimum blur, and thus 

acceptable for semiautonomous inspections.  However, the original algorithm and all subsequent 

variation did not prove useful enough for immediate application.  The final chapter will discuss 

the impacts of these results. 
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V. Conclusion 

 This research has shown that photographic imagery can be obtained for road analysis 

from a UAV.  The imagery was clear and capture rate fast enough to cover the entirety of the 

flight path.  Each component functioned quickly to receive and store the visual imagery below it.  

The imagery could be used in a semi autonomous pavement inspection system with a human 

operator hand identifying the distresses in the road.  While the aircraft was under the eye of a 

safety pilot, it could perform the survey run on its own.  This means surveys could be performed 

without human interaction, significantly saving on labor costs, assuming purely autonomous 

operation becomes a lawful activity for UAVs.   

 While the results show the current system devised for this research is not ready for 

operational use, it does shed light on how to further this technology in order to obtain reliable 

data in the future.  Once this data and accompanying algorithms achieve an acceptable error rate, 

the results can be used to transfer PCI information into the Paver database.  The Paver database 

is an infrastructure asset management system used by the Department of Defense in managing its 

roadways and other paved surfaces.  This information allows decision makers to save money by 

extending the life of existing road assets optimally with well-timed repair options.  Such a 

method of management would not be possible without reliable data that is consistently 

documented.  Figure 18 shows how injecting money on preservation at the right time is crucial to 

avoiding costly repairs in the future.  In a fiscally constrained environment, such information 

makes the difference between a perpetually failed transportation network, with increased costs 

for road users, and a stable road network with a condition state that can continue indefinitely. 
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Figure 18 - Optimal Use of Repair dollars (Galehouse, Moulthrop, and Hicks 2011) 

Photographic imagery can be obtained by attaching high performance cameras to small 

UAVs and these systems can be flown autonomously using GPS and fixed waypoints.  These 

images can be transformed into crack data using algorithms, although they will have to be 

improved for future use.  While the current performance is not quite up to acceptable standards, 

further advances and techniques and be developed in the future that will bring this technology on 

par with human recording of pavement condition data. 

Errors occurred due to sub optimal lighting conditions.  The algorithms detected the 

errors as cracks at one extreme, and missed cracks completely at the other extreme.  The current 

proposed system has objective errors that create an unacceptable product for current uses, but 

appear to have promise if the algorithm can be improved.  The pictures of the road varied from 

flight to flight due to lack of system self-calibration to account for changing environmental 
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lighting conditions.  Finding a way to control for environmental lighting conditions would allow 

for the system to more consistently capture road images.  This may help future crack finding 

algorithms and would definitely help humans performing semi-autonomous inspections.  This 

research took photo information at a speed of 25 mph. However the camera system can 

theoretically accommodate up to 78 mph, as shown in Figure 5, and the Telemaster airframe can 

fly at a maximum of 50 mph.  Accounting for this possibility in increased speed could lead to 

faster data collection than current commercial methods for residential roads as well as being 

comparable in speed to assessments for highway roads.  However, as shown in the analysis, this 

method of data process is not yet at an acceptable level for application.  A level of 95% for the F-

Measure would allow for immediate application. 

Limitations 

 While this technology is promising, there are some key limitations.  The autopilot 

algorithm did not directly follow the road.  This may be due to the environment the research was 

forced to operate under:  The flight path of the UAV was a tight circuit in order to maintain 

operation within the approved airspace.  The ideal flight path would have been directly over the 

road and for a longer, straight line flight, as would be necessary for a real life application of this 

method.  Also, the lighting characteristics of each flight were sufficiently different to make it 

difficult to achieve consistent results.  This could be solved by incorporating a light meter and 

using it to set the photography settings in pre-flight or during flight. These lighting settings could 

be done on the ground or even attached to the aircraft to send periodic updates to the camera 

settings.  Next, the crack identification is not at an acceptable level to replace human interaction.  

This is crippling to further application of the system and must be addressed by further improving 

crack identification as well as crack classification.  Finally, the methodology does not address 
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other distresses such as rutting, bleeding, or patching.  Further research into how to reliably 

collect three dimensional information and rutting and bleeding from a UAV is required to solve 

this inconsistency.  

Further research 

 This research brings on many areas for future development.  Research can be 

accomplished on whether this imaging package should be attached to municipal or government 

vehicles that already cover the entirety of an agencies road network.  A study could accompany it 

with how long would it take a passive system to survey the entire network.  Further research 

could determine the optimal number of vehicles in order to finish a network survey in a 

reasonable time.  Additionally, more research is needed in how to obtain rutting dimensions, or 

three dimensional data on a road with enough precision to detect rutting of a road from an aerial 

vehicle.  Another area to be addressed is research into how to properly classify different cracking 

into various categories defined by the PCI process via an intelligent algorithm.  Finally, future 

research should also address how an autopilot system can be better programmed and manipulated 

to have a consistent ground track over a transportation network. 

 The overall goal of this research is to push the envelope into faster, cheaper, and better 

ways to gain useful information on infrastructure.  With this information, infrastructure asset 

managers can make better decision on where to spend their next repair dollar.  While the system 

explored in this research is not ready to accomplish real world application, it is the researchers 

hope that the research pushed the envelope of knowledge to further discoveries. 
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Appendix A. Pseudo code 

1) Set intensity shift and filenames of images 

2) Run through each image from UAV 

a) Create initial result as an red image 

b) Call Plot Script 

i) Load UAV image as grayscale 

ii) Determine brightest possible pixel 

(1) Take the intensity of each pixel and subtract it from the center pixel 

(2) Sum differences 

(3) Add result to intensity array at the index value of the center pixel’s intensity value 

iii) Find index that contains the intensity arrays max value 

iv) Set index as the value to threshold the image 

v) Adjust threshold value by previously identified shift 

vi) Threshold image  

(1) Loop through image 

(a) set any pixel below threshold value to 0 

(b) set any pixel above threshold value to 255 

vii) Loop through image 

(1) Create node on undirected graph for each location of each pixel with a value of 0 

viii) Create KD-tree from nodes 

ix) Find pairs of nodes within specified distance using KD-tree 

x) Create edges of graph from pairs 
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xi) Create a minimum spanning tree (MST)from nodes and edges using kruskals MST 

algorithm 

xii) Remove any nodes that are not connected or only have one edge connected to it 

xiii) Plot Graph as the same size as the original image and save as .jpg, overwriting the 

red image that was originally created 

3) Create text file (treated as a csv) 

4) Loop through the number of images to be processed 

a) Load algorithm result image 

b) If image is red, skip to next iteration of loop 

c) Print file number in text file and run compare script 

i) Load algorithm result image 

ii) Load ground truth image 

iii) Check every ground truth crack pixel against the corresponding pixel of the algorithm 

result image within a specified range.   

(1) The loop counts all true positives found by the ground truth and the number of 

crack pixels in the ground truth file. 

iv) Checks every algorithm truth crack pixel against the corresponding pixel of the true 

crack image within the specified range.   

(1) The loop counts all false negatives 

v) Calculates Precision, Recall, and F-Measure of each picture 

vi) Prints Precision, Recall, and F-Measure to text file 

5) Writes percentage of files processed out of possible images processed 
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If the algorithm had successfully accounted for 95% of the cracks present, the found crack pixels 

from the road images would be divided by the total road pixels.  This percentage would be 

compared to the PCI curves for each distress type, which combined with the severity, would 

yield the deduct values for the road section.  The branch ID and similar information for each 

section would be determined from the GPS tag in the EXIF info tag in the photo.  This 

information would be format into a format that can be easily exported into PAVER. 
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Appendix B. Code 

#Test1.py 
 
#File to run Crack Detection Algorithm  
#import Thesis code files 
import compare5 
import plot21 
 
#import libraries to process images 
from PIL import Image 
import cv2 
 
diff=40#the value the intensity is shifted.  This value is changed for each 
run ofthe script 
 
#Different File names for the different variations of the algorithm that were 
run  
#name='-'+str(diff)+' histogram ' 
#name='-'+str(diff)+' histogramstatic ' 
name='-'+str(diff)+' run2normal '#the last file name for processing images 
from one flight 
 
for x in range(1,31): 
     
    #creates a red image for the algorithm image.  crack identification 
algorithm 
    #is successful, the red image is overwritten.  if the algorithm runs into 
memory issues 
    #the compare script skips processing the image 
    im=Image.new("RGB",(1600,1200),"red") 
    im.save('C:/Users/Pat/documents/google drive/temp/algocrack/'+str(name)+ 
str(x)+'.jpg') 
 
    plot20.plot(name,x,diff) 
     
#opens csv for each iteration.  The csv is evaluated in excel    
f = open('effeciency'+str(name)+'.txt','a') 
count=0 
total=0  
 
#compares each algorithm image produced with each ground truth image 
for x in list: 
    total+=1 
    im3=cv2.imread("C:/Users/Pat/documents/google 
drive/temp/algocrack/"+str(name)+str(x)+".jpg",1) 
     
    #if image is red, algorithm image was not created, so the image is 
skipped 
    if im3[1&1].any()==[0&0&254]: 
        continue 
    f.write('File '+str(x)+'\t'+compare5.compare(x,name)+'\n') 
    count+=1 
 
#writes percentage of 30 images that were successfully processed 
f.write('& comp\t'+"{:.1%}".format(float(count)/float(total))+'\n') 
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f.close() 
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#Plot21.py 
#This Function takes the filename of the image to be processed as well as how 
much to shift 
#the intensity level from what the algorithm calculates to be the brightest 
crack pixel 
def plot(name,file,thresh): 
 
    #Imports to be able to draw a node 
    import networkx as nx 
    import matplotlib.pyplot as plt 
    import matplotlib.image as mpimg 
    import matplotlib 
     
    #Imports numberical tools and arrays 
    import numpy as np 
    from scipy import spatial 
     
    #Imports computer vision tools 
    import cv2 
     
    #Tools to determine how long each step takes for operator awareness 
    import sys 
    import time 
     
    #Image Loading Tools 
    from PIL import Image 
     
    #Load image as grayscale 
    #Takes File from function call in order to load the correct image 
    gray=cv2.imread('C:/Users/Pat/documents/Google 
Drive/temp/roads2/'+str(file)+'.jpg',cv2.CV_LOAD_IMAGE_GRAYSCALE) 
 
    print 'C:/Users/Pat/documents/Google Drive/temp/roads2/'+str(file)+'.jpg' 
 
    print "Loaded Image" 
 
    #Loaded Image to show user it loaded correctly 
    ''' 
    namedWindow('dst_rt') 
    #cv2.resizeWindow('dst_rt', window_width, window_height) 
 
    imshow('dst_rt', gray) 
 
    waitKey(0) 
    destroyAllWindows() 
    ''' 
 
    #Determines Image Dimensions,  
    width,height = gray.shape 
    width-=1 
    height-=1 
    gradient=[] 
    pair=[] 
    findthresh=[] 
    threshold=0 
    maxT=0 
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    intensities=[0]*256 
     
    #Start Clock to Determine how long this step takes 
    begin=time.time() 
     
    gray[0,0]=0 
    gray[0,height]=0 
    gray[width,height]=0 
    gray[0,height]=0 
    # Ctrl Q to comment and uncomment blocks 
    #Runs Algorithm to determine brightest crack pixel 
    #loops through each pixel in loaded image and determines its brightness 
relative to its neighbors 
    #Positive result indicates it is a darker pixel compared to its neighbors 
    #each result is added to an array index from 0 to 255, the array index is 
determined by the intensity of the center pixel 
    for j in range( 1, (height-1)): 
        for i in range( 1, (width-1)): 
            pixelintesity=0 
            pixelintesity=pixelintesity+int(gray[(i-1),(j-1)]-gray[i,j]) 
            pixelintesity=pixelintesity+int(gray[i,(j-1)]-gray[i,j]) 
            pixelintesity=pixelintesity+int(gray[(i+1),(j-1)]-gray[i,j]) 
            pixelintesity=pixelintesity+int(gray[(i-1),j]-gray[i,j]) 
            pixelintesity=pixelintesity+int(gray[(i+1),j]-gray[i,j]) 
            pixelintesity=pixelintesity+int(gray[(i-1),(j+1)]-gray[i,j]) 
            pixelintesity=pixelintesity+int(gray[i,(j+1)]-gray[i,j]) 
            pixelintesity=pixelintesity+int(gray[(i+1),(j+1)]-gray[i,j]) 
            intensities[gray[i,j]]=intensities[gray[i,j]]+pixelintesity          
        if j%100 == 0: 
            print "......"+str(int(100*(float(j)/float(height))))+"%\r", 
     
    #Ends Clock and prints time to determine how long step took 
    end=time.time() 
    print "step time: " + str(int(end-begin))+" seconds" 
 
    #print intensities 
    # Bar Chart 
    #fig, ax = plt.subplots() 
 
    n_groups=len(intensities) 
 
    index=np.arange(256) 
 
    bar_width=.1 
    opacity=4 
    error_config={'ecolor': '0.3'} 
 
    #rects=plt.bar(index,intensities,bar_width) 
    #plt.show() 
 
    max=0 
 
    #Finding brightest probable crack pixel by finding the intensity with the 
highest difference from its neighbors  
    begin=time.time() 
    i=0 
    for i in range(256): 
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        if intensities[i]>max: 
            max=intensities[i] 
            threshold=i 
 
    end=time.time() 
    print "step time: " + str(int(end-begin))+" seconds"         
    print threshold  
 
    #Adjusting threshold by value of the function call 
    threshold-=thresh  
    pointmatrix=np.array 
    begin=time.time() 
 
    #turning any pixel below threshold white and all others black 
    for j in range( 0, height): 
        for i in range( 0, width): 
            if gray[i,j]>threshold: 
                gray[i,j]=0 
            else: 
                gray[i,j]=255 
                 
    end=time.time() 
    print "step time: " + str(int(end-begin))+" seconds"     
    print "thresholded image" 
 
    """ 
    Checks for debugging 
    namedWindow('dst_rt', WINDOW_NORMAL) 
    #cv2.resizeWindow('dst_rt', window_width, window_height) 
 
    imshow('dst_rt', gray) 
 
    waitKey(0) 
    destroyAllWindows() 
 
    """ 
 
    G =nx.Graph() 
    #Creating list of crack pixels 
    pos={} 
    k=int(0) 
 
    for j in range( 0, height): 
        for i in range( 0, width): 
            if gray[i,j]>0: 
                gray[i,j]=int(255) 
                pos[k]=((height-j)*(-1),(width-i)) 
                k+=int(1) 
                 
        if k%100 == 0: 
            print "......"+str(int(100*(float(j)/float(height))))+"%\r", 
    #print pos[0] 
             
    print "created crack pixels" 
             
    #creating nodes from crack pixels 
    G.add_nodes_from(pos.keys()) 
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    print "Created Nodes" 
 
    nx.draw_networkx(G,pos,with_labels=False) 
    #plt.axis('off') 
    #plt.show() 
    #print k 
 
    print len(pos) 
 
    #Creating list of pixel locations 
    dictlist=[] 
    temp=[] 
    for key in range(0, len(pos)): 
        temp = pos[key] 
        dictlist.append(temp) 
 
    #print len(dictlist)     
 
    kdtree = spatial.KDTree(dictlist) 
    other = kdtree 
    #print type(dictlist) 
 
    k=0 
    print "made kd tree" 
     
    #Takes the nodes of each crack pixel in a KD-tree and finds the nearest 
neighbor for th value specified 
    #This is a much faster way of pairing nodes that are close to each other, 
rather than looking at each  
    #node and comparing it to each other node 
    begin=time.time() 
    try: 
        pairs=kdtree.query_pairs(7) 
    except MemoryError: 
        return 
     
    #pairs=kdtree.query_ball_tree(other,r=40) 
    #print type(pairs) 
 
    end=time.time() 
    print "step time: " + str(int(end-begin))+" seconds" 
 
    #print type(pairs) 
    #print len(pairs)    
    print "made pairs" 
     
    #adds edges between nodes that are close enough 
    try: 
        G.add_edges_from(pairs) 
    except MemoryError: 
        return 
 
    #creates minimum spanning tree with kruskals algorithm in order to remove 
unneccessary edges 
    #This is done to save memory and runtime 
    s=nx.Graph() 
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    s=nx.algorithms.mst.minimum_spanning_tree(G)  
     
    print "added edges" 
 
    #connected crack pixels are drawn on a graph 
    nx.draw_networkx(s,pos,False,node_size=0) 
    #plt.show() 
 
    cv2.waitKey(0) 
    cv2.destroyAllWindows() 
    h=nx.Graph() 
    h=s 
     
    #removes nodes with only one connection, reduces errors 
    outdeg = h.degree() 
    to_remove=[n for n in outdeg if outdeg[n] ==1] 
    h.remove_nodes_from(to_remove) 
     
    plt.figure(figsize=(16,12)) 
    nx.draw_networkx(h,pos,False,node_size=0) 
    plt.axis('off') 
    plt.subplots_adjust(left=0, bottom=0, right=1, top=1, wspace=0, hspace=0) 
    plt.xlim((-1600,0)) 
    plt.ylim((0,1200)) 
 
    #Saves Graph as a jpg 
    plt.savefig('C:/Users/Pat/documents/Google 
Drive/temp/algocrack/'+str(name)+str(file)+'.jpg', dpi=100,pad_inches=0) 
    #plt.show() 
    plt.close() 
     
    return(None) 
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#compare5.py 
#compares Pixels 
def compare(file,name): 
 
    import networkx as nx 
    import matplotlib.pyplot as plt 
    import matplotlib.image as mpimg 
    import matplotlib 
 
    import numpy as np 
     
    import cv2 
 
    import sys 
    import time 
     
    from PIL import Image 
     
    #Loads File crack file developed by algorithm from called arguments as 
well as  
    #hand identified crack file 
    im1=cv2.imread("C:/Users/Pat/Documents/Google 
Drive/temp/Cracks2/"+str(file)+".jpg",cv2.CV_LOAD_IMAGE_GRAYSCALE) 
    im2=cv2.imread("C:/Users/Pat/Documents/Google 
Drive/temp/algocrack/"+str(name)+str(file)+".jpg",cv2.CV_LOAD_IMAGE_GRAYSCALE
) 
    print "test" 
 
    #checks files are loaded 
    #cv2.namedWindow('dst_rt') 
    #cv2.imshow('dst_rt', im1) 
    #cv2.waitKey(0) 
    #cv2.destroyAllWindows() 
 
    #image sizes 
    width=1200 
    height=1600 
 
    #checks files are loaded 
    #cv2.resizeWindow('dst_rt', window_width, window_height) 
    #cv2.resizeWindow('dst_rt', window_width, window_height) 
    #cv2.waitKey(0) 
    #cv2.destroyAllWindows() 
    #cv2.resizeWindow('dst_rt', window_width, window_height) 
    #plt.imshow(im2) 
    #cv2.waitKey(0) 
    #cv2.destroyAllWindows() 
 
    span=15#distance to check pixels to check for truth, 
    #if less, crack pixel is a false positive or false negative 
    foundcrackpixels=0 
    count=0 
    truecrack=False 
    #begins iteration of checking every ground truth crack pixel against the 
corresponding pixel 
    #of the algorithm image within the specified range.  The loop counts all 
true positives and 
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    #all positives possible found by the ground truth.   
     
    begin=time.time() 
    for x in range(0,width-1): 
        for y in range(0,height-1): 
            if im1[x,y]<200: 
                foundcrackpixels+=1 
                for x2 in range(-span,span): 
                    for y2 in (-span,span): 
                        if (x-x2)<1 or (x+x2)<1 or (x+x2)>width-1 or (x-
x2)>width-1: 
                            break 
                        if (y-y2)<1 or (y+y2)<1 or (y+y2)>height-1 or (y-
y2)>height-1: 
                            continue 
                        if im2[x-x2,y-y2]<200: 
                            truecrack=True 
                if truecrack==True: 
                    count+=1 
                truecrack=False 
        if x%10 == 0: 
            print "......"+str(int(100*(float(x)/float(width))))+"%\r", 
 
    print "First Run Completed" 
    end=time.time() 
    print "step time: " + str(int(end-begin))+" seconds" 
     
    #begins iteration of checking every algorithm truth crack pixel against 
the corresponding pixel 
    #of the true crack image within the specified range.  The loop counts all 
false negatives 
    FalseNegative=0 
    begin=time.time() 
    for x in range(0,width-1): 
        for y in range(0,height-1): 
            if im2[x,y]<200: 
                 
                for x2 in range(-span,span): 
                    for y2 in (-span,span): 
                        if (x-x2)<1 or (x+x2)<1 or (x+x2)>width-1 or (x-
x2)>width-1: 
                            break 
                        if (y-y2)<1 or (y+y2)<1 or (y+y2)>height-1 or (y-
y2)>height-1: 
                            continue 
                        if im1[x-x2,y-y2]<200: 
                            truecrack=True 
                if truecrack==False: 
                    FalseNegative+=1 
                truecrack=False      
        if x%10 == 0: 
            print "......"+str(int(100*(float(x)/float(width))))+"%\r", 
    end=time.time() 
    print "step time: " + str(int(end-begin))+" seconds" 
     
    #makes sure the script doesnt throw an error for dividing by zero 
    if foundcrackpixels!=0:          
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        Recall=(float(count)/float(foundcrackpixels))    
    else: 
        Recall=0 
    #print "true crack pixels = "+str(count) 
    if count==0 and foundcrackpixels==0: 
        Recall=1 
         
    if FalseNegative!=0 and count!=0: 
        Precision = float(count)/float(count+FalseNegative) 
    else: 
        Precision=0 
    if count==0 and FalseNegative==0: 
        Precision=1 
         
    #print "false crack pixels ="+str(foundcrackpixels-count) 
    #False Positive rate 
    if Recall!=0 and Precision!=0: 
        Fmeasure= 2*(Precision*Recall/(Precision+Recall))    
    else: 
        Fmeasure=0 
     
    #Prints results of each image to a csv file that will be opened in excel 
    #records the file number, Precision, Recall, and F-Measure 
    print "File number: " + str(file) 
    print "Precision =" + "{:.1%}".format(Precision) 
    print "Recall =" + "{:.1%}".format(Recall) 
    print "F-Measure =" + "{:.1%}".format(Fmeasure) 
 
    return 
"{:.1%}".format(Precision)+'\t'+"{:.1%}".format(Recall)+'\t'+"{:.1%}".format(
Fmeasure) 
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