
UNCLASSIFIED 
 

UNCLASSIFIED 
 

 
 

 
 
 

A Rule-based Track Anomaly Detection Algorithm for 
Maritime Force Protection 

  
 

S.Boinepalli and A.J.Knight 
 

Weapons and Combat Systems Division 
Defence Science and Technology Organisation 

 
 

DSTO-TR-3012  
 

 
 

ABSTRACT 
 

We developed an anomaly detection tool using a Rule-based Algorithm that can detect anomalies in a 
set of pre-recorded tracks using their curvature, speed and weave. We devised a method that can 
quantify the amount of curvature in a recorded surface track. The anomaly detection tool uses the 
limiting values for curvature, speed and weaving provided by the user to classify a track as “normal” or 
“anomalous”.  
 
We tested two data sets consisting of radar tracks recorded in May and August 2007. We varied the 
threshold values that the tool uses. We compared the results of the tool’s analysis of the data sets with a 
visual inspection performed by a navy combat system operator. The results of the tool’s analysis were 
in good agreement with those of the visual inspection.  
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Executive Summary  
 
 

Royal Australian Navy (RAN) ships are vulnerable to attack from asymmetric threats such as 
Fast Inshore Attack Craft (FIAC), either when they are alongside in harbour or in the littoral. 
Defending ships against such attacks comes under the term ‘Force Protection’ (FP). Sufficient 
Situational Awareness is required for effective Force Protection, in harbour, in littoral areas and 
the open ocean. These are areas which are particularly problematic due to the increased amount 
of non-threatening sea traffic. The RAN would benefit from a capability to assess the intent of a 
vessel, allowing them to take early action if a particular track appears suspicious or abnormal.  
 
The aim of the current task is to develop a concept that could be potentially developed into an 
anomaly detection tool to detect suspicious or anomalous tracks in previously recorded radar 
data. We used a rule-based algorithm to detect these tracks.  
 
To build the rules that the algorithm can use, we identified the characteristics of a recorded 
radar track. These track characteristics capture essential information of a track, viz., the track 
length, turns, speed and weave. The recorded tracks are analysed to determine thresholds on 
these features. The rule-based algorithm classifies a track from a given data set as “normal” or 
“anomalous” depending upon whether its characteristics lie within the set thresholds. 
 
The curvature signatures that we developed are used initially to eliminate clutter from tracks. 
The clutter-free tracks are input into the tool that uses a combination of the limiting values to 
identify anomalous tracks. 
 
We generated sets of simulated tracks with various speeds and turn for initial testing. Then we 
used the tool on radar data that were recorded near Sydney harbour. The data set was examined 
for anomalies by independent visual inspection by RAN personnel. The results of the analysis 
by the tool were compared against the results of visual inspection. The agreement between the 
results of the tool and visual inspection is about 80%. That is, the classification of tracks by the 
tool and visual inspection agreed for 80 tracks out of every 100 tracks, irrespective of the 
classification of the track. 
 
The tool needs more robust and rigorous testing, against another anomaly detection tool and 
against visual inspection by a group of operators. The threshold levels used by the tool should 
be set considering various factors, e.g., sea state and geographical location (littoral against deep 
ocean). Such a decision aid would reduce operator work load and avoid potential errors due to 
operator fatigue.  
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1. Introduction  

Royal Australian Navy (RAN) ships are vulnerable to attack from asymmetric threats such 
as Fast Inshore Attack Craft (FIAC), either when they are alongside in harbour or in the 
littoral. Defending ships against such attacks comes under the term ‘Force Protection’. 
 
Sufficient situational awareness is required for effective Force Protection, in harbour, in 
littoral areas and the open ocean. Towards this end, the RAN needs a capability of 
assessing the intent of a track and taking action if a particular track exhibits suspicious or 
abnormal behaviour. The aim of this work is to develop a tool that detects tracks as 
behaving in a suspicious or anomalous way. The tool developed and assessed in this work 
identifies anomalous tracks within a batch of recorded tracks. Future work will address 
the development of a tool that identifies anomalous tracks in real time, that is, as the tracks 
are updated.  
 
This report captures the details of the tool design, implementation and results of testing. 
Section 2 describes the scope and aims of this task while Section 3 briefly gives an 
overview of existing techniques in this area. Section 4 captures the details of the tool. 
Sections 5 and 6 explain the simulated and real data used to test the tool. Section 7 gives 
details of the results. In Section 8, conclusions with future plans are touched upon.  
 

2. Scope 

The long-term aim of this work is to improve the way the RAN performs Force Protection. 
This will be achieved by exploring the operational concepts of an integrated Very Short 
Range Surface Defence for the protection of surface ships against asymmetric threats in the 
littoral and in harbour. The RAN’s Rules of Engagement, by definition, have a significant 
impact on response options, and appropriate restrictions will need to be incorporated into 
response planning and threat assessment. However, these are not considered in this 
current task. 

The scope of this particular Force Protection activity covers the maritime surface domain, 
specifically against asymmetric surface threats. The detection of asymmetric threats 
becomes particularly problematic in harbour and littoral situations where non-threatening 
sea traffic is to be expected. Although there is interest in Force Protection against Fast 
Inshore Attack Craft, only Force Protection against harbour traffic will be considered, as 
only in-harbour data is available.  

3.  Algorithms and Tools Review 

Much work has been done in developing anomaly detection tools and many algorithms 
have been reported in the literature [1, 2, 3, 4, 5, 6]. Most of these algorithms depend upon 
providing a “training data set” to the tool. The tool analyses the training data set and 
develops a model to fit the training data set. Then the data set to be analysed is fed into the 
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tool for anomaly detection. Vast quantities of data from the Automatic Identification 
System (AIS) are available for the training of these tools [1, 4]. The development of these 
models is based on K-d trees [2], Bayesian [4] or clustering methods [3, 5].  

 
Apart from these model-based algorithms, there also exist rule-based algorithms. The rule-
based algorithms use a set of rules developed by subject matter experts based on their 
experience and domain knowledge [2]. The normal and abnormal behaviours are codified 
as rules. R.Jasinevicius et al developed a rule-based fuzzy expert system that considered 
vessel type, persons on board and the risk factor associated with the cargo [7]. 
 
Our tool is rule based and requires no prior training. It uses a set of rules with threshold 
values for track characteristics. It requires approximate predicted values for track 
characteristics (speed, course, rate of change of course) in the region of interest. The tool 
then tests each track against pre-set thresholds for these values to decide upon the nature 
of the track. 

4. Anomaly Detection Tool 

The main features of a track being acquired in the harbour are the position coordinates 
(latitude and longitude), speed, course and the time stamp. These properties are used to 
identify anomalous tracks in a given set of tracks.  
 
For the purpose of identifying anomalous tracks, it is important to firstly define an 
anomalous track. An “anomalous” track is one whose behaviour doesn’t fit in with that of 
the rest of the tracks in a given area. Although the tool can be customised to any area (in-
harbour, littoral or open ocean), our focus is in and around Sydney Harbour.  
 
The tool that we developed focuses on analysing track characteristics. The features that the 
tool takes into account are the curvature of a track, the speed and the amount of weaving 
in a track. We define threshold values for each of these features. When the features exceed 
the pre-set threshold values, the track is flagged as an anomalous track. The features 
considered for anomaly detection are discussed in the following sections. 
 
4.1 Curvature of Tracks 

A track is a set of data points, with each data point consisting of latitude, longitude, speed 
and course at a particular time instant. The curvature of a track indicates the distance 
covered by a vessel to reach a destination point from an initial point. Curvature is minimal 
for a normal, straight track, where the vessel takes the shortest route from an initial point 
to an end point. The farther a track moves away from the shortest path, the more 
anomalous the track becomes.  

For the purpose of anomaly detection, we defined two signatures of a track that indicate 
its curvature. For computing these signatures, the starting coordinates of the track 
 S ( ss latlong , ) and the coordinates at the end of the track E ( ee latlong , ) must be known. 
The shortest distance, D, between these two points, assuming a flat earth, is given as 
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However, the surface of the earth is not flat and the spherical coordinates (longitude, 
latitude) must be converted into Cartesian coordinates relative to a reference location, R, in 
the vicinity of the track.  These Cartesian coordinates ),( yx
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The distance covered by the recorded tracks analysed in this study is much smaller 
compared to the radius of earth, hence the curvature of earth can be ignored. Hence the 
distances between the data points are calculated as the distances from the reference 
location in each coordinate.   

4.1.1 Curvature Signature 1 (CS1) 
 
The first Curvature Signature CS1 gives an indication of a track’s tendency to deviate from   
the shortest path between its starting and ending coordinates. It is the ratio of the shortest 
distance, D(x, y), between the starting and ending points of the track to the total length of 
the track. The shortest distance is calculated as a two dimensional distance between S and 
E using the Cartesian geometry assumption. The track length is calculated as a sum of 
distances between successive points on the track,  
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i
R
i yx  is the thi recorded data point for the track under consideration. 

 
Figure 1 depicts a sample track as a plot of latitude against longitude. The pink curve is the 
recorded track data, while the blue line is the shortest two dimensional path between the 
start and end points of the track. CS1 is the ratio of the length of the blue line to that of the 
pink track.  
 
For a track that covers the distance without deviating from the shortest path, CS1 is equal 
to 1 since in that case the track length is equal to the shortest distance. CS1 approaches 
zero when the track length is much larger than the shortest distance D(x, y). Therefore it is 
possible to filter out tracks by eliminating tracks with a value of CS1 lower than a 
threshold value. The threshold low value is generally chosen by analysing historical data. 
 
However CS1 is not sufficient in detecting anomalous tracks. CS1 can identify tracks that 
cover a larger distance than expected. It cannot pick up tracks that accelerate in a straight 
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line or change course rapidly. Therefore we define another curvature signature CS2, to 
locate clustering, rapidly weaving, and accelerating tracks. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

Figure 1 A sample radar track showing the recorded track (pink) and the shortest distance (blue 
line) between the start and end points of the track. 

4.1.2 Curvature Signature 2 (CS2) 
 
Curvature Signature CS2 is used to augment the characterisation provided by CS1. CS2 is 
very similar to CS1 in definition.  
 
To calculate CS2, the shortest track (blue line in Figure 1) between the starting and end 
coordinates of the given track is divided into equidistant points, equal in number to the 
number of data points in the original track, N (pink curve in Figure 1). 
 
Let  i

rP   denote the thi point on the real track and j
sQ  denote the thj  point on the shortest 

track. CS2 is the ratio of the cumulative distance of all the points j
sQ  from the start point 

to that of all the points i
rP  from the start point. The start point is common, therefore
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In the above equation, SQ s

j  denotes the two dimensional distance between the point j
sQ

on the shortest track and the starting point S. SPr
i   denotes the two dimensional distance 

between the point i
rP  on the real track and the starting point S.     

 
CS2 gives an indication of spread of the track data points from the linear track with 
constant speed track points. For a linear track with constant speed, CS2 is equal to 1. CS2 is 
large for tracks that drift too far away from the ideal shortest possible track. A small value 
of CS2 indicates clustering of points near the starting point of the track.  
 
The threshold values for CS1 and CS2 are chosen by trial and error using a visual 
examination of data. Together, the two curvature signatures are the first level of filtering. 
If a track is rejected by CS1 and CS2, it is no longer tested for the subsequent tests given 
below. The combined application of CS1 and CS2 is discussed in more detail in the 
following sections.  
 
4.2 Speed Limit 

Speed is a good indicator of threat intent, especially with FIACs. Upper and lower bounds 
can be placed on speeds to filter out anomalous tracks. In the current task, a speed limit 
was chosen depending upon the data and information available for small boats.  
 
For every data point on a given track, the speed is compared to a preset speed limit and a 
flag is raised if the speed exceeds the speed limit. The total number of flags raised is 
normalised against the track length, giving the average number of speed flags raised per 
unit length (e.g., kilometre) of track. If the average number of flags raised per unit length 
of a track exceeds a certain preset number, the track is deemed an “anomalous” track. 
 
If a track is qualified by the curvature signature test and the speed test, then it proceeds to 
the final weave test. 
 
4.3 Weave Rate 

A track is considered suspicious if it changes course too quickly, or too many times. To 
perform this test, the rate of change of course (ROCC) is calculated for each time step of a 
given track. The weave rate or the ROCC is calculated as the ratio of the difference in 
course to the difference in time between successive track readings. In a fashion similar to 
the speed test described in the previous section, a limit is placed on the ROCC. The entire 
track’s ROCC is examined and every time it exceeds the limit a flag is raised. The total 
number of ROCC flags raised in a track is normalised against the track length, giving the 
number of flags raised per unit length. If this average number of flags for a track exceeds a 
certain preset number, the track is considered anomalous.  
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5. Simulated Data 

For a preliminary evaluation, we simulated various types of tracks and analysed them 
using the tool. The simulation consisted of 81 tracks in total. For consistency with the real 
AIS data, these tracks are in the same geographical location, viz., in Sydney Harbour. The 
tracks included  

a) Simple linear tracks 
b) Tracks with varying accelerations 
c) Tracks  at different bearings 
d) Tracks  with varying weaving forms 
e) Randomly moving tracks. 

 
Figure 2 shows some sample tracks simulated for evaluation purposes. As seen from the 
figure, the simulated tracks include various accelerations and turn rates. These simulated 
tracks were used as a proof of concept, rather than for rigorous testing. However 
simulated data is highly synthetic; hence testing on simulated data doesn’t suffice. 
Therefore another set of data obtained from SAAB Australia was used for a more thorough 
evaluation. 
 

6. Real Data 

6.1 Radar recorded data 

 SAAB Australia provided two sets of radar tracks with recordings of latitude, longitude, 
speed,  course and time stamp. The radar data were collected in May and August 2007 in 
Sydney Harbour. Each data set comprised more than 3000 tracks. As the tool does not 
require training, both the data sets were used to evaluate the tool. 

 
6.2 Clutter Removal 

Unlike AIS data, radar data includes lot of noise and spurious returns. Figure 3 depicts 
some sample tracks from the May data set. As seen from the figure, there are many tracks 
that look spurious and like noise. When the track data with noise is analysed by the tool, it 
classifies them as “anomalous tracks”. Therefore, for a better anomaly detection analysis, 
the data was cleared of the noise first. We used the feature CS1 to remove clutter and any 
other false tracks. 
 
Figure 3 contains some randomly selected tracks from the May data set. The number on 
each plot indicates the track identification number. From the figure it can be seen that 
some of the track plots look like clutter, false tracks or false radar detections. If these are 
left in the data set, they would be classified as “anomalous tracks”, while in fact we wish 
to disregard them entirely as not genuine tracks. 
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Figure 2 Sample set of simulated tracks. The set of tracks in (a) and (b) are linear tracks with 
various accelerations. Those in (c) and (d) are weaving tracks. Some of these are 
classified as “anomalous tracks” by the tool, depending on the threshold on weave rate. 

 
 

 
 

 
 

 
 

a b 

 
c

   
d 



UNCLASSIFIED 
DSTO-TR-3012 

UNCLASSIFIED 
8 

 
 

Figure 3.  Randomly selected tracks from the May data set. The number included with the track is 
the track identification number. 
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Figure 4. Randomly selected tracks organized in increasing order of CS1. The number inside the 
figures indicates the CS1 value of the track. 

 
Figure 4 contains some randomly selected tracks arranged in increasing order of CS1. A 
very low value of CS1 indicates that the track length is much larger than the shortest 
distance. The lower the value of CS1 the noisier the track is. A value of 0.2 was used as a 
threshold to remove the clutter. Tracks with a CS1 less than 0.2 were rejected as clutter and 
only tracks with CS1 higher than 0.2 were analysed further. From the figure it can be seen 
that the data with very low value for CS1 does indeed look like noise. The tracks that are 
cleaner have a CS1 closer to 1. 
 

7. Results  

7.1 Simulated data 

The tool was first tested using simulated data as discussed in Section 5 for proof of 
concept. The results were as expected—the tracks that had too many loops, were 
accelerating, or with speed above the threshold were flagged by the tool as suspicious.  
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7.2 Recorded data 

The two sets of recorded data, recorded in May and August 2007 were tested separately 
after removing the clutter. The data recorded during May 2007 consisted of 1242 tracks. 
Removing the clutter using the CS1 criteria yielded 560 tracks. The data recorded during 
August 2007 consisted of 3456 tracks. Removing clutter using the CS1 criteria yielded 1438 
tracks. 
 
We applied various thresholds to the track feature parameters. These threshold values 
were arrived at after discussions with RAN personnel and analysing the data sets for mean 
values and standard deviations. Given below are two different sets of thresholds applied 
separately. 
 

Table 1 Thresholds on the track features 

Track Feature Threshold set 1 Threshold set 2 
CS1 0.5 0.7 
CS2 

aW =[0.5-1.5] bW =[0.2-1.2] 
Speed  15m/s 17m/s 
ROCC 5 degrees/s 10 degrees/s 
 
As discussed above, CS1 alone is not sufficient to classify a track as anomalous. It needs to 
be used in conjunction with the second signature CS2. The various thresholds used to 
analyse the data using the tool are listed in Table 1. Unlike CS1, CS2 has no upper limit 
numerically. A too low value and a too high value are both indicators of a suspicious track 
(with clustering). Hence the thresholds on CS2 include a lower bound and an upper 
bound. The first threshold we used for CS2, (0.5 <=CS2 <= 1.5) is named as aW and the 
second threshold (0.2<=CS2<=1.2) is named as bW  for simplicity of notation.  
 
After a data set is analysed by the tool, every track is labelled with a number of red flags 
(normalised with respect to the track length) corresponding to speed limit and ROCC 
limit. Apart from varying the threshold values, one can also vary other factors, like 
“allowed number of red flags per km”. 
 
For example, when a given set of data is tested with the Threshold set #1, it means that a 
track is “non-anomalous” (or normal) only if all the following conditions are satisfied. 
a) Its CS1 >= 0.5 
b) Its CS2 lies within the values of 0.5 and 1.5 
c) Its speed doesn’t exceed 15m/s consistently for a pre-set number of times 

continuously 
d) Its turn rate does not exceed 5 degrees/s for a pre-set number of continuous time 

intervals. 
A track that fails even one of the above tests is deemed “anomalous”.  
 
The various combinations of the thresholds yielded 16 sets of different threshold sets 
which are listed below and hereafter will be referred to by their serial number.  
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Table 2 Combinations of thresholds in Table 1, yielding different "sets of thresholds" 

 

 
From Table 2 it can be understood that the sets, when ordered in decreasing order of 
stringency, would appear as 11, 15, 12, 16, 9, 13, 10, 14, 3, 7, 4, 8, 1, 5, 2, and 6. All the 16 
sets of thresholds were used with a limit on normalised flag count (speed and ROCC) of 5 
per km.  
  
The number of tracks classified as “anomalous” for each set of thresholds is listed in Table 
3 for both the data sets. The number in brackets indicates the total number of tracks 
analysed in that data set. The sets are listed in decreasing order of stringency. As we 
would expect the most stringent set of conditions (Set 11) has the greatest number of 
anomalous tracks, while the least stringent set of conditions (Set 6) has the smallest 
number of anomalous tracks. 
 
Figures 5 and 6 depict some randomly selected anomalous tracks and good tracks, 
respectively, from the 2007 August data set tested with Threshold set 1. From Figures 5 
and 6, the difference between the anomalous tracks and non-anomalous tracks is clear. 
 
 

Set No. Threshold set (CS1, CS2 Window, Speed , ROCC ) 
1 (0.5, aW , 15, 5) 
2 (0.5, aW , 15, 10) 
 3  (0.5, bW , 15, 5) 
4 (0.5, bW ,15, 10) 
5 (0.5, aW , 17, 5) 
 6  (0.5, aW , 17, 10) 
7 (0.5, bW , 17, 5) 
8 (0.5, bW , 17, 10) 
9 (0.7, aW , 15, 5) 

10 (0.7, aW , 15, 10) 
11  (0.7, bW , 15, 5) 
12 (0.7, bW  15, 10) 
13 (0.7, aW , 17, 5) 
 14   (0.7, aW , 17, 10) 
15 (0.7, bW , 17, 5) 
16 (0.7, bW , 17, 10) 
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Table 3 Number of tracks qualified as “anomalous” for all the threshold combinations, for both the 
data sets. 

Set Number Anomalous  Tracks 

 May 2007    
Total Tracks = 560 

 

August 2007  
Total tracks =1438 

 Number Percentage Number Percentage 

11 347  62 % 1073 75% 

15 347 62% 1069 74% 

12 345 61% 1054 74% 

16 345 61% 1053 73% 

9 331 59% 1049 73% 

13 331 59% 1045 72% 

10 327 58% 1032 73% 

14 327 58% 1028 71% 

3 309 55% 954 66% 

7 309 55% 935 65% 

4 301 53% 935 65% 

8 301 53% 916 63% 

1 276 49% 893 62% 

5 274 49% 872 60% 

2 260 46% 868 60% 

6 258 46% 845 59% 
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Figure 5 Randomly selected sample of anomalous tracks 
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Figure 6 Randomly selected sample of non-anomalous tracks 

 

     7.3 Verification of results 

   7.3.1 Visual Inspection 

For an independent verification, the results of the tool were also verified against a visual 
inspection of a sample data set. We provide a brief discussion of the verification. 
 
A sample of 200 randomly selected tracks from each of the data sets (2007 May and 2007 
August) were provided to a navy Combat System operator (CSO), who is a subject matter 
expert (SME) in track analysis. The CSO was also provided with a tool that could plot the 
track, speed and weave of any selected track from the data set. The CSO was requested to 
visually inspect the plots and make a decision about the quality of the track and qualify 
the track as “normal” or “anomalous”. 
 
The results of the visual inspection were compared against the results of tool on the same 
set of tracks. Table 4 captures the results of visual inspection of the 2007 May data. The 
third column in the table gives the number of tracks for which the tool and the visual 
inspection are in agreement (irrespective of the classification being ‘normal’ or 
‘anomalous’). 
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Table 4 Results of a visual inspection of sample data from May 2007 tracks. 

Set Number Total Tracks 
examined 

Agreement with 
the tool 

Percentage of 
agreement 

6 198 163 82 
3 198 170 85 
14 198 165 83 
11 198 169 85 
 
Similar visual inspection of randomly selected tracks from the 2007 August data yielded 
the following table.  
 

Table5 Results of a visual inspection of sample data from August 2007 tracks. 

Set Number Total Tracks 
examined 

Agreement with 
the tool 

Percentage of 
agreement 

6 264 218 82 
3 264 210 79.5 
14 264 209 79 
11 264 202 76.5 
 
 
Further analysis of the results of visual inspection indicated that the disagreement was 
greater for the anomalous tracks than for the non-anomalous tracks. The agreement on the 
tracks classified as non-anomalous by the tool was about 70%, while that on the tracks 
classified as anomalous was about 90% (averaging approximately 80% in the table above). 
This implies that the tool tended to err on the safe side i.e., the tool classified more tracks 
as anomalous than the navy operator did. This is indicative of an expected false alarm rate.  
 
It is important to note here that visual inspections tend to be subjective and it is difficult to 
draw hard conclusions from them. While also agreeing that a single visual inspection is 
inadequate, we wish to point out that the analysis here is at a proof-of-concept phase and 
will undergo more rigorous testing before developing into a full-fledged anomaly 
detection tool. The rigorous testing should include multiple visual inspections by different 
operators, and comparing the performance against other independent established tools. 
 

8. Conclusion 

We developed an anomaly detection tool that uses a rule-based algorithm. The rules are 
pre-set on the track characteristic features, including curvature, speed and weave rate. The 
tool is a batch algorithm that processes recorded data.  
 
The tool was tested on simulated data and two sets of data recorded near Sydney Harbour 
using various combinations of threshold values for two curvature measures, speed and 
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rate of change of course to identify tracks exhibiting anomalous behaviour. The results of 
these tests were validated against visual inspection. The validation yielded approximately 
80% agreement between the tool and the visual inspection. But the visual inspection was 
done only on a randomly chosen subset of the total tracks. While this agreement is 
sufficient to accept as a proof-of-concept, a more exhaustive testing of perhaps the entire 
data set with multiple visual inspections or a validation against another tool needs to be 
done for higher confidence. 
 
The thresholds that were used for the tool in this study are perhaps too strict given that in 
most instances the datasets were classified with around 50% of tracks being anomalous.  
 
The use of a sensor with adequate accuracy is vital and the sensor should be capable of 
detecting small watercraft. AIS data provides clean tracks, but this is not always available 
for smaller watercraft. AIS data used in conjunction with raw sensor data would be a 
desirable approach.  
 
The available datasets used for testing contained only simple kinematics. The inclusion of 
additional information in the datasets such as the physical size of the tracked object, and 
whether it is civilian or commercial would be beneficial to the algorithms. The values of 
such parameters would have a significant impact on the expected behaviour and what is 
considered to be normal. For instance a commercial cargo-shipping vessel would be 
expected to be more constrained and follow a more uniform path along shipping lanes, 
whereas a smaller pleasure craft may deviate in its course and speed irregularly and travel 
in a non-uniform and somewhat random manner. 
 
The tool needs the dataset to be cleaned of noise and clutter. Otherwise, it classifies all the 
noisy tracks as “anomalous”. Therefore it is likely to perform better with AIS data than 
with primary radar data.  
 
Rule-based algorithms are transparent, easy to use, and use less computation time than the 
algorithms that need a training data set. In addition, they can handle huge amounts of 
data. However, if the rules are set incorrectly, it can lead to high false alarm rate. Therefore 
care must be taken in setting the pre-defined rules and parameters appropriately. If the 
rules are set with caution, the variation in results is small (not very sensitive to the values 
of thresholds, if the thresholds are chosen wisely). Historical data helps in setting the 
threshold values on track features. If there are no historical data available, the setting of 
rules might be tricky. The other issue is, once the rules are set, it is difficult to change them 
midway through a run. Therefore, there is no way for the algorithm to correct itself with 
the help of incoming data. A possible improvement might be using an adaptive or moving 
threshold window for each track feature.  
 
Currently the tool uses just two options, “normal track” or “anomalous track”. The 
algorithm can be improved by including intermediate stages, with probabilities attached 
to them.  
 
A natural extension of this tool would be to make it applicable to real time sequential use 
on a vessel. Such a decision aid would considerably reduce operator work load by 
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drawing attention to ambiguous and anomalous tracks and also avoid errors due to 
operator fatigue. However, the anomaly detection tool would have to undergo more 
exhaustive testing before being deployed operationally. 
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