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Abstract—In this paper we compare the performance of three 
kinematic state models, i.e., the White Noise Acceleration (WNA), 
the Wiener process acceleration (WPA), and the Keplerian State 
(KPS) model, for the tracking of earth orbiting space objects 
(SOs). The three models considered are all simplified 
approximate models for the motion of Earth orbiting SOs and 
are not suitable for the prediction of target tracks for long time 
periods. However, for track updates with new measurements 
coming at a high rate, such simplified motion models can be 
effectively used with small or no loss in estimation accuracy. For 
the KPS model, we use a novel mixed-coordinate SO tacking 
(McSOT) filter, where the target state space is defined in the 
Cartesian, i.e., Earth-Central Inertial (ECI), coordinates for 
track representation and updates, while the track propagation is 
done in the Keplerian Coordinates. It is shown that when the 
measurement accuracy is high, the McSOT filter with the KPS 
model, which has the highest complexity among the three, is able 
to achieve significantly better estimation accuracy than the filters 
with the WNA and WPA models. The WPA model is able to 
achieve better tracking accuracy than the WNA model at the cost 
of moderate increase of algorithm complexity. On the other hand, 
when the measurement accuracy is low, the filters with the WNA 
and WPA models which operate solely in the Cartesian 
coordinates, i.e., the Earth-Central Inertial (ECI) coordinates, is 
more robust than the McSOT filter with the KPS model. 

Keywords—tracking; space situation awareness; kinematic model; 
filter design, Keplerian state model,   

I. INTRODUCTION 
Tracking of space objects (SOs) is an important task for 

space surveillance [16]. In addition to tacking accuracy [6, 8, 
9], complexity of the tracking algorithm are just as important 
due to the large amount of SOs (over 20k) currently orbiting 
the Earth that need to be tracked. The selection of the tracking 
algorithm and its associated comparisons are important for 
sensor management [5, 7], collision avoidance [18, 21], and 
cooperative search [17]. In addition, the selection of the 
tracking algorithm and its results impact space situation 
awareness [3] and coordinated game-theoretical threat 
detection [4, 5, 18]   

Under the effect of Earth gravity and multiple perturbing 
forces in the complex space environment,  including third body 
gravity, atmospheric drag, and solar radiation pressure (SRP), 
orbital dynamics of the SOs are significantly nonlinear and 
highly complex, which is further complicated by many 
unknown characteristics of the SOs and the space environment 
[10,12]. Different from the tracking of ground and airborne 

targets where dedicated sensors are used to provide a constant 
flow of measurements, there is few dedicated sensor resources 
for space surveillance, and the SOs are only observed during a 
very small fraction of their orbiting period (with the short-arc 
observations) [10,20]. State estimates and orbit parameters of a 
SO will be obtained during the short observation period and, 
for the rest of orbiting period, the target states are obtained by 
propagating the estimated over time. For the propagation of SO 
states over a long unobserved time period, the use of high 
fidelity kinematic models for the SOs is crucial, which involve 
complex dynamics and require complex numerical integrations 
[11]. However for the state estimation during the short 
observation period, simplified motion models can be 
effectively used to drastically reduce complexity and delay of 
the tracking algorithm with small or no loss in estimation 
accuracy. This is mainly because that impact of the complex 
perturbation forces such as the SRP and third body gravity is 
negligible during the observation time interval and can be 
effectively accounted by a small level of process noises in the 
simplified kinematic models. In this paper we investigate three 
simplified kinematic models for the SO state estimation, which 
are the White Noise Acceleration (WNA), the Wiener process 
acceleration (WPA) , and the Keplerian State (KPS) model to 
demonstrate their performance in terms of tacking accuracy 
and robustness.  

The paper is organized as follows. Section II introduces the 
three kinematic models considered and addresses the design 
issues for the SO tracking. Section III presents the simulation 
scenarios used in the paper, which involve the tracking of a 
Low Earth Orbit (LEO) satellite. The simulation results are 
presented in Section IV. Section V summarizes the paper with 
concluding remarks. 

II. THREE SIMPLIFIED KINEMATIC MODELS FOR SPACE 
OBJECT TRACKING 

A. The White Noise Acceleration (WNA) Model 
The WNA model [1] is a simple linear kinematic model 

commonly used in tracking applications. It models (slight) 
changes in target velocity as a zero mean white Gaussian noise. 
For SO tracking the 3-Dimensional (3D) state space consists of 
position and velocity in 3D. 

'[ ]x x x y y z z=                              (1) 

 Assuming a sampling period of T, the discrete-time state 
equation is given by  
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and 1( )v k is a zero mean Gaussian process noise whose 
covariance is given by  
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where 1q is intensity of the corresponding continuous-time 
noise process, which has a physical unit of [length]2/[time]3. 
For consistent state propagation with the WNA kinematic 
model, the magnitude of change of velocity during the 
sampling time T should be of the same order:   

11 1(2,2)Q Tq= [1]. According to this guideline, for the 
tracking of Earth orbiting SO, the change of velocity during T 
is mainly caused by the Earth gravity. One has approximately 
the magnitude of the acceleration as  

1
2

Mg G
r

=                                         (3) 

where 116.6742 10G −= × is the gravitational 
constant, 24

1 5.9736 10M = × is the mass of the Earth in 
kilograms and r is the distance of the SO to the center of the 
Earth, i.e., the distance to the origin of the ECI coordinates. 
Using these parameters, one has  
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Eq. 4 shows that the smaller the sampling interval T and the 
further away the SO is from the Earth, r, the smaller the 
required intensity of the process noise 1q will be, which means 
the motion of the SO can be more accurately modified the 
WNA model and with less loss of tracking accuracy, i.e., 
smaller uncertainty in position 11(1,1)Q , and velocity 

11(2,2)Q to account for the model mismatch. In Section III, 

we will show the actual choice of 1q for the tracking of a LEO 
satellite and compare it with the designs of the other two 
models. 

B. The Wiener Process Acceleration (WPA) State Model 
The WPA model [1] is a more complex model than the 

WNA model, where the acceleration is modeled as an Wiener 
process. For SO tracking the state space is given by 

'[ ]x x x x y y y z z z=                        (5) 

The discrete-time state equation is  
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The covariance matrix of 2 ( )v k is given by 
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where 2q is the process noise intensity, whose choice should 
follow the guideline that the changes in the acceleration over a 
sampling period T are of the order of 2q T [1]. For an Earth 
orbiting SO (assuming a circular motion for the sake of 
simplicity) the major change in acceleration is due to the 
direction change of the gravity during the time period. One has 
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                           (7) 

Similar to 1q for the WNA model the required 2q decreases 
with smaller sampling interval and larger range. However, 
accuracy of the WPA model changes more rapidly w.r.t. the 
sampling interval T and range r. In addition, for Earth orbiting 
SOs, the change of acceleration during the sampling period is 
much smaller compared to the velocity change, which leads to 
smaller covariance and better accuracy than the WNA model 
with reasonably selected sampling time interval (see Section III 
and IV). 



C. The Keplerian State (KPS) Model 
The motion of an Earth orbiting SO follows Newton’s law 

of universal gravitation and is nonlinear in the ECI (Cartesian) 
Coordinates. The orbit information is better described with the 
Keplerian elements [22]. In the Keplerian space (with six 
Keplerian elements), the state of an orbital motion is defined as 

'
0[ , , , , , ]S a e i w M= Ω                             (8) 

where ‘ is the transpose operator; e, the eccentricity, and a, the 
semi-major axis of the orbit, determine the shape and size of 
the orbit (as illustrated in Fig.1); the inclination i and the 
longitude of the ascending node Ω define the orientation of the 
orbit plane to a reference plane (for Earth-orbiting satellites, 
the reference plane is usually the Earth's equatorial plane); the 
argument of periapsis w which specifies the orientation of the 
ellipsis in the orbit plane, and the mean anomaly at epoch (M0) 
that defines the position of the orbiting body along the ellipse 
at the “epoch”; it is not a real geometric angle, instead the true 
anomaly ( ) is shown in Fig.1. 

 
Figure 1. Illustration of Keplerian elements [22] 

 
Under ideal conditions of a perfectly spherical central body, 
and zero perturbations, all orbital elements, with the exception 
of the mean anomaly are constants, and mean anomaly 
changes linearly with time.  

( ) [ , , , , , ]' ( ) [0,0,0,0,0, ]'S t t e a i w M n t S t n t+ Δ = Ω + Δ = + Δ  
(9) 

Where 

1 2
3 3

( ) 2 /G M mn P
a a

μ π+= = =                     (10)
 

is the mean motion. In (10) G is the gravitational constant, M 
1and m2 are the masses of the orbiting bodies and P is the orbit 
period.  

However, the tracking filter cannot operate in the Keplerian 
coordinates, since the distribution of the states would be far 
from Gaussian. To solve the problem we use a novel mixed-
coordinate space object tacking (McSOT) approach, where the 
target state space is defined in the Cartesian (ECI) coordinates. 

For tracking, we define the state of an orbital object in the ECI 
Coordinates for track representation and update. The six 
dimensional state vector consists of position, velocity in 3D 
space, namely, 

'[ ]x x x y y z z=                                 (11) 

The six dimensional state (without acceleration) in (11) can be 
converted to the Keplerian elements that fully characterize 
the orbital movement at any given time instance. However the 
track propagation will be conducted in the Keplerian 
coordinates using the following procedure.  
First the track in the ECI coordinates (consisting of the state 
estimate ( | )x k k and ( | )P k k the covariance) is converted to 
a sigma-point representation [2, 14] as 

[ ]1/ 2( ) ( | ) sgn( ) ( | ) , 6,...,6i
ix k x k k c i P k k i= + = −    (12)

 

where [ ]1/ 2( | ) iP k k is the i-th column of the Cholesky 

factor (square root) of ( | )P k k . The weights associated 
with the sigma points are 
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which sum up to unity for any c. Then the sigma 
points are converted to the Keplerian state space by 

2( ) ( ( )), 6,...,6i i
ECI KepS k f x k i= = −                  (14) 

where 2 ()ECI Kepf denotes the state mapping from the ECI 
coordinates to the Keplerian coordinates. Due to the limited 
space of the paper, the mapping algorithm [25] is not 
presented. The predicted state ( 1)iS k + can be easily 
performed using (9).  

Then ( 1)iS k + are converted back to the ECI coordinates as 

2( 1) ( ( 1)), 6,...,6i i
Kep ECIx k f S k i+ = + = −          (15) 

where 2 ()Kep ECIf denotes the state mapping from the 
Keplerian coordinates to the ECI coordinates [23]. 
Finally the predicted track can be obtained by the weighted 
sum of the sigma points from (15). 
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where Q3 is the covariance of the cumulated process noise 
over the sampling interval T to account for perturbations, 
frictions and other non-ideal factors of the orbital movement. 
Here a similar covariance matrix as in WNA model is used. 
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where 3q is continuous time process noise intensity of the 
orbital motion. Since the levels of those cumulated process 
noises over the short sampling time interval T are close to zero, 
a very small intensity can be used. See section III for the 
practical choice of 3q .  
It can be seen that track propagation with the KPS model is 
the most accurate one among the three. Arguably the model 
has practically no loss in estimation accuracy due to model 
mismatch for the very small choice of 3q and the resulting 

covariance 3Q . On the other hand, it is much more 
complicated than the WNA and WPA models due to the use of 
the multiple sigma-points and back-and-forth coordinate 
conversions. (Note that it is still much more efficient than the 
more accurate Kinematic models that require numerical 
integration.)  The performance question is: Is it always 
beneficial to use the KPS model? The next two sections will 
address this question with the assistance of a simulated Earth 
orbiting SO tracking scenario. 

III. THE SIMULATION SCENARIO 
The simulation scenario used is the tracking of a Low Earth 

Orbit (LEO satellite) with a sensor (e.g., radar station) on the 
ground. Fig.2 shows the radar station (denoted as the yellow 
circle) and the target trajectory (in light green) during an 
observation time period of approximately 10 minutes. 

 
Figure 2. Scenario 1 - Keplerian Model

 

 

During the observation period, the radar obtains range and 
angle measurements (azimuth and elevation) of the satellite. 
For the sake of simplicity and with no change to the results of 
the paper, it is assumed that the sensor’s local coordinates 
aligns to the ECI coordinates.  The measurements are related to 
the target state by the following equations. 
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where rw , aw and ew are the measurement noises on range, 
azimuth and elevation; respectively. They are assumed to be 
independent zero mean white Gaussian noises with standard 
deviation rσ , aσ and eσ ; respectively 

Two cases were used to demonstrate the performance of the 
tracking filters with the three kinematic models considered. In 
the first case (as shown in Fig.2) the SO orbit was generated 
according to the following Keplerian elements values: 

Eccentricity:  e=0 (circular orbit)  
Semi-major axis:  a=8000km 
Inclination:  i=70 deg 
longitude of the ascending node:  Ω=70 deg 
argument of periapsis: w=0 

In this case, the KPS model is an exact match to the true target 
motion dynamics. 

In the second case, the target trajectory was generated based on 
the two line elements (TLE) [26] of a satellite in the Iridium 
constellation using the SGP4 model [27], which introduces the 
effect of perturbation forces to the SO motion in space 
environments. Fig.3 shows the target trajectory (in red) during 
the observation period. 

 
Figure 3. Scenario 2 -  SGP4 model

 

IV. THE SIMULATIONS AND RESULTS 
In simulation 1 the Keplerian scenario case in Section III, 

is used with the simulation parameters set as: Sampling interval 



T=5s, 30rσ = m, 0.01o
aσ = , 0.01o

eσ = . With the distance 
the center of the earth at about 8000km, and according to (3) 
the gravitational acceleration is about 6m/s2. Based on the 
discussion in section II-A, 1q T should has the same order of 

30gT ≈ . In the simulation, 1q is chosen as 50 and the 
corresponding for the WNA model. For the corresponding 
process noise covariance, one has  
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For the WPA model, as discussed in section II-B, 

2Tq should be on the order of 0.0275g Tω = . The choice 

of in the simulation is -4
2 5 10q = × and correspondingly 

2 0.05Tq = . One has 
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For the KPS model, as discussed in section II-C, the 
process noise intensity is set as 3=0.0025q in the simulation, 
which yields 

3 21 1
3 2

33 321
2
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T T
Q q

T T
⎡ ⎤ ⎡ ⎤= ≈⎢ ⎥ ⎢ ⎥
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     (20) 

It can be seen that both Q22 and Q33 are very small. 
However Q11 is very large in order to deal with the very 
significant model mismatch of the WNA. 

For track initialization, the 2-point differencing method in 
[1] is used for tracking filters with the WNA and KSP models, 
since their state vector contain only positions and velocities. 
For the WPA model, a modified 2-point differencing method 
was used, where the position and velocity states and their 
covariance are initialized using the standard 2-point 
differencing method, while the acceleration state components 
are initialized as 

' '[ ] [ ]x y zx y z g g g
r r r

= −                       (21)  

where the “hat” indicates estimated values of the coordinates, 
range and gravitational acceleration. A conservative covariance   

0.005 0 0
0 0.005 0
0 0 0.005

aQ
⎡ ⎤
⎢ ⎥= ⎢ ⎥
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                            (22) 

is associated with the acceleration state components.  

For track updates, the standard Extended Kalman filter 
(EKF) [2] was used for the three filters due to insignificant 

measurement nonlinearity for the levels of the measurement 
accuracies. The simulation results presented next were based 
on 100 Monte Carlo runs. 

Fig.4 shows the consistency in terms of the Normalized 
Estimation Error Squared (NEES) [1] of the filters with the 
three kinematic models. Note that for the WPA model, only the 
position and velocity states and their covariance were used for 
the evaluation (acceleration components were not included). 
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Figure 4. consistency test of the filters  

(Keplerian scenario: Case 1) 
 

It can be seen that, for all the three filters, the NEES are 
below 6 which means the estimated covariances of the states 
cover well the estimation errors. After the beginning stage, the 
NEES of the filters dropped to around 4, which means the 
choice of process noise is a bit conservative. However, verified 
through simulations, this will not cause visible impact on the 
achieved tracking accuracy. 

Fig.5 compares the overall Root Mean Square Errors 
(RMSE) [1] in positions of the filters with the three models. It 
can be seen that the WNA model has significant loss in overall 
position accuracy compared to the other two. The filter with 
the WPA model has practically the same accuracy as the filter 
with the KPS model at the initial stage of the filtering when the 
overall position error is above 400m. As more measurements 
are fused, the most accurate KPS model does achieve 
significantly higher accuracy than the WPA model. Here the 
choices of Q2 and Q3 do not account for this significant 
performance difference which is instead due to the fact that the 
nonlinear KPS model is more accurate in the projection of the 
tracking uncertainties than the linear model of the WPA. 
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Figure 5. Root mean square error in position (scenario case 1)

 

In simulation 2 the second case, SGP4 model, is used and 
the rest of the simulation configurations stay the same. Fig.6 
shows that the three filters are consistent with the NEES at 
about 6. Fig.7 shows that, similar to the first case, the filter 
with the WNA model the minimum level of overall RMSE is 
about 400 meters. The minimum RMSE level with the WPA 
model is about 250 meter. And for the tracking scenario 
considered, the filter with the KPS model is able to achieve a 
minimum RMSE level of 150 meters. While the achievable 
tracking accuracy varies for different tracking scenarios and 
measurement accuracies, the results so far show significant 
advantage in terms of tracking accuracy of the KPS model over 
the other two models. However as shown next, the KPS model 
also has its limitations. 
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Figure 6. Consistency test of the filters (scenario case 2)
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Figure 7. Root mean square error in position (scenario case 2)

In simulation 3 we change the azimuth and elevation 
measurement noise standard deviations to 

0.05o
aσ = , 0.05o

eσ = with the rest of the simulation 
configurations unchanged. In such a case, the filter based on 
the KSP model became instable and failed to converge. 
However as shown in Figures 8-9, the filters with the WNA 
model and the WPA model (which operate purely in the ECI 
coordinates) are able to retain their good consistency and have 
decent estimation accuracy.  
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Figure 8. Consistency test of the filters (scenario case 3)
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Figure 9. Root mean square error in position (scenario case 3)

The filter with the KPS model failed because the initial 
accuracy of the track estimates is very low due to the large 
measurement errors. As a result, the converted sigma-points of 
the state uncertainty in the Keplerian coordinates are too far 
away from the Keplerian elements of the true orbit, which 
leads to huge track propagation errors. There are several 
approaches to allow a filter with the KPS model to work in 
cases with very low track accuracies. First, Gaussian mixture 
filtering approaches [11,13,19] can be used to generate more 
accurate subtracks over which the KPS model can be 
effectively used. Second, filtering results from the WPA or 
WNA can be utilized for more accurate track initialization for 
the KPS model. These solutions will be investigated in future 
research. 

V. CONCLUSIONS 
In this paper we compared the use of three approximate 

kinematic models, i.e., the White Noise Acceleration (WNA) , 
the Wiener Process Acceleration (WPA), and a Keplerian State 
(KPS) model, for the tracking of Earth orbiting space objects 
(SOs). Mismatch of these models to the true SO motion (which 
is subject to multiple perturbation forces) is handled by the 
proper selection of process noise covariance matrix in the 
corresponding tracking filter. For SO target state estimation 
during a short observation period, such a simplification is 
expected to have small or negligible loss of estimation 
accuracy. It is shown that, when the accuracy of the initial 
track estimate is high (due to accurate measurements), all three 
filters are consistent, and the filter with the KPS model, which 
is the most complex one, yields significantly higher tracking 
accuracy. While the filter with the WPA model is significantly 
more accurate than the filter with the WNA model. However, 
when the initial track accuracy is low (due to low measurement 
accuracy), the KPS model will be instable and failed to 
converge. In comparison, the filters with the WNA and WPA 
model, which operate solely in the Cartesian (ECI) coordinates, 
are very consistent. Results in this paper are useful to develop 
efficient and effective state estimation algorithms for space 
surveillance applications. 
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