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Abstract — To improve the performance of a face recognition 

system, we propose a fusion solution consisting of score fusion 

of multispectral images and decision fusion of stereo images. 

Score fusion combines several scores from multiple matchers 

and/or multiple modalities, which can increase the accuracy of 

face recognition. In a face recognition system, low false accept 

rate (FAR) is as important as high accuracy rate. The FAR can 

be reduced by using decision fusion of stereo images. The 

stereo face images are taken with two identical cameras aiming 

at a subject, where each camera is built in two spectral bands, 

visible and thermal. Specifically, the score fusion combines the 

face scores from three matchers (Circular Gaussian Filter, 

Face Pattern Byte, Linear Discriminant Analysis) and from 

two-spectral bands (visible and thermal). The decision fusion 

combines the score-fusion results (genuine or impostor) from 

left faces and right faces in stereo imaging. We present three 

score-fusion results using k-Nearest Neighbor fusion, binomial 

logistic regression, and Hidden Markov Model fusion, 

meanwhile two decision-fusion results using logical AND and 

OR. Our experiments are conducted with the Alcon State Univ. 

MultiSpectral Stereo face dataset that currently consists of the 

stereo face images of two spectral bands from 105 subjects. The 

experimental results show that score fusion can significantly 

improve the accuracy, whereas decision fusion (with AND rule) 

can reduce the FAR with a slight decrease in accuracy. 

Keywords: Circular Gaussian Filter (CGF); decision fusion; face 

pattern byte (FPB); multispectral face recognition; score fusion; stereo 
face imaging. 

I. INTRODUCTION 

Face recognition has relative low accuracy compared to 

fingerprint recognition and iris recognition. To improve 

face recognition, multispectral imagery is suggested as a 

viable solution to address this challenge. Chang et al. [1] 

demonstrated image quality enhancement of fusing 

multispectral face images (e.g., visible and thermal) but 

did not report any recognition performance. Bendada et 

al. [2] compared several face recognition algorithms 

(Principal Component Analysis (PCA), Linear 

Discriminant Analysis (LDA), etc.) using the Local 

Binary Pattern (LBP) and the local ternary pattern (LTP) 

extracted from four-band face images (i.e., Visible, 

Short-, Medium-, Long-Wave Infrared [SWIR, MWIR, 

LWIR]), and found that LDA algorithm performed the 

best on the Visible dataset (92%). No fusion results were 

presented in their work. In contrast with image fusion 

(with the prerequisite of image registration) and feature 

fusion (with the process of high dimensional data) [3], 

[4], score-level fusion is more efficient due to utilization 

of low dimensional data. Nandakumar et al. [5] showed 

that a density-based fusion estimated by Gaussian 

Mixture Model (GMM) outperformed any single matcher 

and other fusion methods (like sum rule with min-max). 

Poh et al. [24] reported that the more biometric scores 

used in score fusion, the higher fusion recognition 

performance achieved. Zheng et al. [6] recently had a 

brief survey on the score fusion methods working with 

multiple matchers and multispectral faces, and found that 

fusing multimodal data was more effective and 

significant than combing variant matchers and using 

different fusion methods. Their experiments also showed 

that the Hidden Markov Model (HMM) was the best 

fusion method.  

A real face recognition system expects a low False 

accept Rate (FAR) as well as high recognition accuracy. 

Thus, we propose to improve the performance of a face 

recognition system using score fusion of multispectral 

images and decision fusion of stereo images. As we 

know, multimodal score fusion can improve the accuracy 

meanwhile lowering the FAR. This paper will investigate 

whether decision fusion [26] using stereo images can 

further reduce FAR without sacrificing much accuracy. In 

addition, a new face pattern extraction using a set of 

Circular Gaussian filters (CGF) will be introduced. The 

proposed Face Score and Decision Fusion (FSADF) 

solution is illustrated in Fig. 1, where the face recognition 

system consists of two stereo imaging cameras (Left and 

Right). Each side has two spectral bands, visible and 

thermal. The face scores from multiple matchers are 

fused. The final decision is made by ANDing (ORing) the 

two fusion outcomes from Left side and Right side, 

respectively. 

The remainder of this paper is organized as follows. 

Three face recognition algorithms (CGF, Face Pattern 

Byte [FPB], LDA) are briefly described in Section 2. The 

score combination methods (mean, k-Nearest Neighbor 

[KNN], Binomial Logistic Recognition [BLR], HMM) 

are summarized in Section 3, which are used, when 

optimal, for score fusion. The decision fusion and 

performance evaluation are depicted in Section 4. The 

experiments are conducted on the Alcorn State Univ. 

Multispectral Stereo (ASUMSS) face dataset [7], and the 

experimental results and discussion are presented in 
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Section 5. Finally, conclusions are drawn in Section 6. 
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Fig. 1: Diagram of the proposed FSADF fusion solution for a face 

recognition system: The system consists of two stereo imaging cameras 

(Left and Right). Each side has two spectral bands, visible and thermal. 
The face scores from multiple matchers are fused. The final decision is 

made by ANDing (ORing) the two fusion outcomes from Left side and 
Right side, respectively. 

II. FACE RECOGNITION METHODS 

A given face image is first preprocessed with 

normalization, face detection and face alignment. Face 

recognition algorithms are performed with the 

preprocessed images. Three face recognition methods 

(matchers) are selected for score fusion, which are 

Circular Gaussian Filter (CGF), Face Pattern Byte (FPB), 

and Linear Discriminant Analysis (LDA). 

A. Circular Gaussian Filter 

We propose to extract facial features using a set of band-

pass filters formed by rotating a 1-D Gaussian filter (off 

center) in frequency space, termed as “Circular Gaussian 

Filter” (refer to Eq. (1) and Fig. 2). The CGF convolutes 

a Gaussian function with an image. A CGF can be 

uniquely characterized by specifying a central frequency 

(f) and a frequency band (σ).
1
  

In Fourier frequency domain, a Circular Gaussian 

Filter (CGF) is defined as follows: 
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 We chose not to use a Gabor Filter as that requires various scales and rotations; 

whereas we are interested in the band selection   

where  
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 cos)sin(sin)cos(1 fvfuv  , (2b) 

where f specifies a central frequency, σ defines a 

frequency band, and θ   [0, 2π]. 

 

 
          (c)            (d)  

Fig. 2: Illustration of CGF with f = 16 and σ = 6 (Only the central part 

of CGF is presented): (a) CGF in frequency domain; (b) CGF in spatial 
domain; (c) A central slice of (a); (d) A central slice of (b). 

 

Face patterns are formed pixel by pixel with the CGF-

filtered images, termed as FP-CGF. Typically, the CGF 

filters at four bands (i.e., f   {8, 16, 32, 64} and σ   {3, 

6, 12, 24}) produce promising results with face images of 

320×320-pixel resolution. Four phase images and four 

magnitude images are derived from four CGF filters, 

respectively. The FP-CGF has the same resolution as a 

face image and the depth of 8 bits per pixel. In each FP-

CGF pixel, its most significant 4 bits are from the four 

binarized phase images, while its least 4 bits are from the 

four binarized magnitude images. In our experiments, the 

threshold for phase images is a range (i.e., 1 if phase > -

0.15π and phase < 0.15π); whereas the threshold for the 

normalized magnitude images is 0.1 (i.e., 1 if magnitude 

> 0.1).  

A Hamming distance (HD) [7] is calculated with the 

FP-CGF to measure the similarities among faces. The 

matched face has the shortest HD from the probe (query) 

face. In this paper, FP-CGF is also shorted as CGF to 

simplify the notation. 

B. Face Pattern Byte 

Face pattern bytes are comprised of the binary bit code of 

maximal orientational responses from a set of Gabor 

Wavelet Transforms (GWT). Multiple-band orientational 

codes are then put into a face pattern byte (FPB) pixel-

by-pixel. A HD is calculated with the FPB to measure the 

similarities among faces, and recognition is made with 

the shortest HD.  

          (a)            (b)  

 



A 8×16 GWT (with 8 bands by 16 orientations) 

produces 256 coefficients (128 magnitudes plus 128 

phases) per pixel. We only use the magnitudes of GWT 

coefficients to create an 8-bit FPB for each pixel on a 

face image. First, at each pixel, an M-dimensional vector, 

Vm, is created to store the orientation code representing 

the orientational magnitude strength (Omn) at each 

frequency (refer to Eq. (3a)). At each frequency band 

(from 1 to 8), the index (0-15) of the maximal magnitude 

among 16 orientations is coded with 4 bits in order to 

maximize the orientation difference (among subjects in 

the database). The 4-bit orientational code is first put into 

an 8-dimensional vector (Vm) by the frequency order, i.e., 

the lowest (highest) frequency corresponds to the lowest 

(highest) index of Vm. A FPB is then formed with the 

most frequent orientations (called the mode) among some 

bands (refer to Eqs. (3b-c)). Specifically, the high half-

byte (the most significant 4 bits) in a FPB, FPBHHB, is the 

mode of high 4 bands (m = 5~8); whereas FPBLHB is the 

mode of low 4 bands (m = 1~4). A factor, BFM, will avoid 

choosing any orientation mode of a pattern in FPB if its 

frequency is only 1. This could make FPB immunized 

from noise. BFM = 1 only when the frequency of the 

mode, fM, is greater than or equal to 2, otherwise BFM = 0 

(see Eq. (3d)). It is clear that a FPB can code up to 16 

orientations (N ≤ 16) but there is no limit to the number 

of bands (M). 8 or 16 orientations are good for face 

recognition. 
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In Eqs. (3a-d), Omn is the GWT magnitude at 

Frequency m and Orientation n; m [1, M] and n   [1, 

N]. The FPBs are stored as the feature vectors of the 

gallery faces in database, which will be compared with 

that of the probe face during the recognition process. A 

FPB (8 bits per pixel for 8×16 GWT) is usually stored in 

a byte. 

Because the HD is computed by checking the bitwise 

difference between two face patterns (e.g., FPBs), the 

orientational bit code should favor the HD calculation. 

The FPBs are designed to reflect the orientational 

significance (or strength) along with frequency scales 

(locations). Therefore, the closer (neighboring) 

orientations should have less bitwise difference, whereas 

the further (orthogonal) orientations should have more 

bitwise difference. A set of optimal bit codes should 

minimize the HD of the neighboring orientations, as well 

as maximize the HD of orthogonal orientations [7]. One 

“optimized coding” solution of N = 16 (orientations) is as 

follows: {1110, 1100, 1000, 1010, 0010, 0110, 0100, 

0000, 0001, 0101, 0111, 0011, 1011, 1001, 1101, 1111} 

(used in our experiments). 

C. Linear Discriminant Analysis 

There are many algorithms developed in face recognition 

domain in past two decades. Three classical algorithms 

(according to National Institute of Standards and 

Technology) are Principal Component Analysis (PCA), 

Linear Discriminant Analysis (LDA) [8-9], and Elastic 

Bunch Graph Matching (EBGM) [10-12]. However, PCA 

is not selected for score fusion due to its poor recognition 

performance [6] [7]. EBGM is not used for score fusion 

because it is time consuming and similar with FPB in 

technology and performance [6] [7]. On the other hand, 

LDA is chosen for score fusion since it has a better 

performance than PCA and runs faster than EBGM. 

LDA [8] is designed to find an efficient way to 

represent the faces using the face class information. The 

Fisherface algorithm [9] is derived from the Fisher 

Linear Discriminant, which uses class specific 

information. By defining different classes with different 

statistics, the images in the training set are divided into 

the corresponding classes. Then, techniques similar to 

PCA algorithm are applied. The Fisherface algorithm 

results in a higher accuracy rate in recognizing faces 

when compared with Eigenface algorithm [9].  

III. SCORE FUSION 

There are several types of score fusion methods: 

arithmetic combination of fusion scores, classifier-based 

fusion, and density-based fusion. In arithmetic fusion, the 

final score is calculated by a simple arithmetic operation 

[13] such as taking the summation, average (mean), 

product, minimum, maximum, median, or majority vote. 

In classifier-based fusion (referred to as classifier fusion), 

a classifier is first trained with the labeled score data, and 

then tested with unlabeled scores [14], [15]. The choices 

of classifiers include linear discriminant analysis (LDA) 

[16], binomial logistic regression (BLR) [23], [24], k-

nearest neighbors (KNN), artificial neural network 

(ANN), support vector machine (SVM), etc. In density-

based fusion, a multi-dimensional density function is 

estimated with the score dataset, and then it can predict 

the probability of any given score vector [17], [18].  

Based on our previous experience [6], four score-

fusion methods: mean fusion, KNN fusion, BLR fusion, 

and HMM fusion, are selected in our study. 

A. Score normalization and cross validation 

Score normalization is expected before fusing multiple 

scores since the multimodal scores from various 

modalities are heterogeneous and thus have differing 

dynamic ranges. To fuse the variant scores, it is required 

that all original scores are either similarity scores or 

distance scores (but not the mix of similarity and 

distance). 



The source scores may originate from a different type 

of device, called modality (e.g., digital camera or thermal 

camera), and/or from variant analysis software, called 

matcher (e.g., CGF, FPB, or LDA algorithm). The large 

variances of multimodal scores were caused either by 

different matching algorithms or by different natures of 

biometrical data. In our experiments, a standard z-score 

normalization procedure is applied to all biometric 

scores, 

000N /)( σμSS  ,   (4) 

where SN is the normalized score vector, S0 is the original 

score vector; μ0 and σ0 denote the mean and standard 

deviation of original scores, respectively. 

To sufficiently use the sample data in recognition 

evaluation, k-fold cross validation is applied to split the 

original data into training and testing subsets. In a 10-fold 

cross validation (i.e., k = 10), for example, all scores are 

divided into 10 subsets. In each of 10 runs, one subset is 

held out for testing, and the remaining 9 subsets are used 

for training. In the next run, a different subset is used for 

testing until all 10 subsets are used for tests. The 

recognition performance is the averaged result of 10 runs. 

For fair comparisons, the same group of k folds will be 

used for all selected fusion methods. 

B. Binomial logistic regression 

Logistic regression (LR) [23] is a regression analysis to 

predict the outcome of a categorical dependent variable 

based on a set of predictor variables. The probability 

describing the possible outcome of a single trial, P(x), is 

modeled as a function of explanatory variables 

(predictors), using a logistic function as defined below. 
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where xj are the elements in x. The weight parameters βj 

are optimized to maximize the likelihood of the training 

data given the LR model [23]. P(x) always takes on values 

between zero and one. 

Logistic regression can be multinomial or binomial. 

Multinomial logistic regression (MLR) refers to cases 

where the outcome can have three or more possible types. 

Binomial logistic regression (BLR) refers to the instance 

in which the observed outcome can have only two 

possible types. For example, a face score fusion only 

outputs two types of results, impostor or genuine, which 

makes BLR [24] suitable for face scores. Generally, the 

outcome is coded as 0 (impostor) and 1 (genuine) in BLR 

as it leads to the most straightforward interpretation.  

C. Hidden Markov Model for score fusion 

The HMM fusion is a hybrid classifier-based and density-

based fusion, but it significantly differs in data 

preparation and classification process.  In the context of 

this paper, we need to distinguish two terms: multimodal 

scores and multi-matcher scores. Multimodal biometric 

scores (also referred to as inter-modality scores) result 

from different modalities (such as different imaging 

devices, visible and thermal cameras); while multi-

matcher scores (also referred to as intra-modality scores) 

result from different software algorithms using the same 

modality (e.g., three face scores generated from three 

face recognition algorithms). 

For HMM training, a large database with known users 

(labeled with subject classifications) is expected, and thus 

a k-fold cross validation is utilized to satisfy this need. 

All scores are normalized and organized as the inputs of 

HMM models using k-fold cross validation. The HMM 

model is adapted to multimodal score fusion and 

initialized with parameters like HMM(m, n, g), or 

denoted as m×n×g HMM. Where m is the number of 

intra-modality scores (from m matchers upon one 

modality data) representing an observation vector in 

HMM, and n is the number of modalities corresponding 

to n hidden states. By placing n pieces of m-dimensional 

observation vectors together, an observation sequence 

(over time, t) is formed. g is the number of Gaussian 

components per state in a Gaussian Mixture Model 

(GMM). The GMM is applied to estimate the state 

probability density functions of each hidden state in a 

continuous HMM model. The details of the HMM model 

and its adaption to biometric score fusion are described 

elsewhere [6]. 

In HMM score fusion, the observation vector, Ot, can 

be the m-dimensional intra-modality scores from m 

matchers. The observation sequence, O(t,s), can be 

formed by combining n pieces of Ot from n modalities: 

O(t,s) = {Smn}. For example, there are 2 biometric 

modalities (n = 2; visible, thermal) and 3 matching 

algorithms (matchers) for each modality (m = 3). Thus, 

the length of O(t,s) is 6 (refer to the cells at the rightmost 

column in Table 2). The observation symbol probabilities 

matrix can be initialized with the GMM, where the 

number of Gaussian components (g) in each state are 

usually fixed (e.g., g = 3) or automatically decided [19]. 

Notice that two HMM models, Gen and Imp, are actually 

trained using genuine scores and impostor scores, 

respectively; their parameters can be estimated using the 

Baum-Welch algorithm [20]. An unlabeled biometric 

score sequence, O, will be classified as a “genuine user” if 

PGen(O|Gen) > PImp(O|Imp) + η (a simple decision rule); 

otherwise, O will be an “impostor user”, where η is a 

small positive number empirically decided by 

experiments. In general, m ≥ 1, n ≥ 1, and m×n ≥ 2 are 

expected. In other words, at least two scores are required 

for HMM fusion. If the number of biometric modality is 



one (n = 1), then the number of matching scores from that 

modality must contain two or more (produced from 

different matching algorithms, e.g., CGF, FPB, and LDA). 

If there are two or more modalities (n ≥ 2), in order to 

properly initialize and train the HMM models, the 

numbers of intra-modality scores (m ≥ 1) derived from 

each modality must be the same. 

IV. DECISION FUSION AND PERFORMANCE EVALUATION 

Score fusion combines multiple scores (either a distance 

or similarity score of a probe image); whereas decision 

fusion manipulates multiple decisions (either genuine or 

impostor for a user). The performance evaluation of a 

face recognition system includes accuracy, false accept 

rate, and false rejection rate. 

A. Decision fusion 

A commonly used decision fusion method is majority 

voting [13], which requires the number of decision 

makers to be an odd number (3 or more) to avoid possible 

tie. In addition, the decision makers in the voting group 

should have a similar performance; however, a weighted 

sum may be considered if decision makers have differing 

performances.  

Our face dataset (ASUMSS) contains two-band stereo 

face images (refer to Section 5.1). The decision fusion is 

more suitable to be applied to the stereo images rather 

than two-band images (visible and thermal) by 

considering their equivalent performance. Since each pair 

of stereo images consists of two images that are taken by 

two (left and right) cameras. Thus, majority vote is not 

applicable to the stereo images. Instead, we propose a 

decision fusion using two logical rules: AND, OR. For 

example, when using the AND rule, a user is genuine 

only when both score-fusion results from two stereo 

cameras are genuine. Given an example of KNN fusion 

on a visible dataset (e.g., ASUDC), the final decision is 

made by the AND value of two KNN results (genuine or 

impostor) from left and right cameras, respectively (refer 

to Fig. 1). The KNN results come from the score fusion 

of three matchers: CGF, FPB, and LDA. 

B. Performance evaluation 

The genuine score is the matching score resulting from 

two samples of a single user; while the impostor score is 

the matching score of two samples originating from 

different users. On a closed dataset (i.e., all query users 

are included in the database), the recognition 

performance can be measured by a verification rate (VR), 

the percentage of the number of correctly recognized 

users (i.e., genuine users are recognized as genuine) over 

the total number of users. A higher VR means a better 

recognition algorithm.
2
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 See ISO/IEC JTC SC37 Harmonized Biometric Vocabulary, Section C7 

Application and C8 Performance 

On an open dataset or for a commercial biometric 

system, a query user (i.e., probe face) may not be 

contained in the database. To evaluate the system 

performance, we define the following terms based on a 

confusion matrix [26] (see Fig. 3):  

AC = (TN+TP) / (TN + FP + FN + TP),  (7a) 

FAR = FPR =  FP / (TN + FP),   (7b) 

FRR = FNR = FN / (FN + TP),   (7c) 

GAR = TPR = TP / (FN + TP),   (7d) 

IRR = TNR = TN / (TN + FP),   (7e) 

where AC denotes accuracy that means genuine (or 

impostor) users recognized as genuine (or impostor) 

users; FAR stands for false accept rate (also called false 

positive rate), i.e., impostor users are recognized as 

genuine users (falsely accepted by the system); FRR is 

for false rejection rate (also called false negative rate), 

i.e., genuine users are recognized as impostor users 

(falsely rejected by the system). Similarly, we can also 

define genuine accept rate (GAR, or true positive rate), 

and impostor rejection rate (IRR, true negative rate) in 

Eqs. (7d) and (7e).  

 

It is usually acceptable to evaluate a biometric system 

by reporting AC, FAR and FRR. Of course, an ideal 

biometric system expects a high AC, a low FAR and a 

low FRR. If there is no negative cases (i.e., no intruders), 

then TN + FP = 0 in Eq. (7a), which leads to AC = VR. 

In our experiments, we will first compare the AC values; 

the higher the better. If two AC values are equal or close, 

then the FAR values are compared; the lower the better. 

The FRR values are presented for reference but not 

analyzed for comparison.  

V. EXPERIMENTAL DESIGN 

The experiments were conducted on the Alcorn State 

University MultiSpectral Stereo (ASUMSS) dataset, 

which is a particular subset within the ASU MultiSpectral 

(ASUMS) database [7]. The descriptions of face dataset 

and experimental results are given in the following three 

subsections. 

A. Face dataset and experimental design 

The ASUMSS dataset currently consists of the stereo face 

images of two spectral bands (visible and thermal) from 

105 subjects (refer to Fig. 4). The stereo images were 

acquired with two identical cameras that were horizontally 

placed on a fixture. The two cameras were spaced at 5.5 

inches apart, and the middle line of two cameras was 

Actual \ Predicted Predicted Negative Predicted Positive 

Actual Negative True Negative (TN) False Positive (FP) 

Actual Positive False Negative (FN) True Positive (TP) 

 
Fig. 3: Definition of confusion matrix: the 2-by-2 elements within 
the thick-line rectangle. 



aimed at the middle line of a subject. The two cameras are 

referred to as left camera and right camera (according to 

the view of the photographer), thus the two stereo images 

taken by left-side camera and right-side camera are called 

left (face) image and right (face) image, respectively.  

The model of two cameras is FLIR SC620, a two-in-

one imaging device, wherein the infrared (thermal) 

camera is of 640×480 pixel original resolution and 

7.5~13μm spectral range, and the digital (visible) camera 

is of 2048×1536 pixel original resolution. The visible 

dataset is denoted as ASUDC; while the thermal dataset is 

denoted as ASUIR. Combining with left (L) and right (R) 

side, the notations of all datasets are ASUDCL, 

ASUDCR, ASUIRL, and ASUIRR. ASUMSS denotes the 

entire dataset (refer to Table 1 and Table 2). 

 

Four frontal face images were randomly selected from 

each subject (per side per band), one of which was used as 

a probe image, and three of which were used as gallery 

images. For example, a total of 16 images per subject (of 

two bands and of two sides in stereo imaging) were 

analyzed in our experiments. Then switch the role 

between probe and gallery, the reported performance of 

single algorithms in Table 1 is the average of four 

rotations. In LDA algorithm, the probe and gallery images 

serve as test and train images, respectively. All face 

images were normalized. The face portion was then 

detected and extracted using face detection algorithms 

[21], [22]. Notice that the size of an extracted face is 

usually smaller than the resolution of original image in 

database. Next, all faces were automatically lined up using 

image registration algorithms. The visible images 

(originally in colors as shown in Fig. 4) were converted to 

grayscale images prior to facial feature extraction.  

The performance of single face recognition algorithm 

is tested on four datasets, ASUDCL, ASUDCR, ASUIRL, 

and ASUIRR, where the results of mean fusion are also 

presented in Table 1. The performance of score fusion and 

decision fusion varying with spectral band (DC, IR), 

stereo side (L, R), and decision rule (AND, OR) are 

exhibited in Table 2. 

B. Performance of single face recognition algorithm 

The three selected algorithms (CGF, FPB, LDA) were 

tested with the same four datasets as shown in Table 1. 

The FPBs were formed using 8×16 GWT [7], while the 

FP-CGF were extracted with 4-band CGF. For face 

matching CGF and FPB utilized Hamming distance, while 

LDA used Euclidean distance. The experimental results 

are presented in Table 1, where only the top-1 match (the 

shortest distance) results were reported. 

TABLE 1: The accuracy (AC, %) and FAR (%) of three face 

recognition algorithms and their mean fusions tested on the 4 subsets of 

ASUMSS face dataset (of 105 subjects, 4 images per subject) 

Dataset\Algorithm CGF FPB LDA 
Mean 
Fusion 

ASUDCL 
83.57, 

16.19 

90.24, 

9.52 

91.67, 

8.10 

96.19, 

3.57 

ASUDCR 
85.71, 

14.05 

91.43, 

8.33 

91.67, 

8.10 

95.00, 

4.76 

ASUIRL 
76.19, 
23.57 

89.52, 
10.24 

43.10, 
56.67 

93.81, 
5.95 

ASUIRR 
75.00, 

24.76 

88.33, 

11.43 

44.05, 

55.71 

92.62, 

7.14 

Mean Fusion 
96.90, 

2.86 

98.81, 

0.95 

93.33, 

6.43 
99.29, 

0.48 

 

From the results shown in Table 1, the FPB is the most 

credible recognition algorithm across four datasets. In 

other words, the FPB is the best on the average, 

Mean(FPB)|AC = 98.81%, and CGF is the second best. 

LDA is poor and non-credible especially on two thermal 

datasets (its ACs lower than 50%) although LDA is the 

single best matcher (SBM), AC =  91.67%. 

The results of mean fusion (by averaging all 

normalized scores) are listed in Table 1, where the 

matched face is of the shortest distance. At the bottom 

row, the three results at left are the fusion of four single-

matcher scores from four datasets; while the four results at 

the rightmost column are the fusions of three single-set 

scores from three matchers. All mean fusions are better 

than the SBM (91.67%). For example, the mean fusion of 

LDA scores can achieve AC = 93.33% although its ACs 

with two IR datasets are very low. The result at low-right 

corner (AC = 99.29%) is the mean fusion of all 12 scores, 

which is clearly the best.  

FAR values are significantly decreased in all fusion 

results, especially for the mean fusion of 12 scores (FAR 

= 0.48%, compared with FAR = 8.10% for SBM). FRR 

values are not presented in Table 1 since it is not 

applicable to the face matching by the shortest distance on 

  

  
Fig. 4: Sample faces from the ASUMSS face database: Notice that 
the four images (visible/DC at top, thermal/IR at bottom) were 
acquired from the same subject. The two images at left (right) 
column were taken by the left (right) camera. The images are the 
detected and aligned faces (320×320 pixels). 



a closed dataset. Future work could be verification 

performance measures (such as Equal Error Rate) for each 

method; however Table 1 shows that all are verified 

except LDA for ASUIR. 

VI. PERFORMANCE WITH SCORE FUSION AND 

DECISION FUSION 

All three score fusion methods require a training process. 

In addition to score normalization, two more processes 

are expected. First, the balance of genuine and imposter 

scores shall be considered in the training process since 

the majority of scores are impostor. To avoid possible 

bias in model training, six impostor scores per matcher 

per band per subject were randomly selected in each 

dataset for training. All genuine scores (i.e., three genuine 

scores per matcher per band per subject) as well as the 

reduced impostor scores are called the “trimmed dataset”. 

The KNN, BLR, and HMM fusions were tested with the 

trimmed dataset. Secondly, a 10-fold cross validation is 

applied to the three fusions. More specifically, the same 

randomly split 10 folds were used in all tests shown in 

Table 2. In contrast, the mean fusion used all normalized 

scores without any cross validation.  

In Table 2, the spectral variations (Datasets) are listed 

in the top row, wherein the numbers of fusion scores are 

also given. In each of three fusion methods (KNN, BLR 

and HMM), there are four different combinations, L 

(score fusion from left images), R (score fusion from 

right images), L&R (decision fusion by AND rule), and 

L|R (decision fusion by OR rule). Three performance 

values reported in each cell are AC, FAR, and FRR, 

respectively. To test and calculate FAR, the gallery 

images corresponding to that probe image must be 

excluded from the dataset, which simulates an open 

dataset that does not include the user (intruder). 

The notation of KNN(ASUMSS,L&R)|AC = 98.55% 

denotes the AC value of the AND decision of two KNN 

fusions from two subsets (Left and Right) of ASUMSS. 

HMM(ASUMSS,L&R)|AC = 98.04% shows that KNN 

fusion is better than HMM fusion, both of which are 

better than BLR fusion, BLR(ASUMSS,L&R)|AC = 

97.58%. The fusion results with other two subsets 

(ASUDC, ASUIR) exhibited the similar patterns. The 

fusion performance between left (L) and right (R) subsets 

are quite close (i.e., relatively equivalent performance). It 

seems that, the more fusion scores, the higher the 

recognition accuracy. For example, the fusion 

performance on ASUMSS (6 scores) are better than those 

on its subsets (ASUDC, ASUIR). Certainly, all fusion 

methods exhibited in Table 2 definitely improve the 

recognition accuracy in contrast with the SBM (AC = 

91.67%) given in Table 1. 

To investigate the impact of decision fusion, we need 

to compare both AC and FAR values. Look at the 

rightmost column (ASUMSS), and compare L&R with 

L|R. Comparing KNN(ASUMSS,L&R)|AC,FAR = 

98.55%,0.14% with KNN (ASUMSS,L|R)|AC,FAR = 

98.57%,1.65% shows decreases in both AC and FAR. A 

similar situation occurs in BLR fusions, where the 

decision fusion of (L&R) has AC = 97.58% and FAR = 

0.33%. Compared to BLR(ASUMSS,L|R)|AC,FAR = 

98.45%,1.57%, its decision fusion causes a relatively 

significant decrease of FAR but only a slight decrease of 

AC. The FRR values of KNN fusions are lower than 

those of BLR and HMM fusions. In terms of three 

performance measures (AC, FAR, FRR), the AND-

decision upon KNN fusion is superior to that of BLR and 

HMM fusion.  

TABLE 2: The values (%) of AC, FAR, and FRR of three fusion 
methods tested on variant combinations of subsets in the ASUMSS 

dataset (Note: ASUMSS = ASUDC + ASUIR; L = Left; R = Right; & = 

AND; | = OR) 

Dataset 

(# Scores) 
ASUDC 

(3) 
ASUIR 

(3) 
ASUMSS 

(6) 

KNN 

Fusion 

L 
97.21, 1.76, 

5.79 

96.53, 3.76, 

2.62 

98.83, 0.73, 

2.46 

R 
96.97, 1.81, 

6 59 

95.50, 5.12, 

2.70 

98.28, 1.06, 

3.65 

L & R 
97.05, 0.30, 

10.71 
98.28, 0.73, 

4.60 
98.55, 0.14, 

5.32 

L | R 
97.13, 3.28, 

1.67 

93.74, 8.15, 

0.71 

98.57, 1.65, 

0.79 

BLR 

Fusion 

L 
97.13, 1.30, 

7.46 

94.49, 1.71, 

16.67 

98.14, 0.79, 

5.00 

R 
96.91, 1.49, 

7.78 
93.64, 2.25, 

18.41 
97.88, 1.11, 

5.08 

L & R 
96.39, 0.51, 

12.70 

92.43, 0.60, 

28.02 

97.58, 0.33, 

8.57 

L | R 
97.66, 2.28, 

2 54 

95.70, 3.36, 

7.06 

98.45, 1.57, 

1.51 

HMM 

Fusion 

L 
97.07, 2.25, 

4 92 

93.50, 3.95, 

13.97 

98.28, 1.14, 

3.41 

R 
96.75, 2.74, 

4.76 
93.05, 5.39, 

11.51 
97.54, 2.30, 

2.94 

L & R 
97.11, 0.95, 

8 57 

93.28, 1.30, 

22.62 

98.04, 0.70, 

5.63 

L | R 
96.71, 4.04, 

1 11 

93.28, 8.04, 

2.86 

97.78, 2.74, 

0.71 

 

The difference of two decision fusions, AND versus 

OR, are summarized below. The AND decision results a 

lower FAR but a higher FRR; whereas the OR decision 

results higher FAR but lower FRR. The ACs of two 

decisions are close. If a low FAR is crucial (e.g., for 

security related applications), AND-decision fusion is 

preferred. 

The experimental results with the current ASUMSS 

dataset shows the KNN fusion performs the best in terms 

of high AC and low FAR. And the performance of HMM 

fusion is very close to KNN fusion. In fact, our earlier 

experiments (tested on different datasets) [6] proved that 



HMM fusion is very credible for multimodal biometric 

score fusion.  

Table 1 shows that the performance of mean fusion 

with 12 scores reaches AC = 99.29% and FAR = 0.48%, 

which is actually the best in our experiments. The 

possible reason might be that the genuine scores and the 

impostor scores are well separated, which makes a linear 

separation (like mean fusion) ideal. Surprisingly, in 

another independent research [25], the weighted-sum 

score fusion reached the highest rate of 99% (SBM=97%) 

when two weights were equal, which turned out to be a 

mean fusion. However, the credibility of mean fusion 

needs further investigation on different databases. 

In the future we will expand the ASUMSS dataset and 

sufficiently test the proposed score fusion and decision 

fusion on a larger database. We will also investigate and 

verify the current findings by using other biometric 

modalities (like fingerprint, iris, more spectral images) 

and assess computational complexity. 

VII. CONCLUSIONS 

A commercial biometric system typically expects high 

accuracy and low false accept rate (FAR). We propose a 

solution (FSADF) for the performance improvement of a 

face recognition system, which consists of score fusion of 

multispectral face images and decision fusion of stereo 

face images. Experimental results show that the score 

fusion can significantly improve the accuracy, whereas the 

decision fusion can reduce the FAR. After applying the 

AND-decision fusion to the score-fusion results from left 

and right images, the FAR is reduced as well as a slight 

decrease of accuracy. 

A new face pattern extraction using a set of circular 

Gaussian Filters (FP-CGF) is proposed and tested. Its 

performance is better than LDA and lower than FPB. The 

FP-CGF is quite reliable across four face subsets. Finally, 

we showed that KNN is better than BLR and HMM 

fusion. 
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