


 

 

 

 

 

 

 

 

 

The views expressed in this thesis are those of the author and do not reflect the official 

policy or position of the United States Air Force, Department of Defense, or the United 

States Government.  This material is declared a work of the U.S. Government and is not 

subject to copyright protection in the United States.



 

AFIT-ENS-MS-15-M-113 

 

 

AUTOMONOUS EXPERIMENTATION OF CARBON NANOTUBE 

GROWTH USING RESPONSE SURFACE METHODS 

 

 

THESIS 

 

Presented to the Faculty 

Department of Operational Sciences 

Graduate School of Engineering and Management 

Air Force Institute of Technology 

Air University 

Air Education and Training Command 

In Partial Fulfillment of the Requirements for the 

Degree of Master of Science in Operations Research 

 

 

William Adorno III, BS 

Captain, USAF 

 

March 2015 

DISTRIBUTION STATEMENT A. 

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. 



 

AFIT-ENS-MS-15-M-113 

 

AUTOMONOUS EXPERIMENTATION OF CARBON NANOTUBE 

GROWTH USING RESPONSE SURFACE METHODS 

 

 

 

William Adorno III, BS 

Captain, USAF 

 

Committee Membership: 

 

Major Brian B. Stone, PhD 

Chair 

 

Dr. Raymond R. Hill, PhD 

Member 

 

 

 

 

 

 

 

 

 



 iv 

 

AFIT-ENS-MS-15-M-113 

Abstract 

 

Advances in hardware and software technology have led to the development of 

automated research systems. The Air Force Research Laboratory (AFRL) utilizes the 

Adaptive Rapid Experimentation and Spectroscopy (ARES) system to synthesize carbon 

nanotubes. The AFRL researchers are investigating different approaches that can improve 

the experimental capability of ARES from automation to autonomy.  Carbon nanotubes 

are discussed as an emerging technology for many applications, but AFRL has yet to 

discover what factors optimize the nanotube initial growth rate.  In this study, 

experimental planning software was written for ARES that autonomously designs and 

executes experiments based on the Response Surface Methodology (RSM).  RSM is a 

statistically-based method of sequentially planning experiments to find the optimal 

settings of independent variables that optimize the value of a dependent response 

variable.  This thesis discusses the development and early success of the initial version of 

the planning software.  As this is a relatively new research area spurred by recent 

advancements in materials research technology, detailed discussion is also provided on 

the unique challenges of creating autonomous research robots. 
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AUTOMONOUS EXPERIMENTATION OF CARBON NANOTUBE 

GROWTH USING RESPONSE SURFACE METHODS 

I. Introduction 

1.1 Autonomous Systems 

 The Air Force (AF) Chief Scientist’s 2010-2030 science and technology vision, 

“Technology Horizons”, states “a key finding is the need, opportunity, and potential to 

dramatically advance technologies that can allow the Air Force to gain capability 

increases, manpower efficiencies, and cost reductions through far greater use of 

autonomous systems in essentially all aspects of Air Force” (Chief Scientist, 2010:130). 

In response to this vision, the Air Force Research Laboratory (AFRL) released a strategy 

to develop and improve autonomous systems. The terms automation and autonomy are 

often used synonymously, but AFRL developed clear definitions that separate these two 

levels of system operability. An automated system can function with little or no human 

involvement, but is limited to performing specific actions from the initial system design 

(AFRL, 2013). An autonomous system includes “a set of intelligence-based capabilities 

that allow it respond to situations that were not pre-programmed or anticipated in the 

design” (AFRL, 2013). Automation is only a fraction of autonomy, so increasing the 

level of autonomy in automated systems should improve manpower efficiency and 

reduce costs as described by the AF Chief Scientist.  

In 2012, the Defense Science Board (DSB) also released a report, “The Role of 

Autonomy in Department of Defense Systems”, which discusses many different 

applications and benefits of autonomy (DSB, 2013). However, the DSB report fails to 
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mention the use of autonomy in experimental systems. Automated experimental systems 

can perform multiple experiments based on the inputs of the researcher. After a set of 

experiments, the researcher must analyze the results and then determine another set of 

experiments to progress towards a certain objective. The addition of autonomy to an 

experimental system can eliminate the need for frequent intervention by the researcher.  

Experimental autonomy leaves more time for the researcher to focus on subject-

matter research rather than the design and execution of experiments. Scientific 

researchers may not have a strong familiarity with Design of Experiments (DOE), so 

autonomous software can reduce costs by planning fewer experiments to achieve the 

same or better results.  

Any autonomous system can fail if the user’s trust in the software is lost. Trust is 

established through successful results, as well as, an effective interface that 

communicates progress and results to the user. A quality understanding of the 

methodology and techniques applied by the software helps to foster trust.       

Additionally, the user’s patience is a major factor in autonomous experimental 

systems. If the user does not trust the autonomous experimental system, the process may 

not be allowed to reach its end state. With a loss of patience, the user might decide to 

terminate the experimental process before the software is able to reach a significant 

conclusion. 

 To promote trust and ensure that the user remains patient with the software, 

several objectives can be accomplished. The following objectives are desired for 

autonomous DOE software to operate effectively over a long period of time: 



3 

 

1. The user interface is understandable and easy to use. 

2. Decisions made by the program are virtually equivalent to what a human expert 

in DOE would decide in the same situation. 

3. Display the status of each step of the experimental process to provide awareness 

of important decisions made by the software.  

4. Optimize the desired response variable within the experimental process, so the 

user is not regularly required to select additional inputs.  

5. Plan experiments within the feasible region of execution to ensure system 

operates properly. 

Accomplishment of these five objectives will facilitate the usefulness and longevity of 

the autonomous DOE software.   

1.2 Carbon Nanotube Growth Research 

In the 17
th

 century, Muslim weapon forgers designed legendary weapons known 

as Damascus Sabers. During the Crusades, these sabers were highly effective against 

European warriors, because they were supremely sharp, strong, and flexible. In 2006, 

scientists discovered that the secret behind the Damascus Saber’s superiority was that 

the weapon forgers had unintentionally created carbon nanotubes within the steel 

(Fountain, 2006). Scientists today can intentionally develop carbon nanotubes, but there 

are still many challenges in production to overcome. The tensile strength and flexibility 

of carbon nanotubes can lead to many potential applications and an important role in the 

future of nanotechnology. Some of potential applications include a space elevator, 
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fighting cancer cells, replacing Kevlar, and solar cells. Before any of that is possible, 

scientists must identify what factors significantly affect carbon nanotube growth. 

AFRL is one of many parties interested in carbon nanotube experimentation. The 

Soft Matter Materials Branch (RXAS) at AFRL acquired a machine, the Adaptive Rapid 

Experimentation and Spectroscopy (ARES) system, that can eventually execute up to 

one hundred carbon nanotube experiments in a single day (Nikolaev et al., 2015). ARES 

applies laser-induced Chemical Vapor Deposition (CVD) to synthesize carbon 

nanotubes. CVD synthesizes carbon nanotubes with three main components: a heat 

source, a hydrocarbon gas mixture, and a catalyst. The researchers can adjust the settings 

of these components and several other factors to produce carbon nanotubes with 

different growth characteristics and properties. They would like to characterize nanotube 

production as a function of these factors. However, the researchers are not deeply 

familiar with DOE and the planning of rigorous experiments to reach their research 

goals. The AFRL/RXAS researchers desire an experiment planner computer program 

that autonomously characterizes and optimizes the initial growth rate of carbon 

nanotubes. 

The ARES system includes several other experiment planner options that apply 

machine learning techniques. The RSM planner software is the first that includes an 

actual DOE-based approach to optimize a response variable. Machine learning 

techniques are reliant on the database of previous experimental results. The current 

databases were not obtained using DOE principles. RSM is capable of exploring the 

entire region of operability to find potential solutions. Machine learning techniques are 

computationally rigorous and typically difficult for novice users to understand, while 
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RSM requires little computation and is fairly simple to understand. The researchers 

expect the RSM planner to operate conveniently and to obtain significant findings faster 

than the other options, because of its ability to optimize and apply efficient experimental 

designs. 

1.3 Response Surface Method 

 Response Surface Methodology (RSM) is a procedure of statistical techniques 

that is useful when modeling a problem that includes many factors influencing the 

response of interest (Montgomery, 2008:478). RSM is well-suited to work with carbon 

nanotube experimentation due to the large number of factors and because the researchers 

believe the response surface is highly nonlinear (Nikolaev et al., 2015). RSM can be 

applied to this problem, because all of the variables are continuous and response 

optimization is desired. A computer program is designed and coded for ARES to 

autonomously plan experiments by following the RSM approach. This program is coded 

in the C# language for compatibility with the ARES software. The program is capable of 

experimenting with up to six different factors with the goal of maximizing the initial 

growth rate of carbon nanotubes.  

Before the RSM process starts, the researchers can adjust several input categories 

to include the initial search location, factor level sizes, and factor level boundaries. The 

program plans the appropriate experiments based on the initial inputs and the current 

stage of the RSM process. The process continues until the initial growth rate stops 

increasing in value. A local and possibly global solution is found when the response 

surface appears in the canonical form of a local maximum. Once this solution is 
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obtained, the program ceases to plan experiments and reports the optimal setting of each 

factor and the maximum response value. Maximizing the initial growth rate is the first 

step towards maximizing carbon nanotube production. The results of the RSM process 

should provide insight into what factors significantly affect the initial growth rate. 

1.4 Limitations and Scope 

The program is designed to operate with no more than six factors and maximizes 

one response variable. These factors are the only variables of current interest to the 

researchers. Of the six factors, half are continuous process variables and the other half 

are mixture variables. Future deviations to the number and type of variables will require 

a major adjustment to the program’s source code. The researchers are also interested in 

maximizing another continuous response variable, the catalyst lifetime. The current 

settings in ARES did not allow enough time during each experiment to capture results of 

this variable. Due to the large of percentage of catalyst lifetime results that cannot be 

obtained, this RSM process only focuses on the initial growth rate response. Several 

other categorical responses are important to the researcher, such as whether a 

synthesized carbon nanotube is single or multiple walled. RSM is only appropriate for 

continuous response variables, so categorical or binary responses are not included in this 

study.  

1.5 Research Objectives 

 The following objectives are defined for this thesis.  

1. Determine the most suitable experimental designs to model six factors with a 

specialization to include three mixture variables. 
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2. Incorporate the experimental designs into an RSM process to maximize the 

initial growth rate in a quick and efficient manner. 

3. Create a user interface that fosters trust and awareness with the researcher. 

4. Automate the decision process concerning which set of experiments are selected 

for each stage of the RSM process. 

5. Determine the challenges of autonomous experimentation.   

1.6 Thesis Overview 

 The remainder of this document is organized as follows. This first chapter 

introduces the topic of interest and the research objectives. The second chapter provides 

an in-depth review on important background information and the analytical techniques 

applied in this thesis. The third chapter contains a detailed description of the 

methodology used to accomplish the research objectives. The fourth chapter includes 

and describes the results from the implementation of the RSM experiment planner. 

Finally, the fifth chapter will discuss analytical conclusions and recommendations for 

future research. 
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II. Background  

This chapter is a comprehensive overview of the subject matter and the analytical 

techniques that are applied in this study. The first section is an overview of Response 

Surface Methodology (RSM). The second section explains carbon nanotube growth 

factors and response variables. The third section discusses important considerations for 

the Adaptive Rapid Experimentation and Spectroscopy (ARES) system. The fourth 

section discusses the advantages and disadvantages of the current ARES experimental 

planners. The fifth section explains the analytical techniques applied within the RSM 

process. 

2.1 Response Surface Methodology Overview 

 A statistical approach to experimental design helps to draw meaningful 

conclusions from data (Montgomery, 2008:11). It is difficult to understand the true 

relationships between the inputs and outputs of a system without a structured 

experimental design. In the 1920s and 1930s, Sir Ronald A. Fisher’s statistical analysis 

of agricultural data led to the three primary principles of DOE: randomization, blocking, 

and replication (Montgomery, 2008:21). His later work led to factorial designs and 

Analysis of Variance (ANOVA) which are also cornerstones of DOE. Applications of 

statistical design continued to increase during the industrial era with the advent of RSM 

by Box and Wilson in 1951 (Montgomery, 2008:21). RSM expands on DOE to solve 

problems that require mapping a response surface, response optimization, and selection 

of optimal operation conditions (Myers et al., 2009:8). RSM is limited to problems that 

contain continuous independent and response variables. 
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 RSM can be a useful technology in the formulation of new products due to its 

capability to optimize response variables and find desired operating conditions. Most 

RSM applications are sequential procedures that can involve multiple iterations of 

experimental designs and analysis (Myers et al., 2009:6). This experimental procedure is 

performed within the feasible operability region encompassed by the independent 

variable space (Myers et al., 2009:7). In problems involving more than three 

independent variables, mapping the response surface over the entire region of operability 

is usually impractical and cumbersome. Therefore, the sequential procedure consists of 

smaller regions of experimentation and statistical models that are utilized to search the 

operability region for the optimal response location (Myers et al., 2009:8). When near 

the optimal response location, a higher-order statistical model is applied to the region of 

experimentation to better characterize the response surface and discover important 

results. 

2.2 Carbon Nanotube Growth Factors and Response 

2.2.1 Growth Factors 

 The Adaptive Rapid Experimentation and Spectroscopy (ARES) system 

performs Chemical Vapor Deposition (CVD) to synthesize carbon nanotubes (Rao et al., 

2012). CVD requires three main ingredients: a heat source, a hydrocarbon gas mixture, 

and a metallic catalyst (Nikolaev et al., 2015). ARES provides heat using a high-

powered laser. The hydrocarbon gas mixture is a combination of up to three different 

gases: ethylene, hydrogen, and argon. The catalyst is chemical compound typically 

consists of at least one of the following elements: cobalt, iron, nickel, or aluminum 

(Nikolaev et al., 2015). The ARES system can also control total pressure and water 
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concentration. The total pressure is the pressure of the gas chamber and is completely 

independent from the hydrocarbon gas mixture. The water concentration acts as a 

cooling agent for the catalyst to prolong the catalyst lifetime (Nikolaev et al., 2015). 

 The catalyst type certainly influences carbon nanotube growth, but it is not a 

factor that is changeable between individual experiments. The catalyst type is held 

constant for each replication of the RSM process. For laser power, the independent 

variable is the calibrated temperature in Celsius at initial growth. The calibrated 

temperature does slightly differ from the planned temperature on a regular basis. The 

total pressure is adjusted and measured in units of torr. Water concentration is adjusted 

and measured in parts per million (ppm). Temperature, pressure, and water 

concentration are process variables, and are adjusted independently without impacting 

the setting of another variable (Cornell, 2011:354). The hydrocarbon gas mixture 

contains three different mixture variables. Mixture variables differ from process 

variables, because the proportion of one of the components must decrease if another 

proportion is increased (Smith, 2007:3). Since mixture variables are not independent 

factors, different techniques are used to include them with process variables in the same 

experimental design and linear model. The mixture variables are adjusted in ARES as 

flow rates (standard cubic centimeters per minute), but are measured in the planner as 

percentages of the total mixture.    

 Engineering (actual) units are used when the planner is providing the experiment 

settings to ARES. However, all of the design creation and analysis is executed in coded 

units. Coded units enable orthogonal test matrices when properly designed and evenly 

scale each factor to make coefficient estimates comparable (Montgomery, 2008:290). 
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The initial growth rate   represents the estimated initial slope of the predicted G-

band line. The time constant   is also referred to as the catalyst lifetime, because it 

represents when the growth curve levels off.  The growth curve is estimated by the self-

exhausting exponential formula (Rao et al., 2012) 

                        (1) 

where t is time in seconds. ARES automates the creation of this growth curve and the 

parameter estimation, but occasionally the researcher must manually estimate the 

parameters when there is an issue with data capture.  

When the maximum G-band is reached at the expiration of catalyst lifetime, 

Equation 1 reduces to   . The researchers are particularly interested in maximizing    in 

order to maximize production. However, the time constant is difficult to obtain during 

each experiment, as the result can extend beyond the allotted time for data capture. Due 

the high frequency of experiments that do not include valid results, the time constant 

response variable is not included in the RSM process. Fortunately, maximizing the 

initial growth rate still provides a positive contribution towards maximizing   . 

2.3 ARES System Overview 

 The ARES system is the overarching software that controls and monitors the 

carbon nanotube experimentation process (Nikolaev et al., 2015). Experimental planners 

are an additional feature of ARES but are only instructions to perform certain sets of 

experiments or runs. These experiment plans are written to a data file that acts as the 

main line of communication between ARES and the planner. The planner is not involved 

with the physical experimentation process after the experiment plan is submitted. 
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Actually, the planner program is completely closed after the submitting the planner data 

file. RSM is a continuous process, so an input/output data system must keep track of the 

planner’s status and necessary data after each set of planned experiments. 

 This study focuses on autonomy in experimental planning, but there are many 

aspects of ARES that are not yet autonomous. The researcher must perform a series of 

various calibrations and alignments on the system before each set of experiments. The 

amount of experimentation per each set is also limited. Experiments are performed one 

patch at time and each patch contains 25 silicon pillars (Rao et al., 2012). Theoretically, 

up to 25 experiments can execute in a single experiment plan, but this is rarely a feasible 

option. The researcher uses a camera and microscope to identify which pillars are 

available on each patch. Typically, many pillars are unavailable due to previous 

experimentation or are scattered with debris from neighboring pillars that overheat 

during experimentation (Nikolaev et al., 2015). To accommodate for the restriction in 

the number of experiments, the planner should continually provide experiment sets less 

than about 15 runs. Sets of only a few experiments are also not preferred due to the 

amount of setup time required. 

 The amount of experimentation is limited on each patch, so it very likely that 

results originate from multiple patches. Analysis of previous growth data revealed a 

possible change in the initial growth rate depending on the patch used to experiment 

(Nikolaev et al., 2015). The blocking principle is a useful technique to minimize the 

potential increase in variance from the change in patch (Montgomery, 2008:13). 

Blocking is explained in further detail in Section 2.5.2 for the first-order design and 

Section 2.5.5 for the second-order design. The only other major nuisance factors the 



14 

 

researchers identified were laser temperature related. The ambient temperature in the 

ARES lab and the laser temperature calibration seem to affect growth results (Nikolaev 

et al., 2015). Occasionally, the calibrator does not produce actual temperatures that are 

close to the planned temperatures. Unfortunately, incorporating the actual calibrated 

laser temperatures into the planner’s analysis is not currently an option. 

2.4 Current ARES Experiment Planners  

 The RSM planner is incorporated into the list of available experimental planners 

on ARES. The two most prominent planners apply machine learning techniques: an 

artificial neural network and a random forest. Below are some of the disadvantages of 

these current planners: 

1. The linear dependency of mixture variables is not taken into consideration. 

Without the proper mixture experimental design, other techniques tend to ignore 

some significant blending effects due to the linear combinations within the data. 

2. Total pressure is not assessed as an independent factor and is often combined 

with the mixture variables to create partial pressures. 

3. The planned flow rates of the mixture variables are not maximized, so it takes 

longer to prepare each experiment. 

4. The methods are based on previous database results. Data in the current database 

was not obtained using experimental design principles. Methods based on 

predicting previous results often struggle extrapolating these results to new areas 

of application. Also, the database resets whenever the type of catalyst is changed. 
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5. The underlying analytical techniques are highly advanced, but are 

computationally rigorous and difficult for the ARES users to understand. 

6. Instead of maximizing a response, these planners request a response target value 

from the user. The users do not fully understand how to adjust the target value 

and the degree of extrapolation that is possible. 

The current planners do offer several advantages that the RSM planner is not expected to 

incorporate in this study: 

1. There is no requirement on the amount of experiments planned in each set. 

Traditional experimental designs and blocking principles are limited in the 

minimum amount of experiments allowable in a single block. 

2. The current planners do not require the success of every experiment. The 

successful experiments are added to the database and the unsuccessful 

experiments do not affect future planning. 

3. Although the experiments were not designed deliberately, the current planners do 

incorporate previous data and any insights that may exist from data in the current 

database. 

2.5 Review of RSM Techniques 

2.4.1 Conversion of Mixture Variables to Ratio Variables 

 Traditional RSM techniques are designed for independent variables. The 

inclusion of mixture variables into the process presents the decision to either adjust 

RSM techniques to accommodate mixture variables or convert the mixture variables to 

independent variables. There are many different techniques to include both mixture and 
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process variables in the same experimental design and regression model. A well-known 

technique is the Cartesian join which involves appending a mixture design onto each 

process variable experiment run (Smith, 2005:303). This approach has two major 

downfalls; many experiments are required for even the most modest design and the 

search path is limited to only process variables. Also, analysis of a mixture response 

surface is especially difficult within an automated program. 

 The other approach is to transform   mixture variables into      independent 

variables. The ratio variable method, presented by John Cornell in “Experiments with 

Mixtures”, is particular easy to apply in an automated program (Cornell, 2011:305). The 

only requirement is that each ratio has a component that is included in the other ratios in 

the same set (Cornell, 2011:306). In this study, the three mixture variables are converted 

into two ratio variables to ensure that traditional RSM techniques and experimental 

designs are viable throughout the entire process. All coded experimental designs now 

include a total of five independent variables. Since ethylene is in every experiment, the 

percentage of this gas    is the denominator of both ratios to eliminate the possibility of 

ever dividing by zero. The percentage of argon and hydrogen gases are represented as 

   and   , respectively. The first ratio    
  

  
  is argon per ethylene and the second ratio 

   
  

  
  is hydrogen per ethylene. When engineering units are required, the following 

three equations convert the ratio variables back into mixture percentages: 

 Argon (Ar):    
  

       
 (2) 

 Ethylene (C2H4):    
 

       
 (3) 
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 Hydrogen (H2):    
  

       
 (4) 

These three equations are derived from the two ratio formulas and the mixture 

requirement that            . 

ARES only accepts the mixture variables in the flow rate form, so an additional 

conversion is required to plan experiments. The researchers want the total flow rate large 

to accelerate the gas insertion process. The optimal setting of flow rates is calculated 

with a Linear Program (LP). An LP model is a set of mathematical functions where 

linearity exists in both the objective and constraint functions (Hillier and Lieberman, 

2005:12). The LP model has three decision variables for flow rate,         , that 

represent argon, ethylene, and hydrogen, respectively. The constraints shown in 

Equations 6 through 8 each include one slack variable,         . The LP objective 

function is shown in Equation 5. The constraints of the LP model are shown in 

Equations 6 through 11.  

Maximize: Total flow =          (5) 

Subject to:           (6) 

             (7) 

             (8) 

           (9) 

           (10) 

                     (11) 
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Equations 6 through 8 are the constraints for the maximum flow rate setting for argon, 

ethylene, and hydrogen, respectively. Equations 9 and 10 are the constraints that ensure 

the two ratio variable relationships are achieved. Equation 11 constrains all decision 

variables to be non-negative.  

A simplified technique was discovered to easily solve this LP within the C# 

environment. The LP model contains six decision variables and five constraints. 

Therefore, when       and       , only one variable is nonbasic or set equal to zero 

in the final solution (Hillier and Lieberman, 2005:110). All of the flow rates are non-

zero, so one of the slack variables must be nonbasic. The nonbasic slack variable is 

derived through a minimum ratio analysis from the simplification of the simplex 

method. When argon is non-zero, the smallest value out of  
20

r1
 , 17.2, or  

50.5

r2
  determines 

if   ,   , or    is the nonbasic variable, respectively. When      or     , the 

unaffected values are assessed in the minimum ratio analysis. After the nonbasic 

variable is determined, the flow rate of the variable included in that constraint is set to 

the right-hand-side value. The other two flow rates are easily calculated using the two 

ratio constraint equations. 

2.4.2 First Order Design 

Factorial designs are particularly useful to investigate main effects and 

interactions on a response variable. The 2
k
 factorial design is important for two major 

aspects of the RSM process: to generate the factor estimates required in the path of 

steepest ascent and as a building block to create other response surface designs (Myers 

et al., 2009:73). These designs are labeled 2
k
 because   factors are considered at only 
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two factor levels. A full 2
k
 design requires 2

k
 experiments, but this amount can be 

reduced depending on what information is needed. Fractional factorial designs are based 

on the sparsity of effects principle that a system is largely impacted by main effects and 

low-order interactions rather than high-order interactions (Montgomery, 2008:321). Due 

to the unlikelihood of higher-order interactions, a fractional factorial design combines 

main effects and low-order interactions with higher-order interactions (Montgomery, 

2008:322). These combined effects are referred to as aliases. 

Various fractional factorial design options are compared using the design 

resolution method. A resolution V design ensures that no main effect or two-factor 

interaction is aliased with another main effect or two-factor interaction (Montgomery, 

2008:324). A resolution V design produces quality main effect estimates for the path of 

steepest ascent and can augment easily to a second-order design (Myers et al., 

2009:298). This design is also orthogonal for a model containing main effects and two-

factor interactions which ensures linear independence and minimizes variance (Myers et 

al., 2009:286). Orthogonality is a very useful property, because it eliminates 

multicollinearity in the regressor variables (Montgomery et al., 2012:118). 

Multicollinearity is a common problem in data that is not collected from an experimental 

design. Multicollinearity can cause inflated or erroneous effect estimates due to the near-

linear dependencies within the data (Montgomery et al., 2012:285). 

For a design with five factors, a half fraction      produces a resolution V 

design. Therefore, 16 less runs are required to generate effect estimates of a similar 

quality. In addition to the 16 fractional factorial runs, the first-order design should 

include center point runs to test for lack of fit and estimate pure error. Typically, at least 
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three center point runs are recommended for the lack of fit test and to augment to a 

second-order model (Montgomery, 2008:288). Four center point runs are included in the 

first-order design to allow for an even distribution if blocking is necessary. The 

experiment order of each first-order design is randomized. Randomization is a design 

technique applied to minimize the effects of uncontrollable nuisance factors 

(Montgomery 2008:139). The full      design is usually difficult to accommodate, so it 

is split into two separate blocks of ten. Blocking is a critical noise reduction technique 

that ensures that any nuisance variability is not wrongfully distributed to certain effect 

estimates or to inflate the estimate of experimental error (Montgomery, 2008:313). The 

block designs are generated using the two-factor interaction for total pressure and water 

concentration. Through discussion with the researchers, this two-factor interaction was 

deemed as the most improbable to significantly affect the response (Nikolaev et al., 

2015). Each block contains two center point runs and is randomized independently from 

the other block. 

2.4.3 Lack of Fit Test 

A factorial design and the path of steepest ascent work well even in situations 

where the linearity assumption barely holds (Myers et al., 2009:109). However, a first-

order model and design is typically inappropriate when quadratic effects are significant. 

Pure quadratic error is identified by testing whether the center point responses fall on the 

same linear plane as the factorial response results (Myers et al., 2009:110). A pure 

quadratic error F-test is performed on the results of each first-order design to determine 

the adequacy of a first-order design. The sum of squares for pure quadratic curvature is 

calculated with the formula (Myers et al., 2009:111) 
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 (12) 

where  

    number of factorial runs 

    number of center runs 

     average of factorial response values 

     average of center point values 

 

The F-statistic is the ratio of the sum of squares for pure quadratic error with the mean 

square for pure error. The mean square for pure error formula is calculated by the 

formula (Myers et al., 2009:112) 

 
             

          
           

    
 (13) 

where    is the response value for each center experiment. Following the first-order 

design experimentation, the F-statistic is compared with an F-critical value associated 

some confidence level, α, such as 0.05 or 95 percent. Alternatively and used here, the 

probability that the F-statistic comes from the hypothesized central F distribution is 

calculated and returned as the test p-value. This comparison determines if a second-order 

model or the linear search process is the next course of action. This p-value represents 

the level of significant required to reject the null hypothesis that the current first-design 

is linear (Montgomery 2009:40). The p-value is generated by evaluating the F-statistic 

with numerator degrees of freedom of one and      for the denominator. 
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2.4.4 First-order model and Path of Steepest of Ascent 

The path of steepest ascent is a first-order gradient-based optimization technique 

derived from the main effects of the first-order model (Myers et al., 2009:189). The 

first-order regression model is obtained by the formula 

                                     (14) 

where  

    predicted initial growth rate 

    main effect of factor i 

       ratio variables  

          process variables  

  = random error component 

 

Montgomery et al. (2012) list five major assumptions of regression analysis: 

1. The response and regressors relationship is at least approximately linear. 

2. The error term   has a zero mean. 

3. The error term   has a constant variance   . 

4. The errors are uncorrelated (lacks autocorrelation). 

5. The errors are normally distributed. 

Linear regression analysis of prior initial growth rate data revealed an issue with 

constant variance of the model residuals. The residuals of model appeared to have a 

funnel-like shape when plotted against the predicted response values as shown in Figure 

2.2.  





24 

 

The path of steepest ascent is generated with the unit gradient approach using the 

formula 

 
    

  

    
  

   

     
(15) 

where  

     search gradient of factor j 

    main effect of factor j 

 

Each     is multiplied by the associated factor level size to create the increments that 

each factor changes during each search step. This path of steepest ascent does not 

include interaction terms, because even moderately large interaction effects cause a 

slight deviation to the true path (Myers et al., 2009:190). Steepest ascent paths using 

nonlinear models require solving a series of constrained nonlinear optimizations. 

Additional search iterations can correct large deviations to the search path. 

2.4.5 Second-Order Design Augmentation and Model 

The Central Composite Design (CCD) is a popular second-order design that is 

created by augmenting the current first-order design with axial runs (Myers et al., 

2009:298). The first-order design is resolution V which supports the estimation of main 

effects and two-factor interaction effects in the CCD. A CCD with five factors requires 

ten axial point runs to estimate quadratic effects. Axial points are spaced at a certain 

distance from the design center along each axis for a single factor each run (Myers et al., 

2009:297). This axial distance is important in determining the variance properties of the 

CCD and for orthogonal blocking. Rotatability is an important property of a CCD, 
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because it provides a reasonably stable distribution of the scaled prediction variance 

throughout the design region (Myers et al., 2009: 305). Rotatability is achieved when the 

axial distance is     
 

 with   as the number of factorial runs (Myers et al., 2009:307).  

Blocking is another important consideration when the CCD is created by 

augmentation. Orthogonal blocking the axial point augmentation with the previous first-

order design minimizes the impact of nuisance factors on the quadratic effects (Myers et 

al., 2009:325). To achieve orthogonal blocking, the axial distance is calculated with the 

formula    

 

   
        

       
 (16) 

where  

   number of first-order factorial points 

    number of first-order center runs 

   number of factors 

    number of center runs in axial block 

 

When zero center point runs are included in the axial block, the axial distance achieves 

both rotatability and orthogonal blocking. Therefore, the axial distance is set to       . 

 The second-order model includes main effects, quadratic terms, and two-factor 

interaction terms. This model is calculated by the formula  
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(17) 

where  

    predicted initial growth rate 

    main effect of factor   

     quadratic effect of factor   

     interaction effect of factor   with factor    

       ratio variables 

          process variables  

  = random error component 

 

2.4.6 Canonical Analysis 

 The canonical analysis uses the coefficients of the second-order model to 

determine the location of stationary point within the design region. The stationary point 

can represent a minimum, maximum, saddle point, or ridge system depending on these 

coefficients. First, to calculate the stationary point, the    matrix is assembled with 

second-order and interaction coefficients: 

 

    

               

               

      
   
      

 

  (18) 
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A vector of main effects                      and    are used to calculate the 

stationary point    (Myers et al., 2009:223). The stationary point is calculated with the 

formula 

 
    

 

 
      (19) 

This stationary point is in coded units referenced from the center of the second-order 

design. The conversion to engineering units is applied before reporting the results to the 

user. The predicted response at the stationary point is calculated by the formula (Myers 

et al., 2009:224) 

 
       

 

 
  

   (20) 
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III. Methodology 

 This chapter explains the computer program that autonomously plans 

experiments to optimize carbon nanotube growth. The first section overviews the 

Response Surface Methodology (RSM) process. The succeeding sections discuss the 

algorithms within the sub-processes of system. The second section explains the start of 

the RSM process and first-order design generation flow.  The third section explains the 

lack of fit test, the linear regression model, and the search process flow. The fourth 

section explains the second-order design generation, the second-order regression model, 

and the canonical analysis flow. The fifth section explains the analysis of solutions from 

the model. The last section discusses the challenges of applying RSM procedures to 

create experimental autonomy within the Adaptive Rapid Experimentation and 

Spectroscopy (ARES) system.       

3.1 RSM Model Overview 

 The RSM process begins with manual input of the experimental boundary, the 

factor level sizes, and the initial start location. The planner creates a randomized first-

order design with the information from the user’s inputs. Center point experiments are 

included in the first-order design to test for lack of fit. The lack of fit test determines the 

significance of quadratic curvature in the current response surface. If the surface appears 

linear, the planner calculates a first-order regression model to find the gradient used to 

search outside of the region. The search progresses until the response variable stops 

increasing in value. The planner executes a series of first-order designs and linear 

searches until the surface appears non-linear. When the lack of fit test detects a 

significant curvature in the response surface, additional axial runs are augmented to the 
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first-order design to complete a second-order design. The planner calculates a second-

order regression model from the augmented design and performs canonical analysis. The 

planner displays the optimal response value and the corresponding factor level settings 

to the user.  Users can save the solution and compare with previous results to improve 

future RSM processes. Figure 3.1 shows the flowchart of the RSM overview.  
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Figure 3.1. RSM Overview Flowchart 

 The planner updates a status indicator to advance to subsequent stages of the 

RSM process after experiments are planned for ARES. ARES does not interact with the 

RSM planner during the experiment process. Every time the user accesses the planner 

from ARES, the status indicator is retrieved. The status dictates what actions the planner 

should execute to successfully advance to the next stage or event. These actions 

typically involve gathering response data, performing necessary calculations, and 
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displaying the appropriate Graphical User Interface (GUI). Whether the user decides to 

perform experiments or cancel the planner, the status updates to the appropriate status 

before the planner exits. The Sections 3.2 through 3.5 explain each possible status 

indicator and the actions of the program based on each status. Appendix A includes 

a list of all possible status indicators. Appendix B includes a list of all available data 

files used in the input/output system. 

3.2 Initial Start and First Order Design Flow 

 The RSM initialization occurs when the status equals “Start”.  The flowchart in 

Figure 3.2 displays the actions of the planner when this status is obtained. The “Start” 

status can originate from three different possibilities: no previous experimentation, 

completion of a previous RSM process, or from a manual decision to restart the process. 

In two of these possibilities, some of the stored data files contain superseded 

information. Therefore, the first step is to clear all data files except for the file that stores 

previous RSM results.  
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Figure 3.2. Initial Start and First-Order Design Flowchart 

 The start menu GUI, shown in Figure 3.3, opens immediately after the data files 

are cleared. The first button opens a spreadsheet that displays the results from previous 

RSM processes. Analysis of previous results can assist in determining future input 

settings. The lower section of the start menu contains the buttons that allow the user to 

alter the input settings. The red notice informs the user that at least ten experiments must 

be available to advance to the first-order design phase. If less than ten experiments are 

available, a warning message appears after the user confirms to experiment the first-

order design. In that situation, the program will not plan any experiments and there is no 

change to the status. 
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Figure 3.3. Initial Start Menu GUI 

The first input button opens another menu to adjust the factor level ranges. The 

range adjustment menu is shown in Figure 3.4. This menu loads default values for the 

minimum and maximum ranges provided by the researchers prior to coding the program. 

There are two common reasons to adjust the factor level ranges. First, the experimental 

region may expand if the capabilities of the ARES system increase in the future. Second, 

the user may become disinterested in experimenting in certain areas of design space. The 

input boxes of the ranges allow the user to type in any text value. These values must be 

feasible settings that ARES can execute. The program will return an error message if a 

maximum range is less than a minimum range.   
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Figure 3.4. Factor Level Range Adjustment Menu GUI 

The next input option, shown in Figure 3.5, is the factor level size adjustment 

menu. This menu also loads default values mostly based on the suspected noise of each 

factor provided by the researchers. Unlike the factor level range menu, the size 

adjustment menu displays ratio variables instead of mixture percentages since the 

mixture three levels cannot change independently. This menu contains numeric 

textboxes that allow the user to incrementally change the level size values by clicking on 

the corresponding arrow. The benefit of numeric textboxes is that only numeric values 

within a predetermined minimum and maximum range can be entered. After several 

iterations of the RSM process, the user should consider rescaling the factor level sizes. 

Level sizes should be large enough to overcome noise, but not so large that the effect of 

a single factor unintentionally dominates the main effects regression model 

(Montgomery, 2009:256). 
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Figure 3.5. Factor Level Size Adjustment Menu GUI 

 The last user input is the initial search location of the RSM model. The two 

options available are a random or user-specified location. The random location is 

generated within the inner sixty percent of the design region to avoid immediately 

searching near a boundary. The start location menu, shown in Figure 3.6, uses numeric 

textboxes to input the desired start location. The range of the numeric textboxes adjusts 

based on the information from the factor boundaries and level size. This adjustment 

ensures that the initial first-order design is within the region of operability. The selection 

of the initial location is solely a user preference, but previous research knowledge and 

RSM results should factor into the decision.  
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Figure 3.6. User-Specified Start Location Menu GUI 

The “Get Started” button is pressed once the user is ready to advance from the 

start menu. This button has green text to signify that this action will continue the RSM 

process as recommended by the programmer. Buttons with black text are optional 

actions that may alter the original model plan. Buttons with red text are inadvisable 

actions or invoke restarting the entire process. This coloring scheme is intended to help 

novice users navigate quickly through the GUI of each process.  

After the start menu, the number of available experiments determines the next 

course of action. If the number of available runs is less than 20, the first-order design is 

executed in two separate orthogonal blocks. Orthogonal blocking limits the nuisance 

effects created by performing sets of experiments on different patches or at a much 

different time. When blocking, the first-order block 1 menu appears and informs the user 
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that a block requires ten runs, as shown in Figure 3.7. This menu displays the three 

possible factor levels, so the user is aware of the settings tested in this design. If the user 

selects to continue, the coded first block design is saved to a data file and is also written 

to the planner file in engineering units. The status is updated to “FO Block 1” to 

represent that only the first block is complete. The full first-order design menu is 

displayed when 20 or more runs available. This menu is similar to the first block menu, 

but reflects the full design. The same actions described in the first block are performed 

on the full design, but the status is changed to “FO Full” to represent that all first-order 

runs are complete.    

 

Figure 3.7. First-order Block 1 Design Menu GUI 

 After completing the first block of the first-order design, the “FO Block 1” status 

is captured upon the next planner access. The planner obtains the response values from 

the first block and saves these results to the first-order response data file. The second 
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can help to shift the experimentation region closer to the optimal solution. The decision 

to force either option primarily involves the tradeoff between the accuracy of the final 

solution estimate and the amount of additional experiments the user is willing to 

perform.  

 

Figure 3.10. Lack of Fit Test Results Menu GUI 

 To begin the search process, a first-order regression model is required to 

compute the path of steepest ascent. The model coefficients are calculated by matrix 

multiplication involving the coded first-order design and the response values. The 

coefficients and intercept of the first-order model are displayed to the user in the linear 

regression model menu. The regression menu GUI is shown in Figure 3.11. Due to the 

log transformation, the results are difficult to interpret. However, the sign and magnitude 
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of each coefficient still provide great insight into the direction of the path of ascent. 

Following the regression model menu, the model coefficients are the main input of the 

search process. Section 3.4 discusses the search process flow.   

 

Figure 3.11. Linear Regression Model GUI 

 The second-order design augmentation process begins with displaying the 

second-order design menu. This menu is similar to the first-order design menus, but 

adjusts the low and high levels to reflect the axial distance, as shown in Figure 3.12. The 

second-order design augmentation involves axial runs and additional center point runs, if 

applicable. These augmented experiments are first generated in the coded form, 

randomized, and then saved to a data file. The runs are converted to engineering units 

and then written to the planner file. The status is updated to “Second Order” to represent 
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that the second-order design is complete. Section 3.5 discusses the analysis of the 

second-order design results. 

 

Figure 3.12. Second-order Design Menu GUI 

3.4 Search Process Flow 

 The search process consists of three main phases: initialization, analysis, and 

continuation. Initialization of the search process involves establishing the path of 

steepest ascent and saving the important search information to data files for later use. 

The analysis of the search process determines if a maximum value is obtainable from the 

search results. If no maximum value is found, then the search process continues. When a 

maximum value is found, a new first-order design is centered at this location and 

advances the RSM process. The search process initialization flowchart is shown in 

Figure 3.13. 
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experiments are saved to a data file and then converted to engineering units for the 

planner file. The status is updated to “Search” to represent that the RSM model is in the 

search process phase.  

3.4.2 Search Process Analysis Phase 

 This subsection discusses the search analysis phase. Traditionally, each search 

process run is analyzed individually against a stopping criterion. Due to the lack of 

communication between ARES and the planner, streams of experiments are analyzed 

until a stopping point is established. The flowchart in Figure 3.14 displays the main 

algorithm for the analysis phase. The first step is to obtain the search response data and 

then append the data to the previous results from that search, if applicable. It is 

important to analyze all of the search results together, because data essential to the 

stopping condition can exist on separate streams of experiments. A loop is applied to 

analyze each experiment result. The counter for this loop is a step variable which 

increases by one after each experiment is analyzed. The maximum response value and 

the step at which it occurs are saved in case the stopping condition is achieved. The 

stopping condition is achieved when the response value has decreased in two 

consecutive steps (Myers et al., 2009:182). This stopping criterion is a robust enough to 

not trigger for extreme outliers in the positive or negative direction. 
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Figure 3.14. Search Process Analysis Phase Flowchart 

 The analysis loop ends if there are no more experiments to assess or the stopping 

condition is achieved. If the stopping condition is achieved, the search location with the 

maximum response becomes the center of a new first-order design. It is possible that the 

maximum response is located many experiments before the stopping condition. These 

maximum responses appear as outliers in the positive direction, but should not be 

overlooked. Narrow peaks in the response surface are hard to identify with large factor 
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level sizes. The location of the maximum response is updated in data file as the current 

search location. A menu displays next and informs the user of the current maximum 

response and location, as shown in Figure 3.15. The new first-order design is generated 

around this location using the same factor level sizes from the initial start menu. The 

first-order design procedure is identical to the description from Section 3.2. The status 

indicator updates to the appropriate first-order status depending on the amount of 

available experiments. 

 

Figure 3.15. Search Process Stopped Menu GUI 

3.4.3 Search Process Continuation Phase 

 The search process continues if two consecutive decreasing values are not found 

in the search response results. The flowchart for the continuation phase is shown in 

Figure 3.16. The first step is to display a menu to inform the user of the continuation of 

the search process, as shown in Figure 3.17. This menu displays the current maximum 
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response and the factor level increments of the search. The experiments in this phase are 

generated in the same manner as the initialization phase. The status indicator remains at 

“Search” to represent that the search process is still active.  
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Figure 3.16. Search Process Continuation Phase Flowchart 

 

Figure 3.17. Search Continuation Menu GUI 
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3.5 Solution Determination and User Report 

 After the axial block is experimented, the remaining steps of the RSM process 

focus on obtaining an optimal solution. The flowchart for second-order model 

generation, canonical analysis, and the solution report is displayed in Figure 3.18. The 

first step is to obtain the augmentation response results from the data file. These results 

and the augmentation coded design are appended to the previous first-order response 

results and coded design, respectively. The combination of these two design portions 

completes the augmentation of the Central Composite Design (CCD). To generate a 

second-order model, the independent variable matrix must also include interaction and 

quadratic terms. These additional terms are calculated by multiplication of the proper 

two main effect columns in the matrix. After this calculation, the second-order model 

coefficients are generated and then assigned to the appropriate canonical analysis matrix 

or vector.  
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Figure 3.18. Canonical Analysis and Solution Flowchart 

 The coded stationary point    is obtained through canonical analysis of the 

second-order model. For this point to be considered the final solution, it must fall within 

the second-order experimentation region and appear to represent a local maximum. It is 

possible that the estimated stationary point is located inside the design region, but is still 

in the canonical form of a minimum or saddle point. A minimum or saddle point 

response value is likely of no use to the user. Classic analysis uses eigenvalue analysis to 

classify the response surface. For this tool, the value of the predicted response is 

compared to the second-order design response data. If the predicted response is less than 
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the average of the second-order design response data, the canonical form is likely not a 

maximum. If the canonical analysis appears to not provide a maximum solution, the 

experiment from the CCD with the largest response value is considered the alternative 

optimal solution.    

A menu displays to report the appropriate solution to the user, as shown in 

Figure 3.19. The user is informed whether the result is obtained through canonical 

analysis or from the CCD results. The predicted optimal response and the corresponding 

factor level settings are displayed. If the user is satisfied with the results, there is an 

option to save the results to a data file. 

 

Figure 3.19. Predicted Solution Report GUI  
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3.6 Additional Challenges of Autonomy Incorporation 

3.6.1 Experiment Success and Data Capture Rate 

 Carbon nanotube experimentation is certainly an arduous process. Numerous 

nuisances can influence the success of each experiment. These nuisances can hinder the 

success of an experiment with complete independence from the actual factor level 

settings of that run. On a regular basis, a set of experiments contains at least one run that 

did not have successful growth due to extraneous influences on ARES. These 

unsuccessful runs are usually unrelated to planned factor settings. All stages of the RSM 

process depend on reliable response data, so it critical to obtain as many successful runs 

as possible. Eventually, it is more beneficial to advance through the RSM process with 

some unsuccessful results than continually retest the same design until perfect results are 

obtained. 

 The first and last run of each experiment set can produce unreliable or missing 

results. The researchers do not currently have the ability to perform trial experiments on 

ARES. Trial experiments can help a system “warm-up” and reach a steady-state 

performance before the designed experiments begin. The lack of any trial runs or 

previous experimentation on ARES leads to a high rate of unsuccessful growth on the 

first designed experiment run. Also, ARES is currently unable to capture growth data on 

the last run of each designed experiment set, although the researchers can occasionally 

approximate an initial growth rate of the last experiment. Overall, the issues with the 

first and last experiment can affect up to 20 percent of the first-order design runs. Yet 

due to the randomization and the design resolution, the main effect estimates should not 

alter significantly. 
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 It is also possible that most experiments in a set are unsuccessful. This can occur 

from a number of nuisances including faulty temperature calibrations or a program 

memory leak. When a large percentage is unsuccessful, an entire retest is expected. 

Experimenting in partial sets is not recommended due to the importance of blocking. It 

is highly preferred that each block is tested on the same patch of silicon pillars. When 

retesting is required, adjusting the status indicator and the appropriate data files is a 

difficult for new system user. A methodology must exist to virtually recreate the RSM 

process to its previous state before the set of unsuccessful experiments. It is critical that 

the planner does not delete and can recover all of the necessary information to move a 

step backwards in the process.  

3.6.2 Model Adequacy and Outlier Analysis 

 In traditional RSM practice, the analyst can validate the assumptions of each 

linear regression model during the creation. The most critical adequacy checks involve 

visually assessing the model’s residuals. These visual checks are not plausible in an 

autonomous RSM system. Historical data, if it is available, can be analyzed to foresee if 

model adequacy is an issue. Data transformations on the response and regressor 

variables can ensure normality and constant variance of the model’s residuals. In this 

study, a log transformation is applied to the response variable to correct a funnel-shaped 

trend identified in a constant variance plot. The log transformation was verified on the 

prior data and can also be further verified using experiments designed from the RSM 

planner. If residual analysis continually demonstrates that a log transformation is 

necessary, then regression model assumptions are likely satisfied in future RSM 

processes. 
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 The planner does not perform any internal outlier analysis. The carbon 

researchers perform their own analysis on outliers. The analysis primarily involves the 

determination of whether the extreme value was caused by an error in the ARES system. 

If response data is deemed invalid by the researcher, it should be adjusted before the 

planner obtains the value. Statistical outliers may still exist in each linear model, but 

should not significantly affect coefficient estimates due to the robustness of factorial 

experimental designs to outliers (Montgomery, 2009:268). Moreover, an outlier in the 

extreme positive direction could represent a small region where a local maximum exists. 

If outliers or other nuisance factors are continually problematic, experiment replication 

in any stage of the RSM process is recommended.  

3.6.3 Mathematical and Functional Techniques in C# 

The C# language is limited its mathematical functions and capabilities. Several 

open-source software packages exist that provide some advanced mathematical 

techniques, but none of these packages are included in the planner for several reasons. 

The packages lack a great amount of documentation and instructions. Second, the 

packages use different object classes. These object classes are not compatible with the 

mathematical functions and techniques already developed in the planner code. Lastly, it 

is dangerous to incorporate open-source software into computers on government 

networks or even on stand-alone units. Many technical functions were developed for C# 

during the research time period, but there are several techniques that required 

workarounds due to the lack of capability.  
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Simplified Boundary Technique. 

During the path of steepest ascent, the search continues along the determined 

path until it reaches a contact point on a factor level boundary. The contact point 

typically occurs in between full runs in the search process. For example, the contact 

point could occur at 5.67 coded steps from the design center which is in between 

planned runs five and six. The planner increases the integer step counter by one for each 

experiment. If the contact point experiment is tested, the levels of the unconstrained 

factors need to be adjusted to reflect a fractional run and the step counter is offset by 

one. Rather than add this increased complexity, the contact point experiment is skipped 

and the search resumes at the next full run. The additional effort required to code the 

contact point experiment outweighs the benefit of including this experiment in the 

search process. The appropriate constrained path is still followed along the boundary.    

The search continues on the boundary until the response stops increasing. When 

the planner assesses that the boundary is reached and a maximum response is found, the 

RSM process is considered complete. Normally, a first-order design is centered at the 

stopping point, but this is not possible on the boundary. Due to the unlikelihood that a 

new design searches away from the boundary, the maximum search location is 

considered the final solution. The search boundary location menu displays this final 

solution to the user, as shown in Figure 3.20. The menu provides a recommendation to 

restart the process at a different initial start to hopefully find a true optimal solution 

within the region of operability. 
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Figure 3.20. Search Boundary Solution Menu GUI  

Canonical Analysis Without Eigenvalue Capability 

To determine the true nature of the response surface, one could analyze the 

eigenvalues of the    matrix. With these eigenvalues, there is a greater possibility to 

correctly label the response surface as a minimum, maximum, saddle point, or a ridge 

system. However, algorithms for calculating all five eigenvalues of the    matrix are 

quite difficult in the C# environment. It is still possible to gain insight into the canonical 

form even without the eigenvalue analysis. The canonical form is likely a minimum or a 

saddle point if the optimal response value is lower than the average responses from the 

CCD. A ridge system is likely if the optimal setting is well outside of the CCD region of 

experimentation. Through a process of elimination, the canonical form is predicted as a 
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maximum. This alternate procedure is followed after the optimal coded settings are 

determined. The sign and magnitude of the second-order coefficients can occasionally 

provide insight into the canonical form, but this is an unreliable technique when 

interaction terms are significant. 

Verification of Planner with Test Distribution 

During the design phase, the planner was coded on a personal computer separate 

from the ARES system. The RSM requires response data to advance through the 

process, but true experimentation can only occur after implementation on ARES. To 

provide simulated results for the planner, a multivariate normal distribution was applied 

to represent ARES experimentation. Simulated results are crucial for the verification of 

the planner’s algorithms and analytical techniques. The multivariate normal distribution 

contains only one peak, so the results are fairly easy to interpret. The standard deviation 

of each variable was large enough to ensure the planner never starts in an area with an 

extremely flat surface. A normally distributed random error is applied to each response 

result. It is helpful to start with a low degree of random error and then gradually increase 

the error after further verification. With a large number of variables, the multivariate 

normal returns very small probabilities. The probabilities were scaled to larger values to 

improve recognition of the results and to identify an appropriate random error scale.  



56 

 

IV. Results and Analysis 

 This chapter presents the results from executing the Response Surface 

Methodology (RSM) experiment planner on the Adaptive Rapid Experimentation and 

Spectroscopy (ARES) system. These results are collected to validate the RSM 

techniques and verify the planner’s algorithms on the true system. The operation of the 

planner was performed under supervision, so full autonomy was not applied for the 

collection of this data. The operation was supervised, because the planner was still in 

early stages of development on the ARES system. The supervision did lead to some 

significant insights regarding the performance of autonomy. These insights are discussed 

in Chapter 5. Not enough time was available to complete the full RSM process, but 

significant findings are identified with the available data. This chapter is divided into 

three sections based on the stages of the RSM process. The first section discusses the 

initialization and first-order design. The second section discusses the first-order model 

analysis and the search process. The third section discusses the second first-order design 

and the proposed search process. The fourth section discusses concerns with laser 

temperature calibration. 

4.1 Initialization and First-Order Design 

 The first inputs into the planner are the number of available experiments and the 

type of catalyst. For ease of implementation, the number of runs was hard-coded at ten 

for each access of the planner. Ten runs were selected as the hard-coded value, because 

each set of experiments throughout the entire RSM process can be planned at ten runs. 

For this RSM process iteration, the researchers selected an iron-based catalyst. This 

catalyst differs from other catalysts because it does not require a cooling agent. The 
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water concentration variable is not of interest for this RSM process iteration. The 

software in the planner and ARES is designed to experiment with six total factors, so a 

planned setting for water concentration is required in the planner file. The level size is 

set to zero, so the actual water concentration is planned at the initial location value of 3 

parts per million (ppm) and never changes for each experiment. Actually, no water is 

applied to the catalyst and the 3 ppm merely satisfies the software. Any effect attributed 

to water in the first-order model is just due to noise. Table 4.1 displays the initialization 

settings used. A user-specified initial location was selected with the mixture gases 

initialized at an almost equal blend.  

Table 4.1. RSM Process Initialization Settings 

  

Ratio 1 

(Ar / C2H4) 

Ratio 2  

(H2 / C2H4) 

Pressure 

(Torr) 

Temp. 

(Celsius) 

Water 

(ppm) 

Initial Location 0.9706 0.9706 20 725 3 

Lower Bound 0.0526 0 1 600 0 

Upper Bound 9 8.5 40 1,100 80 

Level Size 0.1 0.1 3 40 0 

 

 The first-order design was created in two blocks due to the number of available 

experiments. Each block was executed in a random run order. The coded design settings 

and the response results for the appended first-order design are displayed in Table 4.2. 

This table also includes a column for notes that explains the success of each experiment. 

The first experiment of the first block did not show significant growth which is expected 

when no trial runs are performed. The 17th experiment was the only other experiment to 

not exhibit growth. Both results are valid according to the research expert, so the low 

initial growth rate values are maintained. The last experiment likely had successful 
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growth, but the result data was not saved due to a malfunction within ARES. The 

median response of the other 19 experiments is used as a replacement value for the last 

experiment. While better techniques exist to replace a missing value in a factorial 

design, the median was a quick solution used to advance the RSM process. The median 

was used to not significantly affect the first-order model with another extreme low 

value, although the design is quite robust to outliers. The quality of fit in the notes of 

Table 4.2 refers to how well the growth curve fit the G-band data in the opinion of the 

research expert. 

Table 4.2. Coded First-Order Design 1 and Results 

Run  
Ratio 

1 

Ratio 

2 
Press. Temp. Water Block 

Response 

( ) 
Notes 

1 -1 -1 1 -1 -1 1 4.15 No growth 

2 1 1 -1 -1 1 1 136.37 Good fit 

3 1 1 1 -1 -1 1 85.97 Good fit 

4 0 0 0 0 0 1 84.82 Good fit 

5 0 0 0 0 0 1 72.16 Good fit 

6 -1 1 -1 1 1 1 114.14 Good fit 

7 1 -1 -1 1 1 1 31.81 Good fit 

8 -1 1 1 1 -1 1 41.29 Good fit 

9 -1 -1 -1 -1 1 1 50.94 Good fit 

10 1 -1 1 1 -1 1 13.00 Good fit 

11 -1 1 -1 -1 -1 2 654.45 Good fit 

12 0 0 0 0 0 2 86.21 Good fit 

13 -1 1 1 -1 1 2 68.67 Good fit 

14 1 1 -1 1 -1 2 124.97 Good fit 

15 -1 -1 -1 1 -1 2 62.21 Good fit 

16 0 0 0 0 0 2 28.32 Good fit 

17 1 -1 1 -1 1 2 0.11 No growth 

18 1 -1 -1 -1 -1 2 38.10 Okay fit 

19 -1 -1 1 1 1 2 91.73 Good fit 

20 1 1 1 1 1 2 68.67 Median 
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Table 4.3. Linear Model 1 Analysis and Lack of Fit Test  

Parameter Estimate t Ratio Prob > |t| 

Intercept 3.9119 11.65 <.0001 

Ar / C2H4 -0.4529 -1.51 0.1596 

H2 / C2H4 1.0060 3.35 0.0065 

Pressure -0.8219 -2.74 0.0193 

Temperature 0.3299 1.10 0.2953 

Water Concentration -0.2118 -0.71 0.4953 

Lack of Fit Test -0.2181 -0.65 0.5292 

H2 / C2H4*Temp. -0.6508 -2.17 0.0530 

Block 0.0114 0.04 0.9669 

 

 The results show that Ratio 2 and total pressure are the most significant main 

effects. Thus, these two effects are the strongest contributors to the main direction of the 

path of steepest ascent. Ratio 1 and temperature are not significant effects, so the search 

path will not greatly change for either variable. The lack of fit test returns a negative 

parameter estimate and a high p-value, so there is virtually no indication of a local 

maximum in this region. The two-factor interaction is interesting, because it contradicts 

the direction of the main-effects that comprise it. Due to this twisting of the response 

surface caused by interactions, it is likely that more than one search iteration is needed 

to optimize all factors. Although the water concentration effect is only modeling noise, 

the planner still incorporates this estimate into the path of steepest ascent calculation. 

The path’s direction for the other factors is not altered, but the search increments 

decrease in size. Also, examination of the blocking factor for this design revealed that it 

is not a significant effect.  

 The path of steepest ascent begins at the center of the first-order design which is 

always the initial search location for the first path. The search increment is calculated 
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using the main effect estimates and the factor level sizes. Table 4.4 displays the planned 

experimental design for ten runs of the search path. The response results and notes are 

displayed on the right side of this table. 

Table 4.4. Search Process Design 1 and Results 

  

Ratio 

1 

Ratio 

2 

Press. 

(Torr) 

Temp. 

(Celsius) 

Water 

(ppm) Response 

( ) 
Notes 

Search   -0.032 0.070 -1.72 9.22 0.00 

Base 0.971 0.971 20 725 3 

Run 1 0.939 1.041 18.28 734.22 3.00 3.93 No growth 

Run 2 0.907 1.111 16.55 743.45 3.00 8.40 Weak fit 

Run 3 0.876 1.182 14.83 752.67 3.00 33.14 Good fit 

Run 4 0.844 1.252 13.11 761.90 3.00 25.06 Good fit 

Run 5 0.812 1.322 11.38 771.12 3.00 19.02 Good fit 

Run 6 0.781 1.393 9.66 780.35 3.00 18.51 Good fit 

Run 7 0.749 1.463 7.93 789.57 3.00 10.29 Good fit 

Run 8 0.717 1.533 6.21 798.80 3.00 5.29 Good fit 

Run 9 0.686 1.603 4.49 808.02 3.00 2.00 No growth 

Run 10 0.654 1.674 2.76 817.25 3.00 1.00 No data  

 

The first two runs did not have fully successful growth. The lack of strong 

growth was attributed to nuisances within the ARES system. The first run is within the 

original design region and is typically used as a confirmation run, so the lack of true 

growth data is not much of a concern. The remainder of the results clearly shows that the 

stopping conditions are achieved and third run contains the maximum response. 

However, it is possible that the first or second run would have been the actual maximum 

if reliable growth data was available.  

The search experiments were performed on a different patch than the first-order 

design experiments which could explain why the response values are much lesser in 
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magnitude than before. The lesser response values could represent that the search path 

traveled in the wrong direction, but this is unlikely due to the high significance and 

insensitivity of the linear model. The distance between the second and third runs is very 

close, so there is not much impact by selecting the third run as the maximum response 

over the second run. 

4.3 Second First-Order Design and Proposed Search 

 The next stage of the RSM process is to experiment with another first-order 

design centered on the location of the third run from the search phase. Due to several 

issues with the ARES system that caused unsuccessful experiments, the RSM process 

required a restart to correct the status and data files. The maximum location from the 

search was inserted as the user-specified initial location, but with some slight rounding 

corrections. The factor level sizes and boundaries remained the same. Table 4.5 displays 

the second coded first-order design and the response results. The experimentation of this 

design also had multiple issues with unsuccessful runs. Due to the limitations in time 

and experiments, the blocking principle was disregarded to have the ability to obtain 

four additional data points. If the planned run order is different from the actual run 

order, it is shown in parentheses in Table 4.5. The planned and actual blocks are 

displayed in the same format. 
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Table 4.5. Coded First-Order Design 2 and Results 

Run 

Order 

Ratio 

1 

Ratio 

2 
Pres. Temp. 

Water 

Conc. 

Resp. 

( ) 
Block Notes 

1  0 0 0 0 0 76.29 1 Good fit 

2  1 -1 -1 1 1 47.16 1 Good fit 

3  0 0 0 0 0 56.80 1 Good fit 

4  1 1 -1 -1 1 57.89 1 Good fit 

5  -1 -1 -1 -1 1 47.59 1 Good fit 

6  -1 -1 1 -1 -1 39.02 1 Good fit 

7  1 -1 1 1 -1 45.35 1 Good fit 

8  -1 1 1 1 -1 31.71 1 Good fit 

9 (12) 0 0 0 0 0 97.33 2 Weak fit 

10 (13) 1 -1 1 -1 1 237.67 2 Good fit 

11 (14) 1 1 -1 1 -1 23.35 2 Good fit 

12 (15) -1 1 1 -1 1 45.00 2 Good fit 

13 (16) 0 0 0 0 0 34.50 2 Okay fit 

14 (17) -1 -1 -1 1 -1 114.96 2 Good fit 

15 (19) -1 1 -1 -1 -1 16.82 2 Good fit 

16 (9) 1 1 1 -1 -1 16.00 3 (1) Estimation 

17 (10) -1 1 -1 1 1 41.00 3 (1) Estimation 

18 (11) 1 1 1 1 1 42.00 3 (2) Estimation 

19 (18) -1 -1 1 1 1 38.00 3 (2) Estimation 

20  1 -1 -1 -1 -1 61.65 2 Prediction 

 

The first block included eight out of ten successful experiments and the second 

block included seven out of ten successful experiments. All five of the unsuccessful 

experiments are factorial runs. The loss of five factorial runs could significantly impact 

the linear model estimates, so four of these runs were executed in a separate block. The 

last run was not obtainable, so a predicted response value is used from a linear model 

created with the 19 successful runs. Again, better techniques may exist to replace a 

missing value, but this approach was used as a quick solution on the ARES system. The 
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additional four runs were executed on the same patch as the second block runs. The 

researcher manually estimated the initial growth rates for these four runs. 

 The linear model of the second first-order design is displayed in Table 4.6. 

Normally, the planner executes the lack of fit test before determining if another linear 

model is necessary, but it is calculated simultaneously with the linear model for the 

purpose of this analysis. The lack of fit test effect estimate is negative, so there is no 

indication that the current experimental region is a local maximum. Only Ratio 2 is a 

significant effect estimate in this second linear model. The total pressure is no longer a 

significant variable, so within the current region of experimentation the response is no 

longer affected by changes to this variable. Pressure may become significant after more 

searches, but current maximization of this variable demonstrates the effectiveness of the 

search process. The Ratio 2 coefficient is opposite from the previous direction which is 

likely due to the significant interaction term in the previous linear model. No interaction 

terms are significant for this model, so the true path of steepest ascent should now lack 

curvature.    

Table 4.6. Linear Model 2 Analysis and Lack of Fit Test 

Parameter Estimate t Ratio Prob. > |t| 

Intercept 3.9582 25.07 <.0001 

Ar / C2H4 0.0795 0.56 0.5832 

H2 / C2H4 -0.3531 -2.5 0.0265 

Pressure 0.0021 0.01 0.9886 

Temperature -0.0294 -0.21 0.8382 

Water Concentration 0.2246 1.59 0.1357 

Lack of Fit Test -0.1651 -1.05 0.3146 
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 There was not enough time to conduct further experimentation and provide 

results for the second search process in this study. The planned search design for ten 

runs is displayed in Table 4.7. It is clear from the search design that the primary 

objective is the optimization of the hydrocarbon gas mixture blend. The pressure barely 

increases and the temperature slightly decreases. The temperature was originally set at 

725 degrees, so it possible that a true optimal exists somewhere in between 725 and 750 

degrees. 

Table 4.7. Search Process 2 Design  

  

Ratio 

1 

Ratio 

2 

Pressure 

(Torr) 

Temp. 

(Celsius) 

Water 

(ppm) 

Search   0.019 -0.083 0.01 -2.76 0.00 

Base 0.879 1.182 15.00 750.00 3.00 

Run 1 0.897 1.099 15.01 747.24 3.00 

Run 2 0.916 1.016 15.03 744.49 3.00 

Run 3 0.935 0.934 15.04 741.73 3.00 

Run 4 0.953 0.851 15.06 738.98 3.00 

Run 5 0.972 0.768 15.07 736.22 3.00 

Run 6 0.990 0.686 15.09 733.47 3.00 

Run 7 1.009 0.603 15.10 730.71 3.00 

Run 8 1.028 0.520 15.12 727.96 3.00 

Run 9 1.046 0.438 15.13 725.20 3.00 

Run 10 1.065 0.355 15.14 722.45 3.00 

 

The search design in terms of the actual mixture variables in displayed in Table 

4.8. The search increases argon at the expense of hydrogen, while also slowly increasing 

ethylene. The research expert agreed that lower allocations of hydrogen could improve 

growth results based on previous experience (Nikolaev et al., 2015). 
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Table 4.8. Search Process 2 Design for Mixture Variables 

  
Argon 

(%) 

Ethylene 

(%) 

Hydrogen 

(%) 

Base 0.287 0.327 0.386 

Run 1 0.299 0.334 0.367 

Run 2 0.312 0.341 0.347 

Run 3 0.326 0.349 0.326 

Run 4 0.340 0.357 0.303 

Run 5 0.355 0.365 0.280 

Run 6 0.370 0.374 0.256 

Run 7 0.386 0.383 0.231 

Run 8 0.403 0.392 0.204 

Run 9 0.421 0.403 0.176 

Run 10 0.440 0.413 0.147 

 

4.4 Laser Temperature Calibration Concerns 

 During the experimentation process, concerns arose about the laser temperature 

calibration. The actual calibrated temperatures are regularly much different from the 

planned temperatures. The effect estimate for temperature is highly dependent on 

assumption that the planned and actual temperatures are close to equivalent. However, 

analysis of the linear models using true calibrated temperatures rather than planned 

temperatures displayed no significant impact on effect estimates. The calibrated 

temperatures are usually greater than the planned temperatures, so a discrete offset may 

exist between planned and true temperature values. The planned and actual temperature 

settings are displayed in Table 4.9. The average difference between planned and actual 

temperatures is approximately 41 degrees. The two sets have a correlation of 

approximately 0.63. The planner could be designed in the future to incorporate the true 

temperatures, but this compromises the orthogonality of the design.  
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Table 4.9. Planned and Actual Laser Temperatures 

Run 

Order 

Planned 

Temp. 

(Celsius) 

Actual 

Temp. 

(Celsius) 

Temp. 

Difference 

(Celsius) 

1 750 782.92 32.92 

2 790 828.37 38.37 

3 750 770.78 20.78 

4 710 785.53 75.53 

5 710 780.19 70.19 

6 710 773.89 63.89 

7 790 851.45 61.45 

8 790 877.80 87.80 

9 750 844.01 94.01 

10 710 763.71 53.71 

11 790 805.09 15.09 

12 710 713.31 3.31 

13 750 809.33 59.33 

14 790 768.11 -21.89 

15 710 789.47 79.47 

16 710 720.00 10.00 

17 790 800.00 10.00 

18 790 790.00 0.00 

19 790 820.00 30.00 
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V. Conclusion and Future Research 

 

 This chapter discusses the main conclusions from this study. The conclusions are 

based on the verification of the Response Surface Methodology (RSM) experiment 

planner, the performance of the autonomy on the Adaptive Rapid Experimentation and 

Spectroscopy (ARES) system, and the optimization of the carbon nanotube growth 

response. This chapter includes recommendations on future carbon nanotube 

experimentation and RSM models. Lastly, ideas for future research on this topic are 

presented in this chapter.  

5.1 Summary of Conclusions 

 The planner’s ability to execute the RSM process was verified through pretesting 

and with data from the true system. The results of the analytical techniques are verified 

by matching results from the planner with the data analysis from Chapter 4. The 

planner’s algorithms correctly identified the appropriate status indicators and completed 

the necessary actions as designed. Input and output data storage operated effectively on 

the ARES system. 

 Many difficulties of conducting fully autonomous experimentation were not 

identified until after the RSM planner was implemented into the ARES system. The 

planner does not currently have the capability to perform well when the rate of 

unsuccessful experiments is high. The status indicator technique updates after 

experiments are planned, but the planner does not have a means of knowing if the 

experimentation failed due to the one of the many nuisances within ARES. During the 
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supervised experimentation, the status and data files were manually corrected to resume 

the RSM process at the appropriate stage. The ARES system does not currently have the 

capability to retest the experiments in the planner file without accessing the planner. The 

researchers control what response results are inputted into the planner, so full autonomy 

is expected as long as the appropriate results are provided. The current performance of 

autonomy is acceptable, but can greatly improve with the incorporation of the future 

research ideas presented later in this chapter. 

 Results from the actual RSM experimentation revealed that the optimization 

process is operating as expected. The first search process identified multiple significant 

effects on the initial growth rate. This search appears to have identified a potential 

optimal setting for total pressure at 15 Torr. Currently, the process is primed for a 

second search process that aims to find the optimal blend of mixture variables. No 

interaction effects are significant for the second search, so the path should follow the 

true response gradient better than the first search process. The only major experimental 

concern is the temperature setting, because of the inaccuracy of the laser temperature 

calibration. However, the effect estimates for temperature do not seem largely affected 

by the inaccuracy. The second search process may also pinpoint the optimal planned 

temperature setting. 

5.2 Recommendations 

 The first few experiments in a set seem to have a higher rate of unsuccessful 

growth than the rest of the design. The researchers do not always perform trial or warm-

up runs on the ARES system to help ensure that the critical experiments are exhibiting 
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growth. A simple recommendation is to perform “warm-up” runs before serious 

experimentation. The system can reach a steady-state performance and hopefully 

provide a higher rate of successful experiments. The loss of results for several 

experiments can significantly impact the results of the regression models and the lack of 

fit test. 

 The planners installed on ARES are the only methods available to experiment 

with multiple runs. If several experiments failed in a set, the researchers do not have an 

ability to immediately retest the unsuccessful runs. Also, if the entire experiment set 

fails, the experimental design that is already written to the planner file cannot be 

retested. The first recommendation to solve this issue is to develop an interface where 

multiple experiments can be entered manually. The warm-up runs can be planned 

through this interface, as well. The second recommendation is to add the capability to 

initiate the retesting of the design already in the planner file.   

 Before implementing the planner on the ARES system, the planner’s algorithms 

and analytical techniques were tested using a multivariate normal distribution. This 

distribution is easy to code within any software language. The multivariate normal 

distribution only has one peak, so it is easy to interpret the results and debug the 

software. For similar problems that involve creating an RSM computer program, the 

multivariate normal distribution is an effective way to verify the algorithms and 

techniques.  
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5.3 Future Research in this Area 

 Advanced Techniques in C# 

 As mentioned in previous chapters, the planner is limited in several areas due to 

the short amount of time allotted to develop mathematical techniques in C#. A function 

to find the eigenvalues of a matrix will improve the canonical analysis. Additional 

coding is required within the search process to add the contact point experiment to the 

boundary technique algorithm. The assumptions of the regression models are not 

validated within the planner. It is possible that certain algorithms could analyze the 

residuals of the model and grade the model’s ability to meet assumptions. Lastly, more 

advanced data storage techniques could assist in saving and applying additional RSM 

data such as different experimental designs. 

 Increase Robustness of Status System 

 The status indicator technique advances through the RSM process based on the 

assumption that experiments are successful. The status always advances to the next stage 

after experiments are planned. This occurs even when the set of experiments is widely 

unsuccessful. The status system can improve with additional algorithms that analyze 

response results for unsuccessful experiments. Afterwards, the planner can either create 

models with only the successful data or decide to retest the unsuccessful experiments. 

This status system improvement will also require more thought on how response results 

are provided to the planner. The response results must be listed in the appropriate order, 

so if an experiment is unsuccessful some sort of placeholder should be used to annotate 

the problem. 
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 Additional Functionality to Research Different Problems 

 The planner is specifically created for the current carbon nanotube growth 

research problem. The planner can experiment on fewer factors, but not does update the 

experimental design to the most efficient for that situation. With additional functionality, 

the user of the planner can select the amount of mixture and process variables to execute 

RSM on any research problem. Also, researchers have other response variables of 

interest, so the planner can evolve to a multi-objective response optimization. The 

planner’s software is adaptable for any experimental system that requires response 

optimization. 

5.4 Closing Remarks 

 The AFRL researchers provided feedback that supported many aspects of the 

RSM planner. The researchers are pleased with maximization of gas variable flow rates 

and various user interface menus. The optimization capability is highly desired and 

appears on track to produce significant findings. There is an interest to incorporate the 

ARES software into other systems at the Air Force Research Laboratory. The RSM 

planner software is likely to accompany ARES and be adapted to optimize critical 

responses of other research problems. Research will continue on the autonomy aspect of 

the planner. The primary goal is to eliminate the researcher’s need to make difficult 

decisions regarding experiment plans.  
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Appendix A 

Table A.1. List of Status Indicators and Explanations 

Status Indicator Explanation 

Start New RSM process or after completion 

FO Full Entire first-order design planned 

FO Block 1 First-order design Block 1 planned 

FO Block 2 First-order design Block 2 planned 

Search Search process runs planned 

Continue Search Resume search process  (search menu cancel) 

Pre Search Start search process (lack of fit menu cancel) 

Pre Axial Start second-order design (lack of fit menu cancel) 

Second Order Second-order design augmentation planned 
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Appendix B 

Table B.1. List of Data Files and Explanations 

Data File Explanation 

Catalyst Name of the catalyst for the current process 

Current Location Current search location or center of first-order design 

First Order Coded Current coded first-order design  

First Order Response Current first-order design response values 

Full Levels Factor level boundaries from the initialization 

Initial Start Initial search location from the initialization 

Level Size Initial factor level sizes from the initialization 

Number of Models Tracks the number of first-order models 

Planner File that experiments are written to - main ARES input 

Previous Results Stores previous RSM process results 

Response File that results are saved to - main planner input 

Search Coded Coded design of search experiments 

Search Deltas Search gradient vector 

Search Response Array of search experiment results 

Second Order Coded Coded design of axial runs 

Status Status indicator files 
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