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Abstract 

The role and use of unmanned aerial systems (UASs) by the Department of 

Defense has been on the rise over the past decade.  The majority of these systems are 

being utilized in environments where the UAS’s acoustic stealth is frequently of greater 

importance than radio frequency or visual stealth.  Additionally, missions involving these 

types of systems tend to involve dynamic mission planning requirements rather than 

preplanned routing.  Therefore, an acoustic model capable of providing real-time 

probability of detection information is desired.  However, with present-day technology 

and existing acoustic models, real-time calculation of the complete acoustic signature for 

a small UAS (SUAS) is not feasible.  This research demonstrates that the acoustic 

signature of the Sig Rascal 110 SUAS can be reduced by greater than 99.3% when a 

listener point of interest is directly below the aircraft using a methodology to model 

SUAS attitude variance to reduce the portion of the acoustic signature of concern.  This 

model is developed using designed experiments in a hardware-in-the-loop simulation and 

uses aircraft flight parameters as factors determining attitude variance. 
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MODELING ATTITUDE VARIANCE FOR ACOUSTIC SIGNATURE 

SIMPLIFICATION IN SMALL UASS USING A DESIGNED EXPERIMENT IN A 

HARDWARE-IN-THE-LOOP SIMULATION 

 
I.  Introduction 

Background 

The advent of Radio Detection and Ranging (RADAR) technology forced 

acoustic aircraft detection from its position as the state of the art in aircraft detection 

during World War II.  Since then, aircraft acoustic research has focused primarily on 

aircraft noise abatement studies (with a brief detour during the Vietnam War) as the 

planning and budgeting process was focused on peer or near-peer scenarios with RADAR 

being the primary aircraft detection concern.  However, the dominance of the United 

States military’s conventional capabilities has led to an evolution from conventional style 

warfare to the preponderance of the US’s military operations being against 

unconventional, non-state actors in semi-hospitable environments.  This has led to rapid 

growth of the Department of Defense’s (DoD) Unmanned Aerial System (UAS) fleet as it 

is able to provide persistent Intelligence, Surveillance and Reconnaissance (ISR) and 

surgical strike capabilities without putting pilots at risk and with minimal disturbance to 

local populations. 

The nature of these operations and the fact that non-state actors typically lack 

RADAR capabilities has led to a growth in interest DoD-wide for measuring and 

modeling acoustic aircraft signatures and providing mission planning tools related to 

these acoustic signatures.  The focus of acoustic aircraft signature research thus far has 
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been on providing acoustic mission planning tools for preplanned routes based on 

possible listener positions and avoiding detection at those positions.  Current research has 

also been effective at providing worst-case detection ranges (based on a given set of 

flight and weather parameters) for UAS pilots remotely flying missions that are not 

preplanned.  However, there is a current lack of capability as it relates to providing real-

time acoustic signature information to UAS pilots remotely flying missions that are not 

preplanned.  There are a number of reasons why this capability is not currently available, 

but the primary reason is that running these acoustic models is computationally intensive 

and use of the complete, high-resolution models that are available cannot be executed in 

real-time.  This research explores one possible way forward with achieving this real-time 

capability.   

Brief Description of Aircraft Acoustic Models 

The three primary components of an aircraft acoustic model are the source 

definition, the propagation model and the detection model.  The source definition is the 

acoustic signature of the aircraft as measured by typically utilizing an array of ground 

microphones as the aircraft is flown overhead.  The propagation model is a physical 

model of how the aircraft acoustic signal is attenuated as it moves through the air and 

towards the perspective listener.  Detection models take these propagated sound levels 

and attempt to mimic the human auditory system in order to provide a probability of 

detection based on a combination of both the propagated aircraft acoustic levels and the 

ambient acoustic levels at the listener’s position.   
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Since development of detection models typically lies in the realm of hearing 

science and the implementation of these models is not computationally intensive, the 

detection models were not considered for further study with this research.  Likewise, 

acoustic propagation modeling has been studied intensively by the physics and 

engineering communities and most aspects of propagation are not incredibly 

computationally intensive.  Computational intensity in this case, stems from the fact that 

the entire source definition (a full 360 degree sphere) is typically propagated when 

mission planning, which leads to lack of real-time capability.  The focus of this research 

is to provide a methodology for simplifying the acoustic source definitions of UASs.  

This methodology is focused on the portion of the UAS community in which assets are 

tasked dynamically (without the ability to preplan missions to achieve acoustic stealth) 

and which should benefit from a real-time aircraft acoustic model.  

Operational Assumptions and Scope 

Since a preplanning (non real-time) capability already exists, the research will be 

geared towards dynamic mission tasking scenarios.  Additionally, for situations in which 

acoustic stealth is desired, the UAS operator is typically made aware of one or multiple 

locations in which there may be listeners.  Thus, this research will assume that the 

listener’s location (point or area) is known.  It is also possible that the “listener” may be 

something other than a human (ranging from something as unsophisticated as a trained 

animal to electronic listening devices).  In any case, the listener is modeled by some 

specific detection model.   
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While it is possible that an aircraft (especially a small UAS designed to be quiet) 

may be visually detected by a spotter before it is heard, it is more often the case that 

visual detection of the aircraft is cued from auditory detection.  Most DoD UASs 

designed for ISR are also typically painted in color schemes that blend with the sky when 

viewed from the ground and/or utilized at night with no external lights as to avoid visual 

detection.  This research assumes that visual detection is not of concern. 

Approach 

Early acoustic research efforts were geared towards attempting to implement and 

integrate a real-time acoustic model either onto a small UAS ground station or onboard 

the aircraft.  These efforts were focused on very tight integration with the UAS (from a 

time perspective) in order to acoustically propagate very few paths to the listener (based 

on current and future aircraft location relative to the listener).  While the aircraft’s 

position at some time in the future is easy to approximate based on heading and velocity, 

the attitude of the aircraft may vary significantly even within the scale of one second.  As 

a step towards achieving a real-time model, this research focuses on modeling the UAS’s 

maximum and minimum attitude (roll, pitch, and yaw) values as a function of select 

aircraft flight parameters and some environmental (weather) factors.  Concepts from 

experimental design are utilized in order to generate these models and experimentation is 

conducted in a virtual simulation environment.  Live, complementary flight testing was 

not available to complement the simulation results.  
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Research Objectives 

The goals of this thesis include: 

1. Use simulation and experimental design to develop empirical models 

for the minimum and maximum for each of the three aircraft attitude 

parameters (roll, pitch and yaw) for level flight with the chosen aircraft 

platform (Sig Rascal 110).   

2. Extend the empirical models into models utilizing tolerance intervals 

for the minimum and maximum roll, pitch and yaw over the range of 

the independent variables.   

3. Demonstrate how the models developed apply to implementation of a 

real-time acoustic model. 

4. Propose a methodology for developing models for new aircraft 

platforms and for validating results with real-world flight test. 

Thesis Overview 

This chapter provided a brief background motivating the research, a brief 

description of existing acoustic models, the operational assumptions and scope of this 

research, as well as the approach and the objectives of the research.  The next chapter 

reviews the literature relevant to the acoustic models this research supplements and 

experimental design. Chapter 3 describes the equipment, procedure and experimental 

design methodology used in the research.  Chapter four describes the experimental results 

and the resulting empirical models.  The final chapter provides research conclusions and 

recommendations for follow-on activities and research. 
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II. Literature Review 

Chapter Overview 

This chapter reviews the current state of the art relevant to acoustic modeling and 

motivates the need for additional research in the area.  While the primary impetus guiding 

this effort was interest from an Air Force sponsor, it should be noted that there are other 

sources providing motivation for research in the chosen area.      

The United States Air Force Unmanned Aircraft Systems Flight Plan 2009-2047 

stresses the importance of autonomy and modularity as primary guiding principles in 

developing UASs in the future and highlights covert operation as one of the primary 

benefits of UASs [1].  This research proposes a methodology for reducing the acoustic 

footprint propagated to any listener while providing the UAS operator meaningful 

information regarding whether the UAS can be heard at specific points of interest.  The 

methodology lends itself to the concept of a single operator controlling multiple UASs.   

In a 2012 article in Armed Forces Journal, Spinetta and Cummings warn of an 

implicit Air Force policy change (since the departure of Defense Secretary Gates in 2011) 

focusing acquisition efforts back on manned platforms after a shift to unmanned aircraft 

during Secretary Gate’s tenure [2].  The methodology explored in this research could be 

applied to both manned and unmanned aircraft (although manned aircraft tend to be much 

louder as system power requirements are greatly increased by aircrew life support 

systems). 
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The remainder of the literature search is broken out by topics relevant to the 

research.  The primary topics covered are research relevant to aircraft acoustic source 

modeling and the fundamental concepts of experimental design required for this research. 

Aircraft Acoustics Source Modeling 

While acoustic propagation and human detection modeling is critical to the 

implementation of this research, the focus is on developing a methodology for reducing 

the area of the acoustic source propagated without reduction in the fidelity of the source 

model being utilized.  Therefore the discussion here is limited to the background of 

aircraft noise models leading up to the noise source methodology this research was 

intended to augment.  

Most research in source modeling methodologies is geared towards rotary-wing 

aircraft (helicopters) as their source characterizations tend to be quite complex and 

directional along certain azimuths.  These methodologies perform well for representing 

acoustics sources for fixed-wing aircraft.  Early efforts were geared towards noise around 

heliports [3] and showed that gross emissions are well modeled [4].  Efforts to more 

accurately represent the aircraft’s acoustic signature led to a generalized source model by 

Moulton in 1990, in which the source was simplified to the highest sound pressure level 

measured from the aircraft [5].  Separate researchers also explored a representation of the 

polar directivity and magnitude using numeric curve fits [6], [7].  More recent research 

includes the addition of elevation with the polar direction in representing the noise source 

[8], [9].  Two models represent the current state of the art in providing three-dimensional 

source representations.  The first is a model developed by National Aeronautics and 
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Space Administration (NASA) in conjunction with Wyle Laboratories involving storing 

grid-spaced acoustic measurements and utilizing interpolation algorithms for filling in the 

gaps [8].  The second is a model developed by the Swiss Federal Laboratories for 

Materials Testing and Research utilizing a spherical harmonic (SH) representation which 

relies on a least-squares analysis to determine the coefficients of the SH expansion [9].  

This research was conducted with the SH approach in mind, but could also be beneficial 

if utilized in conjunction with the NASA interpolation model. 

Experimental Design 

Montgomery defines an experiment as “a test or series of runs in which 

purposeful changes are made to the input variables of a process or system so that we may 

observe and identify the reasons for changes that may be observed in the output 

response” [10].  For this research, we want to determine what factors (input variables), if 

any, affect the attitude variability of an aircraft (output response). 

The statistical field of Design of Experiments describes the process of 

constructing efficient and effective experiments.  In contrast, naïve experimentation may 

lead to inefficiencies such as varying one factor at a time (OFAT) or choosing inputs that 

are linearly related.  The primary issue with OFAT experimentation is that it does not 

consider situations in which two or more factors have an interaction effect on the 

response.  Additionally, choosing correlated levels for multiple factors results in 

multicollinearity which can cause problems such as model misspecification or large 

variances and covariances for the regression coefficients.  A good way to avoid 

multicollinearity is to use orthogonal, factorial designs.  Orthogonality is achieved by 
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setting the input factors at coded levels of -1 and 1 representing the minimum and 

maximum factor values you are interested in observing. A factorial design is a design in 

which each possible factor combination is explored for a total of 2k experimental runs 

with k being the number of input variables of interest.  All of the factors being studied in 

this research are quantitative, simplifying some of the discussion as it relates to 

experimental design [10]. 

There are three basic principles in experimental design: randomization, replication 

and blocking.  Randomization is important since it reduces the effect of factors that have 

not been explicitly included in the experimental design.  Randomization also validates the 

assumption (required by the underlying statistical methodology) that the experimental 

observations be independently distributed random variables.  All the experiments 

conducted in this research were randomized.  Replication is the experimental repetition of 

factor combinations and is important since it provides the experimenter with a true 

estimate of the experimental error, which is used as comparison for determining the 

statistical significance of the terms in a statistical model.  In the case of this research, 

replicated center point runs (coded value of 0) were used.  Additionally, with a 2k 

factorial design, if one or more factors are determined to be insignificant, the design 

“collapses”, forming a replicated factorial design in the lower number of factors. 

Blocking is a technique for eliminating variability from nuisance factors but was not used 

in this research as the experiments were simulations and nuisance factors were not 

identified [10]. 

Once the data are collected, a model for the data is constructed.  The standard 

methodology for building models relating input variables to their output response 
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involves multiple linear regression and the method of least squares for estimating the 

regression coefficients.  

Another important concept in experimental design, is model adequacy checking.  

Using the multiple linear regression model carries several assumptions.  These 

assumptions are that: 1) the relationship between the response and the input variables is at 

least approximately linear, 2) the residual errors (that is the difference between each of 

the observations and the fitted model) have a mean of zero, 3) the residual errors have 

constant variance, 4) the residual errors are uncorrelated, and 5) the residual errors are 

normally distributed.  These assumptions should be examined anytime least squares is 

used to make statistical inferences and are typically checked using various plots of the 

residual errors.  Plotting the residuals versus the fitted values provides a good test for 

assumption 3.  A plot of the residuals in time sequence is useful in determining whether 

assumption 4 holds.  Assumption 5 is checked by plotting the residuals in a normal 

probability plot and ensuring they are at least approximately normally distributed.  A 

reasonable test is called the fat pencil test: if a fat pencil can be laid along the normal 

probability plot of the residuals and cover the residuals, the normality assumption is 

assumed to be met [11]. 

Finally, the experimental data is also examined to determine if there are any 

outliers.  The primary diagnostic for identifying data outliers is to scale the residuals so 

that they should typically fall within a certain range independent of the experimental data 

utilized so that the same criteria can be applied from model to model.  With the residuals 

used in this analysis, any data points with scaled residual values whose absolute values 

are near or above three should be closely scrutinized to determine if there are issues.  
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Outliers may indicate problems with the experimental data and can either be taken out of 

the model, remain in the model, or new data can be collected to replace outlying data 

point [10]. 

Summary 

The literature review motivates research into providing improved real-time 

acoustic information for small UAVs.  The history of acoustic signature directionality in 

rotary-wing aircraft characterization is examined, which led to the development of two 

high-fidelity methodologies specifically supplemented by this research.  Finally, an 

overview of experimental design was provided along with a brief explanation of some of 

the underlying experimental design concepts critical in this effort.   
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III.  Methodology 

This chapter describes the process utilized to meet the objectives of this research.  

To meet these objectives, data are collected using simulation and the data are analyzed 

using various statistical methods.  The first section describes the hardware, software and 

processes utilized for the hardware-in-the-loop simulation.  The second section discusses 

the experimental design utilized.  The third section discusses the resulting of the tolerance 

intervals. 

Simulation Hardware, Software and Processes 

Typical components of a SUAS include the air vehicle, payload, ground station, 

communications, launch and recovery hardware and ground support equipment [12].  

Since this research is limited to simulation modeling, the physical air vehicle (including 

payload and launch and recovery hardware) is not required.  However, the hardware-in-

the-loop simulation utilizes the ground station (with a few modifications from the real-

world flight configuration) and the autopilot.  These components and their configurations 

are discussed below including a brief overview of the air vehicle for completeness. 

Air Vehicle 

The air vehicle simulated in this experiment is the Sig Rascal 110, a small (110” 

wingspan), widely-available, hobbyist RC aircraft.  This air vehicle was chosen because 

there is a simulation model available to use with the simulated flight environment chosen 

(FlightGear).  Additionally, should a follow-on validation be possible, the AFIT SUAS 

program has both gas and electric variants of the Sig Rascal 110 available for flight 
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testing and each are approved for USAF test on the range at Camp Atterbury, Indiana.  

Figure 1 shows the Sig Rascal 110 on the runway at Camp Atterbury. 

 

Figure 1. Sig Rascal 110 

Autopilot 

While there are many commercial-off-the-shelf (COTS) autopilot alternatives 

varying widely in cost and capability, the ArduPilot Mega (APM) version 2.6 is the 

autopilot used in this research, and for the majority of research conducted at AFIT.  The 

ArduPilot is a low-cost autopilot based on the Arduino open-source electronics 

prototyping platform and utilizes an Inertial Measurement Unit with an array of 

accelerometers, gyroscopes and magnetometers for navigation.  The APM works with 

ground vehicles as well as fixed and rotary wing aircraft depending on the firmware that 

is loaded on the APM.  The APM also has the capability to attach peripherals such as a 

modem (for control and telemetry), a global positioning system receiver, and a 

barometric pitot-static tube.  The ArduPilot is itself an open source project thus lending 

itself to easy code modification which is often necessary in research [13].  

The APM was chosen primarily for its ability to run with the chosen software 

(FlightGear and Mission Planner) as a hardware-in-the-loop simulation.  Additionally, the 

APM is similar in processing power and flight functionality to autopilots used in many 
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currently fielded systems [12], which is important if the results of this research are to be 

applied to other SUAS platforms.  For this research, the APM was connected directly to 

the computer via USB (with no other peripherals attached), and any data received from 

the internal sensors as well as peripherals attached (GPS module and pitot-static tube) 

was simulated using the flight simulation environment (Flight Gear).  Figure 2 is a 

picture of the APM 2.6. 

 

Figure 2. ArduPilot Mega Version 2.6 

Ground Control Station 

The Ground Control Station utilized for this research is a standard PC laptop 

running Microsoft Window 7.  During real-world operations, the laptop would typically 

run only the Mission Planner software and be configured with a single wireless modem 

connected via USB for two-way communication with the aircraft autopilot.  Mission 

Planner is an open source software platform used to monitor the operating vehicle’s 

status as well as plan, save and load autonomous missions into the autopilot either before 

or during flight.  In addition, Mission Planner is used to load firmware to the autopilot, 

setup, configure and tune the autopilot, record detailed telemetry logs, and view and 
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analyze the telemetry logs.  Most important for translating results to military application, 

Mission Planner’s functionality is comparable to that of most similar fielded SUASs.  

The configuration for running a hardware-in-the-loop simulation requires a flight 

simulation environment (in this case, FlightGear) and connecting the autopilot to the PC 

via the USB connection.  A wireless modem is not required for HIL simulation.  A screen 

capture of the typical Mission Planner environment is shown in Figure 3.  Detailed 

specifications for the hardware and software versions utilized are in Appendix A. 

 

Figure 3. Mission Planner Screenshot 

Flight Simulation Environment 

To develop appropriate attitude variance models, data points with a variety of 

wind speeds and wind headings (relative to aircraft direction) are collected.  This task is 

very difficult (and relatively expensive) to achieve with real-world flight test.  Therefore 

this research uses the HIL simulation with FlightGear software providing the simulated 

environment.  FlightGear is an open source flight simulator “created to provide a 
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sophisticated and open framework for use in research/academia, pilot training, as an 

industry engineering tool, for do-it-yourselfers to pursue their favorite interesting flight 

simulation idea, and…as a fun, realistic, and challenging desktop flight simulator [14].”  

FlightGear utilizes one of three flight dynamics models determined by the format of 

aircraft model being utilized.  In this case, the Sig Rascal 110 flight dynamics model was 

created using JSBSim which is an open source, six degrees of freedom library (written in 

C++) for simulating flight dynamics and control of the aircraft.  Aircraft are modeled by 

collecting and storing mass, aerodynamic and flight control properties in an XML 

configuration file [14].  The communications architecture utilized for these HIL 

simulations is illustrated in Figure 4.  The APM navigation logic used in HIL simulation 

is the same as real-world since the navigation processes use simulated aircraft sensor and 

positional data in exactly the same manner it is used in real-world flight.  This ensures 

that (assuming the simulation environment and the aircraft model are accurate) 

simulation results are transferrable to real world flight.  Additionally, an optional remote 

control (R/C) transmitter and receiver were not used but are helpful for troubleshooting, 

transitioning between test points and for tuning the hardware for real-world flight test.  

Details on specific flight simulation software versions utilized for this research are given 

in Appendix A. 
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Figure 4. Hardware-in-the-Loop Architecture 

HIL Procedures 

The first step in conducting a HIL simulation is to load the HIL version of the 

fixed-wing firmware to the autopilot using Mission Planner.  Of note, many other AFIT 

researchers have experienced compatibility and stability issues with certain combinations 

of HIL firmware, Mission Planner and FlightGear software packages (as can be expected 

in using several different open source software packages).  While the utilized 

configuration was sometimes difficult to initiate, stability and compatibility were not an 

issue once the simulation was running.  See Appendix A for the software and firmware 

versions utilized in this research. 

When the HIL firmware is installed, generic fixed-wing tuning settings are loaded 

to the APU.  By changing these tuning parameters, the autopilot is configured to work 
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effectively and efficiently with the flight characteristics and limitations of the airframe.  

Since this research focuses on straight and level flight, the focus was primarily on 

correcting issues that existed with pitch and altitude oscillations.  The procedures from 

the Total Energy Control System for Speed and Height Tuning Guide [15] were followed 

and the corresponding detailed tuning settings are available in Appendix A.  After the 

tuning was performed, the aircraft was extremely stable in straight and level flight until 

the presence of moderate turbulence was added. 

 The flight parameters of interest (and thus changed) in this research are aircraft 

altitude, aircraft throttle, wind speed, and wind heading relative to aircraft heading.  All 

of the simulation runs modeled flight over the Pacific Ocean so the altitude in above 

ground level (AGL, which is what is utilized by Mission Planner based on the home 

location) is approximately equivalent to altitude mean sea level (MSL).  The MSL is 

measured in meters and is easily changed in Mission Planner.  The aircraft throttle 

settings use throttle percentage and also easily changed in Mission Planner.  Conducting 

the runs was accomplished by setting a waypoint heading west over the Pacific (having 

the aircraft flying on one straight flight path) and varying the wind speed and direction 

relative to that flight path for each of the test points.  Wind speed is measured in knots 

and is changed in the weather menu in FlightGear along with the wind direction (which is 

measured in degrees).  Additionally, turbulence is also adjusted from this window.  

Figure 5 shows the FlightGear weather dialog in which these parameters are changed. 
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Figure 5. FlightGear Weather Dialog Box 

Experimental Design and Data Collection 

Due to the nature of the variables of interest, a second order model was deemed 

likely needed to accurately model the attitude variance of the aircraft.  The relative 

heading variable was the primary driver behind this decision.  Often with experimental 

design, a screening design is used to determine which factors affect the response along 

with some center point runs to test for lack of fit (and determine if a higher order model is 

required).  In this research, the relative heading to varied between 0 and 180 degrees and 

we assumed the response would be symmetric for values between 180 and 360 degrees.  

Additionally, it was reasoned that (at least some of) the attitude responses would be 

nonlinear in moving from 0 to 180 degrees and that adding the runs required to estimate 

second order effects would only require two additional runs per factor (for a total of eight 
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runs).  A central composite design consisting of a 24 factorial design augmented with 

eight axial runs and four center point runs for a total of 28 runs was used.  Table 1 shows 

the non-randomized design with both coded and natural values for the variables.  Of note, 

to ensure the variance of the predicted response depends only on the distance from the 

design center (a useful property called rotatability), by Equation 1, with the coded value 

of the axial runs as α and F as the number of factorial runs (24), α = 2.  Since the range of 

the factors is based on the operational limitations of the aircraft, the choice of α 

determines the spacing of the experimental factor levels.   

 𝛼 = √𝐹4  (1) 

Wind speed was varied between 0 and 16 knots; 15 knots is the typical maximum 

wind speed for AFIT SUAS operations and the 0 to 16 range allows for equally spacing 

five wind speed levels to be 0, 4, 8, 12, and 16 knots.  Relative heading was set at values 

of 0, 45, 90, 135 and 180 degrees.  The maximum throttle setting is 100% and the typical 

minimum for this aircraft to stay aloft is about 40% so throttle settings were set as 40, 55, 

70, 85 and 100%.  Since the AFIT SUAS program typically operates between 100 and 

1,000 feet AGL, levels used were 30, 105, 180, 255 and 330 meters. 
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Table 1. Non-randomized Design with Coded and Natural Values 

 

A couple of other considerations went into executing the design.  First of all, one 

of the three basic principles of experimental design is randomization (along with 

replication and blocking), so each iteration of this experiment was randomized [10].  

Additionally, as a best practice, when factor values remained the same between runs, the 

factor values were reset and verified.  The responses were chosen as the maximum and 

minimum values for each of yaw, pitch and roll (total of six responses).  Because the 

Run
Wind 
Speed

Relative 
Heading

Throttle Altitude
Wind 
Speed

Relative 
Heading

Throttle Altitude

1 1 1 1 1 12 135 85 255
2 1 1 1 -1 12 135 85 105
3 1 1 -1 1 12 135 55 255
4 1 1 -1 -1 12 135 55 105
5 1 -1 1 1 12 45 85 255
6 1 -1 1 -1 12 45 85 105
7 1 -1 -1 1 12 45 55 255
8 1 -1 -1 -1 12 45 55 105
9 -1 1 1 1 4 135 85 255

10 -1 1 1 -1 4 135 85 105
11 -1 1 -1 1 4 135 55 255
12 -1 1 -1 -1 4 135 55 105
13 -1 -1 1 1 4 45 85 255
14 -1 -1 1 -1 4 45 85 105
15 -1 -1 -1 1 4 45 55 255
16 -1 -1 -1 -1 4 45 55 105
17 2 0 0 0 16 90 70 180
18 -2 0 0 0 0 90 70 180
19 0 2 0 0 8 180 70 180
20 0 -2 0 0 8 0 70 180
21 0 0 2 0 8 90 100 180
22 0 0 -2 0 8 90 40 180
23 0 0 0 2 8 90 70 330
24 0 0 0 -2 8 90 70 30
25 0 0 0 0 8 90 70 180
26 0 0 0 0 8 90 70 180
27 0 0 0 0 8 90 70 180
28 0 0 0 0 8 90 70 180

2
4 Factorial

Center 
points

Axial Runs

Coded Values Natural Values
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amount of time spent at each point may have some effect on the outcome, each design 

point was held for two minutes once the aircraft got to the proper altitude and held steady 

at that altitude. 

 As soon as an autopilot connects to Mission Planner, Mission Planner begins to 

log (all types of) data in .tlog files.  These files were converted to a usable format using 

the tlog Extractor utility [16] so that time, roll, pitch and yaw could be extracted from the 

two minute blocks of the telemetry data.  Of note, since the average yaw changes based 

on the aircraft heading (pitch and roll always stay around zero degrees for straight and 

level flight regardless of heading) 270 degrees was subtracted from the maximum and 

minimum headings to account for the average yaw of 270 degrees since the aircraft 

heading was due west. 

Tolerance Interval 

Tolerance intervals are used in this research as a prediction of the maximum and 

minimum roll, pitch and yaw.  They are used to provide assurance that the aircraft’s 

attitude will not vary outside of the determined maximum and minimum bounds while in 

flight.  The tolerance interval is a statistical interval bounding an arbitrary sequence of 

future samples.  Tolerance intervals require a desired population proportion for the 

interval to bound (indicated by p in Equations 3 – 5) as well as confidence level 

(indicated by γ in Equations 3 – 5)  to define the interval [17].  To compute the tolerance 

interval, first the point estimate is computed according to Equation 2.  Next, a value for 

k1 is computed according to Equations 3 – 5, with zp and z γ being the z-scores 

determined from the chosen values of p and γ, and the N being the number of samples 
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used to generate the intervals.  One-sided tolerance intervals are determines using 

Equations 6 and 7 with s being the standard error computed at the design point of interest 

[17].  Lower tolerance bounds will be used for minimum value responses (Equation 6) 

and upper tolerance bounds will be used for maximum value responses (Equation 7).  

Those computed tolerance interval points will be fit using linear regression and the 

significant factors from the models fit previously and used to compute the tolerance 

intervals.  This would result in separate models for each percent tolerance interval that 

may be utilized, but will simplify utilization of the tolerance intervals as only a point 

estimate will need to be computed. 

 𝑦�(𝒙0) = 𝒙0′ 𝒃 (2) 

 
𝑎 = 1 −

𝑧𝛾2

2(𝑁 − 1)
 (3) 

 
𝑏 = 𝑧𝑝2 −

𝑧𝛾2

𝑁
 (4) 

 
𝑘1 =

𝑧𝑝 + �𝑧𝑝2 − 𝑎𝑏
𝑎

 (5) 

 𝑌𝐿 = 𝑦� − 𝑘1𝑠 (6) 

 𝑌𝑈 = 𝑦� + 𝑘1𝑠 (7) 

Real World Validation Plan 

Real-world validation of the models, while planned, was not conducted due to 

problems with the aircraft autopilot unit and an inability to reschedule the validation runs.  
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An extensive amount of the research time allocated for this effort did not produce results 

because of these issues.   

The original plan was to utilize a Super Sky Surfer (an inexpensive, foam, 

hobbyist UAS) for the real world validation and utilize a flight dynamic model for a very 

similar foam aircraft within FlightGear to develop the attitude variability models.  A 

Super Sky Surfer was built solely for this effort and acoustic measurements were made in 

AFRL’s anechoic chamber.  In addition to developing and validating the attitude 

variability models, the range was equipped with precision digital sound level meters and 

the flight test plan (consisting of 34 data points) would have provided additional acoustic 

data for other aspects of this research that were not realized.  Ultimately, many hours of 

research were abandoned in order to complete one aspect of the planned research.  Also 

at that point, the decision was made to utilize the Sig Rascal 110 since AFIT owns 

several different variations of the aircraft and real-world validation of the same model 

used for simulation (in the future) should provide more compelling results.   
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IV.  Analysis and Results 

The analysis and results chapter describes the analysis process for the data 

collecting utilizing the methodology from Chapter 3 and provides an interpretation of that 

data.  First, the data from the experimental design without turbulence is briefly examined, 

followed by an examination of the data collected when adding turbulence to the 

simulation environment (FlightGear).  Finally, the results are examined utilizing the 

tolerance interval methodology. 

General Notes on Regression Analysis 

JMP version 10 (developed by the SAS Institute) was used to fit the experimental 

data to their respective regression models.  Two model building methodologies were 

utilized.  One method fit a full quadratic model of the regressors sorting the parameter 

estimates by p-values to help determine which regressors to include in the final model.  

With this methodology, enough degrees of freedom exist to compute the parameter 

estimates for each of the quadratic terms simultaneously but higher order interactions 

cannot be examined.  The second methodology utilizes the JMP screening tool, which 

allows one to examine higher order interactions using a variety of tools including the 

half-normal probability plot of the regression term’s contrast.  This methodology allows 

you to look at the higher order terms that may actually represent the real-world system 

although one has to be careful with the alias structure and avoid over fitting the data.   

With these two methodologies, regressors were added or removed by considering a 

combination of improvement in the adjusted R2 value, achieving 𝛼 ≈ .05 level of 

significance for the regressors, achieving a parsimonious model with little correlation 
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between the regressors and maintaining model hierarchy where appropriate.  In the 

analyses that follow, the chosen models relied on one of two methods, so either the sorted 

parameter estimates are utilized for method 1, or the half-normal probability plot are 

utilized for method 2. 

Modeling Straight and Level Flight Without Turbulence 

The initial experiment was conducted without turbulence in the simulation 

environment.  This experimental design with the collected responses is provided in Table 

2.  Maximum and minimum yaw values were computed by subtracting 270 degrees 

(actual heading) from the measured maximum and minimum yaw values.  All of the 

measured responses (minimum and maximum for roll, pitch and yaw, orientation shown 

in Figure 6) are given in degrees.  Of note, the maximum yaw for run number 18 is much 

larger than other maximum yaw values also making the range (difference between the 

maximum and minimum yaw) much larger than for the other runs.  Additionally, the 

ranges between the maximum and minimum values for each of roll, pitch and yaw (roll 

and pitch especially) appear to be smaller than expected; this potential issue is addressed 

later. 

 A summary of results for the runs with no turbulence are given in Table 3.  

Detailed results for this modeling effort are provided in Appendix B, but are not pertinent 

to the discussion here since these models are not being recommended for utilization. 
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Figure 6. Depiction of Max and Min Roll, Pitch and Yaw 
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Table 2. Observed Responses for Flight Without Turbulence 

 

  

Run 
Number

Treatment
Treatment 

Type
Max 
Roll

Min 
Roll

Max 
Pitch

Min 
Pitch

Max 
Yaw

Min 
Yaw

1 0, 0, 0, 0 Center Pt -1.81 -2.50 -0.90 -1.43 8.42 7.70
2 1, -1, -1, -1 Factorial -1.63 -1.94 -0.51 -1.10 10.45 10.27
3 -1, -1, -1, 1 Factorial -1.72 -1.89 -0.52 -1.06 -2.97 -3.13
4 0, -α, 0, 0 Axial -1.67 -2.44 -0.96 -1.29 -1.06 -1.64
5 1, 1, 1, 1 Factorial -2.18 -2.97 -0.85 -1.62 -3.68 -4.91
6 0, α, 0, 0 Axial -1.79 -2.43 -0.93 -1.64 -0.83 -1.56
7 -1, 1, -1, -1 Factorial -1.42 -2.74 -0.78 -1.13 3.87 3.04
8 -1, 1, -1, 1 Factorial -1.81 -1.97 -0.87 -1.02 -2.10 -2.41
9 0, 0, 0, α Axial -1.64 -2.43 -0.87 -1.64 -4.59 -5.28
10 1, -1, -1, 1 Factorial -1.71 -2.27 -0.55 -1.45 -4.21 -5.21
11 0, 0, α, 0 Axial -2.30 -2.76 -1.05 -1.91 7.64 7.11
12 -1, -1, 1, 1 Factorial -2.24 -2.81 -0.91 -1.57 -2.26 -2.64
13 0, 0, 0, 0 Center Pt -1.83 -2.42 -0.96 -1.81 8.40 7.65
14 -1, -1, 1, -1 Factorial -2.09 -2.95 -1.05 -1.42 3.79 3.04
15 -1, 1, 1, 1 Factorial -2.33 -2.48 -0.91 -1.61 -2.32 -2.54
16 1, -1, 1, -1 Factorial -1.79 -2.97 -0.93 -1.52 9.47 8.52
17 0, 0, 0, 0 Center Pt -1.97 -2.55 -0.92 -1.56 8.64 7.72
18 1, 1, -1, -1 Factorial -1.20 -2.53 -0.37 -1.30 50.18 9.61
19 0, 0, 0, 0 Center Pt -1.82 -2.47 -0.95 -1.41 8.41 7.74
20 -1, 1, 1, -1 Factorial -1.79 -3.20 -0.78 -1.49 4.37 2.86
21 α, 0, 0, 0 Axial -1.73 -2.58 -0.97 -1.70 15.54 15.09
22 0, 0, 0, -α Axial -1.68 -2.59 -0.83 -1.43 9.52 8.72
23 -α, 0, 0, 0 Axial -1.71 -2.44 -0.69 -1.59 1.22 0.59
24 -1, -1, -1, -1 Factorial -1.74 -2.02 -0.79 -1.11 4.15 3.58
25 1, -1, 1, 1 Factorial -2.31 -2.61 -1.26 -1.49 -4.41 -4.75
26 0, 0, -α, 0 Axial -1.32 -1.84 -0.41 -1.17 8.92 8.34
27 1, 1, 1, -1 Factorial -1.84 -3.22 -0.72 -1.68 9.49 8.69
28 1, 1, -1, 1 Factorial -1.80 -2.35 -0.66 -1.25 -3.88 -4.46
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Table 3. Summary of Modeling Results for Flight Without Turbulence 

 

All of the models for the no turbulence flights were fit using the sorted parameter 

estimates (method 1).  All of the models except perhaps the maximum yaw and minimum 

pitch models provided reasonable R2 values, so the models do a reasonable job of 

explaining the variation of the system.  Additionally, all of the models show that they are 

significant at better than the α = 0.05 level.  However, the lack of fit test is a concern for 

three of the six models, and is borderline for two of the models (both of which at 

approximately 0.16).  While the lack of fit test interpretation here is difficult (due to 

Max Roll Min Roll Max Pitch Min Pitch Max Yaw Min Yaw 
R2 0.776 0.781 0.801 0.634 0.508 0.898

R2 Adj 0.737 0.743 0.701 0.588 0.447 0.869
RMS Err 0.143 0.186 0.112 0.151 7.894 2.161
Mean -1.816 -2.513 -0.817 -1.443 5.006 2.919

Model Fval <.0001 <.0001 0.0001 <.0001 0.0006 <.0001
LoF Fval 0.0225 0.1607 0.0153 0.1565 0.8488 <.0001

RH - .39 RH - .04 WS - .72 WS - .11 WS - .037 WS - .0004
Thr - <.0001 Thr - < .0001 RH - .24 RH - .16 Alt - .0004 RH - .9730

Alt - .0015 Alt - .011 Thr - < .0001 Thr - < .0001
WS * Alt 

.0365 Alt - <.0001
RH * Alt - 

.06
RH * Alt - 

.039 Alt - .23
RH * RH - 

<.0001
WS * RH - 

.11
WS * Alt - 

0.001
WS * Thr - 

.04
Alt * Alt - 

.0004
RH * Thr - 

.015
Thr * Thr - 

.037
WS * Alt - 

.04

Regression 
Equation 

Terms with 
p-values*

* Alt - Altitude, RH - Relative Heading, Thr - Throttle, WS - Wind Speed



30 

higher order terms already being included in the model) and could be due to a small pure 

error sum of squares more than a real lack of fit, it may indicate that there are issues with 

the model.  While it was promising that each of the model pairs (two each for roll, pitch 

and yaw) contained many of the same regression terms, the results of this experiment 

seemed problematic.  It was theorized that the problems with the models may be due to 

the small variation in the responses.  Table 4 below illustrates this small variation in 

response for roll and pitch.  Of note, the maximum yaw possible outlier (Run 18) was not 

included in this calculation.  Additionally, while the maximum roll values are biased 

towards negative values since the wind is always coming from the right side of the 

aircraft, one would expect to see at least some maximum roll values as positive values.  

To introduce more variation into the system (likely a closer resemblance to real-world), 

new models were developed involving introducing turbulence into the simulation 

environment. 

Table 4. Range of Responses Without Turbulence 

 

Modeling Straight and Level Flight With Turbulence 

Four turbulence levels are available within the FlightGear simulation 

environment:  none, light, moderate, and heavy.  The intention was to choose the 

maximum amount of turbulence that would be indicative of real-world flight, thus 

inducing the most variability within reason.  The setting that was chosen was the 

Max 
Roll

Min 
Roll

Max 
Pitch

Min 
Pitch

Max 
Yaw

Min 
Yaw

Max Response -1.2 -1.8 -0.4 -1.0 10.5 15.1
Min Response -2.3 -3.2 -1.3 -1.9 -4.6 -5.3
Response Range 1.1 1.4 0.9 0.9 15.0 20.4
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moderate setting as this small airframe in not designed to be flown in heavy turbulence.  

This was apparent in trial simulation runs as the flight was erratic and unstable.  The 

measured responses for the experiment with turbulence are shown in Table 5.   

Table 5. Measured Responses for Flight With Turbulence 

 

 Upon reviewing the results from the new experiment, it was immediately apparent 

that adding turbulence increased response variability (as expected).  Of note, some of the 

Run 
Number

Treatment
Treatment 

Type
Max 
Roll

Min 
Roll

Max 
Pitch

Min 
Pitch

Max 
Yaw

Min 
Yaw

1 0, 0, 0, 0 Center Pt 1.25 -5.09 0.81 -2.46 9.85 4.45
2 1, 1, -1, -1 Factorial 4.59 -6.58 3.61 -5.44 15.30 4.84
3 0, 0, -2, 0 Axial 1.39 -5.19 0.72 -3.37 10.45 4.57
4 0, 0, 2, 0 Axial 0.03 -5.34 0.68 -3.49 8.45 4.26
5 0, 0, 0, 2 Axial -1.69 -2.38 -0.34 -1.60 -4.59 -5.21
6 -1, 1, -1, 1 Factorial -0.26 -2.80 -0.19 -2.23 -2.07 -4.46
7 -1, -1, 1, -1 Factorial -0.68 -4.08 -0.35 -2.52 4.62 2.13
8 1, 1, 1, 1 Factorial 1.99 -6.80 1.10 -3.58 -0.43 -8.13
9 1, -1, 1, 1 Factorial 0.54 -5.40 1.48 -4.35 -3.19 -7.42
10 1, -1, -1, -1 Factorial 3.66 -7.24 3.33 -4.31 16.50 5.74
11 0, 2, 0, 0 Axial 0.98 -5.68 1.37 -2.50 1.80 -4.67
12 -1, -1, -1, -1 Factorial 0.02 -3.57 0.12 -1.89 5.75 2.38
13 0, 0, 0, 0 Center Pt -0.12 -4.48 1.25 -3.25 8.63 5.24
14 0, 0, 0, 0 Center Pt 1.18 -4.50 0.94 -2.82 9.34 4.76
15 1, 1, 1, -1 Factorial 2.00 -7.18 2.68 -5.98 12.73 4.35
16 -1, 1, 1, 1 Factorial -0.92 -3.94 -0.24 -2.87 -1.59 -4.12
17 2, 0, 0, 0 Axial 4.48 -7.61 3.73 -5.77 19.24 9.07
18 -2, 0, 0, 0 Axial -1.72 -2.43 -0.80 -1.46 1.57 0.95
19 -1, -1, 1, 1 Factorial -1.41 -3.40 -0.38 -2.37 -2.23 -3.97
20 1, -1, 1, -1 Factorial 2.61 -5.74 1.38 -4.19 11.44 5.79
21 1, -1, -1, 1 Factorial 1.14 -4.67 2.14 -3.56 -3.54 -8.84
22 0, 0, 0, 0 Center Pt 0.48 -4.49 0.89 -3.16 9.50 4.57
23 1, 1, -1, 1 Factorial 2.01 -5.48 2.69 -3.79 0.14 -8.49
24 0, -2, 0, 0 Axial 1.42 -5.26 0.34 -2.41 0.24 -3.74
25 -1, 1, 1, -1 Factorial -0.90 -3.81 -0.19 -2.42 4.44 1.94
26 -1, 1, -1, -1 Factorial -0.04 -3.50 0.22 -2.18 5.79 2.14
27 0, 0, 0, -2 Axial 0.10 -4.37 1.73 -3.89 11.95 6.88
28 -1, -1, -1, 1 Factorial -0.91 -2.97 -0.14 -1.66 -3.07 -4.84
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maximum roll values are still negative which may be due to the fact that the wind is 

always coming from the right side of the aircraft.  Table 6 shows the maximum, 

minimum and range values for the experiment with turbulence as well as a comparison to 

the experiment without turbulence.  Of note, ranges for each of the responses increased 

(as expected) except for minimum yaw range.  Upon examination, the culprit for the 

unexpected minimum yaw ranges appears to be that the maximum response for minimum 

yaw decreased from 15.1 in the experiment without turbulence to 9.1 in the experiment 

with turbulence.   

Table 6. Turbulence Responses Compared to W/O Turbulence Range 

 

This revelation led to further examination of the maximum and minimum 

responses between the with and without turbulence experiments.  Table 7 shows the 

minimum and maximum yaw responses along with a new response, range, as well as the 

minimum, maximum and range of values for each of responses.  The table shows that 

while the minimum and maximum values in moving from the with and without 

turbulence experiments did not change significantly, the range between the minimum and 

maximum values for each run appears to have significantly increased in adding 

turbulence.  This may be due to the fact that roll and pitch are quickly “corrected” by the 

autopilot when they deviate from equilibrium, while the yaw is a navigational 

computation based in part on the wind speed and direction that the aircraft computes 

Max Roll Min Roll
Max 
Pitch

Min Pitch Max Yaw Min Yaw

Max Response 4.6 -2.4 3.7 -1.5 19.2 9.1
Min Response -1.7 -7.6 -0.8 -6.0 -4.6 -8.8
Response Range 6.3 5.2 4.5 4.5 23.8 17.9
Range - No Turb 1.1 1.4 0.9 0.9 15.0 20.4
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based on various sensor information collected.  This difference may indicate the need to 

evaluate range as a third response (and separate methodology) for yaw.   

Table 7. Min, max and range responses for Yaw 

 

Run Number Max Yaw Min Yaw
Yaw 

Range
Max Yaw Min Yaw

Yaw 
Range

1 8.42 7.70 0.73 9.85 4.45 5.39
2 10.45 10.27 0.19 15.30 4.84 10.46
3 -2.97 -3.13 0.16 10.45 4.57 5.87
4 -1.06 -1.64 0.58 8.45 4.26 4.19
5 -3.68 -4.91 1.23 -4.59 -5.21 0.62
6 -0.83 -1.56 0.73 -2.07 -4.46 2.39
7 3.87 3.04 0.82 4.62 2.13 2.49
8 -2.10 -2.41 0.31 -0.43 -8.13 7.70
9 -4.59 -5.28 0.69 -3.19 -7.42 4.23

10 -4.21 -5.21 1.00 16.50 5.74 10.76
11 7.64 7.11 0.53 1.80 -4.67 6.47
12 -2.26 -2.64 0.38 5.75 2.38 3.37
13 8.40 7.65 0.75 8.63 5.24 3.38
14 3.79 3.04 0.75 9.34 4.76 4.58
15 -2.32 -2.54 0.22 12.73 4.35 8.38
16 9.47 8.52 0.94 -1.59 -4.12 2.53
17 8.64 7.72 0.92 19.24 9.07 10.17
18 50.18 9.61 - 1.57 0.95 0.62
19 8.41 7.74 0.67 -2.23 -3.97 1.74
20 4.37 2.86 1.51 11.44 5.79 5.64
21 15.54 15.09 0.45 -3.54 -8.84 5.30
22 9.52 8.72 0.80 9.50 4.57 4.93
23 1.22 0.59 0.63 0.14 -8.49 8.64
24 4.15 3.58 0.57 0.24 -3.74 3.99
25 -4.41 -4.75 0.34 4.44 1.94 2.50
26 8.92 8.34 0.58 5.79 2.14 3.65
27 9.49 8.69 0.80 11.95 6.88 5.06
28 -3.88 -4.46 0.58 -3.07 -4.84 1.76

Max Response 10.45 15.09 1.51 19.24 9.07 10.76
Min Response -4.59 -5.28 0.16 -4.59 -8.84 0.62

Response Range 15.04 20.36 1.35 23.83 17.92 10.14

Without Turbulence With Turbulence
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Modeling Responses with Turbulence 

Each of the seven responses measured for flight with turbulence were modeled 

using JMP 10 and a summary of the results are given in Table 8.  All of the models 

except the minimum and maximum yaw models were developed using the sorted 

parameter estimates of the full quadratic model fits (method 1).  Minimum and maximum 

yaw models utilized the JMP screening tool, the half-normal probability plot of effects, 

and some trial and error.  All of the tables with additional details for this modeling effort 

are provided in Appendix C. 

Table 8. Summary of Modeling Results for Flight With Turbulence 

 

Max Roll 
Turb

Min Roll 
Turb

Max Pitch 
Turb

Min Pitch 
Turb

Max Yaw 
Turb

Min Yaw 
Turb 

Yaw Range 
Turb 

R2 0.912 0.875 0.927 0.884 0.976 0.996 0.885
R2 Adj 0.892 0.859 0.907 0.851 0.964 0.994 0.859

RMS Err 0.557 0.543 0.391 0.466 1.288 0.434 1.069
Mean 0.758 -4.784 1.020 -3.197 5.250 0.363 4.886

Model Fval <.0001 <.0001 0.0001 <.0001 <.0001 <.0001 <.0001
LoF Fval 0.5012 0.7835 0.3333 0.8756 0.4201 0.3119 0.3847

WS - <.0001 WS - <.0001 WS - <.0001 WS - <.0001 Alt - <.0001 Alt - <.0001 WS - <.0001
Thr - .0018 Alt - .0008 Alt - .0002 Thr - .1449 WS - <.0001 WS - <.0001 RH - .0006

Alt - .0001
Alt * Alt - 

.001 Thr - .0032 Alt - .0007 RH - .0939 RH - .0382 Thr - .0113
WS * Alt - 

.0278
WS * WS - 

.0392
WS * WS - 

.0175
Alt * Alt - 

<.0001
Alt * Alt - 

<.0001 Alt - .0004
Alt * Alt - 

.001
WS * Alt - 

.0834
Thr * Thr - 

.0518
Alt * WS - 

<.0001
Alt * WS - 

<.0001
Alt * Alt - 

.030
WS * Thr - 

.0185
WS * Alt - 

.0183
RH * RH -

<.0001
RH * RH - 

<.0001
Alt * Alt * 
Alt - .0084

Alt * Alt * 
Alt - <.0001

Alt * Alt * 
WS - .0015

Alt * Alt * 
WS - <.0001

Alt * Alt * 
Alt * Alt - 

.0004

Alt * Alt * 
Alt * Alt - 

<.0001
* Alt - Altitude, RH - Relative Heading, Thr - Throttle, WS - Wind Speed

Regression 
Equation 

Terms with 
p-values*
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 The modeling results at this point seem reasonable with a couple of concerns.  

First of all, the R2 and R2 adjusted values seem high for a process like this with all of the 

values over .85.  Additionally, all of the parameters are significant with very low p-values 

and no lack of fit.  The only thing that is troubling is that with the high R2 values and 

multiple high order terms for maximum and minimum yaw, there is the possibility that 

the model is mispecified and over fit; the concern with being over fit is noise being fit by 

the higher order terms.  Additionally, the mean of maximum roll seems low; especially 

considering relative heading is not in the regression equation.   

Residual Analysis 

 Next, the statistical assumptions were verified.  The residual plots of concern are 

provided in Figures 7-9.  Additional residual plots are given in Appendix D.   

 

Figure 7. Plot of Max Yaw Residuals versus Row Number 
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Figure 8. Plot of Min Yaw Residuals versus Row Number 

 

 

Figure 9. Plot of Yaw Range Residuals versus Row Number 

The residual plots do not reveal any glaringly obvious problems with the 

assumption required for this methodology.  None of the normal probability plots appear 
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plots showed slight hints of non-constant variance, but not enough to be too concerned.  

Most of the residual versus row plots look good as well; however, the maximum and 

minimum yaw residual versus row plots (Figures 7 & 8) show that there are clusters of 

residuals near one another.  Again, this may be due to the fact that the aircraft’s wind 

estimation system cannot be cleared between runs and is an estimation that is continually 

updated meaning that the estimation data from the previous run (or runs) is probably 

affecting the aircraft’s yaw in each run.  This problem does not seem to affect the yaw 

range residuals when plotted sequentially (Figure 9).  Yaw range may be a better choice 

for a real-world implementation of this methodology. 

Comparison of With and Without Turbulence Models 

Tables 9 and 10 compare the models developed for the experiments with and 

without turbulence.  Across the board, the models with turbulence are an improvement in 

explaining the variance of the system (R2) as well as the fit (lack of fit values increase).  

However, as discussed previously, the number of factors included in the models with 

turbulence for minimum and maximum yaw may be unacceptably high and could be 

fitting noise. 
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Table 9. No Turbulence and Turbulence Response Comparison 

 

  

Max Roll 
NT

Max Roll 
Turb

Min Roll NT
Min Roll 

Turb
Max Pitch 

NT
Max Pitch 

Turb
R2 0.776 0.912 0.781 0.875 0.801 0.927

R2 Adj 0.737 0.892 0.743 0.859 0.701 0.907
RMS Err 0.143 0.557 0.186 0.543 0.112 0.391
Mean -1.816 0.758 -2.513 -4.784 -0.817 1.020

Model Fval <.0001 <.0001 <.0001 <.0001 0.0001 0.0001
LoF Fval 0.0225 0.5012 0.1607 0.7835 0.0153 0.3333

RH WS RH WS WS WS
Thr Thr Thr Alt RH Alt
Alt Alt Alt Alt * Alt Thr Thr

RH * Alt WS * Alt RH * Alt Alt WS * WS
Alt * Alt WS * RH WS * Alt

WS * Thr WS * Thr

RH * Thr

Thr * Thr

WS * Alt

* Alt - Altitude, RH - Relative Heading, Thr - Throttle, WS - Wind Speed

Regression 
Equation 

Terms
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Table 10. With and Without Turbulence Response Comparison (cont) 

 

Tolerance Interval Methodology 

The regression equations obtained from the designed experiment return point 

estimates for the responses; they yield expected values for the responses at certain factor 

settings.  The tolerance interval provides the upper or lower bound for which a chosen 

percentage of future values would fall below or above with a chosen confidence level.  

This will result in a set of equations that vary based on the aircraft’s current flight 

parameters (only the parameters significant for a given model) and an added buffer based 

on the chosen population percentage, confidence level and the model’s standard error at 

the specific experimental data point.  Due to the issue with the mean of maximum roll 

Min Pitch 
NT

Min Pitch 
Turb

Max Yaw 
NT

Max Yaw 
Turb

Min Yaw 
NT

Min Yaw 
Turb 

Yaw 
Range 

 R2 0.634 0.884 0.508 0.976 0.898 0.996 0.885
R2 Adj 0.588 0.851 0.447 0.964 0.869 0.994 0.859

RMS Err 0.151 0.466 7.894 1.288 2.161 0.434 1.069
Mean -1.443 -3.197 5.006 5.250 2.919 0.363 4.886

Model Fval <.0001 <.0001 0.0006 <.0001 <.0001 <.0001 <.0001
LoF Fval 0.1565 0.8756 0.8488 0.4201 <.0001 0.3119 0.3847

WS WS WS Alt WS Alt WS
RH Thr Alt WS RH WS RH
Thr Alt WS * Alt RH Alt RH Thr

WS * WS Alt * Alt RH * RH Alt * Alt Alt
Thr * Thr Alt * WS WS * Alt Alt * WS Alt * Alt
WS * Alt RH * RH Alt * Alt RH * RH

Alt * Alt * 
Alt

Alt * Alt * 
Alt

Alt * Alt * 
WS

Alt * Alt * 
WS

Alt * Alt * 
Alt * Alt

Alt * Alt * 
Alt * Alt

* Alt - Altitude, RH - Relative Heading, Thr - Throttle, WS - Wind Speed

Regression 
Equation 

Terms
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being low than expected and the regression equation not including the relative wind 

heading, only the maximum of the absolute value of minimum and maximum roll values 

at each data point will be considered in the final model.  This results in an absolute value 

maximum roll model that is just the positive version of the minimum roll model.  

Additionally, due to the issues with the minimum and maximum yaw, only the yaw range 

will be considered in the final models.  Table 11 shows the point estimates for each of the 

four responses at each experimental data point as well as the computed 99% population 

proportion, 99% confidence level upper or lower tolerance interval bounds. 
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Table 11. Computed Tolerance Interval Bounds for Responses 

 

Modeling the Tolerance Interval of the Responses 

The computed tolerance interval data generated for each of the design points for 

each of the four chosen responses (maximum absolute value roll, maximum and 

minimum pitch and the yaw range) was then modeled using regression analysis.  Since 

the tolerance interval is computed from a combination of the point estimate (the 

previously generated regression equations) and an additional component to take into 

Run # Abs Max Roll 99/99 TI Max Pitch 99/99 TI Min Pitch 99/99 TI Yaw Range 99/99 TI
1 5.12 7.09 0.88 2.30 -2.84 -4.56 5.29 9.18
2 6.46 8.49 3.28 4.84 -4.86 -6.68 9.49 13.62
3 5.12 7.09 1.41 2.94 -3.29 -5.35 6.50 10.68
4 5.12 7.09 0.35 1.88 -3.87 -5.93 4.09 8.26
5 2.70 5.10 0.17 1.70 -2.08 -3.93 1.58 6.29
6 2.99 5.02 -0.31 1.25 -1.96 -3.78 2.68 6.82
7 3.85 5.87 0.01 1.57 -2.41 -4.23 1.97 6.11
8 5.61 7.63 1.19 2.75 -3.79 -5.61 6.46 10.59
9 5.61 7.63 1.19 2.75 -3.79 -5.61 5.13 9.27

10 6.46 8.49 3.28 4.84 -4.86 -6.68 8.16 12.30
11 5.12 7.09 0.88 2.30 -2.84 -4.56 6.62 10.80
12 3.85 5.87 0.04 1.61 -2.12 -3.94 3.18 7.31
13 5.12 7.09 0.88 2.30 -2.84 -4.56 5.29 9.18
14 5.12 7.09 0.88 2.30 -2.84 -4.56 5.29 9.18
15 6.46 8.49 2.25 3.81 -5.15 -6.97 8.28 12.41
16 2.99 5.02 -0.34 1.22 -2.25 -4.07 1.48 5.61
17 7.73 9.85 3.92 5.64 -5.91 -7.97 10.28 14.45
18 2.51 4.63 -0.85 0.87 -1.63 -3.69 0.31 4.49
19 2.99 5.02 -0.34 1.22 -2.25 -4.07 0.15 4.28
20 6.46 8.49 2.25 3.81 -5.15 -6.97 6.95 11.09
21 5.61 7.63 2.22 3.78 -3.50 -5.32 6.34 10.47
22 5.12 7.09 0.88 2.30 -2.84 -4.56 5.29 9.18
23 5.61 7.63 2.22 3.78 -3.50 -5.32 7.67 11.80
24 5.12 7.09 0.88 2.30 -2.84 -4.56 3.97 8.15
25 3.85 5.87 0.01 1.57 -2.41 -4.23 3.30 7.43
26 3.85 5.87 0.04 1.61 -2.12 -3.94 4.50 8.64
27 4.41 6.80 1.59 3.11 -3.60 -5.45 5.22 9.93
28 2.99 5.02 -0.31 1.25 -1.96 -3.78 1.36 5.49
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consideration the variance of the data at the specific factor settings as well as the percent 

interval being computed, one would not expect problems with the model fit given that the 

same factors that were significant in the previous regression equations were utilized.  

Indeed, every model developed has R2 and R2 adjusted values of greater than 0.999 with 

p-values for all of the significant factors from the previous regressions at < 0.0001.  

Equations 8 – 11 are the 99% population proportion, 99% confidence tolerance interval 

equations generated.  

𝑨𝒃𝒔 𝑴𝒂𝒙 𝑹𝒐𝒍𝒍 =  5.50 − .327 ∗ 𝑊𝑖𝑛𝑑 𝑆𝑝𝑒𝑒𝑑 + .0057 ∗ 𝐴𝑙𝑡

− .000053 ∗ (𝐴𝑙𝑡 − 180)2 
(8) 

𝑴𝒂𝒙 𝑷𝒊𝒕𝒄𝒉 =  2.06 + .298 ∗ 𝑊𝑖𝑛𝑑 𝑆𝑝𝑒𝑒𝑑 − .0047 ∗ 𝐴𝑙𝑡 − .0177 ∗ 𝑇ℎ𝑟𝑜𝑡𝑡𝑙𝑒

− 0.00059 ∗ (𝑊𝑖𝑛𝑑 𝑆𝑝𝑒𝑒𝑑 −  8)(𝐴𝑙𝑡𝑖𝑡𝑢𝑑𝑒 − 180)  

− 0.004156 ∗ (𝑊𝑖𝑛𝑑 𝑆𝑝𝑒𝑒𝑑 −  8)(𝑇ℎ𝑟𝑜𝑡𝑡𝑙𝑒 − 70)

+ .0145 ∗ (𝑊𝑖𝑛𝑑 𝑆𝑝𝑒𝑒𝑑 − 8)2 

(9) 

𝑴𝒊𝒏 𝑷𝒊𝒕𝒄𝒉 =  −2.657 − .268 ∗ 𝑊𝑖𝑛𝑑 𝑆𝑝𝑒𝑒𝑑 + .0051 ∗ 𝐴𝑙𝑡 − .0096

∗ 𝑇ℎ𝑟𝑜𝑡𝑡𝑙𝑒 + 0.00099

∗ (𝑊𝑖𝑛𝑑 𝑆𝑝𝑒𝑒𝑑 −  8)(𝐴𝑙𝑡𝑖𝑡𝑢𝑑𝑒 − 180)  

− 0.00112(𝑇ℎ𝑟𝑜𝑡𝑡𝑙𝑒 − 70)2 − .0187 ∗ (𝑊𝑖𝑛𝑑 𝑆𝑝𝑒𝑒𝑑 − 8)2 

(10) 

𝒀𝒂𝒘 𝑹𝒂𝒏𝒈𝒆 =  8.00 + .623 ∗𝑊𝑖𝑛𝑑 𝑆𝑝𝑒𝑒𝑑 − .0121 ∗ 𝐴𝑙𝑡 + 0.0147

∗ 𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝐻𝑒𝑎𝑑𝑖𝑛𝑔 − .0402 ∗ 𝑇ℎ𝑟𝑜𝑡𝑡𝑙𝑒 − 5.67𝑒

− 5 ∗ (𝐴𝑙𝑡 − 180)2 

(11) 

 To utilize these equations (namely the yaw range equation since it is the only one 

with a relative heading term), relative heading must be resolved to be useful over the full 

360 degrees around the aircraft.  One way to do this would be to take the absolute value 

of the relative heading minus 360 degrees for relative headings greater than 180 degrees.  
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This utilizes the assumption that the results for 180 to 360 degrees relative heading are 

symmetric to the results from 0 to 180 degrees.  The recommended method for utilizing 

the yaw range equation would be to add one-half of the yaw range to the current aircraft 

yaw for a maximum yaw and subtract one-half of the yaw range from the current aircraft 

yaw to obtain a minimum yaw value.  The maximum absolute value of roll should be 

both added and subtracted from zero roll to account for the possible attitude variance. 

 With these equations and the relative heading correction, the models can be used 

to create an area of variability in whatever coordinate system is being used for the 

acoustic propagation model.  The attitude variability models would add a buffer around 

the straight line path from the air vehicle to the expected listener position.  Figure 10 is a 

two dimensional simplification depicting how this would work when a specific listener 

position is of interest.  Figure 11 is a similar depiction but represents the case when an 

area (versus a single listener position) is of interest.  In both figures, δ1 and δ2 are the 

additional parts of the acoustic source that should be propagated.   
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Figure 10. Depiction of Methodology With a Single Listener Position 

 

 

Figure 11. Depiction of Methodology With a Area of Interest 
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  As a simplified example for how much this methodology could reduce the amount 

of an acoustic signature that is propagated, let us examine the case where the point of 

interest is directly below the aircraft.  In this case, yaw is of negligible impact on the area 

of the acoustic signature that should be evaluated.  Table 12 gives percentages of both the 

full sphere and the hemisphere for the simplified situation above at each of the 

experimental design points.  Run 17 was the worst case from the experimental design 

points and would still provide a reduction of greater than 99.7% from propagating the full 

sphere and about a 98.7% reduction from propagating the lower hemisphere.   
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Table 12. Propagation Proportions 

 

  

Run # Deg2 

Propagated
Percent of 

Sphere
Percent of 

Hemisphere

1 97.3 0.24% 0.47%
2 195.6 0.47% 0.95%
3 117.6 0.28% 0.57%
4 110.7 0.27% 0.54%
5 57.4 0.14% 0.28%
6 50.5 0.12% 0.25%
7 68.2 0.17% 0.33%
8 127.7 0.31% 0.62%
9 127.7 0.31% 0.62%

10 195.6 0.47% 0.95%
11 97.3 0.24% 0.47%
12 65.2 0.16% 0.32%
13 97.3 0.24% 0.47%
14 97.3 0.24% 0.47%
15 183.0 0.44% 0.89%
16 53.1 0.13% 0.26%
17 268.2 0.65% 1.30%
18 42.2 0.10% 0.20%
19 53.1 0.13% 0.26%
20 183.0 0.44% 0.89%
21 139.0 0.34% 0.67%
22 97.3 0.24% 0.47%
23 139.0 0.34% 0.67%
24 97.3 0.24% 0.47%
25 68.2 0.17% 0.33%
26 65.2 0.16% 0.32%
27 116.5 0.28% 0.56%
28 50.5 0.12% 0.25%
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V.  Conclusions and Recommendations 

Chapter Overview 

This chapter concludes this research effort by discussing the results and 

implications of Chapter 4 and comparing the results against the research objectives as 

specified in Chapter 1.  Further, recommendations for follow-on activities as well as 

possible future research are explored.  Follow-on activities would be focused on 

validating or improving the results from this research related strictly to characterizing the 

attitude variance of small UAVs while future research efforts would look towards further 

developing acoustic dynamic mission planning tools that could be utilized for 

autonomous or semi-autonomous use. 

Research Conclusions 

The first stated research goal was to develop estimates for the minimum and 

maximum roll, pitch and yaw for level flight for the Sig Rascal 110.  Models were 

developed and the models for roll and pitch seem to accurately represent the simulation 

process that it is modeling.  However, due to the non-immediate autopilot correction for 

yaw (unlike roll and pitch) because it is controlled for navigation purposes and the fact 

that the autopilot wind estimation algorithm is continually refined based on aircraft 

sensor data, modeling yaw variability was more problematic.  Utilizing the range 

methodology (rather than the minimum and maximum yaw response) offers a viable 

alternative to the intended methodology.  However, this method is likely very 

conservative (as yaw does not appear to vary as rapidly as roll and pitch in turbulent 

environments) and may result in propagating more of the acoustic signature than 
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necessary.  Maximum roll was similarly modified due to the mean of the response 

remaining negative despite the fact that relative heading was not included in the 

regression equation.  Using the maximum of the absolute value of roll was used as the 

response instead, with this value added and subtracted from zero to define the roll 

variation.  

These models were slightly modified to use the tolerance interval methodology 

specified by the second research goal.  Tolerance intervals were computed for the 

experimental design points with 99 percent population proportion at 99 percent 

confidence tolerance intervals.  Models were then fit using this tolerance interval data 

using the methodology addressed at the end of Chapter 4.   

Finally, the methodology for developing models for other aircraft is discussed in 

Chapter 3 and will be addressed further as follow-on activities are discussed. 

Follow-On Activities 

As stated, one purpose of follow-on activities is to validate the models developed 

for characterizing the attitude variance of small UAVs, thus providing confidence in the 

research results.  Follow-on activities could additionally be focused on improving the 

attitude variance models developed through this research.  The following are possible 

areas for follow-on activities.   

Real-world Validation of Attitude Variance Models 

Prior to implementing the results of this research, it is imperative that it is 

validated by real-world experimentation.  This research was conducted on the substantial 

assumption that results from the simulation environment (FlightGear) would translate to 
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the real-world.  If the attitude variation models are implemented in the real-world as 

suggested by this research under the assumption that the results translate to the real-

world, it could result in a situation where the aircraft’s actual attitude varies more than 

what the model predicts, thus possibly resulting in the aircraft being acoustically detected 

when it was predicted not to be able to be heard.  This would be due to a portion of the 

aircraft’s signature not being taken into consideration when it should be considered for 

detection.  It is also not recommended that extensive additional simulation work be 

conducted until the results are validated.  The cost could be that further man hours are 

spent on research that is not valid to real-world operations. 

Extension to Other Platforms and Simulation Environments 

This research effort could easily be utilized to characterize the attitude variance of 

other aircraft in a similar manner.  However, (as stated above) it is highly advisable that a 

validation effort precede any significant effort to model other platforms.  Additionally, it 

should be noted that “extension to other platforms” does not mean that simply using the 

results from this research with other platforms prior to further experimentation is 

advisable.  That being said, there are many real-world aircraft with models available (for 

free) to use with the FlightGear simulation platform.  However, it is unclear if any of the 

aircraft available with FlightGear are themselves UAVs or have been adapted to use as 

UAVs.  Either way, most UAVs in use by the Department of Defense have an 

accompanying simulation environment developed to train operators.  If this is the case, 

the simulation environment is flexible enough to change the wind speed and direction (as 

well as add turbulence), and the data required for this research (the responses) is available 
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post simulation run, the experimental design utilized in this research could minimally 

serve as a good starting point for characterizing the attitude variance of other platforms. 

Future Research 

The following are some possible future research areas that could serve to further 

develop the results of this research 

Attitude Variance Model Generalization 

Model generalization could be applied within the models of a single aircraft or 

could be generalized across platforms.  As new models are developed using this 

methodology, it is desirable that the results are compared against one another.  It is 

possible that aircraft attitude variability can be predicted by factors related to the 

aircrafts’ physical dimensions, flight characteristics, or autopilot characteristics.  If 

models for enough platforms are developed, some of these differences may be discerned 

and tolerances may be made for aircraft without having to perform a full experiment with 

each platform (although real-world validation runs would be recommended). 

Modeling Aircraft Loiter/Turn Attitude Variance 

When viewed from the perspective of this research, as an aircraft turns, its 

heading relative to the wind direction, average roll, yaw and pitch all vary.  Of those 

factors, the heading relative to wind direction and its pitch (minimally) will also continue 

to change through the turn.  It is possible that the models developed here would be robust 

enough to deal with these changes, but regardless, the predicted responses would need to 

be calculated repeatedly (and quickly) to account for the rapidly changing heading 

relative to wind direction.  It would likely be preferable to develop a model specifically 
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for aircraft loiters of various radii (as well as various maximum aircraft bank angles).  A 

model developed for aircraft loiters could likely be utilized momentarily for aircraft turns 

as well. 

Other Source Reduction Techniques 

With the DoD’s proposals for multiple aircraft controlled by single operators, it is 

not likely that full, robust acoustic modeling will be available to run in real time in the 

near future.  Therefore, it is advisable to continue to research other methodologies for 

reducing the portion or fidelity of the acoustic source that is modeled.  One example, with 

respect to source fidelity, is applying the psychoacoustic phenomena of auditory masking 

which could result in reductions in the amount of acoustic data stored.  Auditory masking 

occurs when a sound is made inaudible by a louder sound of similar frequency and 

duration [18].  Application of this concept could eliminate the need for storing and 

utilizing bands of quiet acoustic data that are near much louder bands of data. 

Human User Interface/Autonomy Using Acoustic Data 

Acoustic data is easily implemented in pre-planned mission scenarios where the 

aircraft is to follow one path to the target area and follow the pre-planned path to 

minimize acoustic detection.  However, the addition of acoustic data real-time and the 

use of this data for dynamic mission planning is not well-studied.  Research into methods 

in which the acoustic data is displayed to the user and how the user should utilize the data 

should be conducted.  Additionally, the feasibility of using the acoustic data to 

autonomously change the flight path could also be examined. 
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Summary 

This research utilized two central-composite designs in a simulation environment 

to model the minimum and maximum roll, pitch and yaw of a Sig Rascal 110 in the 

presence and absence of turbulence.  It was determined that turbulence was necessary to 

perturb the aircraft and thus measure how the aircraft’s autopilot responded to those 

perturbations.  It was also determined that the minimum and maximum responses were 

not as useful for the aircraft’s yaw as that process is governed by a control loop that does 

not “correct” the heading as quickly as the roll and pitch.  Therefore the yaw range was 

used as a response instead and thus recommended for implementation.  Maximum roll 

was similarly modified due to the mean of the response remaining negative despite the 

fact that relative heading was not included in the regression equation.  Using the 

maximum of the absolute value of roll was used as the response instead, with this value 

added and subtracted from zero to define the roll variation. 

The data set with turbulence was used to create 99 percent population proportion 

and 99 percent confidence tolerance intervals for the maximum of the absolute value of 

roll, the minimum and maximum pitch and the yaw range.  These values were modeled 

using regression analysis and the models were used to evaluate this methodology for the 

case when the aircraft is directly above a single listener position.  The methodology was 

shown to reduce the propagated acoustic signature by over 99.3% for all of experimental 

design points in this specific case.  
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Appendix A. Hardware and Software Specifications 

Table 13. Sig Rascal 110 Physical Attributes 

 

Table 14. Autopilot Specifications 

 

Table 15. Ground Station Specifications 

 

Table 16. TECS Tuning Settings 

 

  

Wingspan 110 in.
Wing Area 1522 sq. in.
Length 75.75 in. 

Autopilot Ardupilot Mega
Hardware Version 2.5
Firmware Version HIL 3.0.1
Processor ATMEGA 2560

Computer HP EliteBook 8570w
Operating System Windows 7
Ground Control Software APM Mission Planner
GCS Software Version 1.3.16
Simulation Environment FlightGear
Sim Enviroment SW Version 3.0.0

Climb Rate 5 m/s
Sink Min 2 m/s
Sink Max 5 m/s
Pitch Dampening 0.100
Time Constant 5
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Appendix B. No Turbulence Modeling Results 

Table 17. Max Roll No Turbulence Summary of Fit 

 
 

Table 18. Max Roll No Turbulence Analysis of Variance 

 
 

Table 19. Max Roll No Turbulence Lack of Fit 

 
 

Table 20. Max Roll No Turbulence Parameter Estimates 

 

Intercept
nRel Hdg
nAC Speed
nAlt
(nRel Hdg-90)*(nAlt-180)

Term
-0.544251
0.0005695
-0.015307
-0.001399
-0.000021

Estimate
0.165743
0.000647
0.001941
0.000388
1.057e-5

Std Error
-3.28
0.88

-7.88
-3.60
-1.98

t Ratio
0.0033*
0.3879
<.0001*
0.0015*
0.0600

Prob>|t|
Parameter Estimates
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Table 21. Min Roll No Turbulence Summary of Fit 

 
 

Table 22. Min Roll No Turbulence Analysis of Variance 

 
 

Table 23. Min Roll No Turbulence Lack of Fit 

 
 

Table 24. Min Roll No Turbulence Parameter Estimates 

 

Model
Error
C. Total

Source
4

23
27

DF
2.8322851
0.7946162
3.6269012

Sum of
Squares

0.708071
0.034549

Mean Square
20.4950
F Ratio

<.0001*
Prob > F

F Ratio

Analysis of Variance

Intercept
nRel Hdg
nAC Speed
nAlt
(nRel Hdg-90)*(nAlt-180)

Term
-1.173487
-0.001833
-0.020367
0.0013968
3.0148e-5

Estimate
0.215947
0.000843
0.002529
0.000506
1.377e-5

Std Error
-5.43
-2.17
-8.05
2.76
2.19

t Ratio
<.0001*
0.0402*
<.0001*
0.0111*
0.0390*

Prob>|t|
Parameter Estimates
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Table 25. Max Pitch No Turbulence Summary of Fit 

 
 

Table 26 Max Pitch No Turbulence Analysis of Variance 

 
 

Table 27. Max Pitch No Turbulence Lack of Fit 

 
 

Table 28. Max Pitch No Turbulence Parameter Estimates 
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Table 29. Min Pitch No Turbulence Summary of Fit 

 
 

Table 30. Min Pitch No Turbulence Analysis of Variance 

 
 

Table 31. Min Pitch No Turbulence Lack of Fit 

 
 

Table 32. Min Pitch No Turbulence Parameter Estimates 
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Table 33. Max Relative Yaw No Turbulence Summary of Fit 

 
 

Table 34. Max Relative Yaw No Turbulence Analysis of Variance 

 
 

Table 35. Max Relative Yaw No Turbulence Lack of Fit 

 
 

Table 36. Max Relative Yaw No Turbulence Parameter Estimates 
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Table 37. Min Relative Yaw No Turbulence Summary of Fit 

 
 

Table 38. Min Relative Yaw No Turbulence Analysis of Variance 

 
 

Table 39. Min Relative Yaw No Turbulence Lack of Fit 

 
 

Table 40. Min Relative Yaw No Turbulence Parameter Estimates 
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Appendix C. Modeling With Turbulence Results  
 

Table 41. Max Roll With Turbulence Quadratic Sorted Parameter Estimates  

 
 

Table 42. Max Roll With Turbulence Summary of Fit  

 
 

Table 43. Max Roll With Turbulence Analysis of Variance  

 
 

Term Estimate Std Error t Ratio Prob>|t|
Wind Speed 0.375 2.56E-02 14.7 <.0001
Alt -7.03E-03 1.36E-03 -5.2 0.0002
Throttle -2.70E-02 6.82E-03 -4.0 0.0016
Alt * Alt -6.00E-05 1.82E-05 -3.3 0.006
Wind Speed * Alt -1.09E-03 4.18E-04 -2.6 0.021
Wind Speed * Wind Speed 1.29E-02 6.40E-03 2.0 0.064
Throttle * Alt 1.91E-04 1.11E-04 1.7 0.111
Rel Hdg * Alt 6.33E-05 3.71E-05 1.7 0.112
Rel Hdg * Rel Hdg 7.99E-05 5.05E-05 1.6 0.138
Rel Hdg 2.43E-03 2.27E-03 1.1 0.306
Wind Speed * Rel Hdg 6.22E-04 6.96E-04 0.9 0.388
Wind Speed * Throttle -1.59E-03 2.09E-03 -0.8 0.460
Rel Hdg * Throttle -1.19E-04 1.86E-04 -0.6 0.534
Throttle * Throttle 1.74E-04 4.55E-04 0.4 0.708

RSquare 0.912
RSquare Adj 0.892
Root Mean Square Error 0.557
Mean of Response 0.758
Observations 28

Summary of Fit

Source DoF Sum of Squares Mean Square F Ratio
Model 5 70.831 14.166 45.595
Error 22 6.835 0.311 Prob > F
C. Total 27 77.667 <.0001

Analysis of Variance
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Table 44. Max Roll With Turbulence Lack of Fit  

 
 

Table 45. Max Roll With Turbulence Parameter Estimates  

 
 

Table 46. Min Roll With Turbulence Quadratic Sorted Parameter Estimates  

 
 

Source DoF Sum of Squares Mean Square F Ratio
Lack Of Fit 9 2.754 0.306 0.975
Pure Error 13 4.081 0.314 Prob > F
Total Error 22 6.835 0.5012

Lack Of Fit

Term Estimate Std Error t Ratio Prob>|t|
Intercept 1.259 0.654 1.93 0.07
Wind Speed 3.750E-01 2.845E-02 13.18 <.0001
Throttle -2.698E-02 7.585E-03 -3.56 0.00
Alt -0.007 1.517E-03 -4.64 0.00
Wind Speed * Alt -1.094E-03 4.650E-04 -2.36 0.03
Alt * Alt -7.200E-05 1.900E-05 -3.81 0.00

Parameter Estimates

Term Estimate Std Error t Ratio Prob>|t|
Wind Speed -0.327 1.78E-02 -18.3 <.0001
Alt 5.69E-03 9.51E-04 6.0 <.0001
Alt * Alt 5.52E-05 1.27E-05 4.4 0.0008
Rel Hdg * Rel Hdg -1.06E-04 3.52E-05 -3.0 0.0103
Throttle * Alt -2.05E-04 7.77E-05 -2.6 0.0204
Rel Hdg * Throttle -2.97E-04 1.29E-04 -2.3 0.0389
Throttle * Throttle -7.26E-04 3.17E-04 -2.3 0.0395
Throttle -1.07E-02 4.76E-03 -2.2 0.0431
Rel Hdg -3.55E-03 1.59E-03 -2.2 0.0432
Wind Speed * Rel Hdg -1.03E-03 4.86E-04 -2.1 0.0542
Wind Speed * Alt 5.32E-04 2.91E-04 1.8 0.091
Rel Hdg * Alt -3.98E-05 2.59E-05 -1.5 0.1486
Wind Speed * Wind Speed -6.32E-03 4.46E-03 -1.4 0.1799
Wind Speed * Throttle 1.46E-03 0.9 0.3953
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Table 47. Min Roll With Turbulence Summary of Fit  

 
 

Table 48. Min Roll With Turbulence Analysis of Variance  

 
 

Table 49. Min Roll With Turbulence Lack of Fit  

 
 

Table 50. Min Roll With Turbulence Parameter Estimates  

 
 

RSquare 0.875
RSquare Adj 0.859
Root Mean Square Error 0.543
Mean of Response -4.784
Observations 28

Summary of Fit

Source DoF Sum of Squares Mean Square F Ratio
Model 3 49.534 16.511 56.019
Error 24 7.074 0.295 Prob > F
C. Total 27 56.608 <.0001

Analysis of Variance

Source DoF Sum of Squares Mean Square F Ratio
Lack Of Fit 5 0.800 0.160 0.485
Pure Error 19 6.274 0.330 Prob > F
Total Error 24 7.074 0.7835

Lack Of Fit

Term Estimate Std Error t Ratio Prob>|t|
Intercept -3.530 0.372 -9.49 <.0001
Wind Speed -3.267E-01 2.771E-02 -11.79 <.0001
Alt 5.692E-03 1.478E-03 3.85 0.0008
Alt * Alt 6.937E-05 1.843E-05 3.76 0.001

Parameter Estimates
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Table 51. Max Pitch With Turbulence Quadratic Sorted Parameter Estimates  

 
 

Table 52. Max Pitch With Turbulence Summary of Fit  

 
 

Table 53. Max Pitch With Turbulence Analysis of Variance  

 
 

Table 54. Max Pitch With Turbulence Lack of Fit  

 

Term Estimate Std Error t Ratio Prob>|t|
Wind Speed 0.298 2.02E-02 14.8 <.0001
Alt -4.71E-03 1.08E-03 -4.4 0.0008
Throttle -1.77E-02 5.38E-03 -3.3 0.0059
Wind Speed * Throttle -4.16E-03 1.65E-03 -2.5 0.0255
Rel Hdg 3.85E-03 1.79E-03 2.2 0.0514
Wind Speed * Wind Speed 9.28E-03 5.05E-03 1.8 0.0887
Wind Speed * Alt -5.92E-04 3.30E-04 -1.8 0.0957
Rel Hdg * Alt -2.91E-05 2.93E-05 -1.0 0.338
Wind Speed * Rel Hdg 4.87E-04 5.49E-04 0.9 0.3917
Throttle * Alt 6.70E-05 8.79E-05 0.8 0.4595
Alt * Alt -7.90E-06 1.44E-05 -0.6 0.5914
Throttle * Throttle -1.95E-04 3.59E-04 -0.5 0.5963
Rel Hdg * Throttle 3.04E-05 1.46E-04 0.2 0.8387
Rel Hdg * Rel Hdg -2.58E-06 3.99E-05 -0.1 0.9494

0.927
0.907
0.391
1.020

28Observations

Summary of Fit
RSquare
RSquare Adj
Root Mean Square Error
Mean of Response

Source DoF Sum of Squares Mean Square F Ratio
Model 6 41.023 6.837 44.771
Error 21 3.207 0.153 Prob > F
C. Total 27 44.230 0.0001

Analysis of Variance

Source DoF Sum of Squares Mean Square F Ratio
Lack Of Fit 8 1.412 0.176 1.278
Pure Error 13 1.795 0.138 Prob > F
Total Error 21 3.207 0.3333

Lack Of Fit
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Table 55. Max Pitch With Turbulence Parameter Estimates  

 
 

Table 56. Min Pitch With Turbulence Quadratic Sorted Parameter Estimates  

 
 

Table 57. Min Pitch With Turbulence Summary of Fit  

 
 

Term Estimate Std Error t Ratio Prob>|t|
Intercept 0.580 0.458 1.26 0.22
Wind Speed 0.298 0.020 14.94 <.0001
Alt -0.005 0.001 -4.42 0.00
Throttle -0.018 0.005 -3.32 0.00
Wind Speed * Wind Speed 0.010 0.005 2.2 0.04
Wind Speed * Alt -0.001 0.000 -1.82 0.08
Wind Speed * Throttle -4.156E-03 1.628E-03 -2.55 0.02

Parameter Estimates

Term Estimate Std Error t Ratio Prob>|t|
Wind Speed -0.268 2.51E-02 -10.7 <.0001
Alt 5.07E-03 1.34E-03 3.8 0.0023
Wind Speed * Alt 9.94E-04 4.10E-04 2.4 0.0308
Wind Speed * Wind Speed -1.37E-02 6.28E-03 -2.2 0.0484
Throttle * Throttle -7.65E-04 4.47E-04 -1.7 0.1103
Rel Hdg -3.55E-03 2.23E-03 -1.6 0.136
Throttle -9.60E-03 6.70E-03 -1.4 0.1755
Rel Hdg * Alt 4.83E-05 3.65E-05 1.3 0.2081
Rel Hdg * Rel Hdg 3.47E-05 4.96E-05 0.7 0.4968
Wind Speed * Throttle 1.28E-03 2.05E-03 0.6 0.5428
Wind Speed * Rel Hdg -3.95E-04 6.84E-04 -0.6 0.5731
Rel Hdg * Throttle 7.52E-05 1.82E-04 0.4 0.6866
Throttle * Alt -3.50E-05 1.09E-04 -0.3 0.7537
Alt * Alt -2.23E-07 1.79E-05 0.0 0.9902

0.884
0.851
0.466
-3.197

28Observations

Summary of Fit
RSquare
RSquare Adj
Root Mean Square Error
Mean of Response
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Table 58. Min Pitch With Turbulence Analysis of Variance  

 
 

Table 59. Min Pitch With Turbulence Lack of Fit  

 
 

Table 60. Min Pitch With Turbulence Parameter Estimates 

 
 

Source DoF Sum of Squares Mean Square F Ratio
Model 6 34.901 5.817 26.7954
Error 21 4.559 0.217 Prob > F
C. Total 27 39.459 <.0001

Analysis of Variance

Source DoF Sum of Squares Mean Square F Ratio
Lack Of Fit 8 0.973 0.122 0.441
Pure Error 13 3.586 0.276 Prob > F
Total Error 21 4.559 0.8756

Lack Of Fit

Term Estimate Std Error t Ratio Prob>|t|
Intercept -0.937732 0.554048 -1.69 0.1053
Wind Speed -0.26751 0.023776 -11.25 <.0001
Throttle -0.0096 0.00634 -1.51 0.1449
Alt 0.005 0.001 3.99 0.00
Wind Speed * Wind Speed -1.454E-02 5.639E-03 -2.58 0.02
Throttle * Throttle -0.001 4.010E-04 -2.06 0.05
Wind Speed * Alt 9.935E-04 3.880E-04 2.56 0.02

Parameter Estimates
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Figure 12. Max Yaw With Turbulence Half Normal Probability Plot  

 

Table 61. Max Yaw With Turbulence Summary of Fit 

 
 

Table 62. Max Yaw With Turbulence Analysis of Variance 
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Alt*Wind Speed
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Alt*Alt*Wind Speed

Alt*Alt*Alt
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0.976
0.964
1.288
5.250

28Observations

Summary of Fit
RSquare
RSquare Adj
Root Mean Square Error
Mean of Response

Source DoF Sum of Squares Mean Square F Ratio
Model 9 1218.450 135.383 81.6698
Error 18 29.839 1.658 Prob > F
C. Total 27 1248.288 <.0001

Analysis of Variance
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Table 63. Max Yaw With Turbulence Lack of Fit 

 
 

Table 64. Max Yaw With Turbulence Parameter Estimates 

 
 

Source DoF Sum of Squares Mean Square F Ratio
Lack Of Fit 5 8.705 1.741 1.071
Pure Error 13 21.134 1.626 Prob > F
Total Error 18 29.838 0.4201

Lack Of Fit

Term Estimate Std Error t Ratio Prob>|t| VIF
Intercept 15.062 1.583 9.51 <.0001 -
Alt -0.084 6.07E-03 -13.91 <.0001 3
Wind Speed 1.105 0.114 9.71 <.0001 3
Rel Hdg 0.010 5.84E-03 1.77 0.0939 1
Alt * Alt -7.86E-04 1.20E-04 -6.55 <.0001 7.5
Alt * Wind Speed -6.96E-03 1.07E-03 -6.49 <.0001 1
Rel Hdg * Rel Hdg -1.06E-03 1.26E-04 -8.45 <.0001 1.1
Alt * Alt * Alt 1.30E-06 4.41E-07 2.96 0.0084 3
Alt * Alt * Wind Speed -9.27E-05 2.48E-05 -3.74 0.0015 3
Alt * Alt * Alt * Alt 2.32E-08 5.36E-09 4.33 0.0004 7.7

Parameter Estimates
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Figure 13. Min Yaw With Turbulence Half Normal Probability Plot 

 

Table 65. Min Yaw With Turbulence Summary of Fit 

 
 

Table 66. Min Yaw With Turbulence Analysis of Variance 
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RSquare 0.996
RSquare Adj 0.994
Root Mean Square Error 0.434
Mean of Response 0.363
Observations 28

Summary of Fit

Source DoF Sum of Squares Mean Square F Ratio
Model 9 791.107 87.901 465.885
Error 18 3.396 0.189 Prob > F
C. Total 27 794.503 <.0001

Analysis of Variance
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Table 67. Min Yaw With Turbulence Lack of Fit 

 
 

Table 68. Min Yaw With Turbulence Parameter Estimates 

 
 

Table 69. Yaw Range With Turbulence Quadratic Sorted Parameter Estimates  

 

Source DoF Sum of Squares Mean Square F Ratio
Lack Of Fit 5 1.149 0.230 1.329
Pure Error 13 2.247 0.173 Prob > F
Total Error 18 3.396 0.3119

Lack Of Fit

Term Estimate Std Error t Ratio Prob>|t| VIF
Intercept 14.568 0.534 27.28 <.0001 -
Alt -0.075 2.05E-03 -36.62 <.0001 3
Wind Speed 0.508 0.038 13.22 <.0001 3
Rel Hdg -0.004 1.97E-03 -2.24 0.0382 1
Alt * Alt -8.45E-04 4.05E-05 -20.87 <.0001 7.5
Alt * Wind Speed -5.76E-03 3.62E-04 -15.9 <.0001 1
Rel Hdg * Rel Hdg -1.10E-03 4.24E-05 -26.04 <.0001 1.1
Alt * Alt * Alt 1.54E-06 1.49E-07 10.38 <.0001 3
Alt * Alt * Wind Speed -1.00E-04 8.36E-06 -11.91 <.0001 3
Alt * Alt * Alt * Alt 2.99E-08 1.81E-09 16.52 <.0001 7.7

Parameter Estimates

Term Estimate Std Error t Ratio Prob>|t|
Wind Speed 0.623 3.86E-02 16.1 <.0001
Alt -1.21E-02 2.06E-03 -5.9 <.0001
Rel Hdg 1.47E-02 3.43E-03 4.3 0.0009
Throttle -4.02E-02 1.03E-02 -3.9 0.0018
Wind Speed * Rel Hdg 2.62E-03 1.05E-03 2.5 0.0269
Throttle * Alt 4.08E-04 1.68E-04 2.4 0.0305
Wind Speed * Throttle -7.60E-03 3.15E-03 -2.4 0.0313
Alt * Alt -6.29E-05 2.74E-05 -2.3 0.0392
Wind Speed * Alt -1.20E-03 6.30E-04 -1.9 0.0783
Wind Speed * Wind Speed 1.78E-02 9.65E-03 1.9 0.0877
Rel Hdg * Alt 1.02E-04 5.60E-05 1.8 0.0921
Rel Hdg * Rel Hdg 1.20E-04 7.62E-05 1.6 0.1382
Throttle * Throttle 8.61E-04 6.86E-04 1.3 0.2314
Rel Hdg * Throttle 2.83E-04 2.80E-04 1.0 0.3301
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Table 70. Yaw Range With Turbulence Summary of Fit 

 
 

Table 71. Yaw Range With Turbulence Analysis of Variance 

 
 

Table 72. Yaw Range With Turbulence Lack of Fit 

 
 

Table 73. Yaw Range With Turbulence Parameter Estimates 

 
 

  

RSquare 0.885
RSquare Adj 0.859
Root Mean Square Error 1.069
Mean of Response 4.886
Observations 28

Summary of Fit

Source DoF Sum of Squares Mean Square F Ratio
Model 5 194.240 38.848 33.9644
Error 22 25.163 1.144 Prob > F
C. Total 27 219.403 <.0001

Analysis of Variance

Source DoF Sum of Squares Mean Square F Ratio
Lack Of Fit 19 22.945 1.208 1.633
Pure Error 3 2.218 0.739 Prob > F
Total Error 22 25.163 0.3847

Lack Of Fit

Term Estimate Std Error t Ratio Prob>|t|
Intercept 3.9837222 1.328583 3 0.0066
Wind Speed 0.6227083 0.054577 11.41 <.0001
Rel Hdg 0.0147407 0.004851 3.04 0.006
Throttle -0.040 0.015 -2.76 0.01
Alt -1.213E-02 2.911E-03 -4.17 0.00
Alt * Alt -8.430E-05 3.630E-05 -2.32 0.03

Parameter Estimates
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Appendix D. With Turbulence Residual Plots 
 
 

 
Figure 14. Plot of Residuals vs Predicted Max Roll With Turbulence 

 

 
Figure 15. Plot of Max Roll Residuals With Turbulence vs Row Number 
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Figure 16. Normal Probability Plot of Max Roll Studentized Residuals 

 

 
Figure 17. Plot of Residuals vs Predicted Min Roll With Turbulence 
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Figure 18. Plot of Min Roll With Turbulence Residuals vs Row Number 

 

 
Figure 19. Normal Probability Plot of Min Roll Studentized Residuals 
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Figure 20. Plot of Residuals vs Predicted Max Pitch With Turbulence 

 

 
Figure 21. Plot of Max Pitch With Turbulence Residuals vs Row Number 

 

-1.

-0.

-0.

-0.

0.0

0.2

0.5

M
ax

 P
itc

h

R
es

id
ua

l

-1 0 1 2 3 4

Max Pitch Predicted

-1.

-0.

-0.

-0.

0.0

0.2

0.5

R
es

id
ua

l

0 5 10 15 20 25 30

Row Number



75 

 
Figure 22. Normal Probability Plot of Max Pitch Studentized Residuals 

 

 
Figure 23. Plot of Residuals vs Predicted Min Pitch With Turbulence 
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Figure 24. Plot of Min Pitch With Turbulence Residuals vs Row Number 

 

 
Figure 25. Normal Probability Plot of Min Pitch Studentized Residuals 
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Figure 26. Plot of Residuals vs Predicted Max Yaw With Turbulence 

 

 
Figure 27. Normal Probability Plot of Max Yaw Studentized Residuals 
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Figure 28. Plot of Residuals vs Predicted Min Yaw With Turbulence 

 

 
Figure 29. Normal Probability Plot of Min Yaw Studentized Residuals 
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Figure 30. Plot of Residuals vs Predicted Yaw Range With Turbulence 

 

 
Figure 31. Normal Probability Plot of Yaw Range Studentized Residuals 
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Appendix E. Storyboard Slide 
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