

NPS-CAG-14-009

NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

Approved for public release; distribution is unlimited

Prepared for: United States Navy, OPNAV N2/N6

Trusted Computing Exemplar:
Quality Assurance Plan

by

Paul C. Clark, Cynthia E. Irvine, and Thuy D. Nguyen

12 December 2014

THIS PAGE INTENTIONALLY LEFT BLANK

 NAVAL POSTGRADUATE SCHOOL
Monterey, California 93943-5000

Ronald A. Route Douglas A. Hensler
President Provost

The report entitled “Trusted Computing Exemplar: Quality Assurance Plan” was prepared for
United States Navy, OPNAV N2/N6 and funded in part by United States Navy, OPNAV N2/N6.

Further distribution of all or part of this report is authorized.

This report was prepared by:

________________________ ________________________

Paul C. Clark Cynthia E. Irvine
Research Associate Distinguished Professor

Thuy D. Nguyen
Research Associate

Reviewed by: Released by:

____________________ _______________________
Cynthia E. Irvine, Chair Jeffrey D. Paduan
Cyber Academic Group Dean of Research

THIS PAGE INTENTIONALLY LEFT BLANK

5

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data
sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other
aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information
Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other
provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)
12-12-2014

2. REPORT TYPE
Technical

3. DATES COVERED (From-To)
Nov 2013 to Nov 2014

4. TITLE AND SUBTITLE
Trusted Computing Exemplar: Quality Assurance Plan

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT
NUMBER

6. AUTHOR(S)
Paul C. Clark, Cynthia E. Irvine, and Thuy D. Nguyen

5d. PROJECT NUMBER
W4C05
5e. TASK NUMBER
5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER
NPS-CAG-14-009

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Rhonda Onianwa
OPNAV, N2N6 F13
rhonda.onianwa@navy.mil

LT David Rivera
OPNAV, N2/N6F1
david.j.rivera4@navy.mil

10. SPONSOR/MONITOR’S
ACRONYM(S)

11. SPONSOR/MONITOR’S
REPORT NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT
 Approved for pubic release; distribution is unlimited

13. SUPPLEMENTARY NOTES
The$view$expressedinthis$report$are$those$oftheauthorsanddonotreflecttheofficial$policy$or$position$oftheDepartmentof
Defenseofthe$U.S.$Government.

14. ABSTRACT
This document describes the Life Cycle Management Plan for the development of a high assurance secure product. A high assurance
product is one for which its users have a high level of confidence that its security policies will be enforced continuously and correctly.
Such products are constructed so that they can be analyzed for these characteristics. Lifecycle activities ensure that the product
reflects the intent to ensure that the product is trustworthy and that vigorous efforts have been made to ensure the absence of
unspecified functionality, whether accidental or intentional.
In particular, this document expands and unifies the testing requirements that are stated in the Life Cycle Management Plan, the
Configuration Management Plan, and the Software Development Standards.
This Quality Assurance (QA) Plan emphasizes requirements, restrictions, standards, responsibilities, etc., for these required tests.
Specifically excluded from this plan, however, are the formal and semi-formal work, code correspondence, and covert channel
analysis. In addition, there will need to be independent re-testing and penetration testing performed. It is also recognized that quality
means more than just source code testing (such as conformance to documentation standards, correct spelling, etc.); those issues are
currently covered in other documents.

15. SUBJECT TERMS
Machinery control systems, MCS, life cycle security, high assurance, system security, trustworthy systems

16. SECURITY CLASSIFICATION OF: 17. LIMITATION
OF ABSTRACT
UU

18. NUMBER
OF PAGES
23

19a. NAME OF
RESPONSIBLE PERSON
Cynthia E. Irvine

a. REPORT
Unclassified

b. ABSTRACT
Unclassified

c. THIS PAGE
Unclassified

19b. TELEPHONE
NUMBER (include area code)
(831) 656 2461

Standard Form 298 (Rev. 8-98)

Prescribed by ANSI Std. Z39.18

Report

 6

THIS PAGE INTENTIONALLY LEFT BLANK

CYBER ACADEMIC GROUP

NAVAL POSTGRADUATE SCHOOL

NPS-CAG-14-009

Trusted Computing Exemplar:
Quality Assurance Plan

Paul C. Clark
Cynthia E. Irvine
Thuy D. Nguyen

December 2014

ATTRIBUTION REQUEST

December 2014

The Cyber Academic Group (CAG) and the Center for Information Systems Security
Studies and Research (CISR) at the Naval Postgraduate School (NPS) wish to facilitate
and encourage the development of highly robust security systems.

To further this goal, the NPS CAG and NPS CISR ask that any derivative products, code,
writings, and/or other derivative materials, include an attribution for NPS CAG and NPS
CISR. This is to ensure that the public has a full opportunity to direct questions about the
nature and functioning of the source materials to the original creators.

ACKNOWLEDGEMENT

The authors gratefully acknowledge the following organizations for providing support
toward the development of this work: OPNAV N2/N6 F1.

The material presented here builds upon work supported in previous years by the Office
of Naval Research.

A portion of the material presented here is based upon work supported by the National
Science Foundation under Grant No. CNS-0430566 and CNS-0430598. This document
does not necessarily reflect the views of the National Science Foundation.

TCX: Quality Assurance Plan NPS-CAG-14-009

i

Table of Contents
1! Introduction ... 1!
2! General Testing Requirements .. 4!
3! Requirements for Test Plan and Test Development .. 5!

3.1! Acceptance Plan and Acceptance Tests .. 5!
3.2! Product Test Plan and Product Tests ... 6!
3.3! Subsystem Test Plan and Subsystem Tests ... 6!
3.4! Unit Test Plans and Unit Tests .. 7!

4! Composition and Test Execution Requirements .. 7!
4.1! Unit Tests ... 7!
4.2! Subsystem Tests and CCB Submission ... 8!
4.3! Product Composition and Product Tests .. 9!
4.4! Acceptance Tests ... 10!
4.5! Vulnerability Analysis and Testing Analysis .. 10!
4.6! Quality Assurance Audit .. 10!

References .. 10!

NPS-CAG-14-009 TCX: Quality Assurance Plan

ii

Table of Figures

Figure 1 Development and Testing Flow ... 3!

TCX: Quality Assurance Plan NPS-CAG-14-009

1

This document describes a preliminary design for quality assurance that was not
executed within the research project that generated the document.

1 Introduction
This document has been written in support of a research project to publicly demonstrate
and document how a high assurance product can be developed and distributed. A high
assurance product is one for which its users have a high level of confidence that its
security policies will be enforced continuously and correctly. Such products are
constructed so that they can be analyzed for these characteristics. Lifecycle activities
ensure that the product reflects the intent to ensure that the product is trustworthy and that
vigorous efforts have been made to ensure the absence of unspecified functionality,
whether accidental or intentional.

In particular, this document expands and unifies the testing requirements that are stated in
the Life Cycle Management Plan [1], the Configuration Management Plan [2], and the
Software Development Standards [3].

The kinds of tests that must be performed during and after a product has been built are
specified in the Life Cycle Management Plan, and there is an assumption that the reader
is somewhat familiar with the contents of that document. This Quality Assurance (QA)
Plan emphasizes requirements, restrictions, standards, responsibilities, etc., for these
required tests. Specifically excluded from this plan, however, are the formal and semi-
formal work, code correspondence, and covert channel analysis. In addition, there will
need to be independent re-testing and penetration testing performed. It is also recognized
that quality means more than just source code testing (such as conformance to
documentation standards, correct spelling, etc.), but those issues are currently covered in
other documents.

Figure 1 shows the high-level flow of development and testing up to and including a
quality assurance audit on the engineering tests.

This QA Plan has been written under the assumption that a small team of engineers is
developing a product. Larger organizations and larger projects will likely require
modifications to this plan to fit their needs.

NPS-CAG-14-009 TCX: Quality Assurance Plan

2

Rationale: The flow shown in Figure 1 has all the product testing performed by the
engineering staff prior to acceptance into the CM Repository, instead of performing all
the testing on objects that are generated from the CM Repository. Unlike a low
assurance development environment where the official code repository is the same as
the development code repository, the CM Repository in this designed environment is
physically separated from the developers, and changes are controlled by the CCB. In
this environment, if the product tests were performed only after the CM Staff had
generated objects from a CCB-approved source tree, then bugs found that late in the
testing process would require the overhead of another submission to the CCB to fix
the bug(s). Another alternative approach that was not adopted because of
inefficiencies was to have the engineers perform the product tests before CCB
submission, and then have the CM Staff repeat those tests after the product had been
regenerated from CCB-approved items. The adopted approach has the engineering
staff perform all the tests prior to CCB submission, and then have the CM Staff
regenerate the objects and then compare those regenerated objects to the submitted
objects to verify they are identical.

TCX: Quality Assurance Plan NPS-CAG-14-009

3

Figure 1 Development and Testing Flow

Perform
Product Tests

Start

Porlo<m
Uno Tests

+
Perform

Subsystem Tests

Generate all
Product Material
(e.g . Installation

CDs. tartalls. eto)

Perlorm Code
Correspondence

and Covert
Channel Analysis

1
Porlo<m

~Tests

!
Pertorrn TostJng

Analysis

Stop

l
Perfonn Audit of

Engineering Tests

i
ccs Apprll\18S

submission

i
CMS!aff

regenerates
binaries and

subrri".s al objects
toCCB

l
SUbmit sou-rce.
product material

and test resutts to
CM Staff

CM)
Reposttory

T
CM S!aff l~s
objects and test
results into OM

Repository

NPS-CAG-14-009 TCX: Quality Assurance Plan

4

2 General Testing Requirements
All design documents shall be written in a format that allows for easy reference by their
associated test plan. For example, a high-level design document shall uniquely identify
design criteria such that the low-level design can cross-reference its design back to the
high-level design upon which it depends.

All test plans (e.g., Product Test Plan) shall be written in a format that allows for easy
reference to all test objectives. For example, a Subsystem Test Plan shall state its testing
objectives in a format that shall allow the writer of the Subsystem Tests documents to
reference the individual testing objectives stated in the plan, such as numbering all test
objectives from T-1 to T-n.

Test plans shall describe the purpose or goal of each test. If there is a required order for
the tests, e.g., to establish a desired state, then the rationale for the ordering shall be
documented in the test plan for future reference. Security-relevant tests shall be identified
in the test documentation.

When test documents are written, each individual test shall be identifiable in some
fashion, for example by using a numbering scheme. A mapping shall then be given that
shows the correspondence of each individual test to a test objective. This mapping shall
show complete coverage of all test objectives.

Test documents shall be written with enough detail for independent parties to re-establish
the same test environment and conditions, and allow such a tester to conclude that the test
input was appropriate, and that the output produced a success or failure.

Test documents shall minimally be comprised of a procedure. This procedure shall
describe the steps to be performed to execute a given test, and the expected outcome of
the test. “The results of all test cases shall be documented.” [3] Space shall be provided in
the testing procedures to allow the tester to describe the observed outcome, and other
comments as necessary.

Testers shall be required to sign and date the completed procedure. If more than one
person performs the tests, then those portions performed by each individual shall be
noted. The completed, signed and dated procedures shall be submitted as evidence when
the tested CI is submitted to the Configuration Control Board (CCB) for Configuration
Management (CM), and shall be maintained as evidence by CM personnel.

“Testing strategies and test cases shall cover the following:

• Positive behavior

Testing needs to show that all required functionality works as specified.

• Negative behavior

TCX: Quality Assurance Plan NPS-CAG-14-009

5

Testing needs to show that obvious undesired behavior is not present. For
example, it is not enough to test whether an authorized subject can access an
object; the testing shall also show that an unauthorized subject cannot access an
object.

Where possible, all error conditions shall be tested to ensure that the condition is
detected, and that the specified reaction is seen (e.g., the proper error code is
returned).” [3]

When a test requires source code to be written, the mapping from the testing source code
to a specific test or tests shall be documented in the source code. Because the size of the
development group is assumed to be small, “it shall ... be acceptable for the higher-level
tests to be written and administered by someone who wrote some of the modules
comprising the subsystem and product. In such a case, a peer review of the higher-level
test code shall judge whether the tests are complete.” [3]

The tests themselves do not need to be formally tested, but it is up to the CI Leader to
determine the level of effort to show that the tests function properly. In addition, tests
shall be reviewed as specified in Section 3, and shall comply with the coding standards.
[3]

The CI leader shall avoid the appearance of a conflict of interest during the testing
phases, e.g., having the developer who wrote the code do all the testing for the code,
unless it is expressly permitted in the Life Cycle Management Plan.

The CI Leader has leeway to manage a CI, including how the CI source code and test
code are handled before, during and after testing. However, the CI Leader shall
demonstrate with a high degree of confidence that the CI source code being submitted to
the CCB produced the object files that are being submitted with the source code, and that
the test code being submitted was the code used to perform the testing. The test plan and
test procedures shall provide controls and evidence to support that assurance.

If source code is changed before it is submitted to CM but after it has been tested (e.g.,
due to a bug fix, or a problem found during peer review), then it shall be retested. If
source code is changed after a peer review has been performed, then the peer review shall
be performed again, minimally for the portion that changed.

3 Requirements for Test Plan and Test Development
This following sub-sections describe the requirements for the various test plans and tests
that must be developed.

3.1 Acceptance Plan and Acceptance Tests
“The purpose of the Acceptance Plan is to provide the strategy for testing a product
before it is considered ready for delivery [to Integration]. The Acceptance Plan uses the
Requirements Definition as its input.” [1]

NPS-CAG-14-009 TCX: Quality Assurance Plan

6

“The Acceptance Tests are the tests, procedures, check-lists, etc., that implement the
Acceptance Plan.” [1] The Acceptance Tests shall be reviewed by a non-author of the
tests with at least the same technical ability. The review shall minimally verify that all the
test objectives in the Acceptance Plan have all been covered, and that all required tests
have been implemented.

The plan shall stipulate that the official Acceptance Tests (i.e., those that shall be kept as
evidence) shall be executed against objects that have not been modified since their
respective Subsystem Tests have been completed.

The Acceptance Plan and the Acceptance Tests shall be maintained in the same
Configuration Item (CI) that contains the Requirements Definition. Evidence of the
required reviews shall be included when the CI is submitted to the CCB for acceptance
into CM.

Requirements for the actual execution of the Acceptance Tests are provided in Section 4.

3.2 Product Test Plan and Product Tests
“The Product Test Plan is the strategy for testing the completed product for compliance
with the designed external product interfaces, as documented in the Functional
Specification.” [1] The Product Test Plan shall be written in a manner that shows how all
the external interfaces in the Functional Specification are covered by the tests.

“The Product Tests are the tests, procedures, check-lists, etc., that implement the Product
Test Plan.” [1] All tests shall be reviewed by a non-author of the tests with at least the
same technical ability. The review shall minimally verify that all the test objectives in the
Product Test Plan have been covered, and that all required tests have been implemented.

The plan shall stipulate that the official Product Tests (i.e., those that shall be kept as
evidence) shall be executed against objects that have not been modified since their
respective Subsystem Tests have been completed.

The Product Test Plan and Product Tests shall be maintained in the same CI that contains
the Functional Specification. Evidence of the required reviews shall be included when the
CI is submitted to the CCB for acceptance into CM.

Requirements for the actual execution of the Product Tests are provided in Section 4.

3.3 Subsystem Test Plan and Subsystem Tests
The Subsystem Test Plan “is the strategy for testing the external interfaces of the
completed subsystem, as documented in the High-Level Design.” [1] The Subsystem Test
Plan shall be written in a manner that shows how all the external interfaces in the High-
Level Design are covered by the tests. The plan shall require a full regeneration of
subsystem files prior to testing.

TCX: Quality Assurance Plan NPS-CAG-14-009

7

“The Subsystem tests are the tests, procedures, check-lists, etc., that implement the
Subsystem Test Plan.” [1] All tests shall be reviewed by a non-author of the tests with at
least the same technical ability. The review shall minimally verify that all the tests
specified in the Subsystem Test Plan have been covered, and that all required tests have
been implemented.

The Subsystem Test Plan shall describe how the objects being tested will be protected
from modification during and after the execution of the Subsystem Tests, up to and
including their submission to the CCB. The plan shall provide a process for verifying the
integrity of the objects at any time prior to their submission to the CCB.

The Subsystem Test Plan and Subsystem Tests shall be maintained in the same CI that
contains the associated High-Level Design. Evidence of the required reviews shall be
included when the CI is submitted to the CCB for acceptance into CM.

Requirements for the actual execution of the Subsystem Tests are provided in Section 4.

3.4 Unit Test Plans and Unit Tests
“The Unit Test Plan is the strategy for testing each module.” [1] The Unit Test Plan shall
be written in a manner that shows how all the module interfaces in the Low-Level Design
are covered by the tests. The plan shall provide a strategy for showing adherence to the
Low-Level Design as well as development of any additional tests that are deemed
necessary after a peer review of the source code has been performed.

“The Unit Tests implement the Unit Test Plan.” [1] The Units Tests shall be reviewed by
a non-author of the tests with at least the same technical ability. The review shall
minimally verify that all the tests specified in the Unit Test Plan have been covered, and
that all required tests have been implemented.

The Unit Test Plan and Unit Tests shall be maintained in the same CI that contains the
modules they are designed to test. Evidence of the required reviews shall be included
when the CI is submitted to the CCB for acceptance into CM.

Requirements for the actual execution of the Unit Tests are provided in Section 4.

4 Composition and Test Execution Requirements
This section describes the requirements for performing the various tests.

4.1 Unit Tests
“Modules are implemented from ‘the bottom up’, meaning that the independent modules
are implemented first. After each module is implemented, it must undergo unit testing.
These bottom-layer modules then form the foundation for implementing modules in the
next layer up. These modules then undergo unit testing before continuing to the next
layer. And so it continues until all the modules have been implemented and unit tested.”
[1]

NPS-CAG-14-009 TCX: Quality Assurance Plan

8

“It is acceptable for the author of a source code representation of a module to write and
administer the unit tests. This allows the module to be tested before other dependent
modules are written.” [3]

Because perfection may not be possible, some problems may be identified during the unit
tests that cannot be easily resolved, or are postponed for later action by the CI Leader. A
flaw report for such problems shall be submitted in a timely fashion.

4.2 Subsystem Tests and CCB Submission
“After all the modules of a subsystem have been completely implemented and unit tested,
the subsystem must be tested according to the Subsystem Test Plan.” [1] “It is possible
for a subsystem to be completely implemented before the subsystems it depends on are
implemented. In this situation the subsystem can be tested, as long as the dependent
subsystems are emulated in some kind of 'test harness' with sufficient expected behavior
of the unfinished subsystems. It is then possible to have a subsystem implemented, tested
and baselined before these dependent subsystems are implemented. However, there must
be a balance struck between the time and effort to implement such a test harness, and the
time it will take to wait for the actual subsystems to be completed.” [1]

All flaws that are discovered during subsystem testing shall be promptly reported.

A subsystem can be submitted to the CCB for CM after it has “passed all its Subsystem
tests” and “undergone appropriate reviews”. [1] However, for this QA Plan to work
efficiently, all CIs that are expected to change for a given release shall be submitted
simultaneously, as coordinated by the Project Manager. (See the sidebar Submitting a
Subsystem to the CCB for the rationale for this requirement.) The submission shall
include both source and generated files.

A subsystem may, in fact, be submitted to the CCB with known problems. The Project
Manager, in consultation with the CI Leaders, determines whether the subsystem is “good
enough” for submission. All known problems shall be identified by their unique flaw
identifier in the submission paperwork, along with a justification for postponing action to
a later release of the product.

When an identified subsystem CI is received by
CM personnel for submission to the CCB, CM
personnel shall perform a recompilation on a
system separate from the CM Server. To verify
that the generated files used for subsystem testing
correspond to the submitted source files, the
generated files shall be compared to the
equivalent files on the submitted media. If they do
not match, the CCB submission is returned to the
CI Leader.

Comparing Object Files
Depending on the header format,
an object file header may contain
information, such as a time stamp,
that is different for each re-
compilation, even if nothing has
changed in the source files. In
such situations there shall be a
tool or manual procedures that
“blocks out” such portions during
the binary comparison of object
files.

TCX: Quality Assurance Plan NPS-CAG-14-009

9

After the CI has been accepted by the CCB, the source files are checked into the CM
repository. Another recompilation is performed within the CM system. The prospective
official generated files are once again compared with the submitted object files to ensure
that the baselined objects were the tested and approved objects.

4.3 Product Composition and Product Tests
“After all the subsystems have passed their tests, they are composed into a working
version of the product. The Product Tests are applied against this composition.” [1]

Note that there shall exist a CI that includes the responsibility of doing product-wide
“makes”, composing various subsystem object files into composed executable files, if
necessary. These composed files are submitted as part of the CI CCB submission and
verified in the same fashion as subsystem object files, namely, a build is performed by
CM to verify that the CM-generated files are equivalent to those that exist on the
submitted media. This product-wide build shall be performed from scratch (i.e., a “make
clean; make”).

Submitting a Subsystem to the CCB
There are two general approaches for submitting a subsystem to the CCB, each with
its own advantages and disadvantages. These approaches are described below.

• Submitting subsystems as they are finished.

After a subsystem has completed its tests and reviews there is nothing to
prevent it from being submitted to the CCB. One risk to this approach is that
flaws may be discovered when higher-level subsystems exercise lower-level
subsystems during their testing. That may happen anyway whether the
subsystem is submitted to the CCB or not, but an additional submission would
be required following any corrections, adding administrative overhead.

Another problem with this approach is the necessity of submitting subsystems
in a lower-level order, such that a higher-level subsystem cannot be submitted
prior to any subsystems it depends on. If this was not done, then the
recompilation or subsequent object file comparisons may fail because
dependent files (e.g., header files) that have changed have not been submitted
yet.

• Submitting all subsystems at once.

One approach is to wait until all subsystems have been tested and reviewed
before they are submitted to the CCB, and to submit them simultaneously to
the CCB for approval. This would eliminate the problems described above.
This is the approach used in this QA Plan.

NPS-CAG-14-009 TCX: Quality Assurance Plan

10

Prior to the execution of the Product Tests it shall be shown that the objects being tested
have not been modified since their Subsystem Tests have been completed. Evidence of
this integrity shall be maintained with the Product Tests and submitted to the CCB. In a
larger organization this testing would be done by a separate group of engineers dedicated
to testing, after the software engineers were “finished”.

Flaws found during the Product Tests shall be reported immediately.

4.4 Acceptance Tests
“The last testing step is to validate that the finished product meets the requirements
specified in the Product Definition by performing the Acceptance Tests.” [1] The
Acceptance Tests shall be performed using the same objects that were used for the
Product Tests. Prior to the execution of the Acceptance Tests it shall be shown that the
objects being tested have not been modified since their Subsystem Tests have been
completed. Evidence of this integrity shall be maintained with the Acceptance Tests and
submitted to the CCB.

Flaws found during the Acceptance Tests shall be reported immediately.

4.5 Vulnerability Analysis and Testing Analysis
“Another activity that must be performed on the product is a vulnerability analysis. This
analysis takes the flaws found during testing (and other means), and ensures that the
flaws cannot be used to violate the enforced security policies in some way. The outcome
of this activity is recorded in a document known as the Vulnerability Analysis.” [1]

“In conclusion, after all tests have been performed, an analysis must be made to show
that the testing included sufficient depth and breadth. The outcome of this activity is
recorded in a document known as the Testing Analysis.” [1] This report shall also show
that the ordering of tests did not conceal potential flaws.

4.6 Quality Assurance Audit
After a product submission has been approved by the CCB a quality assurance audit is
performed. The audit minimally includes re-testing a sub-set of the Product Tests. The
amount of re-testing is determined by the Project Manager.

References
[1] P. C. Clark, C. E. Irvine, T. Levin, and T. D. Nguyen, “Trusted Computing

Exemplar: Life cycle management plan,” Naval Postgraduate School, Monterey,
CA, Tech. Rep. NPS-CAG-14-002, Dec. 2014.

[2] P. C. Clark, C. E. Irvine, T. Levin, T. D. Nguyen, and D. Warren, “Trusted

Computing Exemplar: Configuration management plan,” Naval Postgraduate
School, Monterey, CA, Tech. Rep. NPS-CAG-14-003, Dec. 2014.

TCX: Quality Assurance Plan NPS-CAG-14-009

11

[3] P. C. Clark, C. E. Irvine, T. Levin, T. D. Nguyen, and D. Shifflett, “Trusted
Computing Exemplar: Software development standards,” Naval Postgraduate
School, Monterey, CA, Tech. Rep. NPS-CAG-14-007, Dec. 2014.

NPS-CAG-14-009 TCX: Quality Assurance Plan

12

[THIS PAGE IS INTENTIONALLY BLANK]

 7

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center 2
 Ft. Belvoir, Virginia

2. Dudley Knox Library, Code 013 2

Naval Postgraduate School
Monterey, California 93943

3. Research Sponsored Programs Office, Code 41 1
Naval Postgraduate School
Monterey, California 93943

4. Paul C. Clark 1
Naval Postgraduate School
Monterey, California 93943

5. Dr. Cynthia E. Irvine 1
Naval Postgraduate School
Monterey, California 93943

6. Thuy D. Nguyen 1
Naval Postgraduate School
Monterey, California 93943

