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Abstract 

The surface chemistry and geometry of hydrothermally grown, single crystal 

ThO2 was studied using X-ray Photoemission Spectroscopy (XPS) and Atomic Force 

Microscopy (AFM).  The crystal was studied before and after sputter etching with Ar
+
, 

heating up to 675 K, and dehydration with dry nitrogen.  The hydrothermal growth 

technique incorporated Cs and F into the near surface bulk.  Heating to 675 K drove off 

the F, but did not remove the Cs in measureable quantity.  Not all hydrocarbons were  

removed by the cleaning technique, but OH was partially removed by heating to 675 K.  

Sputtering with Ar
+
 at 75° grazing incidence removed crystallite impurities and 

created a more uniform surface geometry.  The Th 4f peak resolution, as measured by 

XPS, improved by a factor of 3; the surface roughness, as measured by AFM, reduced by 

a factor of 2; and the deviation in adhesion force measurements at different location on 

the crystal reduced by a factor of 2. 

 The surface of ThO2 becomes more metallic with heating.  X-rays, used in XPS, 

created 7.3 eV of charging on the ThO2 crystal surface at room temperature.  Metallic Th 

4f peaks appeared in the XPS spectrum at 675 K, while the charging was reduced.   

The adhesion of hydrophilic metal tips to ThO2 crystal is caused by capillary, van 

der Waals and dipole induced-dipole forces.  For the as-grown crystal, the adhesion force 

strength by metal was Au>In>Ni>Ti.  Post-cleaning the adhesion force relation is 

In>Au~Ni>Ti.  Interface energy computations confirm that the gold metal adhesion 
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decreased by half for the cleaned crystal.  Based on these results, indium is the best 

choice of metal for application of contacts to the ThO2 single crystal used in this research. 
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SURFACE GEOMETRY AND CHEMISTRY OF HYDROTHERMALLY 

SYNTHESIZED SINGLE CRYSTAL THORIUM DIOXIDE 

 

 

I.  Introduction 

1.1 Research Motivation: ThO2 as a Potential Oxide Layer in Electronic Devices 

 Metal oxide silicon (MOS) devices are essential to most modern electronics, such 

as MOS field effect transistor (MOSFET) and complementary MOS (CMOS).  The 

electronics industry is attempting to develop smaller, faster and more efficient 

electronics.  However, some smaller electronics are more susceptible to dielectric or 

channel breakdown resulting in device failure [1].  A device with a high dielectric 

constant solves these problems.   

SiO2 is the standard oxide layer material and has reached its physical limit due to 

its relatively small dielectric constant.  To solve this problem, researchers are 

investigating highly resistive materials with band gaps in excess of 6 eV and possessing 

dielectric constants greater than SiO2 (3.9).  Al2O3, HfO2, and ZrxSi1-xO2 match these 

criteria and have demonstrated promise as a replacement for SiO2 [1, 2].  However, each 

of these materials has unique challenges.  For instance, HfO2 has been thoroughly 

researched in the past decade, including studies of radiation effect on HfO2 MOS devices 
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[3, 4].  These devices performed poorly due to large defect concentrations derived from 

poor crystal growth. 

ThO2 could be a candidate to replace SiO2 in MOS devices, possessing similar 

physical and electrical properties as HfO2.  Listed in Table 1 are some properties of 

ThO2, HfO2, and SiO2 that are useful in making electronic devices.  For example, one 

critical electronic property relevant to gate oxide performance is the electronic band gap.  

One theoretical calculation determined the band gap of ThO2 to be 4.6 eV [2].  However, 

recent experimental work on ThO2 single crystal, determined a band gap between 6-7 eV 

with a smaller, functional optical band gap due to the impurities and occlusions in the 

single crystal [5]. 

Table 1. Useful properties of SiO2, ThO2, and HfO2.   

Property ThO2 HfO2 SiO2 

Unit Cell 

Lattice Constant (Å) 

FCC 

5.59[5] 

Monoclinic 

5.08[2] 

Tetrahedral 

4.l8[6] 

Density (g/cm
3
) 9.6[7] 9.68[8] 2.533[8] 

Melting Point (°C) 3640[7] 2774[8] 1710[8] 

Work Function (eV) 2.6[9]   

Band Gap (eV) 6-7[5] 5.65[10] 8.9[11] 

Dielectric Constant 18.9[12] 22[10] 3.9[11] 

 

Despite the consideration of ThO2 as a replacement for SiO2, many of its 

properties remain uncertain such as: the expected density of charge carriers, suitable 

ohmic contacts, break down voltages of potential oxide layers, and performance in 

radiation hardened electronics.  Yet, answering these questions requires the adhesion of a 

metal contact to the ThO2 surface.  Once the surface properties of ThO2 are understood, 

an acceptable metal can be chosen as contact material.  A methodical, systematic 
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approach to analyzing the crystal surface is needed to generate the necessary chemical 

and geometric information for this assessment.   

 

Figure 1. Crystal 8a grown by the hydrothermal growth technique.  This is the 

crystal used for all experiments.   

 

The crystal used in this experiment was grown by hydrothermal growth 

techniques via spontaneous nucleation.  The experiment was conducted on crystal 8a 

depicted in Figure 1.  Furthermore, the experimental methodology used to study ThO2 

applies to the study of future UO2 single crystals.  UO2 has potential as a semiconducting 

material and its electrical properties need to be studied.  The surface geometry and 

surface chemistry of UO2 also require investigation.  The methodology developed in this 

thesis can thus be used for future UO2 studies. 

1.2 Research Objectives 

The objective of this research is to systematically investigate the surface 

chemistry and geometry of ThO2.  The goal of the research is to determine the “best” 

metal to apply as a contact to ThO2.  The adhesion of a metal to the ThO2 crystal surface 



4 

requires a detailed study of the surface of ThO2.  Two surface properties directly 

contribute to a metal’s performance as a suitable contact: the magnitude of the attractive 

force of each metal to the surface of ThO2 and the concentration and type of surface 

impurities.  The methodology includes determining how the surface properties of ThO2 

change as the surface impurities and defects are eliminated.   The method for removing 

the impurities and defects includes chemical cleaning, sputter etching with argon ions, 

heating, and dehydration.  Understanding these properties will then allow a selection of a 

proper metal to use as a contact from the four metals chosen to study: gold, indium, 

nickel, and titanium. 
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The adhesion force is a combination of multiple underlying forces, four of which 

are considered [13]: the van der Waals force, FvdW, the electrostatic force, Fes, the 

capillary force, Fcap, and the contact force, Fcont.   

 
adh vdW es cap contF F F F F     (1) 

2.1.1 The Dispersion Forces, FvdW 

Dispersion forces and dipole forces are combined into one term: the van der 

Waals force, FvdW.  Dispersion forces are an attractive force that is dependent on the 

polarizability of the atoms involved.  The van der Waals force decreases with distance D 

on the order of D
-2

.  An instantaneous dipole gives rise to a momentary local electric field 

which induces additional dipoles in adjacent atoms, giving  rise to more dipoles.  This 

electric field propagates, and the original dipole field is dispersed throughout the 

medium.  The resultant dispersive force acts to attract the atoms and molecules together. 

The polarizability of atoms or molecules determines how large the attractive force 

is and how far the dipole disperses.  Because the ThO2 oxidation state is +2.47 rather 

than +4 [14], the momentary polarizability of oxygen in ThO2 is different from the 

momentary polarizability of metallic thorium.   No matter the oxidation magnitude, as an 

ionic species, the thorium has fewer electrons than protons which are pulled closer to the 

nucleus, increasing the overall electron density.  This leads to rigidity in the electron 

cloud movement.  Conversely, oxygen has the -2 oxidation state allowing the outer 

electrons to be shielded from the nucleus by other electrons.  These outer electrons are 

easily polarizable.  Thus, the ThO2 surface polarizability depends on which atoms 

terminate the surface. 
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For a sphere and a flat plane the van der Waals force can be estimated by the 

empirical relationships 

 
26

t
VdW

HR
F

D
 , and (2) 

 2

1 2H C   , (3) 

where Rt is the radius of a sphere, D is the distance between the sphere and a flat plane, 

and H is the Haymaker constant, which does not change for a given material under static 

conditions.  The material density is ρ, and C is the interaction constant (London 

constant) [15].   The van der Waals force and the Haymaker constant depend on the metal 

and the crystal face features.   

2.1.2 The Electrostatic Force, Fes 

The electrostatic force, Fes, originates from the Coulombic attraction of positive 

and negative atoms.  Static and non-static charges (example: dipoles and induced dipole), 

bond using this force.  ThO2 has a natural dipole due to the difference in electronegativity 

of the atoms where thorium is positively charged and the oxygen is negatively charged.  

The ThO2 crystal structure generates a dipole on the surface.  ThO2 has a fluorite crystal 

structure (Fm3m [2]), with a lattice constant of 5.599 Å [16].  The fluorite structure 

Fm3m means the crystal is face centered cubic with a fourfold mirror rotation in the (110) 

and (100) face and three fold rotation in the (111) face.  Figure 3 depicts the ThO2 (111) 

face with the oxygen (red) in a slightly higher plane than the thorium ions (blue).   
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Assuming a point source, Coulombic forces decrease by D
-2

 as in Coulomb’s law,

1 2

2

04
es

q q
F

D
 , but dipole induced-dipole forces decrease by D

-6
 [18],   

 
6es

B
F

D
 , (4) 

where q is the surface charge, ε0 is the permittivity of free space, and D is the distance 

between the surfaces [19].  B is a constant that includes metrics for surface free energy of 

the dipole and induced dipole, the polarizability of the induced dipole, geometric term for 

the dipole angle in relation to the surface, and the dielectric strength of the medium 

between the surfaces.  As the atom move farther from the dipole, the dipole induces a 

smaller effective dipole in the adjacent atom, which further reduces the force.  Thus, an 

increase in distance, D, has a greater affect on the attractive force and D
-2

 for Coulomb’s 

law becomes D
-6

 for dipole induced-dipole forces. 

The metal tips used in this research are electrically neutral and assumed to be 

mostly free of oxidation.  Therefore the tips do not have a dipole force.  Besides the 

induction of a dipole at the atomic level, the surface dipole of the ThO2 crystal attracts 

positive electric charge to the surface of the metal.  The Coulombic force, Fes, varies with 

each metal’s polarizability and electrical resistance, and it will change the total adhesive 

force.   

Additionally,  hydrogen bonding is included as a capillary force in Equation 8.  

Because of the ThO2 molecular dipole, hydrogen bonding is expected to contribute 

significantly to the total force.   
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 2.1.3 The Capillary Force, Fcap    

The capillary force, Fcap, is due to water and humidity creating a meniscus from 

the AFM tip to the crystal surface.  The hourglass shaped meniscus has a high surface 

tension that pulls the tip towards the crystal minimizing the energy of the system.  The 

Kelvin equation gives the relationship between radii of the meniscus and physical 

constants of the materials involved [13, 20] 

 

0

1

1 1
log( )

L
K

mc mr

Vol
r

p
RT

r r p


 



, (5) 

where rK is the Kelvin radius, rmc is the radius of the meniscus curve, rmr is the smallest 

radius of the meniscus hourglass, γL is the surface tension of water, Vol is the volume of 

the water, p/p0 is the relative vapor pressure of water, and RT is the gas constant and 

temperature.  The Kelvin radius is a constant for a given material system.   

The relative humidity is related to the relative vapor pressure in Equation 5 [13].  

As the relative humidity increases, the volume of water in the meniscus increases, and 

vice versa.  As humidity decreases water remains in the crystal defects that are smaller 

than the Kelvin radius [13].   

The hydrogen bonding capability of water generates a capillary force that has a 

longer range than the other forces in this model because it decreases as D
-1

.  The capillary 

force can be computed by the approximation [13, 15] 

 
4 cos

1

t L
cap

R
F

D

d

  




, (6) 
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and the dipole vector is parallel to the surface.  Thus the capillary force should be 

different based on the exposed surface face.  According to Eastman, the capillary force is 

affected by the wetting of water to the substrate and of water to the tip [15].  The 

capillary force decreases as the tip becomes more hydrophobic [15].  The hydrophobic 

nature of the metal and crystal affects the magnitude of the capillary force as does the 

crystal face of the ThO2.  

2.1.4 The Contact Force, Fcont 

 The contact force, Fcont, displaces atoms of the crystal lattice from their 

equilibrium lattice locations.  For AFM measurements, the Fcont is directly proportional to 

the tip radius and the depth that the tip penetrates into the surface.  As the tip penetrates 

and deforms the surface (and the surface deforms the tip), the effective radius and the 

adhesion force increases.  This assumes that the deformation causes the tip and surface to 

match geometry, which increases the number of atoms or molecules participating in 

adhesion.  This deformation can be elastic or plastic.  The adhesion force and surface 

energy models listed do not include deformation of the crystal or tip.  This force only has 

magnitude when the tip is compressed into the surface.  Once the tip is above surface, 

Fcont is zero. 

2.2 Description of Surface and Interface Energy 

All crystal surfaces have dangling bonds, surface dipoles, or other highly 

energetic states.  To reduce the resulting free energy, either the crystal lattice distorts or 

the crystal adsorbs atmospheric contaminants.  In processing, the surface contamination 
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can be controlled by applying a suitable surface interface material.  Each surface must 

satisfy the dangling bonds, surface dipoles, and high energy states of the other surface.   

When two surfaces are in contact, as in the case of an AFM metal tip to a surface, 

only a finite area actually touches.  The area of contact is not well described since both 

surfaces may have plastic deformation and neither are perfect spheres or planes.  

However, to understand the surface energies, the ideal case of two perfect spheres 

touching is considered the best starting point, as in Figure 5.  The force, F(D), between 

two spheres is described by [19] 

 ( ) 2 ( )

Z

Z D

F D xf Z dx




  . (7) 

Z runs through the center of the sphere and the x axis is perpendicular to the z axis, f(Z) is 

the force of all the atoms in sphere 2 acting upon one spot on sphere 1, D is the distance 

between the two spheres, and x is the radial distance from the center of a ring that bisects 

the sphere as diagrammed in Figure 5.  Since 
2

1 2

1 2

1 1

2

x
Z D z z D

R R

 
      

 
, then 

1 2

1 1
dZ xdx

R R

 
  
 

[19].  The increment dZ is the depth of the bisecting ring and dx is 

the increment of width of the bisecting ring, z1 is the depth in sphere 1 along the Z axis 

that the force acts upon, and z2 is the depth of the bisection ring in sphere 2.   
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The values of γt, the surface energy of the metal tip, γc, the surface energy of the 

crystal and γw, the surface energy (tension) of water, are material properties which do not 

change under this research’s conditions.  For instance, in the case of the interface energy 

of the metal tip to water- γtw, γt and γw do not change.  However, Wtw is a function of the 

humidity, and the amount of water available to reduce the surface energy.  The water on 

the surface satiates the dangling bonds and dipoles of the tip and crystal, thus reducing 

the surface energy to the residual interface energy, γ12.   

 Capillary forces also contribute to the surface energy relaxation of a material.  

There are up to three bilayers of water and hydroxyl groups on the surface of ThO2 [7] 

and even a clean surface becomes hydroxylated in a humid environment [17].  The force 

of adhesion for the surface surrounded by a vapor is specified by [19] 

 4 coscap t LF R   , (12) 

 where γL is the surface tension of water and θ is the contact angle of the water.  

Equation 12 assumes similar capillary adhesion response of the water to the crystal and to 

the AFM tip.   

2.3 AFM Adhesion Measurement and Cantilever Spring Constant Calibration 

 The adhesion force of metals to the ThO2 is measured by the deflection of a 

cantilever (Figure 7).  The cantilever and tip operate as a simple spring that is governed 

by Hooke’s law,   

 adh c cF k x . (13) 
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2.4 Sputter Etching of Crystals with Ions 

 Sputter etching is the process of physically removing atoms or clusters from a 

surface by a mechanical process.  Normally, ionized particles accelerated by an electric 

field bombard the surface to be sputtered.  The ion transfers its kinetic energy to the 

crystal overcoming the adhesive forces of the surface.  Typically, the ionized atoms are 

noble gases due to their simple geometry, chemical inertness, and ionization simplicity.   

Incoming ions interact with the surface by ballistic spalling and penetration, 

followed by energy deposition and release [21].  The first process is a direct transfer of 

energy from the incoming ion to the crystal lattice, resulting in atoms departing the 

crystal surface.  In the second process, the incoming ion transfers energy to the crystal 

lattice, adding additional phonon energy, and releasing more atoms from the surface. 

 Yamamura and others presented a semi-empirical method to determine the 

sputtering rate of monatomic crystal surfaces with accelerated ions [21]. The method is 

based on the Thomas-Fermi potential of atoms and the nuclear stopping power of 

individual lattice atoms for the incoming ion [21]. Equation 15 is the central equation 

describing the sputtering yield, Y(E), as a function of energy of the incoming atoms, 

 
2 2 1

0 3

( )( ) ( / )
( ) 0.042 1

1 ( )

s

n th

s e

S E EQ z M M
Y E
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   
  

   
, (15) 

Q and s are dimensionless fitting parameters, Eth and E(eV) are the sputtering threshold 

energy and the sputtering energy respectively.  The fit value α* is the reduced mass ratio 

described by  

 

1 56 1 5

2 2
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M M
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. (16) 
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M2 and M1 are the mass of the target atom and bombarding ion respectively, Us is the 

surface binding energy, Sn(E) is the nuclear stopping power described by 

 1 2 1

2/3 2/3 1/2

1 2 1 2

84.78
( ) ( )

( )

TF

n n

Z Z M
S E s

Z Z M M
 

 
. (17) 

The nuclear stopping power is based on the Thomas-Fermi potential, sn
TF

 (ϵ), which 

relates the nuclear potential well of the nucleus and the mass ratios, M2 and M1, of the 

bombarding ions.  The number of protons in the nucleus, Z1 and Z2, dramatically increase 

the stopping power due to the increased nucleus size and increased interaction potential 

energy. The Thomas-Fermi potential is based on the reduced energy ϵ and is given by 

 
3.441 ln( 2.718)

1 6.355 (6.882 1.708)

TF

ns
 


  

. (18) 

For crystal atoms larger than the bombarding atoms,  

 1 21 5.7( / )th

s

E M M

U 


 , (19) 

describes the relationship between the threshold sputtering energy, Eth, surface binding 

energy, Us, and γ the energy transfer factor for an elastic collision.    The Γ is a fit 

parameter for electronic stopping power described by 

 2

3

11 ( / 7)

ZW

M
 


, (20) 

where WZ2 is a fit parameter that correlates to a fraction of the surface binding energy, 

Us [21].  In Equation 15, ke is the Lindhard electronic stopping coefficient given by  
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The stopping coefficient is simply a reduced mass and reduced charge relationship.  The 

reduced energy ϵ is given by  

 2

2/3 2/3 1/2

1 2 1 2 1 2

0.03255
( )

( )

M
E eV

Z Z Z Z M M


 
. (22) 

Z1 and Z2 are the atomic numbers of the bombarding ion and the crystal atom respectively  
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 


 (23) 

The cosine component in Equation 23 accounts for the angle with respect to the surface 

normal.  It reduces the energy deposited based on the conservation of energy and 

momentum of an elastic collision.  With a known crystal lattice and bombarding ion, only 

the surface binding energy of the crystal, Us, and the three fit parameters, Q, W, and s are 

unknown.  The sputtering yield Y(E) can then be plotted as a function of the bombarding 

ion energy E(eV), as in Figure 8.   

 It is essential to realize that Yamamura’s empirical formula is designed for 

an ion bombarding a monatomic crystal, which ThO2 is not.  When sputtered, ThO2 

crystal could emit various clusters such as Th, ThO
2+

, ThO2, O2, O etc. as ejected 

material.  To simplify the calculation, only ThO2 is considered to be ejected and will be 

treated as a single atom.  However, time of flight- secondary ion mass spectrometry 

(TOF-SIMS) confirms the ejection of the various other clusters [22]. 
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energies less than 500 eV.  The yield is mostly linear from 1000 eV to 5000 eV, which is 

the operating range of the ion gun used in this experiment.  

 From the sputtering yield of Yamamura’s equations and based on the argon ion 

beam current from the sputtering instrumentation, the volume of sputtered material can 

be determined by   

 ( , ) A

m

N Vol
Y I t

ItM


 . (24) 

NA is Avogadro’s number, ρ is the mass density of atoms, Vol is the volume of atoms 

sputtered, I is the current of bombarding ions in units of ions s
-1

, t is the sputtering time, 

and Mm is the molar mass of ThO2. 

2.5 X-ray Photoemission Spectroscopy 

 Detailed quantum mechanical treatment of photoemission spectroscopy (PES) 

which includes X-ray photoemission spectroscopy (XPS), Auger electron spectroscopy 

(AES), and ultraviolet photoemission spectrometry (UPS) is complicated because it is a 

multibody, quantum mechanical, and time varying problem.  The electronic final state of 

the material, after photoemission, is different from the initial state of the material due to 

the missing photoelectron.  The initial state is the product of the departing electron and 

the other remaining electrons [23] 

 , ,( ) ( 1)k

i i i k i RN C N    , (25) 

where ψi(N) is all the initial electronic state, Ci is an antisymmetrizing factor, ϕi,k is the 

orbital of the soon-to-exit electron, and ψi,R(N-1) is all the other electrons. Similarly, the 

final state, ψf(N), is well described by the remaining bound electrons, ψf,R(N-1), and the 
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wavefunction of the ejected electron, ϕf,Ekin, times a constant, Cf which depends on the 

probability of the particular final state occuring. The equation for the final state is 

 , ,( ) ( 1)k

f f f Ek f RN C N    . (26) 

The transition matrix of the initial state to the final state is then 

 , , , ,| | | | ( 1) | ( 1)k k

f i f Ek i k f R i Rr r N N             . (27) 

The Sudden Approximation Theory makes the simplifying assumption that there is no 

core-hole relaxation and the bound electronic wavefunction remains unchanged between 

the initial and final states [23].  Additionally, there will be a specific number of excited 

states for the remaining electrons when the ejected electron departs the crystal.  A sum of 

the excited states is accounted for as 

 
, , , ,| | | | ( 1) | ( 1)k k

f i f Ek i k f s i R

s

r r N N              . (28) 

The remaining sections of Chapter 2.5 describe the origins of XPS peaks. 

2.5.1 XPS Shakeup Satellites of ThO2 

Critical to the binding energy of the electron is the final state of the remaining 

electrons as described in Equation 28 [23].  For ThO2, the satellite peaks of Th 4f 7/2 and 

4f5/2 are formed from the shakeup of the thorium valence band states (7p, 7s, 6d, and 5f) 

and the oxygen 2p states [24, 25].  The inbound photon ejects the first electron and 

excites an additional electron to one of many possible bound states.  The first electron’s 

kinetic energy is reduced by the magnitude of the excited state transition.  This loss in 

kinetic energy gives rise to multiple shakeup satellite peaks depending on the transition.  
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2.5.2 The XPS Spin-Orbit Splitting of Peaks 

The angular momentum and spin quantum numbers describe an electric dipole 

generated from the revolution and rotation of electrons.  Changes in the spin quantum 

number causes splitting in the energy states that is called spin-orbit energy coupling [26].  

The total spin of the electronic state, J, is a combination of the orbital, L, and spin, S, 

quantum states.  The change in energy of the states is directly proportional to the 

coupling of the these quantum states [26], 

 
2 2

1 1 ( )

2

dV r
E S L

m c r dr
   . (29) 

ΔE is the energy of the system, m is the mass of the electron, c is the speed of light, r is 

the radial distance of the electron from the nucleus, and V is the electric potential of the 

electron.  Since ( 1)J j j  , ( 1)L l l  , and ( 1)S s s  , where j, l, and s are the 

specific quantum numbers associated with the quantum state, then the expectation value 

of the change in energy E  becomes [26] 
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Thus, an energy difference is expected with different orbital quantum numbers l, and 

quantum numbers s.   

The electron spin s is either ±1/2.  The orbital angular momentum l depends on 

the character s (l = 0), p (l = 1), d (l = 2), and f (l = 3).  The number of electrons, n, 

associated with each spin-orbit coupling  j value  is 2 1n j  and non-negative.  Thus the 

s orbital can only have a total angular momentum of 1/2.  The p, d, and f type orbitals can 

be split further.  The p orbital can have j values of 1/2 and 3/2, the d orbital values of 3/2 
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and 5/2, and the f orbital values of 5/2 and 7/2.  Assuming the detector response for 

electron energies is the same and that the electron cross section of the material is the 

same for the different electron energies, the area under the experimental XPS peaks 

should have the ratio calculated above depending on core electron angular moementum 

character.  For example, the p3/2 orbital peak will have twice the area of the p1/2 orbital 

peak. 

2.5.3 Chemical Shifts and Surface Sensitivity of XPS 

Another concern with XPS interpretation is the chemical and electrical 

environment of the atomic electrons.  The final, ψf,R, or initial, ψi,R states of electron 

orbitals are influenced by nearby charged atoms.  These atoms are electrically charged 

due to prior X-ray induced electron ejection.  Thus positive charge can build up on the 

surface of nonconducting material [27].  The attractive charge changes the final state 

wavefunction, ψf,R, and the binding potential, V, from Equation 29 and 30 respectively.  

This is called a core-hole relaxation [23].  This affects the final state energies and causes 

a shift in the binding energies.   

Secondly, atoms in a crystal are bonded through metallic, ionic, or covalent 

bonds.  For ionic bonds and covalent bonds with electronegative atoms, the atom that is 

oxidized has fewer orbital electrons than nuclear charge and thus has a larger attractive 

force on the outer electrons.  This increases the remaining electrons’ binding energies, 

shifting the XPS spectrum peak.  The atom’s electrons are further shielded from the 

positive charge of the nucleus and the electronic orbital spread out, moving further from 

the nucleus.  Thus the electrons require less energy to be removed from a molecule.  A 
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positively charged ion’s binding energy will shift to higher energies, and a negatively 

charged ion’s binding energy will shift to lower energies when compared to a neutral 

atom [28].  For example, In thorium metal, Th 4f7/2 peak has a binding energy of 333.1 

eV, whereas in ThO2 the Th 4f7/2 peak is at 334.9, a shift of 1.8 eV [29].  

2.5.4 From Electron Kinetic Energy to Electron Binding Energy 

The electron analyzer in PES does not measure binding energies, but instead the 

kinetic energy of the escaped electrons.  The binding energy must be calculated from the 

kinetic energy of the electrons and the incident photon energy.  X-rays penetrate deeply 

into a material based on the attenuation coefficient of the constituent atoms.   These 

X-rays of energy hν, excite electrons from their ground state orbital to the vacuum.  If, 

the X-rays have more energy than the binding energy of the electron to the atom, Ebind, 

the ejected photoelectrons depart the atom with a certain kinetic energy Ek.  However, the 

electron must also overcome the work function of the crystal.  Additionally, the work 

function of the system, ϕsys, must be accounted for due to measurement of the 

photoelectron within the electron analyzer.  However because the Fermi energies of the 

system and crystal are pinned, the difference in vacuum level must be subtracted from the 

electron kinetic energy as in Figure 9.  The final relationship of these energies is      

 KE sys bindingE h E    . (31) 

XPS is a near surface technique.  Due to the electron absorption and scattering 

cross section of ThO2 crystal, only electrons near the surface will escape with the initial 

kinetic energy.  Electrons liberated from the atoms deeper in the crystal are down 

scattered or can be recaptured by the crystal.   







29 

tape is affixed to the crystal and to the magnetic mounting plate.  The AFM Mulitmode 

Nanoscope IIIa is controlled by software version V5.31r1.   

The AFM is also used to analyze the adhesion force between the metal tips and 

the ThO2 surface.  AFM force calibration is not a standard operational mode; however, 

this calibration procedure can be used to monitor a tip’s response to the surface during 

contact mode operations.   The crystal is slowly raised towards the tip until contact and 

then slowly lowered.  The flex in the cantilever is measured by the change in deflection 

of a laser off the back of the cantilever.  For these measurements, the tip moves over a 

range of 500 nm with the photodetector collecting 512 samples for the extension of the 

tip, and 512 samples during the retraction of the tip.  The tip travels the 500 nm in 0.5 

seconds (1 Hz total oscillation) for a speed of 1.0 µm/s.  Since all forces respond in the 

femtosecond range, much faster than the tip can move, the contact time of the tip to the 

crystal surface does not change the measured adhesion force [20].    The deflection 

setpoint, deflection sensor, and “z scan start” (Nanoscope IIIa parameter settings) varied 

with the surface location and type of tips.  These settings were adjusted so that cantilever 

deflection into the crystal was only 25 nm, and the adhesion force sensitivity was 

maximized.  The resonance frequency of each tip was measured five times and averaged.   

 The ThO2 surface is not perfectly smooth, so a statistical approach to determining 

the adhesion properties of the metals to the surface was required.  The AFM tip interacts 

with varying crystal surface features at different locations.  To produce statistically 

significant conclusions, a grid pattern of 9 points, 5 microns apart, was determined.  At 

each point, 5 measurements were taken at 2 second intervals.  The exact procedure for 

measuring the adhesion is described in Appendix A.  Also, because of these 
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imperfections, and due to the expected dipole on the surface of ThO2, water adhered to 

the surface.   

Each metal tip underwent the following procedures.   First, the adhesion 

measurements were determined under atmospheric conditions.  Then a 1 gallon plastic 

bag was placed over the AFM measurement device and loosely sealed at the bottom as in 

Figure 11.  Dry nitrogen flowed into the bag at a rate of approximately 1.5 liters per 

minute for 30 minutes.  The flow was fast enough to inflate the bag.  The dry nitrogen 

flow was reduced to reduce vibrational noise in the AFM tip, but remained fast enough to 

achieve positive pressure on the bag and restrict water’s reentry into the bag.  Vibrational 

noise in the tip was assessed through the contact mode scope trace screen that plots the 

shudder and harmonics of the tip as it conducted a contact scan.  These steps are repeated 

multiple times. 
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Figure 11. This AFM Setup with the dry nitrogen bag was used for adhesion 

measurements.  Dry nitrogen is pumped into the plastic bag through a plastic tube.  

The dry nitrogen reduces the relative humidity and thus reduces the adsorbed 

water.  Although water cannot be completely removed in this manner, a control of 

the relative humidity reduces the variability of laboratory humidity. 

 

For each of the four metals (nickel, gold, titanium, indium) the humidity was 

measured before each run.  The AFM software determined the total adhesion force 

measurement for each scan and a statistical computation of all the force measurements 

was made to compare the various metals. 
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 Three criteria were proposed to investigate the suitability of a metal to serve as an 

ideal contact for ThO2: work function, lattice spacing, and adhesion force.  The work 

function of the metal must be smaller than or equal to the electron affinity of the 

crystal [11].  Lattice match increases the adhesion of the metal to the crystal and 

improves charge transfer from the metal to crystal.   The adhesion force of the metal to 

the crystal is a direct measure of how well the metal adheres to the crystal.  Although not 

critical, difficulty in applying the metal contact should be considered; vapor deposition of 

a high melting point metal is difficult.  In this research, elimination criteria were 

lanthanides, actinides, and mixed metals.  If a metal adhered well to the ThO2, but it 

provided a poor Ohmic contact, then mixed metals would be considered in future 

experiments.  Table 2 lists a few considered metals and their material properties.   

Table 2. List of seven metal candidates and pertinent metal properties. Asterisks 

denote the metals used in this research. 

Metal Lattice 

Constant 

(Lattice: Å) 

(100) Lattice 

Match  

(ratio: % 

error) 

Nearest 

Neighbor 

(Å) 

Work 

Function 

(eV) [30] 

Melting 

Point (K) 

[30] 

Indium* Tetragonal 

3.2523/4.9461[8] 

 3.25 4.09 430 

Silver FCC 

4.0862[30] 

4/3 

2.6 

2.88 4.74 1235 

Aluminum FCC 

4.0495[30] 

7/5 

1.4 

2.86 4.26 933 

Titanium* HCP 

2.953/4.729[30] 

 2.95 4.33 1941 

Nickel* FCC 

3.5238[30] 

8/5 

0.9 

2.49 5.35 1728 

Gold* FCC 

4.0786[30] 

7/5 

2.1 

2.88 5.31 1337 

Platinum FCC 

3.9231[30] 

7/5 

1.7 

2.77 5.93 2041 
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The four selected metals are chosen for specific advantages over other metals.  

Gold was chosen over Pt and Ag due to its ubiquitous use in the electrical industry.  

Platinum has the higher work function and melting point.  Silver has a poor lattice match 

and high melting point.  Gold is the “universal contact” material in the electronics 

industry and if ThO2 is expected to replace SiO2, it requires industry standard production 

methods and materials.  However, gold contacts require significant n-type doping of Si at 

the interface to reduce the Schottky barrier formed [11], and hence may not be a suitable 

candidate for ThO2.  Indium was chosen over aluminum.  Both have poor lattice 

matching, but indium has a lower work function.   Aluminum was already attempted as a 

contact material for HfO2 MOS devices [4].  Titanium is often described as another 

“universal contact” material for its ability to adhere to many materials. Of the metals 

considered, Nickel has the best lattice match of 0.9% at an 8:5 ratio.  Thus, Gold, In, 

titanium, and nickel were chosen for this research.  AppNano SICON series tips were 

vapor deposited with a nominal 10 nm of metal by the manufacturer (a point important to 

theory of Chapter 2 and discussion of results later).  The AFM tips have a radius of 

curvature of 10 nm at the tip end.   The spring constants ranged between 0.2-0.5 Nm
-1

. 

 The AFM adhesion force calibration mode measured the metal-to-crystal 

adhesion forces.  These forces are differentiated into capillary and non-capillary forces as 

detailed in Chapter 2.  The first task was to determine the overall adhesion force for each 

metal at each humidity condition.  A MATLAB program was written to extract force and 

distance information from the AFM measurements.  First, the maximum cantilever 

deflection was determined by numeric differentiation. Then, the average resting 

deflection of the cantilever was extracted by averaging the deflection location beyond the 
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adhesion peak.  The maximum deflection is the difference in the resting deflection and 

the maximum cantilever deflection.   By multiplying the deflection range of the cantilever 

by the spring constant of the cantilever, the adhesion force of the metal to the surface was 

determined by Equation 14 (Chapter 2). 

 The 5 samples of the 9 points are averaged together, and the standard deviation is 

computed for the metals with an asterisk in Table 2.  All 9 points are then averaged 

together (with errors propagated in quadrature) to determine a per-metal atmospheric 

condition average.  By analyzing a plot of the atmospheric conditions versus adhesion 

force, it was possible to determine the response of each metal to the crystal with differing 

amounts of water on the surface (Figure 20).  A negative slope means that the capillary 

force of water to metal and water to ThO2 is a significant contributor to the adhesion 

force.  The larger this slope magnitude, the greater influence water has on the total 

adhesion force.  A zero or positive slope implies that water has an insignificant influence 

on adhesion force of the metal–to-crystal surface. 

 

Figure 12. Although for indium, this plot is typical of the adhesion force spectral 

measurements used for the comparison of metal tips onto the ThO2 single crystal. 
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The adhesion plot spectrum provides visual and quantitative insight into the 

nature of the adhesion force.  In Figure 12, the break-free distance [15] is the distance 

from the crystal surface to the point where the adhesion force is zero and is determined 

from the point where the adhesion force and repulsion forces are equal, to the point where 

the tip is out of the surface and at the free floating point.  The snap distance is the 

difference in the cantilever location above the crystal surface from the point of maximum 

deflection to the free floating point.  The slope of the compression line is the slope of the 

line where the tip is compressing the surface of the crystal.  Finally, the adhesion force of 

the extension motion of the tip, the “jump,” is determined using the same methodology as 

the adhesion force, except during the extension phase of the cantilever movement cycle.  

As the tip extends towards the surface, the jump force attracts the tip and bends the 

cantilever.  The cantilever continues to move towards the surface until it is no longer 

bent, at which point the force of adhesion is equal to the force of repulsion according to 

Equation 1 (Chapter 2).  This point is the zero point distance above the crystal surface. 

3.3 Dehydration of the Crystal Surface 

 As discussed in Section 2.3, the capillary force can significantly increase the total 

adhesion force.  Consequently, the forces associated with water should be reduced in 

order to obtain an accurate measure of metal-to-crystal adhesion.  If metal contacts are to 

be applied, the crystal will most likely be under vacuum, a low humidity condition.  To 

adjust the number of monolayers or bilayers of water adsorbed on the surface to match 

the vacuum conditions, dry nitrogen flowed over the surface before and during certain 

AFM measurements to simulate a dry environment. 
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A study of water’s influence on adhesion is conducted for an indium metal tip on 

as-grown ThO2.  For this measurement, the relative humidity was measured by a Precon 

temperature and humidity sensor using an Ardino microcontroller.  For simplification, it 

is assumed that the relative humidity at the sensor is the same as the relative humidity 

above the crystal surface.  Dry nitrogen flowed through the bag at similar rates to the 

procedure described in Section 3.2.  A series of 5 surface adhesion measurements at the 

same location were taken every 1.5 minutes until the relative humidity dropped below the 

limit of detection for the device, about 0.25% humidity.  The same settings were used for 

this measurement as the other adhesion force measurements. 

3.4 Cleaning the Crystal Surface by Sputter Etch 

 Removing surface impurities, adsorbed material, and structural defects was 

critical to obtaining a precise measure of the adhesion force of metals onto the surface of 

ThO2.  Initial Ar
+
 sputtering experiments on Si wafers validated Yamamura’s empirical 

equations and calibrated the location and width of the sputtering beam (Appendix B).   

During initial processing and after AFM measurements, the crystal was 

chemically washed to remove contaminants.  According to literature the appropriate 

methodology for cleaning and smoothing the ThO2 surface was an acetone and methanol 

rinse, followed by a 0.05 μm diamond paste scrubbing [31].  However, the last step in 

this methodology was currently not allowed for these crystals by federal law and at AFIT.  

The crystal was affixed to the AFM magnetic base with double sided tape.  However, the 

tape has a sufficient vapor pressure to increase the pressure in the XPS vacuum chamber 
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and thus was removed before these experiments.  Again ethanol and acetone were used as 

cleaning agents along with gentle scrubbing with laboratory wipes. 

In the load lock chamber, which was also the sputter etching chamber, the 

vacuum was pumped below 10
-7

 Torr.  The Ar
+
 sputtering gun was a SPECS IQE 12/38 

ion source controlled by a SPECS PU IQE 12/38 Power Unit.  The ion source was 

capable of producing a range of energies from 100 eV to 5000 eV with filament currents 

up to 5.1 Amps.  The sputtering filament was degassed three times.  Then the Ar(g) 

supply was tuned to 10
-4

 Torr at the filament.  Once the vacuum and Ar(g) pressure were 

stabilized, the filament was turned on.  The beam rastered a 7 x 7 mm region, creating a 

uniform sputter and ensuring complete crystal surface coverage. To smooth the surfaces, 

the angle of incidence was at a 75° angle to the Ar
+
 beam.  At this angle, the ion beam 

efficiently removed plateaus and edges from the surface [32].   

Table 3.  Argon sputtering gun was set to the tabulated values for different energies.  

The value of the extraction, focus 1, and focus 2 voltages are listed as a percentage of 

the filament voltage.      

Energy [eV] Extraction 

Voltage [% ] 

Focus 1 [%] Focus 2 [%] Width x 

[mm] 

Width y 

[mm] 

500 70.14 86.78 78.00 7 7 

1000 77.54 88.38 77.50 7 7 

1500 78.86 88.72 77.44 7 7 

2000 79.74 89.02 77.16 7 7 

 

The sputtering gun settings for each experiment are provided in Table 3.  The 

filament emission current of 10 µA was sufficient to generate an effective beam current.  

The experimentation varied the sputtering angle of incidence and ion energy, but the 

duration and region sputtered was held constant at 30 minutes with an area of 49 mm
2
.  
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Since the crystal is less than 9 mm
2
, the Ar

+
 sputtered the ThO2 only 20% of the elapsed 

time.  The remaining time, the beam was sputtering the Ta foil holder.  The angle of 

incidence was based on the rotation of the manipulator holding the crystal.  The estimated 

sputtering yield was based on Yamamura (Equation 15) discussed in Section 2.4.  The 

volume sputtered is derived from Equation 24, and the sputtering depth is listed in 

Table 4.    

Table 4. Mean sputtering depth computations based on Ar ion sputtering energy.  

The beam current is measured by the SPECS PU IQE 12/38 Power unit.  The yield 

is based on the empirical formula of Yamamura, Equation 15.  The theoretical 

volume is derived from Equation 24.  Based on a crystal surface area of 9 mm
2
 the 

mean depth is calculated. 

Energy 

[eV] 

Beam 

Current 

[µA/s] 

Angle of 

Incidence  

[º] 

Yield 

[atoms/ion] 

Estimated 

Volume 

Sputtered 

[x10
-6

 mm
3
] 

Estimated 

Mean Depth 

Sputtered [nm] 

500 9 ±1 0 0.010 ±0.003 13 ± 3 1.5 ± 0.3 

1000 8 ±1 75 0.056 ±0.011 40 ± 9 4.4 ± 1.0 

1500 8 ±1 75 0.15 ±0.03 110 ± 25 11 ± 3 

2000  8 ±1 75 0.25 ±0.05 178 ± 42 20 ± 5 

2000 9 ±1 60 0.67 ±0.13 540 ± 120 59 ± 14 

 

3.5 Cleaning the Surface by Heating 

Heating provides two improvements to the surface quality of the ThO2:  it 

provides vibrational energy to overcome the adhesion energy of surface contaminants and 

provides free energy to overcome the energy barrier in the movement of ThO2 molecules 

to other locations on the surface.   The former reduces surface impurities and the latter 

anneals the surface.  Water, hydroxide, and organic material reside on the crystal [7].  
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The first layer is actually a hydroxide layer and heating ThO2 to 1273 K drives off all 

water [7].   Carbon dioxide also resides on the surface but can be driven off with 

temperatures of 1173 K.  The carbon dioxide layer is computed to be only 0.5 layers 

thick [7].  Potentially, other material is thermodynamically stable on the surface of ThO2 

and requires additional heating to remove.  However, the current system is unable to 

attain these temperatures with a maximum of 673 K.   

The ThO2 crystal was heated twice first to 573 K and then to 673 K.  The crystal 

was heated and cooled slowly to ensure the off-gassing products did not reattach to the 

surface and allow the crystal temperature to stabilize for the XPS measurements.  The 

vacuum chamber pressure did not exceed 10
-7

 Torr.   The heating and cooling occurred in 

50 or 100 K increments, and XPS spectra were measured after each increase or decrease.  

XPS was used to determine the relative concentration of contamination driven off the 

crystal surface.   

3.6 X-ray Photoelectron Spectroscopy of As-Grown and Cleaned Surfaces 

 XPS is used to measure the relative quantity of impurities and adsorbents on 

single crystal ThO2.  The X-rays were generated from a SPECS XR 50/XRC 50 HQ X-

ray source controlled by a SPECS XRC-1000 X-ray Control Source.  A filament under 

high voltage ejects electrons that are accelerated toward an Al or Mg target.  The 

accelerated electron ejects bound electrons from the target material resulting in electronic 

exited states.  These exited states relax and produce characteristic X-rays.  The X-ray 

source’s total power was 300 W with 14 kV potential and 21.5 mA on the anode.  The Al 

Kα peak at 1486 eV was assumed to be the main X-ray peak.  To produce high signal-to-



40 

noise XPS spectra, a single source X-ray line with a small FWHM is desired.  Thus Al, 

which can only de-excite from the 2p to 1s, is widely used as an excitation source.  

However, since Al has electrons in the 2p1/2 and 2p3/2 there is a small energy splitting due 

to bonding states and thus the spectra peaks Kα1 and Kα2 are separated by about 0.8 eV.  

An additional X-ray Kα emission occurs about 10 eV lower in energy due to a double 

ionized excitation state.  This system does not have a monochromator to eliminate these 

other Kα peaks.   

The energy resolution of the peaks, ΔE, should be a linear combination of the 

excitation X-ray peak width,  ΔEp, line width of the photoelectron emission, ΔEn, and 

energy resolution of the analyzer, ΔEa [28] 

 2 2 2( ) ( ) ( )p n aE E E E       . (32) 

The energy resolution RES is calculated from the FWHM of the peak and intensity of the 

peak, h, by  

 
FWHM

RES
h

 . (33) 

A hemispherical energy analyzer measures the kinetic energy of the photoelectron 

emitted from the crystal.  The VG Scienta made R3000 was operated by software SES 

1.3.1-r9.   The analyzer operated with a pass energy of 100 eV, transmission lens mode, a 

200 meV step size, and 70 frames per second.  To increase resolution, the regional scans 

during the heating experiments had a step size of 100 meV.  The analyzer aperture was 

set to the smallest curved opening.  The analyzer was calibrated with an Gold foil and the 

system had a work function, ϕsys, of 4.3 eV.  The vacuum chamber was maintained at less 
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than 5x10
-8

 Torr before and after spectrum measurements; during the measurements, the 

ion gauges were turned off to reduce noise.  The completed system is shown in Figure 13.  

 

  

Figure 13.  Photograph of the XPS system that was used for this experiment.  The 

electron analyzer is covered with heating tape and tin foil from baking the system.  

The X-ray gun is located in the upper portion of the picture. 

 

The crystal is mounted onto a Ta foil plate for support during sputter etching and 

XPS analysis.  Ta is chosen as a mounting material for three reasons: none of the Ta 

emission peaks overlap Th or other peaks of interest, Ta is easier to spot weld than many 

other metals, and Ta is rigid at the thickness needed for a backing plate.  A rectangular, 

L-shaped Ta piece was mounted to the Ta backing to support the short height of the 

crystal so that the front side would not be sputter etched by the Ar
+
.  The other three 

crystal sides were secured by triangular, L-shaped Ta foil partially bent over the top.  The 
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Ta foil is naturally oxidized and has impurities which appear in the XPS spectrum.  

Figure 14 depicts the crystal mounted to the Ta foil plate.  The Ta foil backing plate and 

small holding arms potentially could reduce the charging on the sample without resorting 

to a flood gun or metal screen [27, 28].   

 

Figure 14. ThO2 single crystal #8a mounted to Ta foil plate.  The crystal was 

mounted on three sides by triangular Ta pieces.  The white rings insulate a 

thermocouple used to measure temperature of the sample.  The circular device 

behind the sample holder is the argon sputtering gun. 

 

The raw data plots do not account for the system’s work function (4.3 eV).  The 

Ta binding energies shift by the system work function.  The Th binding energies shift by 

both the system work function and the amount of surface charging.  Attempting to 

calibrate against theAu 4f or C 1s, does not fully correct the ThO2 spectra.  Thus, all 

energies in XPS spectra are the “as measured” kinetic energies subtracted from the 

excitation energy according to Equation 31. 
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Besides visually inspecting binding energy shifts, data were analyzed for relative 

height, total intensity, FWHM, and energy shift.  Because it is the largest and most 

resolved peak, the Th 4f 7/2 peak, at 334.9 eV [29] was used as the primary peak for 

comparison to other peaks.  All processing of the peaks’ geometry was completed with 

Igor 6.2.2.2 (survey scans) or PeakFit 4.0 (regional scans) as in Figure15. 

 

 

Figure 15.  The PeakFit routine fits the Th 4f peaks post sputtering.  The dots in the 

upper plot are actual counts and the red line is the sum of peaks in the lower plot.  

The energy values in the lower plot mark the Gaussian centroid. 

 

The secondary electron background was subtracted using a linear slope.  Savitsky-

Golay and Fast Fourier Transform filters were used to smooth the spectra.  All peaks are 

considered Gaussian.  The peak shape (height and FWHM) was determined by fitting a 

Gaussian to the peak and then finding the components based on  

 

201
( )

2
0

x x

wy he y




  , (34) 

  
Pk=Gauss Amp  5 Peaks  

r^2=0.992453  SE=2638.6  F=3625.66

336 657

346.464

352.945

355.762

362.738

330340350360370

Energy [eV]

-50000

0

50000

100000

C
o

u
n

ts

-50000

0

50000

100000

C
o

u
n

ts

0

50000

100000

150000

C
o

u
n

ts

0

50000

100000

150000

C
o

u
n

ts Th 4f5/2
Th 4f7/2



44 

where y is the number of counts, h is the height of the peak, w is width of the peak or the 

standard deviation of the peak, x0 is the binding energy, and y0 is the baseline height.  The 

PeakFit software automatically computed the area under the peaks, while Mathematica’s 

definite integral process was used to determine the area based on the height, h and 

FWHM provided by Igor software.  The width of the peak, w, is determined by

2 ln(4)FWHM w .  
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IV. Results and Analysis 

4.1 Results and Analysis of the As-Grown ThO2 Crystal 

The as-grown ThO2 crystals have significant surface defect and impurity 

concentrations.  The hydrothermal growth technique uses a mineralizer, CsF, to partially 

dissolve ThO2 and redeposit it onto the seed crystal.  This mineralizer was incorporated 

into the crystal based on PES measurements.  Also, atmospheric contaminants of H2O, 

OH, and carbohydrates adhere to the surface.  As the crystal cools and the autoclave 

depressurizes, the crystal growth process changes, resulting in the growth of plateaus, 

plane edges, and other two or three dimensional formations.  Finally, Ta foil was used as 

a backing and mounting metal, which provides additional XPS signatures. 

4.1.1 XPS Ta Foil Peaks and Baseline Th Peaks 

 Although Ta foil electron binding energy peaks do not overlap with Th emission 

peaks, the Ta signatures could be obscured by crystal impurities.  Comparing the XPS 

spectrum of the Ta foil backing to the XPS spectrum of the as-grown crystal provided 

insight into peaks associated with the crystal, as in Figure 16.  The Ta 4d doublet peaks at 

about 235 eV and 245 eV are noticeably resolved.   

The Ta 4p3/2 at 408 eV, however, is not well-defined but can be resolved using 

peak fitting methods.  Since Ta metal oxidizes readily to Ta2O5 there is an O peak at 535 

eV associated with Ta2O5 and the Ta O peak has a shoulder associated with water 

adsorbed on the Ta surface.  Ta also bonds with atmospheric C, which has an emission 

peak located at 290 eV.  In this research, the O and C peaks associated with Th are 





47 

 Other impurities in Ta include peaks near 350 and 400 eV.  The peak at 350 eV is 

between the two Th 4f peaks and could distort the peak shape or give false indication of a 

shoulder.  Thus, special care in crystal alignment normal to the electron analyzer reduced 

the Ta peaks to be indistinguishable from the spectral noise.    

 Three sets of Th peaks are resolved in the baseline spectrum.  The 5d peaks near 

100 eV are well-resolved because of low binding energy.  These electrons must have high 

kinetic energy, EKE.  The high EKE means that the electrons escape the crystal with 

minimal down scattering and that charging has less influence. Both affects improve the 

resolution of the low binding energy peaks. The 4d peaks near 700 eV are less well-

defined because the kinetic energy of the electrons is less and thus are downscattered 

more easily, as shown in Figure 16.  Since these peaks are nearly the same energy as 

several impurity peaks they will are used to compare the impurities.  The Th 4f7/2 peak at 

347 eV is the main Th peak (both in height and area) and is used as a comparison tool for 

other peaks.  The significant 4f7/2 peak intensity results in a satellite peak at 342 eV due 

to Al-Kα 3, 4 emissions [24].  The shake-up peak of the Th 4f7/2 results in a shoulder on 

the lower binding energy side of the Th 4f5/2 peak, and the shake-up peak of the Th 4f5/2 

lies 7 eV higher in binding energy.  The locations of the shake-up peaks give an estimate 

for the band gap of 7 eV. 

4.1.2 Hydrothermal Growth Mineralizer Impurities in the As-Grown ThO2 Crystal  

CsF is within the near surface region of the sample.  The Cs 3d peaks appear at 

737 and 751 eV, (NIST value of 724.5 and 739.4 [33]) and the F 1s peak appears at 697 

eV (NIST value of 685.9 [33]).  These values are shifted due to sample charging and the 
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system work function as in Section 4.2.3.  The Cs and F peaks do not appear in the Ta 

foil spectrum (Figure 16).  The peaks near 700 eV are associated with the ThO2 crystal.   

 

Figure 17. F and Cs impurity plot.  The light blue spectrum is the as-grown crystal, 

the red line is after sputtering, the green line is after the first heating sequence, and 

the dark blue line is after the second heating sequence.  The two unlabeled peaks are 

the Th 4d peaks. 

  

4.1.3 Atmospheric Adsorbents on the As-Grown ThO2 Crystal 

 O and C containing molecules are known to be adsorbents on the surface of ThO2, 

and O is located within the bulk as the oxide of ThO2.  The C oxidation state causes a 

chemical shift in the binding energy of electrons resulting in a change in their measured 
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kinetic energies.  The small shoulder on the higher binding energy O 1s ThO2 peak (544 

eV) is attributed to OH adsorbed onto the surface (Figure 18).  Some of the contaminants 

are bound strongly enough to not vaporize at 10
-9

 Torr since they appear in the XPS 

spectrum at those pressures.   

 

Figure 18.  O and C peaks for the as-grown ThO2 crystal.  The peaks on the right in 

each spectrum are associated with Ta.  The peaks on the left of each spectrum are 

associated with the crystal. 

 Although exotic final state effects are possible with s-character electrons as in 

Li2O [34], the C 1s and O 1s peaks in this research are not spin-orbital doublets nor are 

the doublets due to multi-electron final state effects.  The C 1s peak and O 1s peak 

associated with Ta are lower in binding energy than the C 1s and O 1s peak associated 

with ThO2.   The decrease in the Ta associated C 1s and O1s from the red, green, and 

blue spectra is due to refined placement of the ThO2 crystal in front of the electron 

analyzer.  The magnitude of decrease in Ta bound C intensity is proportional to the 

magnitude of decrease in Ta bound O. 
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4.1.4 Roughness of the As-Grown ThO2 Crystal as Measured by AFM 

 The surface roughness is best measured with atomic force microscopy (AFM).  

Both types of data acquired by the AFM, tapping mode surface scan and adhesion force 

calibration, provide insight into the surface characteristics.  Figure 1 presents the 

as-grown ThO2 crystal through an optical microscope as multiple faceted, shiny clear and 

white giving the perception of a flat, smooth surface; however, the crystal is not smooth 

at the atomic level.  The total surface deviation is nearly 100 nm as in Figure 19.  Surface 

contaminants, impurities, and water could also motivate this surface roughness.   

 

Figure 19.  3 x 3 μm initial surface feature scan by AFM.  The surface is severely 

pitted with large features.  These features are either contaminants or crystal, but 

will decrease the surface adhesion due to reduction in the tip surface area contacted.   

 

 Figure 20 depicts the adhesion forces of each of metal to the as-grown ThO2.  

Force measurements at different locations on the crystal surface varied substantially, as in 

Figure 20 a).  The measured error is due to surface feature variability and effective 
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oxidized.  The oxidation layer attracts water through hydrogen bonding and capillary 

forces.  Gold is hydrophobic and does not oxidize readily.  It should not have a 

significant amount of water on its surface.  Therefore, capillary forces should be present 

in indium metal adhesion measurements and not be present in gold measurements.   

Plotted in Figure 22 is the adhesion spectrum for In and gold demonstrating the 

extension (jump) and retraction (break-free).  An interesting phenomenon occurs in the 

“snap” region of the break-free of indium.  The indium tip in normal atmosphere exhibits 

two regions of different slope; one near 25 nm where the slope is large, another at 30 nm 

where the slope is lower and curved.  This reveals the affect of two forces: the longer 

range capillary force and the shorter range van der Waals and dipole-induced dipole 

force.  The gold metal tip spectrum does not have the longer ranged force as its “snap”  

region is 2 ± 1 nm while In snap region is 13 ± 2 nm.   

Since the gold spectrum does not have the characteristics of capillary adhesion 

force, the “jump” force should be small; although, it should be the first force encountered 

as the tip approaches the surface, and the water from ThO2 wets the surface of the metal.  

The “jump” force associated with In is certainly attributable to the capillary force.  

Surprisingly, however, the “jump” force exists in the gold extension spectrum, even if it 

is significantly smaller than the indium jump force.  The gold adhesion force during 

retraction is six times larger than the extension “jump” force, but for indium the adhesion 

force during retraction is only 2.5 times larger than the extension force.   
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 The crystal surface has large variations that influence total adhesion force 

adhesion variability by location and magnitude of capillary force.  Significant impurities 

reside on the surface and near bulk.  Systematic sputter etching and heating eliminates 

many of these sources of variability. 

4.1.6 Surface and Interface Energy Computations for the As-Grown ThO2 Crystal  

 The total adhesion force is computed from the interface energy by the sum of both 

the non-capillary and the capillary force contributions 

 4 ( ) 4 cosadh t tw cw tc t LF R R          . (35) 

The capillary force term cannot be combined with other adhesion force term.  Although 

both contain the radius of the tip, the assumption that this radius is the same for both the 

capillary force and all other forces is not correct.   

The non-capillary force radius is smaller than the actual radius.  Surface 

roughness increases the distance D between the crystal surface and the metal tip.   

Figure 23 depicts a rough surface and a curved tip that contacts only parts of the surface.  

This results in a larger D, causing a larger denominator in Equation 2, and results in a 

smaller FvdW.   Thus one could measure the increase in average distance and conduct in 

integral in Equation 7.  However, continuing the assumption that the tip is perfectly 

spherical and the crystal surface is completely planer, one can use Equation 8 as 

equivalent statement.  To continue this assumption, Rt,non-cap must become the effective 

radius, Rt,non-cap,eff.  Therefore, as the surface becomes more rough, the average distance, 

D, between the tip and crystal increases and thus Rt,non-cap,eff decreases. 
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

    , (37) 

where γT is the interface energy used to generate the adhesion force of the tip to the 

crystal surface and is the measured quantity in this research.  This equation is not found 

in literature, and it is a novel method for investigating the adhesion forces of two 

surfaces, given by a third surface—including both capillary and non-capillary forces.  

 To compute γT, the Rt,eff,non-cap is estimated to be 20 nm given the tips were 

manufactured with a radius of curvature of 10 nm and approximately 10 nm of metal is 

deposited on each tip.  An estimated 25% of the tip provides contact with the crystal 

surface giving an Rt,eff,non-cap of 5 nm.  The γT in Table 5 is calculated by dividing the 

adhesion forces plotted in Figure 21 by 4πRt,eff,non-cap.     

Table 5.  As-grown interface energy estimates for metal tips onto ThO2.  The 

interface energies are computed with an effective tip radius of 5 nm.  

γT [Jm-2] Au In Ni Ti 

As-Grown Wet 0.25 ± 0.02 0.21 ± 0.02 0.17 ± 0.03 0.15 ± 0.05 

As-Grown Dry 0.28 ± 0.02 0.16 ± 0.03 0.12 ± 0.02 0.11 ± 0.06 

 

 The adhesion force of gold increases with increasing humidity.  Because the tip is 

hydrophobic, the last term of Equation 37 should be nearly 0, since the effective capillary 

radius of the tip is near 0.  A decrease in humidity should increase the residual interface 

energies γtw and γcw.  The reduction in adsorbed water changes the surface chemistry and 

increases the residual interface energy according to the Dupre Equation, Equation 11.  

Since the crystal surface geometry does not change during the dehydration process, γtc 
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the metal tip and crystal surface do not satisfy dangling bonds, dipoles, etc, which could 

be interpreted as poor lattice match.  These facts become critical when describing the post 

cleaning crystal. 

4.2 Changes in the ThO2 Crystal during Sputtering, Heating, and Dehydration  

4.2.1 Heating Reduces the Mineralizer Impurities 

The F and Cs peak intensities dramatically change during the sputtering and 

heating process.  The broad, barely perceptible impurity peaks of the as-grown crystal 

actually become sharper and more resolved with sputtering (Figure 17 in Section 4.1.2).  

In fact the height of the F peak nearly doubles from the initial scan to the post-2000 eV 

sputter scan, and the F 1s to Th 4f7/2 ratio rises from less than 1% to 7%.   Considering 

that the Th peak is also becoming more resolved, this improvement is significant.  The 

sputtering removes the surface atmospheric contaminants increasing peak resolution and 

exposing more of the F and ThO2 surface.  Additional sputtering removes further 

impurity and crystal layers, but exposes more F.   

Heating the sample then drives off the exposed F.  Figure 24 depicts the results of 

both heating runs.  After the 673 K annealing cycle, when the sample is at 300 K, the F 1s 

to Th 4f7/2 peak ratio is less than 1%.  Because of the small signal to noise ratio at 

700 eV, the error in the F peak area is large, up to 50%.  However, the reduction from 7% 

post sputtering to less than 1% is statistically significant. 
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Figure 24. Fluorine to thorium peak ratio.  The plot shows the influence of heating 

on the fluorine peak.  Successive heating reduces the ratio to below 1%.  Heating of 

the sample drives off fluorine from the surface.  The error bars represent standard 

error based on the R-squared value of the peaks.  The large error is due to the small 

signal to noise in the region 

 

The Cs impurity peaks also undergo increased resolution with surface sputtering, 

but it is less significant than the F resolution.  The Cs 3d5/2 peak intensity increases from 

9,000 counts initially to 14,000 counts after all sputtering, but the ratio of peak area to the 

Th 4f7/2 stays constant at around 8 ± 3%.  The Cs, however, is not driven off by 

annealing.  The Cs 3d5/2 peak to Th 4f7/2 peak starts at 11 ± 2% before heating, and is at 

10 ± 2% after the first heating, and drops to 9 ± 2% after the second heating.  Considering 
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the large error in this region of the spectrum due to small signal to noise, the drop in ratio 

percentage is within the error and thus statistically inconclusive. 

Because all peaks become more resolved with sputtering, it is difficult to 

determine if and how much mineralizer impurity is removed.  The peak resolution 

increases at a nonlinear rate with sputtering energy, and the electrons escape the surface 

without down-scattering or other peak broadening events.  Thus the improvement in 

peaks can be attributed to the cleaning of the surface.  Since XPS is a surface analysis 

tool, the depth of the mineralizer inclusion into the bulk is unknown, although previous 

TOF-SIMS experiments indicate it is deposited within the first 100 nm of the crystal 

surface [22].  In either case, additional sputtering, perhaps at higher energies, or heating 

to higher temperatures is required to remove the Cs.   

4.2.2 Heating Changes the Concentration of Atmospheric Adsorbents 

 CO, CO2, and other organic molecules should adsorb to the surface of  

ThO2 [7, 35].  However, the C 1s peak associated with ThO2 is nearly symmetric.  

Deconvolution results in two curves that are approximately 2 eV separated with the most 

intense peak at lower binding energy.  The C 1s and O 1s peaks associated with the Th 

both shift in energy due to charging.  The C 1s peak shifts almost 4 eV (Figure 25).  

During both annealing processes, the larger peak’s intensity varied between 18-22% of 

the Th 4f7/2 peak, and the smaller peak varied between 1–3% of the Th 4f7/2.  Heating the 

crystal to 675 K did not remove the adventitious C nor change its oxidation state to a 

measureable extent with this technique.  This is understandable as many researchers heat 

the sample to 1000 or 1075 K to drive off contaminants from Th or ThO2 [24, 31].   As 
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stated in section 2.2, the (111) face should oxygen terminate, which would lead to the 

conclusion that CO and CO2 adhere to the crystal surface.  If the organic C is liberated by 

the vacuum, this matches the two carbon peak theory.   

 

Figure 25.  The C 1s peaks during 2nd heating experiment.  The C 1s on the 

Ta peak (right) does not shift with heating.  The C 1s on ThO2 peak (left) shifts 

towards lower binding energy as the crystal is heated.  “Heat” label is during the 

heating phase of the cycle and “Cool” is during the cooling phase of the cycle.  This 

plot has a 5 point, moving-average smoothing function.  The system work function 

and sample charging is not accounted for in this spectrum (the Ta associated C 

should be at 285.5 eV [33]). 

 

Even with the 7 eV of charging removed, the C associated with ThO2 has about   

1 eV higher binding energy than the C associated with Ta.  This is most likely caused by 

C present with different oxidation states, and the C is chemically shifted due to the 

substrate to which they are adsorbed.   
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The OH peak on the shoulder of the Th O 1s peak decreased slightly with heating.  

The O 1s peak associated with O bonded to Th in the crystal lattice remained nearly 

constant at 25% the intensity of the Th 4f7/2 peak (Table 7).  The OH shoulder, at the 

higher binding energy, decreased by nearly half when heated to 675 K (Table 7).  

Annealing at higher temperatures should remove the OH shoulder.   

Table 7.  O 1s ratio peak intensity changes after sputtering and heating.  The O 1s 

peak intensities are compared to the Th 4f7/2 peak of that spectra. 

Area Ratio O 1s Th-O O 1s OH Shoulder 

Post 673 K heat 25 ± 2% 5.7 ± 1.1% 

Post 573 K heat 25 ± 2% 7.2 ± 1.8% 

Post sputtering 23 ± 2% 11 ± 2% 

Baseline 26 ± 4% 11 ± 3% 

 

4.2.3 Heating Changes the Quantity of Charge on the ThO2 Surface  

 All ThO2 peaks have binding energy shifts as the crystal is annealed.  This is 

solely due to the charging of the ThO2 crystal. The first indication of the charging was the 

investigation of C 1s peaks, which are plotted in Figure 25.  The C peak associated with 

Ta shifts less than a few tenths of an eV from its original location.  The Ta foil is 

grounded and is not influenced by charging phenomena.   

The locations of Th peaks in ThO2 have not been reported in literature for single 

crystals.  Most values reported are of ThO2 powder or of Th metal with the surface 

oxidized to a ThO2 thin film [24, 29].   Since XPS is a surface technique, these peaks 

should be at the same binding energy; however, the previously reported values did not 
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have the peak shifting due to crystal charging.  The measured values, once shifted to 

account for the charging and work function of the system, closely match the values of 

Fuggle and McLean.  However, they do not perfect align, especially the further they are 

from the Th 4f7/2 peak, as indicated in Table 8. 

Table 8. Measured thorium binding energy compared to previously reported values.  

The experimental binding energy values are from the post sputter, post heating 

spectra.  PeakFit 4.0 was used to generate the Gaussian fit to the peaks.  The shifted 

binding energy accounts for the system work function and surface charging.   

Orbital Experimental 

Binding 

energy [eV] 

Shifted 

Binding 

Energy [eV] 

Fuggle 

Binding 

Energy [eV] 

[29] 

McLean 

Binding 

Energy [eV] 

[24] 

5d5/2 98.9 ± 0.1 87.4 87.0  

5d3/2 106.0 ± 0.1 94.5 94.0  

4f5/2 K-α 336.2 ± 0.2 324.7  325. 

4f7/2 346.42 ± 0.01 334.9 334.9 335.0 

4f7/2 satellite 353.7 ± 0.2 342.2  343. 

4f5/2 355.72 ± 0.02 344.2 344.2 344.3 

4f5/2 satellite 362.9 ± 0.1 351.4  351.7 

4d5/2 686.98 ± 0.06 675.5 676.2  

4d3/2 724.36 ± 0.08 712.8 713.5  

 

Besides surface charging and the system work function, additional processes 

cause the spectrum energies to contract.  If the Th binding energy values are shifted so 

that the Th 4f7/2 peak matches the literature value, the 5d5/2 binding energy is 0.4 eV 
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KE sys binding crystalE h E Q     , (38) 

where Qcrystal is the effective energy shift cause be charging on the crystal described by 

the regression in Figure 27.   The system work function, ϕsys, calibrated using gold 4f 

peaks is 4.3 eV.  Thus at room temperature and under UHV, 7.8 ± 0.1 eV of  sample 

charging exists.  However, the slope of the regression is 1.002, which should be 1.00 if 

the contraction of the spectrum did not exist.  This contraction is most likely due to a 

non-equilibrium surface convolved heavily with the non-linear dependence of the 

photoelectric mean free path as a function of kinetic energy.  This non-linear dependence 

is well-described by the so-called “Universal Curve” [5]. 

 Using the Th 4f7/2 peak shift as a representative peak, the change in binding 

energy due to annealing is plotted in Figure 27.  Initially the crystal charging and system 

work function summed to a shift of 12 eV compared to the previous experiments [29].  

During the first heating, the sample discharges rapidly and stabilizes at 10 eV, returning 

to approximately 11.5 eV upon cooling.  When the sample is heated a second time, the 

charging follows that same path as the first cooling regime, and above 620 K has a sharp 

decrease in the degree of charging.  Subsequent cooling causes the charging to return on a 

similar path, resulting in hysteresis in the temperature verses surface charging. 

 From the family of sigmoid functions, the Fermi function is fit to the data based 

on the system work function of 4.3 eV.  This, system work function should not change 

significantly with temperature and is confirmed with the C 1s Ta peaks (Figure 25).  The 

minimum value of the function was set to 4.3 eV.  Based on the function, the degree of 

crystal charging is 7.3 eV, and the function inflection point is 698 K.  At 850 K the 

function approaches the asymptote.   
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Figure 27. System work function and charging of ThO2 verses temperature.  

The Th 4f7/2 peak is used to reference the peak shift.  The measured peak location is 

subtracted from the value given by Fuggle [29].  Heating the crystal reduces the 

charging.  The error bars are based on the 95% confidence of peak location 

determined by the PeakFit 4.0 software. 

 

 A secondary peak forms next to the main Th peaks at lower binding energy.  

Figure 28 depicts the Th 4f7/2 at 342.9 eV and the 4f5/2 at 352.3 eV.  The Th 4f7/2 satellite 

peak is normally underneath the Th 4f5/2 main peak and thus the 4f5/2 peak always has a 

shoulder.  But the Th 4f7/2 does not have a shoulder as depicted in Figure 15.  A single 

peak on the Th 4f5/2 shoulder cannot explain the large region on the peak’s left.  Thus 
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both peaks have an additional satellite peak that forms when heated above 575 K.  This 

peak is located 2.0 - 2.5 eV lower in binding energy.   

 

Figure 28. The Th peaks at 675 K during the heating phase of the 2nd
 
sequence.  

The dots in the upper plot are counts, and the red line is the sum of peaks in the 

lower plot.  Blue dots are within 1 σ of the red line, green dots with 2 σ, and red dots 

within 3 σ.  The energy values in the lower plot mark the centroid of the Gaussian 

peak. 

 

 The discharging of the ThO2 with heating has multiple possible explanations.  

First, heating can reduce the band gap of a semiconductor and excite more electrons into 

the conduction band.  But since the band gap of ThO2 is 6-7 eV, a negligible number of 

electrons are expected in the conduction band.  The band gap may be estimated from the 

distance between the main Th 4f peak and its shake-up satellite peak.  At 675 K the 

satellite peak is 7.7 eV higher in binding energy and is comparable to 7.1 eV reported in 

literature [5].   Fm3m crystals are potentially pyroelectric [36], which could reduce 

surface charging.  Heating reduces surface impurity concentration and increases the 



69 

number of dangling bonds and imperfections.  These could be charge transfer sites.  

Finally, the surface could be chemically reducing, becoming more metallic.  This latter 

hypothesis explains the diminished discharging and increase in the Th 4f metallic 

character.  Reduction and oxidation would describe the reversible process in Figure 27. 

4.2.4 Humidity Reduces Adhesion Force for Hydrophilic Indium AFM tip 

 Humidity significantly increases the adhesion force of hydrophilic materials.  

Initial estimates concluded that one hour of purging would be required to achieve a dry 

surface.  A separate study of relative humidity and adhesion force using an indium tip 

proved that humidity significantly alters the total adhesion force validating Equation 5 

and subsequently Equation 6.  Adhesion force was measured in 1.5 minute intervals.  

After 15 minutes the relative humidity surrounding the tip and crystal was below 1%.  

The tip to surface adhesion force had decreased to about 7 nN.  The values of the initial 

adhesion measurements under dry nitrogen from 30 to 60 minutes indicate that the 

surface to tip adhesion force does not change with additional dry nitrogen time (Figure 

29), at least in a significantly measureable manner with this experimental design.  For 

indium, 15 minutes of drying time reduces the total adhesion force by 40%.   
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Figure 29.  Adhesion force as a function of relative humidity.  The adhesion force of 

the indium metal tip onto the as-grown  ThO2 crystal decreases proportionally with 

relative humidity.  After 15 minutes the relative humidity was below the detectable 

limit, and the adhesion force had reached a minimum 7 nN.   

  

Under atmospheric conditions, the peak snap exhibits two slopes: one that 

increases rapidly, and one that increases slowly with a slight curvature (Figure 22).  

Nickel also exhibited a similar response, except the curved portion was a straight line.  

Comparatively, titanium had a minimal double slope.  Gold did not possess any curved or 

double slope during the snap portion (Figure 22).  A rapidly increasing snap force means 

a rapidly decreasing adhesion force.  This line is associated with van der Waals and 

dipole-induced dipole force, which rapidly decrease as D
-6

 as stated in Equation 4.  The 

curved or straight gently sloping line is associated with capillary force.  As humidity is 

reduced by the application of dry nitrogen, the curved snap region minimizes and the 

primary adhesive force contribution is van der Waals and dipole-induced dipole (Figure 

30).   
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Figure 30.  In metal tip adhesion force spectrum on ThO2 and graphite.  The shape 

of the adhesion force snap length is notably different with changing humidity.  The 

two-phased snap, one that decreases quickly and one that changes slowly, becomes a 

single phase snap with low relative humidity.  Indium metal tip on graphite shows 

only one adhesion force.  

 

Graphite is considered to be hydrophobic.  According to Figure 30, the indium tip 

when contacting graphite has an even larger snap slope and a smaller snap distance.  

Again, this straight line snap must be due solely to van der Waals forces.  Thus, although 

the curved In-metal snap region is reduced, there is still an adhesion force due to the 

capillary force at reduced relative humidity.  The nickel tip has the same response as the 

indium.  The gold tip does not exhibit two slopes during the snap phase of retraction.  

Water has minimal influence on gold’s adhesion force to ThO2.  In fact, according to the 

measurements of the as-grown crystal, excess water on the surface decreases the adhesion 
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force from 17 nN to 15 nN.  The titanium tip has a single slope during the snap phase of 

tip retraction; however, the slope is less steep than the gold slope and is proportional to 

the In slope at low relative humidity.  Thus capillary forces do not appear to influence 

gold under any relative humidity measured in this research.  Indium and nickel respond 

dramatically to the amount of surface hydration, while titanium does less so.  Other than 

a comparative methodology, the degree of surface hydration cannot be determined 

directly from these measurements.  

4.3 Impurities and Adhesion of the Crystal at the End of Cleaning  

4.3.1 ThO2 Impurities Reduced 

 Though reduced, an impurity concentration remains on the crystal surface after 

sputtering and heating.  The C 1s peak is nearly unchanged, which is not unexpected 

because 875 K is required to remove C [7].  The F and Cs are revealed after sputtering, 

implying these constituents are in the bulk-surface layer. Only the F concentration was 

measurably reduced by heating.   The most significant improvements after surface 

alteration are the changes in the O 1s peak.  The adhesion force magnitude remains 

largely unchanged, although the deviation of the adhesion force based on location 

improves. 

The O 1s peak improves by a factor of 2 after sputter etching and annealing of the 

sample.  The O peak associated with ThO2 remains nearly constant at 25% of the area of 

the Th 4f7/2 peak.  The OH peak area reduces from 13% to 6% of the area of Th 4f7/2.  

Sputtering resulted in a more Gaussian O 1s profile as in Figure 31. 
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Figure 31.  The ThO2 (left peak) and Ta (right peak) O1s peaks as a function of 

sputter etching (left side chart) and heating (right side chart).    

 

4.3.2 Th 4f Peak Improvement 

The Th 4f peaks have improved in intensity (area) and resolution as in Figure 32.  

The Th 4f7/2 peak intensity improved from 116,000 ± 4,000 counts to 300,000 ± 5,000 

counts and the resolution improved by a factor of 3.  Based on Equation 32, the energy 

resolution is a linear combination of X-ray line width, analyzer detector error, and line 

width of the photoelectron emission.  During the experimentation, the analyzer detector 

error and X-ray line width did not change, thus the resolution improvement is a result of 

the improvement in photoelectron emission line width.  Based on Equation 33, the 

thorium peaks become more resolved with nearly constant FWHM (Figure 32).  The 

increased resolution also demonstrates improved surface variability. 
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Figure 32.  Thorium 4f peaks before and after the surface processing.  From left to 

right: Th 4f5/2 satellite peak, Th 4f5/2 peak, Th 4f7/2 satellite (shoulder), Th 4f7/2 peak, 

Th 4f7/2 peak due to K-alpha 3,4. 

 

4.3.3 Sputtering Improved Surface Variability 

The XPS resolution indicates improvement in surface geometry.   As the surface 

is sputter etched, surface features are removed, but defects are generated.  Obviously, 

sputtering is a destructive process and cannot create a perfect crystal face.  Sputtering 

creates defects, occlusions, and irregular surface organization while reducing features.  

These imperfections scatter the ejected electrons.  Improvements in counts under the peak 

coincide with increased energy spread of the peak (Table 9). 
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Table 9.  Resolution (RES) of the Th 4f7/2 peak before and after sputter etching.  

Values are derived from Igor software and error limits the significant figures.  

Th 4f7/2 FWHM [eV] H [counts] RES [eV 10
-5

] 

As-grown 1.61 47,600 3.38 

Post sputter 

1000 eV 

1.81 57,400 3.15 

Post sputter 

1500 eV 

1.80 85,700 2.10 

Post sputter 

2000 eV 

1.93 135,000 1.44 

 

An AFM surface scan clearly demonstrates the cleaning of the surface due to 

sputtering.  A histogram of pixel heights above an arbitrary minimum value is plotted in 

Figure 33.  The AFM software converted the color pixel data into height by pixel data, 

which was then imported into MATLAB.  The pixels were summed based on height bins 

of 2.0 nm for chart a) and 0.75 nm for chart b).  The data scale on the initial crystal is 

100 nm, while the data scale on the sputtered surface is 50 nm.  The as-grown crystal 

surface has more surface variation than the sputtered surface.  The 10% max width of the 

as-grown is 60 nm, while the 10% max width of the sputtered surface is about 20 nm, a 

reduction by a factor of 3.  The distribution of surface heights is nearly Gaussian in 

shape.  From this information, the surface has changed and although not atomically 

smooth, the surface features are significantly reduced.   

However, these measurements were not from the exact same locations of the 

crystal surface.  Each scan was 3 x 3 µm, and it is nearly impossible to find the exact spot 

repeatedly, although care was taken to be as close as possible.  Consequently, it is 

assumed that these plots are representative of the rest of the crystal surface. 
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     a)  

     b)  

Figure 33. Changes in ThO2 single crystal geometry and topography histogram.  

Initially the crystal was extremely rough with wide variation in surface height, 

almost 50nm, plot a).  After all sputtering runs the variation in crystal height 

reduced to about 15nm, plot b).  Bins size of 2.0 nm and 0.75 nm were used to create 

plot a) and b) respectively.  

 

 Another unique feature of the sputtered surface is cracking.  These cracks may 

have formed either during the growth process or during surface processing.  The cracks 

are locations where water and adsorbents reside and result in variation in the adhesion 

force measurements (Figure 34).   
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Figure 34. ThO2 crystal 8a tapping mode surface scan after sputtering and heating.  

The crystal still has surface features including cracks, plateaus, and adsorbed 

mounds.   

 

Even with the surface feature reduction, the adhesion force for the metal tips 

remained comparable to the original numbers, except for gold.  Gold originally had a 

large adhesion force, but after the surface processing, the adhesion force reduced by two 

fold, which will be further analyzed in Section 4.3.4.  The In adhesion changed very little 

from the beginning to the end of processing and water continued to modify the magnitude 

of the measured adhesion force.    

Direct comparison of capillary force and other adhesion forces between humidity 

conditions is difficult.  From Equation 5, the reduced humidity means less surface 

hydration; and from Equation 11, the work required to separate the water from the 

surface, W12, is reduced.   Since the surface energy of the metal, γm, crystal, γc, and water, 

γw, do not change, a reduction in W12 causes an increase in residual interface energy of the 
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crystal, γcw, and metal γtw.  The increase in interface energy increases the total adhesion 

force that is not due to capillary force component in Equation 10.  Conversely, the 

decrease in humidity decreases the surface hydration adsorbed and decreases the capillary 

force contribution to the total adhesion force per Equation 37.  

 Thus for metal tips (In and Ni) that respond strongly to the capillary force as the 

main attractive force, the reduction of surface adsorbed water reduces the total force.  

However, for metal tips (gold) that rely heavily on interface adhesion, a reduction in 

humidity actually increases their adhesion force, as in Table 10.  This is primarily due to 

the increase in interface energy, as the water does not satisfy the crystal surface energy.   

Table 10.  AFM adhesion force measurements on ThO2.  Units are in nN.  From the 

as-grown to the cleaned surface, the adhesion force of gold is reduced, while indium, 

nickel, and titanium remain the same.  The variation in adhesion force due to 

irregularity of the crystal surface is reduced. 

[nN] Au In Ni Ti 

Humid as-grown 16 ± 1 13 ± 1 11 ± 1 10 ± 3 

Dry as-grown 18 ± 1 10 ± 2 7.7 ± 1.0 7 ± 4 

Dry post sputter 

and heating 

8.5 ± 0.5 10 ± 2 6.2 ± 0.7 8.5 ± 0.8 

 

The standard deviations of the adhesion force measurements at the 9 locations 

dropped significantly.  Gold, nickel, and titanium metal tips have a reduction in adhesion 

force 1σ by half or more.  Unfortunately, the In tip was damaged during the humidity 

measurement study.  To ensure similar results for the as-grown crystal to the post 

cleaning crystal, two new tips were used in the final measurements.  The two tips 

generated different responses, one at about 8.5 ± 0.5 nN and the other at 12.5 ± 1.0 nN, 
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The resulting increase for the titanium adhesion was expected, but gold and nickel 

both decreased.  The post-cleaning crystal measurement for the titanium and nickel 

adhesion force was within 1σ of the as-grown crystal measurement, and thus it is 

inconclusive on whether the changes are due to the uniformity of the surface increasing 

the effective radius or due to surface location deviations.  However, gold’s dramatic 

decrease must be attributable to another condition besides tip radius or surface 

uniformity.  Apparently, the cleaned surface under dry conditions has different adhesion 

properties than the as-grown surface under similar conditions.  Although some 

atmospheric contaminants such as CO2 and CO were removed by surface processing, the 

contaminants quickly returned once the crystal was removed from vacuum.  

Unfortunately, the adhesion measurements cannot be resolved into the cause of the 

adhesion force. 

Using Equation 37 for the cleaned crystal under similar humidity conditions, γtw, 

and Rt,eff,cap are constant while γtc and Rt,eff,non-cap change.  This is the complexity: 

Rt,eff,non-cap  should increase with decreasing features, but the magnitude is unknown; γcw  

may or may not change, and its magnitude and sign are unknown .  Thus the value of 

interest, γtc, should change in an uncertain manner.  However, a literature review does 

provide a few tentative solutions. 

Individual values for surface energy and interface energy have been measured and 

computed.  The surface energy, γ1, for the metals used are well known [37].  The surface 

energy of ThO2 has also been computed as 1.15 Jm
-2

.  Since the surface tension of water 

is also known, Equation 11 could be used to compute the interface energy of the metal 

(γtw) and crystal (γcw) except the work reduction is unknown.   Several researchers have 
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investigated the interface energy as a function of humidity and determined most metals 

hydrate (with other atmospheric contaminants) until their surface energy reduces 

to 0.045 Jm
-2

 under dry conditions and 0.038 Jm
-2

 for humid conditions [38].  Thus γtw 

should be constant since the humidity was controlled in the same manner before and after 

sputtering. 

This assumption may not hold for the ThO2 crystal.  Based on the Kelvin equation 

(Equation 5), the volume of water is proportional to the humidity; however, since the 

surface conditions changed by cleaning, the Kelvin radius may have also changed.  Thus 

the exact magnitude and direction of γcw is unknown.   

Table 11.  Estimated interface energy of metal to ThO2 crystal.  The values are 

based on an effective tip radius, Rt,eff,non-cap, of 5 nm.   

γT [J m
-2

] Au In Ni Ti 

Dry as-grown 0.28 ± 0.02 0.16 ± 0.03 0.12 ± 0.02 0.11 ± 0.06 

Dry final 0.14 ± 0.01 0.17 ± 0.03 0.10 ± 0.01 0.14 ± 0.01 

 

Values for γT listed in Table 11 are based on an effective tip radius, Rt,eff,non-cap of 

5 nm and assume that it is the same for the as-grown and cleaned crystal surfaces.  Based 

on the results from the graphite study, decreasing the surface features increase the 

adhesion force meaning an increase in the Rt,eff,non-cap.  To make a comparison of the 

metals, this increase must be considered the same for each tip and is constant.   

An illustrative example of the change in the value of γtc is in Table 12.  The value 

for γcw is arbitrarily set to decrease by 0.04 Jm
-2

.  Between the tip and crystal, the residual 

interface energy increases for gold, but decreases for the other metals.  Even with a 
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different value of γcw, the gold γtc value will always be more positive than the other 

metals.  By cleaning the crystal surface, the adhesion of gold to ThO2 decreased 

dramatically.  Impurities, defect sites, and/or adsorbed material enhanced gold adhesion 

to the crystal. 

Table 12. The change in estimated interface energy values from the as-grown to the 

cleaned crystal.  For comparison the Rt,eff,non-cap is estimated to be 5 nm and γcw is 

estimated to decrease by 0.04 Jm
-2

.   

[Jm
-2

] γT γtw γcw γtc cos(θ)Rt,eff,cap 

Au -0.14 N/C -0.04 +0.10 N/C 

In +0.01 N/C -0.04 -0.05 N/C 

Ni -0.02 N/C -0.04 -0.02 N/C 

Ti +0.03 N/C -0.04 -0.07 N/C 

 

 Under the conditions of this experiment, the adhesion force of the metals to the 

surface processed ThO2 is In>Au~Ti>Ni.  This trend is valid under the following caveats: 

every metal adsorbs water and atmospheric contaminants resulting in the same interface 

energy, the tip metals are unoxidized or chemically unaltered, the tips are the same size 

with the same effective contact radius, and the residual energy for each metal is the 

equivalent.  Unfortunately, Equation 37 only explains trend information and is unable to 

predict or compute accurate values for the interface energy and adhesion force.  

However, since the goal of this work was to determine the efficacy of using AFM and 

XPS techniques to identify a potential metal contact from a set of candidates, this has 

proven to be successful.  The precise values may need additional theoretical and 

experimental measurements. 
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V.  Conclusions and Recommendations for Future Research 

5.1 General 

 Sputter etching the ThO2 crystal surface at 2000 eV at 75° with respect to the 

surface normal significantly improves the surface uniformity.  The Th 4f peaks peak 

resolution improved two fold.  The AFM surface scan analysis reveals three fold 

reduction in the crystal height deviation and results in Gaussian peak profiles.  Finally, 

the standard deviation of the adhesion force measurements improves by a factor of 2.   

Yet, the surface is not smooth enough to increase the total adhesion force and thus 

increase the effective radius of the tip. 

Sputtering and heating reduce the number of impurities in the sample.  Sputtering 

reveals F and Cs concentrations in the top crystalline layers; their associated XPS peaks 

resolve with high energy sputtering.  Annealing is able to reduce the F 1s signature to less 

than 1% ratio with Th 4f7/2, but the Cs peaks remain.  This is either due to cesium’s very 

low lattice mobility, or more likely, not enough energy was provided to sputter etch entire 

surface layers (a purposeful result to prevent chamber contamination).   Heating reduced 

the OH shoulder on the Th O 1s peak by half (from 11% to 5.7%), but C was not 

measurably reduced by the sputtering or heating cycles.  Additional heating is required to 

remove the Cs and C from the ThO2 surface.   

Heating the crystal from room temperature to 675 K reduces the amount of 

charging from 7.3 eV to 4.0 eV.  The Fermi function fits the discharging curves and 

predicts the amount of charging for temperatures in excess of 675 K.  The binding energy 
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formula must be corrected for charging with the inclusion of the Fermi function 

(Equation 38).  The metallic Th 4f peaks appear in the XPS spectrum at 2.5 eV lower in 

binding energy than the oxide Th 4f peaks.  The most likely explanation is that the ThO2 

surface is becoming more metallic allowing surface discharge and increasing surface 

metallic characteristics  through oxidation and reduction mechanisms that have not yet 

been published in literature.  Because of the charging of the sample, the C 1s and O 1s 

peaks are resolved from the Ta associated C 1s and O 1s. 

 Measuring the adhesion force of metal tips to ThO2 using AFM is feasible and an 

interesting study.  For a surface processed ThO2 single crystal, In has the largest adhesion 

force.  However, the exact nature of adhesion for the different metals is difficult to 

determine.  Since In has a large potential capillary contribution, gold could have the 

largest adhesion force due to the interface energies.  All interface energy and adhesion 

force equations depend on effective tip radii.  Unless each tip’s radius is measure before 

and after each AFM spectrum, the exact radius during the measurement is unknown.  

Thus Equations 36 and 37 may be entirely accurate, but only provide trend information 

and post-data explanation of the results.  Furthermore, even with the knowledge of the 

tips’ radii, the amount of crystal surface contacted by the tip will vary based on the 

crystal roughness. 

Gold adheres better to the as-grown ThO2 surface than to the processed surface.  

If the impurities and defects on the surface result in poor Ohmic contact, then gold is not 

a suitable candidate.  Capillary forces are significant to hydrophilic metals.  An increase 

in capillary force has a corresponding decrease in the residual interface energy of the tip 

and crystal.  Hydrophilic metal tips (e.g. Ni and In) demonstrate substantial decreases in 
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adhesion force with the reduction of water.  Hydrophobic metals (e.g. gold) have a slight 

increase in adhesion force due to increased interface energy of the hydrated ThO2 surface.  

The magnitude of the changes determines the total interface energy increase or decrease.   

Initially, the adhesion force and interface energy is Au>In>Ni>Ti.  Post 

sputtering, In>Au~Ti>Ni for adhesion force and interface energy. From the results of 

these experiments, indium is the best metal to make a contact to ThO2.  The adhesion 

force of the cleaned crystal to indium was the highest under the conditions of this 

experiment.  Indium is influenced by the capillary force, but the complete removal of 

water in a vacuum is not generally feasible.  Initial XPS measurements to ThO2 

conducted at 10
-9

 Torr had an OH shoulder on the O peak.  Thus, during vapor 

deposition, there will be water on that surface.  Indium’s low work function and low 

melting point make it an ideal material to use as a contact material. 

The XPS and AFM combination are suitable methods to monitor the geometry 

and chemistry of crystal surfaces.  Each technique provides multiple data sets with 

interesting features to analyze.  Even now, there is more data that may be analyzed, and 

additional features of each measurement device that may be used to extract more 

information.   

5.2 Future Research 

 A methodology to control the AFM adhesion variables must be determined.  The 

radius of the tip was always unknown and estimated in this research.  SEM measurements 

would alleviate this uncertainty, instead of using graphite as a surrogate to infer tip 

geometry.  The metal that adhered to the surface has a thickness 2-10 nm.  Better control 
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of metal deposition on the tips needs to be maintained.  Some measure of tip-damage 

resulting from measurement is necessary, which the SEM technique may satisfy.  

Measuring with 9 tips at 9 locations would increase the statistical accuracy, although it 

also would increase the laboratory time. 

 Additional hydrophobic metals should be compared to gold.  Aluminum is an 

interesting candidate since it oxidizes readily and is very non-polarizable.  This would 

provide information about the surface van der Waals interactions. 

 The charging and discharging of the ThO2 provides an interesting study of the 

electrical nature of single crystal ThO2.  A Low Energy Electron Diffraction (LEED) 

system emitting low energy electrons could operate as a flood gun and neutralize the 

positive charge building up on the surface.  By reducing the amount of charging, the 

spectral contraction could be analyzed.  Also, by increasing the O partial pressure inside 

the vacuum chamber, the nature of the oxidation and reduction thermodynamics and 

kinetics could be determined.  Heating above 675 K should confirm the Fermi sigmoid 

and provide further evidence to the metallic nature of the surface. 

The contraction of the XPS spectrum due to charging is a unique discovery.  The 

parameters of the linear fit equation have a physical meaning, where the ordinate 

intercept is the work function of the system plus charging of the sample.  The slope is a 

function of the interaction of electrons, at a specific energy (abscissa), with the charged 

crystal surface.   

 Efficient surface processing requires additional investigation as 400° C was 

insufficient to drive off surface adsorbed carbon and oxygen.  Procedures in literature 

specify heating ThO2 to 1173-1273 K for cleaning [31, 35] in order to obtain LEED 
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patterns.   Also heating to higher temperatures will provide ThO2 molecules additional 

energy to overcome surface binding energies for more efficient annealing.   

 LEED is a suitable technique for determining the cleanliness and surface 

regularity of a single crystal.  If the surface is not cleared of contaminants, the low energy 

electrons cannot depart the crystal.  If the crystal does not have long range order, a LEED 

pattern will not appear [35].  If too many surface features exist on the crystal a distorted, 

imperfect LEED pattern is produced.  Because ThO2 has high symmetry, Fm3m, the 

LEED pattern should be simple to interpret [39].  Thus, LEED measurements provide 

another detailed method of analyzing the uniformity of the ThO2 crystal surface. 

 Finally, understanding the influence of humidity and ThO2 surface hydration is 

critical.   Infrared spectroscopy (IR) provides information about the bonding of water at 

the surface.  Scanning electron microscopy (SEM) provides the ability to measure the 

surface angle of water, θ, on various surfaces providing information on capillary force, as 

in Equations 7 and 8.  Under vacuum, AFM would provide adhesion measurements in the 

same conditions that the metal would be deposited, and the humidity related variables 

could be controlled.  The surface and interface energy relaxations of the metal and 

thorium would be at similar conditions.  Finally, the AFM tips should be monitored for 

geometry change and metal removal.    
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Appendix A 

Load lock sample change out procedures 

Vacuum to Atmosphere 

1) Close valve to main chamber 

2) Close valve to turbo pump 

3) Turn off load lock turbo pump: push stop button 

4) Turn of load lock vac ion pump: push “start protect 1” button, push “HV1 on/off” 

button, turn off main switch 

5) Switch off load lock ion gauge: menu, FP control, on/off, up arrow, enter 

6) Switch off argon gun ion gauge: menu, off, enter 

7) Turn nitrogen gas flow at cylinder – ensure slow steady flow 

8) Connect nitrogen hose to load lock fill tube 

9) Twist to open load lock door handle (do not want to pressurize the system) 

10) Open green valve slowly to push nitrogen into load lock – pressure should reach 

about 760 Torr (this can be accomplished from the load lock side, best to monitor 

the pressure 

 

Atmosphere to Vacuum 

1) Close door on load lock and secure tightly 

2) Immediately close green valve on back of load lock (can be accomplished from 

load lock side, step 2 and 3 can be done simultaneously) 

3) Turn off nitrogen flow at cylinder and remove hose from load lock fill tube 

4) Ensure turbo pump is <5000 rpm 

5) Open main valve to turbo pump: twist counterclockwise slowly until hear two 

clicks (valve is now unseated), continue twisting slowly (listen for scroll pump 

audio change – do not overwork the scroll pump) 

6) Draw vacuum to <7.5E-3 Torr 

7) Turn on turbo pump: press start button 

8) Switch on load lock ion gauge: menu, FP control, on/off, up arrow, enter 

9) Switch on argon gun ion gauge: menu, on, enter 

10) Draw vacuum to <1E-6 Torr and allow turbo to reach 27,000 rpm 

11) Turn on vac ion pump: push main switch to on, push “HV1 on/off”, wait until 

voltage reaches 7,000 V, press “start protect 1”. 

Sputtering of sample procedures 

Setup 

1) Set argon gun ion gauge to mBar 

2) Ensure argon line leak valve is closed 

3) Turn off load lock ion gauge 

4) Open valve on argon tank: ensure pressure is 50kPa (first line above 0) 
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5) Open green valve on the argon tank line ½ turn 

6) Slowly open leak valve until >1E-5 mBar pressure in argon gun reaction chamber 

(8ea ¼ turns until pressure increase, but when it does, it is very sensitive) 

7) Turn on the ion gauge in the load lock.  Pressure should be <5.0E-7 Torr. 

8) Degas at least 3x, continue to degas until pressure does not significantly change in 

argon gun reaction chamber 

9) Allow pressure to return to ~1E-5 mBar in argon gun reaction chamber and 

~5.0E-7 Torr in load lock chamber 

10) Close the bypass leak valve with a ¾” open end wrench (this will increase 

pressure in argon gun reaction chamber) 

11) Adjust the leak valve (clockwise) to keep the pressure below 2E-4 mBar 

12)  Select sputter settings  

 a) Factory defined: push recall, push number that represents the settings 

b) User defined: push modify, select parameter to adjust, twist large black 

knob to select value, select next parameter 

13) Operate the argon sputter 

14) Ensure maximum emission current by increasing the argon pressure in argon gun 

by opening the leak valve.  Pressure should be between 1.0 E-4 mBar and 1.5E-4 

mBar. 

 

AFM measurement procedures 

AFM Multimode Startup Procedures 

1) Turn on computer (ns3a) 

2) Turn on all three monitors 

3) Turn on controller computer – toggle switch in the rear of device (allow 30 

minutes for warm-up when taking spectrum 

4) Launch software Nanoscope V5.31r1 

5) Switch multimode from STM to AFM.  Ensure laser light is in sample area 

6) Turn on optical light.  Light control box is located on the back side of the AFM 

workbench 

7) Ensure the slide is in the stage; if not, follow AFM Tip Installation 

8) Ensure tip is in view of the microscope. 

9) Focus microscope onto sample. 

10) Lower tip to sample by toggling switch “down” in pulses until the tip comes into 

focus (tip should look like one section0 

11) Adjust laser onto tip by adjusting the knobs on the upper right hand side 

12) Maximize signal hitting the detector by adjusting the mirror.  Handle behind the 

AFM head. 

13) Move the detector to the center of the laser beam.  The upper and low numbers 

should read near zero.  Back left buttons move the x and y directions.  

14) Adjust the top reading to -0.5 which is negative pressure (tip is still above the 

surface) 
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15) If running a adhesion measurements only, change the surface scan area to 1nm 

before step 16. 

16) Press the green icon microscope button to engage the tip. 

 

AFM Tip Installation 

1) Turn AFM holding plate upside down 

2) Grab the AFM tip with needle nose tweezers at near 90 degree angle 

3) Push AFM holding plate down to open copper holding bar 

4) At a 25 degree angle slide AFM tip under copper holding bar and in between the 

two side holding notches.   

5) Ensure AFM tip is perpendicular to AFM holding plate with freestanding 

microscope. 

6) Ensure AFM head holding bracket is up.  Turn knob behind optical port. 

7) Ensure AFM sample stage (and sample) is below four ball bearing resembling 

supports.  

8) Insert AFM holding plate into AFM head at a 25 degree angle so that divots fit 

over the ball bearing resembling supports. 

9) Ensure holding plate is in the supports. 

10) Close AFM head holding bracket.  Turn knob behind optical port. 

 

AFM Force Measurements 

1) Ensure software is set for contact mode in “other control” box 

2) Set scan size for 1 nm 

3) Choose AFM tip location (relative to (0,0)) in the x and y coordinates 

4) Ensure deflection set point is at 0.5 V 

5) Engage tip by clicking green tip icon 

6) Allow system to stabilize: view scan screen and watch for changes in zscan 

number 

7) Click “view”, “Force Mode”, “Calibrate” 

8) Adjust the range to 500 nm (should not change) 

9) Adjust the scan rate to 1Hz (should not change) 

10)  Adjust the number of samples to 512 (should not change) 

11) Adjust the Data scale so that the peak fits in the window 

12) Adjust deflection setpoint: - is up and + is down, so that the cantilever zero line is 

at 0 deflection. 

13) Adjust the zscan scale: - is left and + is right, so that the adhesion dip is two 

intervals from the left hand side of the screen 

14) Click on the deflection gain setting.  Click the upper portion of the repulsive force 

then click on the lower portion of the adhesive force to attain the slope of that 

curve.  Readjust the data scale if necessary. 

15) Click utility and filename to change the file name 

16) Click the capture image button (camera) to take data. 

17) Click the eyeball button to return to the main AFM screen 

18) Click the red AFM tip button to retract the tip 

19) Complete steps 3-7 and 11-13 and 16-18 for repeating the process.   
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 This study generated interesting information concerning the operations of the 

argon sputtering gun and the vacuum system setup.  The argon sputtering gun axis is not 

up and down, left and right, but at a 30° cant, see Figure A.  Also, the argon ion beam 

does not strike the center of the sample holder, but about 2 mm right of the argon gun 

y axis.  The Ar
+
 beam current is directly proportional to the argon ion partial pressure in 

the argon gun reaction chamber.  Close control of the argon pressure will ensure more 

uniform beam current.  Because the argon gun has a recycling mechanism for low energy 

argon ions, the pressure in the reaction chamber tends to increase with time.  Thus the 

leak valve should be tightened to keep the reaction chamber pressure below 1.5x10
-4

 

mBar.  The working distance of the argon gun to sample plate is slightly larger than the 

manufacturer settings.  Thus the sputtered region is larger than the width settings on the 

control unit.  Beam spread due to charged ion repulsion and nominal beam width cause 

non-uniform sputtering at the edges of the sputtered area.  For uniform sputtering, the 

sample should be entirely contained inside the sputtered area. 

Based on test results, the rastered, low current beam provided the most uniform 

sputter.  Special care of the angle of deflection is required to strike the crystal surface. 
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