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Abstract:

This project seeks to develop new learning algorithms specifically tailored to be efficient
and effective in learning from big data. It aims to achieve this by combining generative
and discriminative learning, exploiting the capacity of generative learning to efficiently
extract useful summary statistics from large data and using discriminative learning to
meld these statistics into a highly accurate classifier.

We have developed two classes of learning algorithm that utilize this overarching
strategy. The first uses discriminative learning to select a generative model. In this
case the generative model is either Averaged n Dependence Estimators (ANDE) or K-
Dependence Bayes (KDB) and the discriminative technique is feature selection. We have
shown that very effective feature selection can be achieved with a single pass through
the training data for each attribute that is finally selected. We have demonstrated two
benefits of feature selection. First, feature selection reduces the bias of the classifier,
which typically decreases error for larger data. Second, feature selection decreases the
memory requirements of the classifier, allowing higher values of n to be used, further
decreasing bias and further reducing error on large data.

The second class of learning algorithm combines generatively and discriminatively
learned parameters. Weighting attributes to Alleviate Naive Bayes’ Independence As-
sumption (WANBIA) uses discriminative learning of weights in an otherwise generatively
learned naive Bayes classifier. WANBIA-C modifies the WANBIA model in such a way
as to enable models that are equivalent to Logistic Regression models to be learned. The
resulting learner creates classifiers that are of equivalent accuracy to those learned by
Logistic Regression; sometimes the classifiers are slightly better and sometimes slightly
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worse, but neither algorithm having a systematic advantage. However, the learning pro-
cess for WANBIA-C is substantially faster than that for Logistic Regression, sometimes
orders of magnitude faster. We have demonstrated that these techniques generalize to
models that directly model higher-order attribute interdependencies and developed a
proof-of-concept system WANJE.

We have also investigated the purely generative techniques of Subsumption Res-
olution and Submodel Weighting in ANDE and demonstrated that they are effective
with higher orders of n and that they are complementary to one another. We intend
these techniques to be incorporated into future combined generative/discriminative ap-
proaches.

In the process of creating algorithms for learning from high-throughput data streams,
we have developed effective algorithms for discretization of streaming numeric data.

1 Introduction

Machine learning algorithms can be categorized into two families, generative and discrim-
inative learners [12]. Generative learners seek to model the joint distribution between
the independent X variables and the dependent Y variable. They classify by calculating
the posterior probability P(Y | X) from the joint probability. In contrast, discriminative
learners seek to directly model the posterior probability, without seeking to model the
probabilities of the independent X variables.

The ANDE learners that we have developed [19] are generative learners that are
parameterized using maximum likelihood estimates. Maximum likelihood parameteriza-
tion is extremely efficient and can be performed in a single out-of-core pass through the
training data. The resulting models have been shown to be highly accurate for moderate
quantities of data. However, discriminative learning is better able to model the desired
posterior distribution when sufficient training data are available.

The current project seeks to combine

e the manner in which the efficient learning of valuable information in a generative
manner with maximum likelihood estimation; and

e the capacity of discriminative learning to more accurately model the posterior
distribution when there are sufficient data to avoid overfitting.

We are pursuing two main strategies. The first uses discriminative learning to select
between alternative generative models on the basis of discriminative performance. The
second uses maximum likelihood parameterization to augment discriminative learning
of discriminative models.

A key theoretical insight that drives our research is derived from the bias/variance
trade-off [12]. Most learning algorithms represent a trade-off between wvariance that
results from overfitting the data, and bias that results from failure to appropriately fit
the data. Low variance algorithms achieve relatively low error on small quantities of
data, while low bias algorithms achieve relatively low error on larger quantities of data.
This is illustrated in Figure 3.
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Figure 1: Learning algorithms that closely fit closely fit complex multivariate distribu-
tions overfit small data, but achieve lower error on large data

2 Scalable discriminative extensions to ANDE

In this line of research we seek to improve the scalability of the Averaged N-Dependence
Estimators (ANDE) family of algorithms. These algorithms are attractive for learning
form large data because their training time is linear with respect to data quantity and
they can learn out-of-core in a single pass through the data. Hence, they can learn
from data that are too large to fit into RAM. Further, their models can be learned
incrementally, and hence they are suitable for streaming data. However, for large data
quantity it is desirable to have low bias [1, 2], and hence it is desirable to have ANDE
with higher values of n. This is problematic because ANDE does not scale well to high
n.

2.1 Background
Averaged N-Dependence Estimators (ANDE) classify using the model
> (@ )Py,a)P(x | y,2s)/ Y d(zs) = Y d(as) >0

Panpp(y, x) oc § se(7) s€(7) s€ () (1)

13A(n-l)DE(y, x) . otherwise

The parameters to the model (P(y,zs) and P(x | y,z,)) are learned by maximum
likelihood estimation in a single pass through the data that can be implemented out-of-
core.
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Table 1: Notation

P(e) the unconditioned probability of event e

P(e | w) the conditional probability of event e given event w

P(e) an estimate of P(e)

Paopi(e) an AODE estimate of P(e)

PanpE(€) an AnDE estimate of P(e)

PwanpE(€) a weighted AnDE estimate of P(e)

P ppsk(€) an AnDE with Subsumption Resolution estimate of P(e)

f’{}VVANJE(e) a WANJE estimate of P(e)

a the number of attributes

Ci the " class

k the number of classes

t the number of training examples in T

v the average number of values per attribute

Yy a value from the set of all classes {ci,...cr}

T a training sample of ¢ classified objects

x = (x1,...,24) an object

X5 the value of the i'* attribute of x = (x1,...,24)

Tij..q} the subset of attributes values from x with the specified indices. For
example, (35, = (72,73, Ts5)

(“s) the set of all size-n subsets of {1,...a}

0(xq) a function that is 1 if 7 contains an object with the value z, other-
wise 0

e the parents of attribute z; in a Bayesian Network Classifier

Ty the parents of the class attribute Y in a Bayesian Network Classifier

Averaged One-Dependence Estimators (AODE) refers to ANDE with n =1 [18].

ANDE models are extremely efficient to learn with low n. Increasing n reduces bias,
which supports more accurate learning from larger data. However, its training time
complexity is O(t (nil)), as we need to update each entry for every combination of the
n + 1 attribute-values for every instance. The time complexity of classifying a single

example is O(ka(?)).

2.2 Weighting and Subsumption Resolution

The first study [26] took two techniques, subsumption resolution [28] and mutual infor-
mation weighting [9] that have been developed for AODE (ANDE with n = 1), assessed
their interaction, and assessed whether they are effective with higher values of n.
Subsumption resolution is an effective technique for rectifying a specific class of
extreme violations of the attribute independence assumption, those where P(z; | z;) =
1.0. In this case P(y | x) = P(y | #{1..i—1,i+1..m}) and hence all inaccuracies introduced

into f’(y | x) by this violation of the attribute independence assumption can be avoided
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by dropping z; from (1). For example, when the attribute values include female and
pregnant only the latter should be used, when they include male and not-pregnant only
the former should be used, and when they include female and not-pregnant both should
be used. This requires, however, that one infer whether P(z; | y,xz5) = 1 for each pair
of attribute values. In the current research we infer that P(z; | ;) = 1.0 if #(z;) =
# (x4, ;) > 100, where #(x;) is the count of the number of times attribute value x;
occurs in the data and #(z;,x;) is the count of the number of times both z; and z;
occur together in the data. To prevent both attribute values being deleted if they cover
exactly the same data, we delete the one with the higher index if #(z;) = #(x;).

pAnDESR(:% x) o PA’AnDE(y, x{iEx:ﬁﬂjEX#(:pi):#(xi,xj)>lOO/\[#(:L‘j)>#(xi)Vj<i]})

Subsumption resolution has been shown to be effective at reducing the bias of A1DE
29, 28].

Another approach to reducing bias in AnDE that has been shown to be effective for
A1DE [4, 9, 22] is to weight the sub-models, modifying (1) to

25 (zs) wsP (y,xs) HP (i |y, xs) /Zé (xs) : Z 0(xg) >0

Pwanm (y, %) o< se(2) se(?) se(2)
PWA(n—l)DE(an) : otherwise

WAODE [9] weights A1DE, where s is a single attribute value. It sets wy to the mutual
information [13] of the attribute with the class. WAODE is effective at reducing the

bias of A1DE with minimal computational overhead. We here generalize that strategy
to MI-weighted AnDE, using ws, = MI(S,Y),

P(zs,y)
Z Z (s,y)log 7( JP() (2)

yeY xs€Xs

where Y is the set of class labels and X is the cross product of values for attributes
with indices in s.

2.3 Study

We implemented Average 1 and 2 Dependence Estimators with both subsumption reso-
lution and mutual information weighting in the Weka machine learning workbench.

We compared the two levels of ANDE without either extension, with each in isolation
and with both in combination. We also compared the important comparators naive Bayes
(NB) and Random Forest with 10 trees (RF10).

These algorithms were all applied to 71 benchmark datasets.
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2.4

Results

We found that

Both weighting and subsumption resolution reduce the bias of both A1DE and
A2DE significantly more often than they increase it.

Jointly applying both weighting and subsumption resolution to either A1DE or
A2DE reduces bias significantly more often than it increases it relative to applying
either alone.

Both weighting and subsumption resolution increase the variance of both A1DE
and A2DE more often than they decrease it, although these results are not always
statistically significant.

Jointly applying both weighting and subsumption resolution to either A1DE or
A2DE increases variance more often than it decrease it relative to applying either
alone, but these differences are also not always statistically significant.

Random Forest has lower bias and higher variance significantly more often than
the reverse relative to all AnDE variants.

Subsumption resolution decreases error more often than not relative to both A1DE
and A2DE for both measures of error and for almost all of the different data
collections. The exceptions are A1DE, 0-1 loss, medium data and A2DE, 0-1 loss,
small data for which there are draws. However, not all these results are statistically
significant.

Subsumption resolution with weighting can decrease both RMSE and 0-1 loss for
the first two collections (all and large data sets). As predicted, the effectiveness
reduces as data set sizes reduce and for medium data sets, subsumption resolution
with weighting can have slightly worst performance relative to weighting in terms
of 0-1 loss but better in terms of RMSE. The results, however, are non-significant.
The same pattern can be observed in smaller data sets with subsumption resolution
and weighting not very effective.

Subsumption resolution in tandem with weighting can project AnDE to be com-
petitive to RF10, winning significantly on all data sets in terms of the two error
measures on all and small data sets. On medium data sets, it results in winning
significantly often for A2DE and non-significant often for AIDE over RF10. On
large data sets, both AIDE and A2DE lose to RF10. The results are, however,
not significant. With five wins and seven losses over RF10, we conjecture, that
AnDE with subsumption resolution and weighting, with all desirable properties of
learning from big data, is a strong contender for big data learning.

The average results of classification and learning time for all the compared techniques
are shown in figure 2. One can see that subsumption resolution can greatly reduce
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Figure 2: Averaged Learning and Classification timing results normalized with respect to
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A2DE’s classification time. While A2DE-S and A2DE-SW require only slightly less
training time on average than RF10, the training time complexity of AnDE and its
variants is linear with respect to data quantity while RF10’s is super-linear, as shown by
the difference between training times for all data and for large data. The training time
advantage would substantially increase if RF10 were applied to data that were too large
to maintain in RAM. A2DE and its variants require substantially more classification time
than RF10, even with the decreases introduced by subsumption resolution. However,
it can be seen that the classification time of RF10 is also super-linear with respect to
training set size, whereas AnDE’s is not. This is due to the size of the trees increasing
as the data quantity increases.
More detail about this study can be found in our PAKDD paper [26].

2.5 Fast and effective attribute selection

The second study [5] investigated a two-pass approach to attribute selection for AODE.
Previous research [22, 23, 30] has shown that attribute selection can be very effective
at reducing the bias of AODE. However, these techniques have used computationally
expensive wrapper techniques for attribute selection that are infeasible to implement
out-of-core. To make attribute selection feasible out-of-core it is necessary to add only a
small number of passes through the data. The approach we investigate here is based on
the observation that it is possible to nest a large space of alternative models such that
each is a trivial extension of another. Let p and ¢ be the set of indices of parent and child
attributes, respectively. For every attribute z;, the AODE models that use attributes in
p as parents and attributes in ¢ U {i} as children are minor extensions of a model that
uses attributes in p as parents and attributes in ¢ as children. The same is true of models
that use attributes in p U {i} as parents and attributes in ¢ as children. Importantly,
multiple models that build upon one another in this way can be efficiently evaluated in
a single set of computations. Using this observation, we create a space of models that
are nested together, and then select the best model using leave-one-out cross validation
in single extra pass through the training data.
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The mutual information [13] between an attribute and the class measures how in-
formative this attribute is about the class, and thus it is a suitable metric to rank the
attributes. It can be computed using the information already gathered by AODE in its
first pass through the training data.

We extend AODE by adding a second pass through the training data. The first pass
constructs the full AODE model. The attributes are then ranked in descending order
of mutual information with the class. This is used to create a two-dimensional space of
nested models. In one dimension we have n increasing subsets of the attributes used in
the parent role. In the other dimension we have n increasing subsets of the attributes
used in the child role. Using incremental cross-validation [10] it is possible to efficiently
perform cross-validation on an AODE model in a single pass through the data. As
the models being assessed are nested, they can be evaluated in this manner in a single
pass using very little more computation than is required to evaluate the full model in
isolation.

In this manner we perform discriminative evaluation of all n x n nested models in
a single computationally efficient pass. Any measure of classification performance could
potentially be employed. In this study we used root mean squared error (RMSE), which
is an effective measure of the calibration of the probability estimates produced by a
model.

In an extensive study we compare the proposed attribute selective AODE (ASAODE)
with AODE, mutual information weighted AODE (WAODE), AODE with subsumption
resolution (AODESR), BSE selective AODE (BSEAODE) and A2DE on the same 71
benchmark datasets used in the first study.

2.6 Results

The empirical results show that the new algorithm is significantly more accurate than
AODE, WAODE and AODESR.

It has comparable error to BSEAODE, while requiring substantially less computation
and being executed out-of-core.

As we expected, it is not as accurate on average as A2DE. However, in continuing
research we are implementing the approach with A2DE and A3DE, with extremely
promising initial results.

Our new out-of-core attribute selection algorithm requires significantly less training
time than BSEAODE, and less classification time than AODE and all other variants,
especially than A2DE.

3 Scalable discriminative extensions to Bayesian Network Classifiers

Standard Bayesian Network Classifiers can also be improved using our approach of single-
pass discriminative selection between a large class of nested models. Like the work with
ANDE, our motivation is to use efficient out-of-core discriminative learning to improve
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models learned using efficient out-of-core generative learning using maximum likelihood
parameterization.

Bayesian Network Classifiers are defined by parent relation 7 and Conditional Prob-
ability Tables (CPTs). 7 encodes conditional independence relationships between the
attributes. CPTs encode the specific conditional probabilities.

A Bayesian Network Classifier classifies using

P(y | x) o< P(y [ my) [ [ P(as | m) (3)

The class variable Y is usually set to be a parent of all attributes Xj.

Given 7w, CPTs can be learned by counting joint frequencies in a single single pass
through the data.

K-Dependence Bayes (KDB) [15] learns a restricted Bayesian Network Classifier in
two passes through the learning data. In the first [ass it learns the structure. In the
second pass it learns the parameters to the CPTs.

To learn the structure it first collect counts for all pairs of attributes with the class.
It then orders the attributes based on mutual information with the class. Each attribute
is then assigned parents such that

e each has no more than k parents;
e an attributes parents must be earlier in the order than the child,;

e within these constraints the parents are selected that maximize mutual information
between the parent and child conditioned on the class.

The parameter k controls the bias variance trade-off. Low k has low variance but high
bias, and is well suited to small quantities of data, while higher k£ has higher variance
but lower bias and is better suited to larger quantities of data. This is illustrated in
Figure 3. Further, spurious attributes may increase error.

KDB models are naturally nested. A model with k& = v subsumes a model with
k =v — 1. A model using the first w attributes as children subsumes a model using the
first w — 1 attributes as children. Thus it can be seen that a KDB model with k = v
and w attributes subsumes v x w submodels. All of these submodels can be assessed in
a single out-of-core pass through the training data using incremental cross-validation.
Due to the nested nature of the models, this process takes little more computation than
incremental cross validation of the full model.

Our algorithm, Selective KDB performs such evaluation in a third pass through the
data, resulting in a very efficient three pass out-of-core algorithm.

Let a be the number of attributes; v be the average number of values; y be the
number of classes; a* be the number of attributes selected (a* < a); and k* be the best
value of k found (k* < kjaq). Selective KDB’s training space complexity is O(ya2112 +
yavk+l). Its classification space complexity is O(ya*vk*ﬂ). Its training time complexity
is O(ta2 +yav? + tayk). Its classification time complexity is O(ya*k*).

On large datasets our out-of-core algorithm has very competitive error to state-of-the-
art in-core algorithm Random Forests [3] (RF), to state-of-the-art out-of-core algorithm
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Figure 3: Learning curves for KDB classifiers with varying k& on the benchmark poker-
hand dataset. Lower values of k& (naive Bayes is KDB with k& = 0) have low variance and
have low error on small data, but their high bias means their error asymptotes quickly,
while the lower bias of KDB with higher k leads to lower error on large quantities of
data.

Vowpal Wabbit (VWLF) [11]. As illustrated in Figure 4, it has lower error significantly
more often than not relative to state-of-the-art Bayesian Network Classifiers, including
computationally expensive in-core approaches (BayesNet) and out-of-core naive Bayes
(NB), AODE and TAN. As illustrated in Figures 5 and 6, Selective KDB is an order
of magnitude more efficient in training than in-core Random Forests, and two orders of
magnitude more efficient than conventional Bayesian Network Classifiers. It is also sub-
stantially more efficient than state-of-the-art out-of-core logistic regression algorithm
Vowpal Wabbit under either of its two main objective functions, squared loss (VWSF)
or logistic loss (VWLF).

A paper presenting these results in greater detail has been submitted for journal
publication.

10
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Figure 4: The RMSE rank of alternative algorithms over 16 large datasets. Out—of-core
Selective KDB achieves lower error more often than any alternative, including state-of-
the-art in-core Random Forests, and significantly more often than any of the Bayesian
Network Classifiers.
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Figure 5: The relative training times of in-core algorithms BayesNet and Random Forests
compared with out-of-core naive Bayes and Selective KDB
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Figure 6: Training and classification time comparisons for the out-of-core classifiers.

4 WANBIA

A number of researchers have previously investigated adding weights to naive Bayes
models [8, 6, 27, 7, 21]. Naive Bayes classifies using

P (y,x) o P(y) [[ Plai | ). (4)
=1

There are three main variants of weighted naive Bayes. In the most general case,
this weight depends on the attribute value and class:

n
P(y,x) HP i | y)Piei. (5)

Doing this results in ) ; |X;| weight parameters. A second possibility is to give a single
weight per attribute:

Py, x) oc P(y)"r [ Pl | )™ (6)

i=1
One final possibility is to set all weights to a single value:

Py, x) (HP i |y > : (7)

Equation 6 is a special case of Equation 5, where V; ; , w; j, =w;, and Equation 7 is a
special case of Equation 6 where V; w; =w.
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Most previous research into weighting naive Bayes has used the weights to give
greater emphasis to more informative attributes. We argue that this is suboptimal, as
Bayesian approaches automatically take account of the amount of information about a
class that each attribute contributes. Indeed, naive Bayes is a Bayes optimal classifier
except insofar as the base probability estimates are incorrect and that the assumption
that the attributes are conditionally independent is violated. We argue that it is in this
latter respect that weighting has the most to offer and propose to address it through
discriminative learning.

Our initial algorithm WANBIA learns weights of the form in Equation 6. A second
algorithm, WANBIA-C learns weights of the form in Equation 5.

The approach is inspired by MAPLMG [4], a system that learns weights on the
sub-models in AODE by maximizing Conditional Log-Likelihood.

To this end we have derived the gradient of Equations 5 and 6 with respect to Con-
ditional Log-Likelihood. This allows the use of a regular gradient descent optimization
procedure.

WANBIA-C learns a model that maps directly onto the standard logistic regression
model. By optimizing for the same objective function as used by logistic regression we
ensure that the models learned will be equivalent, except insofar as the optimization
process fails to find the true optima.

We show that WANBIA substantially reduces the bias of naive Bayes at the cost of
a modest increase in variance. For any but extremely small datasets it tends to produce
lower error models than naive Bayes. The WANBIA models are more biased than logistic
regression, but with fewer free parameters have lower variance. As a result they have
very competitive error for small to medium sized datasets. With fewer free parameters
the optimization process is also considerably more efficient.

As shown in Figure 7, when using unconstrained optimization WANBIA-C has similar
RMSE and 0-1 loss to logistic regression but the models converge much faster due to the
naive Bayes probability estimates acting as an effective preconditioner.

Of particular significance for stream learning, as shown in Figure 8, WANBIA-C
substantially outperforms logistic regression when optimized using stochastic gradient
descent.

Full details can be found in our Journal of Machine Learning Research and IEEE
International Conference on Data Mining papers [25, 24].

5 WANJE

One limitation of WANBIA and WANBIA-C is that they use linear models that cannot
directly capture high-order multivariate interactions in data.

Our approach of using maximum likelihood parameterization to speed up discrimi-
native parameter optimization using conditional log-likelihood can also be generalized
to other forms of Bayesian Network Classifier that directly model higher-order interac-
tions. However, to make the optimization feasible it is important that it form a convex
optimization problem, and only moral Bayesian networks do so [14].
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Figure 7: Comparison of RMSE (Left) and number of iterations (Right) of WANBIA-C and
LR on 73 datasets using quasi-Newton optimization. LR parameters are initialized to NB MAP
estimates. Number of iterations are on log-scale.

The ANDE classifiers form moral networks. However, each combination of n + 1
attributes and class require
n+1
k v 8
(") ®)

parameters to model, where k is the number of classes, n is the number of parents per
sub-model (the n from ANDE), and v is the average number of values per attribute.
This is because for every combination of n parents and class we need to model the CPT
for the child attribute.

This results in a very large number of parameters and a very difficult optimization
task for high values of n.

To address this issue we have developed a variant of ANDE that uses a single pa-
rameter for each combination of attribute and class values.

It is possible to partition the attributes X into any set of sets of attributes P such
that J,cp @ = X and VaeP, BEP, aN P = () and then by assuming independence only
between the different sets of attributes one obtains

P(x|y) =[] Pla|w). 9)
acP

For example, if there are four attributes x1, 3 , 3 and x4 that are partitioned into the
sets {x1,z2} and {x3, x4} then by assuming conditional independence between the sets
we obtain

P(z1, 22, 23,74 | y) = P(z1, 72 | y)P(23, 24 | 9). (10)

The ANJE model is equivalent to the geometric mean of all such models in which all
subsets are of size .

Px|y) = [] Pla|y)N-DHA-NAD! (11)
O‘E(N)
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where A = | X| and (%) is the set of sets of attributes of size N, {a | o C X, |a| = N}.

Equation 11 is derived as follows. Let S = |P|, the number of sets of attributes in
each model of the form (9). Let T" be the total number of these sets, T = |(§)| = (]’3)
Let M be the total number of models of the form (9) of which (11) represents the
geometric mean. This differs depending on whether one allows different permutations or
only combinations of the different sets of attributes. It turns out that this value cancels
out, so we do not need to specify what it is. Let X be the number of models in which
each set of attributes appears. As this is identical for all sets of attributes, and as the
total number of terms in all models is M.S, this equals MS/T. Let z; ; be the G set of

attributes in the i*" model. The geometric mean of all models is
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M S
P(Xy)dHHvamy (12)

i=1j5=1

—_

M S
= HHP Ti,j |y I/M (13)

=1 ]:

— II Plaly*™. (14)

€(¥)

The final exponent X/M can be expanded as follows

<.
—_

Q

X/M = MS/(TM) (15)
=S/T (16)
()
= A/(NA!/[NY(A—N)) (18)
= (N —1)I(A—=N)I/(A—1)L. (19)

Substituting (19) for the exponent in (14) we get (11). We can then classify using

Py |x) o P(y) J] Pla|y)-DiA=mya=n! (20)
aG( )

An ANJE model with a given N models the same order of interactions between
attributes as an ANJE model with n = N — 1, because n refers to the number of parent
attributes for each child in an ANDE model while N refers to a clique of attributes in
an ANJE model.

Our experiments indicate that ANJE has substantially higher bias than ANDE where
n = N — 1, and that the resulting reduction in variance is rarely being sufficient to lead
to lower error. However, the lower number of parameters required by the ANJE models
can make it feasible to model higher order interactions than can be modeled by ANDE. It
is our belief that usually for large data modeling higher order interaction will be more
effective at reducing bias than more detailed modeling of the lower order interactions.

ANJE serves as an effective basis for discriminative weighting of the form used in
WANBIA and WANBIA-C.

Pyangey (¥ | x) o< Py H Pa| )W, (21)
ae(N)

Our experiments show that the resulting models are very competitive with state-of-
the-art learning algorithm Random Forest. Of particular significance, we have devel-
oped an out-of-core single pass variant, where the maximum likelihood estimates are
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Figure 9: Learning curves for single-pass out-of-core incremental WANJE and multiple-
pass in-core batch Random Forests on the Poker-Hand dataset.

updated incrementally and the weights are learned using stochastic gradient descent.
As illustrated in Figure 9, our experiments show that for large datasets this single pass
out-of-core incremental learner is very competitive with state-of-the-art in-core batch
learner Random Forests.

We are in the process of writing a research paper on this work.

6 Incremental discretization

The ANDE, WANBIA and WANJE algorithms require that numeric data be discre-
tised. While investigating the potential to extend our approaches to streaming data we
were confronted with the problem of discretizing such data. This is on the face-of-it
problematic, because streaming data require cutpoints that vary over time, while many
algorithms require the meaning of a cutpoint to remain invariant. In this line of research
we investigated this issue and identified that there is a manner to allow cutpoints to
drift while maintaining invariant meaning.

This can be achieved by performing quantile-based discretization, where each cut-
point is set at a specific quantile in the current data distribution. This way the meaning
of the cutpoint is invariant even while the value changes. For example, the cutpoint
for an interval representing high income should grow over time as inflation increases
incomes. If it is set at the upper 20 percentile, then it will do so.

We developed an algorithm, IDA, for efficient quantile-based discretization of stream-
ing data. It operates by maintaining a sample of the data encountered in the stream
because 1) it is not feasible for high-throughput streams to maintain a complete record
of all values observed to date; 2) it is computationally efficient; and 3) it is possible to
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place tight bounds on the expected variance of the cut points .

We used the reservoir sampling algorithm [17] to maintain a random sample for each
attribute.

We developed an efficient data structure and algorithms for storing and updating the
sample using a vector of interval heaps [16]. This data structure ensures that insertion
and deletion are of order O(log s), where s is the sample size, and retrieving a cut point
is constant time.

We also developed a variant of IDA, IDAW, that tracks the current distribution by
using a window of recent examples in place of a random sample of all examples. This is
computationally more intensive, as it requires an update at every time step.

The computational complexity of IDA is dominated by the costs of maintaining the
samples and determining the quantiles from those samples. The required operations are
to insert a new value (only required while the sample is not yet at full size), to replace
a random value with a new value, and to return the required quantiles.

As each bin is maintained as an interval heap [16], finding the quantiles takes constant
time and inserting or removing a value from a bin V; takes O(log [V/|) = O(log(s/m))
time. As replacement requires up to m insertions and deletions, replacement requires
order O(mlog(s/m)) time.

However, these relatively expensive updates are only required on average once every
s/t updates, where ¢ is the current time step or size of the stream to date. Thus
the amortized cost is O([Y_;_, mlogi/m + Z’;:SH 2mlog s/m]/t), where the first term
represents the initial s time steps during which the sample is built up to its operating
size and the second term represents updates to the sample once it reaches operating size.
It is readily apparent that these updates rapidly become very rare and that as the size
of the stream becomes very large the amortized cost becomes negligibly small.

The situation is more complex for IDAW, which maintains a window of the s most
recent values for each attribute. This requires that the values be maintained in both
time and value order. Maintaining an order by time can be achieved very efficiently
with a circular buffer, which supports all updates and accesses in constant time. As the
elements to be replaced in a replacement operation are no longer selected at random, it
is not efficient to maintain the bins as interval heaps, as above. Rather we need to use
slightly more expensive balanced binary trees for which the time to identify the location
of the value to be removed is O(log(s/m)), which this does not increase the overall
complexity of the update operation relative to that for IDA. The major computational
penalty, however, is that these updates must be performed for every object encountered
in the queue, which makes the maintenance of the discretization a non-trivial ongoing
overhead.

6.1 Evaluation

We conducted a series of studies on 5 benchmark stream classification datasets perform-
ing classification with Logistic Regression learned with Stochastic Gradient Descent, as
this is an effective stream classification learning algorithm.
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In the absence of concept drift the use of sampling was demonstrated to result in
only negligible loss in accuracy.

On data with concept drift IDA has only negligible loss in accuracy relative to main-
taining a complete quantile-based discretization relative to the entire stream encountered
to date. This computationally intensive comparator approach would not be feasible in
practice.

The IDAW approach delivered very substantial reductions in error for two data
streams and substantial increases for two more. The reductions demonstrate that for
appropriate forms of data maintaining discretizations based on quantiles as they vary
over time can maintain relevant meaning while the cutpoints vary. However, the poor
results on some other data streams demonstrate that this is not always appropriate.

Both IDA and IDAW consistently and substantially reduced error relative to Logistic
Regression on the undiscretized numeric data.

Full details can be found in our ICDM 2014 paper [20].
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