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 Executive Summary 1.0
 
In Sections 3 theoretical analysis and numerical results on the Lower Hybrid excitation by velocity 
shear are presented. The Electron-Ion Hybrid instability, a transverse velocity shear-driven 
instability with frequency near the lower hybrid frequency, has been observed theoretically and 
experimentally. It was shown previously that the scale length of the gradient in the velocity must be 
much smaller than the ion gyroradius and larger than the electron gyroradius in order to generate the 
short wavelength electron-ion hybrid mode. In this report, the original theory for the electron-ion 
hybrid instability has been extended to include finite gyroradius effects and electron-neutral 
collisions with the intention of applying this theory to the plasma region surrounding hypersonic 
vehicles. In this plasma layer, these sorts of transverse sheared flows can exist in a collisional 
plasma. While this dense layer of plasma can itself impede communications, the density structures 
created by the lower hybrid turbulence can also be a source of scattering for these electromagnetic 
signals. 
 
In Sections 4, 5 and 6 simulation results on scattering of high frequency electromagnetic waves by 
vortex density structures generated on the nonlinear stage of interchange instability are presented. 
The interchange instability plays important role in understanding of physical processes in the earth 
ionosphere and magnetosphere. In particular it is considered as the driving mechanism for the 
equatorial spread F (ESF) events. In order to analyze interchange instability we employed a two-
fluid non-ideal MHD model with inclusion of kinetic effects. This is a step forward in comparison 
with previously developed models. This approach allows us to resolve spatial scales of turbulent 
plasma density irregularities comparable with the ion Larmor radius – the spatial scale in the 
ionospheric F layer of the order of the wavelength of the OTH radar signals. This is the reason why 
it is important to develop a model which can adequately describe short scale plasma density 
irregularities. We formulated and derived system of nonlinear two fluid hydrodynamic equations for 
description of interchange turbulence with included kinetic effects in a high-beta and low beta 
plasmas and analyzed linear stage of interchange instability with plasma parameters relevant to the 
equatorial Spread F in the ionosphere. Next, we obtained analytical solutions to the nonlinear 
equations for density irregularities in the form of double vortex structures. Using these results 
model of scattering of high frequency electromagnetic waves on vortex density structures was 
developed and differential and total scattering cross sections were calculated. These results were 
compared with the results for the scattering cross section obtained in fully kinetic LSP PIC 
simulations of EM wave scattering on a single density vortex. Analytical and LSP simulation results 
revealed very good agreement.  
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 Introduction 2.0
 

The presence of plasma turbulence can strongly influence the propagation properties of 
electromagnetic signals used for surveillance and communication.  In particular, we are interested in 
the generation of low frequency plasma turbulence in the form of coherent vortex structures 
coexisting with short scale density irregularities and of lower hybrid turbulence. Lower-hybrid type 
density irregularities are excited by plasma flows with velocity shear, whereas interchange or flute 
type oscillations in magnetized plasma are associated with Rayleigh-Taylor type instabilities.  These 
types of density irregularities play important roles in refraction and scattering of high frequency 
electromagnetic signals propagating in the Earth’s ionosphere, inside the plasma sheath of reentry 
and hypersonic vehicles, and in many other applications. We will discuss the generation of low 
frequency density irregularities due to the presence of plasma flows with velocity shear and the 
interchange instability.  
 
The scattering of high-frequency (HF) electromagnetic (EM) waves is a fundamental phenomenon 
in plasma physics. In a stable plasma EM scattering occurs due to the thermal electron density 
fluctuations and it is known as “Thomson scattering” [1].  Due to the nonlinear interaction of waves 
in a plasma, scattering can also arise from single waves excited in the plasma and is explained as a 
three-wave nonlinear interaction [2].  Scattering can also take place due to the interaction of HF 
waves with electrostatic solitons [3] or from charged dust particles [4].  We will analyze the 
formation of plasma density irregularities due to the development of lower hybrid and interchange 
instabilities.  These types of density irregularities play an important role in the analysis of high 
frequency EM scattering and refraction in the ionospheric plasma. The reason for this is that the 
spatial scales of these plasma waves are comparable or smaller than the typical wavelengths of EM 
signals used for surveillance, communication, and OTH radar applications. 
 
In the terrestrial high-latitude (auroral) magnetosphere and  ionosphere, whistler-lower-hybrid 
fluctuations in their electromagnetic or electrostatic limits are usually found in association with 
energetic electron beams along the geomagnetic field and/or anisotropic electron distributions.  In 
particular, the energetic electron acceleration within the terrestrial auroral region results in the 
emission of short-wavelength, primarily electrostatic waves near the resonance cone of the whistler-
lower-hybrid branch [5].  Another source of enhanced lower hybrid waves in the auroral ionosphere 
is related to strongly sheared plasma flows driven by structured electric fields in the vicinity of 
small scale auroral arcs [6].  
 
At subauroral latitudes, lower hybrid/fast magnetosonic waves accompany such well-known space 
weather phenomena as subauroral ion drifts (SAID) and subauroral polarization streams (SAPS) [7, 
8].  Figure 1 presents an overview of one of such events that occurred on 18 March 2002 when three 
independent spacecraft (Cluster, DMSP, and Polar) crossed the SAID channel virtually at the same 
time and within the same magnetic flux tube. It is seen that the wave activity is abruptly enhanced 
inside the SAID channel, just inside the plasmasphere boundary (the plasmapause).  
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Figure 1: ( left panel) World-line plots of the Cluster, DMSP, Polar satellites during the 18-March-

2002 substorm event. The SAID channels from Cluster 1 (C1) are superimposed. Shown in the 
middle are (top) the C1/C4 outward electric field Ex in the inertial frame, (mid) C1/EDI 1‐keV 

electron counts (thick line) and the cold plasma density n0 (thin), and (bottom) C4/STAFF 
frequency‐time spectrograms for the electric spectral power in (mV/m)2/Hz (in log scale). 

Horizontal lines indicate the lower hybrid resonance (solid) and the 10th, 4th, and 2nd harmonics of 
the H+‐ion gyrofrequency (dashed), derived from the observed magnetic field. Shown on the right 

are the features of the northern SAID channel from Polar: (top) the outward electric field, (mid) the 
plasma density, and (bottom) spectral amplitudes of electric fields at 32 (dashed line), 256 (thick), 

and 2048 (thin) Hz 

 
The remainder of this report is organized as follows.  In Section 3, excitation of the lower hybrid 
instability by flows with velocity shear in the presence of electron-neutral collisions is analyzed. 
Linearized equations for the lower hybrid eigenmodes inside a plasma slab with velocity shear will 
be derived and solved numerically. Numerical solution is based on the implementation of a shooting 
code. In Section 3, nonlinear equations describing the interaction of the lower hybrid waves inside a 
plasma flow with velocity shear and low frequency ion acoustic oscillations will be derived, and a 
dispersion equation for the modified decay instability will be presented. In Section 4, the results of 
the laboratory experiments in the NRL Space Chamber on excitation of lower hybrid turbulence by 
ExB flows with velocity shear will be presented.  In Section 5, linear and nonlinear stages of 
interchange instability with the ionospheric plasma parameters corresponding to the equatorial F-
layer will be discussed. In the description of the interchange instability we retain finite ion Larmor 
radius effects. Inclusion of spatial scales comparable with the ion Larmor radius is important for the 
analysis of radar generated high-frequency EM waves interacting with density irregularities 
associated with the equatorial spread F in the ionosphere. 
 
Over the past twenty years, there have been numerous studies into the destabilizing effects of 
inhomogeneous electric fields transverse to the ambient magnetic field. It has been demonstrated 
that the electric field gradient scale length LE is the key length scale that determines the nature of 
the instability [14]. If LE is on the order of the ion gyroradius iρ , then the instability will be driven 
by the dynamics of the ions and could be an electrostatic ion cyclotron wave or an Alfven wave 
depending on the plasma β  [15]. However, if eρ < LE < iρ , then the ions do not experience the
×E B  drift and the instability will be driven by the dynamics of the electrons. These waves are 

3 
Approved for public release; distribution unlimited. 



primarily electrostatic lower hybrid waves in the VLF range. All of these velocity shear-driven 
instabilities are primarily azimuthally propagating in the direction of the ×E B  drift. 
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 Excitation of Lower Hybrid Waves by a Flow with Velocity Shear 3.0
 

In this Section we will analyze instability of a plasma flow with a transverse velocity shear scale 
length much smaller than the ion gyroradius but larger than the electron gyroradius. As shown in 
[11] [12], under these conditions electrostatic oscillations with the frequencies above the lower 
hybrid frequency  
 2

2
2
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ω
ω

ω
ω

=
+
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can be excited.  In equation (1) peω and piω are the corresponding electron and ion plasma 
frequencies and ceω is the electron cyclotron frequency. Below in the hydrodynamic approximation 
we will derive linearized equation for excitation of oscillations in the frequency range just above the 
lower hybrid frequency LHω . In this equation we will include wave dispersion due to the thermal 
effects and electron neutral collision frequency. We will also include into our analysis not only the 
waves propagating strictly perpendicular to the external magnetic field but also waves propagating 

nearly perpendicular to the magnetic field. These waves should satisfy the condition 
2

2
zk m

k M⊥

<< (m 

and M are electron and ion masses respectively), k⊥  - is the wave vector perpendicular to an 
external magnetic field and zk  –  is the wave vector of excited oscillations along the magnetic field. 
Electrons in the lower hybrid oscillations are magnetized, but ions are unmagnetized. An external 
electric filed varies along the x-direction 0 ( )xE x  and creates electron flow with velocity shear 
directed along the y-direction 0 ( )yV x  (see Figure 2). The width of the layer with electric field 
inhomogeneity is smaller than the ion Larmor radius. In such a system, we have electron flow with 
velocity shear moving in y-direction, whereas ions, being unmagnetized, do not experience ExB 
drift and are at rest in the laboratory coordinate system. We will use linearized electron momentum 
equation which also contains electron-neutral collision term. For the electron motion across the 
magnetic field we can write: 
 
  
 2

1
0 1 1 0 1 1 0 1

0

V( ) ( ) [ ]Te
e z z en

e e e

e en B
t N m m c

n⊥
⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

⊥

∂ ∂Φ
+ ⋅∇ + ⋅∇ + ∇ = − × −

∂ ∂
v v v v v v e v

r
 

(2) 
 

 
For the electron motion along the magnetic field (z-axis) we have: 
 
 2

11
0 1

0

Vvv Te ez z
y en z

e e

n e
t y N z m z

n∂∂ ∂ ∂Φ
+ + = −

∂ ∂ ∂ ∂
v v  

(3) 
 

 
The linearized ion momentum equation for unmagnetized ions has the form: 
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 1

i

e
t m

∂ ∂Φ
= −

∂ ∂
u

r
 (4) 

 

 
We will use also continuity equations for electrons: 
 
 
 

v(N ) 0e
e e

N di
t

∂
+ =

∂
v  (5) 

 

 and ions: 
                                                                                       
 1

0 1v 0i
i

n N di
t

∂
+ =

∂
u  (6) 

 

Final equation is the Poisson equation for the electrostatic potential of a lower hybrid wave:                                                                                           
 
 1 14 ( )e ie n nπ∆Φ = −  (7) 

 

Using the system of equations we can arrive to the following linearized equation which describes 
LH wave excitation in the non-local approximation: 
     
 2 2 22 2

2 2 2

2 2 2 2 2

2 2

0 2 2

2 2

ˆ ˆ[( (1 ) ((1 2 ) )
 

ˆ ˆ ˆ                ( ) ] [ ] 0
  

 pi pe pe

z pe en z

ce ce

pe y

z en pi z en z

ce

enR L L
t z

V
L L L

x y

α

ω ω ω
ω n n

ω ω ω

ω
n ω n

ω

∂ ∂ Φ
+ ∆ ∆Φ + + + + ∆Φ −

∂ ∂

∂ ∂Φ
+ + + ∆Φ =

∂ ∂

 

(8) 
 

 
In equation (7) enn  is an electron-neutral collision frequency, 0 ( )yV x is the flow velocity and 

operator ˆ
zL  is defined as: 0

ˆ ( )z yL V x
t y
∂ ∂

= +
∂ ∂

. 

We are interested in the solution of the equation (7) which represents waves propagating along the y 
and z directions inside a plasma slab and the solution in the form of the eigenfunction in the x-
direction of the flow inhomogeneity: 
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 Φ ~Ψ(𝑥𝑥)𝑒𝑒�−𝑖𝑖𝑖𝑖𝑖𝑖+𝑘𝑘𝑦𝑦𝑦𝑦+𝑘𝑘𝑧𝑧𝑧𝑧� (9) 
 

 
 
 
 
 
                                                                                     0 0( ) ~ ( )E x x ×V E B  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2:  In this figure a nonuniform electric field 0 ( )xE x and an external magnetic field 0zB  create 
a nonuniform electron flow with velocity shear along the y-direction 

 
We set 0x =  at the conducting surface of the vehicle and require 

 ( )0 0.xφ = =  (10) 
 

In the free space beyond the sheath edge at x L= , the potential ( ) ( ) ( )expx L k x Lφ φ= − −    so 
that  

 
0.

x L

d k
dx
φ φ

=

 + =  
 

(11) 
 

 

Equation (8) together with boundary conditions (10) and (11) constitute the eigenvalue problem to 
be solved numerically for the complex eigenfrequency ω  using a standard shooting method [12]. 

B 

 x
 z

 y
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Using equation (8) for conditions used in Ganguli et al. and neglecting thermal dispersion of lower 
hybrid waves (R = 0), electron-neutral collisions ( 0enn = ) and restricting analysis to the   
waves with 0zk = , the shooting code recovers the previously published 
solutions (1.89 1.94) LHiω ω= +  (see [8]).  From this point using equation (8), the shooting code was 
used to investigate the effect of finite electron-neutral collisions on the mode. Figure 3 shows the 
real frequency (solid black line) and growth rate (dashed red line) normalized to the lower hybrid 
frequency as a function of electron-neutral collision frequency normalized to the electron cyclotron 
frequency for plasma conditions similar to those from published experimental observations of this 
instability [13]: 𝜔𝜔𝑝𝑝𝑝𝑝/Ω𝑒𝑒 = 8.0, 𝑣𝑣𝐸𝐸/Ω𝑒𝑒𝐿𝐿𝐸𝐸 = 13.6, 𝑘𝑘𝑦𝑦𝐿𝐿𝐸𝐸 = 0.5, 𝑘𝑘𝑧𝑧𝐿𝐿𝐸𝐸 = 0, and argon ions.  The 
following electric field profile was used in the code: 
 2

0 0( ) sec ( )x
E

xE x E h
L

=  
(12) 

 

where 𝐿𝐿𝐸𝐸 is the velocity shear scale length in the electron flow and the shear flow velocity along the 
y-direction is defined as: 
                                                        
 0 0

0 2
0

( )V ( )y y
xx c
B
×

=
E Be  

(13) 
 

where c – is the speed of light. 
 
Results of numerical solution of equation (8) with inclusion of electron-neutral collisions, but with 
omission of thermal dispersion and with 0zk = are presented by Figure 3. It can be seen that the 
presence of weak collisions has a strong effect on both the growth rate and real frequency, though 
the mode is not completely stabilized.  We stop at 𝜈𝜈𝑒𝑒𝑒𝑒~0.1ω𝑐𝑐𝑐𝑐 to remain in the regime where the 
drift approximation is valid. However, it is expected that 𝜐𝜐𝑒𝑒𝑒𝑒~Ω𝑒𝑒 is needed before collisions could 
totally suppress the excitation of the mode. 

 

Figure 3: Normalized real frequency (solid black line) and growth rate (dashed red line) dependence 
on normalized collision frequency. 
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To obtain solution for the frequency and the growth rate of excited modes in the local 
approximation, we again will use equation (8) neglecting the thermal dispersion of lower hybrid 
waves(R=0), electron-neutral collisions ( 0enn = ) and restricting analysis to the waves with 0zk = . 
This will allow us to examine the qualitative behavior of this instability without employing the full 
numerical solution.  To arrive at the local approximation for the lower hybrid modes, we start from: 
 
 d2𝜙𝜙

d𝑥𝑥2
− 𝜅𝜅2𝜙𝜙 = 0, 

(14) 
 

 
where 
 
 

𝜅𝜅2 = 𝑘𝑘𝑦𝑦
2
−

𝛿𝛿2

𝛿𝛿2 + 1
𝜔𝜔2

𝜔𝜔2 − 1

𝑘𝑘𝑦𝑦𝑣̅𝑣𝐸𝐸′′

𝜔𝜔� − 𝑘𝑘𝑦𝑦𝑣̅𝑣𝐸𝐸
, 

(15) 
 

 
 
and 𝛿𝛿 = 𝜔𝜔𝑝𝑝𝑝𝑝 𝛺𝛺𝑒𝑒⁄ ,  𝑘𝑘�𝑦𝑦 = 𝑘𝑘𝑦𝑦𝐿𝐿𝐸𝐸 ,  𝜔𝜔 = 𝜔𝜔 𝜔𝜔𝐿𝐿𝐿𝐿⁄ , and 𝑣𝑣𝐸𝐸 = 𝑣𝑣𝐸𝐸 𝜔𝜔𝐿𝐿𝐿𝐿⁄ 𝐿𝐿𝐸𝐸.  We obtain the local dispersion 
relation by taking 𝜅𝜅2 = 0 and using the values for 𝑣𝑣𝐸𝐸 and 𝑣𝑣𝐸𝐸

′′ at 𝑥𝑥 = 0 as in Romero et al. [9].  This 
results in a cubic equation for 𝜔𝜔: 
 
 

𝜔𝜔3 + 𝑘𝑘𝑦𝑦𝑣𝑣𝐸𝐸0 �
2
𝑘𝑘�𝑦𝑦2

𝛿𝛿2

𝛿𝛿2 − 1
− 1�𝜔𝜔2 − 𝜔𝜔 + 𝑘𝑘𝑦𝑦𝑣𝑣𝐸𝐸0 = 0, 

(16) 
 

 
 
Figure 4 shows the local and non-local solutions for the following parameters: 𝛿𝛿 = 8.0, 𝑣𝑣𝐸𝐸 = 1.1, 
𝑘𝑘𝑦𝑦𝐿𝐿𝐸𝐸 = 0.5, 𝑘𝑘𝑧𝑧𝐿𝐿𝐸𝐸 = 0, and argon ions.  The local solution does a good job of approximating the 
general behavior of the non-local solutions.  More importantly, the solutions below represent a good 
operating regime for studying the non-linear behavior of this mode.  The maximum growth rate 
occurs for a real frequency just above the lower hybrid frequency, and the mode only exists for a 
small band of perpendicular wave numbers. 
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Figure 4: Normalized real frequency (solid black line) and growth rate (dashed red line) dependence 

on normalized perpendicular wave number comparing local and non-local solutions. 

 

3.1 Numerical Modeling of Parametric Interaction of Finite Amplitude Very Low Frequency 
(VLF) Waves 
 
Modulation instability of electromagnetic waves is a dominant feature of ionospheric plasma 
turbulence. Nonlinear stage of modulation instability leads to Langmuir collapse [16]. The latter 
causes wave localization within which the plasma is expelled by wave pressure. This phenomenon 
is also expected for the waves in a magnetized plasma with frequencies close to the frequency of the 

lower-hybrid resonance 𝜔𝜔𝛼𝛼 = (
𝜔𝜔𝑝𝑝𝑝𝑝
2

1+
𝜔𝜔𝑝𝑝𝑝𝑝
2

𝜔𝜔𝑐𝑐𝑐𝑐
2

)1/2  [17,18] , where 𝜔𝜔𝑝𝑝𝑝𝑝 = (4𝜋𝜋𝑒𝑒2𝑛𝑛0/𝑚𝑚)1/2 is electron 

Langmuir frequency, 𝜔𝜔𝑝𝑝𝑝𝑝 = 𝜔𝜔𝑝𝑝𝑝𝑝(𝑚𝑚/𝑀𝑀)1/2 is ion plasma frequency, 𝜔𝜔𝑐𝑐𝑐𝑐 = 𝑒𝑒𝐵𝐵0/(𝑚𝑚𝑚𝑚) is the 
electron cyclotron frequency, 𝑚𝑚 and M is the electron and ion masses, 𝐵𝐵0 is the external magnetic 
field, 𝑛𝑛0 is the density of electrons and 𝑒𝑒 is the electron’s electric charge. In plasma with 
magnetized electrons and unmagnetized ions, these oscillations obey the following dispersion 
relation: 
 2 22

2 2
2 2 2 2 2

1(1 ),
2 2 2

pe pe

pe ce

kMk R
m k k cα

ω ω
ω ω

ω ω
= + + −

+
�

 

(17) 
 

where the typical space scale of the dispersion length 𝑅𝑅 = ( 3𝑇𝑇𝑖𝑖
𝜔𝜔𝛼𝛼
2𝑀𝑀

+ 2𝑇𝑇𝑒𝑒
𝜔𝜔𝑐𝑐𝑐𝑐
2 𝑚𝑚

𝜔𝜔𝑝𝑝𝑝𝑝
2

𝜔𝜔𝑝𝑝𝑝𝑝
2 +𝜔𝜔𝑐𝑐𝑐𝑐

2 )1/2, k is the wave 

number and k� is the wave number in parallel to magnetic field direction. These waves have wave 

numbers almost normal to the magnetic field ( k k⊥ >> � , where k⊥  is the wave number in a normal 
to magnetic field direction). In the first phase of this project we studied the branch of oscillations of 

cold plasma transverse to the magnetic field ( 0k =� ), i.e., two-dimensional (2D) case. Figure 5 
shows the dispersion relation curve. We consider the waves with wave number close to 
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* 2 2 2( / (c R )),pek αω≈  where
2 21/ (1 / )ce peα ω ω= + . There are two type of waves: electromagnetic 

(magnetosonic) for 
*k k< and electrostatic (lower-hybrid) waves for 

*k k> . It has been shown that 
the frequency dispersion permits the onset of the modulation instability leading finally to collapse in 
both cases, i.e., magnetosonic and lower-hybrid waves [19]. The goal of this project is 
computational investigation of modulation instability and collapse of waves in the vicinity of the 
lower-hybrid resonance.   

    

 
Figure 5: Dispersion relation for electromagnetic (magnetosonic) and electrostatic (lower-hybrid) 

waves; for k<k*, the waves are magnetostatic and for k>k*, lower-hybrid 

The system of hydrodynamic equations of two component plasma in a magnetic field in 
approximation of magnetized electrons and unmagnetized ions in its general form includes the 
equation for the electric field and the equation for the electron density in ion-acoustic wave is as 
follows [14]: 

 
 2 2 6 2 222 2

2 2 2 2 2 2 2
2 2 2 2 2 2 2 2

2 2 2
0 02 2 2

2 2 2

2

ˆ ˆ ˆ[( ) (1 ) (1 2 2 ) ( )

( ) ( )ˆ ˆ( ) ( ) ( ) ]

[

pi pe pe pece
z pe e en e z z en

pe ce ce ce

pe y y
en e z en e z en

ce

pi

R L L L
t z c

V x V x
L L

x y x y

α

α

ω ω ω ω ωω
ω ρ n ρ n

ω ω ω ω ω

ω
n ρ n ρ n

ω

ω

∂ ∂ Φ
+ ∆ ∆Φ + − ∆ + Φ + + − ∆ ∆Φ + + ∆Φ

∂ ∂

∂ ∂∂Φ ∂
− ∆ ∆Φ − + + + ∆Φ +

∂ ∂ ∂ ∂

+
22

02 2 2 2 2 2 2 2 2
2 2

2 2

2
0

( )ˆ ˆ ˆ ˆ(1 ) (1 2 ) ( ) ]

ˆ( )[{ , }],

y
e z ce e en e z e z e z en

pe
z en

ce

V x
L L L L

z x y

nL
t n

ρ ω ρ n ρ ρ ρ n

ω δn
ω

∂∂ ∂
− ∆ ∆Φ − ∆Φ + − ∆ ∆Φ − ∆ Φ + + ∆Φ =

∂ ∂ ∂

∂
= + Φ

∂  

(18) 
 

 22
2 2 *

2 ( ) { , } 
4

pe
Ti Te

ce

n iV V n
Mt α

ωδ δ
p ω ω

∂
− + ∆ = − ∆ Φ Φ

∂  

(19) 
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where 
0

ˆ ( )z yL V x
t y
∂ ∂

= +
∂ ∂ , 

0
ˆ ( )z y enL V x

t yn n∂ ∂
= + +
∂ ∂ , 

2
2

2
ˆ ˆ ˆ

z T z z TeL L L V
zνν
∂

= −
∂  and 

ˆ ˆ ˆ
zz z zL L Lν= ,Φ is the 

electric potential, n is the disturbed density of electrons (𝑛𝑛 ≪ 𝑛𝑛0), 𝜔𝜔𝑐𝑐𝑐𝑐 = 𝑒𝑒𝐵𝐵0/(𝑀𝑀𝑀𝑀) is the ion 

cyclotron frequency, 0/ (eB )e TemVρ = is the electron gyroradius, enn  is the electron-neutral collision 

coefficient, 0 yV is the drift velocity of electrons normal to magnetic field, TeV  and TiV  are the thermal 
velocity of electrons and ions and c is the speed of light; ∆  is 3D Laplace operator, t is time and x, y 
and z are the spatial coordinates. 

We need to simplify and normalize these equations. We omit all the terms with 
2
eρ  with the 

exception of the second term at the left hand side of equation (3.17) since they are small. We also 

consider enn  small but finite and we can drop it in the nonlinear term. Now instead of (18) in 2D 
case we get: 
 2 2 2 2 4 2 22

02 2 2 2
2 2 2 2 2 2 2 2

2 2
2 2 2

2
0

( )ˆ ˆ ˆ ˆ[( ) (1 2 ) ( ) ( ) ]

ˆ ˆ ˆ[(1 ) ] ( )[{ , }],

pi pe pe pe pe y
z en z z en z en

ce ce ce ce

pe e
pi z en z z en

ce e

V x
R L L L L

t c x y

nR L L L
t n

α

α

ω ω ω ω ω ω
n n n

ω ω ω ω ω

ω δω n n
ω

∂∂ ∂Φ
+ ∆ ∆Φ + + ∆Φ + + ∆Φ + Φ − + +

∂ ∂ ∂

∂
+ + ∆ ∆Φ + ∆Φ = + Φ

∂  

(20) 
 

where ∆  is 2D Laplace operator. Equation (20) without terms which include electron-neutral 
collisions has the following form: 

       
 2 2 4 2 2 22 2

02 2 2 2
2 2 2 2 2 2 2

0

ˆ ˆ ˆ ˆ[ (1 ) ] { , }pi pe pe y pe
z z pi z z

ce ce ce

V nR L L L L
y nt c x t

α

α

ω ω ω ω ω δω
ω ω ω ω

∂∂ ∂Φ ∂
+ ∆ ∆Φ + Φ − + ∆Φ = Φ

∂∂ ∂ ∂  

(21) 
 

 

Equation (21) could be further simplified when frequency is far from resonance which allows 
separation of the fast and slow times [19]: 

                
 2 2 2 4 22 2

02
2 2 2 2 2 2 2 2

0

1 ˆ[2 ] { , } pe y pe pe
ce

ce pi ce pi ce pi

V ni R L
y nx c

αα α

α

ω ω ω ωω ω δω
ω τ ω ω ω ω ω ω

∂∂ ∂Φ
+ ∆ ∆Φ − + Φ = Φ

∂ ∂∂  

(22) 
 

where τ is new “slow” time and 
0  ˆ + ( ) . yL i V x

yαω
∂

= −
∂  

Let us make equations dimensionless (all variables with ~ (tilde) on the top are dimensional, 
without ~ (tilde) variables are dimensionless, for example, t is dimensional, but t  is dimensionless):      
          
 2 2 2 42

0 0
2 2 2 2 2 22

0

( ) ( / )
[2 ](1+ ) { , }y pe y s pe

ce pi ce pis

V x V V ni i i i i
t y y nx cV K

αα
ω ω ωω δ

ω ω ω ω
∂∂ ∂ ∂Φ

+ ∆ ∆Φ − + Φ = Φ
∂ ∂ ∂∂

  


 

(23) 
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 2

*
2

1 ( 1) { , } i

e

T
n n i

T st
δ δ∂

− + ∆ = − ∆ Φ Φ
∂  

(24) 
 

where 

2 2 22
2 2

2 2 2 2 2

1 1 ,  ,K ,   1 ,  i

i

T ce

T pe

V Kt t t t t R s
R K V

α
α α

α α

ω ωω ω
ω ω ω

= = = = = +  

 

2,   e e

i

T K mxx
RK es M

= Φ = Φ
 

, 

2
2 2 2

0 0

1 1,    ,  =       i e ce

e ce i

m mn nn K n
n m n M K K R

α

α

ω ωδ δδ δ
ω ω

= = ∆ ∆
  
   

Let us estimate the typical parameter for the ionosphere plasma. Supposing 𝑛𝑛0 = 4 ∗ 104 cm-3, 
𝑇𝑇𝑒𝑒 = 3 ∙ 103𝐾𝐾 = 0.2586 𝑒𝑒𝑒𝑒 = 0.4143 ∙ 10−12𝑔𝑔 ∙ 𝑐𝑐𝑐𝑐

2

𝑠𝑠2
, 𝑇𝑇𝑖𝑖 = 4 ∙ 103𝐾𝐾 = 0.3448 𝑒𝑒𝑒𝑒 = 0.5524 ∙

10−12𝑔𝑔 ∙ 𝑐𝑐𝑐𝑐/𝑠𝑠2, B0=0.35 Gs (gauss), 𝑀𝑀 = 16 ∙ 1.6726 ∙ 10−24g, 𝑚𝑚 = 9.10938 ∙ 10−28g we find 
all necessary parameters (see Table 1).  
 

Table 1: The values of parameters for typical ionosphere conditions 

 
As mentioned earlier, we will consider two wave types: magnetosonic and lower-hybrid waves. For 
the lower-hybrid waves, the third term of equation (23) was removed. Considering the coefficient in 

the second term of equation (23) 

22

2 2 1pe

ce pi

α
ωω

ω ω
≈

 and the coefficient in third term of equation (24) 1s ≈
we can rewrite system (23-24) in the following form: 

        
2

0 0
2 2

( ) ( / )1[2 ](1+ ) { , }y y s

s

V x V V
i i i C i n

y yK xV
δ

τ
∂∂ ∂ ∂Φ

+ ∆ ∆Φ − + Φ = Φ
∂ ∂ ∂∂

  


, 

2 4

2 2 ,pe

ce

C
c
αω ω
ω

=
 

(25) 
 

2
*

2  ( 1 { } ) ,i

e

T
n n i

Tt
δ δ∂

− + ∆ = − ∆ Φ Φ
∂  

(26) 
 

or in the form used for numerical calculations: 

 
 𝜕𝜕

𝜕𝜕𝜕𝜕
∆𝜑𝜑1 = −

𝑉𝑉
2𝐾𝐾2

𝜕𝜕
𝜕𝜕𝜕𝜕

∆2𝜑𝜑1 −
1
2
∆2𝜑𝜑2 +

𝑉𝑉′′

2
𝜕𝜕
𝜕𝜕𝜕𝜕

𝜑𝜑1 − 𝐶𝐶𝜑𝜑1 +
1
2

[𝛿𝛿𝛿𝛿,𝜑𝜑1], 

𝜕𝜕
𝜕𝜕𝜕𝜕
∆𝜑𝜑2 = −

𝑉𝑉
2𝐾𝐾2

𝜕𝜕
𝜕𝜕𝜕𝜕

∆2𝜑𝜑2 +
1
2
∆2𝜑𝜑1 +

𝑉𝑉′′

2
𝜕𝜕
𝜕𝜕𝜕𝜕

𝜑𝜑2 − 𝐶𝐶𝜑𝜑2 +
1
2

[𝛿𝛿𝛿𝛿,𝜑𝜑2], 
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𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝑢𝑢, 

𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝑢𝑢, 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

=
𝑇𝑇
𝑇𝑇𝑒𝑒
∆𝛿𝛿𝛿𝛿 − 2

𝑇𝑇
𝑇𝑇𝑒𝑒
∆[𝜑𝜑1,𝜑𝜑2], 

(27) 
 

 

where Φ = 𝜑𝜑1 + 𝑖𝑖𝜑𝜑2.  
 If we count electron-neutral collision the first two equations from system (27) have a form 
as follows: 

𝜕𝜕
𝜕𝜕𝜕𝜕
∆𝜑𝜑1 = − 𝑉𝑉

2𝐾𝐾2
𝜕𝜕
𝜕𝜕𝜕𝜕
∆2𝜑𝜑1 −

1
2
∆2𝜑𝜑2 + 𝑉𝑉′′

2
𝜕𝜕
𝜕𝜕𝜕𝜕
𝜑𝜑1 − 𝐶𝐶𝜑𝜑1 + 𝜈𝜈∆𝜑𝜑2 + 1

2
[𝛿𝛿𝛿𝛿,𝜑𝜑1],  

𝜕𝜕
𝜕𝜕𝜕𝜕
∆𝜑𝜑2 = −

𝑉𝑉
2𝐾𝐾2

𝜕𝜕
𝜕𝜕𝜕𝜕

∆2𝜑𝜑2 +
1
2
∆2𝜑𝜑1 +

𝑉𝑉′′

2
𝜕𝜕
𝜕𝜕𝜕𝜕

𝜑𝜑2 − 𝐶𝐶𝜑𝜑2 − 𝜈𝜈∆𝜑𝜑1 +
1
2

[𝛿𝛿𝛿𝛿,𝜑𝜑2], 

 
 

(28) 
 

 

where ν is the normalized electron-neutral collision coefficient  
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 For the 3D case (Phase II of this project) we will considered only lower-hybrid waves. 
However in this case we will keep second term in equation (18). The simplified version of system 
of equations (18) and (19) with negligence of dissipation terms is as follows:  
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System (29 , 30) in the form of numerical calculation are: 
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𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝑢𝑢, 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

=
𝑇𝑇
𝑇𝑇𝑒𝑒
∆𝛿𝛿𝛿𝛿 − 2

𝑇𝑇
𝑇𝑇𝑒𝑒
∆[𝜑𝜑1,𝜑𝜑2], 

 

Note that here ∆  is 3D Laplace operator. However, since  zk  is much larger than  k⊥  (indeed

1/2(m/ M) 171zk k k⊥ ⊥≈ ⋅� ), all terms with derivatives in z direction (except of the term

2
2

2pe z
ω ∂ Φ

∂ ) 
are negligible. Thus we should use ∆  as 2D Laplace operator.  
The source of instability is velocity shear of electron drift. To make a calculation we will use the 
velocity profile depicted on Figure 6. 

 
Figure 6: In this figure a nonuniform electric field E0 and an external magnetic field B0 create a 

nonuniform electron flow with velocity shear along the y-direction. 

 
3.2 Analyses of the preliminary results 
The “Beavercreek 2” code has been modified for solution of system of equations (3.26) describing 
parametric interaction of finite amplitude VLF waves in the presence of velocity shear. This work 
corresponds to the implementation of the first task of the portion of the work. 
To test the new code, we solved 2D problem with periodic boundary conditions. We used the grid 
256x256. The initial conditions were randomly distributed (very low) electric field and plasma 
density fluctuations: in dimensionless units, the electric field and fluctuation of plasma density were 
in the order of 10-8. The source of instability, i.e., the electron velocity shear, was taken as follows: 
electrons drift in y-direction with velocity function is given by Gaussian distribution with the center 
in the middle of x-axis (x=128) with amplitude V0=1.0. We consider two cases: lower-hybrid waves, 
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i.e., we did not count the correction term for magnetosonic waves (C=0 in equations (26)), and 
magnetosonic waves (C>0 in equations (26)).     

 
3.3 Modulation Instability of Lower-Hybrid waves 
 

Figure 7- 11 show the results of spatial distribution of the electric field as well as their 2D spatial 
Fourier spectrum for the different moments of time (t) starting from the initial random distribution (t 
= 0) (Figure 11). As one can see, the modulation instability begins to develop at t = 800 (Figure 8) 
along lines with nullify second x derivative of the velocity profile. This is a linear phase of 
instability. At time t=800, modulation instability is fully developed, however the amplitude of the 
electric field is still very small (Figure 9). At time t=2600, the amplitude of the field is already large 
(Figure 10).  
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Figure 7: Initial (t = 0) electric field distribution (squire of electric field) in dimensionless units 

(top) and 2D spatial spectrum of electric field (bottom). 
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Figure 8: Electric field distribution (top) and its 2D spectrum (bottom) at time t = 800; instability 

just starts to develop. 
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Figure 9: Electric field distribution (at the left) and its 2D spectrum (at the right) at time t = 1800; 

modulation instability is fully developed, amplitude is still small. 

 

 

 

 

 

 
Figure 10 : Electric field distibution (at the left) and its 2D spectrum (at the right) at time t = 2400; 

amplitude is already large. 
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Figure 11: Electric field distribution (at the left) and its 2D spectrum (at the right) at time t = 2600; 

amplitude is very large. 

Figure 12 shows the dynamic of modulation instability development. Linear instability is dominant 
up to the time t = 2612. Plasma density “begins to feel it” only after time t = 1600. Starting from t = 
2615.5, the nonlinear terms become comparable with linear terms and then quickly overcome the 
latter. However this state is already out of model applicability.       

 
Figure 12: Square of electric field and square of plasma density as a function of time. 

Figure 13- 16 show the results of spatial distribution of plasma density irregularity as well as their 
2D spatial Fourier spectrum for the different moments of time. One may observe that up to the time 
t = 1600, nonlinear term is negligible and plasma density does not “feel” local increase of the 
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electric field. Starting from t = 1600, plasma density increases from the side of positive first 
derivative of velocity profile and decreases from the side of negative first derivative of velocity 
profile (Figure 13). This happens when the amplitude of the electric field increases up to 10-4 (in 
dimensionless units). Then, the spatial profile of plasma density remain essentially the same. 
However, the density quickly increases from 10-9 at t=1600 (Figure 13) to 10-7 at t=1800 Figure 14) 
to 10-1 at t=2400 (Figure 15). Finally, the amplitude becomes larger than unity, which means that 
limitations of the model applicability are already exceeded (Figure 16).      

 
Figure 13: Plasma density irregularity spatial distribution at the left) and its 2D spectrum (at the 

right) at time t = 1600; nonlinear term starts to play only when electric field increases up to 10-4. 

 
Figure 14: Plasma density irregularity spatial distribution at the left) and its 2D spectrum (at the 

right) at time 1800; instability is fully developed, amplitude is still small. 
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Figure 15:Plasma density irregularity spatial distribution at the left) and its 2D spectrum (at the 

right) at time t = 2400; amplitude is large already. 

 

 
Figure 16:Plasma density irregularity spatial distribution (at the left) and its 2D spectrum (at the 
right) at time t=2600. Amplitude is very large (more then 1), this stage is already out of model 

applicability. 

 
3.4 Modulation Instability of magneto sonic waves 
 

For the parameters of ionosphere plasma considered above, the parameter C has a value 0.71∙10-7. 
Comparison of the results of calculation of instability dynamics with this value of C with the results 
obtained in the previous section on page 16 shows that they are practically identical. In other words, 
the electromagnetic correction term is negligible, i.e., C is too small. However, in a case when 
plasma has such conditions that C is larger than 10-6 (for example for plasma with density order of 
magnitude larger than was used in the above example) the influence of the correction term becomes 
obvious. Figure 17-21 depict the electric field distribution for the lower-hybrid and magnetosonic 
waves at different times. One can see that at earlier time (t=400) the electric field still has a 
stochastic distribution in the case of lower-hybrid waves, i.e., instability is not developed yet. In 
contrast, in the case of magnetosonic waves 1) the amplitude of the field is in order of magnitude 
larger and 2) the large-scale structure is developed (Figure 17).  The same is true for the t=600. 
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However, now amplitude difference is in two orders of magnitude and large-scale objects start to 
align along y-axis for the magnetosonic waves (Figure 18).    

 
Figure 17: Electric field distribution for lower-hybrid (at the left) and magnetosonic (at the right) 

waves after t = 400. The difference is visible: stochastic distribution of the field for the lower-hybrid 
waves in contrast to magnetosonic waves where amplitude of the field is order of magnitude larger 

and large-scale structure is developed. 

 
Figure 18: Electric field distribution for lower-hybrid (at the left) and magnetosonic (at the right) 

waves after t = 600. Instability is not developed for the lower-hybrid waves (still stochastic 
distribution). Large-scale objects start to align along y-axis for the magnetosonic waves. Amplitude 

of the magnetosonic waves is larger than amplitude of the lower-hybrid waves in two orders of 
magnitude. 

At time t = 1000, the modulation instability is developed for the lower-hybrid waves, but is not yet 
developed for the magnetosonic waves. The large-scale objects aligned along y-axis are still in 
place for the latter waves and amplitude of these waves is larger than amplitude of the lower-hybrid 
waves by four orders of magnitude (Figure 19).  At time t = 1400, instability is fully developed for 
the lower-hybrid waves and just start to develop for the magnetosonic waves. The amplitude of the 
waves is in the same order of magnitude already (Figure 20). Finally, starting from the time t=1600, 
the electric field distribution and plasma density distribution are almost indistinguishable between 
lower-hybrid and magnetosonic waves (Figure 21 and Figure 22). Here we observe the transition of 
magnetosonic wave to lower-hybrid wave predicted by Shapiro et al. [19]. 
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Figure 19:Electric field distribution for lower-hybrid (at the left) and magnetosonic (at the right) 

waves after t = 1000. Modulation instability is developed for the lower-hybrid waves. Large-scale 
objects aligned along y-axis are still in place for the magnetosonic waves. Amplitude of the 

magnetosonic waves is larger than amplitude of the lower-hybrid waves in four orders of 
magnitude. 

 
Figure 20:Electric field distribution for lower-hybrid (at the left) and magnetosonic (at the right) 

waves after t = 1400. Modulation instability is fully developed for the lower-hybrid waves and just 
start to develop for the magnetosonic waves. The amplitude of the wave is in the same order 

already. 
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Figure 21: Electric field distribution for lower-hybrid (at the left) and magnetosonic (at the right) 

waves after t = 1600. Starting from this time, the electric field distribution is almost 
indistinguishable between lower-hybrid and magnetosonic waves. 

 
Figure 22:  Plasma density distribution for lower-hybrid (at the left) and magnetosonic (at the right) 

waves after t = 1600. Starting from this time, the density distribution is almost indistinguishable 
between the two types of waves. 

 
3.5 Influence of electron- neutral collisions  
Electron – neutral collision may essentially affect the development of modulation instability. 
Indeed, as we can see in Figure 23 the increase of value of the electron – neutral collision 
coefficient 1) increases the time necessary for instability development and 2) decreases the 
increment of instability development. Moreover, if collision frequency is too large the modulation 
instability is not developed (see dotted curve at Figure 23).  This work corresponds to the 
implementation of the second task of the project (Task 2: Modify developed “Beavercreek 2D” 
code to include electron-neutral collisions and density gradients.       

25 
Approved for public release; distribution unlimited. 



 
Figure 23:Squire of electric field density as a function of time for various values of normalized 

electron-neutral collision coefficient. 
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 Analytical and Experimental Investigations High frequency RF Interaction With 4.0

Localized Density Structures at the Naval Research Laboratory 
 

In a series of experiments, Amatucci et al. [13] demonstrated that strongly sheared electron flows 
perpendicular to the background magnetic field with scale size smaller than an ion gyroradius but 
larger than an electron gyroradius can drive electrostatic oscillations near the lower hybrid 
frequency.  These observations were consistent with the theoretical predictions of Ganguli et al. 
[11] and Ganguli and Romero [12] and lent support to the relaxation scenario for highly stressed 
magnetospheric boundary layers.  For example, during intense solar activity, the plasma sheet 
boundary layer can become highly compressed, with gradients in the plasma across the layer self-
consistently generating localized electric fields and highly sheared flows across the magnetic field.  
These sheared flows generate plasma instabilities that work to dissipate differential flows and widen 
the boundary layer.  An analogous situation can arise in the flowing plasma surrounding a 
hypersonic vehicle, resulting in the generation of strong plasma turbulence. 
 
The experiments on the generation of shear-driven lower hybrid waves were conducted in the Space 
Physics Simulation Chamber (SPSC) at the Naval Research Laboratory.  The main chamber part of 
the SPSC consists of a 1.8 m diameter, 5 m long cylindrical vacuum vessel designed for controlled, 
scaled experiments of space plasma processes.  For these experiments, a large area (~ 75 cm 
diameter) hot filament plasma source was placed at one end of the chamber, while a smaller 
filament source (~ 2 cm diameter) is placed at the opposite end.  As can be seen in a schematic of 
the experimental setup in Figure 24, an isolated electrode blocks a small portion of the plasma 
generated by the large area source, which is filled with the plasma generated by the small plasma 
source.  The blocking disk and the outer grid of the small source allow for control over the plasma 
potential of the small area plasma column.  Strong radial dc electric fields can be generated by this 
steep variation of plasma potential across the cylindrical boundary layer between the two plasmas.  
This in conjunction with the filament heater currents on both sources enables independent control 
over the electric field and density gradients across the boundary of the two interpenetrating plasmas, 
simulating the stressed plasma sheet boundary layer conditions. 

 

 

Figure 24: Schematic diagram of the experimental setup showing the two interpenetrating 
plasmas. 
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Typical parameters for the steady-state argon plasma are: plasma density n ~109-1010 cm-3, ion and 
electron temperatures Ti ~0.05 eV and Te ~0.25 eV, ion and electron thermal speeds vti ~ 5×104 cm/s 
and vte ~ 2×107 cm/s, and an axial magnetic field B = 40 G.  This yields ion and electron 
gyrofrequencies Ωi  ~1.5 kHz and Ωe ~110 Mhz, ion and electron gyroradii ρi ~3.5 cm and ρe ~0.03 
cm, and lower hybrid frequency fLH ~400 kHz.  The neutral density nn is variable from 1011-1014 cm-

3, and the plasma column diameter and effective length are 75 cm and 3 m, respectively. 
 
Plasma potential was measured using radial emissive probes. The derivative of the resulting profile 
is the electric field profile.  The measured electric field yields a typical transverse electric field scale 
length LE from 0.6-1.0 cm (0.17-0.3 ρi) and the magnitude can be controlled up to 40 V/cm.  
Typical plasma potential (solid line without symbols) and electric field (dashed line) radial profiles 
can be seen in Figure 25.  Since the electric field scale length is in the range ρe < LE < ρi, the 
electrons E×B drift but the ions do not.  For sufficiently strong electric fields, an instability with 
frequency in the lower hybrid frequency range is observed within the shear layer.  Figure 25 shows 
an overlay of mode amplitude (solid circles) as a function of radial position localized to the edge of 
the transverse electron flow layer.  A sample wave spectrum is also inset showing a mode with 
frequency ~780 kHz (~1.9fLH), indicating that sheared transverse electron flows without the 
presence of a density gradient can drive lower hybrid waves. 
 
 

 

Figure 25: Radial profile of lower hybrid wave 
amplitude for the uniform density case and 

wave spectrum as inset. 

 

Figure 26: Comparison of experimentally 
observed (filled symbols) and theoretically 

predicted (line) values of mode frequency as a 
function of magnetic field strength. 

 
Figure 26 shows a comparison between theoretically predicted mode frequency for these velocity 
shear-driven waves and the experimentally measure values as a function of the magnetic field 
strength.  There is good agreement between the theoretical predictions and the measure mode 
frequencies.  The observed instability also exhibits a threshold electric field (~7.5 V/cm) for the 
waves to appear.  This coupled with the spatial localization of the mode amplitude to the shear layer 
suggests that the shear in the electron E×B flow is responsible for driving the observed lower hybrid 
waves. 
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While these experiments were scaled to magnetospheric boundary layer conditions, they could 
equally be applied to hypersonic vehicle plasmas.  Future experimentation will focus on increasing 
the overall size of the flowing plasma region while maintaining the steep gradients.  By driving the 
mode well in the nonlinearly saturate state, we will investigate the formation of turbulent plasma 
density structures and the effect of such structures on the scattering and transmission of 
electromagnetic waves. 
 
Building on this experience, we have designed a large linear plasma source to generate sheet plasma 
that can be biased in the same manner as the small area cylindrical plasma source used previously.  
The linear source has several advantages for this project: the large sheet plasma and subsequent 
large area of plasma turbulence will present a simpler target for the electromagnetic waves used in 
the scattering experiments and the slab geometry is the same as that used in the theory, which will 
make for easier comparison between theory and experiment.  The linear source is approximately 1 
meter tall and generates a plasma that is approximately 4-8 ion gyroradii wide using thermionically 
emissive filaments.  For typical plasma parameters and magnetic fields used in the experiments, this 
translates to a plasma sheet that is 10-20 cm wide.  This plasma sheet will be immersed in a 
background plasma that is approximately a 1 m square.  Figure 27 shows a photograph of the linear 
source in the SPSC.  We have characterized the plasma generated by the linear plasma source and 
some representative profiles are shown in Figure 28.  The width of the plot is equivalent to the size 
of the chamber.  The line at the top of the plot represents the blocking disk that will be used to block 
the background plasma and bias the plasma sheet.  The purple bars represent the size of the 
background plasma column.   
 

 
Figure 27: New linear plasma 

source installed in the SPSC. 

 
Figure 28: Density profile produced by new linear 

plasma source with the width of the plot representing 
the size of the chamber.  The blocking disk is shown at 
the top of the plot and the purple bars represent the 
size of the background plasma. 
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The presence of plasma turbulence can strongly influence the propagation characteristics of 
electromagnetic signals used for surveillance and communication.  In particular, we are interested in 
the generation of low frequency plasma turbulence in the form of coherent vortex structures 
coexisting with short scale density irregularities.  These coherent vortex structures are characteristic 
of lower hybrid turbulence, and we will study the effects of this turbulence driven by two types of 
plasma instabilities.  The first type is the Electron-Ion Hybrid (EIH) instability, which is driven by 
in-homogeneities in the flow of a magnetized plasma where the scale size of the inhomogeneity is 
smaller than the ion gyroradius.  In this limit, the instability will be generated near the lower hybrid 
frequency and the nonlinear state has been shown simulations to exhibit the desired structure.  The 
second type is the interchange or flute instability in a magnetized plasma that is associated with the 
Rayleigh-Taylor instability.  Both of these density irregularities play an important role in refraction 
and scattering of high frequency electromagnetic signals propagating in the Earth’s ionosphere, in 
the sheath of reentry and hypersonic vehicles, and in many other applications. 

The scattering of high-frequency (HF) electromagnetic (EM) waves is a fundamental phenomenon 
in plasma physics.  In a stable plasma EM scattering occurs due to Thomson scatter, which is 
scattering from thermal electron density fluctuations.  The nonlinear interaction of waves in a 
plasma can also lead to scattering off of the density fluctuations due to the daughter waves from a 
parametric decay of a large amplitude wave.  Scattering can also take place due to the interaction of 
HF waves with electrostatic solitons or from charged dust particles.  In this project, we seek to 
analyze the formation of plasma density irregularities due to the development of lower hybrid 
velocity-driven and interchange instabilities.  These types of density of density irregularities play an 
important role in the analysis of high frequency EM scattering and refraction in the ionospheric 
plasma, since the spatial scales of these plasma waves are comparable or smaller than typical 
wavelengths of EM signals used for surveillance, communication, and OTH radar applications. 

 
4.1 Linear Theory Extension 
In order to create a more realistic simulation of the plasma environment surrounding a hypersonic 
vehicle, we expanded the linear theory for the EIH instability to include density gradients and 
electron-neutral collisions.  In order to make the simulation more representative of the experimental 
setup, we generalized the linear theory to cylindrical coordinates and assumed an azimuthally 
symmetric electric field profile.  The results of the numerical shooting code can be seen in Figure 
29.  The theory does in fact predict an unstable mode for the experimental conditions, and the 
predicted eigenvalue is in good agreement with the observed values. 
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Figure 29: Typical eigenfunction magnitude (top pane) resulting from the numerical shooting code 
for experimental conditions with normalized electric field (middle pane) and density (bottom pane) 

profiles used in the calculations. 

In order to arrive at the above solution, we tracked the pure EIH mode (without a density gradient) 
for experimental parameters as we slowly increase the density gradient until we reach the above 
profile.  This ensures that the solution is the density gradient modified EIH mode.  The mode shows 
a dramatic decrease of the real frequency of approximately 79% with the inclusion of a density 
gradient compared to the pure EIH solution.  There is also a more modest decrease in the growth 
rate of approximately 26%.  The location of the peak wave amplitude predicted by the theory is 
consistent with the experimental observations.  The solution presented in Figure 29 exhibits the 
characteristic electric field threshold observed in the experiments. 
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Figure 30: Comparison between trends in real frequency for theory and experimental data as the 
electric field is varied for various normalized electron –neutral collisions frequencies: (a) 0.035, (b) 

0.039, (c) 0.044, and (d) 0.048. 

Figure 30 shows a series of comparisons of the trends in the real frequency between theory and 
experimental data as the electric field is varied.  Trends are shown as fractional variation from a 
reference level associated with an electric field that is just above threshold.  Plotting the data in this 
fashion emphasizes the agreement in the frequency vs electric field trend, though the predicted real 
frequencies are still in relatively good agreement with the experimental data.  The general trend of 
increasing observed real frequency as a function of maximum applied electric field is predicted by 
the theory.  In general, a 15% change in the applied electric field yields a change in frequency of 
approximately 10-15%.  It is important to note that the electric field in the experiment is the means 
by which we generate the plasma flows that are expected in the plasma environment surrounding a 
hypersonic vehicle.  These trends are those that would be observed for different plasma velocities. 

Plotted in Figure 31is the variation in real frequency as a function of normalized electron-neutral 
collision frequency determined by the theory for four values of normalized E×B drift velocities.  
The four values of alpha correspond to experimental values of normalized electric field.  Although 
the numerical predictions of the variation in the real frequency as a function of electron-neutral 
collision frequency do not decrease as quickly as the experimental observations, they do 
demonstrate the same general trend of decreasing frequency with increasing collisions frequency. 
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Figure 31: Variation in real frequency as a function of electron-neutral collision frequency as 
determined from the theory for four different normalized E×B drift velocities for experimental 

parameters. 

The decrease in real frequency as the neutral pressure increases is due to the drag force imposed on 
the flowing electrons from collisions with neutrals. The collisions reduce the perturbed electron 
flow altering the Doppler-shifted frequency as seen by 𝜔𝜔�𝑒𝑒 = 𝜔𝜔1𝑒𝑒 + 𝑖𝑖𝜈𝜈𝑒𝑒𝑒𝑒, which in general will 
lower the growth rate of the mode. It can also lower the real frequency since it enters the Poisson 
equation as 𝜔𝜔�𝑒𝑒2 from the contribution to the density fluctuations due to the parallel wave electric 
field.  In the theory, the electron-neutral drag force comes in through the momentum balance 
equation to first order and is neglected in the equilibrium calculations.  It may be that the effects on 
the equilibrium flow need to be considered to fully capture the rapid rate at which the real frequency 
decreases in the experimental data. In addition, the theory does not reproduce the convergence of 
the real frequency for large values of neutral pressure as is demonstrated in the experiment. While 
we have conjectures about what might be causing this, we do not have the necessary experimental 
support to confirm these, and this behavior will be the subject of future research. 

We demonstrated experimentally the substantial effects that collisions between charged and neutral 
species have in the development of the EIH instability.  Not surprisingly charged/neutral collisions 
strongly affect the growth rate of these waves, though they do not stabilize the plasma.  Increasing 
the neutral density relative to the electron density increases the threshold velocity required for the 
waves to develop and limits their saturation amplitude.  Less intuitively, but of at least equal 
importance, the background neutral density affects the frequency of the dominant mode of the 
wave, not only reducing the frequency but reducing the dependence of frequency on the velocity as 
neutral density increases.  The linear theory does a good job of reproducing the observed 
experimental results and gives us a firm foundation for exploring the nonlinear evolution of this 
instability. 

 
4.2 EM Scattering Experiments 
The scattering experiments that will be described in this section were intended to provide a solid 
foundation and develop the infrastructure for more complicated experiments of scattering off of 
turbulent structures.  These experiments were conducted in three geometries, as shown in Figure 32.  
The first (baseline) geometry, shown in (a), launched microwaves in the x-direction into a plasma 
slab generated by a uniform linear array of electron-emitting filaments.  The plasma naturally had a 
density variation in x but was uniform in y.  Then, the filament array was re-arranged to introduce 
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periodic variations in the electron flux, and hence periodic variations in the plasma density, in the y-
direction.  The microwaves could then be emitted by a horn antenna aligned with either a minimum 
(Figure 32(b)) or a maximum (Figure 32(c)) in the plasma density.  Microwave transmission 
through the plasma was monitored by an identical receiving horn antenna whose position on the far 
side of the plasma slab was movable. 

 
Figure 32: Experimental setup, in which microwaves were launched into a) a uniform plasma slab 

or b, c) a patterned plasma slab. 

The plasma is well-localized in the x-direction, as shown in Figure 33 for the case of a relatively 
high magnetic field (100 G in the z-direction).  The FWHM of the plasma depends primarily on the 
gyroradius of the plasma ions, and to a lesser extent on cross-field diffusion.  When patterned, the 
profile of plasma density similarly depends on the magnetic field, and is shown in Figure 34, for 
several values of the magnetic field, B.  As Figure 34 illustrates, increasing the magnetic field has 
two effects on the plasma structure of the patterned plasma: it increases the magnitude of the 
density gradients in the y-direction and it increases the “contrast” in the plasma—that is, the ratio 
between the maximum and minimum densities along the y-axis.  The consequences of both of these 
effects may be seen in the behavior of microwaves traversing the plasma region. 

 
Figure 33: Typical profile of the plasma slab in the x-direction. 
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Figure 34: Representative density profiles of the plasma in the y-direction, with the patterned 

plasma slab. 

Figure 35 shows the relative transmission of microwave power through the uniform plasma slab for 
three different microwave frequencies as a function of angle.  The reference transmission level of 
T = 1.0 is taken to be the vacuum case at zero angle, where the primary lobe of the antenna pattern 
is centered without plasma present.  The plasma density for this case is relatively high,

310 cm 107.2 −×=en , and the behavior of microwaves at three different frequencies is shown, f = 2.0 
GHz, 2.5 GHz, and 3.0 GHz.  At the lowest frequency, the microwave is simply cut off in the 
plasma and cannot propagate through the plasma slab—we attribute any signal that is picked up in 
the receiving antenna to paths around the plasma, which would not be unusual since the vacuum 
chamber wall is entirely conducting.  At the intermediate frequency, the wave is still cut off in the 
plasma, but unlike the lower-frequency case, the plasma sheet is not thick enough to entirely 
attenuate the wave.  Both of these cases are behaving as expected. 

 
Figure 35: Microwave transmission through a uniform plasma slab at frequencies of 2.0, 2.5, 

and 3.0 GHz. 

 
 

 

 

The behavior of the high frequency case is worth considering, because at a frequency of 3.0 GHz, 
the microwaves are well above the nominal cutoff frequency in the plasma.  Nonetheless, the 
presence of the plasma slab has an effect on the transmission of microwaves through it.  The 
presence of the plasma is a negative perturbation on the index of refraction, so that waves entering 
the plasma at other than normal incidence are bent away from the normal, by Snell’s law.  Since the 
antenna pattern of the transmitting horn antenna has some breadth, many of the wave fronts 
reaching the plasma will do so off-normal.  We would then expect these waves to be refracted in 
such a way that the width of the antenna pattern with the plasma present increases, even though the 
plasma is transparent to the microwave radiation.  This is just what we do, in fact, observe: at angles 
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larger than 10 degrees, the transmission through the plasma increases, relative to the vacuum case, 
at the expense of transmission at more shallow angles. 

The effects of a plasma patterned in the y-direction are characteristically different than the effects 
arising from propagation through a uniform slab.  The uniform slab may affect the amplitude of the 
transmitted wave substantially if the frequency of the wave is below the cutoff frequency, but the 
pattern remains single-lobed and forward directed.  Figure 36 shows the transmission as a function 
of angle when the transmitting horn is centered at a minimum in the plasma density (that is, the case 
shown in Figure 32(b)) for microwave frequencies of 2.0 GHz, 2.4 GHz, and 2.8 GHz, respectively. 

 
Figure 36: Microwave transmission through a density minimum in a patterned plasma slab at 
frequencies of 2.0, 2.4, and 2.8 GHz.  The dashed line is the transmission through vacuum. 

  

 

 

It is clear that the effects that are caused by the presence of the plasma are more pronounced with 
higher plasma density.  The microwave signal may be attenuated (especially if the frequency is low 
compared to the cutoff frequency) but this is not universally true—there are also locations in space 
where the microwave signal is enhanced by several tens of percent compared to its vacuum-
transmission value.  Enhancement and attenuation depend not only on density but geometry, 
resulting in multiple lobes in the antenna pattern once it passes through the plasma. 
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The complementary data set, in which the transmitting antenna is aligned with a maximum in the 
plasma density, is shown in Figure 37 again for microwave frequencies of 2.0 GHz, 2.4 GHz, 
and 2.8 GHz, respectively.  Directly opposite from the transmitting horn, the presence of the 
plasma attenuates the signal (and this is true whether the microwave frequency is above or below 
cutoff), but off-normal there are regions where the received microwave power is enhanced. 
Interestingly, in this particular geometry there are conditions where pronounced lobes in the 
antenna pattern appear off-axis. 

Figure 37: Microwave transmission through a density maximum in a patterned plasma slab at 
frequencies of 2.0, 2.4, and 2.8 GHz.  The dashed line is the transmission through vacuum 

 

  

We can arrive at additional insight into the processes involved in the microwave’s interaction with 
the plasma by exploring the parameter space with a fixed geometry of the receiving antenna, 
specifically, at zero angle, aligned with the transmitting horn either through a minimum (Figure 
32(b)) or a maximum (Figure 32(c)) in the plasma.  Figure 38 shows the response for a variety of 
plasma densities for the same  

 
Figure 38: Transmission through a minimum in the plasma density for various frequencies used in 

Figure 36 and Figure 37 

 For each of these cases, the magnetic field was set to B = 80G, so the intermediate profile from 
Figure 34 is representative of the variation in the plasma density along the y-axis.  The enhancement 
in the transmitted power varies from 30% to in excess of 50% depending on the microwave 
frequency used and the maximum plasma density.  As the maximum plasma density increases 
beyond 𝑛𝑛𝑒𝑒 𝑚𝑚𝑚𝑚𝑚𝑚 = 4 × 109 cm-3, we see that the lowest-frequency waves (2.0 GHz) are strongly cut 
off, the intermediate-frequency waves (2.4 GHz) are mildly but not completely cutoff, and the 
highest frequency waves (2.8 GHz) are essentially not cut off, for the range of densities used.  The 
effects of the plasma are pronounced, however, well below 𝑛𝑛𝑒𝑒 𝑚𝑚𝑚𝑚𝑚𝑚 = 4 × 109 cm-3 where none of 
the waves are operating in a cut off regime. 
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Figure 39 is the analog of Figure 38, except with the transmitting and receiving antennas aligned 
across a plasma maximum.  Here, the net effect (a reduction in the transmitted power) is common 
across all conditions except for the case of 𝑛𝑛𝑒𝑒 𝑚𝑚𝑚𝑚𝑚𝑚 = 4 × 109 cm-3 where the attenuation effect 
disappears and for some frequencies even a slight enhancement appears 

 
Figure 39: Transmission through a maximum in the plasma density for various conditions. 

The picture becomes clearer when we take, for each microwave frequency and density, the average 
between the responses shown in Figure 38 and Figure 39.  This is the best representation we can 
construct of the overall behavior of a plane wave front impinging on our patterned plasma across 
multiple structures.  The results of this analysis are shown in Figure 40. 

 
Figure 40: Total transmission through a patterned plasma slab as a function of density for different 

frequencies. 

The result is an overall transmission of unity, independent of frequency, for low plasma densities, 
with the transmission falling off with increasing plasma density, and falling off faster for lower 
microwave frequencies. 

The conclusion we can draw from these data is this: There is no physical mechanism for any 
substantial absorption of microwave power by the plasma, so no microwave power is lost when it 
impinges on the patterned plasma, but power is re-directed, and often to a substantial degree.  The 
patterned plasma can act as both a reflecting and a refracting optical element, the former due to 
cutoff effects in the dispersion relation of the wave in the plasma, and the latter due to gradients in 
the index of refraction that the plasma introduces.  Both effects occur simultaneously, and which is 
most important depends on the density and length scales in the plasma and the frequency of the 
microwaves themselves.  Comparing Figure 38 and Figure 39, for example, we would say that 
refraction is the dominant mechanism for our setup when 𝑛𝑛𝑒𝑒 𝑚𝑚𝑚𝑚𝑚𝑚 < 4 × 109.  On the other hand, we 
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can look at the transmission through the plasma for different magnetic field configurations, shown 
in Figure 41 for low (2.0 GHz) and high (2.8 GHz) frequencies, respectively. 

 
Figure 41:Transmission through a minimum in the plasma for two different magnetic field 

configurations at frequencies of 2.0 and 2.8 GHz. 

We see that the effect of increasing the B-field from 80 G to 120 G is substantial for the low-
frequency wave but negligible for the high-frequency wave.  Looking at Figure 34, we would say 
that increasing the B-field from 80 G to 120 G increases the contrast between the maximum and 
minimum densities more than it does the gradient scale length.  Since we are holding the maximum 
density constant, the chief effect of increasing the B-field is lowering the density in the minima, and 
this affects the reflection due to the plasma more than it affects its refraction—hence the deviation 
in the curves for 2.0 GHz, where increasing the field makes the plasma in the minima less reflective 
to waves below the cutoff frequency.  In contrast, waves above the cutoff frequency see the plasma 
as a transparent medium, so the curves for 2.8 GHz lie on top of each other.  However, just as a 
glass lens is transparent to visible wavelengths but nonetheless bends visible light, refraction occurs 
in this “plasma lens”. 

The behavior of the waves traversing the patterned plasma seems consistent with a top-level 
understanding of plasma optics.  However, even in these straightforward cases, there are features in 
the data (for example, the anomalous points in Figure 39) that point to the fact that the details of the 
plasma structure can be critical in producing substantial variations in transmission for particular 
conditions. A modeling effort, which will be important to fleshing out the physics behind the data 
presented here, should include sufficiently fine spatial and frequency resolution to reveal such 
behavior over relatively small ranges in parameter space. 
 

 

 

4.3 EM Scattering Theory 
 

Initial ray tracing simulations of the experiments described in the previous section have indicated 
complications due to the presence of both a cutoff and resonance for the microwaves in the plasma 
separated in space within a wavelength of the launched modes.  Due to this, a full wave solution is 
necessary to capture all of the underlying physics.  To model the uniform plasma slab experiments, 
we launch an initial wave and numerically integrate across the plasma density gradient to the 
receiving antenna.  Since the microwave antenna launches polarized waves with the electric field 
directed perpendicular to the background magnetic field, it should predominantly launch the 
extraordinary wave.  For normal incidence, we must solve the following differential equation: 
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 𝑑𝑑2𝐸𝐸𝑦𝑦
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𝜔𝜔𝑝𝑝𝑝𝑝2
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(𝜔𝜔 + 𝑖𝑖𝜐𝜐𝑒𝑒𝑒𝑒)2 − Ω𝑒𝑒2 −
(𝜔𝜔 + 𝑖𝑖𝜐𝜐𝑒𝑒𝑒𝑒)

𝜔𝜔 𝜔𝜔𝑝𝑝𝑝𝑝2
� = 0, 

(32) 

 

 
where 𝜔𝜔𝑝𝑝𝑝𝑝 is the plasma frequency and is a function of x, Ω𝑒𝑒 is the electron cyclotron frequency, 
and 𝜐𝜐𝑒𝑒𝑒𝑒 is the electron-neutral collision frequency.  Figure 42 shows the results from the numerical 
integration for normal incidence on a plasma slab matching the experimental conditions for thee 
frequencies: 2.0, 2.5, and 3.0 GHz.  The resulting transmission coefficients from these numerical 
runs are 0.02, 0.79, and 1.00 respectively.  These results compare favorably for the 2.5 and 3.0 GHz 
cases, though the resulting transmission coefficient for the 2.0 GHz case is approximately an order 
of magnitude too low compared to the experimental results.  This could be due to the fact that the 
antenna launches a broader spectrum than the purely normal incidence and these waves should all 
be taken into consideration when comparing to the experiment. 

   
Figure 42: Results from numerical integration for normal incidence on a plasma slab 
matching experimental conditions for three frequencies: 2.0, 2.5, and 3.0 GHz. 

 
In order to account for arbitrary propagation angle for the initial wave, we are writing a numerical 
shooting code that uses the full cold plasma dielectric tensor and solves the resulting fourth order 
equation for both the full wave electric field vector as a function of position.  This code will launch 
an ensemble of waves for the full range of propagation angles scaled according to the antennas 
radiation pattern and aggregate the waves that intercept the receiving antenna.  This code will 
allows us to examine the effects the angular dependence of the transmission coefficient. 
 

 

 

4.4 Summary of NRL Effort 
 

Over the past year, we have increased our numerical tools for modeling the unstable plasma 
environment when density gradients and sheared flows are present.  These tools have been validated 
through careful experimental measurements.  This effort has resulted in a solid foundation and 
predictive capability for the development of the nonlinear theory and numerical simulations.  
Experimentally, we have demonstrated the ability to generate the necessary environmental 
conditions and the resulting unstable behavior of the plasma leading to nonlinear structuring.  In 
addition, the infrastructure and initial scattering experiments off stationary density structures have 

f=2.0 GHz f=2.5 GHz f=3.0 GHz 
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been completed.  Even these simplified experiments have demonstrated strong refraction and 
scattering of communications signals even when the plasma density is below the threshold for 
complete cutoff.  It is also suspected that there is significant phase distortion resulting from these 
interactions.  We shall continue to extend the theoretical and numerical modeling basis for the 
scattering of electromagnetic signals off turbulent density structures while continuing the 
experimental probing to validate these codes. 
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 Interchange Instability 5.0
 

The interchange instability plays important role in understanding of physical processes in the earth 
ionosphere and magnetosphere. In particular it is considered as the driving mechanism for the 
equatorial spread F (ESF) events. In order to analyze interchange instability we employed a two-
fluid non-ideal MHD model with inclusion of kinetic effects. This is a step forward in comparison 
with previously developed models. This approach allows us to resolve spatial scales of turbulent 
plasma density irregularities comparable with the ion Larmor radius – the spatial scale in the 
ionospheric F layer of the order of the wavelength of the OTH radar signals. This is the reason why 
it is important to develop a model which can adequately describe short scale plasma density 
irregularities. We formulated and derived system of nonlinear two fluid hydrodynamic equations for 
description of interchange turbulence with included kinetic effects in a high-beta and low beta 
plasmas and analyzed linear stage of interchange instability with plasma parameters relevant to the 
equatorial Spread F in the ionosphere. Next, we obtained analytical solutions to the nonlinear 
equations for density irregularities in the form of double vortex structures.  
 
5.1 Nonlinear Equations for Description of Interchange Turbulence 
 
Our analysis of the interchange instability will be based on the following complicated system of 
nonlinear equations for density N, electrostatic potential Φ and magnetic field zBδ : 
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2zB nβδ δ=  (35) 

 

In equations (33)-(35) we used quasi-neutrality condition i en n nδ δ δ= = and Poisson brackets are 
defined as: 
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Equations (33)-(35) describe the excitation and nonlinear evolution of compressible electromagnetic 
interchange modes in a finite beta plasma with inhomogeneous density and magnetic field. As one 
can see, the nonlinear terms in equations (33)-(35) are rather complicated. They contain so-called 
vector nonlinearities (represented through Poisson brackets) which are the source for generation of 
large scale vortex structures coexisting with short scale spectral components produced on the 
nonlinear stage of modulation instability of interchange modes. 
 
5.2 Solution in the Form of a Double Vortex 
 
In this section we will find the stationary solution of nonlinear system of equations (33)-(35) in the 
form of the double vortex. Such vortex structures are formed on the nonlinear stage of the 
interchange instability. Density perturbations associated with vortex structures are the cause of 
wave scattering for high frequency electromagnetic waves used for communications, sensing and 
OTH radar applications. Note that vortex structures produced by drift waves and described by the 
Hasegawa – Mima equation were described in [20- 21]. In [22] a procedure to obtain flute type 
vortex structures in a low beta plasma was analyzed. In order to obtain such a solution, we will 
rewrite equations (33)-(35) in the following dimensionless form: 
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Where 𝜌𝜌𝑠𝑠�  is the ion gyro radius, L� is the fundamental distance scale length, 𝜔𝜔𝑐𝑐𝑐𝑐� is the ion cyclotron 
frequency, Ω� is the fundamental frequency, g is the external force, 𝜏𝜏 is the ratio of the electron 
temperature to the ion temperature, Δ is the Laplace operator, and all other variables are defined as 
usual but are in units normalized to the fundamental distance and frequency. The   ̃implies un-
normalized units. 
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Setting the fundamental distance scale length equal to the ion gyro radius and the fundamental 
frequency equal to the ion cyclotron frequency, the expressions simplifies to: 
  
  
               (5.7) 
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Introducing: 
 𝐴𝐴1 = 𝜏𝜏 (κ𝑁𝑁+κ𝐵𝐵)(1−𝛽𝛽/2)
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 𝐴𝐴3 = (κ𝐵𝐵−κ𝑁𝑁𝛽𝛽/2)
(1+𝛽𝛽/2) . (42) 

 
the equations can further be simplified to: 
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𝑑𝑑
𝑑𝑑𝑑𝑑
Δ𝜑𝜑 + 𝐴𝐴2

𝑑𝑑
𝑑𝑑𝑑𝑑
Δ𝛿𝛿𝛿𝛿 − 𝑔𝑔 𝑑𝑑𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
+ {Δφ,φ} + 𝜏𝜏 �{Δδn,φ} + �dδn

𝑑𝑑𝑑𝑑
, dφ
𝑑𝑑𝑑𝑑
� + �dδn

𝑑𝑑𝑑𝑑
, dφ
𝑑𝑑𝑑𝑑
��. (44) 

 
In order to study the vortex structure that is a solution to these equations, it’s convenient to describe 
the density and potential inside such a vortex in the following way: 
 
 Δ𝜑𝜑 = −𝑏𝑏2𝜑𝜑 + 𝑓𝑓1(𝑥𝑥) = −𝑏𝑏2𝜑𝜑 + 𝐹𝐹1𝑥𝑥. (45) 

 
 𝛿𝛿𝛿𝛿 = 𝐷𝐷𝐷𝐷 + 𝑓𝑓2(𝑥𝑥) = 𝐷𝐷𝐷𝐷 + 𝐹𝐹2𝑥𝑥. (46) 

And outside the vortex, a similar system of equations can be used: 
 
 Δ𝜑𝜑 = ℎ2𝜑𝜑. (47) 
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 𝛿𝛿𝛿𝛿 = 𝐻𝐻𝐻𝐻. (48) 

 
Finally, we can move to the frame that is co-moving with the vortex. 
 
 𝑦𝑦 → 𝑦𝑦′ − 𝑈𝑈𝑈𝑈. (49) 

 
  𝑑𝑑

𝑑𝑑𝑑𝑑
= −𝑈𝑈 𝑑𝑑

𝑑𝑑𝑑𝑑
. (50) 

  
These assumptions allow us to express the physics equations fully in terms of the potential: 
(For r < 𝑅𝑅𝑜𝑜 ) 
 
 0 = (𝐴𝐴3 + 𝑈𝑈)𝐷𝐷 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
− (κ𝑁𝑁+κ𝐵𝐵)

�1+𝛽𝛽2�

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

+ 𝐹𝐹2
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

. (51) 

 
 0 = (𝐴𝐴1 + 𝑈𝑈) 𝑑𝑑Δ𝜑𝜑

𝑑𝑑𝑑𝑑
+ 𝐴𝐴2𝐷𝐷

𝑑𝑑Δ𝜑𝜑
𝑑𝑑𝑑𝑑

− 𝑔𝑔 𝑑𝑑𝑑𝑑𝑑𝑑(𝜑𝜑)
𝑑𝑑𝑑𝑑

+ 𝐹𝐹1
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

+ 𝜏𝜏𝜏𝜏𝐹𝐹1
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

. (52) 

And for r > 𝑅𝑅𝑜𝑜 : 
 0 = (𝐴𝐴3 + 𝑈𝑈)𝐻𝐻 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
− (κ𝑁𝑁+κ𝐵𝐵)

�1+𝛽𝛽2�

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

. (53) 

 
 0 = (𝐴𝐴1 + 𝑈𝑈) 𝑑𝑑Δ𝜑𝜑

𝑑𝑑𝑑𝑑
+ 𝐴𝐴2𝐻𝐻

𝑑𝑑Δ𝜑𝜑
𝑑𝑑𝑑𝑑

− 𝑔𝑔 𝑑𝑑𝑑𝑑𝑑𝑑(𝜑𝜑)
𝑑𝑑𝑑𝑑

. (54) 

We now can begin solving for the parameters describing the vortex. The first parameter comes from 
solving (5.22): 
 𝐻𝐻 = (κ𝑁𝑁+κ𝐵𝐵)

(𝑈𝑈+𝐴𝐴3)(1+𝛽𝛽/2). (55) 

With that, we can derive the quantity h from (5.23): 
 
 ℎ2 = 𝐻𝐻 𝑔𝑔

(𝑈𝑈+𝐴𝐴1+𝐻𝐻𝐴𝐴2) = (κ𝑁𝑁+κ𝐵𝐵)
(𝑈𝑈+𝐴𝐴3)(1+𝛽𝛽/2)(𝑈𝑈+𝐴𝐴1+𝐻𝐻𝐴𝐴2)𝑔𝑔. (56) 

The solutions for inside the flute vortex are easily related to each other, but exact solutions require 
more constraints on the system. In the meantime, it is possible using (5.20) and (5.21) to solve the 
coefficients of the linear part of the vortex equations in terms of H and D: 
 
 𝑏𝑏2�(𝑈𝑈+𝐴𝐴1)+𝐷𝐷�𝐴𝐴2+

𝑔𝑔
𝑏𝑏2
��

(1+𝜏𝜏𝜏𝜏) = 𝐹𝐹1. (57) 

 (𝐻𝐻 − 𝐷𝐷)(𝑈𝑈 + 𝐴𝐴3) = 𝐹𝐹2. (58) 
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It is easily noticed here that in the case where D = H, the density is proportional to the potential 
inside and outside the vortex. This particular solution is undesired as it is effectively the adiabatic 
case and allows for the electrons to have a Boltzmann distribution which is incompatible with flute 
modes. 
 
The solutions to the vortex potential, assuming both the potential and the density perturbations go to 
zero at infinity and are finite at the origin, are of the form: 
 
 

𝜑𝜑 = �𝐶𝐶1𝐽𝐽1
(𝑏𝑏𝑏𝑏)𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + �𝐹𝐹1

𝑏𝑏2
� 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟, 𝑟𝑟 < 𝑅𝑅𝑜𝑜

𝐶𝐶2𝐾𝐾1(ℎ𝑟𝑟)𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, 𝑟𝑟 > 𝑅𝑅𝑜𝑜
. (59) 

Inserting this solution into the density equations yields: 
 
 

𝛿𝛿𝛿𝛿 = �𝐷𝐷𝐶𝐶1𝐽𝐽1
(𝑏𝑏𝑏𝑏)𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + �𝐷𝐷 �𝐹𝐹1

𝑏𝑏2
� + 𝐹𝐹2� 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟, 𝑟𝑟 < 𝑅𝑅𝑜𝑜

𝐻𝐻𝐶𝐶2𝐾𝐾1(ℎ𝑟𝑟)𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, 𝑟𝑟 > 𝑅𝑅𝑜𝑜
. (60) 

Here the function J is the Bessel function of the first kind and K is the modified Bessel function of 
the second kind. It is reasonable to assume that the potential, density, and electric field are 
continuous over the boundary and that the electric field is smooth over the same. 
 
 
 𝜑𝜑𝑖𝑖𝑖𝑖(𝑅𝑅0) = 𝜑𝜑𝑒𝑒𝑒𝑒𝑒𝑒(𝑅𝑅0). (61) 

 𝜕𝜕𝜑𝜑𝑖𝑖𝑖𝑖
𝜕𝜕𝜕𝜕

�
𝑟𝑟=𝑅𝑅0

= 𝜕𝜕𝜑𝜑𝑒𝑒𝑒𝑒𝑒𝑒
𝜕𝜕𝜕𝜕

�
𝑟𝑟=𝑅𝑅0

. (62) 

 𝜕𝜕2𝜑𝜑𝑖𝑖𝑖𝑖
𝜕𝜕𝑟𝑟2

�
𝑟𝑟=𝑅𝑅0

= 𝜕𝜕2𝜑𝜑𝑒𝑒𝑒𝑒𝑒𝑒
𝜕𝜕𝑟𝑟2

�
𝑟𝑟=𝑅𝑅0

. (63) 

 𝛿𝛿𝛿𝛿𝑖𝑖𝑖𝑖(𝑅𝑅0) = 𝛿𝛿𝛿𝛿𝑒𝑒𝑒𝑒𝑒𝑒(𝑅𝑅0). (64) 

These relations allow for solutions of the coefficients 𝐶𝐶1 and 𝐶𝐶2: 
 

( ) ( )1
1

o o

o

RC
D H J bR

ρ
=

−
. (65) 

 
( ) ( )

2
2

1

o

o

F RC
D H K hR

−
=

−
. (66) 

 ( )1
22o

F D H F
b

ρ = − − − . (67) 

We can define the useful quantity ℰ as the ratio of 𝜌𝜌0to 𝐹𝐹2. By using then the properties of the 
derivatives of the Bessel functions and using the continuity equations, we can solve ℰ to be:       
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 −ℎ𝐾𝐾2(ℎ𝑅𝑅𝑜𝑜)𝐽𝐽1(𝑏𝑏𝑅𝑅𝑜𝑜)
𝑏𝑏𝐾𝐾1(ℎ𝑅𝑅𝑜𝑜)𝐽𝐽2(𝑏𝑏𝑅𝑅𝑜𝑜) = 𝜌𝜌𝑜𝑜

𝐹𝐹2
= ℰ. (68) 

Combine this definition with the definitions of 𝐹𝐹1 and 𝐹𝐹2 and one can get the expression for D in 
terms of the physical parameters and the yet unknown term b. 

 
 �(𝑈𝑈+𝐴𝐴3)(ℰ+1)−𝑈𝑈−𝐴𝐴1�

𝐴𝐴2+
𝑔𝑔
𝑏𝑏2
−𝜏𝜏(𝑈𝑈+𝐴𝐴3)(ℰ+1)

= 𝐷𝐷. (69) 

To determine b, we can make use of equation (63). This is analogous to setting: 
 
 2 2

1 0b F R hϕ ϕ− + = . (70) 

Which leads to the alternative definition of ℰ: 
                                                         
 ℰ = ℎ2

𝑏𝑏2
. (71) 

 
 
 
 
Thus the quantity b is fully defined by the expression: 
 
 ( ) ( )

( ) ( )
2 1

1 2

o o

o o

K hR J bR h
K hR J bR b

− = . (72) 

 
5.3 Generating Simulated Flute Vortices 
 
A Matlab program was developed for the purpose of computing the coefficients of a flute vortex, 
given specific physical parameters. This program is used as a basis for the calculations performed in 
the next section. This section illustrates some of the general properties of flute vortices as described 
by the results of the previous section.  
 
Equation (72) relating b, U, and 𝑅𝑅𝑜𝑜 was used to complete the definition of the vortex. It was decided 
that both the most straightforward and physically intuitive choice for which variables to be assigned 
was U and 𝑅𝑅𝑜𝑜. As both of these represent easily observable physical quantities, namely vortex 
velocity and vortex radius, they are good choices. Also, the calculation of b values is 
computationally easier than computing U or 𝑅𝑅𝑜𝑜. 
 
Newton’s method, with line back searching, was used to determine b. One dimensional density and 
potential profiles for a particular vortex with 𝑅𝑅𝑜𝑜 set to twenty Larmor radii, U set to 1% of the ion 
thermal velocity. The remaining primary physical parameters were: 
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5 3
0

0
2

~ 2 10  cm  - plasma density         
~ 0.4  - magnetic field

~ 500 /  - gravitational constant
~ 1.4  - ion and electron temperature

16  - ion mass and  proton mass
i e

i p p

n
B G
g cm s
T T eV
m m m

-×

=
= × -

  

 
It should be noted that there are many solutions in equation (72) for b for any particular set of 
physical parameters, and thus each solution for b effectively describes a different mode of the 
vortex solution. To demonstrate structural behavior for the different modes, radial profiles of a 
vortex with various values of b are shown in Figure 43-45. For a pure bimodal vortex, the lowest 
possible real value of b should be taken. The general mode behavior is that for larger b, the higher 
the number of local minima and maxima there are inside the vortex radius, but the smaller the 
amplitude of those oscillations relative to the linear radial behavior. There are exceptions to this 
general rule that may rule out the lowest mode. For very large b, the Bessel function term inside the 
vortex radius can effectively be ignored. 
 
 
 
 

 

 
Figure 43: Density (a) and Potential (b) profile plots in the radial direction for a vortex with b value 

of 0.1439. 

 

a) 

b) 
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Figure 44: Potential profile for b of 0.3278. 

 
Figure 45: Potential profile for b of 5.6939. As can be seen, as b increases, the profile for r < 𝑅𝑅𝑜𝑜  is 
dominated by the linear component. For large b, H is nearly equal to D. As such, high b values are 

not fitting with the desired solution for the vortex quantities. 

 
We can also plot contour maps of the density and potential perturbations. Potential contour maps 
are shown in Figure 46. In Figure 46, bimodal structure of the potential perturbations is obvious as 
is the increased number of nodes for the vortex with the larger b parameter. 
 
 

 
Figure 46: Two dimensional maps of the potential for b values of 0.1439 (left) and 0.6663 (right).  

 
When varying the free parameters, it is necessary that the resulting vortex does not produce density 
perturbations equal to or larger than the background density. As such, there are parameters where 
this vortex model breaks down or doesn’t apply. It is then important to verify that the vortex defined 
by a set of parameters is possible before trusting any product derived from those parameters. All 
vortices generated in this section and the next met this criteria. 
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5.4 High Frequency Electromagnetic Wave Scattering by Vortex Density Structures 
 
In this section we will analyze scattering of high frequency electromagnetic waves from flute type 
double vortex structures generated on the nonlinear stage of interchange instability. As it was shown 
in section 5.2, flute type double vortex structures can be described by exact solutions of the system 
of two dimensional nonlinear equations (33) and (34). It is worth mentioning that scattering of 
electromagnetic waves by drift vortices was examined in [20] and [21]. Estimates for scattering by 
flute vortices [22-24] in a low beta plasma were given in [25]. 
  
Assume an incident high frequency electromagnetic plane wave in the form: 
 
 ( )0 0sini i iE tω= −E a k r . (73) 

In (5.42) ia is the unit polarization vector of the incident wave and 0k and 0ω are the wave vector 
and frequency. Choosing the incident wave in the form of a plane wave implies that its width is 
much larger than the size of the vortex radius Ro. 
In the co-moving frame, with speed U0, along the y-direction, the frequency and wave vector of an 
incident wave are: 
 

0 0 0 0  and  i y ik Uω ω= − =k k . (74) 

Defining scattering cross section as the ratio of the average scattered power (defined as the work 
done per unit time by the field created by the nonlinear current) to the energy flux of the incident 
EM signal for the scattering cross section we can write: 
 
 ( )v

2

8

a

i

Re P

c
σ

π

=
E

. (75) 

In (5.44) vaP  is averaged over time scattered power and we retain only the real part of it, and iE is 
the electric field of an incident wave. The spectrum of the scattered electromagnetic waves are 
defined as: 
 ( )i tE e ω± ±

± ±

−
±= k r

k kE a . (76) 

In (5.45) ±k  is the wave vector of the scattered wave and ω±  is its frequency. The scattered wave 
spectrum in fact consists of two parts 

,ω+ +k
E and 

,ω− −k
E , where: 

 
i± = ±k k q . (77) 

 0ω ω ω± = ± q . (78) 

In (5.46-47) q is the wave vector from the spectrum of interchange modes and 𝜔𝜔𝑞𝑞is the 
corresponding frequency. Following the procedure outlined in [18], [4], and [19] after lengthy but 
straightforward calculations the expression in cylindrical coordinates for the scattering cross section 
can be obtained: 
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( ) ( ) ( ) ( )
4 0

2
1 2 3* 4

cos9 2 , , , , , ,
4 ,

pe
i i i

i

i
Re I k k I k k I k k k dk d

µ θω
s µ µ µ µ

p e ω ω

±

± ± ± ± ± ± ± ± ± ±
± ±

  +    = − + +
 
 
 

∫ k
. 

(79) 

where 𝜃𝜃0 is the angle of incidence of the incoming wave relative to the vortex alignment, µ± is the 
angle between 𝐤𝐤𝑖𝑖 and  𝐤𝐤±, and I1, I2, and I3 are given by: 
 ( ) ( ) ( ) ( )( )1

1 1 0 0 12 2
o

o o o o
iDC RI qJ bR J qR bJ bR J qR
b q

= −
−

. (80) 

 
𝐼𝐼2 = 𝑖𝑖 �𝐷𝐷 �

𝐹𝐹1
𝑏𝑏2
� + 𝐹𝐹2� 𝐽𝐽2(𝑞𝑞𝑅𝑅0)

𝑅𝑅𝑜𝑜2

𝑞𝑞
 (81) 

 ( ) ( ) ( ) ( )( )2
3 1 2 2 12 2

o
o o o o

iHC RI qK hR J qR hK hR J qR
h q

= − −
+

 (82) 

Below we will be interested in the case when scattered waves are plasma Eigen modes. In this case:   
 

( )
( )( )

( )

*
1,t t

iRe

ω ω

δ ω ω
π

e ω e
ω

± ±

± ±

± ±

=

− −
=   ∂ 

∂ k

k
k

 (83) 

The frequency of interchange modes ωq in (5.47) is very small in comparison with the frequency of 
an incident wave, i.e. 

0
ω ω>>k q . This implies that for the scattered wave to be a plasma eigenmode 

( ( )ω ω± ±= k ) the absolute value of the wave vector of a scattered wave should be of the order of 
the absolute value of the wave vector of an incident wave  0| |~| |±k k . In other words, wave vectors 
in the spectrum of interchange modes which can efficiently scatter the incident wave should satisfy: 

0| |    2 | |≤q k . In this case scattered waves will be plasma eigenmodes which can satisfy (5.52). As 
an example, in Figure 47 the spectral distribution of a normalized density of vortex structure as a 
function of the absolute value of the wavenumber | |q  is presented and the arrow indicates the 
absolute value of the wavenumber 0| |k of an incident wave. In this particular example the part of 
the vortex spectrum with 3 1| |    0.266 10  cm− −≤ ×q  can effectively scatter incident electromagnetic 
wave with 3 1

0| |  ~  0.133 10  cm− −×k  and the produced scattered electromagnetic waves will be 
plasma eigenmodes. 
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Figure 47: Fourier spectrum of the vortex density. The wave number, marked above, of the 

incoming wave with the frequency 1 GHz is 3 1
0| |  ~  0.133 10  cm− −×k . 

 
The total scattering cross section can be calculated as a function of the frequency of incident wave. 
Results are presented in Figure 48.   

 
Figure 48: Calculated normalized cross section for a vortex with background density of 1.238 ∗

1010𝑐𝑐𝑚𝑚−3, radius of 7.02 cm, velocity of 280.2 cm/s, and magnetic field of 715 G. 

 
Next we present the differential scattering cross section in terms of scattering angle: 
 

( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( )( )

4 2 2
1

1 0 0 12 2 2 2

22 0 01 2
2 1 2 2 12 2 2

9 1 cos
|

8

|

pe o
o o o o

i

o o o o

R DC
d qJ bR J qR bJ bR J qR

c b q

J qR RF HC
D F qK hR J qR hK hR J qR d

b q h q

ω α
s

ω

α

− = − +
−

+ + − −
+

  
    

 

(84) 

The results of such a calculation for plasma parameters listed below and a 1 GHz incoming wave 
are presented in Figure 49.  

𝐤𝐤𝟎𝟎 
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Figure 49: Expected differential cross section of a 1 Ghz wave from the analytic results in the case 

where the background plasma frequency is 0.998 GHz. 

 
 
5.5  LSP Simulation Results 
 
A series of simulations were performed in the LSP particle-in-cell plasma simulation suite using the 
analytic description of the flute vortex (equation (60)) as the basis for density perturbations to an 
otherwise uniform plasma. The physical parameters used in the simulations and in the Figure 49 
were selected to be: 
 
𝑛𝑛𝑜𝑜~3.131 ∗ 108𝑐𝑐𝑚𝑚−3– plasma density 
𝐵𝐵0~715 𝐺𝐺 – magnetic field 
𝑔𝑔~ 500 𝑐𝑐𝑐𝑐/𝑠𝑠2 – ‘gravitational’ constant  
𝑇𝑇𝑒𝑒~𝑇𝑇𝑖𝑖 = 0.026 𝑒𝑒𝑒𝑒 – ion and electron temperature 
𝑚𝑚𝑖𝑖 = 16 ∗ 𝑚𝑚𝑝𝑝 – ion mass 
 
These are partially the same as ionospheric conditions. The scale length was normalized to an ion 
Larmor radius. To that end, the magnetic field was increased to reduce the Larmor radius and as a 
result overall size of the system is reduced. To keep the scale of the incoming wavelength similar to 
the vortex size, the input frequency of 1 GHz was used.  
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Figure 50: Diagram of LSP simulation. An electromagnetic plane wave is generated at the edge of 
the simulation (bottom) and propagates until it makes contact with the plasma. The wave travels 
through the plasma (orange), interacting with the vortex (red and blue) and produces scattered 

waves (blue arcs). 

 
The simulation box was comprised of a 800 cm long, 1100 cm wide plasma and a 941 cm long 
plasma free region through which incoming electromagnetic waves were injected and allowed to 
propagate, generating an effective plane wave upon contact with the plasma. The peak variance 
from background for the vortex was 48%. The vortex had a characteristic radius of 7.02 cm, a 
velocity parameter of 280 cm/s, and it was located 45 cm from the edge of the plasma on the 
incoming wave side. The vortex as used in the simulation is shown in Figure 50. 
 
A simulation with the same plasma parameters but without the vortex was also performed to 
provide a baseline. A time series Fourier analysis was performed on both simulations at each spatial 
location. The magnitude of the difference between the vortex and non-vortex simulation waves in 
Fourier space at 1 GHz was used to determine the effective scattering power at each location. 
Assuming the center of the vortex as the point of scattering, each location was assigned an angle 
relative to the direction of the unscattered waves. This allows for the determination of the angular 
scattering power profile (Figure 51) which can then be compared with the expected differential 
angular cross section (Figure 49). As the forward directed waves through a vortex will have less 
power compared to the non-vortex case, at small angles this procedure oversubtracts from the result. 
This may explain the sharper distribution in the simulations compared to the analytical results. 
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Figure 51: Density profile of vortex portion of simulation. The scattering cross section calculation 

and this density profile were generated using the same physical parameters. 

 

 
Figure 52: Normalized angular distribution of scattered wave output from LSP simulation of a 1 

Ghz electromagnetic wave hitting a flute vortex. The physical parameters of these simulations were 
the same as those used for Figure 49. 

 
As can be observed in Figure 49 and Figure 51, there is agreement between simulations and 
predictions for the general form of the angular scattering cross section, including nearly identical 
angles of maximum scattering. As with any simulation, there is numerical noise caused by the use 
of finite time and spatial steps and this is believed to be the cause of the noise on the simulated 
scattering profile. The profile is cut off for larger angles due to the finite size of the simulation hall, 
but such larger angles can be probed by producing a much wider simulation which has the trade off 
of requiring more time or computing resources. But despite that noise, the general scattering profile 
is very clear and is meets the expectations of the analytic result. To our knowledge this is the first 
ever comparison of analytical and fully PIC kinetic simulations to determine the differntial 
scattering cross section on vortex density structure in a magnetized plasma. 
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 Additional Scattering Simulations: Ray Tracing 6.0
 
 
The objective of this portion of the research is to investigate and quantify the effect of flute vortex 
structures, large scale plasma irregularities which occur in the equatorial spread F-region, on high 
frequency electromagnetic propagation through the ionosphere.  Such large scale irregularities 
impact long-range surveillance and communication in sometimes un-predictable ways. In the case 
in which the propagating frequency is high and thus the wavelength is small compared to the 
characteristic size of the density irregularities, the geometric ray tracing optics approximation is 
valid.  When compared with full electromagnetic propagation equations, the Hamilton-Jacobi ray 
tracing approximation is a highly simplified approach which yields computationally efficient code 
and simulations.   
 
In these simulations, flute type vortex structures in a low beta plasma are generated and used as the 
scattering medium for high frequency Hamilton-Jacobi ray tracing propagation.  The code was 
written in C++ for Linux machines and outputs ASCII data files which are read and displayed via 
Matlab for simplicity.    
 
 
6.1 Hamilton-Jacobi Ray Tracing approximation 
The Hamilton-Jacobi ray tracing or geometric optics approximation is valid under the following 
assumption: the wavelength must be small in comparison to distance at which the index of 
refraction changes significantly, as shown in equation (85), where 𝑅𝑅𝑜𝑜 is the characteristic scale 
length of a density perturbation. [20] In the case of high frequency radio waves propagating in the 
ionosphere, this may not necessarily be the case as electron densities often vary over short 
distances.  However in the case of certain large ionospheric structures, such as the flute dipole 
vortex, this approximation becomes both valid and useful.   
 
 𝜆𝜆 ≪  𝑅𝑅𝑜𝑜 (85) 

 

In the most general form, the ray tracing equations which approximate propagation through an 
anisotropic dispersive plasma were formulated by S. Weinberg in 1962 [10], and are presented here 
absent the time dependent terms.   
 
 𝑑𝑑𝒓𝒓

𝑑𝑑𝑑𝑑
=  

𝜕𝜕𝜕𝜕
𝜕𝜕𝒌𝒌

  ,
𝑑𝑑𝒌𝒌
𝑑𝑑𝑑𝑑

=  −
𝜕𝜕𝜕𝜕
𝜕𝜕𝒓𝒓

  (86) 

 

 
   

The localized dispersion relation for a homogenous plasma can easily be written as  
 𝜔𝜔2 =  𝑘𝑘2𝑐𝑐2 + 𝜔𝜔𝑝𝑝𝑝𝑝2 (𝑟𝑟) (87) 

 

More explicitly we can define  

56 
Approved for public release; distribution unlimited. 



 
𝜔𝜔𝑝𝑝𝑝𝑝(𝑟𝑟) =  

[𝑛𝑛𝑜𝑜(1 + 𝛿𝛿𝛿𝛿(𝑟𝑟))]𝑒𝑒2

𝑚𝑚𝜖𝜖𝑜𝑜
 (88) 

 

Where the spatially dependent plasma frequency, 𝜔𝜔𝑝𝑝𝑝𝑝(𝑟𝑟) is expressed in terms of the fractional 
perturbation from the background density, 𝛿𝛿𝛿𝛿. In these terms, the dispersion relation for an 
ordinary wave is then 
 
 𝜔𝜔2 =  𝑘𝑘2𝑐𝑐2 + �𝜔𝜔𝑝𝑝𝑝𝑝 + 𝛿𝛿𝜔𝜔𝑝𝑝𝑝𝑝(𝑟𝑟)�

2
               (89) 

 

Where   

 
𝛿𝛿𝜔𝜔𝑝𝑝𝑝𝑝(𝑟𝑟) =  

𝑁𝑁𝑜𝑜𝛿𝛿𝑁𝑁(𝑟𝑟)𝑒𝑒2

𝑚𝑚𝜖𝜖𝑜𝑜
 (90) 

 

Then substituting the above into equation (86) we get 
 𝑑𝑑𝒌𝒌

𝑑𝑑𝑑𝑑
=  −

1
𝑐𝑐
𝜕𝜕
𝜕𝜕𝒓𝒓

��𝑘𝑘2𝑐𝑐2 + �𝜔𝜔𝑝𝑝𝑝𝑝 + 𝛿𝛿𝜔𝜔𝑝𝑝𝑝𝑝(𝑟𝑟)�
2
� 

=  −
1
𝑐𝑐

𝜔𝜔𝑝𝑝𝑝𝑝(𝒓𝒓)
2 𝜕𝜕

𝜕𝜕𝒓𝒓 𝛿𝛿𝜔𝜔𝑝𝑝𝑝𝑝(𝑟𝑟)

�𝑘𝑘2𝑐𝑐2 + �𝜔𝜔𝑝𝑝𝑝𝑝 + 𝛿𝛿𝜔𝜔𝑝𝑝𝑝𝑝(𝑟𝑟)�2
= −

𝜔𝜔𝑝𝑝𝑝𝑝2�1 + 𝛿𝛿𝛿𝛿(𝑟𝑟)� 𝜕𝜕𝜕𝜕𝜕𝜕(𝑟𝑟)
𝜕𝜕𝒓𝒓

𝑐𝑐𝑐𝑐
 

 

 

(91) 

 

And for 𝑑𝑑𝒓𝒓
𝑑𝑑𝑑𝑑

 we have 
 𝑑𝑑𝒓𝒓

𝑑𝑑𝑑𝑑
=  

𝜕𝜕
𝜕𝜕𝒌𝒌

��𝑘𝑘2𝑐𝑐2 + �𝜔𝜔𝑝𝑝𝑝𝑝 + 𝛿𝛿𝜔𝜔𝑝𝑝𝑝𝑝(𝑟𝑟)�
2
� =  

𝑐𝑐𝒌𝒌
𝜔𝜔

 (92) 

 

 
We can now write a full system of equations for describing this high frequency ray tracing 
approximation, in six-dimensional phase space the equations (91-92) become 
 
 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

=  
𝑐𝑐
𝜔𝜔
𝑘𝑘𝑥𝑥 

𝑑𝑑𝑘𝑘𝑥𝑥
𝑑𝑑𝑑𝑑

=  −
𝜔𝜔𝑝𝑝𝑝𝑝2�1 + 𝛿𝛿𝛿𝛿(𝑟𝑟)� 𝜕𝜕𝜕𝜕𝜕𝜕(𝑟𝑟)

𝜕𝜕𝜕𝜕
𝑐𝑐𝑐𝑐

 
 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

=  
𝑐𝑐
𝜔𝜔
𝑘𝑘𝑥𝑥 𝑑𝑑𝑘𝑘𝑦𝑦

𝑑𝑑𝑑𝑑
=  −

𝜔𝜔𝑝𝑝𝑝𝑝2�1 + 𝛿𝛿𝛿𝛿(𝑟𝑟)� 𝜕𝜕𝜕𝜕𝜕𝜕(𝑟𝑟)
𝜕𝜕𝜕𝜕

𝑐𝑐𝑐𝑐
 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

=  
𝑐𝑐
𝜔𝜔
𝑘𝑘𝑥𝑥 𝑑𝑑𝑘𝑘𝑧𝑧

𝑑𝑑𝑑𝑑
=  −

𝜔𝜔𝑝𝑝𝑝𝑝2�1 + 𝛿𝛿𝛿𝛿(𝑟𝑟)� 𝜕𝜕𝜕𝜕𝜕𝜕(𝑟𝑟)
𝜕𝜕𝜕𝜕

𝑐𝑐𝑐𝑐
 

 

 

 

 

(93) 
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These 6 coupled ordinary differential equations can be solved easily numerically; in our case we 
applied a fourth order Runge-Kutta algorithm.  The simulation is initialized by setting  
 
 

|𝒌𝒌| =
�𝜔𝜔2 − 𝜔𝜔𝑝𝑝𝑝𝑝2

𝑐𝑐
  (94) 

 

While the initial values for x, y, z as well as the initial direction of k are left as input parameters. 
 
6.2 Analytical Solution to Flute-Type Density Structures 
 
The derivation of the following solution, which describes density perturbations for double vortex 
structures, is lengthy and was detailed in the previous section regarding interchange instabilities.  In 
brief, a stationary solution to a system of nonlinear equations describing the interchange modes in 
finite beta plasmas was found in terms of the spatially dependent density perturbation, 𝛿𝛿𝛿𝛿.  The 
general assumptions made in this procedure are as follows: 1) The flute modes have frequency such 

that ,iω << Ω where 0z
i

i

ZeB
m cΩ =  is the ion cyclotron frequency. 2) The coordinate system is set 

such that the perturbations and oscillations are uniform along the magnetic field lines. 3) The quasi-
neutrality condition is assumed in which 𝑁𝑁𝑒𝑒 = 𝑍𝑍𝑍𝑍𝑖𝑖.  For the particular case as described above, the 
density perturbation function, 𝛿𝛿𝛿𝛿(𝑟𝑟,𝜃𝜃) is given (95). [11] 
 
 

𝛿𝛿𝛿𝛿 = �𝐷𝐷𝐶𝐶1𝐽𝐽1(𝑏𝑏𝑏𝑏)𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + �𝐷𝐷 �
𝐹𝐹1
𝑏𝑏2
� + 𝐹𝐹2� 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟, 𝑟𝑟 < 𝑅𝑅𝑜𝑜

𝐻𝐻𝐶𝐶2𝐾𝐾1(ℎ𝑟𝑟)𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, 𝑟𝑟 > 𝑅𝑅𝑜𝑜
 

(95) 

 

   

Here 𝑟𝑟 and 𝜃𝜃 are in a plane perpendicular to the magnetic field, 𝑏𝑏 and ℎ describe the vortex mode 
internally and externally, respectfully, and are related by the boundary condition, 𝑟𝑟 = 𝑅𝑅𝑜𝑜 by 
 
 𝐾𝐾2(ℎ𝑅𝑅0)𝐽𝐽1(𝑏𝑏𝑅𝑅0)

𝐾𝐾1(ℎ𝑅𝑅0)𝐽𝐽2(𝑏𝑏𝑅𝑅0) = −
ℎ
𝑏𝑏

 (96) 

 

where  
 ( )

( )( )( )
2

3 1 21 / 2
N Bh g

U A U A HA
κ

β
κ +

=
+ + + +

. 
 

(97) 

 

The remainder of constants, defined in order to simplify the expression, in equation (95): 𝐻𝐻, 𝐷𝐷, 𝐶𝐶1, 
𝐶𝐶2, 𝐹𝐹1 and 𝐹𝐹2 are composed of standard plasma parameters as well as  𝑏𝑏, ℎ, 𝑅𝑅𝑜𝑜, and U, which is the 
drift or co-moving velocity.  Thus, the only unknown in equation (95), is the internal flute mode, 𝑏𝑏, 
which we must solve for using the boundary condition, equation (96) and the definition of h in 
equation (97).  This is accomplished by graphically solving equation (96) and selecting a flute mode 
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which is closest to our best guess (judged from literature).  This explicit approach isn’t 
computationally efficient, however, because our parameters will not be varying beyond a handful of 
desired cases, it is a simple matter to compute all of the solutions and store flute mode values for 
repeated computations.  
 
As an example, the flute vortex generating code was used with the following input parameters to 
generate the example density perturbation map shown in Table 2..  
 
 
 
 

 
 
 
 
 
 

Table 2: Flute vortex input parameters for density 
perturbation shown in figure below. 
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6.3 Integration of Ray Tracing Algorithm with Vortex Solutions 
 
In attempt to model more realistic atmospheric conditions, it is desired to study scattering and 
diffusion through multiple, randomly located vortex structures. As such an algorithm was developed 
to iteratively generate the structures discussed in the previous section and randomly place the 
structures in a density map.  The algorithm accepts a tolerance for how close each structure can be 
placed to one another based on each structures characteristic radius, which can also be a random 
value for each structure.  Below in Figure 55 and Figure 54 there are two examples of the iteratively 
generated density maps each with a different separation tolerance.   
 

 
 
To 

Figure 55: Iteratively placed flute vortex field 
having high separation tolerance 

Figure 54: Iteratively placed flute vortex field 
having low percentage radius separation tolerance. 

Figure 53: Example of ionospheric flute vortex 
density perturbation 
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make this density distribution three dimensional we simply extend this distribution so that it is 
uniform in the Z direction (parallel to magnetic field lines).  Now, introducing our ray tracing 
algorithm and using density fields as presented above, we can simulate high frequency scatter 
through such density structures.  A buffer is placed on both the entrance and exit side of the 
simulation box in order to allow for accurate measurement of initial and final ray vectors.  
 

 
 

 
 

In 

the generated 2D density map in Figure 56 a) 
above, the density is allowed to be 

uniform near the y boundaries so that the rays may propagate linearly before and after interaction 
with the density perturbations.  This is to aid post-processing, for instances it enables the calculation 
of the total angle of deviation.  However, it is obvious from c) and d) that we need to extend our 
simulation box so that the rays can propagate in homogenous space both before and after interaction 
with the perturbations. In addition to the homogenous boundaries, we have added randomly sized 
flute vortices.  As the density map is iteratively created, the vortex characteristic radius, Ro, is 
randomly generated within some range.  For this particular simulation the vortex radius was 
randomly generated between 16 and 28 meters. Figure 56 c) and d) show the ray propagation, with 
initial k vectors propagation at 45 degrees in the y-z plane.  Superimposed on the 3D line plots are 

Figure 56: a) Generated 2D density map, b) simulation parameters, c) 3D line plots of ray tracing 
predominately in the y-z plane with slices of the density map superimposed, d) 3D line plot of the same 

data rotated so that it is approximately isometric. 
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slices in the x-y plane at 3 z locations. Again, the density perturbations are constant in the z 
direction.     
 
6.4 Fokker-Planck description of Diffusion, Future Work  
 
Due to the random, stochastic nature of the scattering simulated in this study, it is useful to describe 
the phenomenon in a statistical context.  For this purpose let us consider a ray which encounters a 
random density perturbation and is subsequently scattered some angle α. Because this process can 
be approximated as a Markovian process, that is the time evolution of α is only dependent upon the 
current or previous state, we can model it’s evolution using the Fokker-Planck equation. [22] [23] 
Additionally, the Fokker-Planck equation assumes a Markov process whose individual steps are 
small. In the most general form the Fokker-Planck equation is a second order differential equation 
given by [13] 
 
 𝜕𝜕𝜕𝜕(𝑦𝑦, 𝑡𝑡)

𝜕𝜕𝜕𝜕
= −

𝜕𝜕
𝜕𝜕𝜕𝜕

𝐴𝐴(𝑦𝑦) +
1
2
𝜕𝜕2

𝜕𝜕𝑦𝑦2
𝐵𝐵(𝑦𝑦)𝑃𝑃 

 

(98) 

 

The first term on the right hand side of equation (98)  is known as the “drift” or “friction” term 
while the second term is the “diffusion” term.  To model the total deflection of a ray encountering 
randomly located scatterers, y becomes or final angle of deflection, α.  For a small ∆𝑡𝑡, by definition 
the two coefficients are then given by 
 
 

𝐴𝐴(α) =  
〈∆α〉
∆𝑡𝑡

   , 𝐵𝐵(α) =  
〈(∆α)2〉
∆𝑡𝑡

  
 

(99) 

 

In which the scattering is defined in the following coordinate system, for one scatterer 

 
Figure 57: Scatter geometry for Fokker-Planck approximation 
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It is fair to assume that the ray scattering process will be symmetric, 〈∆α〉 = 0 and then the friction 
term vanishes leaving [13] [12] 
 
 𝜕𝜕𝜕𝜕(α, 𝑡𝑡)

𝜕𝜕𝜕𝜕
=
〈(∆α)2〉

2∆𝑡𝑡
𝜕𝜕2

𝜕𝜕α2
𝑃𝑃. 

 

(100) 

 

This simple result in the above equation is the starting point for our future work.  Because the 
diffusion term is proportional to 〈(∆α)2〉 , it can be determined from our numerical ray tracing 
results.  Additionally, this diffusion coefficient could be determined analytical using a method 
similar to that of Hizanidis et al 2010 [14] Then, a solution to the Fokker-Planck equation can be 
found using both the analytical and numerically derived diffusion coefficient.  This process and 
comparison is detailed by the flow diagram in the Figure 58.  

 
Figure 58: Fokker-Planch comparison; future work. 

 
This process would enable us to verify accuracy and validity of the 3D ray tracing code in 
calculating the overall beam diffusion through such media.  Once validated, we could use this 
simple ray tracing code to describe the propagation of high frequency waves through any type of 
plasma media in that follows the assumption that 𝜆𝜆 ≪  𝑅𝑅𝑜𝑜.  
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 Scattering Simulations: Particle in Cell 7.0
 
In the AFOSR FY13 report, an analytic, stationary solution to the Flute type density irregularities 
was derived. This derivation was also published in reference [21] and is shown for completeness in 
Section 5.  In the FY13 report and reference [21], the numerically calculated cross section due to 
Flute vortex structures was calculated using LSP (a fully kinetic particle-in-cell simulation). A 
comparison was made between the differential cross-section calculated from LSP (Fig. 10 in 
Reference [21]) and the analytic cross-section (Fig. 11 in Reference [2]) using parameters 
appropriate for high energy density physics. In order to further validate the analytic calculation, 
comparisons have been made between LSP and theory using ionospheric parameters, which are 
summarized in Table 3 below.  For the LSP simulations, the simulation domain is established in the 
x-z plane with ∆x = ∆z = 10 cm, Lx × Lz = 10000 cm × 22000 cm, and ∆t = 0.23 ns, which satisfies 
the CFL condition for light waves. The total number of macro-particles used in the simulation is ~8 
× 107. The simulation uses PML boundary conditions to dampen reflections of the EM waves at the 
boundaries. A vacuum layer is established around the edge of the simulation domain to keep the 
plasma particles from interacting with the PML layer. Because the plasma is quite cold, all particles 
remain in the simulation domain during the time that the simulation is run. 
 
 
 

Plasma density no 4×106 cm-3 
Magnetic Field Bo 0.3 G 
Acceleration g 500 cm/s2 
Ion mass Mi 16 AMU 
Temperature Ti=Te 0.026 eV 
Density scale length κN 1/3×10-5 cm-1 
Characteristic Radius Ro 2200 cm 
Vortex Mode b 0.4945 
Input Frequency fo 35.9 MHz 
Velocity U -2.4 cm/s 

Table 3: Ionospheric plasma parameters used for generating Flute vortex structure shown in the 
figure below 

 
The fluid solution to the Flute vortex structure (Equations 23-26 in Reference [21]) contains many 
solutions due to the variety of modes that exist involving the Bessel functions in the final general 
solution. The “Vortex Mode” shown in the table above is the lowest order mode and has the fewest 
oscillations in the Bessel function solution. The “Vortex Mode” is found via equation (27) in 
Reference [21], which is solved via The Bisection Method [25] using a Matlab function called 
“fzero”.  The perturbed density (δn) and the potential (ϕ) due to the Flute Vortex structure using the 
parameters in the Table 1 are shown in Figure 59.   The perturbed density is then embedded into an 
ambient plasma which has a background density given by no in the above table.  The entire 
simulation domain with the Flute vortex structure is shown in Figure 60.   
The scattering cross section is calculated by launching a TE wave-guide with a polarization in the y-
direction, a k-vector in the z-direction and frequency given by fo in Table 3. Note that the simulation 
domain is established in the x-z plane. The wave is launched at the z = 0 boundary as indicated by 
the arrows in Figure 60.  Two simulations were performed with the exact same simulation setup and 
plasma parameters, except that one simulation contains the 

64 
Approved for public release; distribution unlimited. 



                   
Figure 59: Perturbed Density (left) and the potential (right) of a Flute vortex structure using plasma 

parameters shown in the table above. 

  
 

                                  
Figure 60: Total density profile imbedded in the ambient ionospheric plasma. 

 
The arrows represent the TE wave guide which is launched through the z = 0 boundary. The black 
box indicates the region in which the differential cross-section is calculated. 
Flute vortex and the other contains only the ambient plasma. To calculate the angular properties of 
the scattering cross section, a temporal FFT of Ey at each spatial grid point is performed in a region 
beyond the vortex.  At each grid point, the FFT from the two simulations is then subtracted at fo and 
the magnitude of the differenced FFT is calculated.  The result of the differenced FFT is binned by 
angle relative to the vortex center. The region in which the cross-section is calculated is shown by 
the rectangular box in Figure 60. The binned FFT is compared with the theoretical result, which is 
given by Equation (45) in Reference [21].  The results of this calculation is shown below in Figure 
61, which is also shown in Figure (6.12) in Reference [21].  The left panel shows the differential 
cross-section from theory and the right panel shows the differential cross-section from LSP. 
Excellent agreement is found in the angle at which the differential cross-section peaks. 

65 
Approved for public release; distribution unlimited. 



 
Figure 61: Theoretical (left) and numerically calculated (right) differential cross section due to the 
Flute vortex structure shown in Figure 2. Note that the y-axis values are multiplied by 10-6 in both 

plots. 

 
We have also performed other simulations involving analytically calculated Flute vortex structures 
but with the density structure rotated. Shown below is an example of one such structure with the 
density profile rotated by 90o (left panel) and 45o (right panel).  The rotated density structures are 
intended to mimic an incoming EM wave in a direction different than the one shown in Figure 60.  
In both cases, the density structures are imbedded in the same ambient plasma as shown in Figure 
60 and a TE wave guide is launched from the z = 0 boundary. 

                         
Figure 62: Flute vortex structures used to calculate the differential cross section shown in Figure 
6.5. All plasma parameters are identical to Figure 60 as is the size of the simulation domain, cell 

size and time step. 

 

The differential cross sections calculated from LSP for the two rotated vortex structures are shown 
in Figure 63.  The peak in the differential cross section occurs at a similar angle to the vortex 
structure shown in Figure 60: Total density profile imbedded in the ambient ionospheric plasma..  
However, in the rotated case, the curve is broader at θ ~ 0.2 radians, and the curve is symmetric 
about θ=0. Nevertheless, the peaks of the differential cross-sections are centered about θ ~ ±0.2 
radians. For negative angles, there is a minimum at -0.2 radians with peaks on both sides. Figure 60 
and Figure 63 seem to indicate that the differential cross section is nearly independent of the angle 
in which the EM wave is launched through the Flute vortex structure. Furthermore the amplitude of 
the differential cross section due to the rotated vortex structures is nearly identical to non-rotated 
case. 
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Figure 63: (Left) Differential cross section due to the Flute structure shown the left panel of Figure 
62. (Right) Differential cross section due to the Flute structure shown in the right panel of Figure 
62. 

We have also calculated the differential cross section due to Flute vortex structure that has δn ≅ 
15%. In order to generate a larger density perturbation, we set the acceleration term (g) to 450 
cm/s2. All other parameters are the same as Table 3. The calculated differential cross section is 
shown in Figure 64: Differential cross section due to Flute vortex structure with δn = 15%.. 

                     
Figure 64: Differential cross section due to Flute vortex structure with δn = 15%. 

Significant scattering occurs at ~ 0.2 radians with significant scattering also occurring up to 0.6 
radians, indicating that scattering occurs at larger angles for larger density perturbations.  
We have also calculated the differential cross section due to a numerically calculated Flute-type 
structure. The density perturbations are calculated using a numerical algorithm called FLUTE [26]. 
The perturbation is then input into LSP and scattering is calculated off of this density perturbation. 
Figure 63 shows the density perturbation  from FLUTE which is input into LSP. Note that the 
boundary conditions in FLUTE are periodic which is evident from the density profile. 
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Figure 65: Initial density profile input into LSP. The density profile is calculated in a numerical 
program called FLUTE. 

 
The simulation grid size is Lx ×Lz = 40000 cm × 50000 cm, resulting in a larger simulation domain 
because we continue to set ∆x = ∆z = 10 cm. The number of macro-particles used is ~ 3.5×108.  The 
differential cross section is calculated in the rectangular box shown in Figure 63. The peak density 
perturbation is ~ 35%, which is significantly larger than the analytically calculated Vortex structure 
shown in Figure 59 and Figure 60.  The differential cross section is shown in Figure 65.  Notice that 
now significant scatter occurs at ~ 0 radians and extends out to ~ -0.6 radians. Furthermore, the 
magnitude of the differential cross section is ~ 10 times greater than the analytic vortex structures.  

                                   
Figure 66: Differential cross section due to the numerically calculated vortex structure shown in 
Figure 63.  
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LIST OF SYMBOLS, ABBREVIATIONS, AND ACRONYMS 
 

ACRONYM DESCRIPTION 
 

𝛀𝛀𝒊𝒊 Ion-cyclotron frequency 
𝑻𝑻𝒊𝒊,𝒆𝒆 Ion, Electron temperature 
𝑽𝑽𝑻𝑻𝑻𝑻,𝑻𝑻𝑻𝑻 Thermal ion, electron velocities 
𝒏𝒏𝟎𝟎 Background density 
𝜿𝜿𝑵𝑵 Density scale length 
𝝆𝝆𝒆𝒆,𝒊𝒊 Electron, ion gyroradius 
𝝊𝝊𝒆𝒆𝒆𝒆 Electron-neutral collision coefficient 
𝝎𝝎𝒄𝒄𝒄𝒄 Electron-cyclotron frequency 
𝝎𝝎𝒑𝒑𝒑𝒑 Electron plasma frequency 
𝝎𝝎𝒑𝒑𝒑𝒑 Ion plasma frequency 
𝝎𝝎𝜶𝜶 Lower-hybrid resonance 
B Magnetic field 
b Flute mode 
c Speed of light 
CSWAP Cost, size, weight, and power 
E Electric field 
e Charge of electron 
EM Electro-magnetic 
ESF Equatorial spread F 
f frequency 
FFT Fast-Fourier Transform 
FWHM Full width at half maximum 
g Acceleration due to gravity  
h Characteristic size 
k Wave vector 
LE Electric field scale length 
LSP Plasma simulation software 
m Electron mass 
M Ion mass 
MHD Magneto-hydrodynamics  
NGOTHR Next generation over the horizon radar 
OTH Over the horizon 
P Probability function 
PIC Particle in Cell 
R Dispersion length 
r Position vector 
t Time 
TE Transverse-Electromagnetic 
V,U Particle velocity, drift velocities 
VLF Very low frequency 
Z Ionization 
α Scattered angle 
β Plasma beta 
τ Scale time 
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ACRONYM DESCRIPTION 
 

Φ Electric potential 
𝜹𝜹𝜹𝜹 Density perturbation 
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