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1. Introduction 

Fiber-reinforced composites have exceptional tailorability, stiffness, and strength. Flexible 

matrix composites (FMCs), in particular, are an interesting class of composite composed of very 

stiff and strong carbon fibers with a relatively compliant elastomeric matrix such as 

polyurethane. FMCs have been investigated for potential application to helicopter tail rotor 

driveshafts, where power can be transmitted (stiff in torsion) under misaligned conditions (soft in 

bending) without complex, maintenance-intensive flexible couplers.1–5 A single-piece FMC 

filament-wound driveshaft can potentially replace typical multi-segmented shafts, reducing 

weight, complexity, and maintenance requirements (Fig. 1). The compliance of the FMC matrix 

reduces the tendency of the driveshaft to overheat during rapid cyclic loading that would occur 

during misaligned operation. 

 

Fig. 1   Traditional driveline (top) and proposed 

driveline (bottom)1 

Driveshafts and other composite cylinders are commonly fabricated by wet filament winding 

wherein tows of fiber are wrapped onto a cylindrical mandrel helically at ±𝜃 angles relative to 

the axial axis. In a single helically wound layer, −𝜃 tows pass under and over +𝜃 tows and vice 

versa, resulting in triangular regions of ±𝜃 and ∓𝜃 laminated material. The triangular regions 

repeat around the circumference of the cylinder by an integer number known as the filament 

winding pattern (Fig. 2). At the helical and circumferential borders of these triangles, fibers 

undulate as they switch from the top layer to the bottom layer and vice versa (Fig. 2).   
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Fig. 2   Filament wound tubes: winding patterns of 2, 5, and 10, showing repeating rhombic 

units (left) and cross section of undulated helical tow (right) 

The out-of-plane orientation of the fiber reduces stiffness and strength.6 Accurately measuring 

the geometric size and shape of the undulation is absolutely necessary to estimate reductions in 

modulus. Ishikawa and Chou7 introduced several textile composite models, such as the fiber 

crimp model, to address the effect of fiber undulation for plain and harness satin weaves. The 

fiber crimp model assumes that classical lamination theory is valid at discrete points along the 

undulation, employing the hypothesis that the stiffness of the undulated region can be determined 

by numerical integration with accurate information about the undulation geometry. Ishikawa and 

Chou7 reported that the fiber crimp model was fairly accurate in estimating the modulus reducing 

quality of the fiber undulation. Other reports8–13 expanded upon Ishikawa and Chou7 by 

including nonorthogonally crossing fibers. Three-dimensional fiber orientation was considered 

although the analysis was truncated to 2 dimensions upon laminate homogenization. The 

undulated fiber architecture creates complex elastic coupling9–12 and stress distributions8,13 at the 

ply level that have been shown to analytically and experimentally reduce composite axial 

stiffness (Ex).
6,10–13 

Analytical models for compressive strength of composites generally rely on assumed 

mechanisms of failure such as for microbuckling or fiber kinking. Microbuckling is the local 

buckling of fibers embedded within a polymer matrix foundation (Fig. 3a). Kinking is the 

process by which bands of material experience plastic deformation in regions where the fiber 

reinforcement has broken (Fig. 3b). Rosen14 assumed that the fiber reinforcement would buckle 

either out of phase (extensional mode) or in phase (shear mode). Experimentally measured 

strength was often below the strength predicted due to imperfect fiber spacing and orientation as 

well as various flaws and voids. Improvements to Rosen’s14 models stemmed from 

understanding that the fiber misalignment,15,16 fiber waviness,17 and fiber-matrix interfacial 

strength18 are all factors in compressive strength prediction. Micromechanical models13 show 
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that out-of-plane undulation creates significant shear and normal stress in the plane of the 

undulation and suggest that accurate knowledge of the undulation geometry is critical to accurate 

strength prediction. 

 

Fig. 3   Compression failure modes19 

Recently developed experimental methods allow for the improved characterization of not only 

complex strain fields but also failure mechanisms in composite specimens with undulated 

reinforcement. For example, the digital image correlation (DIC) method, made practical by the 

advent of measurement-grade digital cameras and high-speed computers, has been used to 

measure full-field strains in filament-wound cylinders under internal pressure,20 combined 

tension, torsion, and bending loads,21 uniaxial compression,22 and in compression before and 

after ballistic impact damage.23 DIC has also been used to evaluate flat coupons manufactured 

with ply waviness.24,25 

The objective of the current investigation was to observe the effects of out-of-plane undulation 

on the full-field strains and structural behavior of composites under axial compression. Flat 

composite specimens with carefully manufactured sinusoidal undulations were chosen as a 

simplified case of fiber undulation in a filament-wound cylinder. A series of [0n/90n]s and  

[30n/–60n]s laminates with different out-of-plane undulation amplitudes, undulation lengths, and 

matrix materials were manufactured and tested for this purpose. Two-dimensional DIC was used 

to measure in-plane surface displacements and strains on the various surfaces of the specimens. 

Based on these measurements, the onset of failure could be observed in many cases. 

 

 

 

a) Microbuckling failure modes b) Kinking failure mode 
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2. Experiment/Calculations 

Composite specimens were manufactured using AS4D standard modulus carbon fibers (Hexcel 

Corp., Stamford, CT). Three matrix materials were used in this investigation. The most 

compliant is a flexible polyurethane prepolymer commonly known as Adiprene LF750, a toluene 

diisocyanate terminated polyether (Chemtura Corp., Middlebury, CT). An intermediate-modulus 

flexible polyurethane prepolymer, a toluene diisocyanate polytetramethylene polycaprolactone 

polyether known as Conathane DPRN 30917 (Cytec Industries, Olean, NY), was selected. For 

long pot life, a delayed-action diamine curative, Duracure C3LF (Chemtura Corp., Middlebury, 

CT), was used to cure the polyurethane prepolymers. The highest stiffness matrix for making 

rigid matrix composites (RMCs) consisted of a bisphenol F epoxide, EPON 862, and an aromatic 

amine curing agent, Curative W (both from Momentive Specialty Chemicals, Columbus, OH). 

The tensile modulus of elasticity of the neat matrix materials in the 1,000- to 2,000-µε range was 

measured previously26: LF750, 250 MPa; 30917, 980 MPa; and EPON 862, 3,000 MPa. The 

curing schedule for the polyurethane matrix was 140 °C for 2 h followed by 100 °C for 16 h. The 

16-h post-cure for the flexible matrix ensures that there are no aging effects in the variable time 

period between manufacture and test. The curing schedule for the epoxy matrix is 121 °C for 1 h 

followed by 177 °C for 2 h.   

Impregnated sheets of unidirectionally reinforced composite were manufactured by passing 

carbon fiber tow through a resin bath and winding the tow onto a flat paddle mandrel with a 

target fiber volume fraction (Vf) of 50% (Fig. 4). The thickness of the sheets was varied by 

winding a variable number of unidirectionally oriented layers on to the mandrel, n, where n = 2, 

4, or 6. The paddle mandrel was covered by nonporous polytetrafluoroethylene-coated glass 

fabric from Airtech (Huntington Beach, CA). To create each laminate, 4 sheets of n layers were 

used. For example, four 2-layer sheets comprise the [02/902]s laminate and four 4-layer sheets 

comprise the [04/904]s laminate, etc. All other manufacturing conditions were kept approximately 

constant for the various thicknesses. 

 

Fig. 4   25.4- × 25.4-cm paddle mandrel26 
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Table    Specimen geometric parameters  
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LF750 

2 46 34 291 0.73 6.33 0.10 0.36 

48 4 46 61 319 1.32 6.93 0.17 0.33 

6 46 87 395 1.89 8.59 0.23 0.32 

DPRN 30917 

2 48 32 236 0.67 4.92 0.12 0.33 

47 4 48 66 261 1.36 5.44 0.19 0.34 

6 48 90 320 1.88 6.67 0.26 0.31 

EPON 962 

2 33 19 345 0.58 10.45 0.06 0.29 

59 4 33 37 435 1.11 13.18 0.08 0.28 

6 33 58 574 1.74 17.39 0.10 0.29 

 

Compressive modulus and strength results were normalized to a Vf of 50% by dividing the 

experimentally measured result by the actual Vf (percent) and multiplying by 0.50. Actual Vf 

values, determined based on the known fiber areal volume wound onto the mandrel and the cured 

cylinder thickness, ranged from 47% to 59%, with the epoxy-based specimens at the top of the 

range due to relatively abundant matrix drip-off (Table). Five laminates were evaluated for each 

material system with 3 [0n/90n]s variations of undulation amplitude and 2 [30n/–60n]s variations 

of undulation amplitude. 

Specimens were tested on an MTS Model 810 hydraulic test frame at a rate of 1.27 mm/min 

(0.05 inch/min). A 89-kN (20-kip) load cell was used to measure applied load. Two-dimensional 

DIC was used to measure the surface displacement/deformation of the specimen under load. DIC 

measures the displacement of contrasting features in a random speckle pattern painted on the 

surface of the specimen.27,28 In-plane strains were calculated from the in-plane displacements 

using the program Vic 2D (Correlated Solutions Inc., Columbia, SC). The speckle pattern was 

created using commercially available flat black and white spray paints, which provide the largest 

color/brightness contrast in grayscale coloring. A step size of 15 and a subset of 30 were used 

during image correlation. A size 5 strain filter and Lagrange tensor type were used. The area of 

interest was nominally 25.4 mm wide × 25.4 mm tall. For the GRAS-50S5M (2,448 × 2,048 

pixels), the spatial resolution was 96 × 81 pixels/mm. 
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Fig. 9   Axial normal strain, εxx, in [0n/90n]s specimens (loading in x-direction, length 

approximately 20 mm) 

The same trends can be seen in the out-of-plane strain, εzz, where the higher magnitude strain 

(i.e., most positive strain, highlighted by light dashed circle) coincides with where the 

reinforcing 0° ply subducts under the 90° ply (Fig. 10). Lower-magnitude out-of-plane strains 

coalesce at the “end” of the undulation where the material returns to being laminated. Increased 

compressive loading leads to localization of high out-of-plane strains, εzz, near the 0° and 90° 

interface. Strain concentrations have been observed to occur at ply interfaces in composites 

without undulation.30 The 30917 [04/904]s out-of-plane strain field in Fig. 10 features an early 

manifestation of this phenomenon. In general, specimens with larger undulation amplitude 

experience greater out-of-plane strains. 

 

 

(a) LF750 (b) 30917 (c) EPON 862 
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Fig. 10   Out-of-plane normal strain, εzz, in [0n/90n]s specimens 

Out-of-plane tensor shear strain, εxz, was antisymmetric about the midplane of the laminates, as 

may be expected, shown in Fig. 11 for [06/906]s (top) and [304/–604]s (bottom) specimens. 

Measurements were highest along the ply interfaces where mismatched ply properties can be 

expected to cause high strains. The shear strain was higher in the [304/–604]s laminate than in the 

[06/906]s laminate and was higher in softer matrixes than in stiffer matrixes. 

 

(a) LF750 (b) 30917 (c) EPON 862 
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Fig. 11   Out-of-plane tensor shear strains, εxz, in [06/906]s and [304/–604]s specimens 

DIC results for [30n/–60n]s laminates showed similar axial (Fig. 12) and out-of-plane normal  

(Fig. 13) strain field response as the [0n/90n]s tests. That is, the highest-magnitude strains were 

observed in the middle –60° plies where the 30° surface plies begin to subduct (light dashed 

circle). The lowest magnitude strains were seen in a broad area near where the 30° plies meet at 

the midplane (light dashed rectangle). As expected, greater undulation amplitude and matrix 

material compliance increase the strain amplitude in both the axial and out-of-plane directions. 

The out-of-plane normal strain field also shows high magnitude concentrations at the ply 

interfaces, as seen in the [0n/90n]s specimens. 

 

Fig. 12   Axial normal strains, εxx, in [30n/–60n]s specimens 
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Fig. 13   Out-of-plane normal strains, εzz, in [30n/–60n]s specimens 

Axial stress-strain curves were observed to be approximately linear for specimens without 

undulation (Fig. 14). Each point plotted in the stress-strain graphs represents the average value of 

strain across the undulated region of the specimen. The highest value of stress plotted for the 

nonundulated specimens corresponded with failure near the grip. For the undulated specimens, 

the highest value of axial stress plotted corresponded to fiber microbuckling away from the grips. 

Increasing the undulation amplitude (n = 2→6) decreases both the strength and the modulus 

compared with the nonundulated case. Several differences between FMC and RMC response due 

to fiber undulation can be observed in Fig. 14. The strength difference between specimens with 

increasing undulation can be seen to be greater for FMC specimens than for the RMC specimens. 

Fiber undulation also causes moderate nonlinearity in the stress-strain curves in FMCs but not in 

RMCs.
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Fig. 16   Strain stages at A, B, and C in an LF750 [06/906]s specimen 

4. Conclusions 

Ply undulation was detrimental to the axial compressive modulus and strength of FMC and RMC 

[0n/90n]s specimens. FMCs were more sensitive to fiber undulation than RMCs. An undulation 

with an amplitude/length ratio of 0.1 reduces the longitudinal modulus of elasticity in the 

undulation region by approximately 43%, 28%, and 3% in specimens with LF750, 30917, and 

EPON 862 resins, respectively, relative to specimens without undulation. Specimens without 

undulations were observed to have approximately the same modulus regardless of the matrix 

material. For the range of undulation amplitude/length investigated, both polyurethane resins 

showed little change in axial strength.   

The [30n/–60n]s specimens were more strongly dominated by the composite shear properties, 

which were very different depending on matrix material. Modulus and strength of the [30n/–60n]s 

specimens were largely independent of undulation amplitude. This result suggests that the 

introduction of fiber undulation most critically affects fiber-dominated properties (modulus and 

strength of [0n/90n]s specimens). For the same undulation size and fiber volume fraction, stiffer 

matrix systems are stiffer and stronger than their more compliant counterparts.   

For both laminates, strain concentrations were of highest magnitude at the location where the 

undulating ply subducts beneath the surface of the laminate. Conversely, strain concentrations 

were low where the undulating plies met in the middle of the laminate. It was observed that the 

 
(A) (B) (C) 

Fig    tr in st ges t A  and  in n F750 [0 /90 ]  spe  
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introduction of undulation itself does not greatly increase the axial strain in the reinforcing fibers 

prior to microbuckling where the fiber subducts from the surface to the interior. Rather, the other 

strain components (out-of-plane shear and out-of-plane normal strains) increase considerably 

where the subduction begins, eventually leading to delamination. Delamination decreases out-of-

plane stiffness, increasing the misalignment of the fiber until microbuckling occurs. 
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