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Abstract

Identifying and quantifying factors influencing human decision making remains an outstanding challenge, impacting the
performance and predictability of social and technological systems. In many cases, system failures are traced to human
factors including congestion, overload, miscommunication, and delays. Here we report results of a behavioral network
science experiment, targeting decision making in a natural disaster. In a controlled laboratory setting, our results quantify
several key factors influencing individual evacuation decision making in a controlled laboratory setting. The experiment
includes tensions between broadcast and peer-to-peer information, and contrasts the effects of temporal urgency
associated with the imminence of the disaster and the effects of limited shelter capacity for evacuees. Based on empirical
measurements of the cumulative rate of evacuations as a function of the instantaneous disaster likelihood, we develop a
quantitative model for decision making that captures remarkably well the main features of observed collective behavior
across many different scenarios. Moreover, this model captures the sensitivity of individual- and population-level decision
behaviors to external pressures, and systematic deviations from the model provide meaningful estimates of variability in the
collective response. Identification of robust methods for quantifying human decisions in the face of risk has implications for
policy in disasters and other threat scenarios, specifically the development and testing of robust strategies for training and
control of evacuations that account for human behavior and network topologies.
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Introduction

The development of new communication technologies enables

rapid information dissemination and decision making among

groups of individuals, but it also creates new challenges in the

coordination of collective behavior. For example, the adoption of

social networking technologies such as Twitter and Facebook can

empower the masses but makes them hard to control [1–8]. More

generally, the advent of contemporary network technologies has

brought with it a new set of fragilities stemming from the

complexity of human behavior: people rarely behave optimally,

randomly, or uniformly, as often naively assumed in technological

design and policy development.

Within the field of network science, the study of social networks

plays an increasingly important role in method development and

associated applications, with widespread implications in market-

ing, politics, education, epidemics, and disasters. Considerable

effort is directed towards understanding how information diffuses

through social groups [9–14], with particular emphasis on the role

of news websites [15], blogs [16], Facebook [17], Twitter [18], and

other social media [19,20].

As information diffuses, individuals can display a range of

decision making behaviors driven by new information. Phenom-

ena of particular interest include (1) the dynamics of cascading

behavior, which can explain how and why fads emerge [21] or

rumors spread so quickly [22,23], and (2) the role that individuals

play as ‘‘spreaders’’ in facilitating the propagation of this behavior

[24–26], or similarly the roll that ‘‘homophily’’ can play in

abrogating uptake of a behavior [27]. Social epidemics, much like

their biological counterparts [28–31], are often modeled as single-

[32] or multi-stage [33] complex contagion processes [34–36].

Recent theoretical investigations have examined how this

information exchange leads to collective action. In one class of

models, individual agents occupy nodes on a network, and a set of

rules defines information propagation dynamics and individual

decision making behavior (e.g., see [23,28,37]). Complementary

data driven investigations describe computational algorithms that

begin to unravel rules for influence and decision making from

large databases, such as Twitter, Facebook, and wireless commu-

nication networks (e.g., [6,26,38,39]). In most cases the databases

identify decisions that are made and delineate links between

network members. However, information about the factors that

drive human decisions, including individual observations, atten-

tion, history, personality, and risk perception is generally

unavailable.

A topic of considerable interest is understanding how collective

decisions may differ interestingly from individual decisions, with
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specific emphasis on the so-called ‘‘wisdom of crowds’’ (e.g.,

[1,2,30,40,41]). In this context, it remains to be shown at what

scale group decision making might become more robust than that

of individuals.

This paper focuses on a critical link between simulation studies

and empirical observations of large scale networks. Specifically, we

conducted a behavioral experiment involving a group of 50

individuals in a computer laboratory. Because human behavior is

often far from what is predicted by idealized models, experimental

observation in ‘‘live’’ and controlled environments are essential for

improved understanding and modeling of social phenomena. Our

work adapts the framework of Kearns et al. [42–45], who have

conducted a series of ‘‘behavioral network science’’ (BNS)

experiments that have focused on collective problem solving tasks,

such as abstract graph coloring problems or economic investment

games. These experiments, and similar experiments from other

research groups, have demonstrated that ‘‘human subjects perform

remarkably well at the collective level’’ in a number of tasks and

scenarios, both competitive and cooperative [45–47]. However,

disasters and other crisis situations often display the opposite effect

[48–52]. Social interactions affect traffic flow [53,54], and can lead

to a ‘‘mob mentality’’ [55–57] that hinders evacuation and may

lead to injury and violence. Moreover, associated spatiotemporal

clustering of departure times can lead to traffic congestion and

delays [58–60].

Therefore, in contrast to previous BNS research involving

idealized, abstract games, our investigations involve decision

making in a threat scenario. Specifically, our study is set in the

context of an impending natural disaster, where each individual

occupies a node in a social network and must decide whether or

not to evacuate. The experiment is conducted for a sequence of

time-evolving disaster scenarios. In each scenario, individuals

receive real time updates from a centralized information source

about the likelihood, severity, and timing of a disaster that

threatens their virtual community. Individuals also receive social

information regarding evacuation decisions of their neighbors, and

availability of space in a virtual shelter. Thus, participants face a

tradeoff in competing types of information (i.e., centralized

broadcast information versus decentralized social information) in

a laboratory setting that emphasizes risk and loss.

Compared to large data driven studies, the experiment provides

a much more complete, quantitative set of measurements,

enabling us to assess factors and isolate tensions that arise in

human decision making. In addition to observing the ultimate

evacuation decisions, our experimental setup allows us to monitor

the behavior of individuals as they gather information. Prior to the

experiment, we also assess individual personality profiles and risk

attitudes using standardized tests. The ability to acquire this

extensive set of static and dynamic measurements both prior to

and during the decision making process allows us not only to look

at how a population responds collectively to an evacuation threat,

but also to try to understand whether individual variation in

evacuation behavior within that population could be tied to risk

preferences.

A primary outcome of this study is the identification of a

decision model for evacuation behavior based on empirical

observations. The model output fits the observations remarkably

well and can be used to quantify individual differences in decision

dynamics. The empirical model reduces the catalog of scenarios

and observations to a few key parameters involving an overall

multiplicative rate factor for evacuation, an average decision

threshold based on the disaster likelihood, and variability about

the average threshold, reflecting how consistently the decision

making threshold was applied. The model enables us to isolate and

compare two sources of urgency in the experiment that

differentially impact observed behavior: time pressure for the

evacuation decision and competition for shelter space. This

empirical model stands in contrast to a set of models typically

used in numerical simulations or large scale, data driven studies

that treat decisions as random, optimal, or based on a threshold

applied to a state variable representing opinion, which is updated

by an assumed interaction rule (e.g., [21,37,53–56,60,61]).

While our experiment is admittedly well removed from a true

natural disaster, it allows us to isolate and quantify tensions that

arise in a crisis, in a manner that would not be possible during an

actual event. Furthermore, the experimental design takes into

account known psychological factors associated with risk percep-

tion, threat, and information processing [62–65]. A key compo-

nent of behavioral network science is to use the observed human

behavior as inspiration for the development of novel computa-

tional models of behavior, which can in turn be tested in future

experiments. This spiral development of model-experiment-model or

experiment-model-experiment may be used to develop optimal strategies

for disseminating information during a disaster, and insuring

sufficient allocation of resources for disaster response.

Motivation
This work builds on three previous results involving collective

decision dynamics in evacuation scenarios. The first is an

assessment of evacuation routes and clearing times for a

neighborhood threatened by wildfire [66], under the assumption

of ‘‘best case’’ collective behavior as could be identified and

implemented by a central authority. That is, individuals are

assumed to evacuate exactly as directed and in a manner that

maximizes the social welfare of the group as a whole. This

idealized analysis captures the most salient features of evacuation

behavior reported in a previous simulation-based study [58], and it

provides an upper bound on collective performance, but it is not

intended as a realistic prediction of real human evacuation.

The second result involves a detailed analysis of optimal ‘‘go’’

vs. ‘‘no go’’ decision making for an individual in the presence of a

pending disaster [67]. Using a stochastic model that simulates the

movement of a disaster (e.g., hurricane) through a bounded space

toward a ‘‘target,’’ the decision to evacuate is modeled as a

Markov decision problem. A dynamic programming algorithm is

used to determine optimal decision policies which follow a

multidimensional threshold form. The model is used to explore

the tensions and tradeoffs in the decision to evacuate, specifically

how optimal evacuation policies are affected by evacuation costs

and disaster uncertainy.

The third result involves numerical simulation studies of

collective decision dynamics where individuals, represented by

nodes on a network, must decide whether or not to evacuate and

are influenced by a one-to-many externally driven global

broadcast as well as pairwise interactions on the social network

[37]. In this context, an individual’s decisions are assumed to

follow a threshold policy based on whether the individual believes

that the disaster is sufficiently likely. By construction, it is possible

to track both the diffusion of information regarding the likelihood

of the pending disaster and the collective evacuation dynamics of

the group. Our results indicate that social networks can help

facilitate cohesive action among individuals, but that information

transmission over the network can either facilitate or hinder action

adoption. Moreover, we observe that cascading behavior is

possible, especially if that information is binary, and that this

depends in general on the influence of the global broadcast relative

to the social network.

Decision Dynamics in Collective Evacuation
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A primary motivation for the current experiment is to observe

real human behavior in the context of a pending (albeit artificial)

disaster, in the presence of both global broadcast information and

social peer-to-peer information. The intent is to create a controlled

setting in which all actions and observations are recorded prior to

the decision, enabling development of a quantitative model that

accounts for key drivers of decision making. These updated

decision models can, in turn, be used in additional numerical

experiments and analysis that ultimately informs the development

of improved evacuation policies and strategies for real populations.

Materials and Methods

On May 18, 2012 an experiment was conducted at the

University of California, Santa Barbara (UCSB) in which 50

student participants within a virtual community each decided if

and when to evacuate from impending natural disasters. All

participants provided written informed consent, and the experi-

mental protocol was approved by the Institutional Review Board

of UCSB. The demographic composition of the participants was

not released for publication.

Individuals participated in 47 scenarios (runs) that lasted one

minute each. At the beginning of each scenario, each participant

was given 100 monetary ‘‘points’’ that were at risk from a

simulated disaster. During each scenario, participants were

provided with information about the progression of the disaster,

and they were offered the opportunity to evacuate from this

disaster (a binding decision) and occupy one of a limited number of

spaces in a virtual disaster shelter. Depending on their decision

and the outcome of the disaster, they could lose some or all of their

monetary points. The magnitude of the loss was a function of

whether or not the individual successfully evacuated to the shelter,

and whether or not the disaster struck. The total amount paid to a

participant at the end of the experiment was a function of their

cumulative score over the 47 runs. The running cumulative scores

of all of the participants were ranked and displayed on a leader

board at the front of the room. This allowed individuals to

evaluate their strategy and provided a competitive incentive.

Prior to taking part in the study, the personality profile of each

participant was measured using the Big Five Inventory (BFI-44)

questionnaire [68–70], and the risk preferences of each participant

were also measured in six domains (social, investment, gambling,

health & safety, ethical, and recreational) using a Domain Specific

Risk Attitude Scale [71,72]. The Big Five Inventory is a commonly

used set of 44 questions that enables the assessment of an

individual’s personality along the following dimensions: extraver-

sion, neuroticism, openness, conscientiousness, and agreeableness.

The Big Five is used extensively in psychological research as well

as in translational applications such as the assessment of learning

styles and employee placement. The Domain Specific Risk

Attitude Scale is used in psychological research to assess risk

perception and risk behavior, to predict human behavior, and to

develop policy in areas such as health and natural hazards.

Administration of each questionnaire lasted approximately 7

minutes.

Experiment Layout
The primary objective of this project was to understand the way

in which individual decision makers use and share information,

and how this information leads to collective action of the group as

a whole. Of particular interest was obtaining insight into the

influence of competing sources of information on individual and

group behavior.

To reach these objectives, we employ an experimental setup

derived from that of Kearns et al. [42–45]. We customize the

computational framework and user interface to our evacuation

problem. Each participant sits in front of a computer screen, see

Figure 1A, containing two tabbed windows, labeled ‘‘Disaster

Information’’ and ‘‘Social Information.’’ The participant may only

view one window at a time and can switch between these two

sources of information by clicking on the tabs.

The Disaster Information Tab (or simply, Disaster Tab), shown

in Figure 1B, provides participants with information about the

simulated time-evolving disaster. At the top of this tab is a disaster

progress bar, which incrementally turns blue as time goes by; a red

box around the scenario progress bar signifies the time window in

which the disaster could strike. The likelihood that the evolving

disaster will strike the community is presented in real time as the

proportion of filled circles (e.g., 4 out of 10 filled circles indicates a

current probability of 40%). A loss matrix shows how many points

an individual will lose at the end of the current scenario depending

on the outcome of the disaster and the individual’s final location.

Finally, a button at the bottom of the Disaster Tab allows

participants to evacuate. When an individual clicks the button,

they transition from being ‘‘AtHome’’ to being ‘‘InTransit.’’ If

there is still space available in the shelter, the individual

immediately transitions to being ‘‘InShelter.’’ However, if the

shelter is already full, the participant remains InTransit through

the rest of the current scenario.

The Social Information Tab (or simply, Social Tab), shown in

Figure 1C, allows the participant to query the status of neighbors

in their social network by clicking on each neighbor’s node. If the

neighbor is still AtHome, then the letter ‘H’ appears on the

neighbor node. If the neighbor has evacuated, a subsequent click is

required to identify this. If the neighbor is InTransit, then the

letter ‘T’ appears. If the neighbor is in the shelter, then the shelter

space (or ‘‘bed’’) number that the neighbor occupies in the shelter

appears. This value provides a lower bound on the number of beds

occupied in the shelter and is also recorded in a shelter diagram

toward the bottom of the Social Tab. The evacuation button

located on the Disaster Tab is mirrored on the Social Tab to

enable participants to make their evacuation decision irrespective

of their current tab location.

Psychometrics of Participants
Personality Metrics. The Big Five Inventory measures an

individual’s personality based on five characteristics: extraversion,

agreeableness, conscientiousness, neuroticism, and openness [68–

70]. As shown in Fig. 2, the group of individuals that volunteered

to take part in our experiment displayed similar personality

profiles to the typical values for a similar age group [73], with the

exception of neuroticism which was significantly lower than in the

general population.

Risk Attitude. The risk attitude questionnaire scores both

general risk attitude and specific risk types in the following

domains: investment, health & safety, gambling, social, ethical,

and recreational. The evacuation scenarios in this experiment

were developed predicated on the assumption that individuals

would be averse to the loss of monetary points (financial risk), and

loss of life and property (health & safety risk). Participant responses

to questions on the Domain Specific Risk Attitude Scale test

ranged from ‘‘1’’ (Risk Averse) to ‘‘5’’ (Risk Seeking) with ‘‘3’’

indicating a risk neutral attitude. The general risk attitude

distribution was risk averse (2:60+0:69). When segregated into

the separate domains, the population displayed a range of risk

attitudes summarized in Table 1.

Decision Dynamics in Collective Evacuation
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Scenario Simulation Mechanics
Our experimental setup had several key features designed to

enable the isolation of external drivers and the identification of

tradeoffs in decision mechanics. These features included a network

structure linking participants and constraining information diffu-

sion, time-evolving disaster trajectories, and scenario-to-scenario

variation in shelter capacity, time pressure, and potential risk to

monetary ‘‘points’’. We describe these features in greater detail

below.

Network Structure. In our experiment, a network structure

enables participants to observe the actions of others. In each

scenario, participants are assigned at random to a node in an

underlying social network topology designed by the researchers.

This allows an individual to have a different number of neighbors

in each scenario, and for the number of neighbors to vary by

individual in a single scenario. There were 8 networks used in the

experiment: 3 ‘‘regular’’ ring lattice graphs, where each node was

connected to nodes within a distance 1, 2, or 3, resulting in fixed

node degree d~ 2, 4, or 6, respectively; and 5 ‘‘variable’’ graphs

where nodes had degree d[½1,10� with an average d~4. More

specifically, the latter networks were generated as random graphs

with specified degree sequence {1(610), 2(68), 3(67), 4(66),

5(65), 6(64), 7(64), 8(63), 9(62), 10(61)}, according to the

algorithm specified in [74] and implemented in the NetworkX

Python library [75]. Number of neighbors was varied to measure

the affect on frequency of seeking social information. Different

network structures were used as they predict different rates of

information diffusion, with random networks having rapid

diffusion, and regular lattice graphs having a slow rate of diffusion

[76].

Disaster Trajectories. The disaster strike probability as a

function of time t, denoted by Phit(t), was generated in advance

from a well-defined stochastic process previously studied in [67];

details of its construction can be found there. The process

corresponds to a two-dimensional progression of a threat that

moves toward a notional ‘‘target’’ with random lateral motion in

one dimension and monotonic forward progression in the other

dimension. The lateral motion is simulated with a range of step

sizes limited by a prescribed volatility, while the forward motion

may either have variation or step deterministically. We record a

‘‘Hit’’ (corresponding to a disaster strike) if the threat contacts a

target, or a ‘‘Miss’’ if the forward motion causes the threat to pass

the target without hitting. Participants can observe a truncated

value of Phit(t) on the Disaster Tab which is updated every second,

Figure 1. Overview of behavioral network science experiment.
A: Experimental setup at UCSB. B: Disaster Tab, showing current
status and loss table. C: Social Tab, showing status of neighbors; in this
example, neighbors have claimed shelter spaces 2, 5, and 18, meaning
that at least 18 of 35 shelter spaces have already been filled.
doi:10.1371/journal.pone.0087380.g001

Figure 2. Mean and standard deviation (STD) for the Big Five
Inventory scores calculated over all 50 participants (yellow).
For comparison, we report the typical values estimated from 6076
individuals aged 21 (blue) [73]. The only significant deviation from
typical scores was neuroticism, which had a significantly lower mean
value.
doi:10.1371/journal.pone.0087380.g002

Decision Dynamics in Collective Evacuation
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however the overall trajectory is not shown. There were a total of

23 Phit(t) trajectories used in the experiment, with many of the

trajectories repeated with different settings for other experimental

variables.

Shelter Capacity. Scenarios varied in shelter capacity. There

were 5 different shelter capacity scenarios: 50, 40, 30, 20, and 10

beds. When the number of beds in the scenario was less than 50

(the number of participants), individuals had to compete for access

to these beds and could access information on the availability of

shelter space through their social network.

Time Pressure. Scenarios varied in time pressure for an

evacuation decision. When forward motion in the disaster

trajectory model was deterministic, the disaster would either Hit

or Miss at exactly 60 seconds. This type of time pressure is denoted

‘‘CertainTime’’. For runs with variable time steps in the disaster

trajectory model, the disaster could hit at any point between 30

and 60 seconds, with an end time that is not known in advance to

the participants. We refer to this type of time pressure as

‘‘VariableTime’’. The distinction between these types of scenarios

could be observed by participants through the red box around the

scenario progress bar on the Disaster Tab. These different

scenarios were designed to test how temporal uncertainty affected

evacuation strategies.

Potential Loss. Scenarios varied in potential risk to monetary

‘‘points’’. At the start of a scenario, each participant is staked 100

points. The amount lost due to the disaster depends on the loss

matrix, the outcome of the scenario, and by the individual’s

location at the end of the run (AtHome, InShelter, or InTransit).

Three loss matrices were used in the experiment and were based

on underlying incentive structures designed by the researchers,

with the values changing between runs acting to simulate varying

disaster severity. The six entries in the loss matrix (seen on the

Disaster Tab) correspond to the combination of the three end-state

possibilities and the two disaster outcome possibilities. All loss

matrices had a 0 point loss for an (AtHome, Miss) outcome, with

increasing loss for (InTransit, Miss) and (InShelter, Miss). When

the disaster hit, loss is minimized for the combination (InShelter,

Hit), followed by (InTransit, Hit), and the most costly outcome is

(AtHome, Hit). While one could envision many disaster scenarios

where it would be more costly to be InTransit than AtHome, our

modeling choice was motivated by InTransit resulting in

distancing oneself from the disaster epicenter, and more generally,

taking some action rather than none. Values in the loss matrix

were deliberately chosen to prevent trivial solutions, such as always

evacuate or always stay home, from being winning strategies.

Experimental Design. We used a nested experimental

design to generate the permutations of model parameters–

specifically network structure, disaster trajectory, shelter capacity,

time pressure, and loss matrices–used in each run of the

experiment. The resulting hierarchical structure guarantees that

our experimental runs cover all potentially relevant parameter

interactions.

To summarize our setup and participant behavior, we plot the

cumulative behavior for two evacuation scenarios in Figure 3. The

overall behavior in each scenario can be observed by the

interaction of the Phit(t) trajectory (in blue), the cumulative

number of evacuations (grey fill), the number of available shelter

spaces (dashed line), and the end time of the scenario. The

scenario in Figure 3A is CertainTime while the scenario in

Figure 3B is VariableTime. In both scenarios, there are 40 shelter

spaces (beds) available for the 50 participants. In Figure 3A, we

observe evidence of a stampede in which participants evacuated

for limited shelter space toward the end of the scenario; some

participants were left stranded in the state InTransit. In Figure 3B,

we observe that a large number of participants evacuated at

approximately the 30 second point in the scenario (the first time

the run might end), but that the disaster did not happen.

Results

The data collected during the experiment include every mouse

click, for all 50 participants in each of the 47 disaster scenarios.

From the data we can identify what each individual was seeing,

when they were seeing it, and if and when they evacuated. This

section describes empirical observations and statistical analysis

based on these results, which is used to develop a quantitative

decision model in the next section. Key variables include the strike

probability (Phit) trajectory (Fig. 3 blue), the loss matrix, the

number of beds in the shelter (Fig. 3 dashed-black), and time

pressure for the evacuation decision.

Participant Rankings and Scores
The success of each participant in each scenario is depicted in

Figure 4A. We quantify a participant’s success using the total point

score retained at the conclusion of the 47 runs. The three types of

successful decisions [(InShelter, Hit); (InTransit, Hit); (AtHome,

Miss)] are shown in white, while unsuccessful decisions are shown

in black. In the ‘‘hardest’’ scenario (located towards the left-most

side of the panel in Figure 4A), there were zero successes in the

population, while in the ‘‘easiest’’ scenarios (located towards the

right-most side of the panel) a single participant was unsuccessful

in each run.

The distribution of cumulative scores is skewed: the lowest

scoring participant is far below the rest (see Figure 4B). We

analyze the differences in decision making patterns for different

individuals in more detail in a later section entitled Individual

Variation.

Participants Focus on Disaster Tab
Our results indicate that participants viewed the Disaster Tab

more than the Social Tab. Individuals spent the vast majority of

their overall scenario time on the Disaster Tab, and they made

99% of evacuation decisions while on this tab (see Fig. 5A).

Although on average participants did not tend to spend as much

time on the Social Tab, there was significant variation. We did not

observe a significant relationship between time spent on each tab

and performance.

Clicking Behavior Links to SOCIAL Tab
Click frequencies for all participants in all scenarios are shown

in Figure 5B, which lists participants by their overall performance

(highest first). We can see from this figure that the higher click

Table 1. Risk Attitudes.

Domain Mean STD Attitude Tendency

Social 3.49 0.57 Risk Seeking

Recreational 3.09 0.90 Risk Neutral

Gambling 1.59 0.77 Risk Averse

Health & Safety 2.65 0.64 Risk Averse

Ethical 2.02 0.56 Risk Averse

Investment 2.76 0.92 Risk Neutral

Risk attitude scores in 6 domains: mean and standard deviation (STD) calculated
over all 50 participants.
doi:10.1371/journal.pone.0087380.t001
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frequency individuals spent less time on the Disaster Tab and

therefore more time on the Social Tab. The majority of

participants displayed low values of clicking activity, indicating

that they accessed social network information infrequently. We did

not observe a significant relationship between click frequency and

performance.

Network Structure Drives Time Spent on Social Tab
The total number of neighbors a participant could have in any

single scenario ranged between one and ten. Fig. 6 shows that

participants with many neighbors tended to spend more time on

the Social Tab than those with few neighbors. This result is

intuitively consistent with the fact that highly connected individ-

uals could gain more social information than less connected

individuals, and might therefore be predisposed to spend more

time on the Social Tab to obtain this information.

Evacuation Decision Tied to Disaster Likelihood
Disaster likelihood values strongly influenced decision making,

as shown in Fig. 7A. Here we see each observed evacuation

grouped by Phit value at the time of evacuation. The distribution

has a sharp peak at Phit~0:7. The cumulative distribution is

shown in Figure 7B (black) and indicates that across all scenarios,

about 90% of evacuations occurred before Phit exceeded 80%.

High Scoring Individuals Evacuate Frequently
We observed a significant correlation between score and

number of evacuations at Phit~0:7 (Pearson correlation:

r~0:59, p~5:8|10{6). The lowest scoring individuals (see

Fig. 7C, bottom) evacuate earlier and have a greater variation in

the Phit values at which they evacuate. In Fig. 7D we present the

cumulative number of evacuations, a running sum of the the data

in Fig. 7C. Here we observe a relationship between the total

number of evacuations and score: highest scoring participants (top)

are more likely to have a higher number of total evacuations than

lower scoring participants (bottom). We confirmed this observation

by calculating the Pearson correlation between score and total

number of evacuations: r~0:39 with p~0:005. A notable

exception to this trend is the fourth lowest scoring participant

who also has the highest number of evacuations. Interestingly, this

participant tended to evacuate much earlier than the other

participants, resulting in many erroneous evacuations and

therefore a lower cumulative score.

Analysis
Following the experimental observations described above, our

objective is to identify a model for evacuation decision making that

can be used to quantitatively capture the main features of

population level behavior (this section) and the heterogeneity of

individual behavior (next section). The model will allow us to infer

how the different experimental variables affect evacuation decision

making. Our strategy uses data from the behavioral experiment to

determine a decision model that depends on a few key state

variables in the experiment (e.g., the probability of the disaster

event Phit). Based on summary statistics of evacuation behavior,

we identify the functional form of the model and quantitatively

estimate parameters. We then evaluate the accuracy of the model

for predicting evacuations using state variables and detailed time

trajectories from each individual run of the experiment. Our

approach enables a concrete validation of our model, and provides

direction for future experiments and large scale simulations of

population behavior in similar scenarios.

Determining the dynamics of decision making strategies from

the distribution of evacuations (Fig. 7A) is a complex problem that

can be confounded by various factors including the distribution of

Phit values observed by a participant and individual differences in

reaction time. To account for these factors we introduce a rate

model relating the number of participants evacuated to the

number of participants AtHome, and determine how state

variables such as Phit affect the rate.

As Phit changes every second in our scenarios, it is natural for us

to examine the data in one second intervals, within which Phit is

constant. We then define two indicator functions that enable us to

quantify the number of participants evacuated and the number of

participants AtHome. First, we define the indicator variable

h
(r)
l,i ~1 if participant l was AtHome at the start of the interval i

during run r, and h
(r)
l,i ~0 otherwise (i.e., the participant had

already evacuated). Second, we define the indicator variable

j
(r)
l,i ~1 if participant l evacuated during interval i on run r, and

j
(r)
l,i ~0 otherwise. These quantities are related by the equation:

Figure 3. The collective evacuation behavior in two different scenarios. A (CertainTime): Participants wait until the end of the run to
evacuate, waiting for more accurate information on the likelihood that the disaster will strike; some get stranded InTransit when the number of
evacuees exceeds the shelter capacity. B (VariableTime): More than half the participants evacuate at approximately the 30 second mark, which is the
first time that the scenario could end.
doi:10.1371/journal.pone.0087380.g003
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j
(r)
l,i ~h

(r)
l,i {h

(r)
l,iz1: ð1Þ

We approximate an individual’s decision to evacuate as a

Bernoulli process in the following way. First we note that when

h
(r)
l,i ~1, we can model the probability of evacuating during the

interval i as a rate, denoted h
(r)
l,i , where h

(r)
l,i [½0,1�. We treat the

observed value for the indicator variable j
(r)
l,i as one sample of an

underlying stochastic process that can take a value of either 0 or 1.

A single sample of the data provides a poor estimate of the rate

h(r)
l,i . However, by modeling the data as a Bernoulli process, we can

estimate the variance in rate, based on our limited number of

observations. This approach enables us to derive a decision model

without overestimating our confidence in small samples of data.

We hypothesize that h
(r)
l,i varies in a predictable manner

according to a small set of state variables that capture the essential

decision parameters in the experiment. To uncover these trends,

we partition the data in a number of ways in this and the following

section. In this section, we combine data for all the participants to

obtain aggregate rates for the population as a whole, and in the

following section, we consider heterogeneity in the evacuation

rates of individual participants.

We begin by aggregating the data for specific disaster

likelihoods Phit, which in the experiment can take on values

n[f0:0,0:1,0:2, . . . ,0:9,1:0g. For each possible value n, we

determine the total number of intervals in the aggregate

experiment where a participant who is AtHome observed Phit~n:

Hn~
X

l

X
r

X
i:Phit~n

h
(r)
l,i : ð2Þ

We likewise determine the total number of times such

participants then evacuated:

Jn~
X

l

X
r

X
i:Phit~n

j
(r)
l,i : ð3Þ

We use the uppercase Hn to indicate the evacuation rate for

each value Phit~n. If we think of Jn as a random variable

(modeled as a sum of Bernoulli variables) given Hn and Hn, then Jn

has a binomial distribution. Conversely, the likelihood of Hn given

Hn and Jn, has a Beta(a,b) distribution [77], with parameters

a~Jnz1 and b~Hn{Jnz1. We thus measure rates from the data

using the expected value of this Beta distribution:

Hn~E Beta(Jnz1,Hn{Jnz1)~
Jnz1

Hnz2
: ð4Þ

The standard deviation of these estimates is given by:

s(Hn)~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(Jnz1)(Hn{Jnz1)

(Hnz2)2(Hnz3)

s
: ð5Þ

Given an abundance of data, the measured rate converges to

the more intuitive fraction of evacuations Jn=Hn. However, when

data is limited the approach described above yields a more

accurate description of the evacuation behavior.

Fig. 8A shows the estimated Hn rates (black dots) associated with

the 11 possible values n of the disaster likelihood Phit. We observe

that the rates increase approximately monotonically with Phit in a

manner that is reminiscent of a Hill function [78]. We therefore

model Hn using the following functional form:

m(Phit)~L
Pn

hit

Pn
hitzkn

, ð6Þ

which enables us to describe the decision making dynamics of the

population using three parameters. First, L denotes the maximum

evacuation rate; when Phit is large, m saturates to this value. L can

therefore be used to estimate how quickly participants are able to

react to rapidly changing conditions. Second, the threshold

parameter k represents the half maximum value of Phit, i.e.,

m(k)~L=2. Third, the Hill-parameter n dictates the steepness of m
at k. For large values of n (e.g., nw20), m(Phit) is threshold-like,

Figure 4. Success and distribution of cumulative scores. A
shows successful decisions in white [(InShelter, Hit); (InTransit, Hit);
(AtHome,Miss)] and unsuccessful decisions in black. The participants are
ordered by cumulative score, with the highest scoring at the top. The
runs are reordered with the most difficult run on the left. B presents a
histogram of the cumulative scores (grey), with bars showing the exact
scores in blue. The blue bars highlight the divergence of the most
unsuccessful participant.
doi:10.1371/journal.pone.0087380.g004
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being approximately 0 for Phitvk, and approximately L for

Phitwk. For smaller values of n the transition is more gradual.

Threshold policies have been extensively studied in previous work

and are postulated to accurately characterize individual decision

making behaviors in a variety of scenarios [21,37,79,80].

All models used in the manuscript are fit to the data by

evaluating the measured rates at each value n of the disaster

likelihood to obtain mn. We then vary L, k, and n to maximize the

expression:

X
n

(Hn{Jn) ln (1{mn)zJn ln (mn)½ �, ð7Þ

a fit directly to the Hn and Jn values, not the Hn values. This

expression is derived through maximum likelihood estimation [81]

for Beta distributed measurements. The more common x2

minimization for curve fitting is similarly derived from maximum

likelihood estimation for Gaussian distributed measurements [81],

and our formula serves the corresponding role.

Fitting our model to the measured rates in Fig. 8A, we obtain

k~0:72+0:03, L~0:28+0:06, and n~11:9+1:4. The standard

deviations reported here were obtained via bootstrapping [81]

where we constructed synthetic data sets by randomly selecting 47

runs with replacement from the original data, then aggregating the

data and fitting the model to the synthetic data using the method

described above. The best fit model is plotted in Fig. 8A (solid

black line). For most values of Phit, we find that this model

accurately captures the observed behavior. However, we also

observe systematic variations between the model and the

experimental data. One set of variations appears to stem from

shelter capacity while the other appears to stem from temporal

urgency for the evacuation decision.

To examine the role of shelter capacity s in decision making, we

aggregate the data for each of the 11 disaster likelihoods Phit at

each of the 5 values of shelter capacity s. We adapt our use of the

subscript n to now indicate this finer-grained aggregation into

11|5 sets of data. The measured rates confirm our expectation

that evacuation rates were high when shelter space was scarce and

low when shelter space was abundant (see Fig. 8B).

To model the role of shelter capacity in modulating the average

form of the evacuation decision, we consider two families of Hill

functions based on our previous fits: one family drawn from

variations in L and a second family drawn from variations in k. To

guide our choice between these two alternatives, we consider

optimal decision making behavior. If shelter space is abundant and

information is precise, the optimal evacuation decision rule will be

a threshold-like function in which the value of the threshold is just

below Phit~1:0. This behavior ensures that the individual

evacuates when there is near certainty that the disaster will hit

the community. If instead there is very limited shelter space and

the costs of the two possible incorrect decisions are equal, the

expected evacuation decision rule will also be a threshold-like

function, but in this case the value of the threshold will be just

above Phit~0:5. This behavior ensures the best chance of getting

Figure 5. Participants spent the majority of their time on the Disaster Tab. (Frame A), but we can see those who spent more time on the
Social Tab also had higher click frequency (Frame B) likely the result of trying to gain information on remaining shelter space.
doi:10.1371/journal.pone.0087380.g005

Figure 6. Relationship Between Number of Neighbors and Time
Spent on Social Tab. The more network connections a participant
had, the more time they spent on the social tab, with a Pearson
correlation r~0:8690, p~0:0011.
doi:10.1371/journal.pone.0087380.g006
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a bed in the shelter, which is the lowest loss associated with a

wrong decision.

Because the threshold value appears critical for optimal decision

making behavior in scenarios of both abundant and scarce shelter

space, we choose the family of Hill functions obtained from

varying k. We find that the following linear model of k versus s:

m(Phit,s)~L
Pn

hit

Pn
hitz(mszb)n , ð8Þ

fits the data well. In Fig. 8B, we show the set of curves extracted

for the best fit to the model in (8) alongside the raw empirical data.

The best fit values for k~mszb are m~0:0024 and b~0:28.

To test the accuracy of this model and to identify systematic

differences between the best fit model and the data, we compared

the predictions of this model to the data, and found a systematic

trend whereby we overestimate the number of evacuations

occurring prior to 30 seconds in VariableTime runs and

underestimated the number of evacuations occurring after 30

seconds in those runs. The difference between actual and

predicted evacuations was profound and the shift between

overestimating to underestimating was abrupt, shifting at exactly

the 30 second mark in nearly every VariableTime run. These

results show that an individual’s behavior is additionally influenced

by temporal urgency.

To quantify the effect of temporal urgency, we extend our

model in the following way. As in the previous versions of the

model, we aggregate the data for each of the 11 Phit values at each

of the 5 values of shelter capacity s. However, in this case we

additionally aggregate data for the following 3 separate cases with

differing temporal urgency: prior to 30 seconds in VariableTime

runs (t~1), after 30 seconds in those runs (t~2), and all data in

CertainTime runs (t~3). We again adapt our use of the subscript

n to now indicate this even finer-grained aggregation into

11|5|3~165 sets of data.

To determine if temporal urgency had a more significant effect

on L or on the threshold parameters (m, and b), we fit the model

equation in Eq. 8 independently to the 3 t cases. From these fits

and the confidence intervals on the parameter estimates we were

able to determine that the variation of L with temporal urgency

was more significant than the variation of n, m, or b. We therefore

constrained variation with temporal urgency to L, adopting a six

parameter model:

m(Phit,s,t)~Lt
Pn

hit

Pn
hitz(mszb)n , ð9Þ

which has three Lt valuse. The best fit values are presented in

Table 2.

Figure 8C illustrates the measured rates and model curves for a

characteristic subset of the data (runs with 50 beds) for each of the

three time windows (t~1,2,3). For this partitioning of the data

both the first 30 seconds of VariableTime runs (t~1) and the full

60 seconds of CertainTime runs (t~3) are described by similar

low evacuation rates L1~0:07 evacuations/second and L3~0:13
evacuations/second, respectively. Both of these are significantly

Figure 7. The distributions of evacuations as a function of Phit. Frame A shows the numbers of evacuations at each of the eleven values of
Phit. The distribution is peaked at Phit~0:7. Frame B presents the normalized cumulative evacuation curves with individuals shown in blue and the
population as a whole (the running sum of the distribution in A) in black. This provides a summary of the heterogeneity in evacuation decisions.
Frame C shows the evacuations for each individual participant. Here we illustrate results for the highest scoring participant at the top and the lowest
scoring participant at the bottom. We see a trend that the higher scoring participants evacuated more consistently at Phit~0:7, and the lowest
scoring individuals have greater spread in the Phit values at which they evacuated. Frame D gives the cumulative evacuations, a running sum of the
data presented in C. We see that higher scoring individuals evacuate more readily, with the noted exception of the fourth worst scoring participant,
who tended to evacuate much earlier than the others; a strategy that resulted in many unsuccessful evacuations.
doi:10.1371/journal.pone.0087380.g007
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smaller than the corresponding rate L~0:28 evacuations/second

for original aggregated data (Figure 8A) as well as the rate

L2~0:37 evacuations/second observed after 30 seconds in the

VariableTime runs (t~2). The increase in rate during the

uncertain window in the VariableTime runs reflects a high

temporal urgency associated with a disaster that could strike at any

moment. It also suggests participants will respond quickly to

changing Phit values under these conditions.

The relatively low values of L1 and L3 are likely due to the fact

that in these cases the disaster strike is only possible in the last time

increment of these partitions, a low temporal urgency. In each

case, urgency increases towards the end of the interval, and this

occurs to a greater degree for t~3 (CertainTime) than for t~1
(first time window in VariableTime). In CertainTime runs, the

scenerio terminates at exactly 60 seconds, so in this case the last

observed Phit value describes the likelihood of a strike at 60

seconds, whereas in the first 30 seconds of the VariableTime runs

the value of Phit at the end of the interval reflects the probability of

a Hit not necessarily in the next time increment, but rather at

some time within the uncertain 30 second window. We expect this

distinction underlies our observation that L3wL1.

Simulations
We test our decision model by using it to simulate evacuation

behavior for the 47 scenarios in the behavioral experiment. The

appropriateness of our model can then be quantified by the

difference between simulated and observed behavior, with small

differences indicating that our model could be used as a generative

model in future numerical studies.

In the experiment, each scenario is characterized by a shelter

capacity s and time pressure t, as well as a prescribed sequence of

disaster likelihood values Phit. Using our decision rule, we can

compute the expected rate of evacuations at each instantaneous

value of (s,t,Phit). If we initialize every simulation with 50

individuals at home (H
(r)
0 ~50), we can compute the expected

number of people AtHome in each interval SH
(r)
i T using:

SH
(r)
iz1T~ 1{Lt

Pn
hit

Pn
hitz(mszb)n

� �
SH

(r)
i T: ð10Þ

In the paragraphs below, we comment briefly on several key

results from our simulations (see Fig. 9).

Decision model accurately describes experimental

observations. In the majority of scenarios the simulated

behavior has very little deviation from the observed behavior.

This result is striking because our model aggregates the data over

all participants over all scenarios to a reduced set of six

parameters, with no time resolution aside from separation into

the three bins associated with the different time pressure variables.

Figure 8. Model rate laws and their variation with shelter
capacity and time pressure. In A we plot the measured rates for
data partitioned only by Phit (black dots with grey bars for standard
deviation), along with the best fit model (Eq. 6). In B we plot the
measured rates for the data further partitioned by shelter capacity s,
along with the best fit model where the mean threshold k is a linear
function of s (k~mszb). Line color indicates shelter capacity: s~10
(red; top), s~20 (orange), s~30 (green), s~40 (blue), and s~50 (black;
bottom). Not all Phit values were observed in all s value scenarios. As
bed number decreases, the rate curve shifts left, giving an increase in
evacuation rate at the same Phit. The model in B displayed systematic
inaccuracies requiring partitioning the data into three different time
scenarios (t~1 before 30 seconds in 30 second or greater runs, t~2
after 30 seconds in those runs, and t~3 for 60 second runs). In C we
plot only the 50-bed curves for the three scenarios and note that the
rates for t~3 lie between t~1 and 2.
doi:10.1371/journal.pone.0087380.g008

Table 2. Parameter Estimates.

Parameter Symbol Value STD

Hill-coefficient n 9.3 +1:3

Maximum rates:

t~1 L1 0.07 +0:02

t~2 L2 0.37 +0:07

t~3 L3 0.13 +0:04

Threshold parameters: (k~mszb)

Offset b 0.60 +0:05

Proportionality const. m 2|10{3 +1|10{3

Parameter Estimates for the the model in Eq. 9, with standard deviations
obtained via bootstrapping [82].
doi:10.1371/journal.pone.0087380.t002
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In the majority of scenarios the simulated evacuation behavior is

qualitatively, and in many cases quantitatively, matched to the

observed behavior of experiment participants.

As a check that we have not over-fit the model, we have

performed a leave-one-out cross-validation (LOOCV) [83], where for

each of the 47 runs, we exclude the data from that run, and see

how the model trained on the other 46 runs predicts the outcome.

The LOOCV results (Fig. 9, violet curves) were nearly identical to

the predictions of the full model (Fig. 9, dotted curves), indicating

that the model is not over-fit. This result also suggests that the

model will predict the outcome of other scenarios with the same

accuracy of the simulations shown here, assuming that the Phit

trajectories are created using the same rules.

We begin our description of Fig. 9 with the three runs where

participants had the most success, 36, 44, and 45. As can be seen

here and in Fig. 4A (far right), all but a single individual made the

correct evacuation decision in these runs. In run 36, the disaster

had a very predictable trajectory, gradually increasing in Phit

before eventually striking. In runs 44 and 45, the disaster had a

poor likelihood of striking and Phit decayed fairly rapidly. In

contrast, the most difficult run was number 42. The Phit trajectory

in this run peaked at 0.9 before the chance of a disaster strike

rapidly decayed and the run ended with a Miss. As can be seen

here and in Fig. 4A (far left) every participant was left either

InShelter or InTransit.

We observed sub-optimal decision making. In general,

the optimal decision to evacuate in a given scenario depends not

only on the likelihood and volatility of the underlying disaster

process, as well as on the loss matrix, but also on the shelter

capacity and the decisions of other individuals. However, scenarios

1, 2, 3, 4, 37, and 40 are unusually simple in that participants

knew that these scenarios would each last exactly 60 seconds, and

that there was adequate shelter capacity for all participants. These

two simplifying factors ensured that the actions of other

participants had no direct effect (though they could presumably

influence behavior, e.g. peer pressure). In these scenarios, it would

be optimal to wait until immediately before the potential disaster

strike to evacuate. As Fig. 9 indicates, in scenarios 1, 3, and 4,

participants did not follow the optimal strategy; rather a significant

number of participants evacuated well before the end of the

scenario. In fact, many participants evacuated after only approx-

imately 30 seconds. This behavior proved costly for them in

scenarios 3 and 4. Scenarios 2, 37, and 40 are less conclusive

because the strike likelihood Phit in these scenarios never exceeded

0.5 (and the disaster did not hit), making it relatively easy to decide

not to evacuate.

Figure 9. A comparison between data and simulation for the 47 scenarios and the best fit six-parameter model defined in Eq. 9. At
each second the Phit value (blue), the shelter capacity, and the time scenario determine the rate used in the simulation, and the expected number of
evacuations is calculated. The model was fit to estimated rates (Eq. 4), not to the time series data shown here. This extends the ability of the model to
predict untested scenarios. To illustrate the predictive capability we also plot the leave-one-out cross-validation (LOOCV) predictions (violet curves). If
the model were over-fit, the LOOCV curves would have significant deviation from the full model. The reduction from 2820 rates in the data to a six-
parameter model generated a model with surprising accuracy. The following runs had identical Phit trajectories: (1,35), (3,46), (8,25), (9,36), (12,26),
(13,29), (14,44,45), (15,16,38), (19,43), (22,31,33), (34,37), (39,41), (40,47).
doi:10.1371/journal.pone.0087380.g009

Decision Dynamics in Collective Evacuation

PLOS ONE | www.plosone.org 11 February 2014 | Volume 9 | Issue 2 | e87380

14



Participant behavior adapts over time. By construction,

several scenarios contained identical Phit trajectories but differed

in other parameters. Among these ‘‘repeated’’ disasters, we

observe evidence of learning with regard to time pressure. In

runs 1, 3, and 8 there were some unnecessarily early evacuations,

but participants waited longer to evacuate in the corresponding

runs occurring later in the experiment (runs 35, 46 and 25).

This observed adaptation could be explained either by effects of

time pressure or by effects of strike likelihood. To determine the

dominant driver of the adaptation, we compared the evacuation

rates in runs 1–8 with those in runs 37–40 to determine whether

there was evidence for adaptation in decision making strategies.

While these runs differed in strike likelihood, the measured rates

observed in the two groups did not show a significant change at

high Phit values. This suggests that although participants seemed

to adapt their strategies in relation to time pressure, they did not

adjust their behavior in relation to strike likelihood.

Amplified sensitivity to lowest shelter capacities. In each

of scenario runs 27 and 29, shelter beds were scarce (10 beds for 50

people) and more participants evacuated early in the scenario than

our model predicted. It is possible that either (1) our linear model

of the variation of the threshold k with shelter capacity s is

inadequate when shelter space is very scarce, (2) that time pressure

affects player behavior before 30 seconds in VariableTime runs

with low shelter capacity, or (3) the participants were reacting to

each of these scenarios also immediately following runs in which a

large number of individuals evacuated after the shelter was full,

leaving those individuals stuck InTransit (runs 26 and 28). The

early evacuations in runs 27 and 29 could therefore be a reaction

to participants being caught InTransit in the previous run. We are

unable to discriminate between these three possibilities with this

data set; we leave this for future work.

Individual Variation
Our success in identifying a decision making model that

captures the observed collective evacuation behavior in the

experiment led us to test whether a similar method could

differentiate between individual decision making strategies. In

the previous analyses, we combined data for all of the participants,

which enabled us to fit the model to several experimental

variables. Because the evacuation data for individual participants

is relatively sparse, here we focus exclusively on the influence of

the disaster likelihood Phit in decision making and do not

separately consider the effect of shelter capacity or time pressure.

To extend the collective decision making model to individuals

we estimated the evacuation rates for each participant at each Phit

value using Eq. 4. We show this data in Fig. 10, where individuals

are ranked by score from highest scoring (top left) to lowest

(bottom right). Some individuals had as few as 9 measured rates, as

they consistently evacuated before Phit§0:9 (see truncated curves

in Fig. 10).

Comparing the raw data in Fig. 10 for individuals with the

corresponding measured rates for the aggregate population shown

in Fig. 8 illustrates an interesting deviation in the measurements at

high values of Phit. For the aggregate population there is a

significant and somewhat counterintuitive drop in measured rate

from Phit~0:8 to 0.9; the value of the measured rate represented

by the data points at Phit~0:9 lies below the value represented at

Phit~0:8. However, while non-monotonicity is observed on the

scale of individuals the trend is not systematic (see Fig. 10). The

difference between the population and individual fits suggests that

the observed drop in the measured rate at high Phit in aggregate

data is driven by heterogeneity in the population. Participants with

high evacuation rates tend to leave before Phit§0:9. Those who

remain and observe high values of Phit typically display low

evacuation rates, thereby biasing the summary rates measured at

the population scale.

To capture individual decision making strategies, we fit a three-

parameter Hill function (Eq. 6) to each individual’s measured rates

using Eq. 7. As shown in Fig. 10, the best fit models based on the

Hill function capture the measured rate curves of each participant

with striking accuracy.

Higher evacuation rates accompany better

performance. The wide range of participant decision making

behavior is clearly visible in Fig. 10. The variability is especially

apparent when we compare the highest scoring individuals with

the lowest scoring individuals. The highest scoring participants

exhibit rates that increase sharply and monotonically, approxi-

mately beginning at Phit~0:7. The lowest scoring individuals

rarely evacuate; we observe flat evacuation rate curves, with

measured rates that are relatively much lower and less systematic

in their variations compared to high scoring individuals. As is

apparent from the accuracy of the fits, this distinction is well

captured by our model.

A fundamental goal of our experiment was to identify

psychological and behavioral predictors of individual perfor-

mance. First, we ask whether parameter values from the best fit

models on individual participants could be related to behavioral

performance in the experiment. The best fit models yielded rates

L[½0,1�, with values for every individual displayed in Fig. 11 A.

Overall, we observe a significant positive correlation between the

maximum evacuation rate L in the best fit models and cumulative

score (Pearson r~0:41, p~0:0028; see Fig. 11A). We speculate

that the maximum evacuation rate could be related to a

participant’s fundamental reaction time. If true, our results suggest

that participants who can react quickly to rapidly changing

conditions in their environment are more successful in the

experiment.

As expected, we do not see a significant linear correlation

between cumulative score and threshold parameter k. This results

from a mid-range value of k having an optimal effect, with low

thresholds resulting in erroneous evacuations, and high thresholds

resulting in disaster strikes while AtHome. To illustrate this

optimum we plot the cumulative score varying k for a strict

threshold model (i.e. high n, L~1) in Fig. 11 B (black curve). Here

we see that the maximum cumulative score for this type of decision

model is at 0:6vkv0:7. This calculation does not take into

account shelter space or time pressure, which individuals (blue

dots) used in order to get improved scores. The population as a

whole had a higher threshold parameter (k~0:72+0:03) reflect-

ing the use of this additional information in obtaining higher

cumulative scores. Decisions also had a considerable stochastic

component for low n and L=1, giving more variability in scores.

Similar decision models can produce different scores. It

is noteworthy that some low and intermediate scoring participants

display reduced (binned) decision statistics, and consequently

decision model parameters, that are almost identical to those of the

highest scoring participants. For example, participants 1 and 36

have very similar decision models but very different scores (2590

and 2270). This result indicates that in some cases similar decision

making strategies can produce very different performance

outcomes.

Our decision model reduces the data to a single scenario

parameter (Phit) and therefore fails to capture the other features

that are likely to be important in distinguishing between

individuals such as timing of the decision. Our data on the

population scale suggested that time pressure and shelter capacity

are important variables and likely have similar importance on the
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scale of individuals. By comparing the detailed time evolution of

individual runs, we observe instances where higher scoring

participants tended to wait longer before evacuating than lower

scoring participants, a more successful strategy.

While we are unable to quantify with significance these effects in

the current experiment due to limited data, our model provides a

tool for estimating the quantity of data needed to robustly quantify

these parameters in driving individual decision dynamics.

Individual variation in performance may be tied to risk

preference. We hypothesized that risk attitude could be a

significant factor in the evacuation decision making of an

individual and therefore affect the overall performance of

participants. For the participants in this experiment, we found

Figure 10. A comparison between the decision making model and data from the behavioral experiment for each participant,
ranked according to cumulative score. Evacuation rates for each individual at each Phit value were measured using Eq. 4. These values are
plotted in blue accompanied by the estimated standard deviations for each point (grey bars) calculated based on Eq. 5. Hill functions were fit for each
individual using the routine described in Eq. 7 (dotted black). Higher evacuation rates tend to result in higher scores. The fits give a significant
correlation between evacuation rate L and score (Pearson r~0:41, p~0:0028). Moreover, individuals who evidencing higher financial risk attitude
scores (i.e., more risk seeking) have higher thresholds for evacuation k than individuals evidencing lower financial risk attitude scores (Pearson
r~0:30, p~0:03).
doi:10.1371/journal.pone.0087380.g010

Figure 11. Best fit models provided values for the maximum evacuation rate L and threshold parameter k for each individual. A The
distribution of L values across participants spanned almost the full range from 0 to 1. Here we observe a significant correlation between L values and
cumulative score across participants (Pearson r~0:41, p~0:0028). This result provides statistical support for the apparent tendency for high scoring
individuals to also display higher rate values (see Fig. 10). B cumulative score vs threshold parameter (blue dots) had no significant linear correlation.
A strict thresholding strategy (black curve), where a model player would immediately evacuate once Phit exceeded their threshold, helps to explain
the lack of linear correlation. If a threshold is set too high, it results in many AtHome Hits while too low results in InShelter Misses. There is a maximum
cumulative payment for strict thresholding between 0.6 and 0.7. We see that participants typically had thresholds above this range and scored higher
than the expected payoff (blue dots). This is likely a result of participants incorporating time pressure and scarcity into their decisions, having
reductions in score from a low L, and variability in having a non-threshold (low n) strategy.
doi:10.1371/journal.pone.0087380.g011
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that cumulative score was significantly correlated with health &

safety risk attitude (Pearson correlation: r~{0:31, p~0:02) but

not with financial risk attitude (r~{0:04, p~0:73). These results

indicate that individuals that were more averse to health & safety

risks (and therefore potentially more susceptible to the specific

influences associated with an evacuation decision scenario)

performed better than those that were less averse.

We then tested whether risk scores in either the health & safety

domain or the financial domain were related to individual

differences in decision making strategies. We estimated an

individual’s general financial risk attitude by averaging their

scores from both gambling and investment risk domains [71,72],

and we estimated their overall performance using the cumulative

score. We found a significant relationship between k and risk score

in the investment domain (r~0:30, p~0:03), indicating that

individuals with higher decision thresholds tend to have more risk

seeking attitudes. We interpret this result with caution due to the

possibility of Type II errors in the large number of tests performed

(3 risk scores and 3 best fit model parameters = 9 tested

correlations). However, a correlation between these two variables

is plausible; it suggests that participants who tolerate more

financial risk are more likely to wait until the disaster is imminent

before evacuating.

An interesting question is whether the observed correlation

between risk attitude and performance was consistently observed

over the population or whether it was driven by a subset of

individuals. From a psychological perspective, one meaningful

segregation of individuals into groups is a partition based on the

consistency of individual risk preferences across domains. Individ-

uals with consistent risk preferences across domains often display

different personality traits – which could directly lead to

differences in behavior – than those with inconsistent risk

preferences across domains [84]. To estimate the consistency of

risk attitudes we computed the standard deviation s of mean

scores across the 6 risk domains. We separated participants into a

‘‘consistent’’ group, composed of those individuals with sv1
(N = 31), and an ‘‘inconsistent’’ group, composed of those

individuals with sw1 (N = 19). The observed correlation between

performance and health & safety risk attitude appears to be driven

by individuals with inconsistent risk attitudes (r~{0:50, p~0:02)

rather than by individual with consistent risk attitudes (r~{0:18,

p~0:32). This suggests that individuals with domain specific risk

attitudes might tune their behavior more closely to the risk

structure of the experiment.

Discussion

The behavioral network science experiment reported in this

paper quantifies several key factors influencing individual evacu-

ation decision making in a controlled laboratory setting. The

experiment includes tensions between broadcast and peer-to-peer

information, and contrasts the effects of temporal urgency

associated with the imminence of the disaster and the effects of

limited shelter capacity for evacuees. In this section we summarize

our key findings, discuss several methodological considerations,

and describe implications for future work.

Predictive, scalable Model of Collective and Individual
Human Decision Making

Based on empirical measurements of the cumulative rate of

evacuations as a function of the instantaneous disaster likelihood,

we developed a quantitative model for decision making that

captures remarkably well the main features of observed collective

behavior across the 47 disaster scenarios. Moreover, we are able to

capture the sensitivity of individual and population level decision

behaviors to external pressure on resources (limited shelter

capacity) and time (imminence of disaster). Systematic deviations

from the model provide meaningful estimates of variability in the

collective response. Our analysis uncovers a temporal evolution in

individual behavior over the course of the experiment, indicative

of increasing attention and swiftness of response, and consistent

with the expectation that individuals learn from previous incidents.

Our model is not assumed to have a strict threshold form as in

previous numerical studies [37], but uses rates to account for

stochastic variability in behavior. Nonetheless, when fit with data

from our experiment, the model exhibits qualitative threshold-like

behavior that depends on multiple experimental variables.

Data from the experiment reveal significant heterogeneity in

individual decision making patterns captured by significant

variation in model parameter fits to participants. The results

distinguish between high scoring individuals whose decisions to

evacuate are strongly linked to a tight range of disaster likelihoods,

versus others who exhibit significantly more variable decision

making patterns and did not score as well in the experiment. Both

the individuals’ overall success rate in the experiment and the

decision making variables that model their behavior are correlated

with heterogeneities in individual risk attitudes, as measured by

established psychological tests.

These results suggest new directions for numerical modeling.

For example, simulation studies that extrapolate decision making

strategies identified in small groups to larger collectives could more

accurately predict behavior in large scale populations and

coalitions. Additionally, simple mathematical models are needed

to better understand the tensions and tradeoffs identified in this

experiment. Effects of competing broadcast and social information

in collective decision dynamics have been investigated previously

in a numerical simulation, where individuals were represented by

nodes in a network, and obtained information from a broadcast

source as well as neighboring sites in the network [37]. In that

case, decision making was modeled as a threshold on an individual

state variable representing opinion, and the opinion of each

individual was updated based on a stochastic contact rule with the

broadcast source (essentially a warning that the disaster was

coming) and other individuals (who might or might not have

received any information about the disaster). The results presented

in this paper suggest important extensions to that model that (1)

incorporate different types of information from broadcast and

social sources, including an underlying physical process involving

likelihood and urgency and (2) directly implement the individual

decision model developed in this study rather than assuming the

more simplistic update rule employed previously. Our current

research is focused on the design of experiments that will better

characterize the role of social information and network structure.

Methodological Considerations
While no laboratory experiment can fully capture the tensions

associated with a true disaster, known factors influencing human

risk perception and urgency were accounted for wherever possible

in the experimental design. These include both linguistic and

visual elements, which are well studied in the psychology and risk

literature. Examples include the use and representation of disaster

likelihood rather than probability, as well as scores for each

scenario represented in terms of a potential loss rather than a

payoff for a scenario. Previous studies have shown that humans

respond differently to losses than gains [62,63], and are

significantly more accurate in decision making based on data

presented as likelihoods than on data presented as probabilities

[64,65].
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The changing likelihood presented to the participants in this

study represents the uncertain, and highly variable physical

processes that govern the real time approach of natural disasters,

such as wildfires or hurricanes [49,58,60,85–87], and that

ultimately result in either a ‘‘Hit’’ or a ‘‘Miss’’ for individual

homeowners or communities. The existence of an underlying,

quantifiable process for the disaster introduces objective param-

eters that govern volatility, difficulty, and uncertainty that can be

varied in the experiment. Higher volatility, as well as variable time

steps, leads to an outcome that is more difficult to predict. Based

on the rules of the process, it is possible to calculate the likelihood

of the disaster at each time increment (which is the only aspect of

the process presented to the participants in this experiment, and it

is presented at limited resolution), as well as the optimal

evacuation decision (in the absence of shelter capacity limitations)

[67].

The details of this process were deliberately hidden from the

participants, who were only presented with the current estimated

likelihood of the disaster hitting their community, updated at one

second intervals. Our decision to obscure most of the details from

the participants was based on observations of realistic disaster

event scenarios where the public has access to limited information

about the disaster likelihood. The complexities of geophysical

events are commonly reduced to highly simplified trajectories and

‘‘likelihoods’’ when presented to the public whether it be the

chances of rain, or the chances of a disaster [86].

In any behavioral experiment, it is of interest to compare

participants’ actual behavior to optimal behavior from a profit-

maximization perspective. In our experiment, the optimal

evacuation time depends both on the volatility of the disaster

process and on the potentially confounding actions of other

participants. While the choice of an underlying stochastic process

in principle allows for the calculation of a limiting theoretical

optimal decision strategy [67], our results demonstrate that human

behavior departs from optimality at a more primitive level. As

previously discussed, even in the simplest cases where an optimal

strategy is easily obtained (i.e., where there is no competition for

shelter space, and the time of the possible disaster strike is known

in advance), the participants still act sub-optimally. This result

highlights the critical importance of uncovering predictive models

of the suboptimal decision strategies that humans employ in real

and laboratory settings.

A Framework for Quantitative Analysis and Prediction of
Human Behavior in Disasters

In the development and assessment of policy for disaster

mitigation and response, human behavioral factors are often the

least well quantified, understood, and modeled. Plans for

evacuation based on broadcast communication and transportation

alone can be rendered ineffective if humans do not act as expected.

In retrospective analysis of data from recent events [49,50,58–60],

prediction and planning for human social factors have been

identified as the critical missing link in developing effective

strategies to insure safety of the population as a whole. As a result,

critical resources are diverted to individual crisis hot spots that

might have been avoided with a more effective plan, and in many

cases lives are ultimately lost.

These shortcomings motivate our investigations, which repre-

sent the initial steps in development of a comprehensive, predictive

framework that incorporates human factors in policy and planning

for disaster mitigation and response. Success in this area mandates

an iterative approach that combines numerical modeling with

controlled experiments and retrospective analysis of data collected

from actual disasters. Our study uncovered multiple drivers of

individual decision making behavior from competing information

sources. The social network as a whole provided a source of

information on shelter occupancy, inducing a sense of urgency in

the population, while the topology of the network surrounding a

given individual (i.e., the number of that individual’s neighbors)

swayed the time spent engaging the social network. Despite these

influences, individual participants spent the majority of their time

consuming the broadcast information, and the disaster likelihood

was the primary factor influencing decision making strategies in

the population as a whole.

The observed tensions between the two sources of information

are consistent with empirical observations of human behavior in

real disasters. Outside of the laboratory setting, the likelihood of a

disaster event is clearly a dominant factor in any decision to

evacuate, and individuals spend a great deal of time gathering

information from television and other media broadcast sources,

even if updates are slow. However, social media and peer-to-peer

communication networks are playing an increasingly important

role in transmission of early warnings by on-site observers who

may communicate observations informally via Twitter and

Facebook [88] (e.g., news of a 2011 earthquake in the Washington

D.C. area propagated faster on social networks than the seismic

waves themselves [89,90]). Furthermore, in some cases, such as

developing countries, widespread access to broadcast networks

may not be readily available, necessitating that policy makers rely

on social means to communicate information updates. Future

experiments will change how participants access information in

order to investigate these situations, and elucidate the correspond-

ing effects on behavior.

Additionally, in many (if not most) cases social factors underlie

the decisions of individuals who evacuate early or fail to evacuate

even when the disaster is upon them [48,50,60]. For example,

families with small children tend to leave early, while caring for the

elderly or reluctance to leave pets behind are often cited as reasons

for not evacuating. These factors could be incorporated in future

experiments using an explicit payoff structure that rewards

collective decisions of neighbors in the social network. Another

observed source of variation in evacuations during disasters can be

traced to heterogeneities in age, health, isolation, and socioeco-

nomic status within the population. These factors influence speed

and access to transportation, as well as potential losses associated

with assets at risk. Such sources of variation may be incorporated

in our framework by introducing explicit heterogeneity in the loss

matrix and in the scenarios accessible to a participant during the

InTransit phase.

Finally, our work highlights the role that individuality plays in

the decisions of participants and their effect on collective behavior.

The distribution of risk tendencies in this experiment might be

related to the demographics of the cohort studied here (UCSB

undergraduates), and future studies utilizing different participant

groups could be used to probe such a relationship. For example, it

is reasonable to expect that older and wealthier individuals (e.g.,

homeowners) might be more risk averse in this domain than

undergraduate students. Furthermore, participants who are

explicitly trained in risk management and/or operate within

different organizational structures (e.g., military officers) might

employ different decision making strategies, and a group of such

participants might by extension display a quantitatively different

collective behavior profile.

Our combined use of a novel experimental paradigm and

powerful theoretical modeling techniques to identify and quanti-

tatively characterize individual differences in human decision

making strategies in social groups could form a critical bridge to

key work in the fields of social neuroscience [91] and
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neuroeconomics [92,93], which seek to describe neurophysiolog-

ical correlates of social and economic considerations driving

human decision making. Indeed, human neuroimaging studies

highlight the role of specific brain regions in economic choices and

variations in decision strategies [94,95]. Individual differences in

these circuits could underlie behavioral decision phenotypes in

healthy and diseased clinical populations [96,97]. Uncovering

neurophysiological predictors of decision dynamics in social

groups would have far-reaching implications for disaster prepara-

tion and response, marketing, and homeland security.

Development of Strategies to Mitigate or Manage
Collective Evacuation Behavior

The ultimate goal of our investigations is development and

testing of robust strategies for training and control of evacuations

that account for human behavior and network topologies. These

objectives may be incorporated within our framework across both

broadcast and social channels. Broadcast information may include

specific timing for public release of information, including

likelihood updates and incentives as well as warnings and

mandates for evacuation. In the peer-to-peer communication

network, strategies for robust control and potential fragilities of

collective behavior may be investigated through insertion of

trained ‘‘leaders,’’ who make optimal decisions at different

locations in the network, as well as through tracing the

propagation of deliberately injected misinformation and poor

decisions. Results obtained for these ‘‘designed’’ strategies may be

compared to emergent leadership that might arise when the

ranking and decisions of other individuals in the network is

communicated through the social network, an inherent source of

feedback which has been traced to the initiation of cascades in

social decision making in a wide range of applications [21].
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