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BACKGROUND: The ability to monitor the patient of hemorrhage noninvasively remains a challenge. We examined the ability of resonance Raman
spectroscopy to monitor tissue hemoglobin oxygenation (RRS-StO2) during hemorrhage and compared its performancewith conventional
invasivemixed venous (SmvO2) and central venous (ScvO2) hemoglobin oxygen saturation aswell aswith near-infrared spectroscopy tissue
hemoglobin oxygenation (NIRS-StO2).

METHODS: Five male swine were anesthetized and instrumented followed by hemorrhage at a rate of 30 mL/min for 60 minutes. RRS-StO2

was continuously measured from the buccal mucosa, and NIRS-StO2 was continuously measured from the forelimb. Paired interval
measures of SmvO2, ScvO2, and lactate were made. Pearson correlation was used to quantify the degree to which any two variables are
related. Receiver operating characteristic (ROC) area under the curve values were used for pooled data for RRS-StO2, NIRS-StO2,
SmvO2, and ScvO2 to compare performance in the ability of tissue oxygenation methods to predict the presence of an elevated
arterial blood lactate level.

RESULTS: Sequential RRS-StO2 changes tracked changes in SmvO2 (r 0.917; 95% confidence interval [CI], 0.867 0.949) and ScvO2 (r 0.901;
95% CI, 0.828 0.944) during hemorrhage, while NIRS-StO2 failed to do so for SmvO2 (r 0.283; 95% CI, 0.04919 0.4984)
and ScvO2 (r 0.142; 95% CI, 0.151 to 0.412). ROC curve performance of oxygenation measured to indicate lactate less than
or greater than 3 mM yielded the following ROC area under the curve values: SmvO2 (1.0), ScvO2 (0.994), RRS-StO2 (0.972), and
NIRS-StO2 (0.611).

CONCLUSION: RRS-StO2 seems to have significantly better ability to track central oxygenation measures during hemorrhage as well as to predict
shock based on elevated lactate levels when comparedwithNIRS-StO2. (J Trauma Acute Care Surg. 2014;76: 402 408. Copyright* 2014
by Lippincott Williams & Wilkins)
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Detecting the presence of shock, its severity, and the ade-
quacy of resuscitations continue to be high priorities in

the development of technologies for the care of trauma patients.
Because of the rapid echelons of care that a trauma patient
passes through including the prehospital setting, noninvasive
monitoring technologies are appealing. It has been argued that
technologies designed to monitor for evidence of hypoxia at
the tissue level would provide the most value to help prevent
underresuscitation and overresuscitation.1 To this end, tech-
nologies such as gastric tonometry, sublingual tonometry, trans-
cutaneous gas measurement, near-infrared spectroscopy, and
others have been studied.2Y7 Each of these relies on principles
of microcirculatory oxygen transport and the fact that the
postextraction compartment of tissue is dominated by venous

blood. While each has advantages, none has been uniformly
accepted, and each has the potential to be confounded.

We are exploring the use of resonance Raman spectroscopy
(RRS) as a method to monitor tissue oxygenation. RRS has been
valuable in the structural and ligand binding assessment of heme
proteins.8 The vibrational bands of heme arewell-known but have
only recently been explored to provide medically relevant infor-
mation.9,10 The spectroscopic basis for the application of RRS of
hemoglobin lies in the resonance vibrational enhancement of
hemoglobin in the deep violet region, allowing simultaneous
identification and monitoring of the proportion of oxy and deoxy
species of hemoglobin in a concentration-dependent manner with
a single wavelength of light.11 This produces a chemical finger-
print of the species with little or no interference from other
compounds in the tissue being interrogated (Fig. 1).11Y13

In this pilot study, we hypothesized that RRS would
detect changes in buccal mucosal hemoglobin oxygen satura-
tion (RRS-StO2) in response to hemorrhage and that it would
track changes in mixed and central venous hemoglobin oxygen
saturation. Furthermore, we hypothesized that it would per-
form as well or better in this regard as compared with the use
of near-infrared spectroscopyYderived tissue hemoglobin oxygen
saturation (NIRS-StO2).

MATERIALS AND METHODS

The Virginia Commonwealth University Institutional
Animal Care and Use Committee approved this study, which
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to allow the differential absorption spectra of oxyhemoglobin
and deoxyhemoglobin to be obtained 2 cm below the surface
while excluding signal from more shallow tissue. The device con-
tinuously samples spectra and updates values every 5 seconds.
The NIRS sensor was placed over the left upper forelimb of
the animal.

Once instrumentation was completed, animals were mon-
itored for a 20-minute baseline period. At the end of baseline,
hemodynamics, SmvO2, ScvO2, RRS-StO2, andNIRS-StO2were
collected as were arterial lactate and hemoglobin oxygen satura-
tion (SaO2) (ABL800, Radiometer America, Westlake, OH).

Five minutes after baseline measurement, controlled hem-
orrhage was started through the femoral artery at a rate of
30 mL/min (Masterflex Pump: Cole Parmer Instruments, Court
Vernon Hills, IL). Baseline parameters described previously
were recorded every 5 minutes for 60 minutes. At 60 minutes,
animals were euthanized with potassium chloride (2 mEq/kg).

Statistical Analysis
Descriptive statistics are expressed as means and SDs.

Pearson correlation was used to quantify the degree to which
any two variables are related. We used unpaired t test to quantify
differences between the variables. Where necessary, 95% con-
fidence intervals (CIs) are included. Summary statistics using
receiver operating characteristic (ROC) area under the curve
(AUC) values were used for pooled data for RRS-StO2, NIRS-
StO2, SmvO2, and ScvO2 to compare performance in the
ability of tissue oxygenation methods to predict the presence
of elevated lactate levels. Linear regression was used to
quantify the relationships between variables to account for the
repeated-measures structure of the data. Data analysis was
performed on GraphPad Prizm6 (GraphPad Software, Inc., La
Jolla, CA).

RESULTS

Five animals were studied. Tables 1 and 2 list the mean
and SD of baseline and end-of-hemorrhage values for each
oxygenation indicator as well as major hemodynamic variables.
Sequential regional RRS-StO2 changes tracked changes in
SmvO2 (r = 0.917; 95%CI, 0.867Y0.949) and ScvO2 (r = 0.901;
95% CI, 0.828Y0.944) during hemorrhage, while NIRS-StO2

failed to do so for SmvO2 (r = 0.283; 95% CI, 0.04919Y0.4984)

and ScvO2 (r = 0.142; 95% CI,j0.151 to 0.412). Scatter plots
(Fig. 2) demonstrate the relationship between the variables.
There were significant differences between the correlation
coefficients when comparing RRS-StO2 and NIRS-StO2 with
SmvO2 (0.917 and 0.283, p G 0.0001) and when comparing
with ScvO2 (0.901 and 0.142, p G 0.0001). Unpaired t tests
revealed no significant difference between RRS-StO2 and both
SmvO2 and ScvO2 (p 9 0.05), whereas it indicated a significant
difference between NIRS-StO2 and both SmvO2 and ScvO2

( p G 0.0001).
ROC AUC (Fig. 3) was used to compare the ability of

the various oxygenation monitoring methods to detect shock
based on lactate levels. Lactate levels equal to or greater than
3 mM and equal to or greater than 4 mM were used to dis-
tinguish between shocked and nonshocked states. ROC yielded
the following AUC values for lactates equal to or greater than
3 mM; SmvO2 (1), ScvO2 (0.994), RRS-StO2 (0.972), and
NIRS-StO2 (0.611). When used to distinguish between lactate
levels equal to or greater than 4 mM, AUC values were as fol-
lows: SmvO2 (0.994), ScvO2 (0.998), RRS-StO2 (0.952), and
NIRS-StO2 (0.589) (Fig. 4). Nearly identical performance was
noted when lactate thresholds of 5 mM and 6 mM were used.

Linear regression comparing RRS-StO2 and SmvO2

yielded a slope of 1.01 (95% CI, 0.892Y1.11) with a Y intercept
at 6.99 (95% CI, 3.366Y10.62), meaning that when SmvO2

equals zero, RRS-StO2 will equal 6.99. A linear regression
comparing NIRS-StO2 and SmvO2 yielded a slope of 0.126
(95% CI, 0.021Y0.229) with a Y intercept at 44.96 (95% CI,
41.49Y48.44), meaning that when SmvO2 equals zero, NIRS-
StO2 will equal 44.96. There was a significant difference be-
tween the slopes (F = 134.48, p G 0.0001). Nearly identical
results were obtained when the same analysis was performed
comparing RRS-StO2 and NIRS-StO2 with ScvO2.

DISCUSSION

Rapidly detecting the presence of impending shock, its
degree when present, and its resolution during treatment con-
tinue to be high priority goals in the field of critical care. While
invasive approaches using oxygen transport parameters such
as SmvO2 and ScvO2 are valuable, their invasive nature
makes their use in earlier echelons of care problematic.15Y18

Noninvasive technologies, which can be easily applied and

TABLE 1. Average Baseline Characteristics of Animals

Baseline
Weight,

kg
Blood

Volume mL
Heart Rate,
beats/min

MAP,
mmHg

Hemoglobin,
g/dL

Lactate,
mmol/L

SmvO2,
%

ScvO2,
%

RRS-StO2,
%

NIRS-StO2,
%

Mean 38.4 2,496 109 98 8.8 0.7 60.8 64.4 62.0 53.4

SD 1.5 98.6 6.6 20.7 1.2 0.2 4.7 4.0 4.7 7.0

TABLE 2. Average End-of-Hemorrhage Characteristics of Animals and Average Total Blood Loss

End of
Hemorrhage

Hemorrhage
Volume, %

Heart Rate,
beats/min

MAP
mmHg

Hemoglobin,
g/dL

Lactate,
mmol/L

SmvO2,
%

ScvO2,
%

RRS-StO2,
%

NIRS-StO2,
%

Mean 66.3 172 22 7.5 11.2 5.6 7.6 6 48

SD 7.9 58 9.97 2.4 0.98 1.64 2 1.7 12.28
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is fundamentally different from the differential absorption spec-
troscopy (the basis for NIRS).14 While Raman scattering is a low-
intensity phenomenon requiring sensitive detectors, the signal is
greatlyenhancedwhen the excitationenergy is in resonancewith the
electronic transition of the species being interrogated. This allows
for the selective detection of very low concentrations of amolecular
species in a complexmixture. In this study, the 405-nmwavelength
used is near the peak for the heme Soret band, thus allowing for the
production of strong resonance spectra of oxyhemoglobin and
deoxyhemoglobin.11 This resonance results in an enhanced signal-
to-noise ratio.

Reasons for the improved performance of RRS-StO2

over NIRS-StO2 may in part be based on the contamination of
the NIRS-StO2 signal with myoglobin.14 The NIRS spectra of
oxymyoglobin and deoxymyoglobin are indistinguishable from
that of oxyhemoglobin and deoxyhemoglobin. Studies have
dealt with this issue by adding the species together (HbO2 +
MbO2) and (Hb + Mb). Thus StO2 as determined by NIRS
(which include signal from muscle) would be determined as
(HbO2 + MbO2) / (HbO2 + MbO2 + Hb + Mb). Awareness of
this is important for several reasons including the fact that
the P50 of myoglobin is 5 mmHg as opposed to 27 mmHg for
hemoglobin and is thus fully saturated under most condi-
tions.21,22 In addition, in human skeletal muscle, myoglobin
and hemoglobin will exist in approximately equal concentra-
tions.14,23,24 In the setting of hemorrhage, the fractional signal
from myoglobin may even be increased during resuscitation, as
hematocrit decreases during crystalloid resuscitation. Evidence
using proton magnetic resonance (which is able to distinguish
deoxy Mb from deoxy Hb) indicates that myoglobin might
account for the majority of the NIRS signal.25,26 Other con-
founders such as pigment and fat may explain why baseline
values in volunteers can widely vary.27 It may also explain why
NIRS has not shown more sensitivity and specificity over
blood pressure and lactate as an earlier warning system in either
the setting of trauma or sepsis and why some are attempting
to use dynamic changes in NIRS produced in response to vaso-
occlusion to gain additional information.6,27Y29 Recent studies
have examined the performance of commercially available
NIRS devices on humans at baseline and in response to ische-
mic occlusion including the device used in this study. These
studies demonstrate significant differences in performance be-
tween devices in baseline readings and in response to ischemia
as well as significant differences in values at different sites in-
cluding differences in repeatability at the same site with the
same device.30Y32

At the wavelength used for RRS-StO2 measurement,
the expected depth of penetration is less than 1 mm and is not
contaminated by muscle, pigment, or fat in the buccal tissues.
Previous studies using RRS on the sublingual surface of the
tongue noted no contribution of tongue myoglobin from
the tongue mucosa site after performing saline perfusion of
the tongue.20 The oral mucosa as shown in this study and
others seems to be very sensitive to changes in perfusion.33Y35

However, because the buccal mucosa receives its blood supply
from branches of the internal carotid artery and its micro-
vascular orientation is more looped, it could be argued that
it would not be an appropriate site of monitoring.36 Further-
more, since RRS-StO2 is only a reflection of the balance between

mucosal blood flow and metabolism, it could be argued that
the oral mucosa would not be metabolically active enough to
reflect the global aggregates of tissue oxygenation such as
ScvO2 and SmvO2. We have previously demonstrated that
the StO2 in the sublingual mucosa of rats completely desatu-
rates in less than 60 seconds after cardiac arrest.20 It was thus
essential in this study to follow ScvO2 and SmvO2 to their lowest
obtainable values and compare buccal mucosa RRS-StO2

values with them. The very low values of RRS-StO2 and their
correlation to low ScvO2 and SmvO2 values supports this as
an attractive tissue site for interrogation.

While it could be argued that the values of ScvO2, SmvO2,
and RRS-StO2 less than 40% are not relevant, clinical studies
in heart failure and sepsis have demonstrated humanswith values
well less than 40%accompanied by elevated lactate levels.15,16,37

Although values this low have not been reported in human
traumatic hemorrhage, this may be caused by the fact that pa-
tients are rarely instrumented and monitored quickly before
resuscitation. The ability to track such low values might also
provide value in monitoring cardiac arrest resuscitation where
values would be expected to be lower.38

In addition to the small number of animals, this study has
several limitations. We tested only one manufacture’s brand of
NIRS monitoring. While there are several other manufacturers
of this technology for monitoring peripheral tissue perfusion
of the skeletal muscle, all are based on similar principals, with
their differences being mainly where the suggested site of
monitoring is and their algorithmic approach to signal analysis.14

Therefore, the use of other devices may have yielded different
NIRS performance. However, as indicated earlier, performance
between devices have been noted to be significantly different
and potentially not comparable with each other even in the
same individual.30Y32 We monitored only at one site (proximal
forelimb). This area in our animals lacked redundancy of skin
and fat and was believed to be suitable for reproducibility.
While others have used the hind limb, there should not be
a significant difference from an anatomic standpoint since
the animals are quadrupeds. However, we did desire not to
confound NIRS-StO2 with potential changes in blood flow to
the hind limb caused by the placement of the 9 Fr (61 cm)
femoral artery catheter used to hemorrhage since the tip of
this catheter lies at the bifurcation of the abdominal aorta.
Still, others have used the hind limb (with different NIRS
technology), so we cannot rule out a difference in performance
had we chosen another site or NIRS device.39 We did not re-
suscitate animals, so we cannot report on the performance of
either RRS-StO2 or NIRS-StO2 to track changes during resus-
citation. We felt, however, that it was essential to demonstrate
the ability of RRS to track StO2 to its lowest levels during
exsanguinating levels of hemorrhage as microvascular levels
of hemoglobin drop and to prove that the oral mucosa would
reflect central oxygenation. We note that there is a lack of such
studies using NIRS.

Lastly, our baseline ScvO2 and SmvO2 were lower than
might be expected. This may be caused by the fact that young
swine are highly susceptible to iron-deficient anemia secondary
to low tissue stores at birth and extremely rapid growth.40

The swine we used did not receive iron supplementation in
their diet.
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CONCLUSION

In this model of hemorrhagic shock, RRS-StO2 tracked
changes in SmvO2 and ScvO2 well and seemed to have similar
discriminatory power of SmvO2 and ScvO2 to detect shock
based on lactate levels. Use of NIRS-StO2, however, did not
track SmvO2 and ScvO2 during hemorrhage and demonstrated
less ability to discriminate shock states as compared with RRS-
StO2. While RRS-StO2 may be a promising technique for
the noninvasive evaluation of hemorrhage, additional testing
will be required including its ability to track changes in tissue
oxygenation during resuscitation.
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