AFRL-OSR-VA-TR-2015-0022

STRUCTURE AND FUNCTION OF TASK-ORIENTED SOCIAL NETWORKS

Viadimir Filkov

UNIVERSITY OF CALIFORNIA DAVIS

01/05/2015
Final Report

DISTRIBUTION A: Distribution approved for public release.

Air Force Research Laboratory
AF Office Of Scientific Research (AFOSR)/ RTC
Arlington, Virginia 22203
Air Force Materiel Command

REPORT DOCUMENTATION PAGE OMa N Dron o188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing
this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-
4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently
valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To)
12-31-2014 Final Report 8/15/11-8/14/14

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER
STRUCTURE AND FUNCTION OF TASK-ORIENTED SOCIAL NETWORKS FA9550-11-1-0246

5b. GRANT NUMBER
FA9550-11-1-0246

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER
Vladimir Filkov

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
. . N . NUMBER
University of California, Davis

One Shields Ave, Davis CA 95616

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)
Air Force Office of Scientific Research

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for Public Release

13. SUPPLEMENTARY NOTES

14. ABSTRACT

This is a final report on our AFOSR grant titted STRUCTURE AND FUNCTION OF TASK-ORIENTED SOCIAL NETWORKS.
The goal of the project supported by this grant was to integrate social networks with other empirical data in task oriented
projects, in particular Open Source Software projects. Our accomplishments during the three years of the grant are as follows.
- We developed a data framework to gather, store and organize large amounts of publicly available data from Open Source
Software projects repositories. All together we have a server with 4TB of structured data from thousands of OSS projects.

- We published 14 publications in top venues in software engineering and computer supported cooperative work. 3 more
publications are under review.

- Our publications have won 2 best paper/distinguished paper awards and garnered 3 nominations for best papers.

- We trained 2 postdoctoral scholars, and 1 PhD student.

15. SUBJECT TERMS

Task-Oriented Social Networks, Open Source Software, Task Networks, Software Engineering

16. SECURITY CLASSIFICATION OF: 17. LIMITATION 18. NUMBER 19a. NAME OF RESPONSIBLE PERSON
OF ABSTRACT OF PAGES Vladimir Filkov
a. REPORT b. ABSTRACT c. THIS PAGE 19b. TELEPHONE NUMBER (include area
code)
916-281-6104

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

Final Report
for AFOSR Grant STRUCTURE AND FUNCTION
OF TASK-ORIENTED SOCIAL NETWORKS

by Vladimir Filkov
Summary

This is the final report on our AFOSR grant titted STRUCTURE AND FUNCTION OF TASK-
ORIENTED SOCIAL NETWORKS. The goal of the project supported by this grant was to
integrate social networks with other empirical data in task oriented projects, in particular Open
Source Software projects. During the three years of the grant (1) we developed a data
framework to gather, store and organize large amounts of publicly available data from Open
Source Software (OSS) projects repositories; we now have a server with 4TB of structured
data from thousands of OSS projects; (2) we developed novel approaches along four main
research thrusts: a) metrics for OSS data, b) the social nature of OSS development, c)
interaction and dynamics in social task networks, and d) learning in socio-technical
environments; (3) we published 14 peer-reviewed publications in top venues in software
engineering and computer supported cooperative work. Our publications have been impactful
and have attracted attention, including getting 80 citations, winning 2 best paper/distinguished
paper awards and garnering 3 nominations for best papers. (4) We also trained 2 postdoctoral
scholars, and 2 PhD students.

1. Introduction
a) What We Had Proposed to Do (Summary)

The open, public enactment of open-source software (OSS) development yields valuable data
about the performance of self-organizing, distributed, decentralized teams. In our AFOSR
grant proposal titted STRUCTURE AND FUNCTION OF TASK-ORIENTED SOCIAL
NETWORKS we sought to study the productivity and effectiveness of OSS projects, as
exemplar of general task-oriented social networks.

We proposed to develop methods and models R e T
that would enable modeling the networks with oo 32? 3
respect to software engineering outcomes, i.e. %@;Q} Qg o

predict the effects to the overall efficiency and

productivity of developers and code as affected

by structural modifications in the networks, social

interaction among individuals of different status, f
interactions between the task structure and the W

social network, and the evolution of communities and subcommunities in them and their
reaction to stresses. Specifically, our goals were to:

e Devise network analysis measures robust to noise or inadequate observation.

e Mine publicly available open source software project data repositories, including
source code repositories, bug reports, and developers email groups to build artifact,
task, and social networks.

e Model the structure of a variety of open source software project networks to discover
their relationships to status, productivity, recruitment, migration, stress, and others, at
the level of individuals, at the level of artifact, task, and social interactions, and finally
at the level of overlapping networks.

Our approach had three main strengths: we were to make use of integrated time-series data
about open-source projects, which combines individual behavior, emergent network behavior,
and task effectiveness. Second, the interdisciplinarity of our team was to allow us to model
these complex phenomena using a variety of different models, and validate these models
using a variety of techniques. Finally, our strong computational and engineering background
was to enable us to use these models to build tools to allow team managers and policy
makers to enhance or degrade the performance of task-oriented networks. | summarize our
proposed approach in the following figure (copied from the original proposal).

k! .
=] METHODS (EXPFERTISE)

g x M‘;E:i';';";' COoOMPLEX SOFTWARE SoCIAL
z 0/ R NETWORKS ENGINEERING SCIENCE
= E3] L HH iD'Souzal IDEVANBL} (FELMLEE)
- = [F1LHOW)
row
oz
w i
W
-3 SociAL
\ e ROLES oF MNETWORK STABLE NETWORK
7 INDIVIDUALS PROPERTIES MEASURES COMGRUEMNCE
i1
‘_;{-.:- | [A
CESERVE 1 DDELIMNG PPROACHES

... — I

8 REFIMNEMENT

users ||| §

| AT

¢

b WALl MODELIMG

| DATION 4

W E RS O EmMaiL ' F b
CooE AmcHive | 1--'-----..__________:_ PREDICTIVE
[Eroe:Tony 5 . MODELS OF:

STATUS, PRODUCTIVITY,
CaLL @RAPH Bus PRICRITY EMAIL NET | RECRUITMENT, BTABILITY,
(ARTIFACT) [TAEKH SO AL ' INFORMATION FLOW,
"—-l__I} i TASK DISTRIBUTIGM
/8 i i . STRESS
' oo A - ,

OS5 DATA

b) What Is in the Rest of This Report

The complete details of our research efforts on this grant are given in the 14 technical papers
which have been published over the past 3 years in top venues in computer science, after
each underwent extensive peer-review. In the next two sections | provide organized
summaries of the content in those papers. The last section of this report contains references
to those papers, with URL pointers to their full text.

2. Data Collection and Infrastructure

The Open Source Projects we studied use .- -------ommmemmmmseios oo e :

the versioning repository framework git and CORE CONTRI -
have trace data publicly available. Their REvTortes R l

repositories typically have the code, the ! — —

associated bug lists, and the =

communication / email archives, from which | | versionen Buc EMAIL
' CODE REFPORT ARCHIVE

the structured data we used can be
extracted, as shown on the right.

REPOSITORY DATABASE

. o . i CALL GRAPH BuUG PRIORITY EMAIL NET
We mined [1,5,6] the Email list archives to i (ARTIFAGT) (TASK) (SociAL)

extract the senders of messages, the 8
respondents, the time of the message, the oo
content, and threads of discussion. Source ! o-0-© !

code version control repositories were

mined [9,11] to provide identity of code
changes and content of the change, for
every change. From the source code, we also extracted the dependency structure of the
system, and track its evolution. We collected bug reports [9] from bug report archives which
provide the entire history of each bug report, including priority, severity, and (sometimes)
how/where the bug was fixed.

OSS DATA

There exist many techniques (some of which have been invented by us) for extracting
open-source project data from code repositories. Model version control repositories such as
Git not only track the author, details, time, and location of each change; they can also actually
very accurately trace the precise provenance (time, and authorship) of each line of code in the
repository. This information is readily extracted by processing reports generated by version
control systems. Likewise, bug database reports have a regular structure and are easily
processed; it also possible, via string matching to identify bug repairs in version control
repositories. By tracing the responses to emails, we can identify precise social connections,
since the responder has a clearly expressed interest in an email message. Emails do have
some irregular structure, but the variations are fairly well understood, and amenable to
automatic parsing. A more serious problem is the use of multiple email aliases; we have

developed a fairly scalable, semi-automated approach to detecting aliases [3]. In adversarial
settings, relational approach to alias resolution have yielded encouraging results.

We have already a considerable infrastructure of data gathering tools, and we have built up a
well-indexed time-series repository of email, bug-report, and version control data from a large
number of open-source projects in a variety of domains, including: Apache, PostgresSQL,
MySQL, Python, Eclipse, Gimp, Nautilus, Netbeans, and Openoffice. These projects range in
size from a few hundred thousand lines of code, to several million lines of code, and involve
anywhere from a dozen to several hundred developers. The total data collected is close to 4
Terabytes.

We mined two different collections of OSS projects: the Apache Software Foundation, ASF
(http://www.apache.org) from which we collected 136 projects total having all three parts of
the data. The second was GitHub (http://www.qgithub.com), whence we extracted a larger
number of projects (thousands) but with sparser data for each. From Stack Exchange
(http://www.stackexchange.com) and Stack Overflow (http://www.stackoverflow.com) we
mined questions that programmers ask about our collected projects, as well as identifying
information about the askers and answerers which enabled us to link the GitHub data and
Stack Overflow data [3]. The precise details are study specific and are given in the references
below.

3. Our Research Contributions

Our research contributions can roughly be categorized in 4 research thrusts: metrics for OSS
data, the social nature of OSS development, interaction and dynamics in social task networks,
and learning in socio-technical environments. Next we summarize the studies in each.

a. Metrics for OSS Data

The blessing of having collected large amounts of data can quickly turn into a curse if the
heterogeneous variance and spurious relationships are not well understood. We spent some
time early in the project to investigate good statistical ways of doing initial data exploration.

Better Measures of Correlation (Ref # 15) Empirical software engineering researchers are
concerned with understanding the relationships between outcomes of interest, e.g. defects,
and process and product measures. The use of correlations to uncover strong relationships is
a natural precursor to multivariate modeling. Unfortunately, correlation coefficients can be
difficult and/or misleading to interpret. For example, a strong correlation occurs between
variables that stand in a polynomial relationship; this may lead one mistakenly, and eventually
misleadingly, to model a polynomially related variable in a linear regression. Likewise, a
non-monotonic functional, or even non-functional relationship might be entirely missed by a
correlation coefficient. Outliers can influence standard correlation measures, tied values can
unduly influence even robust non-parametric rank correlation,measures, and smaller sample

http://www.google.com/url?q=http%3A%2F%2Fwww.apache.org&sa=D&sntz=1&usg=AFQjCNEmfvhcA4j-ktqqODNN6HJI6X-p3w
http://www.google.com/url?q=http%3A%2F%2Fwww.github.com&sa=D&sntz=1&usg=AFQjCNGcCmJEH0PRKxcwPSbxV586iW6CLA
http://www.google.com/url?q=http%3A%2F%2Fwww.stackexchange.com&sa=D&sntz=1&usg=AFQjCNF9wpKgdk5JCEYPt326VrQyUKT1Nw
http://www.google.com/url?q=http%3A%2F%2Fwww.stackoverflow.com&sa=D&sntz=1&usg=AFQjCNHxis3Moxumf61TOKR4A6-hB0lXqQ

sizes can cause instability in correlation measures. A recently developed bivariate measure of
association, Maximal Information Coefficient (MIC), promises to simultaneously discover if two
variables have: a) any association, b) a functional relationship, and c) a non-linear
relationship. The MIC is a very useful complement to standard and rank correlation measures.
It separately characterizes the existence of a relationship and its precise nature; thus, it
enables more informed choices in modeling non-functional and nonlinear relationships, and a
more nuanced indicator of potential problems with the values reported by standard and rank
correlation measures. In our first study [15], we illustrated the use of MIC using a variety of
software engineering metrics. We studied and explained the distributional properties of MIC
and related measures in software engineering data, and illustrated the value of these
measures for the empirical software engineering researcher.

Developer focus (Ref # 14) Work practices vary among software developers. Some are highly
focused on a few artifacts; others make wide-ranging contributions. Similarly, some artifacts
are mostly authored, or “owned”, by one or few developers; others have very wide ownership.
Focus and ownership are related but different phenomena, both with strong effect on software
quality. Prior studies have mostly targeted ownership; the measures of ownership used have
generally been based on either simple counts, information-theoretic views of ownership, or
social-network views of contribution patterns. We argued [14] for a more general conceptual
view that unifies developer focus and artifact ownership. We analogized the developer-artifact
contribution network to a predator-prey food web, and drew upon ideas from ecology to
produce a novel, and conceptually unified view of measuring focus and ownership. These
measures relate to both cross-entropy and Kullback-Liebler divergence, and simultaneously
provide two normalized measures of focus from both the developer and artifact perspectives.
We argued [14] that these measures are theoretically well-founded, and yield novel predictive,
conceptual, and actionable value in software projects. As illustration of the measures’ utility,
we found that more focused developers introduce fewer defects than defocused developers.
In contrast, files that receive narrowly focused activity are more likely to contain defects than
other files.

b. Social Nature of OSS Development

(Refs #5, #10) Maintaining a productive and collaborative team of developers is essential to
Open Source Software (OSS) success, and hinges upon the trust inherent among the team.
Whether a project participant is initiated as a committer is a function of both his technical
contributions and also his social interactions with other project participants. One’s online
social footprint is arguably easier to ascertain and gather than one’s technical contributions
e.g., gathering patch submission information requires mining multiple sources with different
formats, and then merging the aliases from these sources. In this thrust, through two studies
[5,10], we analyzed the extent to which one’s social activities are predictors for their
advancement and status in the OSS communities. In contrast to prior work, where software
patch submission was found to be an essential ingredient to achieving committer status, here
we investigated the extent to which the likelihood of achieving that status can be modeled

solely as a social network phenomenon. For 6 different Apache Software Foundation OSS
projects we compiled and integrated a set of social measures of the communications network
among OSS project participants and a set of technical measures, i.e., OSS developers’ patch
submission activities. We used these sets to predict whether a project participant will become
a committer, and to characterize their socialization patterns around the time of becoming
committer. We found that the social network metrics, in particular the amount of two-way
communication a person participates in, are more significant predictors of one’s likelihood to
becoming a committer. Further, we found that this is true to the extent that other predictors,
e.g., patch submission info, need not be included in the models. In addition, we showed that
future committers are easy to identify with great fidelity when using the first three months of
data of their social activities. Moreover, only the first month of their social links are a very
useful predictor, coming within 10% of the three month data’s predictions. Interestingly, we
found that on average, for each project, one’s level of socialization ramps up before the time
of becoming a committer. After obtaining committer status, their social behavior is more
individualized, falling into few distinct modes of behavior. In a significant number of projects,
immediately after the initiation there is a notable social cooling-off period. Finally, we found
that it is easier to become a developer earlier in the projects life cycle than it is later as the
project matures. These results should provide insight on the social nature of gaining trust and
advancing in status in distributed projects.

c. Interactions and Dynamics in Task Nets

Much of what we do is accomplished by working collaboratively with others, and a large
portion of our lives are spent working and talking; the patterns embodied in the alternation of
working and talking can provide much useful insight into task-oriented social behaviors. The
available electronic traces of the different kinds of human activities in online communities are
an empirical goldmine that can enable the holistic study and understanding of these social
systems. Open Source Software projects are prototypical examples of collaborative,
task-oriented communities, depending on volunteers for high-quality work. In this research
thrust, we used longitudinal trace data from hundreds of Apache Software Foundation OSS
projects to understand the dynamics and evolution of task networks in open source projects.
We leveraged both the social (email communications) and technical (commits to code)
contributions of programmers to arrive at an integrated understanding of the socio-technical
systems.

Social and Technical Activity Synchronization (Ref #1) To measure the effects of social
communications on individuals’ working rhythms we developed [1] methods to analyze the
communication and code commit records in tens of Open Source Software (OSS) projects.
Our methods are based on complex network and time series analysis. We defined the notion
of a working rhythm as the average time spent on a commit task and we studied the
correlation between working rhythms and communication frequency. We built communication
networks for code developers, and found that the developers with higher social status,
represented by the nodes with larger number of outgoing or incoming links, always have

faster working rhythms and thus contribute more per unit time to the projects. We also studied
the dependency between work (committing) and talk (communication) activities, in particular
the effect of their interleaving. We introduced multi-activity time-series and quantitative
measures based on activity latencies to evaluate this dependency. Comparison of simulated
time-series with the real ones suggested that when work and talk activities are in proximity
they may accelerate each other in OSS systems. These findings suggest that frequent
communication before and after committing activities is essential for effective software
development in distributed systems, and possibly beyond.

Collaborative Synchronization (Refs #4, #11) Synchronized actions are important for
completion of complex, interleaved tasks that require the abilities of multiple people [4].
Synchronous development is manifested when file commits by two developers are close
together in time and modify the same files. We proposed [11] quantitative methods for
identifying synchronized activities in OSS projects, and used them to relate developer
synchronization with effective productivity and communication. In particular, we defined
co-commit bursts and communication bursts, as intervals of time rich in co-commit and
correspondence activities, respectively, and constructed from them smoothed time series
which can be, subsequently, correlated to discover synchrony. We found that synchronized
co-commits between developers are associated with their effective productivity and
coordination: during co-commit bursts, vs. at other times, the project size grows faster even
though the overall coding effort slows down. We also found strong correlation between
synchronized co-commits and communication, that is, for pairs of developers, more
co-commit bursts are accompanied with more communication bursts, and their relationship
follows closely a linear model. In addition, synchronized co-commits and communication
activities occur very close together in time, thus, they can also be thought of as synchronizing
each other. This study can help with better understanding collaborative mechanisms in OSS
and the role communication plays in distributed software engineering, and beyond.

Technical Mobility of Software Developers in OSS (Ref #8) Developers in complex,
self-organized open-source projects often work on many different files, and over time switch
focus between them. Shifting focus can have impact on the software quality and productivity,
and is thus an important topic of investigation. We studied [8] the focus shifting patterns
(FSPs) of developers by comparing trace data from a dozen open source software (OSS)
projects of their longitudinal commit activities and file dependencies from the projects call
graphs. Using information theoretic measures of network structure, we found that fairly
complex focus shifting patterns emerge, and FSPs in the same project are more similar to
each other. We showed that developers tend to shift focus along with, rather than away from,
software dependency links described by the call graphs. This tendency becomes weaker as
either the interval between successive commits, or the organizational distance between
committed files (i.e. directory distance), gets larger. Interestingly, this tendency appears
stronger with more productive developers. We hope our study will initiate interest in further
understanding of FSPs, which can ultimately help to (1) improve current recommender

systems to predict the next focus of developers, and (2) provide insight into better call graph
design, so as to facilitate developers’ work.

Task Networks Communities of Like-Culture (Ref #15) We looked [15] at the emergence of
larger, team-level, collaborative structures in task networks. We used sequence analysis
methods to identify the work-talk patterns of software developers in these online communities.
We found that software developers prefer to persist in same kinds of activities, i.e., a string of
work activities followed by a string of talk activities and so forth, rather than switch them
frequently; this tendency strengthens with time, suggesting that developers become more
efficient, and can work longer with fewer interruptions. This process is accompanied by the
formation of community culture: developers' patterns in the same communities get closer with
time while different communities get relatively more different. The emergence of community
culture is apparently driven by both "talk" and "work". Finally, we also found that workers with
good balance between "work" and "talk" tend to produce just as much work as those that
focus strongly on "work"; however, the former appear to be more likely to continue to be
active contributors in the communities.

d. Learning the programming and social environments

In this research thrust we sought to understand how developers use existing code and how
they learn to use existing and new code. Stack Exchange is a very popular Question &
Answer internet community. Users can post questions on a wide variety of topics; other users
provide answers, usually within minutes. Participants are not compensated for their services
and anyone can freely gain value from the efforts of the users; Stack Exchange is therefore a
gift economy. Users, however, do gain reputation points when other users “upvote” their
questions and/or answers. Stack Exchange thus functions as a learning community with a
strong reputation-seeking element that creates a valuable public good, viz., the Q&A archive.

Where Do OSS Coders Learn From? (Ref #3) Stack Overflow, a part of Stack Exchange, is a
popular online programming question and answer community providing its participants with
rapid access to knowledge and expertise of their peers, serving programmers and coders.
Despite the popularity of Stack Overflow, its role in the work cycle of open-source developers
is yet to be understood: on the one hand, participation in it has the potential to increase the
knowledge of individual developers thus improving and speeding up the development
process. On the other hand, participation in Stack Overflow may interrupt the regular working
rhythm of the developer, hence also possibly slow down the development process. We
investigated [3] the interplay between Stack Overflow activities and the development process,
reflected by code changes committed to the largest social coding repository, GitHub. Our
study showed that active GitHub committers ask fewer questions and provide more answers
than others. Moreover, we observed that active Stack Overflow askers distribute their work in
a less uniform way than developers that do not ask questions. Finally, we showed that despite
the interruptions incurred, the Stack Overflow activity rate correlates with the code changing
activity in GitHub.

What Do OSS Coders Learn About? (Ref #7) Programming is knowledge intensive. While it is
well understood that programmers spend lots of time looking for information, with few
exceptions, there is a significant lack of data on what information they seek, and why. Modern
platforms, like Android, comprise complex APIs that often perplex programmers. We asked
[7]: which elements are confusing, and why? Increasingly, when programmers need answers,
they turn to Stack Overflow. This provides a novel opportunity. There are a vast number of
applications for Android devices, which can be readily analyzed, and many traces of
interactions on Stack Overflow. These provide a complementary perspective on using and
asking, and allow the two phenomena to be studied together. How does the market demand
for the USE of an API drive the market for knowledge about it? We analyzed [7] data from
Android applications and Stack Overflow together, to find out what it is that programmers want
to know and why.

Who Are the Teachers? (Ref #2) The incentive structure of the Stack Overflow community
suggests that over time, the quality of the product (viz.., delivered answers) steadily improves,
and furthermore, that any individual who durably participates in this community for an
extended period also would enjoy an increase in the quality of their output (viz., the answers
they provide). We investigated [2] the validity of these widely held beliefs in greater detail,
using data downloaded from Stack Exchange. Our analysis indicates that these intuitions are
actually not supported by the data; indeed the data suggests that overall answer scores
decrease, and that people’s tenure with the community is unrelated to the quality of their
answers. Most interestingly, we show that answering skill, i.e. getting high average answer
scores, which is different than reputation, is evident from the start and persists during one’s
tenure with the community. Conversely, people providing low rated answers are likely to have
done so from the start.

Learning in Socio-Technical Environments (Ref #12) Historically, mailing lists have been the
preferred means for coordinating development and user support activities. With the
emergence and popularity growth of social Q&A sites such as the Stack Exchange network
(e.g., Stack Overflow), this is beginning to change. Such sites offer different socio-technical
incentives to their participants than mailing lists do, e.g., rich web environments to store and
manage content collaboratively, or a place to showcase their knowledge and expertise more
visibly to peers or potential recruiters. A key difference between Stack Exchange and mailing
lists is gamification, i.e., Stack Exchange participants compete to obtain reputation points and
badges. Using a case study of R, a popular data analysis software, we investigated [12] how
mailing list participation has evolved since the launch of StackExchange. Our main
contribution is assembling a joint data set from the two sources, in which participants in both
the r-help mailing list and Stack Exchange are identifiable. This allows for linking their
activities across the two resources and also over time. With this data set we found that user
support activities are showing a strong shift away from r-help. In particular, mailing list experts
are migrating to Stack Exchange, where their behavior is different. First, participants active
both on r-help and on Stack Exchange are more active than those who focus exclusively on
only one of the two. Second, they provide faster answers on Stack Exchange than on r-help,

suggesting they are motivated by the gamified environment. To our knowledge, our study is
the first to directly chart the changes in behaviour of specific contributors as they migrate into
gamified environments, and has important implications for knowledge management in
software engineering.

4. Our Publications Supported by This Grant and URLs to Their Full Text
[1] Qi Xuan, Mohammad Gharehyazie, Premkumar Devanbu, Vladimir Filkov. Measuring the
Effect of Social Communications on Individual Working Rhythms: A Case Study of Open

Source Software. ASE/IEEE International Conference on Social Informatics, 2012

http://web.cs.ucdavis.edu/~filkov/papers/rhythm.pdf

[2] D. Posnett, E. Warburg, P. Devanbu, V. Filkov. Mining Stack Exchange: Expertise is
Evident From Initial Contributions. ASE/IEEE Interntl. Conference on Social Informatics, 2012

http://web.cs.ucdavis.edu/~filkov/papers/stex.pdf

[3] Bogdan Vasilescu, Vladimir Filkov, Alexander Serebrenik. StackOverflow and GitHub:
Associations Between Software Development and Crowdsourced Knowledge. IEEE
International Conference on Social Computing (SocialCom 2013)

http://web.cs.ucdavis.edu/~filkov/papers/socialcom.pdf

[4] Qi Xuan, Vladimir Filkov. Synchrony in Social Groups and Its Benefits. Chapter in
Handbook of Human Computation, Michelucci P. (ed.), Springer 2013

http://web.cs.ucdavis.edu/~filkov/papers/synchrony.pdf

[5] Mohammad Gharehyazie, D. Posnett, V. Filkov. Social Activities Rival Patch Submission
For Prediction of Developer Initiation in OSS. Projects Nominee: ACM Distinguished Paper
Award. 29th IEEE International Conference on Software Maintenance, ICSM 2013

http://web.cs.ucdavis.edu/~filkov/papers/socialvspatch.pdf

[6] Daryl Posnett, Raissa D'Souza, Prem Devanbu, Vladimir Filkov. Dual Ecological Measures
of Focus for Software Development. Winner: ACM Distinguished Paper Award. ACM/IEEE
35th International Conference of Software Engineering, ICSE 2013

http://ieeexplore.ieee.ora/xpl/articleDetails.jsp?tp=&arnumber=6606591&queryText%3Dfilkov

[7] David Kavaler, D. Posnett, Clint Gibler, Hao Chen, Prem Devanbu, Vladimir Filkov. Using
and Asking: APIs Used in the Android Market and Asked About in StackOverflow. Best Paper
Runner-Up (top 5%) The 5th International Conference on Social Informatics (Soclnfo2013)

http://www.google.com/url?q=http%3A%2F%2Fweb.cs.ucdavis.edu%2F~filkov%2Fpapers%2Frhythm.pdf&sa=D&sntz=1&usg=AFQjCNFgXqYcRGi_x4-WJ_vlu-Cs3pbgLg
http://www.google.com/url?q=http%3A%2F%2Fweb.cs.ucdavis.edu%2F~filkov%2Fpapers%2Fstex.pdf&sa=D&sntz=1&usg=AFQjCNFHlPr4JD_gREO1av7-Q68wZuQtQQ
http://www.google.com/url?q=http%3A%2F%2Fweb.cs.ucdavis.edu%2F~filkov%2Fpapers%2Fsocialcom.pdf&sa=D&sntz=1&usg=AFQjCNFVHAisWs36WY5qjzvFg1DnBqYtww
http://www.google.com/url?q=http%3A%2F%2Fweb.cs.ucdavis.edu%2F~filkov%2Fpapers%2Fsynchrony.pdf&sa=D&sntz=1&usg=AFQjCNFPxhk0_YpsO94VxKq6JB4Yn8Q1dA
http://www.google.com/url?q=http%3A%2F%2Fweb.cs.ucdavis.edu%2F~filkov%2Fpapers%2Fsocialvspatch.pdf&sa=D&sntz=1&usg=AFQjCNE1lgJTgZecIdQfOWPSR77ZuLdB7g
http://www.google.com/url?q=http%3A%2F%2Fieeexplore.ieee.org%2Fxpl%2FarticleDetails.jsp%3Ftp%3D%26arnumber%3D6606591%26queryText%253Dfilkov&sa=D&sntz=1&usg=AFQjCNH2owVT5hlL6lnNIlsEVJ4DpFsYTA

http://web.cs.ucdavis.edu/~filkov/papers/usingandasking.pdf

[8] Qi Xuan, Aaron Okano, Prem Devanbu, Vladimir Filkov. Focus-Shifting Patterns of OSS
Developers and Their Congruence with Call Graphs. ACM SIGSOFT FSE 2014

http://web.cs.ucdavis.edu/~filkov/papers/focusshift.pdf

[9] Baishakhi Ray, Daryl Posnett, Vladimir Filkov, Prem Devanbu. A Large Scale Study of
Programming Languages and Code Quality in Github. ACM SIGSOFT FSE 2014

http://web.cs.ucdavis.edu/~filkov/papers/lang qithub.pdf

[10] Mohammad Gharehyazie, Daryl Posnett, Bogdan Vasilescu, Vladimir Developer initiation
and social interactions in OSS: A case study of the Apache Software Foundation. Empirical
Software Engineering 2014, 1-36

http://web.cs.ucdavis.edu/~filkov/papers/developer trust.pdf

[11] Qi Xuan, Vladimir Filkov. Building It Together: Synchronous Development in OSS.
ACM/IEEE 36th International Conference on Software Engineering, ICSE 2014

http://web.cs.ucdavis.edu/~filkov/papers/together.pdf

[12] Bogdan Vasilescu, A. Serebrenik, Prem Devanbu, Viadimir Filkov. How Social Q&A Sites
are Changing Knowledge Sharing in Open Source Software Communities. 17th ACM
Conference on Computer Supported Cooperative Work and Social Computing (CSCW 2014)

http://web.cs.ucdavis.edu/~filkov/papers/r so.pdf

[13] D. Posnett, V. Filkov, P. Devanbu. Ecological inference in empirical software engineering.
Winner: Best Paper Award and ACM Distinguished Paper Award. Proceedings of the 26th
IEEE/ACM International Conference on Automated Software Engineering (ASE), 2011

http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=6100074

[14] D. Posnett, P. Devanbu, V. Filkov. MIC Check: A Correlation Tactic for ESE Data. Proc.
of the 9th IEEE/ACM Working Conference on Mining Software Repositories (MSR), 2012
http://web.cs.ucdavis.edu/~filkov/papers/mic-check.pdf

[15] Qi Xuan, Prem Devanbu, Vladimir Filkov. Converging Work-Talk Patterns in Online
Task-Oriented Communities. CoRR abs/1404.5708 (2014) (under review)

http://arxiv.org/abs/1404.5708

http://www.google.com/url?q=http%3A%2F%2Fweb.cs.ucdavis.edu%2F~filkov%2Fpapers%2Fusingandasking.pdf&sa=D&sntz=1&usg=AFQjCNHNiKEEzKiQ1mN30TieCKnhUYt3UQ
http://www.google.com/url?q=http%3A%2F%2Fweb.cs.ucdavis.edu%2F~filkov%2Fpapers%2Ffocusshift.pdf&sa=D&sntz=1&usg=AFQjCNHi8PLHs-p0wJHD740RPj-YayQ1dw
http://www.google.com/url?q=http%3A%2F%2Fweb.cs.ucdavis.edu%2F~filkov%2Fpapers%2Flang_github.pdf&sa=D&sntz=1&usg=AFQjCNHtSJ_7_OL-dpX4h1yRnED2wHnd8w
http://www.google.com/url?q=http%3A%2F%2Fweb.cs.ucdavis.edu%2F~filkov%2Fpapers%2Fdeveloper_trust.pdf&sa=D&sntz=1&usg=AFQjCNGcM33V5igslI7j5-g3tPXUt1MDGw
http://www.google.com/url?q=http%3A%2F%2Fweb.cs.ucdavis.edu%2F~filkov%2Fpapers%2Ftogether.pdf&sa=D&sntz=1&usg=AFQjCNFN0oJAbnpZ4btMU2VQm4owsM_HgQ
http://www.google.com/url?q=http%3A%2F%2Fweb.cs.ucdavis.edu%2F~filkov%2Fpapers%2Fr_so.pdf&sa=D&sntz=1&usg=AFQjCNHx9YglR47v2OC-ubRJuY4tBhSGsw
http://www.google.com/url?q=http%3A%2F%2Fieeexplore.ieee.org%2Fxpl%2Ffreeabs_all.jsp%3Farnumber%3D6100074&sa=D&sntz=1&usg=AFQjCNEjBmFkJNWXuVCy4rxftfMMaYDe3w
http://www.google.com/url?q=http%3A%2F%2Fweb.cs.ucdavis.edu%2F~filkov%2Fpapers%2Fmic-check.pdf&sa=D&sntz=1&usg=AFQjCNGueNmmXu-xgFtqdgGJHf1zbmydpw
http://www.google.com/url?q=http%3A%2F%2Farxiv.org%2Fabs%2F1404.5708&sa=D&sntz=1&usg=AFQjCNEocmcSwKiu5lmGIWGjr6Ur6PSUDA

	1 REPORT DATE DDMMYYYY: 12-31-2014
	2 REPORT TYPE: Final Report
	3 DATES COVERED From To: 8/15/11-8/14/14
	4 TITLE AND SUBTITLE: STRUCTURE AND FUNCTION OF TASK-ORIENTED SOCIAL NETWORKS
	5a CONTRACT NUMBER: FA9550-11-1-0246
	5b GRANT NUMBER: FA9550-11-1-0246
	5c PROGRAM ELEMENT NUMBER:
	6 AUTHORS: Vladimir Filkov
	5d PROJECT NUMBER:
	5e TASK NUMBER:
	5f WORK UNIT NUMBER:
	7 PERFORMING ORGANIZATION NAMES AND ADDRESSES: University of California, Davis
One Shields Ave, Davis CA 95616
	8 PERFORMING ORGANIZATION REPORT NUMBER:
	9 SPONSORING MONITORING AGENCY NAMES AND ADDRESSES: Air Force Office of Scientific Research

	10 SPONSORMONITORS ACRONYMS:
	11 SPONSORMONITORS REPORT NUMBERS:
	12 DISTRIBUTION AVAILABILITY STATEMENT:
Approved for Public Release
	13 SUPPLEMENTARY NOTES:
	14 ABSTRACT: This is a final report on our AFOSR grant titled STRUCTURE AND FUNCTION OF TASK-ORIENTED SOCIAL NETWORKS. The goal of the project supported by this grant was to integrate social networks with other empirical data in task oriented projects, in particular Open Source Software projects. Our accomplishments during the three years of the grant are as follows.
- We developed a data framework to gather, store and organize large amounts of publicly available data from Open Source Software projects repositories. All together we have a server with 4TB of structured data from thousands of OSS projects.
- We published 14 publications in top venues in software engineering and computer supported cooperative work. 3 more publications are under review.
- Our publications have won 2 best paper/distinguished paper awards and garnered 3 nominations for best papers.
- We trained 2 postdoctoral scholars, and 1 PhD student.
	15 SUBJECT TERMS: Task-Oriented Social Networks, Open Source Software, Task Networks, Software Engineering
	16 SECURITY CLASSIFICATION OF:
	a REPORT:
	b ABSTRACT:
	c THIS PAGE:
	17 LIMITATION OF ABSTRACT:
	18 NUMBER OF PAGES:
	19a NAME OF RESPONSIBLE PERSON: Vladimir Filkov
	19b TELEPHONE NUMBER include area code: 916-281-6104

