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Abstract

Background: Blast-induced neurotrauma (BINT) is the signature life threatening injury of current military casualties.
Neuroinflammation is a key pathological occurrence of secondary injury contributing to brain damage after blast
injury. We have recently demonstrated that blast-triggered complement activation and cytokine release are
associated with BINT. Here, we evaluated if administration of the complement inhibitor recombinant human decay-
accelerating factor (rhDAF) is beneficial on neuroinflammation and neurodegeneration in a rat model of moderate
BINT. Administration of rhDAF after exposure to moderate blast overpressure (BOP, 120 kPa) mitigated brain injury
characterized by neuronal degeneration. rhDAF treatment reduced complement hemolytic activity at 3 hours and
tissue complement deposition at 3, 24, and 48 hours as well as systemic and local cytokine release at 24 hours post
BOP. Furthermore, rhDAF protected blood–brain barrier (BBB) integrity and reduced cytotoxic edema. Interaction
between complement cleavage component, C3a and C3a receptor and tau phosphorylation were also attenuated
in rhDAF treated animals at 3 and 24 hours after BOP. These novel findings suggest early complement targeted
inhibition as a new therapeutic strategy to decrease neuroinflammation and neurodegeneration after blast TBI.

Result: Administration of rhDAF after exposure to moderate blast overpressure (BOP, 120 kPa) mitigated brain injury
characterized by neuronal degeneration. rhDAF treatment reduced complement hemolytic activity at 3 hours and
tissue complement deposition at 3, 24, and 48 hours as well as systemic and local cytokine release at 24 hours post
BOP. Furthermore, rhDAF protected blood–brain barrier (BBB) integrity and reduced cytotoxic edema. Interaction
between complement cleavage component, C3a and C3a receptor and tau phosphorylation were also attenuated
in rhDAF treated animals at 3 and 24 hours after BOP.

Conclusion: These novel findings suggest early complement targeted inhibition as a new therapeutic strategy to
decrease neuroinflammation and neurodegeneration after blast TBI.

Keywords: Blast overpressure, Blast-induced neurotrauma, Complement activation, Blood–brain barrier, Tauopathy,
Decay-accelerating factor

Background
Traumatic brain injury (TBI) is a leading cause of death
and disability, contributing to one-third of all injury-
related deaths in the United States, and a significant
cause of loss of productivity [1]. It is estimated that 10-
20% of returning veterans sustain TBI while deployed,
making TBI the hallmark injury of current military cas-
ualties. In these cases, most TBI results from exposure

to blast overpressure (BOP) from explosive devices,
resulting in cell death and neuronal dysfunction. Fur-
thermore, military casualties exposed to blast often ex-
perience delays in medical evacuation to higher echelons
of care, with time intervals ranging from 1 hour to sev-
eral days [2]. During this time frame, secondary mole-
cular responses promote further neuronal injury and
consequently, neurodegeneration. The development of
secondary injury subsequent to the primary injury pro-
vides a window of opportunity for therapeutic inter-
vention to prevent progressive tissue damage after
traumatic brain injury (TBI) [3]. Neuroinflammation is a
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well-established secondary injury mechanism that largely
contributes to damage observed after TBI [4].
Neuroinflammation following TBI is mediated by an

early activation of the innate immune system [5]. The
complement system, a key player in innate immunity,
may participate as an important early mediator of
neuroinflammation and neurodegeneration after TBI.
Various studies in animal models and clinical studies
have demonstrated elevated levels of complement com-
ponents and complement activation fragments in serum,
cerebrospinal fluid (CSF), and brain parenchyma after
TBI, with broad parenchymal deposition of complement
components [6-9]. In both clinical and experimental
studies, severe secondary insults in TBI were observed
in parallel to pronounced complement activation, specif-
ically increased levels of the complement activation
product, C5b-9 [10]. These secondary injuries include
the recruitment of inflammatory cells into the intra-
thecal compartment, the induction of blood brain bar-
rier (BBB) dysfunction by activated complement C3a
and C5a, the induction of neuronal apoptosis through
the neuronally expressed C5a receptor (C5aR), and hom-
ologous cell lysis mediated by C5b-9 [11]. Prior studies
from our lab report that complement activation and
C3a-C3aR interaction are associated with hypoxia-
induced disruption of neuronal networks, loss of den-
dritic spines, and neuronal apoptosis [12].
Genetic and pharmacological manipulation of both

complement levels and complement activation in mouse
models of TBI are reported to be highly neuroprotective,
suggesting the complement cascade is a critical target for
managing post-TBI tissue damage. Mice deficient in the
C3 gene [13,14] or overexpressing complement regulatory
proteins such as Crry or vaccinia virus complement con-
trol protein, exhibit significant neuroprotection, attenu-
ated BBB disruption, and improved neurological outcome
after injury [15,16]. Inhibition or deficiency of other com-
plement components have also been demonstrated to be
effective in ameliorating injury, including inhibition of C1
by C1-inhibitor (C1-INH) [17], C4 deficiency or inhibition
by C4 antibody [18], C5aR blockade [19], and factor B de-
ficiency [20] or inhibition by factor B antibody [21]. In our
most recent work, we found early complement activation
was dramatically increased profound after blast injury. In
addition, higher systemic and local levels of C5b-9 were
detected as early as 3 h and persisting for up to 48 h were
associated with BINT in rats exposed to blast overpressure
(BOP) [22]. These results strongly suggest early adminis-
tration of complement inhibitors as a novel and viable
pharmaceutical strategy to mitigate BINT.
Administration of decay-accelerating factor (DAF), an

inhibitor of alternative and classical complement activa-
tion pathways has been shown to protect neurons from
hypoxia-induced disruption of neuronal networks, loss

of dendritic spines, and neuronal apoptosis in cultured
primary neuronal cells [12]. In the study presented here,
we hypothesized that the complement system plays a
critical role in the development of secondary injury and
early administration of DAF would be neuroprotective
in a rat model of blast-induced neurotrauma.

Methods
Animals
Adult pathogen-free male Sprague–Dawley rats weighing
250 to 300 g (Charles River, Wilmington, MA) were used
in this study. Experiments were conducted in compli-
ance with the Animal Welfare Act at an AAALAS
accredited institution and in accordance with the princi-
ples of the Guide for the Care and Use of Laboratory
Animals. The study was approved by the Naval Medical
Research Center Institutional Animal Care and Use
Committee.

Reagents
Recombinant human DAF (rhDAF) and biotinylated
anti-human DAF was obtained from R&D systems
(Minneapolis, MN). Chicken anti-mouse C3/3a, mouse
anti-rat endothelial cells, mouse anti-rat aquaporin-4,
and rabbit anti-p-tau (phosphor T205) antibodies were
obtained from Abcam Inc. (Cambridge, MA). Mouse anti-
rat C3a receptor (C3aR) and mouse anti-rat C5b-9 anti-
bodies were acquired from Hycult Biotech Inc (Plymouth
Meeting, PA). Biotinylated goat anti-rat IgG was from
Vector Laboratories (Burlingame, CA). Streptavidin Alexa
Fluor 488, goat anti-mouse Alexa Fluor 488-, goat anti-
rabbit 594-, and goat anti-chicken 594-conjugated second-
ary antibodies, and ProLong Gold antifade reagent were
from Invitrogen (Carlsbad, CA). Bio-Plex Pro™ rat cyto-
kine multiplex assay kit was purchased from Bio-Rad la-
boratories (Hercules, CA).

Experimental design and administration of DAF
Exposure to blast was conducted as previously described
[22]. Briefly, adult male rats were anesthetized with intra-
peritoneal injection of ketamine/xylazine (60/5 mg/kg)
and randomly assigned to each experimental group. Anes-
thetized animals were placed into the end of the expansion
chamber of a compressed air-driven shock tube (2.5 ft
compression chamber connected to a 15 ft expansion
chamber) and fixed into a holder to restrict any body
movement from blast impact and prevent subsequent sec-
ondary or tertiary blast injuries. Animals were subjected to
a single blast exposure with mean peak overpressure of
120 ±7 kPa with their right side ipsilateral to the direction
of the BOP. Animals were randomly assigned to one of
seven experimental groups: 1) Control, animals underwent
anesthesia, suspension, and time delays except for BOP
(n = 8); 2) BOP-3 h, animals were subjected to BOP
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followed by a bolus injection (vehicle, 0.5 ml of saline) via
tail vein 30 min post BOP and recovered for 3 h (n = 8); 3)
BOP-24 h, animals were exposed to BOP + vehicle and re-
covered for 24 h (n = 8); 4) BOP-48 h, animals underwent
BOP + vehicle and recovered for 48 h (n = 5); 5) DAF-3 h,
animals were exposed to BOP followed by a bolus of
rhDAF (50 μg/kg body weight) injection via tail vein
30 min post BOP and recovered for 3 h (n = 6); 6) DAF-
24 h, animals were exposed to BOP followed by a bolus
of rhDAF (50 μg/kg body weight) injection via tail vein
30 min post BOP and recovered for 24 h (n = 8); and 7)
DAF-48 h, animals were exposed to BOP followed by a
bolus of rhDAF (50 μg/kg body weight) injection via tail
vein 30 min post BOP and recovered for 48 h (n = 5).

Blood and tissue collection
Animals were euthanized with an overdose of pentobar-
bital at indicated time points, and blood was withdrawn
by cardiac puncture. Serum samples were collected by
centrifuging at 4000 rpm for 10 minutes and stored at -
80°C until use for systemic cytokine analysis and CH50
assay. The brains were quickly removed, and cut at
3-mm thickness. The cerebral slices were frozen, and
stored at -80°C until use for measuring tissue levels of
cytokines. The cerebral slices were fixed in 10% formalin
solution for histological evaluation, or fixed in 4% para-
formaldehyde for immunohistochemical staining.

Histological evaluation
Ten percent formalin-fixed tissues were embedded in
paraffin. Coronal sections were then cut, and stained
with hematoxylin-eosin (H&E). Five random histologic
images were recorded at × 400 magnifications under an
Olympus AX80 light microscope (Olympus, Center
Valley, PA) and graded by a pathologist blinded to the
treatment group.
Frontal cortical and hippocampal (dentate gyrus, DG)

damage was assessed by five distinct morphological pa-
rameters: neuronal morphological changes (shrinkage of
the cell body, pyknosis of the nucleus, disappearance of
the nucleolus, and loss of Nissl substance, with intense
eosinophilia of the cytoplasm), neuronal loss, cytotoxic
edema, vasogenic edema, and inflammatory cell infiltra-
tion in the brain cortex. The changes were scored
according to their extent (score 0, 1, 2, 3, and 4 for an
extent of 0%, < 25%, 25–50%, 50–75%, and 75–100%,
respectively) and the severity of the injury (score 0 =
normal histology, score 1 = slight, 2 =mild, 3 =moderate,
and 4 = severe alterations). The injury score represents
the sum of the extent and the severity of injury.

Immunohistochemical staining
After 4% paraformaldhyde fixation, brains were trans-
ferred to 20% sucrose (w/v) in PBS overnight at 4°C,

followed by freezing in Tissue-Tex OCT mounting
medium. Coronal frozen sections were cut at 5-μm
thickness with a cryostat and mounted onto glass slides.
The tissues where fixed in cold acetone or 4% parafor-
maldehyde for 20 min and permeabilized with 0.2% Tri-
ton X-100 in PBS for 10 min. The sections were blocked
with 2% bovine serum albumin and incubated with the
primary antibodies overnight at 4°C. After washing, the
sections were incubated with the appropriate secondary
antibodies labeled with Alexa Fluor 488 or 594 for 1 h
at room temperature. After washing, the sections were
mounted with ProLong Gold antifade solution con-
taining 4, 6’-diamidino-2-phenylindole and visualized
under a Radiance 2100 confocal laser scanning micro-
scope (Bio-Rad,Hercules, CA) at × 200 or × 400 magnifi-
cation. Negative controls were conducted by substituting
the primary antibodies with corresponding immu-
noglobulin isotypes. Captured digital images were pro-
cessed by Image J software (NIH, Bethesda, MD).

Immunofluorescent quantification
This procedure is based on a modified method as described
previously [23]. Briefly, four to six images from each animal
were calibrated using the Adobe Photoshop software and
adjusted until only the fluorescent deposits and no visible
tissue background. The image was changed to black-and-
white pixels with black representing deposits of the target
proteins and white representing nonstained areas of the
image using the Image J software. Using the image Adjust
Threshold command, the image was then changed to red
and white (fluorescent deposits were in red). Image analysis
resulted in the red total area in pixels squared. Values for
total area for all animals in each group were averaged to
give the average area of fluorescent deposit.

Fluoro-jade B staining
Coronal frozen sections were cut at a thickness of
20 μm with a cryostat. The sections were collected in
0.1 M phosphate buffer (PB) and mounted onto 1% gel-
atin coated slides and air dried on slide warmer at 50°C
for 30 min. The slides were immersed in a solution
containing 1% sodium hydroxide in 80% alcohol for
5 min followed by 2 min in 70% alcohol and 2 min in
distilled water. The slides were then transferred to a so-
lution of 0.06% KMnO4 for 10 min and washed 3 times
in ultrapure water for 1 min each. The slides were subse-
quently stained in 0.001% Fluoro-Jade B (Histo-Chem
Inc., Jefferson, AR) in 0.1% acetic acid for 15 min. and
rinsed 3 times in ultrapure water for 1 min each. The
slides were allowed to air dry on slide warmer at 50°C
for 10 min and cleared by immersion in xylene for
1 min before coverslipping with DPX (Sigma, St. Louis,
MO). Digital images were collected on a fluorescent
microscope at × 200 magnification.
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Tissue protein extraction
Frozen brain tissue samples were thawed, washed with
ice-cold phosphate-buffered saline (PBS), suspended in
radio-immunoprecipitation assay (RIPA) buffer containing
protease inhibitors (2 μg/ml of aprotinin, 10 μM of
leupeptin, 1 mM of phenylmethylsulfonyl fluoride), and
minced on ice. Brain tissue was homogenized on ice and
clarified at 13,000 rpm for 15 min at 4°C. Aliquots of
supernatant were used to determine protein concentration
by Bio-Rad DC protein assay kit and cytokines (Bio-Rad
Laboratories, Hercules, CA).

Cytokine quantification
Cytokine levels in the serum and brain tissue were mea-
sured by Bio-Plex Pro™ rat cytokine multiplex assay kit
according to the manufacturer’s instructions using the
Luminex® 200™ system (Invitrogen, Carlsbad, CA).

CH50 assay
Serum complement activity was determined based on
hemolytic activity. Briefly, antibody-sensitized Gallus
gallus domesticus red blood cells (Colorado Serum Com-
pany, Denver, CO) were incubated for 1 h at 37°C with
serial dilutions of serum samples in gelatin-Veronal
buffer (pH 7.3). After centrifugation, absorbance of the
supernatant was determined at 405 nm, and the serum
concentration inducing 50% of complement hemolytic
activity was determined as CH50 value.

Statistical analysis
Data are expressed as mean ± standard error of the mean
(SEM). One-way analysis of variance (ANOVA) followed
by Bonferroni or unpaired t-test was performed using

GraphPad Prism® (5.0, GraphPad Software, San Diego,
CA). P value <0.05 was considered as significant.

Results
Recombinant human DAF deposits in rat cortex and
hippocampus
Deposition of rhDAF in the brain was determined by im-
munohistochemical staining using anti-human DAF anti-
body. As shown in Figure 1a and b, rhDAF deposition was
observed in the cortex and hippocampus of DAF-treated
animals. Deposition of rhDAF appeared to be associated
with the cerebral endothelium. No rhDAF deposition was
evident in the controls and non treated animals.

Administration of rhDAF mitigates brain neuronal
degeneration in rats subjected to BOP
Histological analysis of the frontal cortex in the ipsilat-
eral and contralateral sides after a recovery period of 3,
24 and 48 h following blast exposure revealed micro-
scopic changes in the grey matter (Figure 2a and b).
BOP exposure resulted in bilateral capillary damage,
brain edema and neural morphological changes charac-
terized by cell body shrinkage and nuclear pyknosis.
These changes were significantly attenuated by an early
bolus administration of rhDAF (50 μg/kg), 30 minutes
after blast exposure. The beneficial effects of DAF ad-
ministration were seen throughout the recovery periods
of 3, 24 and 48 h after the blast exposure.
As shown in Figure 2c and d, histopathological analysis

of the ipsilateral and contralateral dentate gyrus demon-
strated significant changes in neuronal morphology in
comparison to controls at 3, 24 and 48 h post BOP. These
changes were characterized by bilateral neuronal loss
and pyramidal cell alteration with morphologic features

Figure 1 Deposition of rhDAF in the brain cortex and hippocampus of animals treated with rhDAF. Representative photomicrographs of
frontal grey matter (a) and hippocampal DG (b) from the frozen sections of rat brains immunostained by anti-human DAF (red) and anti-endothelial
cell (EC, green) antibodies. Original magnification of × 200. Scale bar, 200 μm. n = 8 for control, 3 and 24 h experimental groups. n = 5 for 48 h
experimental groups.
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consisting of shrinkage of cell body, pyknois of nucleus,
disappearance of nucleolus, and loss of Nissl substance.
Notably, the morphological alteration of the hippocampus
from BOP was markedly improved in animals treated
with rhDAF (Figure 2).

Similar to what was observed with H&E staining, a
significant increase in Fluoro-Jade B staining in both
the cortex and hippocampus from 3 h to 48 h after
BOP, peaking at 24 h was observed (Figure 3a and b).
In contrast, rhDAF treatment significantly reduced

Figure 2 Early treatment of DAF attenuates brain injury of rats exposed to 120 kPa BOP. a and c: Representative photomicrographs of
coronal paraffin sections stained with H&E of control, BOP-3 h, BOP-24 h and BOP-48 h untreated and treated with rhDAF (50 μg/kg) 30 min post
blast exposure. a: brain frontal cortical grey matter and c: hippocampal dentate gyrus, DG. Original magnification of × 400. Scale bar, 100 μm.
b and d: Mean brain injury scores, n = 8 for control, 3 and 24 h experimental groups, n = 5 for 48 h experimental groups. Injury scores calculated
using the criteria as described in the Methods. Graphs expressed as mean ± SEM, and compared using one-way ANOVA followed by Bonferroni test.
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Fluoro-Jade B positive cells in the cortex and hippo-
campus after BOP (Figure 3a and b). Fluoro-Jade B is a
specific marker for the histological staining of neurons
undergoing degeneration. Thus, these results indicate
that the BOP-induced morphological alterations seen
in the hippocampus and cortex are primarily due to
neurodegeneration.

rhDAF attenuates complement activation and deposition
in rats exposed to BOP
BOP-induced changes in complement function were
assessed by complement hemolytic activity assay. As
shown in Figure 4, complement hemolytic activity was
significantly reduced in the serum of blast exposed
animals obtained at 3 h, indicating that complement
activation occurred after BOP exposure. Complement
hemolytic activity was virtually abolished 24 h after

BOP and returned to pre-BOP exposure levels after
48 h post BOP (data not shown). Complement hemo-
lytic activity significantly increased in rats treated with
rhDAF at 3 h after BOP demonstrating complement in-
hibition by rhDAF.
Previously we have demonstrated higher levels of com-

plement activation and deposition in rat brains at 3 and
48 h after exposure to 120 kPa BOP [22]. As expected, in-
creased deposition of C3 and C5b-9 at the superficial
layers of the cortex as early as 3 h and lasting 24 and
48 h after blast was observed (Figure 5a and b). Depos-
ition of C5b-9 was seen after 3 and 24 h post blast in the
hippocampus, whereas limited deposition was found at
48 h after blast. The deposition of complement compo-
nents in the cortex and hippocampus after blast exposure
was significantly attenuated with the administration of
rhDAF (Figure 5).

Figure 3 Early administration of DAF improves BOP-induced neurodegeneration. Coronal frozen sections of 20-μm thickness were stained
with Fluoro-Jade B as described in the Methods. Representative Fluoro-Jade B staining in frontal grey matter (a) and hippocampus (DG) (b)
following BOP. n = 8 for control and experimental groups. Original magnification of × 200. Scale bar, 200 μm.
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DAF decreases expression and interaction of C3a and
C3aR in rat brain after BOP
Increased expression and interaction of C3a and C3a re-
ceptor (C3aR) were observed in both the cortex and
hippocampus at 3 and 24 h after BOP when compared
to respective controls (Figure 6a and b). In contrast,
early injection of rhDAF at 30 min post BOP led to a
significant reduction in the expression and interaction of
C3a and C3aR in brain tissue at 3 h and 24 h after blast
injury (Figure 6a and b).

rhDAF inhibits systemic and local cytokine release in rats
exposed to BOP
It has been well established that inflammation represents
a common pathological reaction to TBI. In particular,
production of multiple inflammatory cytokines and
chemokines is one of the characteristics of TBI [3].
These changes occurred in the current model of

Figure 4 Effect of DAF on complement function after blast
exposure. Complement function was measured by hemolytic
activity (CH50) assay. Group data is expressed as mean ± SEM and
compared using one-way ANOVA followed by Bonferroni test. n = 8.

Figure 5 Early administration of DAF decreases C3 and C5b-9 deposition in brain tissue from BOP exposed animals. Representative
photomicrographs of brain frozen sections were stained with anti-C3/3a and C5b-9 antibodies (top), and the total fluorescence of C3 and C5b-9
deposition (bottom). Frontal grey matter (a and c) and hippocampus (DG) (b and d). Original magnification of × 200. Scale bar, 200 μm. Group
data is expressed as mean ± SEM and compared using one-way ANOVA followed by Bonferroni test. n = 8 for control, 3 and 24 h experimental
groups. n = 5 for 48 h experimental groups.
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moderate BOP in rats, where systemic pro- and anti-
inflammatory cytokines were found to be released at sig-
nificant levels as early as 3 h, reaching to peak at 24 h, and
diminished at 48 h after BOP exposure. In particular, BOP
triggered the release IL-1β, EPO, TNFα and IL-10 in the
serum (Figure 7a-d). Interestingly, rhDAF treatment not
only inhibited pro-inflammatory cytokine release (IL-1β
and EPO) but also reduced anti-inflammatory cytokine
(IL-10) production after the blast exposure. The release of
these cytokines were slightly reduced at 3 h, and signifi-
cantly attenuated at 24 h after BOP by an early bolus
administration of rhDAF (Figure 7a-d).
Similar findings were found in local production of cy-

tokines in the rat cortex. Specifically, exposure to BOP
significantly elevated levels of RANTES at 24 h after
blast (Figure 7f ). Although not significant, there was a
trend towards increased levels of IL-1β, IL-18, IL-12p70,

IL-6, IL-10, TNFa, and EPO, at 24 h after blast injury
(Figure 7e-h). This observed increase of IL-1β, TNFα,
RANTES, and IL-18 returned back to control levels after
rhDAF treatment.

rhDAF reduces phosphorylated tau in rat brain after blast
exposure
It has been well established that hyperphosphorylation of
tau (p-tau) is involved in various neurodegenerative dis-
eases [24]. A recent report presented evidence of accumu-
lation of p-tau in mice blast TBI [25]. We investigated the
effects of blast on tau phosphorylation in the cortex and
in the dentate gyrus area of the hippocampus in our blast
model. Phosphorylated tau immunoreactivity was ob-
served in the cortex and hippocampus as early as 3 h and
increased up to 48 h after blast in comparison to the con-
trols (Figure 8a and b). Interestingly, administration of

Figure 6 DAF treatment reduces interaction of C3a-C3aR in the rat brain tissue after blast exposure. Representative photomicrographs of
C3a-C3aR interaction in frontal grey matter (a) and hippocampus (DG) (b) of frozen sections stained with anti-C3a (red) and anti-C3aR (green)
antibodies. Original magnification of × 200 (grey matter) and × 400 (DG). Scale bars, 200 μm (grey matter) and 100 μm (DG). n = 8 for control,
3 and 24 h experimental groups. n = 5 for 48 h experimental groups.
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Figure 7 DAF treatment decreases systemic and local cytokine levels in animals exposed to BOP. Cytokine levels of blood serum
(a-d) and brain frontal cortex (e-h) were measured by Luminex 200 using Bio-Plex Pro™ rat cytokine multiplex assay. Group data is expressed as
mean ± SEM and compared using unpaired t-test. n = 8 for serum samples and n = 3 for brain tissues.
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Figure 8 (See legend on next page.)
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rhDAF attenuated the increased phosphorylation of tau at
3 and 24 h post blast (Figure 8a and b). However, rhDAF
administration had little effect on the expression and
accumulation of p-tau at 48 h after blast exposure.

rhDAF decreases aquaporin-4 (AQP-4) expression in
cerebral cortex
Increased expression and upregulation of AQP-4 has
been associated with brain cytotoxic edema in TBI
models [26]. Consist with our previous findings [22],
BOP led to significant increases in AQP-4 expression in
the cortex at 3 and 24 h after injury (Figure 9). Note-
worthy, treatment with rhDAF significantly reduced
AQP-4 expression compared to the untreated group
after blast exposure (Figure 9).

rhDAF protects the blast-induced BBB vascular
permeability
Traumatic brain injury disrupts the BBB integrity lead-
ing to extravasation of inflammatory proteins and infil-
tration of immune cells into the brain, and subsequent
neuroinflammation and neurodegeneration. The spatial
extravasation of endogenous IgG immunoreactivity was
used as an index for BBB breakdown following BOP ex-
posure [27]. Qualitative assessment of IgG extravasation
revealed a significant increase in IgG immunoreactivity
in the outer most layer of the cortex at 3, 24, and 48 h
after BOP exposure (Figure 10). Treatment with rhDAF
significantly reduced the extravasation of IgG at 3, 24
and 48 h after blast exposure (Figure 10), indicating its
potential in protection of BBB injury.

Discussion
Previously, we have demonstrated that early complement
activation and inflammatory response were associated
with blast-induced neurotrauma in rats after a moderate
BOP exposure (120 kPa) [22]. In this study, we evaluated
the effects of complement inhibition on neuroprotection
after blast injury. We found that: 1) administration of
rhDAF 30 min after moderate blast exposure displays a
protective effect on brain histological damage as well as
BBB breakdown and brain edema during the first 24 and
48 h after BOP; 2) rhDAF treatment attenuates blast-
triggered systemic complement activation at 3 h and
local complement deposition during the first 48 h, as
well as systemic and local cytokine release at 24 h after
the injury; and 3) Treatment with rhDAF reduces blast-
instigated C3a-C3aR interaction and tau phosphorylation

during the first 24 h after the blast exposure. Taken to-
gether, the data presented here provides first line evi-
dence of early complement inhibition as an effective
therapeutic strategy for blast-induced neurotrauma and
neuroinflammation.
DAF, a ubiquitously expressed intrinsic complement

regulatory protein, inhibits complement activation by
preventing the assembly or accelerating the disassembly of
the C3/C5 convertases in both the classic and alternative
pathways thereby limiting the local C3a/C5a and C5b-9
production [28]. Human DAF has a structure similar to
rat DAF and has displayed cross-species reactivity [29].
The selected dosage of rhDAF was in the titrated range
used in the previous studies of hypoxia in rat primary
neuronal cells [12], mouse ischemia-reperfusion [23,28],
swine hemorrhagic shock [30,31] and rat hemorrhagic
shock (unpublished data). The time window for rhDAF
administration (30 min) after blast injury used in this
study was based on previous findings that systemic
complement activation after a moderate BOP exposure
paralleled BBB breakdown as early as 3 h, persisting up to
48 h, and returning to control levels by 72 h after the in-
jury [12,22]. Intravenous administration of rhDAF accu-
mulated in the brain cortex and hippocampus as early as
3 h and persisted up to 48 h following BOP (Figure 1).
The distribution of rhDAF in the brain was associated
with the cerebral endothelium, suggesting that it might
bind to the damaged endothelium and enter into the brain
through the breached BBB after the blast injury.
C3a-C3aR interaction is a common initiating signal for

subsequent reactions that initiates an inflammatory re-
sponse. C3aR, a G-protein coupled receptor, is constitu-
tively expressed in the central nervous system, on both
neurons and glia [32]. Significant up-regulation of C3aR
in murine brain after ischemia has been observed
[12,33]. Interaction of C3a-C3aR leads to enhanced and
maintained inflammatory responses such as leukocyte
infiltration, vascular permeability, leukocyte activation,
and inflammatory cytokine production [34]. Consistent
with our previous findings [12], increased C3aR expres-
sion and interaction of C3a-C3aR were observed in rats
exposed to BOP. Notably, C3a-C3aR engagement was
markedly reduced in rhDAF-treated BOP injured ani-
mals, presumably through limiting local expression of
C3aR and C3a and/or preventing the extravasation of
systemic C3a through increased integrity of the BBB.
TBI results in brain microvasculature and BBB damage,

leading to increasing BBB permeability. BBB integrity was

(See figure on previous page.)
Figure 8 DAF treatment decreases tau phosphorylation in animal brain tissue after BOP exposure. Representative photomicrographs of
frozen brain sections stained with anti-p-tau antibody (top) and the total fluorescence of p-tau (bottom). Frontal grey matter (a) and
hippocampus (DG) (b). Original magnification of × 200. Scale bar, 200 μm. Group data is expressed as mean ± SEM and compared using one-way
ANOVA followed by Bonferroni test. n = 8 for control, 3 and 24 h experimental groups. n = 5 for 48 h experimental groups.
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assessed by immunoglobulin (IgG) staining. Staining
for immunoglobulin (IgG) is an effective technique for
assessing BBB integrity as the breach of the BBB to plasma
protein, such as IgG, is a prominent feature of experimen-
tal brain injury [35]. The increased BBB permeability
observed during the initial 48 h after blast (Figure 10) is
congruent with previously reported increases in IgG stain-
ing at 3 and 24 h following blast [27]. In contrast, in
rhDAF treated animals a significant reduction in BBB per-
meability was observed. BBB limited permeability with
rhDAF treatment could be one way in which local cyto-
kines and complement activity is down-regulated.
Our previous and current data demonstrated increased

deposition of C3 and C5b-9 associated with cortical vas-
culatures at 3 and 48 h after BOP exposure, suggesting
complement deposition could be playing pivotal role in
BBB disruption post-injury. In agreement, early rhDAF
treatment reduced local complement deposition (C3
and C5b-9) 3, 24 and 48 h post-injury and concurrently

reduced BBB permeability (Figures 5, 6 and 10). The
paralleled change between BBB dysfunction and comple-
ment deposition (C3 and C5b-9) indicates that systemic
complement activation may contribute to complement
protein accumulation in the brain cortex via crossing the
damaged BBB following blast injury. Nevertheless, BOP
exposure might have also resulted in elevation of C3
transcription in the cortex, suggesting the late comple-
ment protein accumulation could be, at least partially,
produced locally through a C3a-C3aR interaction.
Interestingly, treatment with rhDAF decreased sys-

temic and local cytokine levels at 24 h but not at 3 h
after blast. The delayed effect of rhDAF on systemic
cytokine release suggests an indirect effect of DAF on
cytokine production presumably through the interrup-
tion of the C3a-C3aR and/or C5a-C5a receptor (C5aR)
interaction and subsequent attenuation of cytokine syn-
thesis via down-regulation of inflammatory gene tran-
scriptional activity [36-38]. However, the effect of rhDAF

Figure 9 DAF treatment reduces expression of aquaporin-4 in the animal brain cortex post BOP exposure. Representative
photomicrographs of frozen brain sections were immunostained with anti-aquaporin-4 antibody (top panel) and the total fluorescence of
aquaporin-4 (bottom panel) Original magnification of × 200. Scale bar, 200 μm. Group data is expressed as mean ± SEM and compared using
one-way ANOVA followed by Bonferroni test. n = 8 for control, 3 and 24 h experimental groups. n = 5 for 48 h experimental groups.
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on local cytokine attenuation in the cortex could be due
to both the inhibition of cytokine synthesis via the inter-
ruption of C3a-C3aR engagement and the decrease of
extravasation of systemic cytokines through the en-
hancement of BBB integrity.
AQP4, the principal member of the aquaporin protein

family in the central nervous system, is expressed in
astrocyte processes of the glia limitants externa and in
perivascular astrocyte foot processes. AQP4 plays a key
role in cerebral cytotoxic edema formation [26]. We ob-
served an increased expression of AQP4 in the brain
during the first 24 h which correlated with early cyto-
toxic edema. AQP4 expression largely normalized 48 h
after the blast injury, indicating that cytotoxic edema is
an early event in blast-induced brain injury. It is interest-
ing to note, complement system activation has been
reported to enhance AQP4 expression [22] and the ob-
served increase in complement activation after blast ex-
posure may play an important role in brain cytotoxic
edema induced by AQP4. In agreement, our data shows
that rhDAF exerted a protective effect on cytotoxic
edema, and normalized blast-induced overexpression
of AQP4. In addition, pro-inflammatory cytokines have
been reported to induce the expression of AQP4 in rat
astrocytes [39,40]. This regulatory effect of DAF on
AQP4 expression could be at least partially explained by

its role in attenuating the expression of IL-1β and IL-18,
which has been shown to down-regulate AQP4 expres-
sion after TBI.
Increasing evidence suggests that TBI is associated

with tauopathy, characterized by neurofibrillary tangles
and neuropil threads composed of hyperphosphorylated
tau [41]. Recent studies in mice with genetic deficiency
of CD59 and Cr-related protein Y have demonstrated
that the complement system has an active role in the
development of tau pathology and neurodegeneration
[42,43]. In the present study, hyperphosphorylated tau
developed during the first 48 h after blast injury. These
results are consistent with other reports which showed
tauopathy in military personnel exposed to explosive
blast as well as in blast-exposed mice [25]. Intriguingly,
rhDAF treatment reduced early tau phosphorylation at 3
and 24 h, but not at 48 h after the blast. One possible ex-
planation could be early tau phosphorylation, but not late
tau phosphorylation, is complement activation-dependent.
Another possibility is rhDAF, although present in the brain
tissues 48 h after administration may not be functional to
down regulate tau phosphorylation. Further studies will be
needed to confirm these speculations.
Increased expression of C5aR was reported to be asso-

ciated with enhanced phosphorylated tau in the brain of
Alzheimer’s patients [44]. Moreover, treatment with a

Figure 10 DAF treatment decreases IgG immunoreactivity in brain cortical sections after BOP exposure. Representative
photomicrographs of frozen sections stained anti-rat IgG antibody (top panel) and the total fluorescence of IgG (bottom panel). Original
magnification of × 200. Scale bar, 200 μm. Group data is expressed as mean ± SEM and compared using one-way ANOVA followed by Bonferroni
test. n = 8 for control, 3 and 24 h experimental groups. n = 5 for 48 h experimental groups.
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C5aR antagonist reduced the amyloid deposits and tau
phosphorylation with enhanced neuronal functions in a
murine model of Alzheimer’s disease [45]. Although in-
creased expression of C5aR and interaction of C5a-C5aR
was not observed in this study (data not shown), it is
very likely that early tau phosphorylation is regulated by
the enhanced C3a-C3aR signaling axis in our blast TBI
model. Tau is also reported as a potent, antibody-
independent activator of the classical complement path-
way in chronic neurodegenerative disease [46,47]. Thus
hyperphosphorylated tau, in turn, might lead to and/or
maintain local cerebral complement activation after blast
injury. Blast exposure has been considered to increase
the risk for late development of chronic traumatic en-
cephalopathy (CTE), a tau protein-linked neurodegener-
ative disorder, which is associated with post-traumatic
stress disorder (PTSD) [20]. Consequently, the ability of
tau to activate classical complement pathway could pro-
vide a mechanism for initiating and sustaining a chronic,
low-level cerebral inflammatory response that may cu-
mulate over the disease course and contribute to PTSD
after blast injury. Future studies will be necessary to
look into the relationship between complement and
tauopathy at subacute and chronic phases of blast injury,
and to determine whether complement inhibition has
beneficial effects on blast-induced CTE.

Conclusions
DAF protects against BINT by suppressing the systemic
and local inflammatory response, reducing tau phosphor-
ylation, improving BBB integrity, and decreasing cytotoxic
edema. Modulation of the complement system after TBI is
a novel and promising therapeutic tool aimed at manipu-
lating secondary injury processes after BINT.
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