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1. SUMMARY 
 
This report gives a detailed summary of research work completed under Air Force 
Research Laboratory (AFRL) Award No. FA87501210093, “Detailed Phonetic Labeling 
of Multi-Language Database for Spoken Language Processing Applications,” over the 
time period (Jan 19, 2012 – Jan 18, 2013). 
 
2. PROJECT INTRODUCTION 
 
The main goals of this project were to investigate and test methods and tools to enable 
more accurate phonetic labeling of speech databases in various languages.  Such methods 
and tools are valuable for developing automatic speech recognition (ASR) systems in 
these languages. One of the biggest hurdles to further improvements in ASR accuracy 
and robustness is the need for really large speech databases in multiple languages. One of 
the big assets to ASR research is the availability of large open source databases along 
with text annotations at the sentence level. However, for ASR applications, this text 
information should be “force” aligned with the acoustic signal, in terms of an accurate 
phonetic level transcription. In this work, we focus on the front end signal processing to 
improve phonetic level recognition, with experimental work in three languages- - 
English, Mandarin, and Russian. The report contains six major sections, each with its 
own introduction and conclusion. This report also contains copies of four conference 
papers and 1 conference abstract, for work supported by this project.  In the remainder of 
this overall introduction, we give a brief executive summary of the major sections of this 
report. 
 
Section 3, “Generalized spectral-temporal features for representing speech information,” 
reports a detailed mathematical and experimental investigation of a method for 
computing speech features as weighted sums of spectral values about each instant in time. 
This method is viewed as a general framework which includes the commonly used 
MFCCs (or other filterbank implementations in place of the Mel filterbank used to 
compute MFCCs), delta, and delta-delta, features. Some other frontend methods, such as 
perceptual linear prediction (PLP) and Gabor filtering, although are not entirely covered 
mathematically by this framework, can still be studied using the unified basis vector point 
of view, which reveals the essence of features as linear transformations of the spectrum.  
Although these weighted sums are most generally characterized as two dimensional basis 
vectors over time and frequency, the most effective implementation found is based on 
two one-dimensional sets of basis vectors. The first step, summing over frequency, is 
referred to as a DCT (Discrete Cosine Transform), with resulting features called DCTCs 
(last C being Coefficient). The DCTCs are then summed over time to create DCSCs 
(Discrete Cosine Series Coefficients). Using DCTC/DCSC features and an HMM 
recognizer, the highest accuracy phonetic recognizer obtained with English (74%) is an 
improvement over the best accuracy obtained with the more typical 39 MFCC feature set 
(71.4%).  
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Section 4, “Automatic word to morpheme decomposer for Russian,” reports progress on 
an approach to ASR for Russian. Unlike English, and many other western European 
languages, Russian has a very unconstrained grammar system (many allowable word 
orderings, with essentially the same meaning) and an extremely large word vocabulary. 
Words can however be decomposed into base units called morphemes, consisting 
primarily of prefixes, roots, and suffixes. The base part of the meaning is the root. There 
are orders of magnitude fewer roots than words in Russian, and one approach to Russian 
ASR would be to first recognize morphemes (especially roots) and then reconstruct 
words from morpheme strings and grammar rules. However, to develop a Russian ASR 
system, an automatic word to morpheme convertor is needed for training purposes. 
Although such convertors exist they are all proprietary, not well described, and not 
available for general use. In this section of the report, a word to morpheme convertor is 
described and developed using open source Matlab code. Limited experimental tests have 
shown the convertor to be extremely accurate. 
 
Section 5, “Non-uniform frame spacing for speech feature calculations,” is a report on 
our efforts to improve HMM based ASR accuracy by computing features with variable 
frame spacing. It is quite clear from basic principles of speech production that some 
temporal regions in a time-frequency representation of speech are changing quite rapidly 
(for example stop consonants) whereas other regions (especially vowels) are changing 
much more slowly. Although one approach to improving accuracy would seem to be to 
sample features at a fast enough rate to accommodate the rapidly changes regions of the 
short time spectrum, in practice, at least with HMM recognizers, this “oversampling” 
actually degrades accuracy. In this section of the report a few methods for non-uniform 
sampling of features and corresponding experimental results are summarized. 
Unfortunately none of these methods proved useful in terms of improving ASR accuracy. 
However, we still speculate that better measures of spectral change coupled with 
modifications to the recognizer itself, have promise for this general approach.   
 
Section 6, “A toolbox for a complete automatic speech recognition system,” describes a 
suite of tools for developing an automatic speech recognition system. The kernel of the 
toolbox is the Hidden Markov Model ToolKit Version 3.4 (HTK 3.4). The framework is 
developed in Matlab running under the MS windows operating system. Key steps include 
forced alignment (if needed), front end feature calculations, acoustic model training, 
including monophone and triphone models, language modeling (two options available, 
one for building a simple bigram, another for more complex n-gram tasks), and decoding 
(which provides two decoders, one for a small vocabulary task, one for a large 
vocabulary task).  
 
Section 7, “Forced alignment tool package user manual,” is a suite of tools, also based on 
Matlab and the HTK, which describes in detail the use of the forced alignment part of the 
ASR toolbox, from section 6. This toolbox creates accurate phonetic labelling of 
pronunciations from the raw wave files and word level transcriptions. The output of this 
toolbox is used in subsequent tools.   
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Section 8, “A tool for speech feature extraction--tfrontm guide,” describes the setup and 
use of the front end analysis package which can be used with the ASR toolbox, from 
section 6. This tool is completely written in Matlab. The center pieces is DCTC/DCSC 
analysis, as described in section 3, but there are also options for MFCCs, deltas,  pitch 
tracking,  and other front end analysis types. 
 
3. GENERALIZED SPECTRAL-TEMPORAL FEATURES FOR 
REPRESENTING SPEECH INFORMATION 
 
3.1. Introduction and background 
 
Over many years, for both automatic speech recognition (ASR) and general speech 
science applications, there is an ongoing search for “good” acoustically derived features. 
The meaning of “good” depends on the particular intended usage, but generally includes 
the following elements: 
 
1. Relevance:  Generally, speech features should closely reflect the main characteristics 
of speech activities for speech production and/or speech perception. For the case of 
features intended for use in speech science or speech therapy applications, this property is 
very important. For ASR applications, this property is only indirectly important. 
Presumably, but not necessarily, features which mimic human processing of speech will 
also be more effective for ASR.  
 
2. Compactness: Due to issues such as the “curse of dimensionality" [1] in obtaining 
robust estimates of parameter distributions in various tasks, such as speech recognition, 
speaker identification, etc., the information in speech should be encoded with a relatively 
small number of features. 
 
3. Completeness: The features should represent all speech information of interest. 
 
4. Robustness:  “Good" speech features should have very similar values for similar 
sounding speech, even in the presence of noise.  Humans clearly have the ability to 
recognize speech sounds under a broad range of conditions, including distortion and 
noise. For ASR, a goal is that recognition be accurate under a similar broad range of 
conditions.   
 
In this section of this report, a speech frontend is presented which extracts speech 
features guided by the above general principles, and for which tradeoffs can easily be 
explored to tune features for best “performance.”  The primary tradeoffs explored are 
between time and frequency resolution, a fundamental issue in short time spectral 
analysis. 
 
As mentioned above, speech production and perception aspects of speech science form 
the foundation for signal processing to extract speech features. In terms of speech 
production, by far the most widely used acoustic features for characterizing vocal tract 
shape are formants. According to the classic Peterson and Barney's vowel study [2], 
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formants, corresponding to resonant frequencies (poles) in the vocal tract, are most 
effective for distinguishing vowels. However, for many more complex phones, such as 
fricatives, nasals, and stop consonants, poles of the vocal tract transfer function are not 
sufficient, and zeros must be considered. For ASR applications, guided by the underlying 
importance of the formants, and the signal processing idea that nearly any transfer 
function can be approximated by a high order all pole model, the vocal tract is greatly 
simplified to an all-pole system, such as in the Perceptual Linear Predictive (PLP) 
frontend [3]. More typically, however, for ASR, a pole or pole-zero approximation to the 
vocal tract model is replaced by cepstral features [4], which primarily extract vocal tract 
information from the log magnitude of the spectral envelope, and remove voice source 
information, and thus, implicitly encode the formants.  
 
Speech perception research, both from the physiology and psychoacoustic fields, 
establishes the fundamental theory for many widely used speech frontends. Typically, 
frequency and time resolution of speech perception are the dominant two considerations 
that a frontend is designed upon. As pointed out in Zwicker's work [5], frequency 
resolution stems from the cochlea's frequency selectivity properties: a sound wave, when 
travelling along the basilar membrane, causes maximum displacement of the membrane 
oscillation at different positions and with different resolutions for different frequency 
components. This physiological property, leads to the development of various perceptual 
frequency scales, and these perceptual scales, in turn, lead to the use of auditory filter 
banks to mimic the frequency selectivity of human ears. 
 
As one example, Mel Frequency Cepstral Coefficients (MFCCs), proposed by Bridle and 
Brown [6], are widely used as speech features. Figure 1(a) is a block diagram of a typical 
MFCC frontend. After being pre-emphasized and taking the Short Time Fourier 
Transform (STFT), a speech signal is filtered through a set of triangular filters which 
evenly partitions the Mel scale into 26-30 equal-width bins. On the Mel scale, according 
to Stevens et al. [7], the "perceived frequency” (pitch) becomes linear. For example, 
psychologically, a pitch of 1000 Mels is 2 times higher than a pitch of 500 Mels. The 
bandwidths of these filters reflect perceptual frequency resolution. The nonlinear 
logarithmic-like frequency “warping” function that maps the Hertz scale to the Mel scale 
results in a higher bandwidth in the Hertz domain as frequency increases. Thus, the 
frequency resolution decreases at high frequencies, which means that a wider range of 
frequency components are perceptually nearly identical. The output power of each filter 
channel is then nonlinearly amplitude scaled to convert the physical loudness to the 
psychologically perceived loudness, which is linearly proportional to the neuron firing 
rate of the auditory nerves [8]. Then, these amplitude-scaled speech powers on the Mel 
scale are converted into a set of cepstral features by taking the Discrete Cosine Transform 
(DCT), which also eliminates the heavy correlations among the filter bank output powers 
due to the overlapping of the channels.  
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Figure 1: Comparison of the MFCC and PLP structure. These block diagrams produce static features. The first 

and second order differentials of the static features are usually appended as dynamic features. 
 
Another fundamental perceptual scale which is used to create auditory filter banks is the 
Bark scale. This scale is based on the concept of Critical Bands in Fletcher's canonical 
paper [9], in which he first pointed out that frequency components in the same critical 
band are perceptually nearly indistinguishable. One popular use of the Bark scale is the 
PLP frontend developed by Hermansky [3]. Figure 1(b) depicts the block diagram of this 
frontend. Suggested by Hermansky, the complex frequency components in the speech are 
filtered through typically 16 trapezoids uniformly spaced on the Bark scale, with the 
bandwidth of each channel approximately 4 Barks. Though the Bark frequency warping 
and the Mel frequency warping are derived using very different psychoacoustic methods, 
they both have high frequency resolution at low frequencies and low frequency resolution 
at high frequencies. Unlike the MFCC frontend, in the PLP framework, the pre-emphasis 
step is performed by an equal-loudness compensation for each filter channel output as an 
approximation to the nonequal sensitivity of human hearing at different frequencies [10]. 
Another salient difference from MFCCs is the Linear Predictive (LP) processing in the 
Bark domain, which explicitly models the formant positions of the vocal tract by a set of 
LP coefficients computed by Durbin's recursive method [11], and finally, these LP 
coefficients are converted into a set of cepstrum coefficients by another recursion [12]. 
As a variant to the Bark scale, Moore and Glasberg proposed the Equivalent Rectangular 
Bandwidth (ERB) scale [13], and they showed that the auditory frequency resolution can 
be more precisely described by the ERB scale than the Bark scale based on the famous 
"notched-noise data" experiments. Based on this scale, gammatone filter banks were first 
proposed by Patterson et al [13], and Slaney in [14], proposed an efficient 
implementation of the gammatone filter bank by viewing each filter as a cascade of four 
2nd order filter stages. 
 
These perceptual scales for frequency only capture the static frame-based frequency 
information of the speech spectrum. They do not characterize spectral trajectories over 
time. However, in principle, a sufficiently large set of frequency-based features, plus 
voice source information, should contain nearly all speech information, since high quality 
speech can be synthesized from these static features, with no need for temporal 

Approved for Public Release; Distribution Unlimited. 
5 
 



 

information. Thus, for ASR, at least in principle, a powerful recognizer should also be 
able to extract the dynamic trajectory and make decisions from static features alone.  
Although the fundamental strength of HMMs (that is Hidden Markov Models, the 
dominant and effective method for modeling acoustic phonetic information in ASR 
systems) is the ability to recognize patterns in temporal sequences of variable length, 
apparently the HMM framework is not able to adequately capture the patterns contained 
in sequences of static speech features alone. The dynamic features appear to make these 
static patterns more easily discernible. For the case of HMM ASR systems, dynamic 
features can be viewed as a compensation for a deficiency in HMMs. 
 
In [15,16,17,18], a simple but very effective type of dynamic features is obtained by 
computing the time “derivatives” of the static features. Empirically, it has been 
determined that ASR performance improves considerably (reduction in error rate on the 
order of 20%) if the so called delta and acceleration (the second order differential) terms 
are appended to the static features.  Mathematically, the delta terms are computed as: 

 

𝛥𝛥𝑡𝑡 = ∑ 𝜃𝜃(𝑐𝑐𝑡𝑡+𝜃𝜃−𝑐𝑐𝑡𝑡−𝜃𝜃)𝛩𝛩
𝜃𝜃=1

2∑ 𝜃𝜃2𝛩𝛩
𝜃𝜃=1

          (1) 

where 𝛥𝛥𝑡𝑡 is the differential at time t computed in the context from the static coefficients 
𝑐𝑐𝑡𝑡−𝜃𝜃  to 𝑐𝑐𝑡𝑡+𝜃𝜃 , with 2𝛩𝛩 + 1 being the window length. It can be seen that this method 
simply estimates the continuous time derivative at each time instant using its discrete 
time approximation. It does not account for the non-uniform time resolution of the human 
auditory system. 
 
Spectral-temporal modulation features are much more effective than the delta method in 
solving the problem of non-uniform time-frequency resolution as well as efficient 
sampling of short time representation. In 1994, Drullman et al. [19] found that the most 
important spectral trajectory information over time for speech perception was in the range 
of 1-16Hz modulation frequencies. Highlighted by this finding, conceptually, modulation 
features are typically computed by first dividing the spectrum into frequency bands, and 
then representing the trajectory envelope of each band by temporal features. In order to 
exploit the information at the modulation frequencies, relatively long time blocks are 
analyzed. The modulation features of each band are usually either fully appended to the 
static features, or selected by algorithms. To encode the temporal trajectory of spectral 
bands by modulation features, various methods have been proposed. In [20], Athineos et 
al. use the dual of conventional linear prediction in the time domain for each sub-band to 
model the poles of the temporal envelope. In [21], Valente and Hermansky developed a 
hierarchical and parallel scheme combining independent classifier outputs and 
modulation frequency channels. 
 
More recently, Gabor-filter-based approaches to extracting modulation features with 
direction oriented time-frequency resolution have been proposed. Gabor filters are 
defined using the product of a two-dimensional Gaussian envelope and a complex 
exponential function with a localized region in the time-frequency plane. The strength of 
the Gabor filter bank is that it captures Localized Spectro-Temporal Features (LSTFs) as 
suggested in [22,23]. However, the large number of parameters, which allow Gabor 
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filters to be tuned toward different directions of the spectral-temporal modulation, present 
the problem of how to select the most effective and compact feature set for ASR. One 
feature selection method proposed in [24] uses a Feature-Finding Neural Network 
(FFNN). The importance of each feature is evaluated by the increase of RMS 
classification error after its removal from the feature set. Though the linear classifier has 
a relatively fast converging rate, the training process is still much slower than that for 
other conventional ASR feature extraction methods. 
 
Based on this prior extensive ground work, this section presents a generalized spectral-
temporal feature extraction frontend for representing speech information. This feature set 
presents a detailed look at one general flavor of time-frequency features, focusing on the 
primary properties of human hearing: frequency and time resolution, but which 
encompasses quite a range of time-frequency representation options. It’s not just one 
specific type of frontend, but should be viewed as a unified framework that realizations 
of the general time-frequency concepts can be easily implemented and tuned. Based on a 
set of frequency warping and frequency-dependent time warping functions, it’s flexible 
enough to easily evaluate the relative importance of the spectral and temporal features, 
and to explore the trade-off between frequency selectivity and time resolution. In addition, 
a wide range of conventional filter bank-based static features as well as the time 
derivative dynamic terms can be easily incorporated into this generalized framework by 
modifying the basis vectors. Thus, it provides a common yardstick to study, compare and 
develop different time-frequency representations.   
 
3.2. Method 
 
In general terms, the spectral-temporal features that are the primary focus of this section, 
are viewed as weighted sums of short time spectral magnitudes, computed at each 
(sample) instant of time, from all short-time spectral frequency components in a temporal 
region centered at each sample instant in time. Figure 2(a) presents a high level diagram 
of the proposed frontend. After an utterance has been pre-emphasized and segmented into 
frames, a time-frequency representation (TFR) of the speech, denoted by 𝑋𝑋(𝑡𝑡,𝑓𝑓)  is 
obtained by computing the magnitude-squared Short-Time Fourier Transform (STFT). In 
this work, the notation t and f denote the physical time (in seconds) and frequency (in 
Hertz). The STFT has uniform frequency and time resolution over the entire time-
frequency plane, determined by the analysis window shape and width [25]. This 
representation does not take into account the non-uniform perceptual scale of the 
peripheral auditory system. Thus, we first define  𝑡𝑡′  and 𝑓𝑓′  as perceptual time and 
frequency scales, whose desirable properties will be described in detail. Then, a set of 
features 𝐹𝐹𝐹𝐹𝐹𝐹𝑡𝑡(𝑖𝑖, 𝑗𝑗) for the time block centered at time instant t, can be expressed as: 
 

𝐹𝐹𝐹𝐹𝐹𝐹𝑡𝑡(𝑖𝑖, 𝑗𝑗) = ∫ ∫ 𝐹𝐹(𝑋𝑋′(𝑡𝑡′,𝑓𝑓′)) ∙ 𝐵𝐵𝐵𝐵𝑖𝑖,𝑗𝑗(𝑡𝑡′,𝑓𝑓′)𝑑𝑑𝑓𝑓′𝑑𝑑𝑡𝑡′ 1
𝑓𝑓′=0

1
2�

𝑡𝑡′=−1 2�
  (2) 

 
In Eq.2, the feature extraction is performed entirely using perceptual scales, where 
𝑋𝑋′(𝑡𝑡′,𝑓𝑓′) is the power spectrum of a time-frequency block on this domain, in which the 
frequency 𝑓𝑓′  has been normalized to the range of {0,1} by subtracting an offset and 
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dividing by a scaling factor. Similarly, the perceptual time 𝑡𝑡′ has been normalized to the 
range of {− 1

2� , 1 2�  }, with 𝑡𝑡′ = 0 corresponding to the center of the time block, which 
typically spans approximately 200ms (unscaled physical time).  The function 𝐹𝐹(∙) 
nonlinearly maps the power spectrum to a psycho-loudness scale, typically using a 
logarithmic scaling, or a power-law nonlinearity [26]. Finally, the amplitude-scaled 
power spectrum is weighted by a set of two-dimensional basis vectors 𝐵𝐵𝐵𝐵𝑖𝑖,𝑗𝑗 also defined 
for the perceptual domain (𝑡𝑡′,𝑓𝑓′) . The number of features extracted from a time-
frequency block depends on the number of basis vectors used.  
 

 
Figure 2: Block diagrams of the proposed frontend. (a). The amplitude-scaled power spectrum is weighted by a 
set of 2-D basis vectors. (b). The DCTC-DCS implementation. In this method, DCTCs are computed first, 
followed by DCS. The time warping in the DCS basis vectors is uniform for all frequencies. (c). The DCS-
DCTC implementation. A set of DCS coefficients is obtained, followed by DCTC. This 
implementation enables frequency-dependency in the DCS basis vectors. 
 
In this section, a set of two-dimensional cosine basis vectors for 𝐵𝐵𝐵𝐵𝑖𝑖,𝑗𝑗  are used to 
compactly encode the spectral envelope as well as the spectral trajectory, and also to de-
correlate the features. Specifically, the 2-D cosine basis vectors operating in the 
perceptual space are defined as:  
 

𝐵𝐵𝐵𝐵𝑖𝑖,𝑗𝑗(𝑡𝑡′, 𝑓𝑓′) = 𝑐𝑐𝑐𝑐 𝑠𝑠(𝜋𝜋𝑖𝑖𝑓𝑓′) ∙ 𝑐𝑐𝑐𝑐𝑠𝑠(𝜋𝜋𝑗𝑗𝑡𝑡′)                                    (3) 
0 ≤ 𝑖𝑖 ≤ number of frequency bins,     0 ≤ 𝑗𝑗 ≤ block length in frames 

 
From Eq. (2) and (3), it can be seen that the warping from f  to 𝑓𝑓′ and t to 𝑡𝑡′, together 
with their derivatives 𝑑𝑑𝑓𝑓′ and 𝑑𝑑𝑡𝑡′ characterize the desired frequency and time resolution 
of human hearing. The following few paragraphs mathematically show how the nonlinear 
mappings are incorporated into the feature calculations. 
 
Considering frequency variables first, a frequency warping, which specifies the relation 
between the perceptual frequency 𝑓𝑓′ and the physical frequency 𝑓𝑓 is defined: 
 

  𝑓𝑓′ = 𝑔𝑔(𝑓𝑓), 0 ≤ 𝑓𝑓 ≤ 1                                                 (4) 
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where the physical frequency range has also been normalized to {0,1}1. Thus, the 𝑑𝑑𝑓𝑓′ 
term in Eq. (2) is equivalent to: 
  

                  𝑑𝑑𝑓𝑓′ =
𝑑𝑑𝑔𝑔
𝑑𝑑𝑓𝑓

𝑑𝑑𝑓𝑓                                                                 (5) 

 
As per the discussion in a previous section, one reasonable choice for the form of the 
frequency warping 𝑔𝑔(𝑓𝑓), is a Mel-shape warping defined as: 
 

𝑔𝑔(𝑓𝑓) = 𝐶𝐶 ∙ 𝑙𝑙𝑐𝑐𝑔𝑔10(1 +
𝑓𝑓
𝑘𝑘

)                                                 (6) 
 
where k is an adjustable warping factor between 0 and 1 that controls the degree of the 
warping, and the constant  𝐶𝐶 is chosen to insure that 𝑓𝑓 = 1 is mapped to 𝑓𝑓′ = 1. It's easy 
to see that this Mel-shape warping becomes the normalized version of the most widely 
used "standard" Mel warping proposed by O'Shaughnessy [27] if k=0.0875 and C=0.9137 
for the frequency range of 0 to 8000Hz. Another option, according to Smith and Abel's 
work [28], is to use a bilinear warping to mimic the Bark scale, as per:  
  

𝑔𝑔(𝑓𝑓) = 𝑓𝑓 +
1
𝜋𝜋
𝑡𝑡𝐹𝐹𝑡𝑡−1 �

𝛼𝛼 ∙ 𝑠𝑠𝑖𝑖𝑡𝑡(2𝜋𝜋𝑓𝑓)
1 − 𝛼𝛼 ∙ 𝑐𝑐𝑐𝑐𝑠𝑠(2𝜋𝜋𝑓𝑓)�                                                    (7) 

 
with α being the warping factor ranging from 0 to 1. In Figure 3, a family of five bilinear 
warpings with different 𝛼𝛼  values are plotted, starting from 𝛼𝛼 = 0 , and gradually 
increasing. For comparison, the normalized Mel warping using O'Shaughnessy's equation 
in [27], and the normalized Bark warping according to Wang et al. are also depicted [29]. 
The Mel and the Bark warping can be closely approximated by the bilinear warping using 
appropriate warping factors.    

1 In the derivation of the frequency warping g(f) and its derivative, for convenience, the normalized frequency range 
{0,1} of f corresponds to the full un-normalized range {0, Fs/2} where Fs/2 is the Nyquist frequency. The normalized 
perceptual frequency f’ in {0,1} corresponds to the range of 0 to the perceptual frequency of  Fs/2. In practice, if the 
desired frequency range is not {0, Fs/2}, one can simply extract the corresponding segment of the full warping curve 
defined in Eq.(6) or (7), as well as their derivatives, and re-normalize this segment of g(f) to the range of {0,1}.  
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Figure 3: Normalized bilinear warping with different warping factors. Mel and Bark warping shown for 

comparison. 
 
From Eq. (5), in contrast to using an auditory filterbank to determine frequency 
selectivity, such as in the MFCC, PLP or gammatone frontends [3,6,13], the derivative of 
the frequency warping determines the frequency resolution for each frequency. In the 
filterbank methods, the range of perceptually indistinguishable frequency components 
that fall into a channel is quantified by the filter bandwidth, which in turn is determined 
by the warping function. So, we can view a filterbank as a quantizer which partitions the 
perceptual frequency scale into a finite number of equal but coarse intervals. In the 
proposed approach, this quantization is effectively continuous (in practice limited only by 
the frame length of each analysis window and the spacing of FFT samples used to 
compute the original spectrum).  The frequency selectivity is reflected by the derivative 
term dg(f)/df  in a straightforward way.  
 
The frequency selectivity term can be interpreted from a physiological perspective. The 
term dg/df can be thought of as how far the maximal displacement position advances 
along the basilar membrane caused by a 1 Hz change at frequency f. On the physical f 
scale, the same ∆𝑓𝑓 corresponds to small displacement at high frequencies versus large 
displacement at low frequencies. Thus, the frequency resolution is non-unifrom, as 
defined by dg/df. However, on the perceptual 𝑓𝑓′ scale, this non-uniformity vanishes since 
frequency components in the same ∆𝑓𝑓′ covers approximately the same range along the 
basilar membrane for both low and high frequencies.  
 
Next, the relation between the perceptual time 𝑡𝑡′ and linear time t is specified through a 
time warping with the range of t also normalized, but to the range {− 1

2� , 1 2�  }: 
 

𝑡𝑡′ = ℎ(𝑡𝑡,𝑓𝑓)               − 1
2
≤ 𝑡𝑡 ≤ 1

2
 ,      0 ≤ 𝑓𝑓 ≤ 1            (8) 

 
The perceptual time  𝑡𝑡′  can be viewed as a psychological time scale that defines a 
“pseudo” time instant at which an acoustic event (such as the evolution of the spectral 
envelope over time) that happens at physical time t is perceived by the auditory neurons. 
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The insight of this perceptual time is more clear and relevant in terms of its derivative 
with respect to 𝑡𝑡: 

𝑑𝑑𝑡𝑡′ =
𝑑𝑑ℎ(𝑡𝑡,𝑓𝑓)
𝑑𝑑𝑡𝑡

                                                            (9) 
 
This time resolution term indicates how far apart two events, separated by unit time (1 
sec) on the linear scale, are when they are perceived. A large value means that two 
acoustic events are clearly psychologically distinguishable whereas a small value shows 
that the time boundary between events is blurred, and thus cannot be well resolved. When 
characterizing the temporal trajectory of a frequency component  𝑓𝑓 over the period of a 
time block, it's reasonable to use non-uniform time resolution by imposing higher 
resolution near the center of the block, which is the current "observation" frame, than at 
the far ends. This can also be explained by the relative importance of the spectral 
information: to identify the content of the current frame with the help of its left and right 
context, it is reasonable to assume high relative importance for contexts close to the 
current frame than for those far it. Hence, important temporal changes of the spectrum 
envelope need to be clearly resolved, whereas less helpful parts are suppressed. 
Therefore, in this work, the choice of the shape for dh/dt is approximately Gaussian over 
a time block for each frequency. In the experimental work, a Kaiser window for dh/dt is 
used, which has one parameter, defined as the time warping factor, that conveniently 
controls the degree of warping. 
 
Note that in Eq. (8), the time warping is shown with dependence on frequency 𝑓𝑓, and so 
is the case for the time resolution in Eq. (9). This allows an exploration of the trade-off 
between frequency and time resolution, including making these tradeoffs frequency 
dependent, which is a basic property of the peripheral auditory filters. Based on the 
psychoacoustic masking experiments in [30], the very narrow bandwidth at low 
frequencies produces high frequency resolution, but also prolongs the "ring" time at the 
onset and offset transients for short signals, and thus degrades the time resolution of the 
excitation patterns. This trade-off is also justified in [31] by neurophysiological 
experiments and in [32], by the gap-in-noise detection experiments, which provides 
evidence that human subjects are able to detect short gaps with higher time resolution 
between narrow band noise segments with increasing center frequencies. Despite these 
properties of human hearing, it's not yet clear whether this trade-off has a significant 
impact on ASR. Our work provides one way to account for and examine this effect by 
incorporating frequency-dependency in the time warping. Specifically, the shape for the 
term dh/dt can be made more “peaky” at high frequencies than at low frequencies. Figure 
4 plots the desirable time resolution using a Kaiser window with different warping factors 
for different frequencies. The time resolution is non-uniform both over time within a 
block and over frequency. 
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Figure 4: Desirable time resolution dh/dt for low and high frequencies using a Kaiser window. The time 

resolution is non-uniform over both time and frequency. 
 
Now that the principles and reasonable forms of the frequency and time warping have 
been established, also note that the magnitude of the power spectrum on the perceptual 
scale is the same as it is on the physical time-frequency domain, and with t and 𝑡𝑡′, 𝑓𝑓 and 
𝑓𝑓′ being normalized to the same range respectively, Eq. (2) can be rewritten in terms of t 
and  f  by substituting in Eq. (3)(4)(5)(8)(9): 
 

𝐹𝐹𝐹𝐹𝐹𝐹𝑡𝑡(𝑖𝑖, 𝑗𝑗) = � � 𝐹𝐹�𝑋𝑋(𝑡𝑡, 𝑓𝑓)� ∙ 𝑐𝑐𝑐𝑐 𝑠𝑠�𝜋𝜋𝑖𝑖𝑔𝑔(𝑓𝑓)�
𝑑𝑑𝑔𝑔(𝑓𝑓)
𝑑𝑑𝑓𝑓

1

𝑓𝑓=0

1
2�

𝑡𝑡=−1 2�

∙ 𝑐𝑐𝑐𝑐 𝑠𝑠�𝜋𝜋𝑗𝑗ℎ(𝑡𝑡,𝑓𝑓)�
𝑑𝑑ℎ(𝑡𝑡,𝑓𝑓)
𝑑𝑑𝑡𝑡

𝑑𝑑𝑓𝑓𝑑𝑑𝑡𝑡                                                                      (10) 
 
Eq. (10) can be more conveniently interpreted by defining modified basis vectors over 
frequency f (compared to the original form over 𝑓𝑓′) as: 
 

𝜑𝜑𝑖𝑖(𝑓𝑓) = 𝑐𝑐𝑐𝑐 𝑠𝑠�𝜋𝜋𝑖𝑖𝑔𝑔(𝑓𝑓)�
𝑑𝑑𝑔𝑔(𝑓𝑓)
𝑑𝑑𝑓𝑓

                                          (11) 

                                             0 ≤ 𝑖𝑖 ≤ number of frequency bins                               
 
and modified frequency-dependent basis vector over time t as: 
 

𝜓𝜓𝑗𝑗(𝑡𝑡, 𝑓𝑓) = 𝑐𝑐𝑐𝑐 𝑠𝑠�𝜋𝜋𝑗𝑗ℎ(𝑡𝑡, 𝑓𝑓)�
𝑑𝑑ℎ(𝑡𝑡,𝑓𝑓)
𝑑𝑑𝑡𝑡

                                            (12) 
                                               0 ≤ 𝑗𝑗 ≤ block length in frames                            
 
Using the basis vectors in Eq. (11) (12), Eq. (10) can be rewritten as: 
 

𝐹𝐹𝐹𝐹𝐹𝐹𝑡𝑡(𝑖𝑖, 𝑗𝑗) = ∫ ∫ 𝐹𝐹(𝑋𝑋(𝑡𝑡,𝑓𝑓)) ∙ 𝜙𝜙𝑖𝑖,𝑗𝑗(𝑡𝑡,𝑓𝑓)𝑑𝑑𝑓𝑓𝑑𝑑𝑡𝑡 1
𝑓𝑓=0

1
2�

𝑡𝑡=−1 2�
                          (13) 

 
where the modified two-dimensional basis vectors 𝜙𝜙𝑖𝑖,𝑗𝑗(𝑡𝑡,𝑓𝑓) is the product of the basis 
vectors in Eq. (11) and (12). 
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Figure 5: Two-dimensional basis vector ϕ_(1,1) (t,f), with uniform time warping over all frequencies using a 

Kaiser window with β=5, but a bilinear frequency warping with varying degree. 
 

 

 
Figure 6: Two-dimensional basis vector ϕ_(1,1) (t,f) with linear frequency scale but frequency-dependent time 

warping using a Kaiser window. β_low and β_high are the low and high frequency warping factors. 
 
In Figure 5, the two-dimensional basis vector 𝜙𝜙1,1(𝑡𝑡,𝑓𝑓) is plotted with uniform time 
warping over the entire frequency range, using a Kaiser window with 𝛽𝛽 = 5, but with 
various values of 𝛼𝛼, i.e. the degree of the bilinear frequency warping. It can be seen that 
starting from the linear frequency scale which has uniform resolution, the basis vector 
becomes more sharply peaked at low frequencies as we impose higher frequency 
resolution at low frequencies through a larger warping factor, i.e. higher dg/df values. In 
Figure 6, the same basis vector is plotted using increasing time warping as frequency 
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increases. The Kaiser window 𝛽𝛽 value is linearly interpolated between 𝛽𝛽𝑙𝑙𝑙𝑙𝑙𝑙 and 𝛽𝛽ℎ𝑖𝑖𝑖𝑖ℎ. 
The higher time resolution for high frequencies makes the basis vector more concentrated 
near the center of the block. 
 
Another option for the two-dimensional basis vectors, rather than the cosine expansion, is 
to use a Gabor filterbank. As described in the work of [22,23,33], Gabor filtering is 
performed by a two-dimensional correlation (which is slightly different than the 
integration operation in this work) between the Gabor filterbank and the perceptual time-
frequency plane (𝑡𝑡′,𝑓𝑓′). Each filter is defined as: 
 

𝐺𝐺(𝑡𝑡′, 𝑓𝑓′) = 𝑡𝑡(𝑡𝑡′,𝑓𝑓′) ∙ 𝐹𝐹(𝑡𝑡′,𝑓𝑓′)                                                  (14) 
 
where 𝑡𝑡(𝑡𝑡′, 𝑓𝑓′) is a Gaussian envelope centered at (𝑡𝑡0′ , 𝑓𝑓0′): 
             

𝑡𝑡(𝑡𝑡′,𝑓𝑓′) =
1

2𝜋𝜋𝜎𝜎𝑓𝑓𝜎𝜎𝑡𝑡
𝐹𝐹𝑒𝑒𝑒𝑒 �

−(𝑓𝑓′ − 𝑓𝑓0′)2

2𝜎𝜎𝑓𝑓2
+
−(𝑡𝑡′ − 𝑡𝑡0′ )2

2𝜎𝜎𝑡𝑡2
�                                 (15) 

 
and 𝐹𝐹(𝑡𝑡′,𝑓𝑓′) is the complex Euler function: 
 

𝐹𝐹(𝑡𝑡′,𝑓𝑓′) = 𝐹𝐹𝑒𝑒𝑒𝑒�𝑗𝑗𝜔𝜔𝑓𝑓(𝑓𝑓′ − 𝑓𝑓0′) + 𝑗𝑗𝜔𝜔𝑡𝑡(𝑡𝑡′ − 𝑡𝑡0′ )�                            (16) 
 

The width of the Gaussian envelope is defined by 𝜎𝜎𝑓𝑓  and 𝜎𝜎𝑡𝑡 , and the modulation 
frequencies 𝜔𝜔𝑓𝑓 and 𝜔𝜔𝑡𝑡 modulates the filter in particular directions. In Figure 7, we plot 
the real part of a group of Gabor filters on the physical time-frequency domain centered 
around 1000Hz and zero time instant, with various directions tuned by the modulation 
frequencies. Indeed, directionality is the most salient difference between Gabor filters 
and the cosine expansion used in this section. Gabor filters can be adjusted towards any 
directions whereas the cosine transform only represents modulation of the spectrum along 
the vertical and horizontal axis (compare Fig.7 with Fig.5,6). The deeper reason is that 
the Gabor approach and the method presented in this section model very different 
auditory properties. The directionality of the Gabor frontend stems from the response of 
the neurons to combinations of spectral-temporal modulation frequencies in the spectral-
temporal receptive field [34], whereas the proposed framework in this section aims to 
model the time-frequency tradeoff of the peripheral auditory system. 
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Figure 7: Real part of Gabor filters in the physical time-frequency plane. Directions are determined by ω_f  and 

ω_t. The unit of ω_t/2π is Hz, and the unit of ω_f/2π is cycles/Hz. 
 
As mentioned before, a big drawback of the Gabor frontend is the extremely large 
number of features typically computed with this approach. Feature selection is usually 
conducted by a Feature Finding Neural Network [24]. In addition to the obvious issue of 
computational time, another "pitfall" is that feature selection may result in an optimal set 
only for the database used during this selection. The proposed frontend in this work does 
not have these issues, since the 2-D cosine basis vectors compactly and efficiently encode 
both the spectral envelope as well as the spectral trajectory with appropriate resolution, 
thus yielding a relatively small number of features for each block. However, it is feasible 
to modify the proposed frontend to account for the directionality of spectral-temporal 
patterns in a similar but not totally identical way as the Gabor filterbank (the modified 
features using cosine basis vectors are not as "localized" as the Gabor features). In our 
prior work [35], this is achieved by the idea of rotating the 2-D cosine basis vectors by 
various angles.    
 
3.3. Implementation  
 
The 2-D integral in Eq. (10) can be implemented in various ways, depending on the order 
of the two 1-D integrations. All the continuous integrations are carried out by vector 
inner product between basis vectors and the sampled time-frequency plane. First, if the 
dependence on f is omitted in the time warping, i.e. uniform time warping for all 
frequency components, integrating by any order (first over f, and then over t, or the 
reverse) are equivalent. Conventionally, frequency integration is performed first, which 
generates a set of static features called Discrete Cosine Transform Coefficients (DCTCs): 
 

𝐷𝐷𝐶𝐶𝐷𝐷𝐶𝐶(𝑖𝑖) = ∫ 𝐹𝐹(𝑋𝑋(𝑡𝑡,𝑓𝑓)) ∙ 𝜑𝜑𝑖𝑖(𝑓𝑓)𝑑𝑑𝑓𝑓 1
𝑓𝑓=0                                       (17) 
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where 𝜑𝜑𝑖𝑖(𝑓𝑓) is the ith static basis vector, as defined in Eq. (11). Then, the trajectory of 
these DCTCs is encoded by the integration over time, yielding a set of Discrete Cosine 
Series Coefficients (DCSCs), which are  also referred to as dynamic features: 
 

𝐷𝐷𝐶𝐶𝐷𝐷𝐶𝐶(𝑖𝑖, 𝑗𝑗) = ∫ 𝐷𝐷𝐶𝐶𝐷𝐷𝐶𝐶(𝑖𝑖)
1
2�

t=−1 2�
∙ 𝜓𝜓𝑗𝑗(𝑡𝑡)𝑑𝑑𝑡𝑡                                       (18) 

 
where 𝜓𝜓𝑗𝑗(𝑡𝑡) is the jth dynamic basis vector, as defined in Eq. (12) with the dependence 
on f  being removed. These DCSCs features are then input to the recognizer. The diagram 
of this implementation was plotted in Figure 2(b). Figure 8 depicts the first three DCTC 
and DCSC basis vectors, using a Mel-shape and a Kaiser window of 𝛽𝛽 = 5 for frequency 
and time warping respectively. The zeroth terms represent the envelope of the basis 
vectors, which also define the spectral/temporal resolution. 
 

      
Figure 8: The first 3 DCTC (left-a) and DCSC (right-b) basis vectors. A Mel-shape and a Kaiser window are 

used for frequency and time warping respectively. 
 
Unlike some other spectral-temporal modulation frontends, such as RASTA [36], TRAPS 
[37], as well as the Gabor method mentioned in the previous section, in which 
modulation frequencies are explicitly defined, the DCTC and DCSC basis vectors in the 
proposed frontend do not use this concept. However, the DCSC basis vectors achieve 
similar effects as non-causal FIR low pass temporal filters, by encoding the temporal 
evolution of integrated spectral dynamics. Similarly, the DCTCs can also be viewed as 
outputs of spectral low pass filtering. Based on this idea, parameters in the DCTC/DCSC 
implementation can be flexibly varied to examine the trade-off of the overall spectral-
temporal resolution. It should be pointed out that the meaning of the "overall" spectral 
and temporal resolution being discussed at this point is somewhat different than the 
auditory time-frequency resolution built into the warping of the basis vectors, as 
presented in previous sections. Here, the overall spectral-temporal resolution, based on 
the filtering point of view, can be interpreted as how much detail of the static spectrum 
and dynamic trajectory are preserved after the low pass filtering, whereas the time-
frequency resolution represented by the derivatives of the warping (which, as discussed 
in previous sections, also poses a trade-off effect) is an intrinsic property of human 
hearing. As mentioned, the proposed DCTC/DCS frontend can be tuned to emphasize 
either side of the overall spectral or temporal resolution. For increased emphasis on the 
spectral information, a long frame length and a relatively large number of DCTCs can be 
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employed, with a relatively small number of DCSCs computed from a long block length, 
whereas for increased emphasis on the overall time resolution, a short frame length and 
frame spacing can be used with a relatively large number of DCSCs computed from a 
relatively short block length. 
 

 
Figure 9: Spectrogram of a speech segment (upper panel) and two rebuilt spectrograms. The bottom left one has 
high spectral resolution and low temporal resolution while the bottom right one has low spectral resolution but 

high temporal resolution. 
 
Figure 9 graphically illustrates this spectral-temporal trade-off. The top panel depicts the 
spectrogram of a speech segment; two rebuilt spectrograms, from DCTC/DCSC terms, 
are presented in the bottom panels. The left one has high spectral resolution but low 
temporal resolution. It is rebuilt using 16 DCTCs, which are computed with a 25ms frame 
length, a 10ms frame space and 4 DCSCs using a block length of 50 frames (500ms). The 
one in the right bottom panel has low spectral resolution, but high temporal resolution. It 
is computed from 8 DCTCs with a 5ms frame length, spaced by 2ms, and 6 DCSCs with 
a block length of 100 frames (200ms). The low frequency components in both rebuilt 
spectrograms are represented with relatively higher auditory frequency resolution due to 
the Mel-shape warping. Comparing the two rebuilt spectrograms, the left panel preserves 
more spectral details in each frame whereas in the right panel, most spectral details are 
eliminated. Also, the spectral trajectory in the left panel is smeared, while in the right 
panel, the trajectory is rebuilt with much more detail.   
 
In the case where the frequency-dependence remains in the time warping, as originally 
proposed in the previous section, the 2-D integration in Eq. (10) can be implemented by 
integrating over the time axis first, followed by another integration over frequency. 
Figure 2(c) depicts the diagram of this configuration. In this case, Eq. (10) can be 
rearranged as: 
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𝐹𝐹𝐹𝐹𝐹𝐹𝑡𝑡(𝑖𝑖, 𝑗𝑗) = � 𝑐𝑐𝑐𝑐𝑠𝑠 (𝜋𝜋𝑖𝑖𝑔𝑔(𝑓𝑓))
𝑑𝑑𝑔𝑔(𝑓𝑓)
𝑑𝑑𝑓𝑓

𝑑𝑑𝑓𝑓� 𝐹𝐹(𝑋𝑋(𝑡𝑡,𝑓𝑓))
1
2�

𝑡𝑡=−1 2�

1

𝑓𝑓=0

∙ 𝑐𝑐𝑐𝑐𝑠𝑠 (𝜋𝜋𝑗𝑗ℎ(𝑡𝑡,𝑓𝑓))
𝑑𝑑ℎ(𝑡𝑡,𝑓𝑓)
𝑑𝑑𝑡𝑡

𝑑𝑑𝑡𝑡                                                                           (19) 
 
The inner integral defines a set of frequency-dependent DCSCs: 
 

   𝐷𝐷𝐶𝐶𝐷𝐷𝐶𝐶(𝑗𝑗,𝑓𝑓) = ∫ 𝐹𝐹(𝑋𝑋(𝑡𝑡,𝑓𝑓)) ∙ 𝜓𝜓𝑗𝑗(𝑡𝑡,𝑓𝑓)𝑑𝑑𝑡𝑡 
1
2�

𝑡𝑡=−1 2�
                                (20) 

 
where 𝜓𝜓𝑗𝑗(𝑡𝑡,𝑓𝑓) is the jth DCS basis vector for frequency f, as defined in Eq. (12). Then, 
the outer integral over frequency computes the DCTCs, which yields the final features: 
 

𝐹𝐹𝐹𝐹𝐹𝐹𝑡𝑡(𝑖𝑖, 𝑗𝑗) = 𝐷𝐷𝐶𝐶𝐷𝐷𝐶𝐶(𝑖𝑖, 𝑗𝑗) = ∫ 𝐷𝐷𝐶𝐶𝐷𝐷𝐶𝐶(𝑗𝑗,𝑓𝑓) ∙ 𝜑𝜑𝑖𝑖(𝑓𝑓)𝑑𝑑𝑓𝑓1
𝑓𝑓=0                       (21) 

 
where  𝜑𝜑𝑖𝑖(𝑓𝑓) is the ith DCTC basis vector as in Eq. (11). 
 

 
Figure 10: Spectrogram of a signal consisting of a sequence of sinusoids (top), each 125ms long, with a frequency 
step size of 500Hz. The middle panel rebuilds this signal using uniform time resolution over all frequencies, and 

the bottom panel rebuilds it with it with increasingly higher time resolution as frequency increases. 
 
In Figure 4, the desired time resolution is plotted as a function of f, i.e. DCSCs for low 
frequencies are computed using low time resolution while DCSCs for high frequencies 
use higher time resolution. Figure 10 graphically compares the effects of uniform time 
resolution DCTC/DCS implementation and the frequency-dependent variation. The top 
panel shows the original spectrogram of a sequence of sinusoids, each 125ms long, with 
adjacent frequencies separated by 500Hz. The middle spectrogram is a rebuilt version of 
this signal, using 13 DCTCs and 3 DCSCs with uniform time resolution over all 
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frequencies. The time resolution within each block is specified by a Kaiser window with 
𝛽𝛽 = 5 . The bottom panel presents another reconstructed spectrogram also using 13 
DCTCs and 3 DCSCs, but with variable time resolution over frequency. The Kaiser 
window 𝛽𝛽 values are linearly interpolated between 5 and 15 in this case. In the bottom 
panel, the time instances at which frequency changes become more clearly marked as 
frequency increases, which shows increasing time resolution, but in the middle panel, the 
transitions between adjacent sinusoids are uniform at all frequency boundaries. 
 

 
Figure 11: Unified frontend structure 

 
In our previous work [38], we have experimentally shown that in the "standard" MFCC 
frontend (or other auditory filterbank in place of the Mel filterbank), whose diagram is 
plotted in Figure 1(a), the nonlinear amplitude scaling can be moved to immediately 
before the filterbank without degrading the ASR performance. Then, the filterbank 
weights can be combined with the regular cosine basis vectors (i.e. unwarped basis 
vectors) by a simple matrix multiplication, which yields the definition of a set of 
"unified" static basis vectors. Mathematically, suppose the rows of the matrix W contain 
the filterbank channel response, and the rows of 𝑩𝑩𝑩𝑩𝑩𝑩𝒓𝒓𝒓𝒓𝒓𝒓 contain the regular cosine basis 
vectors, this unification can be expressed by: 
 

 𝑩𝑩𝑩𝑩𝑩𝑩𝒖𝒖𝒖𝒖𝒖𝒖 = 𝑩𝑩𝑩𝑩𝑩𝑩𝒓𝒓𝒓𝒓𝒓𝒓𝑾𝑾                                          (22) 
 

In the proposed DCTC/DCS frontend, the unified static basis vectors take the form of a 
continuous frequency warping g(f), whereas in the MFCC frontend, this warping is 
implemented by a filterbank. The static features are obtained by a weighted sum of the 
amplitude-scaled FFT spectrum. Also, we have shown in [38], that the dynamic delta and 
higher order terms defined in Eq. (1) can also be computed by a summation of the static 
features, weighted by a set of dynamic basis vectors, in which the nth order basis vector 
with respect to absolute time is the convolution of all the lower order basis vectors each 
with respect to its previous order. Thus, a set of unified dynamic basis vectors 𝑩𝑩𝑩𝑩𝑩𝑩𝒖𝒖𝒖𝒖𝒖𝒖 
can be defined. The DCS and the delta differential terms are two specific forms of 
𝑩𝑩𝑩𝑩𝑩𝑩𝒖𝒖𝒖𝒖𝒖𝒖. With the unified perspective, the final output features F can be rewritten as: 
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𝑩𝑩 = 𝑩𝑩𝑩𝑩𝑩𝑩𝒖𝒖𝒖𝒖𝒖𝒖 ∙ [𝑩𝑩𝑩𝑩𝑩𝑩𝒖𝒖𝒖𝒖𝒖𝒖 ∙ 𝐹𝐹(𝑿𝑿)]𝑇𝑇                                  (23) 
 

where 𝐹𝐹(𝑿𝑿) is the amplitude-scaled FFT power spectrum. Figure 11 depicts the block 
diagram of this unified framework. Eq. (23) reveals the essence of speech features: they 
can be viewed as a series of linear transformations of the spectrum scaled by an auditory 
nonlinearity, with optional peripheral nonlinearities in between (dashed blocks in the 
diagram), such as a family of the sigmoid-shape functions proposed in the work of 
[39,40], which can improve the noise robustness of frontends. These linear 
transformations are represented by the unified basis vectors. Filterbanks (or other parts) 
exert their impact on system quality by shaping the basis vectors implicitly. Thus, the 
unified basis vectors determine the properties of a frontend. In this sense, the scheme 
gives us a common “yardstick” to analyze and compare frontends which appear to be 
different or similar based on the properties of the unified basis vectors. 
 
A high level comparative study can be performed between the standard MFCC frontend 
(or other type of filterbanks in place of the Mel filterbank, such as gammatone, or the 
trapezoids in PLP) and the proposed DCTC/DCSC frontend by looking at their unified 
basis vectors. It's important to notice that though the MFCC frontend and the 
DCTC/DCSC frontend are based on different logic, they become mathematically 
identical under the unified framework, except the basis vectors are somewhat different. 
Figure 12 depicts the first three unified static basis vectors using 26 Mel filters, and the 
first three unified dynamic basis vectors representing the zeroth order, and delta and 
acceleration terms. The unified static basis vectors resulting from the Mel filterbank are 
not as “smooth” as the ones using the continuous Mel-shape warping g(f), which were 
plotted in Figure 8(a). This is due to the quantization effect. Also, the unified dynamic 
basis vectors of the differential terms are discrete. Comparing the zeroth order in Figure 
12(b) and Figure 8(b), the envelope in Figure 8(b) defines a non-uniform time resolution 
with the center of the block being emphasized and gradually decreasing towards the ends, 
while the delta method uses the central term only. This implies that the discrete delta 
dynamics may not account for the time resolution in encoding the spectral trajectory as 
well as the proposed DCS basis vectors do. 
 

 
Figure 12: (Left-a) The first three unified static basis vectors resulting from 26 Mel filters, and (right-b) the first 

three unified dynamic basis vectors from the delta method. 
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3.4. Experimental Evaluation 
 
A. Experimental Configuration 
All the discussion in sections 3.2 and 3.3 involved signal processing techniques for 
computing spectral features (DCTCs) and spectral evolution features (DCSCs). Although 
the signal processing for computing these features was motivated by properties of human 
hearing, the proper way to evaluate the effectiveness of these features for ASR, and to 
investigate tradeoffs in time and frequency resolution as that affects ASR performance, is 
to do a comprehensive suite of ASR tests for various conditions and parameter settings.   
All experiments reported in this section are for phone recognition, with monophone 
models, using the TIMIT database [41] and HTK ver3.4 HMM recognizer [42]. As is 
typically done with this database, the entire database, except for SA sentences, was used 
for either training (462 speakers, 8 sentences/speaker, approximately 189 minutes of 
training speech) or testing (168 speakers, 8 sentences/speaker, approximately 69 minutes 
of testing speech). The sampling rate for TIMIT is 16000 samples/second. As is also 
typically recommended for experiments with this data in [43], the original set of 61 
labeled phones were collapsed to 48 phones to create 48 phone models, with a further 
reduction to 39 phone categories for scoring, as listed in Table 1. Seven groups of similar 
phones were formed in the reduction from 48 phones to 39 categories: 
{sil,cl,vcl,epi},{el,l},{en,n}.{sh,zh},{ao,aa},{ih,ix},{ah,ax}. Confusions among phones 
within each group in testing were not considered errors. The numbers of instances of each 
of the 39 phone categories are shown in Figure 13.  
 

Table 1: 61 TIMIT phones, and as reduced to 48 for training, and 39 categories (shaded) for testing. 

 
 

All HMM acoustic models had three hidden states (plus a non-emitting entry and exit 
state). A bigram language model was used based on phone bigram frequencies. As is 
virtually always the case for ASR experiments, primary results for each experiment are 
given for test data accuracy. However, such results depend not only on the features, but 
also on the size of the database and complexity of the recognizer. To better estimate the 
potential for each “best” set of feature parameters, two additional experimental results are 
given. First, the recognizer is tuned by adding more mixtures, until test accuracy is 
maximized. This condition is referred to as “BIG_REC.” Finally, an accuracy result is 
given with the original training and test data combined as new training data, but with test 
results still based on the original test data set. This result could be viewed as an upper 
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bound on the potential of a particular set of features, if a really large training set were 
available, implying that the training set represents the test set really well. This result is 
referred to as “BIG_DATA.” It is important to note that results for both BIG_REC and 
BIG_DATA are obtained with the identical feature settings reported as “best” for each 
experiment. 

 
Figure 13: Frequency count of the 39 phone categories in 3696 training and 1344 testing utterances. 

 
In all cases, processing begins with a pre-emphasis using a second order IIR filter: 
 

𝑦𝑦[𝑡𝑡] = 𝑒𝑒[𝑡𝑡] − 0.95𝑒𝑒[𝑡𝑡 − 1] + 0.494𝑦𝑦[𝑡𝑡 − 1] − 0.64𝑦𝑦[𝑡𝑡 − 2]                         (24) 
 
This second order filter with a peak at approximately 3200Hz is a reasonably good match 
to the inverse of an equal-loudness contour. In previous work [44], we have found that 
the complex pole pair results in slightly higher ASR accuracy than the first order pre-
emphasis (𝑦𝑦[𝑡𝑡] = 𝑒𝑒[𝑡𝑡] − 0.95𝑒𝑒[𝑡𝑡 − 1]). The next step was to segment the signal into 
overlapping frames, using a Kaiser window with β of 6 (similar to a Hamming window). 
A 512 point FFT of each frame was computed, and log magnitudes were then computed 
over the frequency range of 100Hz to 7000Hz. For each frame, the log magnitudes were 
lower limited to 40dB below the largest magnitude of that frame. In previous work [45], 
this simple floor was found to improve ASR accuracy slightly for clean speech and more 
substantially for noisy speech.   Thus each sentence was converted to a matrix of spectral 
values, which were then further processed by the DCTC/DCSC methods presented in 
Section II & III. 
 
B. Experiment Set 1—DCTC Features Only (Static Features) 
For the experiments reported in this section, DCTC features only were computed for each 
frame. The number of DCTCs was varied (9 to 25 in steps of 2); frame length was varied 
(5, 10, 15, 20, 25, 30, and 40ms); frame space was varied (2 to 20ms); and the type and 
degree of frequency warping was varied.     Not all combinations of parameter values 
were evaluated, due to the very large number of combinations which would be required. 
Rather, most of the parameter values were fixed at what appeared to be the best values, 
based on pilot experiments, and then a subset of parameter values was varied and 
performance evaluated. This process was repeated to both examine effects from changes 
in parameter values and to empirically optimize all parameters for best ASR 
performance. 
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Figure 14: Phonetic recognition accuracy as function of frame length using 21, 23, and 25 DCTCs 

 

Experiment B1—Overall spectral resolution effect for static features: The goal here was 
to examine effects on ASR performance as a function of overall spectral resolution as 
determined both by frame length and number of DCTCs used. For these experiments, the 
frame space was fixed at 8ms, and Mel frequency warping was used. Using 16 mixture 
HMMs, the number of DCTCs was varied from 9 to 25, and the frame length was varied 
from 5ms to 40ms. For all combinations tested, ASR accuracy varies from approximately 
49% to 57%. However, considering only the range of frame lengths of at least 10ms and 
at least 13 DCTCs, the range of ASR accuracies is 53% to 57%. Figure 14 plots ASR 
accuracy using 21, 23, and 25 DCTCs, as a function of frame length. It also contains the 
plot of accuracy using the MFCC method using 26 filters and 15 DCTCs with frame 
space fixed at 8ms. The absolute best accuracy (57.0%) was obtained with 20ms frames 
with spectra encoded with 25 DCTCs. However, the increase in performance for more 
than 19 DCTCs is minimal, typically less than 0.3%. For the case of static features, frame 
lengths ranging from 15ms to 30ms results in fairly similar ASR accuracies (difference of 
less than 0.56% for best result for each frame length). The BIG_REC accuracy is 58.2% 
(64 mixtures) and BIG_DATA accuracy is 68.5%, thus implying that a high order 
recognizer trained with a very large data set, using the best parameter values reported 
here, could improve accuracy at most, by approximately 10%. 
 
Experiment B2—Overall time resolution effect for static features: To examine the effect 
of the overall time resolution on static speech features, the feature “sampling rate” was 
varied by varying the frame spacing from 2ms to 20ms. Since the time resolution also 
depends on the frame length used for FFT calculations, these tests were done with four 
frame lengths (5, 10, 20, and 30ms). However the number of DCTCs was fixed at 21, and 
all other parameters were the same as for experiment B1. Results are shown in Figure 15 
as compared to the MFCC method using 26 filters and 21 DCTCs with a frame length of 
20ms. 
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Figure 15: The effect of frame length and frame space on phonetic recognition accuracy for 21 DCTCs 

 

Overall results vary from 34.4% (5ms frames spaced 20ms apart) to 58.2% (10ms frames 
spaced 5ms apart). ASR accuracy always degrades as the frame space increases beyond 
certain levels for different frame lengths, with the most severe degradation for the shorter 
frame length cases. The best performance for each frame length varies over a small range 
of 57.3% to 58.6%. Not unexpectedly, the best performance is achieved for shorter frame 
spaces and for the shorter frame length cases. The most surprising result is that accuracy 
degrades for all frame length cases as the frame space is made very short. Presumably, 
oversampling of features in time has a deleterious effect on the HMM recognizer, which 
might be related to the very high correlations of features from frame to frame. The overall 
best performance of 58.6% was obtained with 10ms frames, spaced 5ms apart. The 
BIG_REC accuracy is 60.0% (64 mixtures) and BIG_DATA accuracy is 69.7%, thus 
implying that a high order recognizer trained with a very large data set, for feature 
conditions reported in this experiment, could improve accuracy by, at most, 11%. 
 
Experiment B3—Effect of frequency warping (auditory frequency resolution) on static 
features: To test the effect of frequency warping, which determines the auditory 
resolution of frequency selectivity, bilinear frequency warping was used as implemented 
in Eq. (7) with a single parameter 𝛼𝛼 to control the degree of warping. Bilinear warping 
with a coefficient of 0.45 closely approximates Mel warping and a coefficient in the 
range of 0.5 to 0.57, according to the work in [28] can be used to mimic the Bark warping. 
Since pilot experiments showed that the effects of frequency warping depend on the 
number of DCTC features and recognizer order (i.e., number of HMM mixtures), these 
tests were done for two cases: 13 DCTCs and 8 mixture HMMs, 21 DCTCs and 16 
mixture HMMs. In these experiments, 10ms frames, spaced 5ms apart were used. Results 
are shown in Figure 16, as the warping coefficient varies from 0 (linear warping) to 0.8 
(over warped). 
 
The effect of warping is more apparent for the 8 mixture case than for the 16 mixture 
case (approximately 3% increase in accuracy from linear warping to the best warping 
with a warping factor value around 0.45 for 8 mixture models versus less than 1% 
improvement in accuracy for 16 mixture case over the same range of warping). In 
general, for the larger number of DCTCs and HMM mixtures, the frequency warping has 
a smaller effect, and best performance is achieved with less warping than Mel (bilinear 
coefficient of 0.20 versus 0.45). Note that as a control, the normalized version of the 
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"standard" Mel warping, as proposed by O'Shaughnessy [27] was evaluated, and the 
result was within 0.1% of the bilinear warping coefficient of 0.45 case, for both 13 
DCTCs (8 mixtures) and 21 DCTCs (16 mixtures). 
 

 
Figure 16: Phonetic recognition accuracy as function of frequency warping for two cases. 

 
The BIG_REC accuracy is 59.0% (64 mixtures) and BIG_DATA accuracy is 68.4%, thus 
implying that a high order recognizer trained with a very large data set, for the best 
conditions as reported here, could improve accuracy by at most, approximately 9%. 
 
C. Experiment set 2 —Dynamic features (DCTCs and DCSCs) 
In these experiments, a myriad of parameters were varied which were believed to be 
significant for the case of features (DCTCs/DCSCs), which represent spectral-temporal 
characteristics in a block of frames centered on each frame. These parameters include 
number of DCTCs, number of DCSCs, frame length, frame spacing, frequency warping 
coefficient, block length, block spacing, and time warping coefficient.    Not all 
combinations of parameters were tested, due to both the very large number of cases and 
low likelihood that some cases would have much effect on ASR accuracy. Based on both 
pilot experiments and the results reported above, in most of these experiments (C1, C2, 
C3) many of these parameters were either fixed to a single value, or restricted to a short 
range. The frequency warping was bilinear with a coefficient of 0.2. The frame length 
and frame spacing were fixed at 10ms and 1ms, and the block length was fixed at 251 
frames (i.e. 251ms block composed of 125ms left and right context plus center frame). 
The block spacing (which serves as feature spacing to the recognizer) used to control the 
feature “sampling rate,”  the time warping coefficient, as well as the number of 
DCTCs/DCSCs were varied to examine their impacts on the spectral-temporal resolution. 
The number of HMM mixtures used was 32, due to the large dimensionality of the 
feature space. 
 
Experiment C1—39 features (13 DCTCs/3 DCSCs) experiments: As a starting point, and 
also since 39 MFCC features are often used for ASR systems, the first set of experiments 
was performed with 39 features—13 DCTCs each encoded with 3 DCSCs. First, the 
effect of block spacing from 4ms to 12ms on ASR accuracy was evaluated, with results 
depicted in Figure 17. The frame length was fixed at 10ms, and bilinear frequency 
warping (coefficient of 0.2) was used. The time warping coefficient was 40, using a 
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Kaiser window. The effect of block space on ASR accuracy is quite small, varying only 
1.7% from the lowest accuracy case (12ms block space) to the highest accuracy case 
(8ms). 

 
Figure 17: Phonetic recognition accuracy as function of block space, with block length fixed at 251ms. 

 
The BIG_REC accuracy is 71.6% (64 mixtures) and BIG_DATA accuracy is 79.8%, thus 
implying that for a high order recognizer trained with a very large data set, accuracy 
could improve, at most, by approximately 9%.  
 
Experiment C2—39 features (13 DCTCs, 3 DCSCs), test of time warping effect (auditory 
time resolution): In this experiment, the conditions are identical to those for Experiment 
C1, except that the block length is effectively adjusted by varying the time warping 
coefficient from 5 to 50 in step of 5, thus creating increasing auditory time resolution. 
The block spacing is fixed at 8ms, as per the best result in Experiment C1. Results are 
depicted in Figure 18. The highest accuracy (70.7%) is obtained with a time warping 
coefficient of 40, but the results do not change much as the time warping is varied from 
25 to 50. 

 
Figure 18: Phonetic recognition accuracy as function of time warping factor for 251 ms blocks, with a fixed 

block spacing of 8ms. 
 
The BIG_REC and BIG_DATA accuracy for this experiment is identical to that of 
Experiment C2, implying that for a high order recognizer trained with a very large data 
set, accuracy could improve, at most, by approximately 9%. 
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Experiment C3—Overall Spectral-temporal effect: In this experiment, accuracy is 
evaluated with combinations of the number of DCTCs (9 to 23, in step of 2) and the 
number of DCSCs (3, 4, 5, 6). These combinations reflect the trade-off between the 
overall spectral and temporal resolution. Other parameters are fixed as per the “best” 
settings from previous experiments (frame length of 10ms, frame space of 1ms, bilinear 
frequency warping with coefficient of 0.2, 251ms block length, 8ms block space, and 
time warping of 40). Results are shown in Figure 19. 
 

 
Figure 19: Phonetic recognition accuracy as function of combinations of DCTCs and DCSCs. Other parameters 

are fixed at their "optimal" values. 
 
For all conditions tested in this experiment, the absolute best accuracy (72.6%) was 
obtained with 15 DCTCs and 5 DCSCs (75 features). As the number of DCTCs increases 
beyond about 15, the performance begins to decrease. The number of DCSCs has similar 
effect. The BIG_REC accuracy is 73.8% (96 mixtures) and BIG_DATA accuracy is 
85.7%, thus implying that a high order recognizer trained with a very large data set, could 
improve accuracy by, at most, approximately 13%.  
 
Experiment C4—“Optimal” parameter values for DCTC/DCSC features-large feature set: 
Based on the results of Experiment C3, several parameters were further varied. None of 
the settings tuned improved recognition accuracy by more than .2% above the results 
reported in Experiment C3. For sake of completeness, the “optimum” settings are listed 
in Table 2 and accuracies presented in Table 3. Note that “optimum” is only with respect 
to settings evaluated. However, given the relative insensitivity of ASR accuracy to the 
settings varied, it does seem unlikely that any other settings, within the framework 
described in this section, would results in substantially higher ASR accuracy. 
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Table 2: “Optimum" parameter settings for large feature set 

Parameter Value 
Frame Length 8 ms 
Frame Spacing 1 ms 

FFT Length 512 
Frame Window Kaiser window, β = 6 

Frequency Warping Bilinear, α= 0.2 
Number of DCTCs 15 
Number of DCSCs 5 
Frames per Block 250 frames 

Block Spacing 7ms 
Time Warping Kaiser window, β = 40 

 
Table 3: “Optimum” 75 feature ASR accuracies 

Condition Number of  HMM 
mixtures 

Accuracy (%) 

Regular test 32 72.8% 
BIG_REC 96 74.0% 

BIG_DATA 96 85.2% 
 
Experiment C5—“Optimal” parameter values for DCTC/DCSC features-small feature 
set: The best results reported in the previous section were based on a large number of 
features (75). Based on the rationale that “optimum” parameter settings for a much 
smaller feature set, in this experiment, “optimum” parameter settings were 
experimentally determined for a small feature set (27 features). The values are given in 
Table 4 and accuracies listed in Table 5. As before, “optimum” is only with respect to 
settings evaluated. 

 
Table 4: “Optimum" parameter settings for small feature set 

Parameter Value 
Frame Length 8 ms 
Frame Spacing 1 ms 

FFT Length 512 
Frame Window Kaiser window, β = 6 

Frequency Warping Bilinear, α= 0.45 
Number of DCTCs 9 
Number of DCSCs 3 
Frames per Block 250 frames 

Block Spacing 7ms 
Time Warping Kaiser window, β = 50 
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Table 5: “Optimum” 27 feature ASR accuracies 

Condition Number of  HMM 
mixtures 

Accuracy (%) 

Regular test 16 69.3% 
BIG_REC 64              69.0% 

BIG_DATA 64 77.8% 
 

3.5. Conclusion 
 
This section presented a generalized spectral-temporal feature extraction frontend for 
representing speech information. The feature set is motivated by the attempt to mimic 
two primary properties of human hearing: frequency and time resolution. Based on 
frequency warping and frequency-dependent time warping built into modified 2-D cosine 
basis vectors, the relative importance of spectral and temporal features could easily be 
evaluated, and the trade-off between auditory frequency selectivity and time resolution 
was explored.  A wide range of ASR experiments was conducted based on the 
DCTC/DCSC implementation of the proposed framework to comprehensively study the 
spectral-temporal resolution effects of human hearing by tuning the parameters of the 
frontend towards either side of the spectral-temporal trade-off, and the "optimum" 
combining point was found. 
 
In addition to the DCTC/DCSC method, which uses uniform time warping for all 
frequencies, we also implemented the DCSC/DCTC variation, which incorporates 
frequency-dependent time warping (experimental results not presented). Specifically, we 
used the best warping factors obtained in the DCTC/DCS experiments (i.e. 50 for the 27 
feature case and 40 for the 75 feature case) as the baseline, and imposed smaller time 
warping for lower frequencies compared to higher frequencies, with averages fixed at the 
baseline values. The results only showed a minor effect on the recognition accuracy. This 
seems to imply that, although this auditory effect has been verified by neurophysiological 
and psychoacoustic studies [30,31,32], it does not play a crucial role, at least for the 
phone recognition ASR task evaluated in this section. Based on the ground work of the 
proposed frequency-dependent DCSC/DCTC scheme, which provides a tool to explore 
the auditory time-frequency trade-off, it still remains an open area for future research to 
further study whether this frequency-dependency is important for various ASR tasks, and 
if it is, how to more effectively incorporate this theory into an ASR frontend. 
 
Another possible direction in the future work involves the idea of using a non-symmetric 
window for the time resolution, i.e. the dh/dt  term in the DCS basis vectors. Acoustic 
evidence found in [46] shows that the left context is more informative than the right 
context in phoneme recognition. This finding implies that a non-symmetric window, 
tilted toward the left side of the center point for a time block, thus assigning higher time 
resolution to the left context, might be beneficial.            
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4. AUTOMATIC WORD TO MORPHEME DECOMPOSER FOR RUSSIAN 
 
4.1. Introduction 

 
The Russian language is a synthetic language. That is, words are constructed from basic 
building blocks called morphemes (prefix, root, suffix and inflection) [47]. The same 
morphemes can be used to form new and different words. A prefix, root and suffix make 
up the stem of the word. For example, the word ‘подходящий,’ translated to 
‘appropriate’ shown in Table 6, consists of the prefix ‘под’, root ‘ход’, and suffix ‘ящ’. 
These morphemes make up the stem plus the inflection ‘ий’. The stem may contain just 
one morpheme, that is the root, or several morphemes, including several prefixes, 
suffixes, and roots. 
 
Russian words are on average longer than words of other languages, and exhibit clearer 
morphological patterns [2]. As a result, longer fragments of speech must be analyzed 
during the speech recognition process.  
 

Table 6: Decomposition of a word into morphemes. 

Подходящий 
Под ход Ящ ий 

Prefix root Suffix inflection 
Stem 

 
The Russian vocabulary contains more than 160 thousand lemmas, or words in canonical, 
or dictionary, form [49]. Usually, the inflections of the word will change, while the stem 
of the word remains the same. As a result, there are a high number of conjugated 
(inflected) word forms with different inflections but only one stem. For example, the verb 
“делать” or “to do” has over 100 word forms. 
 
Noun inflections identify number (singular or plural) and can be conjugated to six 
different cases. Similarly, verb inflections identify gender, number, tense, voice, aspect 
etc. Additionally, pronouns, adjectives and numerals can be conjugated with different 
inflections [47]. Consequently, the number of unique word forms to be recognized by a 
Russian ASR system increases to over 3.7 million [50].  
 
Another peculiarity of Russian is that sentences are not defined by a strict set of 
grammatical construction rules because inflections convey all the grammatical meaning 
within a sentence [51]. Changing the word order within a sentence does not alter the 
meaning. However, depending on text style, some word orderings are preferred 
stylistically over others. 
 
The specifics of the Russian language, like longer words, relaxed ordering of words 
within a sentence, and the amount of unique words, decrease the performance of 
conventional ASR systems that use traditional approaches, such as n-grams, for the 
statistical language model [52]. Instead, morpheme level representation of speech is 
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proposed for use in automatic speech recognition systems. Use of morphemes decreases 
the size of the vocabulary of base lexical units by several orders and increases the speed 
of Russian ASR systems as will be explained below. 
 
4.2. Morpheme Database 
 

The database of prefixes, suffixes and inflections was created using the Vocabulary of 
Morphemes of the Russian Language by Kuznetsova and few other published dictionaries 
[53-56].  The root database was kindly provided by Dr. Kaprov of the St. Petersburg 
Institute for Informatics and Automation of Russian Academy of Sciences. The total 
number of morphemes to be recognized by the ASR system is a little over 17,000, as 
shown in Table 7. This is a drastic reduction from over 3.7 million unique words that 
need to be recognized by the Russian ASR system. 

Table 7: Morpheme Database. 

Prefix 79 
Root 16776 

Suffix 478 
Inflection 49 

 
4.3. Background 
 
There has been much research done on word and stem level Russian ASR systems that 
are speaker independent and large vocabulary, such as the trigram statistical model, 
developed by IBM [57]. This system was trained by 30,000 utterances. The trigram LM 
was trained on 40 million word textual data. A system of Russian phonetic sub-groups 
and a set of rules for phonetic transcription of words were developed. This system 
attained 5% word error rate (WER) but it was not further developed due to inflective 
nature of Russian, its huge vocabulary, and the rigid word ordering of words within a 
sentence.  
 
In 1999 – 2001, a collaborative project by Intel and All-Russian Research Institute of 
Experimental Physics – Software Technology Laboratory (VNIIEF-STL) resulted in a 
large vocabulary Speech Developer Toolkit (STD) [58]. The toolkit involves modules for 
vector calculation, construction and adaptation of acoustic models, speech decoding by 
finite state and stochastic grammars etc. Currently, VNIIEF-STL is developing a Russian 
ASR system with a vocabulary of over one million words.  
 
There is only one commercially available Russian ASR system today. The line of 
“Gorynich” systems was developed by “VoiceLock” on the basis of the Dragon system. 
This system’s recognition accuracy is ~70%.  
 
Speech Informatics Group of St. Petersburg Institute for Informatics and Automation of 
the Russian Academy of Sciences (SPIIRAS) introduced a morpheme level Russian ASR 
system in 2005 [59, 63]. The morpheme database of over 17,000 morphemes was 
employed which greatly reduced the vocabulary of recognizable lexical units and 
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increased the machine processing speed. This system attained 90% recognition accuracy 
with a very small vocabulary of 1850 words. 
 
Overall, in the past decade attempts by companies like Intel and IBM to create speaker 
independent Russian ASR systems for large vocabularies were unsuccessful. The Russian 
ASR system developments presented were either halted for economic reasons, did not 
have large vocabularies, or did not yet attain significant WER improvements [47].  
 
The motivation for the present work is to provide an open source tool for a Russian word 
to morpheme decomposer. Such a tool is needed as a first step in implementing 
morpheme level LM, which could be an important part of an overall Russian ASR 
system, due to the structure of Russian, as mentioned above. The intention is to combine 
the morpheme level with root and/or word level LMs to improve accuracy for Russian 
ASR systems. The goal for the ASR system is speaker independence and large 
vocabulary. Its simplicity of implementation and accuracy of decomposition makes it a 
great tool to have. The size of the program with the prefix, suffix and inflection databases 
is only 44 KB.  
 
In contrast, there are two tools available online for word to morpheme decomposition 
[55, 56]. These tools have several issues associated with them: these are commercial 
tools, they are not available in source code format, and there are no publications or 
documentation associated with them available to the public. Furthermore, the method 
presented here is simple, accurate and only uses the databases of prefixes, suffixes and 
inflections and not the biggest – root database. The work by Aleksey Karpov of SPIIRAS 
uses all four databases and has a very sophisticated algorithm that runs through each 
morpheme database several times for every word decomposition [63]. This makes the 
program slow and difficult to implement. Similarly, the work by Edward Whittaker of the 
University of Cambridge [52, 62] uses only 28 prefixes and sixty suffixes for 
decomposition of a word. The prefixes and suffixes were then separated systematically 
from the word beginnings and ends, respectively, using a simple string matching 
operation. All words were eligible for decomposition and the two morphemes were 
separated wherever a match was made, irrespective of whether the match was 
linguistically correct or not. Consequently, this resulted in numerous incorrect 
decompositions. 
 
4.4. Data preparation 
 
All textual data is preprocessed to fit the requirements of the HTK toolkit [60]. The 
format of data is one word per line, all punctuation is removed, and there are no capital 
letters and numbers. For example, the final format of the word ‘перестройкa’, or 
‘restructuring,’ is shown in Figure 20. Start symbol, <s>, is followed by white space, then 
Russian word, followed by a white space and end symbol, </s>. 1500 words of data were 
used for initial development and testing, and 20,000 words of data were used for more 
thorough testing. 

<s> перестройка </s> 
Figure 20: Data Format 
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A special program was written to convert numbers to words. This is needed since the 
convention in Russian (as well as most other languages) is to write numbers as 
“numbers” but speak them as words. This program takes care of conjugation of numerals 
within a sentence to convey correct grammatical meaning. For example, the numeral “3rd” 
or “третий” has 29 word forms.     
 
Consider the conversion example for the number 2,324,015. First, the number is divided 
by a million, and the correct conjugated form of the word ‘million’ and digit are 
determined. Here, digit.m is accessed to arrive at two or “два,” and million.m to arrive at 
a million or “миллиона.” Second, since thousands are in hundreds, the hundred.m 
function is accessed. Here, proper word for 300 is “триста.” Then, ten.m is accessed for 
20 which is “двадцать.” It is followed by digit.m which results in “четыре.” For 
thousands, the proper term is “тысячи” and attained via thousand.m. The last term 
fifteen or “пятнадцать” is obtained from teen.m. The final term of the number in words 
is “два миллиона триста двадцать четыре тысячи пятнадцать.” 
 

Table 8: Number to word conversion of 2,324,015. 

digit.m Два Четыре 
ten.m двадцать  
hundred.m Триста  
teen.m пятнадцать  
thousand.m Тысячи  

million.m миллиона  

 
4.5. Decomposition algorithm 
 
The first effort made to write a word to morpheme decomposition program was coded in 
C++. The word decomposition error (WDE) for this initial code was 5% and there was no 
clear way to reduce this WDE. After much deliberation, a completely new approach was 
taken, and implemented in MATLAB, due to the much higher level of built in useful 
functions for the decomposer. Overall, the new decomposition algorithm, described in 
this section, is greatly simplified from the first version (and much more accurate). This 
algorithm uses the prefix, suffix, and inflection databases only. The root database of 
16776 morphemes is not employed. The textual data processing time is greatly decreased 
and, most importantly, the WDE is decreased to less than 0.2%. The accuracy was 
examined manually and compared to online server tools [55, 56]. 
 
The algorithm first looks for the start symbol and searches for the prefix match. Once the 
prefix matches, the morpheme is separated from the rest of the word by a delimiter. Next, 
the algorithm looks for the end symbol and searches for both the suffix and inflection 
matches. Delimiters are put before and after the suffix once both morphemes are 
matched. For each suffix there are only a certain number of inflections possible, which 
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can range from zero to 49 inflections. In Table 9, suffix ‘k’ has 32 possible inflections. 
All possible inflections for each of 478 suffixes have been compiled.  
 

Table 9: Possible inflections for suffix ‘к’. 

Suffix Possible inflections 

К 

ый, ий, ой, ей, ое, ее, ые, ие, 
ого, его, ому, ему, ая, яя, 
их, ых, ах, ыми, ими, ами, 
ым, им, ом, ем, ою, ею, ую, 
юю, у, о, а, и 

 
The decomposition of the word ‘перестройка’ using this algorithm is shown in Table 10. 
By first looking at the start symbol, the prefix ‘пере’ is found and a delimiter ‘/’ is placed 
after it. Next, the end symbol is found and the suffix ‘к’ plus the 31st ending ‘a’ are 
matched, and a delimiter is placed before and after the suffix. The root of the word 
“строй” is separated as a result. Morphemes are not labeled during the decomposition 
process as this does not aid the morpheme recognition step. 
 

Table 10: The decomposition of word ‘перестройка’. 

function morpheme ‘<s> перестройка 
</s>’ 

prefix.m ‘пере’ ‘<s> пере/стройка 
</s>’ 

suffix.m ‘к(a/>)’ ‘<s> пере/строй/к/а 
</s>’ 

 
An algorithm for automatically parsing speech and breaking it into parts almost never has 
100% accuracy.  The decomposition algorithm presented here is not an exception to this 
unfortunate reality. There are three main exception categories with this algorithm: two-
root words, over-decomposition, and root-suffix overlap. 
  
4.5.1. Exceptions to the Algorithm – Two-root Words 
 
There are over one hundred words composed from two roots connected directly without a 
morpheme [case 1], by a suffix [case 2], a combination of suffix and prefix [case 3], or a 
combination of two suffixes [case 4], as shown in Table 11. Roots are shown in bold. A 
database of two-root words has been compiled and included within a prefix.m function as 
a special case handle. 
  

Table 11: Sample of two-root words. 

1 Авиа/мотор/н/ый 2 Вод/о/лаз 
3 Лес/о/за/готов/к/а 4 Даль/н/е/восточ/н/ый 

 
4.5.2. Exceptions to the Algorithm – Over-decomposition 
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In Russian, there are over 470 suffixes. Certain short suffixes may match parts of longer 
suffixes, which may result in longer suffixes being incorrectly decomposed if there is a 
possible inflection match. Additionally, a long suffix may be decomposed once more by a 
shorter suffix which results in over-decomposition. A solution was introduced to avoid 
this complication. All suffixes that had matches in parts were put in one line of code, as 
shown in Figure 21. Once there is a long suffix match shorter suffixes are not even 
considered for decomposition.  
 

oвищ   лищ   бищ   ищ 
Figure 21: Longer suffixes come first. 

 
4.5.3. Exceptions to the Algorithm – Root-suffix Overlap 
 
In a few rare instances parts of the root and suffix may overlap, resulting in incorrect 
decomposition. A database of root-suffix overlaps has been compiled and included within 
the suffix.m function as a special handle. The root ‘голов’ for the Russian word 
‘головизна’ overlaps with the suffix ‘овизн,’ resulting in incorrect decomposition. To 
avoid this issue the word ‘головизна’ along with another 45 exceptions are included 
within the suffix.m function as a special handle cases. 
 
4.6. Experimental results 
 
The program was trained on a textual data of 1500 words obtained from [54] and 
achieved 100% accuracy. The WDE of 0.2% was obtained for the test data of 
approximately 20,000 words from the Russian open-source YouTube database [61]. The 
textual data used for the experiment was of conversational format. The accuracy was 
examined manually and compared to online server tools [55, 56]. 

 
4.7. Conclusion 

 
Today, only two online server decomposers are available for commercial use. In contrast, 
the off-line, compact decomposer is in the public domain, free of charge, and intended to 
further the research in the Russian ASR systems area. The WDE rate of the tool is very 
low and makes it very reliable. Subsequently, this tool will be used in building a 
morpheme level LM, followed by a morpheme level acoustic model. These are intended 
to be used along the word level language and acoustic models within the Russian ASR 
system to improve on recognition accuracy.  

 
5. NON-UNIFORM FRAME SPACING FOR SPEECH FEATURE 
CALCULATIONS 
 
5.1. Introduction 
 
The primary objective of the work reported in this section of the report is to investigate a 
number of algorithmic (i.e. automatic) methods for non-uniform time sampling of speech 
features and to determine the merits of these methods for improving the accuracy of 

Approved for Public Release; Distribution Unlimited. 
35 

 



 

automatic speech recognition.   Since the accuracy of an ASR system using fixed frame 
spacing depends on what that spacing is, an important constraint used in this work is to 
consider only methods for variable frame spacing such that the average frame spacing is 
the same for each sentence long utterance. That is, the total number of frames for each 
utterance is the same for the fixed spacing approach (the control) and the variable spacing 
method.    
 
The general strategy used is to first develop a number of mathematical methods for 
controlling the frame spacing, subject to the constraint mentioned above, and then to test 
these methods with ASR experiments. All of the experimental testing was done using the 
TIMIT acoustic-phonetic database (widely used in the ASR community) and using a 
powerful Hidden Markov Model Toolkit for the recognizer. All experimental results are 
in terms of phonetic recognition accuracy.    Experimental tests were done primarily with 
clean speech, and a limited number with white noise added to clean speech. 
 
Three algorithms were considered: L1-Norm frame deletion, Delta Coefficients frame 
deletion, and non-uniform regression analysis.  Only the L1-Norm frame deletion and 
non-uniform regression analysis are considered here, both theoretically and 
experimentally. 
 
The idea of non-uniform frame spacing stems from the theory that consonant sounds are 
not well represented by a fixed frame spacing. In other words, even though it is typically 
assumed that a speech signal is stationary over a time period of approximately 10-20ms, 
and adequately modeled using 25ms overlapping frames spaced apart 8ms, literature has 
shown that this assumption is not always valid. In order to solve this problem, the 
adoption of variable frame spacing seems like a plausible approach. That is, the frame 
spacing for consonants (or rapidly varying spectral regions) can be made to be much 
shorter than in the vowel regions (slowly varying spectral regions). Thus, as a function of 
frame index, the rapidly changing portions of a speech signal are lengthened to increase 
their weight in the feature extraction stage of ASR. There are a few ways to approach this 
problem. One way is to oversample a speech signal to the point where consonants have 
sufficient representation. The problem with this approach is that the computational load 
becomes burdensome since the vowel and other slowly changing portions of a speech 
signal are unnecessarily over sampled. The chance of insertion errors also increases with 
this approach. Insertion errors occur when the ASR system recognizes extra phonemes 
that are not really present.  Furthermore, as shown later, this oversampling actually can 
degrade ASR accuracy.  
 
Another way to approach the problem is to create a deletion criterion that removes frames 
of a speech signal that vary slowly over time. The key to such an approach becomes the 
chosen deletion criterion. The measure of speech variation is not an exact science since 
no two people speak the same way, so difficulty arises in developing a threshold for 
frame deletion. In this work, three methods of frame deletion were examined, as 
mentioned previously. 
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One basic assumption in the theoretical development and experimental work reported in 
this thesis is that the average frame rate is unchanged.  As demonstrated experimentally 
in a later section, HMM ASR system accuracy does depend on the frame spacing, for the 
typical fixed frame rate approach.  And, interestingly, the overall best frame spacing is 
not the shortest one, but some intermediate value of about 8 ms.  To avoid the possible 
confounding effects of changing the overall frames rate, in our work, we only considered 
variable frame rates where the average frame rate, in each sentence, was unchanged from 
the control fixed frame rate. The basic approach is to begin by oversampling and then to 
delete and /or resample features to match the control fixed frame rate case. This 
“resampling” is done using the interp1 function in Matlab, which is a 1-D linear 
interpolation procedure. Although the interp1 function was used with the default linear 
method, other interpolation methods such as cubic or spline could be implemented.  
 
5.2. L1-Norm Frame Deletion 
 
The method of measuring spectral change using L1-Norm between a frame and the 
subsequent frame is explained in this section. Shown below is the spectrogram of a three 
second utterance of the sentence “Don’t ask me to carry an oily rag like that,” spoken by 
a female speaker. 
 
In this spectrogram there are 1810 frames, each represented by 189 frequency values (100 
Hz to 7000 Hz). This spectrogram is essentially a 189x1810 (mxn)  matrix of amplitude 
values at varying frequency and time locations. This particular spectrogram was 
generated with a frame space of 2 ms. The L1-Norm method of frame deletion follows a 
fairly simple initial procedure: 
 
1) Each frame (column vector of size m x 1) of the spectrogram is subtracted from the 
next frame which gives an m x n-1 matrix.  
2) The absolute value of each column is then taken so that all differences are positive 
3) All values in each new column are summed, to produce a 1 x n-1 vector. This 1 x n-1 
vector is the L1-Norm measure of spectral change. A plot of this vector is figured below 
for the corresponding spectrogram  
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Figure 22: Original Spectrogram of Example Utterance 

 
Figure 23: Original Spectrogram (Top)/ L1-Norm Frame Deletion Spectral Derivative Vector Plot (Bottom) 
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At a glance the variation between the noise and speech portions of the spectrogram is 
almost indiscernible. The only acceptable parts of the spectral derivative plot are the 
spikes which show the beginning or ending of spoken speech. The rest of the plot does 
not do a good job in differentiating speech and non-speech, or consonant and vowel 
portions of the spectrogram.  To address this problem, the energy of each individual 
frame is taken into account, and used as a weight to put more emphasis on spoken speech 
and less emphasis on noise. The way this is done is by multiplying the spectral derivative 
value by the average amplitude in the current frame. An equation to show how this is 
done is given below.  
 

𝐷𝐷(𝑖𝑖) = 𝐷𝐷(𝑖𝑖) ∗ ∑𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑖𝑖)
max (𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑐𝑐𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹)

        (25) 
 

“Σ” in the equation means sum all values. This equation basically scales the spectral 
derivative by the “energy,” loosely speaking, of the current frame. The maximum of the 
frequency index is 189, which is the total number of values you would sum for each 
Frame(i). The measure of spectral change, after doing this extra step, is given in the 
figure below.  

 
Figure 24: Original Spectrogram (Top)/ L1-Norm Spectral Derivative Weighted by Frame Energy 

 
Now, the noisy and slowly changing regions (vowels) have lower measures of spectral 
change. This appears to be much better, graphically speaking, than the previous plot of 
spectral variation. However, there still remains the problem of selecting a sufficient 
threshold criterion. Large swaths of successive frames can be discarded if the threshold 
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for deletion is too low. Conversely, an insignificant amount of frames would be removed 
if the threshold for deletion is too high. In order to account for this problem, an additional 
check was implemented in the algorithm for selecting which frames are to be deleted. A 
check is placed on the maximum number of frames “allowed” to be deleted in succession, 
regardless of the spectral variation. Experimentation shows that setting this check to four 
frames gives the best performance. That is, for the cases tested, removing more than four 
frames in succession does more harm than good in the overall algorithm for non-uniform 
frame spacing. The last piece of the algorithm that needs to be determined is the actual 
threshold criterion. There are two general ways to select a threshold criterion. One way is 
a global threshold based on the average spectral variation of a speech database. The other 
way is a local threshold based on the variation in each individual utterance. For the 
experiments reported here, the latter approach was used. For each individual utterance in 
the database, a percentage of the average variation was used as the threshold. Different 
percentages were tested to obtain the optimal level (empirically speaking). After the 
frames were discarded, one final step was taken to ensure that the time information 
remains sufficient in the recognition portion of ASR. That step was to re-interpolate to 
the original number of frames. The figure below gives the original spectrogram, the 
spectrogram after deleting frames based on a 50% threshold, and the final spectrogram 
after re-interpolating to the original 1810 frames.  

 
Figure 25: Original Spectrogram (Top)/ L1-Norm Frame Deletion for 50% Threshold (Middle)/ Reinterpolated 

Spectrogram (Bottom) 
 
The next step was to establish the criteria for frame deletion. In addition to choosing a 
threshold for deletion based on the average variation of the utterance, a check on the 
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number of frames to be deleted in succession was also implemented. As in the L1-Norm 
frame deletion algorithm, deletion of more than four frames in succession was found to 
be more detrimental than beneficial to the overall recognition performance.  The 
algorithm thus included a four frame check to prevent this from occurring.  
 
5.3. Non-Uniform Regression Analysis 
 
A recursive approach to reshaping the spectrogram was also developed. To explain this 
method, this section of this thesis provides a description and simplified example of the 
algorithm used. The ultimate goal remains the same--non-uniformly readjust the frame 
space to account for variability in the spectrogram, while keeping the average frame 
spacing in each utterance (total number of frames per utterance) fixed. A primary 
difference between the method presented in this section, and the methods of the previous 
two sections, is that the constraint of keeping the average frame spacing fixed is 
fundamentally integrated into this method, rather than requiring a final interpolation, as 
needed in the previous two methods. However, the method of this section still critically 
depends on a measure of spectral change.  
 
To begin, let us assume we have a spectrogram from which we arbitrarily generate a 
function, 𝑑𝑑 , of spectral change. In other words, for rapidly changing portions of the 
spectrogram, d values are higher. Since reshaping the spectrogram according to a variable 
frame space was the goal, the inverse of 𝑑𝑑 is computed to provide a non-uniform frame 
spacing function, 𝑔𝑔. For large variations in the spectrogram, there are small values of 𝑔𝑔 
(small frame spacing). This 𝑔𝑔 function can be linearly scaled (ax+b type scaling) to a 
specified maximum and minimum value for 𝑔𝑔 (𝑔𝑔𝐹𝐹𝐹𝐹𝐹𝐹 and 𝑔𝑔𝐹𝐹𝑖𝑖𝐹𝐹). Since the intent is to use 
g to scale the frame space T, we can also predefine the bounds of the frame space 
between 𝐷𝐷𝐹𝐹𝑖𝑖𝐹𝐹 and 𝐷𝐷𝐹𝐹𝐹𝐹𝐹𝐹. The reason for this is to prevent scenarios where 𝑔𝑔 may be so 
small or large that it would result in really small or really long frame spaces. Assuming 
an original frame space of 2ms, reasonable values for 𝐷𝐷𝐹𝐹𝑖𝑖𝐹𝐹 and 𝐷𝐷𝐹𝐹𝐹𝐹𝐹𝐹 might be 1ms and 
3ms respectively. We now need to find parameters that will shape 𝑔𝑔 using the predefined 
values for 𝐷𝐷𝐹𝐹𝐹𝐹𝐹𝐹 and 𝐷𝐷𝐹𝐹𝑖𝑖𝐹𝐹 using the system of linear equations below. 
 

𝐷𝐷𝐹𝐹𝐹𝐹𝐹𝐹 = 𝐹𝐹 ∗ 𝑔𝑔𝐹𝐹𝐹𝐹𝐹𝐹 + 𝑏𝑏           (26) 
𝐷𝐷𝐹𝐹𝑖𝑖𝐹𝐹 = 𝐹𝐹 ∗ 𝑔𝑔𝐹𝐹𝑖𝑖𝐹𝐹 + 𝑏𝑏             (27) 

 
With two equations and two unknowns, we easily solve for a and b. Now the new frame 
space function, 𝑔𝑔𝐹𝐹𝐹𝐹𝑙𝑙, is given by the following equation. 
 

𝑔𝑔𝐹𝐹𝐹𝐹𝑙𝑙 = 𝐹𝐹 ∗ 𝑔𝑔 + 𝑏𝑏     (28) 
 

This is the general idea for reshaping the 𝑔𝑔 function. As an example, let us assume we 
have a 𝑔𝑔 function with 100 values generated from 100 frames of a spectrogram. If there 
was an initial fixed frame space of 2ms, then the total time length of all frames would be 
200ms. Now, we also assume constraints 𝐷𝐷𝐹𝐹𝑖𝑖𝐹𝐹 and 𝐷𝐷𝐹𝐹𝐹𝐹𝐹𝐹 of 1ms and 3ms. The ratio of 
𝐷𝐷𝐹𝐹𝐹𝐹𝐹𝐹 to 𝐷𝐷𝐹𝐹𝑖𝑖𝐹𝐹 is called the scaling factor, 𝑐𝑐. Let’s say after calculating the g function we 
arrive at three different levels of variation. The levels are small frame space, medium 
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frame space, and large frame space (large variation, medium variation and large 
variation, respectively). If 25 𝑔𝑔 function values are small, 50 are medium, and 25 are 
large, we can use this to recreate the g function knowing that the total time must still add 
up to 200ms, and that the values must remain within the 𝐷𝐷𝐹𝐹𝑖𝑖𝐹𝐹 and 𝐷𝐷𝐹𝐹𝐹𝐹𝐹𝐹constraints. We 
then recursively hone in on the ideal number of small, medium, and large frames with 
different frame space values that retain the parameter constraints. The ultimate goal is to 
keep the total sum of frame space values roughly equal to the original sum. In the 
algorithm, the original sum would have been scaled to 1 second, so the new sum must 
also be roughly equal to 1 second. Ideally it would be exactly 1 second, but for real 
signals there is an error. Consequently creating an error threshold would allow for the 
algorithm to perform its task of producing the new vector of frame space values. The 
error threshold used was 0.002 (0.2%). Plots of the original spectrogram along with the 
spectrograms after the algorithm (with scaling factors c=2.5, 5, 7.5, and 10) are shown in 
the figures below.  

 
Figure 26: Regression Analysis (Scaling Factor=2.5) 
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Figure 27: Regression Analysis (Scaling Factor=5) 

 
Figure 28: Regression Analysis (Scaling Factor=7.5) 
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Figure 29: Regression Analysis (Scaling Factor=10) 

 
As can be observed from these figures, the noisy regions seem to slowly disappear 
whereas the faster changing and speech portions stretch as the scaling factor increases. 
However, upon closer examination, it can be seen that that vowel regions also stretch due 
to the fact that they change faster than the noisy and silent regions. This is one major 
drawback to the regression analysis algorithm, because ideally we would want the vowel 
regions to shrink just as much as the noisy and silent regions. Because of this drawback, 
the current algorithm for regression analysis does not give a reasonable performance. 
Future changes to the algorithm may fix this drawback and consequently lead to an 
improved recognition performance. 
 
5.4.  Experiments and Results 
 
The non-uniform frame spacing was tested with phonetic recognition experiments using 
the TIMIT database. Thirty nine features were extracted using the DCTC/DCSC feature 
extraction method (13 DCTCs and 3 DCSCs). Speech was sampled at 16 kHz. A frame 
size of 8ms with an initial frame space of 2ms was used to generate the spectrograms in 
all experiments unless otherwise stated. A Kaiser window with 𝛽𝛽 = 6 was used as a 
window for each speech frame. As previously stated, the DCTC warping factor, 𝛼𝛼, was 
set at 0.15 for all experiments. For the HMM phase, a 3 state model with 16 mixtures was 
used.  
 
The algorithms for frame deletion were used in experiments with varying threshold 
factors, C. The threshold factor C represents a percentage of the average rate of spectral 
variation. If the spectral variation at any point in the spectrogram is greater than the 
threshold factor, then the corresponding frames are kept. If not, the frames are discarded. 
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An additional condition of the number of frames allowed to be deleted in succession had 
to also be met. After the frame deletion algorithm was finished, a linear interpolation was 
performed on the spectrogram to return to the original number of frames. Interpolation 
was accomplished with the use of the “interp1” function in Matlab. As previously 
mentioned, the function was used in the default mode of 1-dimensional linear 
interpolation of the input data. 
 
As mentioned in the DCSC section, the block jump is an integer number of frames over 
which the DCSC features are calculated. The frame space multiplied by the block jump 
yields the block space, or the time shift over which these DCSCs are calculated. A set of 
experiments were performed with a 1ms frame space and varying the block jump from 1 
to 20. In other words, a block space from 1-20 ms was tested, which is an effective frame 
space from 1-20 ms, from the point of view of the HMM recognizer. It is important to 
note that the HMM was only presented a feature matrix, and was given the time spacing 
in ms between successive columns of the matrix, and considered this to be the frame 
spacing. The initial frame spacing used in the first step of spectral processing is 
essentially irrelevant to the HMM. Thus, in the majority of experiments reported in this 
thesis, the initial frame spacing was 2 ms and the block spacing was 4 frames, so the 
effective frame spacing (or block spacing) was 8 ms.  
 
The purpose of the experiment reported here is to show that varying the frame spacing 
(from the viewpoint of the HMM), or block spacing, (from the viewpoint of our front end 
analysis program) does indeed have an effect on the recognition performance. It is 
important to note that the smallest possible frame space (more frames) is not necessarily 
the best. Consequently, selecting “good” frames becomes all the more important. Non-
uniform frame spacing was not performed in these initial phonetic recognition 
experiments. The results are shown in the table below.  
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Table 12: Accuracy vs Block Spacing (ms) 

Block space (ms) Accuracy 
(%) 

1 63.16 
2 63.16 
3 67.09 
4 68.54 
5 69.44 
6 69.65 
7 69.82 
8 69.7 
9 69.26 
10 69.34 
11 68.71 
12 68.05 
13 67.5 
14 66.26 
15 64.98 
16 63.65 
17 61.98 
18 60.35 
19 58.15 
20 55.98 

 
Figure 30: Plot of Accuracy (%) vs. Block Space  (control—in ms) 
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5.4.1. L1-Norm Deletion Experiments and Results 
 
The baseline accuracy for phonetic recognition was 68.17%. It should be noted that this 
baseline accuracy is not listed in the previous table because the log energy was not 
included in the generated features. The baseline performance was generated without the 
use of a deletion algorithm. A table comparing performance values of varying threshold 
factors, C, is given below for the L1-Norm deletion algorithm. Recall that C is the 
fraction of the overall rate of spectral variation of a particular utterance.  
 

Table 13: L1-Norm Frame Deletion Accuracy vs Threshold Factor 

Threshold Factor (C) Accuracy (%) 
0.05 68.28 
0.075 68.51 
0.1 68.4 
0.15 68.27 
0.2 68.22 
0.3 66.15 

 
From approximately 5% to 20%, an improvement over the baseline is observed, with the 
best performance at 7.5%. In other words, if frames that change faster than 7.5% of the 
average spectral variation are kept, then a small performance boost is observed.  
 
An additional experiment using the L1-Norm frame deletion algorithm was performed on 
the feature matrix instead of the spectral values. In other words, instead of using the 
spectrogram as the focal point for measuring spectral variation, the DCTC feature matrix 
was used. An initial frame space of 4ms (block space 8 ms) was used. The results of this 
experiment are shown in the table below. (Baseline = 68.17%) 
 

Table 14: L1-Norm Frame Deletion Accuracy of Feature Matrix vs Threshold Factor 

Threshold Factor (C) Accuracy (%) 
0.1 68.24 
0.125 68.24 
0.15 68.27 
0.2 68.30 
0.25 68.39 
0.3 68.16 
0.4 67.87 
0.5 67.93 
0.6 67.71 
0.7 67.6 

 
The results suggest that reshaping the feature matrix did not benefit performance to any 
significant degree. It should be clarified that further testing should be done as this was not 
one of the original goals of this work, and thus only tested on a small scale.  
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5.4.2. Regression Analysis Experiments and Results 
 
The results for the Regression Analysis experiments are given in this section. As shown 
in previous figures, varying the scaling factor, c, causes the spectrogram to change. A 
higher value for c yields a much more warped spectrogram relative to the original. The 
table below gives four different scaling factors (2.5, 5, 7.5 and 10) and the corresponding 
performances.  
 

Table 15: Regression Analysis Accuracy vs Scaling Factor 

Scaling Factor Accuracy (%) 
2.5 67.98 
5 67.54 
7.5 66.73 
10 66.05 

 
Recall the baseline of 68.17%. Although there is no boost in performance, it must be 
noted that greatly changing the spectrogram, in the form of a very high scaling factor, 
does not degrade the overall performance significantly. This means that a large amount of 
frames can be deleted without much degradation to the performance.  
 
In the experiments for the Regression Analysis algorithm, as explained in section 5.3, the 
results were not as good as those obtained with the L1-Norm experiments. However, 
these experiments do add credence to the notion of non-uniform frame spacing. It shows 
that a proportion of frames can be non-uniformly spaced while still maintaining roughly 
the same effective performance.  
 
Experiments with noisy speech (20dB SNR) were also conducted. The results 
demonstrate that for noisy speech, an even higher threshold factor can be used in the 
frame deletion algorithms compared to clean speech (80dB SNR). In other words, more 
frames can be deleted without a big degradation to the baseline performance of noisy 
speech. As previously expressed in section 2.6, non-uniform frame spacing has somewhat 
of a superior effect, relative to clean speech, when it comes to the amount of frames that 
are “allowed” to be deleted before there is any significant effect on the recognition 
performance. However, there were no significant improvements in the performance over 
the baseline. Further testing with a better measure of spectral derivative would be 
necessary to show recognition performance improvements.  
 
5.5. Conclusions and Future Work 
 
The results of this research demonstrate that there is potential for improvement in the area 
of non-uniform frame spacing in ASR. Although many methods have already been tested, 
there are still many more ways to approach non-uniform frame spacing.  Particularly, the 
measure of spectral change is a fundamental topic that must be “solved.”   There are 
many ways to measure the spectral change of a speech signal. L1-Norm distance, delta 
coefficients and entropy are among these measures of spectral change.  Additionally, the 
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criteria for frame selection in terms of a threshold value are also modular which opens up 
further possibilities for testing.  
 
6. A TOOLBOX FOR A COMPLETE AUTOMATIC SPEECH RECOGNITION 
STSTEM 
 
6.1. Overview 
 
This toolbox constructs a complete ASR system. This toolbox is coupled with the forced 
alignment tool package, which has a separate manual. The forced alignment tool package 
is used to find the correct phonetic pronunciation transcriptions for a large dataset. To use 
the ASR toolbox, the basic assumption is that the correct phonetic transcriptions have 
been made available, either by running the forced alignment toolbox, or by manual 
labeling. The examples and steps in this tutorial assume that the phonetic transcriptions 
are created by the forced alignment toolbox. So, please run the forced alignment toolbox 
for the training database before implementing the examples in this tutorial. However, for 
other database where the transcriptions (in HTK MLF format) are already available, such 
as the Youtube database, it is also very easy to use this ASR toolbox without any need to 
do forced alignment beforehand. We will also briefly talk about this point in the training 
step. In this tutorial, our task is to build a system for Mandarin Chinese character level 
ASR using the toolbox. The steps involved in this task are: 
 
1. Feature extraction for both training and test data. 
2. Training monophones. 
3. Training triphones. 
4. Training a language model. 
5. Decoding 
 
The feature extraction step is exactly the same as in the forced alignment step, and the 
monophone training step has only a slight difference. Therefore, these two steps are only 
briefly explained. We focus mainly on steps 3 to 5. Additonally, near the end of this 
section of the report, a few experimental results are given. 
 
Along with this manual, two folders are provided. In the folder “Tools,” there are all the 
tool matlab files and their setup files, and in the folder “files needed,” are all other files 
needed. These files are for all steps. As we go along steps 1-2-3-4-5, different files will 
be copied to our experiment folder.  
 
Consistent with the tool format in the forced alignment package, each tool in this ASR 
toolbox is a matlab m file, and each m name begins with “Tool_...” A setup file is needed 
for each tool, and is the only argument that can be passed when the tool is called. The 
extension of all the setup files is “.dcf,” and for clarity, the setup file names also begin 
with “Tool_...” For example, the setup file for the tool “Tool_Decode.m” is 
“Tool_Decode.dcf,” and when this tool is called, the format is 
Tool_Decode(‘Tool_Decode.dcf’). The setup file for a tool contains all the control 
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options and parameters for that tool. The setup file and the matlab file should be placed in 
the same experiment folder. Next, steps 1 to 5 are illustrated.  
 
6.2. Feature extraction (Tool_ComputeFeat.m) 
 
6.2.1. Data preparation 
 
As in the forced alignment step, before we run this feature extraction tool, some data 
preparation needs to be done. First, create a folder called “data.”  Inside this folder, create 
a subfolder called “train_wave.” This is the folder where all the training wave files are to 
be placed. Copy all the training wave files into this folder. Similarly, create another 
folder called “test_wave,” and copy all the test wave files into this folder. Next, go 
outside “data” folder, and create a folder called “exp.” This will be the experiment folder. 
Then, copy "Tool_ComputeFeat.m" from “Tools” folder into “exp” folder. This matlab 
file is the feature extraction tool. Since we want to extract features for both training and 
test data, we need to call this tool twice, and each time pass a different setup file. Please 
copy “Tool_ComputeFeat_train.dcf” and “Tool_ComputeFeat_test.dcf” from “Tools” 
folder into “exp” folder. These are the setup files for extracting training and test features 
respectively. In addition, also copy "readhtk.m" file from "files needed" folder into "exp." 
 
A list of all the wave files in “train_wave” and “test_wave” folders are needed for the 
feature extraction tool to read in wave files. Since it is assumed that the forced alignment 
step has already been run, which also requires the training wave file list in the feature 
extraction processing, we can simply create a folder “lists” inside the “exp” folder, and 
copy the training wave file list into “lists” folder. Then, rename this list to 
“train_wavefile.lst.” The same list used in the forced alignment step is called 
“wavefile.lst,” but here, we need to distinguish the training list from the test list. 
However, if we do not have this list from previous steps, we can simply create it using a 
short program provided in the “files needed” folder called “makelist.m.” Please copy this 
file into “exp” folder. The description of how to use this short program was explained in 
details in the forced alignment manual, feature extraction step. After running this 
program, the folder “lists”, and the wave file list will be generated. The folder name 
“lists” and the wave file list name “train_wavefile.lst” can be set in the program. 
Similarly, since we do not have the test wave file list yet, we can use “makelist.m” to 
create one and put it in “lists” folder also. 
 
For simplicity, these two lists are also provided in “files needed” folder. We can simply 
copy them into “lists” folder if we do not want to manually create them. 
 
6.2.2. Run tool 
 
The detailed explanations of each option in the setup file is provided in the forced 
alignment manual. First, please refer to the feature extraction step in that manual. The 
only difference is that we need to call the tool (Tool_ComputeFeat.m) twice since we 
want to extract features for both training and test data. Assuming that you have already 
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read the procdure for the feature extraction step in the forced alignment manual, then, 
open a new matlab file in the experiment directory (“exp” folder), and write: 
 

copyfile ('cp_MFCC.ini', 'tfront\cp_fea13.ini'); 
copyfile ('snr_801.trn', 'tfront\tfrontm.dat'); 
copyfile ('v7\tfrontm.exe', 'tfront\tfrontm.exe'); 
Tool_ComputeFeat(‘Tool_ComputeFeat_train.dcf’); 
Tool_ComputeFeat(‘Tool_ComputeFeat_test.dcf’); 
 

Then, save this new file as “do_main.m.” This is similar to the main function in a C 
program, which is responsible for calling different tools in sequence. In our example, we 
choose to use the standard MFCC method provided in the tfrontm frontend. A brief 
description on how to setup tfrontm frontend is also given in the forced alignment 
manual, feature extraction step. Please read the corresponding steps first. The “do_main” 
function here assumes that you have already compiled the “tfrontm.m” file, thus, a 
“tfrontm.exe” was generated.  In the forced alignment step, we used 42 features (39 
MFCC features plus pitch), which was specified by “cp_42.ini,” but in this example, we 
will use the standard 39 MFCC features without pitch first. So, the corresponding 
configuration file changed to “cp_MFCC.ini,” which can be found in “files needed” 
folder. 
 
Later on, we will also extract features with pitch (MFCC+pitch) in another experiment, 
and compare the performance without pitch features. In that experiment, we will use 
“cp_42.ini,” which is also provided in the “files needed” folder. We need to choose 
which pitch tracker to use. The option “spare2” in “cp_42.ini” gives 3 methods: 1 for 
Yaapt, 2 for Yin, and 3 for Praat, and “spare1” controls all voiced mode or partially 
voiced mode in Yaapt. The option “Pitch” needs to be set to 1, in order to enable pitch 
tracking. If you want to use Praat pitch tracker, then, in addition to the steps illustrated in 
the forced alignment manual, tfrontm frontend steps, you also need to copy “praatcon” 
and “pitch.praat” files from “files needed” folder to “exp” folder. You can choose all 
voiced mode or voiced/unvoiced mode in “pitch.praat” file by removing or adding the # 
sign (which means to comment out the corresponding row). 
 
After the feature extraction step, a “train_feat” and a “test_feat” folders will be generated 
inside “data” folder, and inside these two folders are the training and test feature files. In 
addition, a “train_wavefile.lst” and a “test_wavefile.lst” file will be generated inside 
“lists” folder. These are the lists of feature files for training and test data.  
 
6.3.  Training monophones (Tool_trainMono2.m) 
 
This tool is for monophone training. Its setup file is “Tool_trainMono2.dcf.” The training 
stage is almost the same as the same tool in the forced alignment step (Tool_trainFA.m). 
However, there are two major differences. One is the transcription preparation step; the 
other one is that there is an additional option called “Triphone_later” in the initialization 
step. We will mainly focus on these two differences in this section. 
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First, please copy the setup file “Tool_trainMono2.dcf” from “Tools” folder to “exp” 
folder. Next, create a subfolder “labs” in the “exp” folder. Then, go to the same “labs” 
folder in your forced alignment experiment folder, and copy the outcome of the last 
round forced alignment to “labs” folder of our current task example. If you have run the 
forced alignment step using the provided setup file (Tool_FA.dcf) in the forced alignment 
package, the last round outcome should be “aligned_6.mlf.” This is the “perfect” version 
of the phonetic transcriptions of the training data. Rename this file to 
“trainphone_sp.mlf.” This file is also available in the “files needed” folder, and you can 
just copy it from there to “labs” folder for convenience. But it is strongly recommended 
that you first run the forced alignment package by yourself to get familiar with similar 
tools. 
 
A byproduct of the forced alignment step is a list of all the monophones in the training 
data, including the short pause “sp.” We will use this list in our ASR task. Please go to 
“lists” folder in your forced alignment experiment folder, and copy the file 
“monophone_sp” to the “lists” folder of our ASR task. For convenience, this list can also 
be found in “files needed” folder. 
 
Then, let’s open “Tool_trainMono2.dcf” file and focus on the transcription preparation 
step. The purpose of this step is to delete the short pause (sp) between words from the 
transcription “trainphone_sp.mlf.” The output is simply the transcription without “sp.” 
The reason why we need both the transcription with and without “sp” is that the “sp” 
model is a short pause between every two words, so, this model is a one-state model, 
whose parameters are copied from and tied to the central state of the silence (sil) model, 
which is a 3-state model. To do this, at the beginning of training, a phone set of low 
mixture models (usually 1 mixture) will be trained using the transcription without “sp,” 
and then, the “sp” model will be introduced by copying the central state of the silence 
model. After this point, we will use the transcription with “sp” to keep training the 
models. The forced alignment transcription contains the “sp” model. So, at the beginning 
of training, we need to delete it from the transcription.  
 
The followings are the options to delete “sp”. 
Trans_prep: y means to turn on transcription preparation; n means to turn it off. 
PhoneMLF_sp: this is the path of the transcription with “sp.” It is the input of this step. In 
our setup file, the path is labs\trainphone_sp.mlf. 
Conf_deleteSP: this is the path of the configuration file for the underlying HTK tool 
(HLEd) to conduct this deletion. In our example, please copy the file “deleteSP.led” from 
“files needed” folder to “toolconfs” folder. You should have already created the 
“toolconfs” folder inside “exp” folder in the feature extraction step if you choose to use 
HTK_MFCC or HTK_PLP frontend, as explained in details in the forced alignment 
manual, feature extraction section. “toolconfs” folder is where we put all the 
configuration files of the underlying HTK tools. However, since in our example, we’ve 
chosen to use the tfrontm MFCC frontend, which is not controlled by HTK, you may 
have not created this folder. So, please create “toolconfs” folder first if that’s the case. 
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PhoneMLF_nosp: this is the path for the output transcription without “sp.” In our 
example, it is set to “labs\trainphone_nosp.mlf.” So, a MLF file “trainphone_nosp.mlf” 
will be generated in the folder “labs.” 
PhoneList_nosp: this is the path for the output phone list without “sp.” In our example, it 
is set to “lists\monophone_nosp.” This list, along with the transcription, will be used to 
train the phone set without “sp.” 
 
Notice that the operations in the transcription preparation step are based on the 
assumption that the phonetic transcription with “sp” is generated by the forced alignment 
package. However, in some cases, the transcription is already available in MLF format, 
such as the Youtube database, and it is possible that there is even no “sp” in the 
transcription. In this case, there is no need to delete any “sp.” However, we still need a 
list of all the phones encountered in the transcription. So, we can follow the following 
steps: 
a. Set “Trans_prep” to y, since we still need to generate the phone list. 
b. Set “PhoneMLF_sp” to the path of your phonetic MLF file. Note that do not try to 
change the parameter name  “PhoneMLF_sp,” because otherwise, the code of the tool 
will also need to be changed. Though the parameter name is “PhoneMLF_sp,” that is 
only for clarity. You need to be aware that in this case, this is just your phonetic 
transcription MLF path. 
c. For “Conf_deleteSP,” you can still leave the configuration file path 
“toolconfs\deleteSP.led” here. Since there is actually no “sp” in the transcription, the 
underlying HTK tool (HLEd) won’t do anything though the command in the file 
“deleteSP.led” (DE sp) means to delete “sp” from the transcription. The other way is to 
make the file “deleteSP.led” an empty file. 
d. For the output file parameter “PhoneMLF_nosp,” this is exactly the same as the input 
file parameter “PhoneMLF_sp” because there is no “sp” involved. Suppose your input 
MLF file name is “trainphone.mlf,” you can make the output file name 
“trainphone1.mlf,” but they are exactly the same files. 
e. “PhoneList_nosp,” in this case, is the list of monophones in the transcription, and is 
what we really want. You can specify the file path as you want here. 
 
This is how the transcription preparation step generalizes to the case where the MLF is 
not obtained from the forced alignment. In the training stage, there are a couple of other 
places that require inputs of the MLF transcription or phone list, both with and without 
“sp.” So, we can simply provide the same file for the “sp” version and “non-sp” version. 
For example, in the embedded training stage, we can set the entries “hmmList_nosp” and 
“hmmList_sp” both to the path of our sole HMM list. In addition, remember to set the 
entry “fix_sil” to n, because we do not introduce the “sp” model in this case. The 
meaning of “fix_sil”, as well as how the “sp” model is created, and how the silence 
model is fixed, are described in details in the forced alignment manual. Please refer to 
“Tool_trainFA” section for details.   
 
The transcription preparation in this training tool assumes that a MLF format 
transcription is already available, such as the “trainphone_sp.mlf” file in our example, 
and any editing should be made based on this MLF file. However, it is often the case that 

Approved for Public Release; Distribution Unlimited. 
53 

 



 

the initial transcription is in its “raw” format, not MLF format. The “raw” format may 
take on many possible patterns. For example, in TIMIT database, there is one phonetic 
transcription for each wave file, and the transcription has time markers for each phone. 
The reason why we start from a MLF is that it is very difficult to use the same piece of 
code to convert different raw formats into a MLF format. The code to make this 
conversion may vary, depending on the specific raw format, and it also makes the tool 
setup file very cumbersome with so many options for different variations. So, we have to 
assume that a user has already got this MLF format of transcription. It is recommended 
that you go through the tool “HLEd” in HTKbook, section 17.10 to learn how to make 
this MLF file. An example for TIMIT database is as follows: 
 
In the matlab command window, type in: 
arg = sprintf('-G TIMIT -i %s -l * -n %s -S %s %s', 'trainphone.mlf', 
'hmmList','trnp_exsa.lst','phn2cmu39.led' ); 
system(sprintf('HLEd -A -T 1 %s', arg)); 
 
Then, a MLF file “trainphone.mlf,” and a HMM list “hmmList” will be generated in your 
current matlab directory. One input is a list “trnp_exsa.lst,” which is a list of all the raw 
phonetic transcriptions with one transcription for one wave file. Each file path in this list 
is with respect to your current matlab directory. Another input is a configuration file 
“phn2cmu39.led,” which is provided in the “files needed” folder. It converts the TIMIT 
original phone set to the CMU phone set. A “phn2lab48.led” configuration file is also 
provided, which converts the TIMIT original phone set to the 48 phone set. A user can 
choose which phone set to be trained. These input files should also be placed in your 
current matlab directory. “-G TIMIT” means that the time markers in the raw 
transcription files are in TIMIT format, whose unit is sample index. After conversion, the 
base unit will change to HTK format, which is 100ns.  
 
With this MLF file as well as the HMM list, there is no need to make any further editing 
in the transcription preparation step of the monophone training tool, since the original 
phone set has already been converted to the 39 phone set by the commands above. So, 
you can simply set “Trans_prep” to n. Whenever the tool requires the MLF or HMM list 
in the setup file, either with “sp” or without “sp,” simply pass the same MLF and the 
HMM list path to both places. 
 
This ASR toolbox is designed for a large database. The training method for a large 
database includes two steps: flat start initialization and embedded training. The concepts 
of flat start and embedded training are explained and illustrated in the forced alignment 
manual. Both steps do not require time stamps in the phonetic transcriptions. For some 
small databases, such as TIMIT, the phonetic transcriptions have time stamps for each 
phone. For such a database, the training method also consists of two steps: boost 
initialization and embedded training. The boost initialization uses the time markers to cut 
out feature segments for each phone, and each phone model is trained by its own feature 
segments individually. The underlying HTK tools for the boost initialization are HInit 
and HRest. An overview of the boost initialization algorithm can be found in HTKbook, 
section 2.3.2. At this point, this ASR toolbox only supports the flat start+embedded 

Approved for Public Release; Distribution Unlimited. 
54 

 



 

training mode, and this is also why the monophone training tool is called 
“Tool_trainMono2.” A “Tool_trainMono1” will be developed, which only supports the 
boost+embedded training mode, which is the typical training method for small databases 
whose phonetic transcriptions contain time markers. 
 
A new option “Triphone_later” is added to the initialization step, compared with the 
training tool in the forced alignment package. If we want to use monophones to form 
triphones in the next step, we should set “Triphone_later” to y. Triphones can only be 
formed by 1-mixture monophones. In other words, we can not first train a set of 16-
mixture monophones, and use them to form a set of 16-mixture triphones. We can only 
start from 1-mixture triphones, which are built from 1-mixture monophones, and then, the 
mixture splitting will be conducted to these 1-mixture triphones to split the mixtures till 
the desired order is reached. The triphone mixture splitting sequence is specified in the 
triphone training tool (Tool_trainTri.m). So, if we set “Triphone_later” to y, the 
monophone mixture splitting sequence will not have any effect. The number of mixtures 
given by “numMixture” will be forced to 1, though it is specified as 1;2;4;6;8;12;16 in 
the setup file. Also, only the first number of the iteration sequence will be preserved, 
though it is set as 3;5;5;6;6;7;7. So, all the monophones will be 1-mixture phones, and 3 
iterations will be conducted to train these monophones. Thus, in a word, setting 
“Triphone_later” to y in the initialization step guarantees that all monophone models are 
1-mixture models. Later on, these 1-mixture models will form triphones. If triphones are 
not wanted, we can simply set “Triphone_later” to n. In this case, the mixture splitting 
sequence will be performed, and multiple mixture monophones will be generated. 
 
All the other options and parameters in the setup file are the same as those in the 
monophone training tool of the forced alignment package. Please read through and 
implement section 2, Tool_trainFA in the forced alignment manual. In our task example, 
a set of 1-mixuture monophones will be generated in the folder “hmms\fhmm_mono.” 
 
6.4. Training triphones (Tool_trainTri.m) 
 
After we’ve got a set of 1-mixture monophones, triphones will be made from these 
monophones. There are two types of triphones: internal word triphones and cross word 
triphones. Before we get into the details of the tool, let’s first get to know what they are. 
The formation of internal word triphones is bounded by the inter-word short pause “sp” 
and the silence (sil). Here is an example of how to convert monophone transcription into 
internal word triphone transcription: 
Original sentence: sil this sp man sp… 
Monophone sequence: sil th ih s sp m ae n sp… 
Internal word triphone sequence: sil th+ih th-ih+s ih-s sp m+ae m-ae+n ae-n sp… 
 
In the above example, the monophone sequence is converted to the internal word triphone 
sequence. A triphone consists of a central phone, a left phone, and a right phone. For 
example, in the triphone “th-ih+s”, “ih” is the central phone, “th” the left phone, and “s” 
the right phone. In HTK, we use a “-“to represent the left context, and a “+” to represent 
the right context. Note that the word boundary markers “sil” and “sp” are not used to 
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form triphones. They block the addition of context at word boundaries, such that some 
biphones (or monophones) will also be generated. For this reason, when we talk about 
internal word triphones from now on, we will simply call them triphones, but reader 
should be aware that the concept of “triphones”, in the internal word case, also includes 
biphones or monophones.  
 
The formation of cross word triphones is not subject to the word boundaries. This is why 
it is called cross word triphones. Next, let’s look at the same example: 
 
Original sentence: sil this sp man sp… 
Monophone sequence: sil th ih s sp m ae n sp… 
Cross word triphone sequence: sil sil-th+ih th-ih+s ih-s+m sp s-m+ae m-ae+n ae-n+… 
 
As can be seen from this example, the formation of cross word triphones is not restricted 
to “sil” and “sp.” “sil” is regarded as the context of the center phone, whereas in the 
internal word style, “sil” can not be a part of any triphones. When building triphones, the 
“sp” is “jumped over”, so that monophones from adjacent words are combined into a 
triphone, such as “ih-s+m.” However, the “sp” is not totally ignored. It is actually shifted 
to the right by one phone. There are different ways to deal with “sil” and “sp” when 
making cross word triphones. The method in the above example is adopted by the 
RMHTK, which is an example of how to build HTK based systems for the ARPA RM 
task. It can be downloaded from http://htk.eng.cam.ac.uk/download.shtml. Another way of 
making cross word triphones can be found from www.keithv.com/software/htk/. In our 
example, we will use the method in the above example. 
 
After knowing what triphones are, we will get into the procedures of triphone training. 
We will start from internal word triphones. 
 
6.4.1.  Internal word triphones 
 
Copy “Tool_trainTri.m” from “Tools” folder to “exp” folder, and copy the setup file 
“Tool_trainTri_inword.dcf” from “Tools” folder to “exp” folder. You may notice that 
there is another setup file “Tool_trainTri_xwd.dcf.” That is the setup file for cross word 
triphones. Training internal word and cross word triphones follows the same steps. So, 
only one tool (Tool_trainTri.m) covers both cases. Different setup files will be passed to 
the tool respectively. 
 
Next, please open “Tool_trainTri_inword.dcf.” We will explain tutorially the theory 
behind each step as we go through the setup file. 
Trace_on, Clean_up, LogDir: these three terms are the same as in the monophone 
training. “Trace_on” enables the progress to be displayed on the screen. “Clean_up” 
deletes the old triphone models in each step before new models are generated. “LogDir” 
specifies a log directory inside which a progress report “progress_trainTri.log” will be 
generated.  
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To train internal word triphones, we must first have internal word triphone transcriptions. 
In the first example above, we have learnt how to convert monophone transcriptions to 
the internal word triphone version in theory. This conversion is implemented by the 
transcription preparation step. This step has two inputs and two outputs. 
 
Trans_prep: set this to y enables the conversion, and n turns it off. 
PhoneMLF: this is the path of the monophone transcription MLF file, which is an input. 
Note that in the setup file, this is set to “labs\trainphone_sp.mlf.” This is the transcription 
with “sp” between each two words. To make internal word triphones, there must be a 
word boundary marker, such as “sp.” 
Conf_mon2tri: this is the path of the configuration file for the underlying HTK tool 
(HLEd) to convert monophones to internal word triphones. Please copy the file 
“mktri_inword.led” from “files needed” folder to “toolconfs” folder. In 
“mktri_inword.led” file, there are two commands: each WB specifies a word boundary 
marker, and TC means to expand the monophone transcription to triphone transcription. 
TriMLF: this is the output triphone MLF path. We set it to be “labs\traintri_inword.mlf.” 
Trilist_ini: this is another output, which is a list of all the triphones in the transcription 
TriMLF. Note that this list only covers the triphones in the training data. But many 
triphones, which are not in this list, may appear in the test data. To solve this problem, we 
will have another full list in a later step. So, at this point, this list will only be used for 
triphone initialization, as implied by the name of the term “Trilist_ini.” 
 
After we obtain the internal word triphone transcription, we can begin the training 
processing. There are two main steps: initialization and making tied state triphones. We 
will describe both steps later. But before we get into the details, there are some global 
settings and files needed by both steps. 
 
Train_on: y turns on training; n turns off training. 
Feat_List: this is the training feature file list. Both steps will need this list. 
Tri_MLF: this is the triphone transcription MLF file generated in the transcription 
preparation step. Both steps will need this transcription. 
Src_hmmfolder: this is the monophone HMM folder, which is the starting point of 
making triphones. Our monophones are stored in “hmms\fhmm_mono.” 
Final_hmmfolder: this is the folder to store the final triphone models after initialization 
and making tied state triphones. This folder is the end point of training. We will place the 
final triphone models in “hmms\fhmmtri_inword.” This directory will be automatically 
created. 
embdOptStr: this is the pruning threshold sequence of the embedded training, which has 
the same meaning as in monophone training. 
Conf_embd: this is the configuration file path for the underlying HTK tool (HERest) of 
embedded training. There should be a “herest.conf” file already copied to “toolconfs” 
folder in the monophone training step. 
 
Next, we come to the initialization step. The initialization of triphones is somewhat 
analogous to the flat start initialization of monophones. First, HTK will read in a list of 
triphones to be initialized. Then, for all the triphones in this list that have the same central 
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phone, HTK will make a copy of the parameters of the central phone (which is a 
monophone), and use it as the initial parameters of all these triphones. For example, for 
all the triphones of the format *-b+* (this includes *-b+*, *-b, b+*, b), the parameters of 
monophone b will be used as the initialization of all triphones of *-b+*. Then, embedded 
training will be conducted for a couple of iterations, and these initial parameters will 
change correspondingly. 
 
A problem is obvious: the number of triphones is huge. If each triphone requires its own 
samples to be trained, then, the parameter estimates will be very poor since many 
triphones only appear once or twice. So, in the initialization processing, in addition to the 
“clone” operation described above, the transition matrices of all the triphones in the class 
*-b+* will be tied together. Generally speaking, tying means that one or more HMMs 
share the same set of parameters. When reestimating tied parameters, the data which 
would have been used for each of the original untied parameters is pooled so that a much 
more reliable estimate can be obtained. 
 
Of course, tying could affect performance if performed indiscriminately. Hence, it is 
important to only tie parameters which have little effect on discrimination. This is the 
case in the initialization where the transition parameters do not vary significantly with 
acoustic context but nevertheless need to be estimated accurately. Some triphones will 
occur only once or twice and so very poor estimates would be obtained if tying was not 
done.  
 
With this background, let’s go into the setup file to see the initialization part. 
 
Init: y turns on the initialization; n turns it off. 
Iteration_init: this is how many iteration of embedded training to be conducted after 
initialization. 
 
There are three inputs for initialization. 
 
hmmlist_mono: this is the monophone HMM list path. Since the initial parameters of 
each triphone is copied from its central phone, we need to pass this monophone list to 
HTK to specify which monophones to copy from. Note that in the setup file, this list 
includes the “sp” model, because “sp” is also a member in the triphone list, and so it 
needs to be carried through all stages. 
Trilist_init: this is the triphone HMM list path. This list is generated in the transcription 
preparation stage. The triphones in this list are to be initialized. 
Conf_init: this is the configuration file path for the underlying HTK tool (HHEd) to copy 
parameters as well as tie transition matrices. Please copy the file “tieTrans.hed” from 
“files needed” folder to “toolconfs” folder. Let’s look at a command in this configuration 
file: TI T_zh {(*-zh+*,zh+*,*-zh).transP}. The command “TI” means to tie a parameter; 
{(*-zh+*,zh+*,*-zh).transP} means that the parameter to be tied is the transition matrices 
(specified by transP) of all the triphones whose central phone is zh. The “T_zh” is the 
macro name of the tied matrix, which means for all the triphones in this class, they will 
have an identical transition matrix called “T_zh.” Note that there is no “sil” and “sp” in 
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these commands, since “sil” and “sp” have no left or right contexts according to the 
internal word rule of forming triphones. But it does not matter if they are in this file; for 
example, there is a command TI T_sp {(*-sp+*, sp+*,*-sp).transP}. In this case, a 
warning will show up, saying there is nothing to tie for this class, but it won’t hang up the 
program. 
 
It is very easy to write a short program to create this configuration file by passing it a 
monophone list (without sp and sil), and each monophone will be expanded into a 
command of the form “TI…” The content of this configuration file changes with the 
monophone list. So, if you have your own phone set in your own task, please write a 
program to make this configuration file by yourself. 
 
However, at this point, the configuration file only does the tying job by executing each 
“TI” command. It does not include the cloning job, as described above. Actually, what 
the tool does is that it will add a row before all the “TI” commands, which is “CL 
lists/trilist_ini_inword,” and rename this complete configuration file as “mktri.hed,” and 
save it to our experiment folder “exp.” The command “CL” simply means clone. The 
initial triphone list “lists\trilist_ini_inword” is specified by the “Trilist_init” entry in the 
setup file. Then, the tool will use “mktri.hed” as the complete configuration file to 
conduct both cloning and tying. 
 
There are two output entries in the initialization step: 
 
TgtDir_init: this is the directory to save the initialized triphones. A folder 
“hmms\hmm3_init_inword” will be automatically created as specified in the setup file. 
Stat_embd: this is a statistical file generated by the embedded training. As indicated in 
the setup file, 3 iterations of embedded training will be performed after initialization. 
After each iteration, a statistical file “toolconfs\hstats” will be generated. The newer one 
will overwrite the old one. The last round statistical file will be used in the next step, 
which is making tied state triphones.  
 
Next, before we go into the tool implementation of the last step, a theoretical overview is 
very helpful for us to understand what this step does. 
 
The outcome of the initialization step is a set of triphones with all triphones with the 
same central phone sharing the same transition matrix. However, there are two problems 
remaining. First, the data insufficiency problem is still prominent, since only the 
transition matrix in each triphone class is tied. When estimating these models, many of 
the variances in the output distributions will be floored. Second, the triphones that have 
been trained so far are all from training data; but many possible triphones that might 
appear in the test data are missing from the training data. To solve these two problems, 
the last step in building triphones is to tie states within each triphone set (class) that has 
the same central phone, so that data will be shared when estimating the parameters of 
each tied state. 
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Unlike the initialization step, which ties the transition matrices of all the triphones in the 
same class, how to partition the states of all the triphones with the same central phone 
into different clusters requires phonetic knowledge. In simple words, states of triphones 
with similar co-articulation effect is most likely to be tied together. A common 
characteristic of the triphones in the same cluster is that the co-articulatory impact of their 
left and right contexts to the central phone is similar across the cluster. 
 
A decision tree based method is used to decide which triphones are to be put in a cluster. 
First, a question set is carefully designed according to similar co-articulatory impact of 
the left context and right context. Each question is a binary question. Let’s give two 
examples of English question set. Here is one example of a left context question: 
 
QS “L_Class-Stop” {p-*,b-*,t-*,d-*,k-*,g-*} 
“QS” means that this is a question, and “L_Class-Stop” is the question name. This 
question simply asks: is the left phone of the central phone a stop consonant, namely, one 
of p, b, t, d, k, g? Recall that HTK uses “-“ to represent the left phone of a central phone. 
Here is another example of a right context question: 
QS “R_Nasal” {*+m,*+n,*+ng} 
This question asks: is the right phone of the central phone a nasal consonant, or namely, 
one of m, n, ng? It can be seen that each question represents a group of phones that have 
similar impact on the pronunciation of the central phone.  
 
The decision tree is constructed based on these questions. For example, suppose we want 
to make clusters of state 2 of all the triphones with a central phone “aw.” Before 
clustering, there might be hundreds of triphones in this set. Initially, state 2’s of all the 
triphones in this set are pooled at the root of a tree (the tree has not been built yet). Then, 
the question set is loaded. Since the answer to each question is binary, by answering a 
question, the initial pool will be split into two pools. Splitting any pool into two will 
increase the log likelihood of the training data for that state, since it provides twice as 
many parameters as the original pool (because each sub-pool has its own Gaussian output 
density) to model the same amount of data.  After all the questions have been scanned 
through, the one question that provides the biggest improvement of the log likelihood of 
the training data will be selected as the first branch of the decision tree. This branch gives 
the best split of the root node, and two descendent nodes are generated by this splitting. 
The first part of the original pool is placed at one descendent node, and the second part is 
at the other descendent node. Then, the pool at each descendent node is split again by the 
locally optimized question (locally means the question maximizes the improvement of 
the likelihood of training data at that local node). Thus, this processing repeats and a 
decision tree is built by this top-down sequential optimization process. As the tree keeps 
growing, the maximal improvement of the log likelihood of the training data brought by a 
splitting at a descendent node gets smaller. When the maximal improvement at any node 
falls below a user defined threshold, the construction of the tree stops. It is easy to see 
that a smaller threshold makes the splitting process last longer, and thus, makes the tree 
bigger. When the process stops, the nodes at the very bottom of the tree, who do not have 
any descendants, are called leaf nodes, or senones. The states at each senone are tied 
together. From now on, these states will share the same training data, and have identical 
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output density parameters. A more detailed explanation of the decision tree based method 
which includes a pictorial example can be found in the HTKbook, section 10.5. A basic 
paper on this tree-based tying can be found in [77]. 
 
There are a couple of points revealed from the descriptions above. First, the design of the 
question set is crucial for the quality of the tying. Ideally, the question set would include 
every possible context which can influence the acoustic realization of the central phone, 
and can include any linguistic or phonetic classification which may be relevant. There is 
no harm in creating unnecessary or “meaningless” questions, since only the questions that 
give the maximal increase in the log likelihood of the training data will be selected in the 
tree construction processing. Second, the user defined stop criteria determines the number 
of tied states (leaf nodes). The smaller it is, the more splitting will be conducted, and 
therefore, more tied states will be generated. In a triphone system, the number of 
triphones is not that important. What matters is the number of tied states, because they 
are what get trained. So, this user defined threshold needs to be tuned according to the 
amount of data we have. 
 
Finally, another advantage of this decision tree based clustering is that it’s able to 
synthesize the triphones which never appear in the training data. In other words, even if a 
triphone does not have any samples in the training data, it can still be trained. This is 
because after the state tying, there is actually no longer a concept tied to any individual 
triphone. The states of each triphone are categorized into different clusters. So, for any 
triphone which is not in the training data, each of its states will first find the 
corresponding tree, and then descends that tree by answering the questions at each node 
until it gets to one of the leaf node. Then, it will use the parameters of this leaf node as its 
own estimates for that state. 
 
With this background, let’s focus on the tool to implement these algorithms. Please focus 
on the “Tied state triphones” part of the setup file. 
 
Tie: y turns on the state tying; n turns it off. Once it is turned on, the models will be 
loaded from “TgtDir_init,” which is the target folder of the initialization step, and the tied 
models will be saved in “Final_hmmfolder,” which is the folder to store final HMM 
models. 
Iteration_tie: this is how many iterations of embedded training will be performed after 
making tied state triphones. 
 
Let’s skip the two configuration files specified by “Question” and “TB” for the time 
being, and focus on the “Full_list” entry as one of the inputs. As stated in the 
background, after the decision trees have been built, unseen triphones in the training data 
will be synthesized using the trees. To do this, we need to manually create a “full list” 
which contains all possible internal word triphones for our ASR system, so that HTK will 
collect those unseen triphones with respect to the training data from this full list. Since 
the vocabulary of an ASR system consists of all possible words that can be decoded in 
theory, we can easily find all possible internal word triphones by converting the 
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monophone pronunciation of each word in the dictionary to its internal word triphone 
form, and make a list of it. To make this conversion, please follow the following steps: 
 
a. Create a folder called “dicts” inside “exp” folder, and copy the dictionary file 
“dict863_tone_sp1” from “files needed” folder to “dicts” folder. Note that a “sp” is 
appended after each pronunciation entry. 
b. Copy the configuration file “global.ded” from “files needed” folder to “exp” folder. 
c. Make sure that your matlab directory is “exp.” Then, in your command window, type 
in this command: 
system(sprintf(‘HDMan –b sp –g %s %s %s’, 
‘global.ded’,’tridict’,’dicts\dict863_tone_sp1’)); 
 
The command “HDMan” is the HTK tool to manipulate a dictionary, and the option “-b 
sp” specifies “sp” as the word boundary. Note that the original dictionary to be converted 
must be in sorted order; otherwise, “HDMan” won’t work. The dictionary provided is 
already in sorted order. Then, a file “tridict” will be generated inside “exp” folder. This is 
the internal word triphone dictionary. The monophone pronunciations have been 
converted to its internal word triphone format. You may find that the Chinese words all 
become numbers. Those numbers are the encoding of the Chinese characters. But this 
does not matter because what we want is the triphone pronunciations, not the Chinese 
words. Then, you can write a program to get rid of those Chinese words and only 
preserve the triphones. Such a matlab program called “remove.m” is provided in “files 
needed” folder. Copy this file to “exp” folder, and the words will be eliminated after 
running this program. Then, use a text editor to open the output file “tlist,” and replace all 
spaces by line breakers (\n) and remove empty lines. However, this list contains 
duplicated entries. Please copy the file “tlist” to a Linux system, and open a terminal. 
Then, type in the following two commands: 
 
dos2unix tlist 
awk ‘!a[$0]++’ tlist>fulllist_inword 
 
Then, a “fulllist_inword” will be generated. Only one entry of each duplicated entries is 
preserved. Copy this file back to the “lists” folder inside the “exp” folder. Note that in 
HTKbook section 3.3, the tutorial example, there is a “-n fulllist” term in HDMan 
command. A “fulllist” will be generated after the conversion of the dictionary. However, 
please do not use this method, since this “fulllist” misses some triphones, which will 
result in errors in following steps. For your convenience, a “fulllist_inword” is provided 
in the “files needed” folder using the recommended method above. This full list comes 
from the dictionary “dict863_tone_sp1.” In your own project, you need to make your 
own full list if a different dictionary is used. 
 
Full_list: make a full list of all possible internal word triphones from the dictionary, and 
specify its file path here. 
 
Now, let’s go back to the two configuration files Question and TB. 
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Question: this is the question set for building the decision tree. An example question set 
formed by Chinese tonal phones is provided. Please copy the file “Quest.hed” from “files 
needed” folder to “toolconfs” folder, and specify the file path here. There is an English 
question set. It can be found in HTK samples\RMHTK\lib\quests.hed. The HTK samples 
can be downloaded from the official website of HTK. 
TB: please copy “TB.hed” file from “files needed” folder to “exp” folder. Let’s look at 
one of the TB commands in this file: 
TB 2000.0 "zh_s2" {("zh","*-zh+*","zh+*","*-zh").state[2]} 
Each TB command constructs a decision tree for a state of a triphone set. In this 
command, a decision tree will be built for state 2 of the triphone set with the central 
phone “zh.” The procedures of building this tree is described in the background section. 
The number 2000 is the user defined stop criteria for the growth of the tree. This number 
needs to be tuned according to the amount of training data. In our example, 2000 is the 
optimal setting for tonal internal word triphones. 
 
A Perl script “mkclscript” can be found in HTK samples\RMHTK\perl_scripts to 
generate this TB file. It is run under Linux. The threshold number as well as a 
monophone list excluding “sil” and “sp” are needed as two arguments of the program. 
 
In addition to the full list of all the possible triphones, there are other two inputs: 
 
Stat_embd: this is the statistical file generated by the last round of the embedded training 
after the initialization step. This file needs to be loaded at the beginning of the clustering 
processing. After the state tying, it becomes useless, and will be overwritten by 
embedded training. 
Trilist_init: this is the initial triphone list file path. The clustering will be conducted to 
each triphone in this list. 
 
In addition to a new set of tied state (also tied transition matrices) triphones stored in the 
“Final_hmmfolder,” another two outputs will also be produced: 
 
Trilist_tied & Tree: “Trilist_tied” is the output file path for a list of all compact tied-state 
triphones. In our example, it is set to “lists\tiedlist_inword.” “Tree” the path where the 
decision trees get saved to. To be specific, before making decision trees, the tool will first 
merge the question set “Quest.hed” and the TB file “TB.hed” together, and a new file 
“tree.hed” will be generated inside “exp” folder. Then, it writes in the following 3 lines at 
the end of “tree.hed.”  Then, “tree.hed” will be used as the complete configuration file for 
the decision tree construction as well as state clustering. 
AU "lists/fulllist_inword" 
CO "lists/tiedlist_inword" 
ST "toolconfs/trees_inword" 
 
“AU” means to synthesize all the unseen triphones in the full list after trees have been 
built. After state tying, it is possible that for some triphones with the same central phone, 
their three emitting states all fall into the same leaf node in corresponding trees. Thus, 
these triphones become exactly identical (recall that their transition matrices are already 
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tied together, thus also the same). The “CO” command finds such triphones and tie them 
together, producing a new list of models whose path is designated by “Trilist_tied.” This 
final list will be used to load HMMs in the following embedded training and decoding 
steps. Finally, the generated decision trees will be saved to the path 
“toolconfs\trees_inword.”   
 
Till now, we have completed making 1-mixture triphones. These 1-mixture triphones are 
saved in the directory “hmms\fhmmtri_inword” specified by “Final_hmmfolder” entry. 
However, if we want to get multiple mixture triphones, we can carry out the mixture 
splitting processing, controlled by the last 4 entries in the setup file. The splitting is 
directly conducted to the models in the folder “Final_hmmfolder.” 
 
Split: y enables mixture splitting; n disables it. 
numMixture & Iteration: these are the mixture splitting sequence as well as the number of 
iteration sequence. 
numState: this is the number of emitting states.   
 
At this point, the models in the “hmms\fhmmtri_inword” folder become 16-mixture 
models, as specified by the mixture splitting sequence. We need to emphasize again that 
multiple mixture triphones can ONLY be obtained by splitting mixtures from 1-mixture 
triphones. Directly making multiple mixture triphoens from multiple mixture 
monophones is not permitted. In fact, when the tool loads monophones before triphone 
initialization step, it will first check whether the monophones are 1-mixture. If not, the 
tool will give out an error and stop proceeding. 
 
6.4.2.  Cross word triphones 
 
The theory of making cross word triphones is the same as that of internal word triphones. 
There are two differences. First, the conversion from monophones to cross word 
triphones is not subject to the word boundary marker “sil” and “sp.” Second, due to the 
first property, the full list in making tied state triphones can not be obtained from the 
dictionary. We will only focus on these two differences. All other steps are the same as in 
the internal word triphone case. 
 
Please copy the setup file “Tool_trainTri_xwd.dcf” from “Tools” folder to “exp” folder. 
This setup has exactly the same format and entries as the setup file for the internal word 
triphones. So, it can be called by the tool in the same way: 
Tool_trainTri(‘Tool_trainTri_xwd.dcf’); 
 
The first different place is in the transcription preparation step: 
 
Conf_mon2tri: this is the configuration file path for the conversion between monophones 
to cross word triphones. Please copy the file “mktri_xwd.led” from “files needed” to 
“toolconfs” folder, and specify the file path here. “mktri_xwd.led” makes cross word 
triphones from monophones in the same way as in the example above. 
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The second different place is in the tied state triphone step: 
 
Full_list: since the cross word triphones can be formed by monophones across adjacent 
words. The full list of the system cannot be extracted from the dictionary. We need to 
find all possible cross word triphones in the task language in a brute force way, and put 
them in the list. Making this list requires linguistic knowledge. Given a list of all 
monophones, randomly combining three of them into a triphone is not a good way, 
because certain combinations are illegal in a language. These illegal triphones will 
become burden of the system since they require more training data, and will never be 
used in a recognition network. In a Chinese system, all possible triphones can be found 
by the rules of how Initials and Finals form a syllable. 
 
Specifically, the first rule is that a syllable in Chinese is formed by an Initial and a Final. 
The Final always goes after the Initial. The pronunciation of a character is specified by a 
syllable, and a word is formed by characters. So, when creating triphones, if the middle 
phone is an Initial, then, its right context can only be a Final, and its left context can be 
either “sil” (if this character is the first character of a sentence) or a Final. Similarly, if 
the middle phone is a Final, then, its right context can be any Initial or “sil” (if this 
character is the last character of a sentence), and its left context can only be an Initial. 
Another rule is that there are only certain Finals which are allowed to append an Initial 
when forming a syllable. For example, for the Initial “j,” the Final “ong” is invalid to 
form a syllable, but “iong” is a valid Final for “j.” So, knowing the valid Final sets for 
each Initial, we can further rule out a lot of invalid triphones.  
 
A full list called “fulllist_xwd” made by these rules is provided in “files needed” folder. 
Please copy this file to “lists” folder. This list contains all valid triphones in Chinese 
made from the monophones covered by our task. There are one or two monophones not 
covered by our task database, but are valid Chinese monophones. So, this full list is not 
really 100% complete, but is appropriate for our task. 
 
For a language which does not have too many monophones, such as English, it is fine 
(though not recommended) to “brute force” use all possible combinations, regardless of 
any linguistic rules. A Perl script can be found in HTK 
samples\RMHTK\perl_scripts\full_list.prl, which generates all possible monophones, 
biphones, and triphones for a cross word system from a monophone list (the monophone 
list should remove sil and sp first). Minor change to the program can be made to output 
only those cross word triphones.  
 
All the other entries in the cross word triphone setup file are the same as the internal 
word one, except some file or folder names are appended by “_xwd” to distinguish from 
the internal word ones. So far, all the acoustic aspects of our ASR system have been 
completed. 
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6.5. Language modelling (Tool_trainLM.m) 
 
In the previous steps, we have generated a set of acoustic models. In this step, we will 
focus on language modelling. The tool for language modelling is “Tool_trainLM.m,” and 
its setup file is “Tool_trainLM.dcf.” Please copy these two files from “Tools” folder to 
“exp” folder. 
 
Though, in this manual, language modelling is placed in the fourth step, it’s 
recommended that you run this tool apart from other steps. Do not connect this step with 
others. First, the language model is not likely to change with other steps. We could have 
different features, or different acoustic models, but these changes won’t lead to any 
changes for the language model. So, it is usually the case in a large vocabulary ASR 
system that a language model should be prepared before other steps. Once it has been 
created, it does not change with other components. Second, a language model is a 
complete system by itself. It can be trained and evaluated isolated from any acoustic 
factors. It has its own training data and test data, both in text format. In other words, we 
do not need a complete ASR system to either train or tune a language model. So, people 
always train and tune up a language model towards different tasks without any acoustic 
data, and then put it in the whole system.  Third, all language models for an ASR system 
comply with a set of standard format (ARPA format). There are various software 
specialized on language model analysis, such as SRILM and CMU_Cam_Toolkit. They 
provide much more powerful and flexible choices for making a language model than 
HTK. So, people always use such language-model-specialized software to generate better 
language models, and then connect them with other components of the ASR system in 
HTK environment. This connection is enabled by the standard format of language 
models. 
 
No matter which software is selected, a background of language modelling is important. 
It is too long to give a detailed background in a manual for a complete system. Please 
refer to Chapter 14 of HTKbook for fundamental knowledge on language modelling. We 
will get into the task description and tool description directly. 
 
In our example, the training data of the language model is a subset of the transcriptions of 
the acoustic wave files. The sentences in the wave files are divided into 4 groups 
(A,B,C,D). We use all speakers who speak A, B, C, and some speakers who speak D as 
the training data for the acoustic model, and use the rest of speakers from D as the test 
data. The language model training data is the transcriptions of A, B and C. But we also 
add the words in D into the vocabulary of our language model. There are many words in 
D that are unseen in A, B, C. These unseen words will still be assigned unigram 
probabilities according to the smoothing algorithm, which means in theory, it is at least 
possible for them to be correctly decoded.  
 
This tool supports two methods. The first one uses the transcription of the acoustic data to 
build a simple bigram model. The second method uses plain text from any sources to 
create any n-grams specified by user. Let’s first look at method 1. 
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Please open “Tool_trainLM.dcf.” Before getting into method 1, there are 4 global settings 
for the tool: 
 
Trace_on: y enables envision of progress on the screen; n turns it off. 
Train_on: y turns on LM training; n turns it off. 
Convert_on: this step is to convert an ARPA format LM to a lattice format. In the 
decoding step, the decoder Hvite works with the lattice format of a language model, not 
its ARPA format. For a detailed description what a lattice network is, please refer to 
HTKbook section 12.2. The other decoder HDecode works directly with the ARPA 
format. So, there is no need to make this conversion is HDecode is to be used in the next 
step. 
Log: as in other tools, a progress report “progress_trainLM.log” will be generated inside 
the folder specified here. 
 
6.5.1. Method 1 
 
Method 1 is a relatively simple method to create a LM. The source data usually comes 
from the transcriptions of the wave files, one transcription in one separate file, with one 
word in one row. The tool will first convert these “raw” transcriptions into a MLF file, 
and then, the LM is built from the MLF file.  
 
One major restriction for this method is that we cannot pass it a predefined vocabulary. 
By default, this method uses all the words encountered in the transcriptions. The 
vocabulary is the first important step in building a LM. In theory, for those out-of-
vocabulary (OOV) words in the source data, they should be either mapped to an unknown 
class, or simply thrown away. For those words in the vocabulary, but not in the source 
data, they will also be assigned probability based on various smoothing algorithm. Due to 
the restriction of not accepting the vocabulary, we will not use this method in our task. 
We will only show the meaning of the setting parameters of this method in the setup file.  
 
Another major restriction for this method is that it only creates bigram models, and the 
smoothing algorithm is crude (a simple absolute discounting). Thus, this method is often 
used in phoneme recognition experiments, such as TIMIT. However, we still provide it in 
the tool as a convenient and quick method. Its settings are as follows. Some parameters 
are appended by a “1”. This is only to distinguish this method with method 2.  
 
Method1_on: y turns on this method; n turns it off. 
Startword1 & Endword1: internally, when processing each sentence, a startword as 
specified here will be prefixed to the sentence. Similarly, an endword will be appended 
after each sentence. The startword and endword avoid confusion of counting the last 
word a sentence and the first word of the next sentence as a bigram. In our example, we 
use “SENT_START” and “SENT_END” as the startword and endword. Note that these 
words must be in the dictionary. Make sure they have the following entries: 
SENT_START [] sil 
SENT_END [] sil 
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OptString: this string specifies the unigram floor count and the bigram count threshold. A 
straightforward mathematical form of these parameters can be found in HTKbook, 
section 17.14.2. 
Discount: this is the discount factor in the bigram. Each bigram count will subtract this 
factor to make room for the unseen events. Its mathematical form can be found in 
HTKbook, section 17.14.2. 
datalist1: this is the only input for the LM, which is a list of all the transcription files. 
Please copy “LMdata_trs.lst” from “files needed” folder to “lists” folder, and specify the 
file path here. Then, create a folder called “train_word_trs” inside “data” folder, and copy 
all the transcription files in the list into this folder. The list “LMdata_trs.lst” contains all 
transcription files of A, B, C. Since this method cannot account for unseen words, these 
words will be totally missing from the bigram generated. So, many words in D (which is 
our test data) cannot be decoded correctly.  
 
There are three output settings: 
 
LM_folder1: specify the folder to store the bigram model generated. This folder will be 
automatically created. 
LM_name1: specify the output bigram model file name (only the file name, not the full 
path). 
wordlist: as a byproduct, a word list consisting of all the words in the LM training data 
will be output. In our example, the file path is “lists\wordlist_abc.” This word list only 
contains words from A, B, C. Note that the startword and endword are also in the list. 
 
6.5.2. Method 2 
 
Now, let’s focus on method2. This method is much more sophisticated than method 1. It 
supports any n-gram specified by user, and also supports a user-defined vocabulary. All 
the OOV words are mapped to a unknown class called !!UNK. Any unseen words (which 
means the word is in the vocabulary but not in the training data) will also be assigned 
probabilities. So, at least, they can possibly be correctly decoded. From the setup file, it 
looks that this method is pretty simple. However, there are many intermediate steps in the 
method, which are hidden from the user. It’s recommended that a user should read 
through HTKbook section 15.1 to 15.3 to learn these intermediate steps. Now, let’s look 
at the parameter settings for this method. For those entries with a “2” appended, the 
purpose is to distinguish then from method 1. 
First, there are some global settings for this method: 
 
method2_on: y turns on method2; n turns it off. 
Startword2 & Endword2: these are the start word and end word of each sentence. In this 
method, the source data format is different from that of method 1. Each row has one 
sentence.  Each sentence starts with the startword, and ends with the endword, as 
specified by Startword2 and Endword2. These data can come from anywhere, not 
necessarily from the transcriptions.  There is actually an important step called “data 
preparation” skipped in this manual. A very large amount of cleaning-up needs to be 
done in this step. For example, punctuation need to be removed, and digital numbers need 
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to be converted to words. If the source data is downloaded from websites, the headers and 
hyperlinks are to be removed. In a word, only the pure “language” will be preserved. For 
Chinese, the character encoding scheme needs to be unified to GB2312, and sentences 
need to be segmented into words. 
 
This tool assumes that this work has been done. In our task, the LM training data is 
provided in the file “863data_abc” in the “files needed” folder. Please open it to see the 
“clean” format of the data. In our example, the startword and endword are still 
“SENT_START” and “SENT_END.” The training data is the transcriptions of A, B and 
C. In a large vocabulary task, the LM training data usually comes from various sources of 
human life, depending on the recognition task. The size of the training data easily 
achieves tens of Gigabytes. For our example task, we will use the transcription data for 
simplicity. 
 
LM_order: specify the order of the language model. For example, 2 means a bigram; 3 
means a trigram. We will first build a bigram model. 
DCtype: this is the type of discounting algorithm. HTK provides two types: TG for Good 
Turing method, and ABS for absolute discounting. Please refer to HTKbook Chapter 14 
for details of these two algorithms. 
cutoffs: this is the cutoff sequence for the language model. Cut-off is used to throw away 
those grams who appear infrequently enough. With cut-off, the model size can be greatly 
reduced, and more frequently observed shorter-context estimates can be made more 
robust. The cutoff sequence is used to specify a sequence of thresholds. A n-gram that 
appear more often than its threshold will be preserved when computing the probability 
estimate; otherwise, this n-gram entry will be thrown away. For example, if the language 
model order is 3 (a trigram), and the cutoff sequence is 1;1, this means all the bigrams 
who appear at least two times (greater than 1 time) in the training data will be preserved, 
so are the trigrams. The rest of them will be discarded. Note that there is no cutoff for a 
1-gram (unigram). All the unigrams will be kept. So, the cutoff sequence is only effective 
when LM_order is at least 2, and when that is the case, the length of the cutoff sequence 
must equal to LM_order-1, and it is obvious that setting a cutoff factor to 0 means that all 
of the corresponding n-grams will be preserved. If the LM_order is set to 1, then, the 
cutoff sequence can be set to any length with any number (since it loses effect for a 
unigram). In fact, when running this tool, a table will show up on the screen. This table 
counts how many n-grams will be left when different cutoffs are set. For example, in the 
following table, it says that a cutoff factor 0 for bigram will make 11181 entries, and a 
cutoff 1 will have only 1045 entries left. In our example, we set the cutoff to 0, which 
means we will preserve all the bigram counts. 
cutoff  1-g 2-g 
  0 4488  11181 
  1 1610  1045 
  2   936    351 
LM_format: specify the format of the language model. The available choices are text 
format and binary format. In a large vocabulary task, the language model is usually very 
large. Setting it to “binary” will convert the bigram and any higher order grams to its 
binary format, and only leave the unigram part in its text format. Thus, the storage size of 
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the LM will be much smaller. Setting this term to “text” will make the whole file in its 
text format. 
Max_vocab: this term specifies the maximum number of unique words the training data 
is allowed to have. If the training text contains more unique words than this number, an 
error will be given. 
Next, there are two input files: 
datalist2: this is the list of all the training data for the language model. Each file in this 
list complies with the same format: one sentence in one row, and each sentence starts 
with the specified startword, and ends with the endword. Please copy the file 
“LMdata_text.lst” from “files needed” folder to “lists” folder, and put the file path here. 
Then, create a folder called “LMtext” inside the folder “data,” and copy the training data 
file “863data_abc” from “files needed” folder to “LMtext” folder. 
vocabulary: this is the vocabulary of the LM. Please copy the file “wordlist_abcd” from 
“files needed” folder to “lists” folder. This list is manually extracted from all the 
sentences in A, B, C, D. There are many words in group D (which is our recognition 
task), which are unseen in the training data (A, B, C). But due to the smoothing 
algorithm, these words will be assigned equal probabilities as unigrams, so that they are 
still likely to be decoded correctly by the decoder. In many cases, the vocabulary is a 
subset of the training data. For example, it might be the top 20,000 most frequent words 
in the training data. In this case, those OOV words (out-of-vocabulary words) will be 
mapped to a unknown class called !!UNK in the generated LM. If “vocabulary” is set to 
“none” (case insensitive), this simply means that no vocabulary is provided. In this case, 
all the words encountered in the training data will be counted as in-vocabulary words, 
and are used to generated the LM. 
 
Note that the vocabulary provided MUST include the startword and the endword as two 
entries. In our example, please notice that SENT_START and SENT_END are in the list 
“wordlist_abcd” in addition to those “real” words in the text. However, the vocabulary 
must NOT include the entry !!UNK. This is because !!UNK is the unknown class marker 
to the system, which will be automatically generated, not an input word, since logically, a 
user cannot input an “unknown” word to the system.  
 
There are two output settings: 
 
LM_folder2: this is the folder to store the output LM, which will be automatically 
generated if it does not already exist. 
LM_name2: this is the output LM file name. 
 
After running this tool, a bigram LM model “bigram2” will be generated inside the 
“LMs” folder. Please open this file. It’s interesting to notice that the !!UNK entry appears 
in the unigram. Theoretically, it shouldn’t be there, since all the words in the training data 
set (A, B, C) are covered by the vocabulary, which is formed by words from A, B, C, D. 
So, there should not be any unknown words. In fact, internally, when creating a LM, 
HTK will first assign each new word in the training data a number. All the following 
operations are based on this mapping. When a vocabulary is passed to HTK, the unknown 
class !!UNK will be added to this mapping forcefully, regardless of whether there are  
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OOVs or not (this mapping file=vocabulary+!!UNK). So, since there is actually no 
!!UNK in the training data, but !!UNK is in the mapping file, it will be regarded as an 
unseen word, just as those “real” unseen words, which are in set D, but never appear in 
the training data composed of A, B, C. Thus, !!UNK becomes a unigram and is assigned 
a probability by the smoothing algorithm. 
 
So, due to this issue, when you know ahead of time that there is no OOV words in the 
training data, just set “vocabulary” to “none” rather than leaving it there. Apparently, 
setting “vocabulary” to “none” in this case will result in a more accurate LM, since there 
will be no nuisance !!UNK, which will affect the estimates of other grams.  
 
As practice, you can change the LM_order and cutoff sequence to create a trigram LM 
model, or even higher order. 
 
6.5.3. Converting ARPA bigram model to a lattice network 
 
The final step is to convert the ARPA format LM to the lattice format. In the decoding 
step, we will use two decoders respectively. One is Hvite, and the other one is HDecode. 
Hvite only works with a word lattice network, not the language model directly. But 
HDecode works directly with ARPA LMs (both bigram and trigram). So, this step is to 
prepare for Hvite. There is no need to make this conversion if HDecode is to be used. 
 
For a detailed description on what a lattice network is, please refer to HTKbook section 
12.2. The conversion from the ARPA format to the lattice format only works for bigram 
models. It does not work for any higher order models. Then, the question is: how does the 
decoder Hvite work with a trigram model, since trigram models can not be converted to 
the lattice format? Later on, you will know that Hvite will first use the bigram lattice 
network to do the first round of decoding. Then, another HTK tool HLrescore will be 
called to expand the output lattice for each sentence to incorporate the trigram and 
rescore each path in this network. In this processing, the ARPA format trigram will be 
passed to do the expansion. So, only the bigram model needs to be converted to the lattice 
format.  
 
With this background, let’s look at how the tool implements this conversion. First, a basic  
point will be made. In our example, as well as the results reported in a later section, we 
will not use the LMs generated by HTK. Instead, those results are based on LMs 
generated by SRILM (Stanford Research Institute Language Modelling Toolkit), which is 
a dedicated toolkit for language modelling. This toolkit provides much more powerful 
and flexible options in making LMs than HTK. As mentioned before, because of the 
standard ARPA format, we can easily use LMs generated by other tools other than HTK 
in the decoder of HTK. Our task is an appropriate example of this kind. The only thing to 
do is to convert the ARPA bigram model into its lattice format if Hvite is to be used in 
the next step. 
 
So, first turn off “Train_on” and turn on “Convert_on.” Then, please copy the two LM 
files “bigram_abc” and “trigram_abc” from “files needed” folder to “LMs” folder. These 
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are the bigram and trigram models made by SRILM. Its training data is also the 
transcription sets A, B, C, and the vocabulary is also all the words in A, B, C, D. The 
smoothing algorithm is Witten Bell, which is not an option in HTK LM tools. Please 
open either of these two LMs. It might be noticed that there is no !!UNK in the LM, 
whereas in the HTK-based LM, there is. SRILM provides an option to turn off !!UNK. 
Let’s look at the setting parameters of the conversion step: 
 
Startword & Endword: again, please specify the startword and endword in the LM to be 
converted. 
 
Two input files are needed: 
 
Bigram: this is the bigram file path. In our example, it is set to “LMs\bigram_abc.” Recall 
that the conversion only works for bigram models. 
wrdlist: a word list is needed. This word list must cover all the words in the LM, 
including the startword, endword, and !!UNK (if !!UNK appears in the LM). Please copy 
the file “wordlist_abcd_unk” from “files needed” folder to “lists” folder, and specify the 
file path here. Compared with the vocabulary file “wordlist_abcd”, a !!UNK entry is 
added in the last row. In our task, the LM “bigram_abc” does not have a !!UNK term. 
However, it does not matter that the word list has this extra term in this case, because the 
only requirement is that the word list needs to fully cover all the words in the LM. Extra 
words do not affect anything. However, if the LM “bigram2”, which is the one generated 
using method 2 in this tool were to be converted, then, the word list MUST contain 
!!UNK since this entry did appear in this LM. 
 
A side point needs to be illustrated. As mentioned in method 2, sometimes, we know 
ahead of time that there are no OOV words in the training data. So, in order to avoid a 
nuisance !!UNK, we set “vocabulary” to “none.” Since we do not need to provide any 
word list in that step, we might forget to make one for the conversion step. Unlike 
method 1, method 2 won’t automatically generate a word list for us to use in the 
conversion step. So, when method 2 is selected, a warning will be given, reminding the 
user that a word list needs to be manually prepared whether a vocabulary is necessary or 
not.  
 
There are two output settings: 
 
Network_folder: specify the folder to store the output lattice file. 
Network_name: specify the lattice file name. 
 
As specified in the setup file, a folder “Networks” will be automatically generated, inside 
which the lattice file “network” will be stored. This file will be used in the Hvite 
decoding step. 
 
As practice, please convert “bigram2,” which is the bigram generated by method 2 into 
its lattice format. If you do so, you might notice that in the output lattice file, there will be 
no !!UNK term, though !!UNK indeed is in the bigram model, as well as in the word list 
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of the conversion step. This is because the decoder Hvite requires that all the words in the 
lattice network must have at least a pronunciation entry in the dictionary. However, what 
should the pronunciation of the !!UNK be? Some people use silence (sil) as its 
pronunciation. This solution does make the decoder work. But it does not make sense. 
Logically, !!UNK means a class of words not known to the system. They are out of the 
vocabulary, which defines all the words capable of being recognized by the system. Then, 
what should be the pronunciation of a word unknown to the system? No one actually 
knows. So, in this tool, we do not have an entry !!UNK in the pronunciation dictionary, 
since the system does not know its pronunciation. But to make Hvite work, we have to 
delete !!UNK from the lattice during the conversion. The other decoder HDecode does 
not have this problem. It is able to deal with !!UNK in a LM, and it works directly with 
the ARPA LM format. Also, there is no need to have the !!UNK entry in the 
pronunciation dictionary, which makes logical sense.  
 
6.6. Decoding (Tool_Decode.m) 
 
With the acoustic and language models at hand, we are ready for the final step: decoding. 
The tool for the decoding step is “Tool_Decode.m,” and its setup file is 
“Tool_Decode.dcf.” Please copy these two files from “Tools” folder to “exp” folder. 
 
This tool provides two decoders: Hvite and HDecode. Hvite is suitable for small and 
medium size vocabulary systems, and works better for monophone and internal word 
triphones. It becomes progressively inefficient as the size of the vocabulary grows and 
cross word triphones are used. HDecode is a dedicated decoder for large vocabulary 
systems. It only works with cross word triphones, which is the typical acoustic model 
type for any large vocabulary system. HDecode is much more efficient ( much lower real 
time factor ) than Hvite when cross word triphones are used in both decoders. 
 
Please open the setup file "Tool_Decode.dcf." Let's first look at the global settings for 
both decoders. 
 
Trace_on: 'y' displays the progress on the screen; 'n' turns it off. 
Clean_up: 'y' cleans up the old output MLF file (for both decoders), as well as the output 
lattice file (for Hvite) before new ones are generated. 'n' turns it off. 
LogDir: a progress report "progress_decode.log" will be generated in this directory. Note 
that the percentage accuracy is also written to this report. 
Decode_on: 'y' turns on decoding. 'n' turns it off. 
Feat_list: this is the feature file list path. It contains all the feature files to be decoded. 
Both decoders need this list. 
Feat_folder: this is the feature file folder. This entry is only for the use of Hvite. Along 
with the decoded MLF file, a lattice network for each feature file will also be generated.  
These lattice files will be used in decoding with a trigram ( Hvite works directly with a 
bigram only. To use a trigram, a lattice network based on the bigram decoding must be 
generated first ). They are placed in the same folder as the features.  So, the tool will copy 
these lattices from the feature file folder specified by "Feat_folder" to another folder 
called "Lattice_folder" (specified later) . When the trigram decoding is turned on, lattice 
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files will be loaded from "Lattice_folder" ( the original ones in "Feat_folder" will be 
deleted ). The other decoder HDecode works directly with a trigram model. So, there is 
no need to specify the "Feat_folder" for copying lattices. 
Startword & Endword: these are the startword and endword of each sentence in the 
language model. They are exactly the same as those specified in the LM generation step. 
These sentence start and end tokens need to be specified for both decoders. Note that in 
the dictionary, there must be two entries for these words. In our example, they are: 
SENT_START [] sil 
SENT_END [] sil 
Result_folder: this is the folder to store the output MLF file. Note that the percentage 
accuracy will be written the progress report "progress_decode.log."  The folder specified 
in the entry only stores the output MLF file. 
Test_trslist: this is a list of all the ground truth transcriptions of the test data for the 
computation of the recognition accuracy. Please copy the file "test_wordtrs.lst" from 
"files needed" folder to "lists" folder and specify the path here. Then, create a folder 
"test_word_trs" inside "data" folder, and copy all the transcriptions of the test data into 
this folder. The transcription must be in its raw format: one transcription for one 
sentence, and one word in each row. The tool will first convert the raw format to its MLF 
format. In the conversion, each Chinese word will be split into characters, since people 
compute the character level accuracy in a Chinese ASR system. So, in the MLF file, there 
is one Chinese character in one row. If the task language is English, this "splitting" will 
lose effect. So, an English word is still an English word. There is no need to specify 
which language we are recognizing. 
 
Next, let's look at the first decoder: Hvite 
 
6.6.1. Hvite 
 
Before we get into the settings, there are some general properties and restrictions of this 
decoder: 
a. Hvite supports decoding with monophone, internal word triphone, and cross word 
triphone. 
b. Hvite supports decoding with bigram LM directly. The LM must be in its lattice 
format.  
c. To use a trigram, the output lattice for each feature file is expanded by the trigram, and 
each path in the expanded network is rescored. The path with the highest score is selected 
as the output. So, the trigram decoding is based on the result of the bigram decoding. The 
trigram is in its original ARPA format. 
 d. As mentioned in the language model generation part, Hvite does not work with the 
unknown word class !!UNK. So, when converting the bigram model to its lattice format 
in the language model tool, the !!UNK is deleted. 
 
Now, let's look at the settings for Hvite (in addition to the global settings for both 
decoders). 
Hvite_on: 'y' turns on Hvite. 'n' turns it off. 
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HMM_type:  this is the underlying acoustic model type. 'iwd' for internal word triphones; 
'xwd' for cross word triphones; 'mono' for monophones. In our example, this is set to 
'iwd'. 
Dict_hvite:  specify the dictionary file path. The word lattice network will be expanded 
into the underlying phoneme network by looking up this dictionary. So, the dictionary 
must contain all the words in the language model, including the sentence startword and 
endword. Please create a folder "dicts" inside "exp" folder, and copy the file 
"dict863_tone_sp1" from "files needed" into "dicts" if you have not done so in the 
triphone training step, and specify the file path here. 
HMM_folder_hvite: this is the directory to load all HMM models. In our example, the 
HMMs are stored in "hmms\fhmmtri_inword." 
HMM_list_hvite: this is the list of all the HMMs. In our example, it is set to 
"lists\tiedlist_inword." 
Conf_iwd, Conf_xwd & Conf_mono: these are the configuration files for decoding with 
internal word triphones, cross word triphones, and monophones. Please copy the files 
"hvite_iwd.conf," "hvite_xwd.conf" and "hvite_mono.conf" from "files needed" folder to 
"toolconfs" folder, and specify the paths in the corresponding places. The tool will locate 
which file to use according to the "HMM_type" specified above. Note that you do not 
need to specify all three files at the same time, because only one HMM_type is used in 
each decoding processing. You can leave the other two places anything but empty, such 
as 'none.' 
HviteOptstring: this string controls related parameters for Hvite. Frequently used ones are 
-t, -s, -p, -u, -v. In our example, '-t' is the pruning factor. It greatly affects the speed and 
accuracy of the decoder. Larger -t value leads to higher accuracy, but lower speed. 
Typical values for -t are between 200 to 250. '-s' is the language model scale factor, 
which also has significant impact on the accuracy of the decoder. Normally speaking, its 
value is affected by the size of the vocabulary as well as the size of the HMM set. Typical 
values for a large vocabulary system are 12-15. Larger size of the vocabulary and HMM 
set leads to large value of -s. '-p' is the word insertion penalty factor. Normally, its value 
is fixed at 0. You can add -u and -v in the string to see what impact they will have on the 
accuracy. For the detailed meaning of these options, please refer to HTKbook section 
17.23. 
 
The followings are for bigram decoding. 
 
Bigram_on: 'y' enables decoding with a bigram. 'n' turns it off. 
Network: specify the bigram lattice network file path as an input. As described above, 
Hvite only works with bigram lattice format, not ARPA format. 
Rec_output_bg: specify the file name for the decoded MLF using a bigram. Note that 
only specify the file name here, not the full path. This file will be generated in the 
directory specified in "Result_folder." 
Lattice_folder: specify the folder to store the output lattice for each feature file. These 
lattices will be used in the trigram decoding. In our example, it is set to be 
"..\data\Lattice." A folder "Lattice" will be automatically created inside "data" folder. 
Lattice_list: specify the file path for a list of all the lattices. This is an output. This list 
will be used in the trigram decoding. 
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The followings are trigram decoding settings: 
 
Trigram_on: 'y' turns on trigram decoding; 'n' turns it off. 
Trigram: specify the trigram file path. In our example, it is set to "LMs\trigram_abc." As 
described in the language model task, this trigram is built from training data A, B, C. But 
all the words in A, B, C, D are put in the vocabulary. Note that this trigram is in ARPA 
format, not in lattice format. 
Latlist: this is the file path for the list of all the lattices generated in the bigram decoding 
step. Each lattice network in this list will be expanded by the trigram, and each path will 
be rescored (only the language model score, the acoustic score remain unchanged). The 
path with the highest score in a network will be selected as the output sequence for the 
trigram decoding. 
Conf_rescore: this is the configuration file path for the trigram decoding. This 
configuration file will be automatically generated in the path specified.  
HLrescore_Optstring:  this string has the same meaning as the "HviteOptstring." For a 
detailed list of options, please refer to HTKbook section 17.13. 
Rec_output_tg: specify the output MLF file name for the trigram decoding. Again, this is 
only the file name. The file will be generated inside the folder specified by 
"Result_folder." 
 
Next, let's look at the other decoder: HDecode. This decoder is not included in the regular 
HTK package. An additional, more restrictive license must be agreed in order to 
download HDecode. HDecode can be downloaded from the official website of HTK. This 
manual assumes that it has been correctly installed. 
 
Again, let's first look at the general properties and restrictions for this decoder. 
a. HDecode is designed for large vocabulary task. It ONLY works with cross word 
triphones. 
b. HDecode works directly with bigram and trigram models. The LMs are in the ARPA 
format. 
c. sil and sp models are reserved as silence models. sil must be used as the pronunciation 
for the sentence start and sentence end tokens in the dictionary. sp is the short pause 
between words. sp is automatically added to the end of all pronunciation variants of each 
word in the recognition dictionary. So, each word in the dictionary MUST NOT have a sp 
appended.  
d. Only the sentence start and end tokens (SENT_START, SENT_END in our example) 
are allowed to have sil as their pronunciations. sil can NOT appear anywhere else. 
e. In the HMM set, only sil and sp are allowed to be monophones. Others must be cross 
word triphones. 
f. HDecode works with unknown class !!UNK. So, the LMs are allowed to have !!UNK 
entries. !!UNK should not appear in the dictionary. 
 
As stated in the Hvite section, Hvite also works with cross word triphones. However, 
Hvite is much less efficient than HDecode, especially for a large vocabulary task. Though 
Hvite has very close accuracy as HDecode, HDecode has a much lower real time factor. 

Approved for Public Release; Distribution Unlimited. 
76 

 



 

So, HDecode is strongly recommended for large vocabulary tasks with cross word 
triphone models. 
 
Now, let's look at the settings for HDecode in the tool (in addition to the global settings 
for both decoders). 
HDecode_on: 'y' turns on HDecode. 'n' turns it off. Note that HDecode and Hvite can not 
be turned on at the same time. Only one decoder is allowed in one decoding processing. 
Conf_hdecode: this is the configuration file path for HDecode. This file will be 
automatically generated. 
HdecodeOptstring: this is the operation string of HDecode. The options in this string have 
the same meaning as those in Hvite. Please refer to HTKbook, section 17.6 for details of 
all the available options. 
Use_bigram: 'y' turns on bigram decoding. 'n' turns it off. Note that HDecode works 
directly with bigram and trigram models. So, there is no need to run bigram decoding 
first in order to use a trigram model. 
Use_trigram: 'y' turns on trigram decoding. 'n' turns it off.  
HMM_folder_hd: this is the folder to load HMMs. In our example, all the cross word 
triphones are stored in "hmms\fhmmtri_xwd." 
HMM_list_hd: this is the list of all HMMs to be loaded. In our example, the file path is 
set to "lists\tiedlist_xwd." 
LM_bigram & LM_trigram:  these are the file paths for LMs. There should be two files 
"bigram_abc" and "trigram_abc" in the folder "LMs."  HDecode works directly with the 
ARPA format, not the lattice format. Note that there is no need to specify the paths for 
both LMs. Depending on which order of LM is to be used (set by Use_bigram and 
Use_trigram), only the corresponding LM file path needs to be specified. The other place 
can be set to anything but empty, such as 'none' or '\'. 
Dict_hd: this is the dictionary file path for HDecode. Please copy the file 
"dict863_tone_nosp" from "files needed" folder to "dicts" folder and specify the path 
here. In this dictionary, all the sp's have been removed, and silence pronunciation (sil) 
only occurs in the sentence start and end tokens. Note that if your dictionary is copied 
from the forced alignment step, there should be an entry "SENT_Boundary [] sil." Please 
remove this entry to make sure that sil only occurs in the sentence start and end entries. 
Rec_hd_bg: this is the output MLF file name for bigram decoding. Again, this is only the 
file name. This file will be stored in the folder specified by "Result_folder" in the global 
settings. 
Rec_hd_tg: similarly, this is the output MLF file name for trigram decoding.   
 
At this point, we've completed all the steps in this ASR system. The percentage accuracy 
for the test data can be found in the progress report "progress_decode.log." 
 
6.7. Experimental results 
 
In this section, a series of experiments are conducted using this ASR toolbox. The 
database is the 863 Mandarin Chinese database. 78 women speakers from this database 
were used to train acoustic models.  There are 2185 training sentences, which are divided 
into 4 groups: A, B, C, D, and each group of sentences are spoken by multiple speakers, 
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resulting in 37116 utterances. 4 speakers from group D are included in the training data. 
The test data is formed by another 5 speakers from group D, resulting in 3125 utterances. 
For the language model, the training data consists of the transcriptions of A, B, C. But we 
put all the words in A, B, C, D into the vocabulary. There are many words in D that are 
unseen in A, B, C. So, according to the smoothing algorithm, these words are assigned 
equal probabilities as unigrams. 
 
In Table 17, we present the Chinese character level percentage accuracy results using 
tonal phone acoustic models. All the models are 16-mixture models. Two feature types 
are used:  baseline MFCC method, and the spectral/temporal method. The baseline 
MFCC uses frame length 25ms, and frame space 10ms, and has 39 features (12 DCTC 
coefficients+log energy+delta and acceleration terms). The spectral/temporal method 
uses 13 DCTC and 6 DCS (78 features), frame length 25ms, frame space 2ms, and block 
length 102ms (51 frames), block space 12ms (6 frames). As stated before, in forming 
triphones, the TB factor controls the degree of state tying, thus has great influence on the 
accuracy. The other factor used in state tying called 'RO' is fixed at 100. Also, in the 
decoding stage, the language model scale factor '-s' can affect the accuracy significantly. 
So, in Table 16, we also list the optimal values for TB and s wherever applicable. A 
bigram model is used for all the results in Table 16. 
 

Table 16: Results for tonal phone acoustic models, LM=bigram 

 Monophone Internal word 
triphone 

Cross word triphone 

MFCC 80.3% 84.7% 85.5% 
FFT+DCTC/DCS 82.4% 86.1% 87.5% 
TB value None 2000 for both 

methods 
2000 for both 
methods 

-s value 10 for both methods 12 for both 
methods 

12 for MFCC, 15 for 
FFT+DCTC/DCS 

 
In Table 17, we present the same results using base phone acoustic models. The models 
are 16-mixture models. The feature types are the same as in the previous experiments. 
The baseline MFCC still uses 25ms frame length, and 10ms frame space, 39 features. The 
spectral/temporal method uses 78 features (13 DCTC/DCS ) as before. The frame length 
is still 25ms, frame space 2ms, black length 102ms (51 frames); but the optimal block 
space changes to 14ms (7 frames). Again, the same bigram LM is used in this group of 
experiments. 
 

Table 17: Results for basephone acoustic models, LM=bigram 

 Monophone Internal word 
triphone 

Cross word 
triphone 

MFCC 75.9% 81.5% 82.5% 
FFT+DCTC/DCS 77.6% 82.7% 84.2% 
TB value None 2500 for both 

methods 
2500 for both 
methods 

-s value 7 for both methods 10 for both methods 10 for both methods 
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In Figure 31, we compare the character level accuracy using tonal monophone and cross-
word triphone. The feature used is 42 MFCC including pitch (39 MFCC features+3 pitch 
features). The number of HMM mixtures increases from 1 mixture to 32 mixtures. The 
triphone performance is significantly better than monophone.  
 

 
Figure 31: Character accuracy using tonal monophone and triphone models versus number of mixtures.    
 
In Table 18, we compare three different pitch trackers: Yaapt, Yin and Praat. The 
acoustic models are 16-mixture tonal monophones. The baseline is still MFCC method 
(39 features without pitch). Pitch features are used in the comparison, resulting in 42 
features (39 MFCC features+3 pitch features). Pitch is normalized by the mean and 
standard deviation of the whole sentence, and its delta and acceleration terms are 
incorporated. All voiced mode is used in the computation of pitch. The language model is 
still the same bigram model. The optimal '-s' value is 10 both all of them. 
 

Table 18: Results using different pitch trackers, LM=bigram 

 Tonal monophone 
MFCC 80.3% 
MFCC+Yaapt 83.1% 
MFCC+Yin 82.5% 
MFCC+Praat 82.7% 

 
Finally, in Table 19, we compare the results using bigram and trigram models. Similar to 
the bigram model, the trigram is built out of the training data A, B, C, and has all the 
words in A, B, C, D in the vocabulary. The acoustic models used are tonal internal word 
triphones and cross word triphones. The feature type used is 78 spectral/temporal features 
as in Table 16. The optimal TB and -s values are also listed in Table 16. The trigram -s 
value is the same as that of the bigram. 
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Table 19: Accuracy using bigram and trigram models for tonal triphones 

 Bigram Trigram 
Internal word triphone 86.1% 86.3% 
Cross word triphone 87.5% 87.6% 

 
As expected, the trigram model does not help much to improve the overall accuracy. This 
is because many words in the test data are missing in the training data. So, these unseen 
words only exist in unigram format, not trigram. Perplexity can be used to evaluate two 
language models with the same vocabulary on the same test data set. Lower perplexity 
means a better language model. The LM evaluation is not included in the ASR toolbox. 
Please refer to HTKbook section 15.4 for details. As practice, you can use the HTK tool 
LPlex to compute the perplexity of the bigram and trigram models used in our task 
example. It will be found that their perplexity on the same test data set is almost the 
same.  
 
7. FORCED ALIGNMENT TOOL USER GUIDE 
 
7.1. Overview 
 
This package is designed for finding the correct pronunciation transcriptions for a large 
dataset. Usually, a large database does not provide phone level transcriptions.  The phone 
level transcriptions, however, are needed for training HMM models.  To find the correct 
phone level transcriptions, the basic assumption is that a database of wave files with 
associated word level transcriptions for each sentence is already available.   A 
pronunciation dictionary for each word in the database is also needed. In the dictionary, 
some words might have multiple pronunciations. So, these words should have multiple 
entries. If a long (several minute)  speech passage,  with transcription  is   available,   this 
long passage should first be segmented into short sentence level (typically around 5 to 10 
seconds each) segments with associated text transcriptions for each sentence,  in order for 
the forced alignment and training to work well.   If phonetic level transcriptions are 
already available,   (i.e., TIMIT),    this step is not needed at all, since essentially this step 
is only needed to create the phonetic level transcriptions. When dealing with a large 
database, the training stage of an ASR system involves two steps: initialization and 
embedded training. In initialization, usually all the models will be initialized by the 
global mean and covariance of all the acoustic features in the same manner. After 
initialization, the next step is embedded training.   HTK will connect the models 
embedded in each sentence according to its phone transcription, and accumulate the 
statistics such as the mean and covariance, using the Baum-Welch method. Once all the 
data in the database has been processed, the accumulated statistics will be used to re-
estimate the model parameters for all the models simultaneously. Since the model 
connection in embedded training depends entirely on the phonetic transcription, and 
embedded training is the core step in the training stage, it is very important to insure 
correct phonetic transcriptions using forced alignment.  Note that the embedded training 
step does not need or use time markers at the phonetic level 
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Generally speaking, the forced alignment task includes three steps: feature extraction, 
training an initial set of models, and forced alignment. Before these three steps, the 
starting point is a set of wave files, along with a set of word level transcriptions, as stated 
above. After the features have been extracted for each wave file, the word level 
transcription of each sentence will be expanded to an initial phonetic transcription using 
the pronunciation dictionary. For words that have multiple pronunciations, this initial 
phonetic transcription will arbitrarily use the first pronunciation, regardless of the true 
pronunciation by the speaker. This is why forced alignment is needed. Then, an initial set 
of HMM models will be trained using this set of initial phonetic transcriptions. The 
training involves two steps: flat start initialization and embedded training as described 
above. Finally, this initial set of models will be used to find the correct phonetic 
transcription of each sentence based on the features, namely, what the speaker really 
pronounced. Meanwhile, the updated phonetic transcriptions are used to retrain the HMM 
models. This processing will be iterated a few times. After the last iteration of forced 
alignment, the resulting phonetic transcription will be regarded as the "perfect" version, 
and will be used in all the other parts of an ASR system.  
 
The forced alignment tool package includes three separate tools: 
1. Tool_Compute_Feat: this tool is used to extract features from a list of wave files. 
2. Tool_trainFA: this tool is used to train an initial set of HMM models. 
3. Tool_FA: this tool is used to do forced alignment and retrain the HMM models. 
 
Note that tools 1 and 2 can be used for tasks other than forced alignment.   However,  
before tool 3 can be used,  features files must be created and an initial set of HMM  
models are needed—meaning that either tool 1 and tool 2 must be used first,   or the 
features and acoustic models must be created with some other similar tools,  which use 
the same file formats as tools 1 and 2.   Note that the forced alignment tool, in addition to 
creating the phonetic transcriptions, updates HMM acoustic models. 
 
Each tool is a matlab m file, and each m name begins with “Tool_...” A setup file is 
needed for each tool, and the default file name of the setup file is always the same as the 
matlab file name, except the file extension  is “dcf” rather than “m.”  For example, the 
default setup file for Tool_trainFA.m is Tool_trainFA.dcf. The setup file for a tool 
contains all the control options and parameters for that tool. When a tool is called, the 
setup file is the only argument that can be passed. For example, to call Tool_trainFA.m, 
the format will be Tool_trainFA(‘Tool_trainFA.dcf’). The setup file and the matlab file 
should be placed in the same experiment folder. If no argument is provided for a tool, the 
default setup file is assumed (same name as the tool name, except extension “.dcf.”)  
Next, a detailed description of how to use each tool is given. 
 
7.2. Tool_Compute_Feat 
 
7.2.1. Data preparation 
 
Before you run this tool, some data preparation needs to be done. First, create a folder 
called “data.”  Inside this folder, create a subfolder called “train_wave.” This is the folder 
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where all the training wave files are to be placed. Copy all the training wave files into this 
folder. Next, go outside “data” folder, and create another folder called “exp.” This will be 
your experiment folder. Then, copy "Tool_Compute_Feat.m" and 
"Tool_Compute_Feat.dcf" from the folder "Tool_FA" into the “exp” folder. In addition, 
also copy "readhtk.m" file from "files needed" folder into "exp." 
 
In addition, you need to make a list of all the wave files to be processed. You can easily 
write a program to do this. A short program called “makelist.m” is provided to do this 
(copy this program from "files needed" folder into “exp” folder). In this program, you 
need to specify which folder the wave files are stored (“..\data\train_wave” in this case). 
The path is with respect to the experiment path. After you run the program, a folder 
“lists” will be created, inside which a list file“wavefile.lst” is created ( These names can 
be changed easily in this program).  This list will look like this with each file in one row: 
 

..\data\train_wave\F00C1041.WAV 

..\data\train_wave\F00C1042.WAV 

..\data\train_wave\F00C1043.WAV 

..\data\train_wave\F00C1044.WAV 

..\data\train_wave\F00C1045.WAV 

..\data\train_wave\F00C1046.WAV 

..\data\train_wave\F00C1047.WAV 
 

After the steps above have been completed, and the dcf file is edited as explained beow, 
the tool can be run to extract features. 
 
7.2.2. Run tool 
 
Use a text editor to open the file "Tool_Compute_Feat.dcf" inside "exp" folder. First, you 
will see some control questions such as "Trace_on," "Feat_on," etc. These are the options 
to turn on/off these functionalities. The only two valid answers for such questions are "y" 
and "n" (case insensitive). There are some other files or folders that you need to specify 
for the tool in this setup file. We describe each of them later in this document. Also, you 
can indicate comment lines using "%" at the beginning of the line.  A comment line does 
not have to end with another "%.   For clarity, "%" can be placed at each end.    
 
Make sure that the setup file does not contain any "tab" (\t). "\t" is not recognized by the 
tool code. 
 
To begin with, in the dcf setup file, there is a section called "Global settings." It has three 
items: 
 
Trace_on:  if you set "y," you will be able to see the progress of the feature extraction for 
each utterance on your screen. You can turn it off by setting "n."   
Clean_up : "y" means to clean up (i.e., remove) all the old feature files in your feature file 
folder (specified later) before feature extraction. 
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LogDir:  you can specify a folder to store a progress report. The report is named as 
"progress_feat.log." This report will keep track of whether an error happened, how many 
features for each wave file, and what kinds of features were extracted, etc.  
Next, there are two questions: 
Feat_On: "y" means to turn on feature extraction. "n" means to turn it off. 
FrtEnd_opt:  this is to select different feature extraction methods. There are three 
available options:  HTK_MFCC, HTK_PLP and User.  HTK_MFCC and HTK_PLP are 
provided by HTK, and "User" means the tfrontm frontend. These options are all case-
insensitive. If you choose to use tfrontm frontend, there are some extra steps to follow 
before you use it. 
a. Copy the folder "v7" in "files needed" to "exp." 
b. Open a command window, compile "tfrontm.m" inside "v7" using "mcc" command, 
then create a folder called "tfront" inside "exp" folder, and copy the file "tfrontm.exe" 
from "v7" to "tfront."  Note that you need to have a “C” compiler installed (such as 
Microsoft visual C ). The version of the C compiler (64 or 32 bit ) needs to match that of 
your matlab.  The Matlab compiler toolbox is also needed. 
c. Copy the file "cp_42.ini" from "files needed" folder to "tfront" folder, and rename the 
file "cp_fea13.ini". 
d. Copy the file "SNR801.trn" from "files needed" folder to "tfront" folder, and rename it 
"tfrontm.dat." 
Please refer to a detailed description of the tfrontm frontend if you want to use it.  
 
Note that no matter which frontend you use, the wave files are always needed. In tfrontm 
frontend, we provide a function called "rd_audio.m." The wave file format supported by 
this function includes: NIST ( which is used by TIMIT, also called SPHERE), WAVE ( 
also called RIFF, which is the Microsoft WAVE files used on PCs ), and RAW (which 
has no headers).   
Wave_List: you need to specify the wave file list that contains all the wave files to be 
processed. In the example, "lists\wavefile.lst" is provided. This was generated by the 
program "makelist.m."   This list, and a procedure for making the list, was described 
above.  
 
Next, note that no matter which frontend you choose, two things will be generated: 
Feat_folder:  this is the folder that stores all the feature files generated. You do not need 
to create this folder manually. It will be automatically created. You only need to specify 
its path. In our example, the path is "..\data\Feat." Again, the path is with respect to the 
experiment folder, which is "exp." 
Feat_List:  A list of all the feature files will also be generated for later use. This is where 
you specify the path of this list. In our example, as specified, a  "featfile.lst" will be 
generated in the folder "lists." 
 
Next, we come to the "HTK_MFCC" settings.  First, create a folder called "toolconfs" 
inside the "exp" folder, and copy the file "hcopy_MFCC.conf" from "files_needed" folder 
into "toolconfs." "hcopy_MFCC.conf" is a configuration file for HTK_MFCC frontend. It 
specifies a set of necessary parameters for this frontend, such as the frame length, frame 
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space, wave file format, number of filterbank channels, etc.  Please read Chapter 5 of the 
HTKbook for details.  Then, specify the configuration file path in "Conf_MFCC." 
 
Note that in our example, the wave file format is WAVE, which needs to be known 
ahead. So, as you can see in "hcopy_MFCC.conf," the "SOURCEFORMAT" is also set 
to "WAV" to match the wave file format. If you change to TIMIT database, you need to 
change "SOURCEFORMAT" to "NIST" because that is the wave file format in TIMIT. 
Chapter 5 of the HTKbook provides details of all the wave file format supported by HTK. 
Conf_MFCC: specify the configuration file for HTK_MFCC frontend. 
 
Similarly, if you want to use HTK_PLP frontend, you need to copy the file 
"hcopy_PLP.conf" from "files_needed" folder into "toolconfs" and specify its location in 
"Conf_PLP." Also, change "FrtEnd_opt" to HTK_PLP 
Conf_PLP: specify the configuration file for HTK_PLP frontend. 
 
Finally, if you want to use the user defined tfrontm frontend, you need to specify its 
configuration file as well in "Conf_tfrontm." Please refer to our tfrontm manual for 
detailed description for this frontend. 
Conf_tfrontm: specify the configuration file for tfrontm. As described before, the location 
of this file is tfront\tfrontm.dat.  
 
You do not need to specify the configuration files for all three frontends since you will 
only use one of them at a time. The tool will only check the file location according to 
which frontend you selected. However, do NOT leave any configuration file place blank. 
For example, if you choose "User" as your frontend, you can put a "\" or "N\A", or 
"None" (or anything meaningful to you) in Conf_MFCC and Conf_PLP, and only specify 
the configuration file in Conf_tfrontm. But do NOT leave Conf_MFCC and Conf_PLP 
blank. 
 
7.3. Tool_trainFA 
 
This tool is to train a set of initial acoustic models for forced alignment.  
 
7.3.1. Data preparation 
 
Before you run this tool, you need to prepare a set of word level transcriptions for the 
wave files. Usually, when you deal with a large database, you do not have the phone level 
transcriptions; you only have the word level transcriptions for the utterances. The 
"standard" word level transcriptions HTK can use have one word in each row, and one 
transcription file for each sentence. Note that the file name of a transcription file must be 
identical to the file name of the feature file for that sentence (However, the extensions 
can be anything). Since there are many possible formats that the original word 
transcriptions can have when you obtain the database, there is no "standard" code to 
convert it to the HTK acceptable format. You need to write your own code to do this step. 
In our example, you need to create a folder called "train_word_trs" inside the folder 
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"data," and put all the "standard" word level transcriptions you made into this folder. To 
make it clear, you can set the extension of the transcription files to be ".WRD." 
 
Also, you need a list of all the transcription files. You can make this list using 
"makelist.m". You need to change the "path_wave" variable to "..\data\train_word_trs," 
and change "listfile" to "wordtrs.lst," and run the program. A "wordtrs.lst" will be 
generated in the "lists" folder. 
 
Copy "Tool_trainFA.m" and "Tool_trainFA.dcf" from "Tool_FA" folder into "exp" 
folder. 
 
7.3.2. Run tool 
 
Use a text editor to open "Tool_trainFA.dcf". Again, you will see the same three global 
settings. "Trace_on" has the same meaning as before. But "Clean_up" has different 
meaning: 
 
Clean_up: if this is set to "y", each target HMM folder (specified in later steps) will be 
cleaned up before new models are generated, if there are any old models in those folders. 
By “clean up” we mean that existing models will be deleted. 
LogDir: again, you can specify a folder to store a progress report for the training 
processing. The default report file name is "progress_trainFA.log." In this report, some 
information will be provided, such as the number of mixtures, the number of states, the 
progress of mixture splitting, and the feature vector length, etc. 
 
The next step is "transcription preparation." In the very beginning, you have created a set 
of word level transcriptions for all the utterances, and a list of all these transcription files 
as well. In HTK, what is used is the "MLF" format of these transcriptions. Basically, a 
MLF file puts all the transcriptions in one file, and prefixes each file by its path. 
"transcription preparation" step converts the original word level transcriptions to its MLF 
format, and also generates initial phone transcriptions based on the word MLF file. 
Trans_prep: "y" turns on transcription preparation. "n" turns it off. 
Gen_Word_MLF: "y" converts the original word level transcriptions to a MLF file. 
Word_trs_list:  you need to provide a list of all the original word transcriptions to 
convert. In our example, it is lists\wordtrs.lst. 
Conf_wrdmlf: this is the configuration file to make the MLF file. Copy "wordmlf.led" 
file from "files needed folder" to "toolconfs" folder, and specify the file path here. 
WordMLF: this is the output MLF file. You need to manually create a folder called 
"labs" inside "exp" folder, and a MLF file "word.mlf" will be generated inside "labs" as 
specified in WordMLF place.  
 
After the word MLF file has been generated, the next step is to create two phone level 
MLF files. The first MLF file does not contain "sp," which is a short pause after each 
word; the second MLF file has a "sp" after each word. Later on, a set of low order HMM 
models (usually 1 or 2 mixtures ) that does not have "sp" model will be trained using the 
first phone level MLF file, and then, a "sp" will be introduced, and the second MLF will 
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be used to train this expanded set of HMM models. So, here, we need two MLF files for 
later use. 
Gen_Phn_MLF: "y" means to generate phone level transcriptions. "n" turns it off. 
 
Four input files are needed to generate phone level transcriptions: 
WordMLF: this is the word MLF generated in the last step. Put the same file path here as 
in WordMLF. 
Dict: a dictionary file is needed to convert word MLF to phone MLF. Manually create a 
folder called "dicts" inside the "exp" folder, and copy the file "dict863_tone_sp1" from 
"files needed" folder into "dicts" folder. Then, specify the dictionary file path in Dict. If 
you open this file, you will see that all the words are placed on the left side, and their 
phone pronunciations are on the right. Many words have multiple pronunciations. Note 
that a "sp" is appended after each word. There is an entry "SENT_Boundary," and its 
pronunciation is "sil." This entry is for the forced alignment step, where the 
"SENT_Boundary" will be added before and after each sentence.  
Conf_wrd2phn_nosp: this is the configuration file to convert the word MLF to the phone 
MLF without "sp." Copy the file "word2phn_nosp.led" from "files needed" folder into 
"toolconfs" folder, and specify the path here. 
Conf_wrd2phn_sp: this is the configuration file to convert the word MLF to the phone 
MLF with "sp." Copy the file "word2phn_sp.led" from "files needed" folder into 
"toolconfs" folder, and specify the path. 
 
If you open either "word2phn_sp.led" or "word2phn_nosp.led", you will see a couple of 
commands, one command in each row. For example, "EX" means to expand each word 
with its phone pronunciation; "IS sil sil" means to insert a "sil" before and after each 
sentence. For a complete set of command descriptions, please refer to HTKbook section 
17.10. 
 
 
Four output files will be generated: 
PhoneMLF_nosp: this is the phone MLF file without "sp."  In this example, it is 
generated in "lab" folder, and its file name is phone_nosp.mlf. 
PhoneMLF_sp: this is the phone MLF file with "sp" between words. In this example, its 
file path is labs\phone_sp.mlf. 
 
Note that when HTK expands each word, only the first pronunciation of each word in the 
dictionary will be used. So, both the phone MLF files contain only the first pronunciation 
of each word. These initial MLF's will be used to train an initial set of HMMs. Then, 
forced alignment will be used to find the correct pronunciations according to the acoustic 
information. 
PhoneList_nosp: a list of all the phones encountered will be generated. This list does not 
contain "sp." it will be placed in the "lists" folder, and its file name is "monophone_nosp" 
as specified. 
PhoneList_sp: a list of all the phones encountered will be generated. This list contains 
"sp." Specify its location in a similar way. 
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At this point, the transcription preparation step is done. These four output files will be 
used in the training step. Note that if you have already done this step, you can simply turn 
off "Trans_prep." 
 
The next step is to train a set of HMM models for forced alignment. Similarly, there are 
some global settings to be specified at the beginning. 
Train_on: "y" turns on training. "n" turns it off. 
Feat_List: this is the feature file list generated by the feature extraction tool. In 
Tool_Compute_Feat.dcf, it is specified in "Feat_List" place. Put the same file path here 
for training. 
Feat_List_ini: HTK computes the global mean and variances of all feature files provided 
to initialize each HMM model. However, sometimes, this will be a poor initialization for 
the following step, which is called embedded training. Empirically, do not use short 
sentences to initialize the models. If many short sentences (1 or 2 seconds long) are used 
for initialization, the embedded training step will fail. You should use long sentences, at 
least 3 seconds long each. So, you can select a subset of all utterances, and make a list of 
them, then, use this list of feature files to initialize the models. In our example, this list is 
located as "lists\featfile_ini.lst."  After the models have been initialized, the full feature 
file list "Feat_List" will be used to do the embedded training. 
numState: the number of emitting states. Two non-emitting states will also be used (one 
before and one after the  emitting states). For example, if numStates=3, then, there are 
actually 5 states. 
numMixture: specify the mixture splitting sequence. The models usually start from a low 
order (such as 1 mixture), and then gradually split to the desired order, each time 
increasing by a small amount. Each splitting step is separated by a ";." For example, 
"1;2;4;6;8;12;16" means to start from 1 mixture models, and split to 2 mixture models, 
and then 4, 6, 8, 12, 16. You can directly start from a high order model, such as 16, but 
usually won't get robust training. It's strongly recommended that you go through this 
splitting processing. You can refer to HTKbook section 10.6 and section 17.8 for details 
of how the splitting works and why it is more robust than directly starting from a high 
order. 
Iteration: this specifies how many iterations of training will be conducted after each 
splitting. Again, this sequence is separated by ";" and it must have the same length as the 
mixture splitting sequence. For example, "3;5;6;7;7;7;7" means 3 iterations of training for 
1 mixture models, 5 for 2 mixture models, etc, if numMixture is set to be 
"1;2;4;6;8;12;16." 
Final_hmmfolder: this is for convenience.  In our example, this folder path is set to be 
"hmms\fhmm." These folders (hmms and fhmm) will be created automatically inside 
"exp" folder. There are two steps in model training: initialization and embedded training. 
You will notice that for each step, there is a "target folder" in the setup file to store the 
HMMs after each step (hmm1 for initialization and hmm2 for embedded training in our 
example). However, you may forget which step you stop at in training. So, in the forced 
alignment stage, when loading the HMMs, you do not know where to load the HMMs. 
Hence, a final HMM folder needs to be specified to store the final HMMs, no matter 
which training step you stop at. That means: if you choose to do the embedded training, 
the models from hmm2 (which is the target folder for embedded training) will be copied 
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to the final HMM folder; if you stop at initialization, the models from hmm1 (which is 
the target folder for initialization) will be copied to the final HMM folder.  Hence, you 
can always load HMMs from the final HMM folder in the forced alignment step. In 
addition, if you want to modify the previously trained HMMs, such as adding more 
mixtures by splitting, or adding more training iterations, you can directly load HMMs 
from the final HMM folder without memorizing which step you were at when you 
stopped last time. 
 
Next, we come to the initialization settings. 
Init: "y" turns on initialization; "n" turns it off. 
 
Then, 4 input files/folders are needed for initialization. 
hmmList_nosp: this is the list of HMMs generated by the transcription preparation step. 
This list does not include "sp" model. Later on, a "sp" model will be introduced after the 
first mixture model (1 mixture in our example) is trained. 
SrcDir_init: this is the source directory for the prototype HMM to be initialized. In HTK, 
before initialization, a prototype HMM needs to be defined. Basically, the prototype 
defines the topology of the HMM, including the number of states, the transition format, 
the covariance matrix type, etc. In our example, a directory "hmms\proto" will be 
automatically created, and a prototype HMM will be generated inside this folder, as 
specified by SrcDir_init. 
Conf_proto: this is the configuration file to generate the prototype HMM. You only need 
to specify the file path here. In our example, the file name is "puser.pcf," and it will be 
placed in "toolconfs" folder. This file will be automatically generated. You need to copy 
"makeProto.m" file from "files needed" folder to "exp" folder first. 
Conf_init: this is the configuration file to initialize the models. You need to copy the file 
"hcompv.conf" from folder "files needed" into "toolconfs" folder, and specify the path 
here. 
 
The output of the initialization step is a set of HMM models stored in the target folder. 
TgtDir_init: this is the target folder for the initialization step. A set of new HMM models 
will be saved in the directory specified here. This directory is automatically generated. It 
is set to hmms\hmm1 in our example. Note that this set of models do not have "sp." 
 
At this point, a set of models have been initialized. 
 
The next step is embedded training. There are four global settings for this step. 
Embed_train: "y" turns on embedded training; "n" turns it off 
fix_sil: "y" means to introduce a "sp" model after the first low order model (does not 
include "sp") has been trained. Specifically, the "sp" model is copied from the central 
state of the silence model, and is a one state model (there are two non-emitting states, one 
emitting state). There is a direct transition between the entering and exit states, namely, 
the two non-emitting states, because there are actually no short pauses between words 
sometimes. The silence model is also modified. A forward and a backward transitions are 
added between the first and the third emitting states. You can refer to HTKbook section 
3.2.2 for more details. 
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The code of the tool works in this way: before embedded training starts, it will first check 
whether a "sp" model is already in the model set loaded (specified by SrcDir_Embd). 
This is because sometimes, you have already trained a set of models including "sp," and 
you only want to modify this set of models, such as adding mixtures, or adding training 
iterations. In this case, you can simply turn off the initialization step, and only perform 
the embedded training step. If a "sp" model is found in the model set, "fix_sil" will be 
forced to "n," because there is no need to re-introduce the "sp" model and modify the 
silence model.  
 
After the "sp" model is introduced, a couple of iterations of training will be performed 
according to "fix_iter" specification, then, the model mixtures will be split, starting from 
the second lowest mixture, according to the "numMixture" sequence.   
fix_iter: this is how many training iterations after the "sp" model has been introduced. 
embdOptStr: this is a pruning threshold for embedded training. Normally, you can set it 
to "-t 250.0 150.0 1000.0" and no need to change. Do not omit the " " on both sides. You 
can refer to HTKbook section 17.7 for details.  
 
Seven input files/folders are needed as the input of embedded training. 
SrcDir_embd: this is the source directory to load HMMs for embedded training. In our 
example, we have initialized a set of models. So, we need to load models from 
hmms\hmm1, where the initial models are stored. 
 
You do not have to always load models from the initialization step. You can actually load 
models from anywhere. For example, if you already have a set of models in the 
"Final_hmmfolder,"  and you want to perform embedded training for this set of models, 
such as adding more mixtures, or adding more iterations for the models, you can set 
"SrcDir_embd" to "Final_hmmfolder." 
 
hmmList_nosp & hmmList_sp: these are the HMM list with and without "sp." They are 
generated in the "transcription preparation" step. As stated, before embedded training 
begins, the tool will first check if a "sp" model already exists; if yes, "fix_sil" will be 
forced off, and "hmmList_sp" will be used; if no, the first low order model will be trained 
using "hmmList_nosp," and then, the tool will check "fix_sil;" if "fix_sil" is yes, then, the 
"sp" model will be introduced, and "hmmList_sp" will be used from then; if "fix_sil" is 
no, then, "hmmList_nosp" will be used all the way till the end. 
monoMLF_nosp & monoMLF_sp : these are the phone level transcription with and 
without "sp." They are also generated in the "transcription preparation" step. Their usage 
is the same as that of hmmList_nosp & hmmList_sp. 
Conf_embd: this is the configuration file for embedded training. You need to copy 
"herest.conf" from "files needed" folder to "toolconfs" folder, and specify the path here. 
Conf_sil: this is the configuration file for fixing the silence. You need to copy "sil.hed" 
from "files needed" to "toolconfs" folder, and specify the path here. If you open "sil.hed" 
file, you will see a couple of commands such as "AT," "TI." "AT" means to add a 
transition between two states. "TI" means tie the designated states of two models 
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together, so that they will have the same mean and covariance matrix. You can refer to 
HTKbook section 17.8 for more details. 
 
There are two outputs for embedded training. 
 
TgtDir_embd: this is the target folder where the output HMMs are stored. In our 
example, the directory is hmms\hmm2. 
Stat_embd: this is a statistic file generated by embedded training. This is only a 
byproduct. You won't need it in the forced alignment state. 
 
At this point, the embedded training is done.  
 
We have described how to train a set of models from the initialization step till the end. 
Yet, there are cases that you already have a set of models, and suppose you only want to 
create more mixtures based on this set of models. Suppose you have a set of 8 mixture 
models with "sp," and you want to create 16 mixture models. Here is how you do it with 
the tool: 
 
a. turn off "Trans_prep" and turn on "Train_on," then turn off "Init." 
b. turn on "Embed_train." 
c. you can leave "fix_sil" either y or n. ( set it to n if your 8 mixture models do not have 
"sp" ) 
d. set SrcDir_embd to "hmms\fhmm" or to "hmms\hmm2," and set TgtDir_embd to 
"hmms\hmm2." 
e. Set numMixture to 8;16. Do not set it to 16 only. 
f. Set Iteration to 0;7. Do not set it to 7 only. 
 
7.4. Tool_FA 
 
After a set of initial HMMs have been trained, we come to the forced alignment step. 
Please copy "Tool_FA.m" and "Tool_FA.dcf" from "Tool_FA" folder to "exp." Then, 
open "Tool_FA.dcf" file. 
 
In simple words, the forced alignment is an iterative processing. The phone transcriptions 
will be corrected using the set of models obtained in the training stage, then, the new 
transcription will be used to refine the models. This processing will be repeated for a 
couple of iterations. The final transcription will be the "perfect" version. 
 
Again, at the beginning, there are three global options. "Trace_on" has the same meaning 
as in other tools.  
Clean_up: "y" means to clean up the refined model before forced alignment begins, and 
also clean up the old aligned transcriptions before forced alignment. 
LogDir:  a progress report will be generated in this folder. The file name is 
"progress_FA.log."  The report keeps track of how many iterations there are, and how 
much change was made in the aligned transcription after each iteration, etc. 
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After global settings, there are other settings for forced alignment. 
FA_on: "y" turns on forced alignment; "n" turns it off. 
FA_iteration: how many iterations are needed. One iteration includes: first, update the 
phone transcriptions using current models; second: re-train the models using the updated 
phone transcriptions. 
Embd_iteration: this is how many embedded training iterations are needed to retrain the 
models each time after the transcriptions are updated. Again, the numbers are separated 
by ";" and the length of this sequence must be equal to FA_iteration. A zero means that 
the models will not be retrained after forced alignment. 
Output_level: this specifies what you want to see in the aligned phone level 
transcriptions. "-o SWT" means that you only want the aligned phones. Scores (S), words 
(W) and time boundaries (T) will be suppressed. Do not forget the " " on both sides. You 
can refer to HTKbook section 17.8 for more details. 
Prune_FA: this is a prune factor for the decoder in forced alignment mode. The smaller 
the first number is, the faster the decoder will be, but more sentences will not be 
successfully aligned. The bigger the last number is, the more sentences will survive, but 
the speed will also be slower. You can refer to HTKbook section 17.8 for more details. 
Prune_embd: this is the same prune factor for embedded training as that in embdOptStr in 
Too_trainFA.dcf. 
Init_phoneMLF: specify the initial phone level transcription file path (before any forced 
alignment iterations). Actually, the forced alignment processing itself does not need it. 
This is for statistical purpose. Each time after the transcription is updated, the tool will 
compute how much change between the new transcription and the old one, as you will 
see in the report. The first updated transcription will be compared with this initial one. 
 
There are seven input files/folders needed by forced alignment and model refinement. 
WordMLF:  this is the word level MLF file generated in the "transcription preparation" 
step in Tool_trainFA.dcf. 
Feat_List: this is the list of all the feature files to be aligned. This list is generated in the 
feature extraction step. 
Dict:  this is the dictionary file. Note that a "SENT_Boundary" should be in the 
dictionary.  In our example, the dictionary has a "sp" after each word. If your model set 
does not include "sp," you should delete "sp" from this dictionary as well. 
hmmList: a list of all the HMMs generated in the "transcription preparation" step in 
Tool_trainFA.dcf. This list needs to match the model set (whether there is a "sp" or not) 
SrcDir_hmm: this is the folder to load the initial HMMs. In our example, all the initial 
HMMs are stored in "hmms\fhmm" folder. These HMMs will be used to do the first 
round of forced alignment. 
Conf_FA: this is the configuration file for the decoder. Copy "hvite.conf" from "files 
needed" folder to "toolconfs" folder, and specify the file path here. 
Conf_embd: this is the configuration file for embedded training. 
 
There are three output files/folders generated. 
 
aligned_folder: this is the folder to store the aligned transcriptions in each iteration. If 
Clean_up is turned on, the old aligned transcriptions will be cleaned up first. A series of 
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transcription files named as aligned_1.mlf, aligned_2.mlf,... will be generated. In our 
example, we specify this folder to be "labs." 
TgtDir_hmm: this is the folder to store the retrained models in each iterations. In our 
example, a "refined_hmm" folder will be generated inside hmms folder, as specified. The 
refined models are used to do forced alignment in the next iteration. 
Stat_embd: this is a statistic file generated by embedded training.  
 
At this point, a set of aligned MLF files have been generated. The final "aligned_N.mlf" 
(in our example, N=6) is the "perfect" phone transcription. In addition, a set of well 
trained HMM models are stored in the folder "hmms\refined_hmm." 
 
Since you have got a set of well trained HMMs, they can be used to align new data. Here 
are the main steps in aligning new transcriptions using a well trained model set. 
 
a. Use the feature extraction tool (Tool_Compute_Feat.dcf) to extract features. Note that 
the feature type needs to match those used to train the models; for example, they are both 
39 MFCC features.  
b. In the tool for training (Tool_trainFA.dcf), turn on "Trans_prep," and 
"Gen_Word_MLF," turn off "Gen_Phn_MLF." So, the word level transcription of the 
new data will be generated. Turn off "Train_on." 
c. Set FA_on to "y" in Tool_FA.dcf. 
d. Set FA_iteration to 1. Since the models are well trained, you normally do not need 
multiple iterations. Of course, you can do that if you want. 
e. Set Embd_iteration to 0. Again, since the models are well trained, you do not need to 
retrain them.  
f. Set SrcDir_hmm to "hmms\refined_hmm," where the well trained HMMs are stored. 
Also, specify the list of HMMs in hmmList, in accordance to the refined HMMs. 
g. Set "Init_phoneMLF" to "labs\aligned_1.mlf." Since there is actually no initial phone 
transcription for the new data (because the models exist already, so no need to generate 
initial phone transcription to train any models), yet a place holder is still needed, we can 
put the aligned MLF here. Of course, in the progress report, it will tell you no change was 
made between the "initial transcription" and aligned.mlf, since they are the same files. So, 
you can ignore the progress report in this case. 
 
Now, you are all done with forced alignment. The final aligned transcription will be used 
in subsequent tools. 
 
A working example is provided. The main output of the forced alignment tool package is 
put in the folder “files generated.” The database used is 863 Mandarin Chinese database. 
The phonetic transcriptions of 74 women speakers, namely, 34616 sentences, were forced 
aligned. The wave files, as well as the feature files are not included, since they are too 
big. The tool setup files used are exactly the same as the ones provided in the Tool_FA 
folder, as described in this manual. If you go through the steps in this manual using the 
same data, and same files as provided, you will get identical outputs. For feature 
extraction, 42 features were generated using the tfrontm MFCC method. These features 
consist of 12 DCTCs, 1 log energy, 1 pitch (14 static features), and delta, and delta-delta 
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terms. For training, 174 tonal phones were trained, including 27 Initials, 145 tonal Finals, 
and two silence models ( sil and sp ).  
 
First, open “Log” folder. Inside this folder, you can see the progress reports for feature 
extraction ( progress_feat.log ), training initial models ( progress_trainFA.log ), and 
forced alignment ( progress_FA.log ). In progress_feat.log, it records that the frontend 
selected was “User,” and the feature dimension was 42. In progress_trainFA.log, you can 
see what happened in order. First, the tool did data preparation. This converted word 
transcriptions to word MLF, and then converted this word MLF to phone MLF. Then, the 
training started. The mixture splitting sequence as well as the iterations for each mixture 
splitting was recorded. The flat start initialization was performed first, and the embedded 
training followed. At the beginning of the embedded training, there was no “sp” model. 
After the first low order model (1 mixture) had been trained, the “sp” model was 
introduced, and the silence model was fixed. Then, a list of current number of mixtures 
being trained was given. After the desired order was achieved (16 mixtures), the models 
were copied to “hmms\fhmm” folder from “hmms\hmm2” folder. Finally, in 
progress_FA.log, you can see the progress of the forced alignment and model refinement. 
As you see, the forced alignment iteration was specified to be 6, and each time the 
phonetic transcriptions were updated, the models were retrained 3 times. In the last 
iteration, only forced alignment was performed, and the models were not refined (as a 0 
was specified for the last iteration).  After the forced alignment began, the tool checked 
how much change was made between the updated phonetic transcription and the old 
transcription obtained in the last round. For example, after the first iteration, it shows that 
the accuracy was 98.74%. This means that 1.26% of all the phones in the initial 
transcriptions (before forced alignment) were corrected by the first round forced 
alignment. Next, the models were retrained using this updated transcription. Then, the 
forced alignment was performed again, using the refined models. This time, the accuracy 
became 99.64%. This means that 0.36% of all the phones in the old transcriptions 
(obtained in the first round) were corrected by the second round forced alignment. This 
processing kept going until the desired number of iterations was achieved. Note that as 
the models kept being refined by the updated transcriptions, the accuracy between two 
consecutive transcriptions got higher. This shows that fewer and fewer phonetic 
pronunciations were updated by forced alignment, as most of them were already 
corrected by previous iterations. 
 
Next, open “labs” folder. You can see 6 phone level MLF files generated by the forced 
alignment iterations. They were named as aligned_1.mlf, aligned_2.mlf, etc. In our 
example, aligned_6.mlf is assumed to be the “perfect” version, since it was generated by 
the last iteration. This version will be used in other parts of the ASR system. The files 
phone_nosp.mlf, and phone_sp.mlf are the initial phone transcriptions without and with 
“sp.” The file word.mlf is the word level MLF file of all the sentences.  
 
Finally, open “hmms” folder. “fhmm” folder stores the HMM models before model 
refinement by forced alignment step. In other words, these models were trained by the 
initial phone transcriptions. In order to get these models, the initialization and embedded 
training were conducted. The models after initialization step were stored in “hmm1,” and 
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the models after embedded training were stored in “hmm2.” The “refined_hmm” folder 
stores the refined models. This set of refined models are well trained. It can be used to 
forced align new data as described by steps a-g above. The “proto” folder stores the 
model prototype. This prototype defines the model topology. In either fhmm, hmm1, 
hmm2, or refined_hmm folders, you can find two files, “hmmdefs” and “macros.” 
“hmmdefs” has all the parameters of all the models. “macros” defines some “global” 
parameters which are identical for all models, such as the feature vector dimension, and a 
variance floor. If any variance of any state in a model falls below this floor, it will be 
clamped to this floor. “macros” was generated in the initialization step and remained 
unchanged in all subsequent steps. “hmmdefs” got updated after each embedded training 
iteration. 
 
8. A TOOL FOR SPEECH FEATURE EXTRACTION – TFRONTM GUIDE 
 
8.1. Fundamentals of Speech Feature Extraction 
 
ASR (Automatic Speech Recognition) is an automatic system which aims to convert 
voice to text. For processing the speech some steps should get considered. These steps are 
summarized as: collecting speech, preprocessing, feature extraction, recognition using 
models and outputting the text. Feature extraction is the focus of this section of the 
report.  
 
The accuracy of recognition is highly depends on feature extraction so it is so important 
to compute “good” features. One of the popular feature types are MFCCs. The MFFC 
method is covered in elsewhere [1] , so the MFCCs are not discussed further here. The 
process of this feature extraction is summarized in figure 1. 
 
In [3], a new feature extraction method is developed, with features referred to as 
DCTCs/DCSCs. The idea is to capture spectro-temporal patterns of the speech by using a 
discrete cosine transform (DCT) to compute DCTC/DCSC terms. DCTCs represent the 
spectral pattern in the frequency domain, and DCSCs represent the  temporal pattern as 
DCTCs change over time. This method is also clearly described in [5]. 
 
8.2. Program Setup 

 
1) Copy all the desired wave files to a wave folder. The default assigned folder in the 

code is “..\Data\train” for train data and “..\Data\train” for test data. 
2) Make the wave file list for future use in “lists\trnw_exsa.lst” and 

“lists\tstw_exsa.lst”. There is a code provided called “make_wave_dir.m” 
which makes this list automatically. It reads the wave files from the default audio 
folder and copies the list to the default folder. 

3) Define two setup files “Tool_ComputeFeat_train.dcf” and 
“Tool_ComputeFeat_test.dcf” which indicate the audio folder and extracted 
feature folders and files. 

4) Feature extraction configuration file. One sample of this file is “cp_dcs.ini”. 
An explanation of how to make this configuration file is provided in section 6. 
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5) Create  another configuration file called “snr_801.trn” (See section 4 for 
details).  

  
 
8.3. Tool_ComputeFeat 
 
8.3.1. Function 
 
This Matlab function is designed to compute features and store them in feature files. 
There is an input for this function which contains some preliminary specifications. Some 
functions which are called within this function are as below: 
HCopy 
readhtk 
tfrontm 
Hcopy is a HTK software tool (© COPYRIGHT 2001-2009 Cambridge University 
Engineering Department) which is used to extract the MFCC features of the speech 
signal. For more detail refer to [1]. 
Readhtk, is an htk related file (designed by Mike Brookes [2]) which reads the htk 
parameter files.  
Tfrontm, is a software generated by Binghamton University Speech lab group for 
DCTC/DCSC feature extraction [3]. For complete description please refer to section 4. 
 
8.3.2. Use 
 
The command line of Tool_ComputeFeat is as below: 
Tool_ComputeFeat(CmdFile) 
This CmdFile is a configuration file. In default name of this file is 
“Tool_ComputeFeat_train.dcf.” The terms of this configuration files are as below: 
 

Tool_ComputeFeat_train.dcf 
Terms Default Value Description 
Trace_on Y Enables progress report for each tool if it is chosen to 

be “n”, it only shows the current command line. 
Clean_up 
 

Y Enables cleaning the target folder in each step. 

LogDir 
 

Log 
 

This is the folder to store the progress log file. A 
“progress.log” file will be generated in this folder. 

Feat_On 
 

y  Enables the feature extraction. 
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Tool_ComputeFeat_train.dcf 
Terms Default Value Description 
FrtEnd_opt 
 

User 
 

Some Frontend selections: 
HTK_MFCC, For MFCC 
frontend in  HTK 
HTK_PLP, For PLP frontend 
in HTK 
User, User designed 
Frontend 
The default value is 
HTK_MFCC 

Wave_List lists\trnw_exsa.lst 
 

The list of the wave files are 
shown in this file. 

Feat_folder ..\Data\train 
 

This is the folder which the 
extracted features are stored 
in. 

Feat_List lists\trn_exsa.lst 
 

The list of the feature files. 

Conf_MFCC toolconfs\hcopy_MFCC.conf 
 

This is the configuration file 
for MFCC feature extraction.  

Conf_PLP 
 

toolconfs\hcopy_PLP.conf 
 

This is the configuration file 
for PLP feature extraction. 

Conf_tfrontm 
 

tfront\tfrontm.dat 
 

This a configuration file for 
the tfrontm function. 

 
 
 
8.4. Tfrontm 
 
8.4.1. Function 
 
This is the function which reads some input files, compute features, and writes them to an 
output file (*.mfc) using the wr_feat function. There are several other functions used 
by tfrontm.  The key configuration files are tfrontm.dat (for some general 
specifications of tfrontm) and CP_FEA13.ini (for more detailed specifications). 
The functions which are used directly by tfrontm are: 
Cp_feat  
wr_feat 
Cp_feat.m does some calculations and computes the features (refer to section 5). Wr_feat 
writes the computed features in a specific order into desired (*.mfc) files. 
 
8.4.2. Use 
 
The command line for this function is: 
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tfrontm(CmdFile,Wave_List,Feat_List,Feat_folder) 
where: 
CmdFile: is generally names tfrontm.dat and contains some general properties of 
tfrontm function. More details are given in table below.  
Wave_List: is the list of the wave files which are to be processed. 
Feat_List: is the list of the feature files. 
Feat_folder: is the folder of the feature files. 
 

Tfrontm.dat 
Terms Default Value Description 
FILE_ID TFRONT_SPEC This is File _ID 
SNR 300 The SNR value 
FEAT_FILE tfront\CP_FEA13.INI 

 
Default file name of the tfrontm function 
configuration. (See next table) 

FILE_TYPE HTK 
 

Feature file formats: TYPEA1, TYPEB1, or 
HTK 

PARMTYPE USER Parameter type of HTK 
 

8.5. CP_feat 
 
8.5.1. Function 
 
This function has two modes, init and proc. This function does some calculations on 
wave files and returns the features (matrix) plus some  specifications of the wave file. 
 
8.5.2. Use 
 
The command form is: 
[Feat,OutPars,addPars]=cp_feat(DoWhat,X,specFile, InitPars) 
The input parameters are: 
DoWhat: indicates what type of function is going to be done. It can be either ‘init’ 
(which indicates doing some preliminary calculations, such as DCTC and  
DCSC basis vectors) or ‘proc’ (which computes the actual features). 
X: samples read from a speech file (i.e., a speech waveform). This is only needed for the 
‘proc’ mode. 
specFile: is the configuration file (by default it is CP_fea13.ini. 
InitPars: is a vector whose first element is the sample rate of the wave file and 
whose second element is the length of the Data (X) which is read from the audio file. 
The outputs of cp_feat are: 
Feat: Features (a matrix) which are extracted in ‘proc’ mode. In ‘init’ mode, Feat has 
no meaning. 
OutPars: In ‘init’ mode, it returns a vector with 3 elements--Sample rate, Frame jump 
and Block jump. 
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addPars: In ‘init’ mode, it this is a vector with 12 character values. These values are 
number of DCTCs, number of DCSCs, frame length, Gammatone width, Window length 
of ∆, ∆ − ∆, ∆ − ∆ − ∆, Static warping type, Pitch tracker type and amplitude scaling. 
 
8.5.2.1. INIT Mode 
 
In this method first the content of the configuration file (CP_fea13.ini) is read by rd_spec 
function (see section 6) and the results are stored in the CP_Parse variable. Then a 
filter is initialized based on some defined poles and zeros using PreFilt function. 
Then filter bank weights are computed using genfw function (W). Based on the number 
of DCTCs and the frequency warping method, the frequency basis vector (bvF) is 
computed using genbv function.  
 
If the dynamic type is selected as DCS, time basis vectors are also computed. This is 
done by again using the genbv function which incorporates time warping.  
If DELTA is selected as the dynamic type, the genbv function is called with ‘d’ (which 
is defined within  the function) and the length of the ∆. 
 
8.5.2.2. PROC Mode 
After computation of basis vectors, it is time to compute the features. The first step is to 
filter the speech data to with the PreFilt function. If pitch tracking type, which is 
defined using the Tracker_type option in CP_FEA13.ini, is set to anything but 
NONE (see section 6), a function named pitch_tracker calculates the pitch values. 
Based on the type of the pitch normalization chosen in CP_FEA13.ini file, the mean, 
variance or both of them are computed for the fro all pitch values for one file.  
 
The next step is to compute the feature based on the audio file data. This data is extracted 
for each frame based on the Frame time and space and framed by a Kaiser window. The 
FFT of the signal is computed and the magnitude of this FFT is computed between 0 and 
Fs/2. If the Amplitude_scaling is set to LOG, the log of this magnitude is 
computed. Otherwise, using the number which is specified in this variable, the magnitude 
raised to the power of the number, is computed.  
 
For energy computations, if the Log_Energy_Flag is enabled, the energy of of each 
frame of the signal is computed. If Log_Expand_Flag is enabled, the energy data is 
added to the end of features, otherwise the energy data will substitute the last line of 
computed features.  
 
After computing the static features, dynamic features are computed. First the number of 
blocks to process are defined by dividing the Number of frames by block jump. Then the 
obtained feature blocks are multiplied to time basis vectors of ‘init’ mode. 
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8.6. Rd_spec 
 
8.6.1. Function 
 
This function is mainly designed to read the configuration file of the feature extraction 
and return the value to other functions.  
This function is called in cp_feat function in ‘init’ mode. 
 
8.6.2. Use 
This function is used as below: 
[Params,Use_term,LogEnergy,Param_char]=rd_spec(FileName,Ini
tPars) 
The inputs are: 
FileName: The configuration file (default: CPFEA13.INI) 
InitPars: It was described on section 5 as InitPars 
Out puts: 
Params: The numeric values of configuration file 
Use_term: Number of used features 
LogEnergy: A vector of some log energy flags 
Param_char: The characteristic values of configuration file 
 
As it was said on section 7.5, there is another configuration file which contains some 
more details about the feature extraction. This file is defined in main root and is copied to 
tfront folder in the beginning of running the code. These file specifications are as below: 
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CP_Fea13.ini (configuration file) 
Variable Default Value Description 
Basic parameters 
Sample_rate 16000 Hz Sample rate  
Frame_length 8 ms  
Frame_space 2 ms  
FFT_length 256 points  
Kaiser_window_beta 6  
Prefilt_Center_Freq 3200 Hz Pre-filtering center (0 means no pre-filter) 
Spectral_range 40 dB  
Spectral Analysis 
Low_freq_limit 100 Hz 0~300 Hz 
High_freq_limit 7000 Hz 3000~8000 Hz 
Amplitude_scaling LOG It can be LOG or any value which will be the 

power.  
Numb_filters 26 Number of filters in filterbank 
plot_spec 0 Enables the plot of spectrogram 

CP_Fea13.ini (configuration file) 
Variable Default Value Description 
shift_deg_NonSym 0.5 Shifting degree using non-symmetric window 
Log_Energy_Flag 1 Enables adding energy as one of the features 
Log_Expand_Flag 0 Enables adding the energy feature as an 

additional feature or substitutes the latest feature. 
Width_gammatone 1.0 Width of Gammatone filter 
Static features 
Numb_dctcs 13  
DCTC_type FFT FFT, MEL , GAMMA (Gammatone) 
Static_warp_type MEL NONE, MEL,  BILINEAR 
Static_Warp_factor 0.15  
Dynamic features 
Dyn_Type DCS DCS, DELTA 
Numb_dyn_terms 3 Number of dynamic terms. It is inactive if 

DELTA is chosen for Dynamic type. 
Time_warp_type KAISER KAISER, GAUSSI, SIGMOI, NONSYM 
Time_warp_factor 25  
Block_length 151  
Block_jump 4  
BVF_norm_flag 0  
BVT_norm_flag 0  
Delta_window_length 2 Window length of ∆ 
Accelator_window_length 2 Window length of ∆-∆ 
Delta3_window_length 0 Window length of ∆-∆-∆ 
Pitch Features 
Tracker_type NONE NONE,  YAAPT, YIN, PRAAT 
All_part_voice_yappt 0 Used to control all voiced (0) or partially voiced 

(1) in YAPPT 
Pitch_Normalization NONE NONE,  MEAN, VARIANCE, BOTH 
Use_term* NONE USER, NONE (NONE uses all features) 
 
* For Use_term, there is a table at the end of the file. If this variable is set to NONE, this 
table will be skipped, otherwise all the DCTCs and related DCSCs are used.   Use_term is 
basically used to eliminate some of the computed DCSC/DCSC terms from the feature 
matrix. 
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ABSTRACT 

For many years, filterbanks have been widely used as one step 
of frontend feature extraction for Automatic Speech 
Recognition (ASR). In this paper, we propose a unified 
framework for ASR frontends, by first moving the nonlinear 
amplitude scaling, and then combining the filterbank weights 
with the cosine basis vectors. As part of this framework, we 
show that the delta terms used to encode feature dynamics can 
be viewed as one realization of a set of “unified” basis vectors 
over time. With this framework, frontends can be developed, 
analyzed and evaluated through their basis vectors over 
frequency and time.  

Index Terms— Filterbank, spectro-temporal, unified, basis 
vector, frontend 

1. INTRODUCTION 

For many years, filterbanks, implemented as weighted sums of 
FFT magnitudes, are widely used as a frontend processing step 
for ASR systems. Figure 1(a) is a block diagram of the 
filterbank-based feature extraction approach. One commonly 
used version of this approach is to compute Mel Frequency 
Cepstral Coefficients (MFCCs) [1]. The MFCC features are 
computed using a set of triangular bandpass filters 
approximately logarithmically spaced above 1 kHz to map the 
short time power in the Hz domain to the Mel domain. In recent 
years, various enhanced MFCC algorithms have been 
developed. In [2], a SMFCC algorithm incorporates the pitch 
frequency information in building the filterbank, and in [3], the 
spectral envelope of the voiced frames is enhanced to improve 
the noise-robustness of the MFCCs.  

To extract features from the amplitude-scaled output of the 
filterbank, the Discrete Cosine Transform (DCT) is computed 
using “half” cosine multiple basis vectors. The feature 
calculation using these “regular” cosine basis vectors is given 
by equation (1) as: 

        𝐷𝐷𝐶𝐶𝐷𝐷𝐶𝐶(𝑖𝑖) = �2
𝑁𝑁
�𝐹𝐹�𝑃𝑃(𝑗𝑗)� cos�

π𝑖𝑖
𝑁𝑁

(𝑗𝑗 − 0.5)�
𝑁𝑁

𝑗𝑗=1

             (1) 

where 𝐷𝐷𝐶𝐶𝐷𝐷𝐶𝐶(𝑖𝑖) is the ith DCT coefficient, N the total number 
of filter channels, P(j) the output power of the jth channel, and 
a() the amplitude scaling function. The DCT coefficients are 
similar to the principal components of the spectrum. In [4], a 
Distributed DCT (DCT-II) method is presented to remove the 

correlation between filterbank outputs more completely, which 
leads to a more compact set of cepstral features. 

As pointed out in [5,6,7,8], the delta and acceleration 
terms of the DCTCs greatly help to improve the system 
accuracy since these time derivatives capture the dynamic 
behavior of adjacent coefficients. The delta terms are computed 
through equation (2), where 𝛩𝛩 is the window length in frames, 
and higher order terms are the deltas of lower order ones. 

            ∆(𝑡𝑡) =
∑ 𝜃𝜃(𝐷𝐷𝐶𝐶𝐷𝐷𝐶𝐶𝑡𝑡+𝜃𝜃 − 𝐷𝐷𝐶𝐶𝐷𝐷𝐶𝐶𝑡𝑡−𝜃𝜃)𝛩𝛩
𝜃𝜃=1

2∑ 𝜃𝜃2𝛩𝛩
𝜃𝜃=1

                           (2) 

 
Fig.1. Block diagrams of the filterbank-type frontend (a), the 
unified structure (b), and the spectro-temporal system (c) in [9].  

Spectro-temporal frontends capture much more detailed 
dynamic information of the spectrum than the time derivative 
terms. The work in [9] provides finer time resolution by 
weighting time blocks of the static features with a set of 
Discrete Cosine Series (DCS) expansion, and in [10], parallel 
and hierarchical structures are developed based on a temporal 
filterbank and in [11], two-dimensional Gabor-type features are 
obtained to describe the diagonal spectro-temporal patterns. 

In our work, we propose a unified framework for ASR 
frontends, which is built upon a set of unified basis vectors over 
time and frequency. The nonlinear amplitude scaling is moved 
to immediately after the FFT magnitude step. Under this 
framework, frontend systems, such as (but not limited to) [9, 
11], can be characterized entirely through the unified basis 
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vectors, which thus gives a common yardstick for analyzing 
frontends. We also discuss other potential benefits of this 
perspective.  

2. A UNIFIED FRAMEWORK 

2.1. Moving the amplitude scaling to the ‘front’ 

It’s interesting to note that if we move the nonlinear amplitude 
scaling in Figure 1(a) to before the filterbank, the filterbank 
weights can then be combined with the regular basis vectors by 
a simple matrix multiplication. However, this switching should 
be justified by inherent auditory properties as well as ASR 
experiments. 

Physiologically, as the sound wave travels along the 
basilar membrane in the cochlea, different frequency 
components cause the amplitude of the basilar membrane 
vibration at different areas. Thus, auditory models, such as the 
Seneff model [12], use filterbanks to represent this frequency 
analysis property. The bandwidth is designed to match the ears 
resolution. The membrane vibration causes electrochemical 
transformation by the hair cells in corresponding areas of the 
membrane, thus “fires” the neurons by sending out spikes with 
a certain strength. The nonlinear amplitude scaling 
characterizes the neuron firing rate varying with different sound 
intensities. A commonly used nonlinearity is the logarithmic 
compression. However, indicated by more sophisticated 
auditory models such as [13], this neuron firing curve shows an 
“S” shape, thus, can be better approximated by a power-law 
function [14]. 

Based on this physiological scheme, it’s not completely 
accurate to say whether the nonlinear scaling should be before 
or after the filterbank in a rigorous sense because the 
nonlinearity should also be frequency-dependent, since the hair 
cells at different areas of the basilar membrane shows distinct 
sensitivity to the sound intensity. Directly mapping the original 
spectrum with the nonlinearity inherently eliminates this 
distinction. However, we place the nonlinearity before the 
filterbank since (1) frequency-independency simplification is 
made and experimentally justified by ASR systems, such as 
MFCC and PLP [15], which uses an equal-loudness curve to 
compensate for the simplification, (2) based on (1), there is no 
compelling evidence as to where the nonlinearity should be 
placed, (3) experimentally,  we will show that it does not matter 
much to move the nonlinearity to before the filterbanks, and 
(4), as discussed below it allows the system unification which 
brings benefits. 

2.2. Unified basis vectors 

First, with the amplitude scaling moved, it’s easy to create a set 
of “unified” static basis vectors by a matrix product. Suppose 
the rows of the matrix W contain the filterbank channel 
response, and the rows of 𝑩𝑩𝑩𝑩𝑩𝑩𝒓𝒓𝒓𝒓𝒓𝒓  contain the regular static 
cosine basis vectors, the unified version 𝑩𝑩𝑩𝑩𝑩𝑩𝒖𝒖𝒖𝒖𝒖𝒖 is given in (3), 
and the amplitude-scaled FFT spectrum is weighted by 𝑩𝑩𝑩𝑩𝑩𝑩𝒖𝒖𝒖𝒖𝒖𝒖 
to obtain the static DCTCs. 
                                   𝑩𝑩𝑩𝑩𝑩𝑩𝒖𝒖𝒖𝒖𝒖𝒖 = 𝑩𝑩𝑩𝑩𝑩𝑩𝒓𝒓𝒓𝒓𝒓𝒓𝑾𝑾                                   (3) 

In the standard MFCC framework, the dynamic (∆) 
features are computed from the static DCTCs, using Eq.2. Here 

we show that the ∆ terms can also be computed using basis 
vector manipulations. From (2), to compute any nth order 
differential term, its basis vector with respect to the previous 
lower order (neglecting the constant denominator) is given by 
𝒃𝒃𝒗𝒗𝐹𝐹 = [−𝜃𝜃𝐹𝐹 ,−𝜃𝜃𝐹𝐹 + 1, … ,0,1, … 𝜃𝜃𝐹𝐹] , where 𝜃𝜃𝐹𝐹  is the window 
length. If we view 𝒃𝒃𝒗𝒗𝐹𝐹 as a discrete signal, with each element 
representing both the amplitude and the time index (i.e. [-2,-
1,0,1,2] gives a signal whose magnitude is -2 at index -2, and -1 
at index -1, etc.), then, the nth order basis vector with respect to 
the DCTCs can be computed as: 

                          𝒃𝒃𝒗𝒗𝑩𝑩𝒖𝒖 = 𝒃𝒃𝒗𝒗𝟏𝟏 ⊛ 𝒃𝒃𝒗𝒗𝟐𝟐 …⊛𝒃𝒃𝒗𝒗𝐹𝐹                           (4) 

where ⊛ is the convolution operator, and each 𝒃𝒃𝒗𝒗𝒖𝒖  is the ith 
order basis vector in terms of its previous lower order. Thus, 
putting all  𝒃𝒃𝒗𝒗𝑩𝑩𝒖𝒖 , including the zeroth order, into rows of a 
unified dynamic basis vector matrix 𝑩𝑩𝑩𝑩𝑩𝑩𝒖𝒖𝒖𝒖𝒖𝒖, the final feature 
matrix F at the output is given by (5), where  𝐹𝐹(𝑿𝑿)  is the 
amplitude-scaled FFT spectrum. 

                           𝑩𝑩 = 𝑩𝑩𝑩𝑩𝑩𝑩𝒖𝒖𝒖𝒖𝒖𝒖 ∙ [𝑩𝑩𝑩𝑩𝑩𝑩𝒖𝒖𝒖𝒖𝒖𝒖 ∙ 𝐹𝐹(𝑿𝑿)]𝑇𝑇                        (5) 

2.3. Discussion 

In this section, we present a detailed discussion on the 
significance/applications of this unified frontend perspective, 
whose block diagram is depicted in Figure 1(b). 

First, it’s important to note that 𝑩𝑩𝑩𝑩𝑩𝑩𝒖𝒖𝒖𝒖𝒖𝒖 and 𝑩𝑩𝑩𝑩𝑩𝑩𝒖𝒖𝒖𝒖𝒖𝒖 in (5) 
can take on any generalized forms, though they are derived 
from a specific category of frontends. On a higher level, Eq.5 
shows that features can be viewed as a series of linear 
transformations of the spectrum scaled by an auditory 
nonlinearity, with optional peripheral nonlinearities in between 
(dashed blocks in the diagram). These linear transformations 
are represented by the unified basis vectors. Filterbanks (or 
other parts) exert their impact on system quality by shaping the 
basis vectors implicitly. Thus, the unified basis vectors hold 
and determine the properties of a frontend. In this sense, the 
scheme gives us a common “yardstick” to analyze and compare 
frontends which appear to be different or similar based on the 
properties of the unified basis vectors.  

The first example to illustrate this point is the comparison 
between the “standard” MFCC and the spectro-temporal system 
in [9], whose diagram is given in Figure 1(c). It’s important to 
emphasize that in the unified framework, both systems compute 
features in a mathematically identical manner, and the only 
difference lies in the unified basis vector forms. In [9], in 
computing the DCTCs, the ith basis vector 𝜙𝜙𝑖𝑖(𝑓𝑓)  over 
frequency 𝑓𝑓 is given by (6): 

                            𝜙𝜙𝑖𝑖(𝑓𝑓) = cos[𝜋𝜋𝑖𝑖 ∙ 𝑔𝑔(𝑓𝑓)] ∙
𝑑𝑑𝑔𝑔
𝑑𝑑𝑓𝑓

                             (6) 

where 𝑔𝑔(𝑓𝑓) is a frequency warping function. In Figure 2, we 
plot the first 3 basis vectors (left) with 𝑔𝑔(𝑓𝑓) set to a Mel-shape 
warping (right), and in Figure 3, we also plot the first 3 unified 
basis vectors in the MFCC using a 26-channel Mel filterbank. 

The unified basis vectors produced by the Mel filterbank 
are less smooth than the ones generated by the Mel-shape 
warping. In Figure 2, the Mel scale is represented in a 
continuous manner; however, for the case in Figure 3, the basis 
vectors are computed using a 26 step quantized Mel scale. 
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Thus, we might expect finer frequency resolution for the Mel-
shape warping approach, which might lead to better recognition 
accuracy. However, the difference should be small, since they 
are essentially two ways of implementing a Mel warping, 
which can be seen by the similarities of the basis vectors.  

 
Fig2. First 3 DCTC basis vectors (left) with an embedded Mel-
shape warping (right) in the system of [9].  

 
Fig.3. First 3 unified DCTC basis vectors for the standard MFCC 
frontend. A 26-channel Mel filterbank is combined with regular 
cosine basis vectors. 

To obtain dynamic features, the system in [9] uses a set of 
Discrete Cosine Series (DCS) basis vectors to weight the time 
blocks of the DCTCs. The ith DCS basis vector is defined in 
(7): 

                           𝜓𝜓𝑖𝑖(𝑡𝑡) = cos[𝜋𝜋𝑖𝑖 ∙ ℎ(𝑡𝑡)] ∙
𝑑𝑑ℎ
𝑑𝑑𝑡𝑡

                                (7) 

where ℎ(𝑡𝑡) is a time warping function. Again, the first 3 DCS 
basis vectors are plotted in Figure 4 (left) with a continuous 
Kaiser window as the time warping, and in the right panel, the 
first 3 differential basis vectors are presented, with BV0 refers 
to the zeroth order in both cases. 

 
Fig.4. First 3 DCS (left) and differential (right) basis vectors in 
computing the dynamic features in system [9] and MFCC. 

Clearly, the discrete differential (indicated by markers) and 
continuous DCS basis vectors are very different, both from 
their “look” and the logic used to derive them. However, as 
they are put into the same unified framework, we are able to 
analyze system properties through these basis vectors. If we 
compare the zeroth order, DCS from [9] puts more weight on 

the block center and gradually reduces on both sides, whereas 
the differential case uses only the block center term. We infer 
that DCS from [9] may provide finer time resolution by 
“magnifying” details on different sections of a block through its 
basis vectors. 

Another system that can be analyzed in the unified 
framework is found in [11,16], where a set of Gabor filter 
based features are proposed to capture the Localized Spectro-
Temporal Features (LSTFs). However, the work of [17] shows 
that LSTFs can be obtained through weighting a rotated 
spectrum by the basis vectors, and since rotation of the 
spectrum is equivalent to rotating the basis vectors, the LSTF 
frontends are covered by the unified framework. In [17], 
phonetic recognition results are obtained at different angles of 
the rotation, which can be visualized and thus analyzed by the 
rotated basis vectors. 

Potentially superior features can also be developed through 
the unified concept. As one example, motivated by the time-
frequency resolution insight of the unified basis vectors, the 
static and dynamic basis vector steps could be interchanged. 
This would allow the use of frequency-dependent dynamic 
basis vectors, with better time resolution for the higher 
frequency terms. Specifically, for a time-frequency block of the 
spectrum, first fix the frequency index, and weight the 
spectrum by a set of basis vectors over time, in which the time 
warping is a two-dimensional function that has broader shape at 
low frequencies than at high frequencies. Then, use another set 
of basis vectors over frequency to weight the output of the 
previous step, in which a frequency warping is embedded. As 
another example, motivated by the general forms of the unified 
basis vectors, we can use a non-symmetric time warping 
window that emphasizes more on the left section of the block 
than on the right. The auditory clue is in [18], that the left 
context of a phoneme is more informative than the right 
context. Two Gaussian windows with different variances can 
be combined to construct this warping. 

However, it should be pointed out that there are limitations 
to this unified framework. It should not be viewed as a 
framework that replaces frontends, nor even accounts for all of 
them (e.g. PLP). However, for many cases, it reveals the 
essence of features with a straightforward tool, the unified basis 
vectors, as a linear transformation. Possibly more effective 
systems can be developed. For frontends which might not fully 
fall into this structure, their system properties can still be 
studied with the view presented here. Also, the filterbank and 
the regular basis vectors can still be implemented in two 
separate steps as needed, to allow various techniques, such as 
the PNCC algorithms [14,19] to be inserted. 

3. EXPERIMENTAL EVALUATION 

The goal of this section is to present the system performance 
purely in terms of the unified basis vectors built from various 
filterbanks and the system in [9]. Extensive tests were also 
conducted to determine the effects of moving the nonlinearity.  

3.1. Phonetic level recognition task 

A 39 phoneme recognition task with TIMIT was conducted. 
3696 and 1344 utterances (SA sentences removed) were used 
for training and testing respectively. 48 3-state 32-Gaussian-
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mixture monophone HMMs were trained by HTK 3.4, and a 
phonetic bigram language model was used for decoding. 
Throughout this subsection, the optimal frame length and space 
for differential dynamic basis vectors were 25ms and 10ms 
respectively, and for the example spectral-temporal system of 
[9] were 8ms and 2ms. The optimal block length and space for 
computing DCSCs were 302ms and 8ms (151 and 4 frames). 26 
and 40 channels were used for Mel and gammatone filterbank 
derived basis vectors respectively. The gammatone was 
implemented as in [20]. 

In Table 1, we examine the effect of placing the amplitude 
scaling before the filterbank. Logarithmic and power functions 
were tested. For the Mel and gammatone cases, the static and 
dynamic basis vectors were 12 regular cosine as in Eq.1 (plus 
one log-energy term) and delta/acceleration (39 features in 
total), and the power was set to 0.1. To make more thorough 
tests of moving the nonlinearity, PLP frontends were also 
implemented, though the analysis of this frontend in the unified 
framework may not be straightforward. MATLAB code to 
obtain the PLP results can be found in [21], where 16 
trapezoids were used as the filterbank with a Hynek’s ‘magic’ 
equal-loudness curve built into the weights, and the power 
value was 0.33. 12 static terms were obtained from the LPC 
cepstral recursion. The dynamics were delta and acceleration. 
In the baseline cases (bolded), the amplitude scaling was placed 
after the filterbanks.  

Table 20. Phonetic accuracy (%) of placing the amplitude scaling 
before/after the filterbanks 

 
Moving the amplitude scaling to before the FB results in 

only a negligible decrement in performance. Table 2 varies the 
combinations of static/dynamic basis vectors, and numbers of 
dynamic terms. 13 static terms including log-energy was used 
with either filterbanks (Fig.3) or a Mel-shape warping (Fig.2) 
built into the unified basis vectors. The baselines are again 
bolded. A logarithmic nonlinearity before filterbanks was used.  

Table 2. Phonetic accuracy (%) using different unified 
static/dynamic basis vectors 

 
First, with the same amount of features, the combination of 

FFT+DCTC with Mel-shape warping and DCS cases are better 
than the bolded baselines (larger difference with 52 features). 
This is consistent with the finer frequency resolution reflected 
by the static basis vectors (compare Figure 2 and 3), and also 
better time resolution of the dynamic basis vectors (Figure 4). 

Also, note that if we compare the 39 and 52 feature cases, 
adding one more DCS basis vector brings much more 
significant improvement than adding one more differential 
basis vector. This again, shows that more DCS effectively 
provides finer temporal information. 

3.2. Word level recognition task 

In this section, we report word (actually character) level 
recognition to confirm the findings with the phonetic 
experiments. 37116 utterances spoken by 78 women speakers 
from the 863 Mandarin Chinese database were  used as training 
data (about 40 hours in total), and another 5 women speakers 
(3125 utterances) were  used as a test data. 16-mixture cross-
word triphones and a 5868-word bigram model were trained for 
decoding. Throughout this section, we use character percentage 
accuracy as the evaluation measurement. 

In Table 3, we repeated the cases in Table 1 to further 
confirm the validity of moving the amplitude scaling. The setup 
parameters for the frontends were identical to those in Table 1. 
The baselines are bolded. 

Table 3. Character accuracy (%) of placing the amplitude scaling 
before/after the filterbanks 

 
These results strengthen the validity of moving the 

amplitude scaling. In Table 4, we present two pairs of 
comparisons on different static/dynamic settings. The optimal 
frame length/space for the DCS scenarios were 10ms/2ms (for 
the Mel+regular cosine case) and 25ms/2ms (for the 
FFT+DCTC with Mel warping case).  The optimal block 
length/space of DCS were 142ms/14ms for both. A logarithm 
scaling was placed after the filterbanks. Baselines are bolded. 

Table 4. Character accuracy (%) using different unified 
static/dynamic basis vectors 

 
Again, the FFT Mel warping is better than the filterbank 

Mel warping. The DCS is superior to differential dynamic basis 
vectors. We predict that with such high-dimensional features, 
the improvements would be more obvious with 32-mixture 
models, as shown in Table 2 for phonetic recognition. 

4. CONCLUSIONS AND FUTURE WORK 

In this work, we developed a unified framework by moving the 
amplitude scaling and modifying the basis vectors. Insights and 
useful applications were discussed in detail using examples. 
Extensive experiments confirmed the rearrangement of the 
nonlinearity. Also, various basis vector combinations were 
examined to show their determinant impacts on the system 
performance. Advanced frontend features will be developed 
based on this unified structure in our future work. 
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ABSTRACT 

 
Recently, two major types of Power-Normalized Cepstral 
Coefficients (PNCCs) were proposed as noise robust Automatic 
Speech Recognition (ASR) front-end. All the literatures for these 
two PNCCs assume clean training data and clean or noisy test data. 
However, we find that one PNCC method has good performance 
for the clean training/noisy test scenario, but degrades when test 
data is cleaner than the training data. The other PNCC method 
performs relatively better for noisy training/clean test conditions, 
but is not very robust for the clean training/noisy test conditions. 
We propose Combined PNCC (C-PNCC) algorithm, which is 
superior to both previous PNCCs for clean training/noisy test 
cases, and which also has reasonably good performance for noisy 
training/clean test conditions. 

Index Terms— C-PNCC, G-PNCC, L-PNCC, front-end, 
noise reduction 
 

1. INTRODUCTION 
 

Two major types of PNCC feature extractors were recently 
proposed in [1] and [2]. They have been proved to be superior to 
many other front-end features in many aspects. PNCCs obtain 
much better performance in dealing with non-stationary noise 
(such as background music) than Spectral Entropy based method in 
[3] and Voice Activity Detection based method in [4] since the 
spectral distribution of non-stationary noise cannot be as easily 
distinguished from speech spectrum as that of stationary noise. 
PNCCs also require much less computations while gain better 
accuracy than Vector Taylor Series algorithm in [5]. In addition, 
the power normalization part in PNCCs was also integrated into 
other front-end processing to improve the noise robustness, such as 
the Invariant-Integration Features (IIF) and Delta-Spectral Cepstral 
Coefficients (DSCC) front-ends in the work of [6] and [7], both of 
which use the noise estimation algorithms in PNCCs. 

The detailed descriptions for the first PNCC is given in [1], 
and is abbreviated as G-PNCC in our work. This PNCC does not 
use noise reduction in the training phase. In testing, it iteratively 
subtracts time-constant noise estimate from a channel until the 
ratio of the Arithmetic Mean to Geometric Mean (AM-GM) of that 
channel achieves that of the training database. The second PNCC is 
described in [2], and is denoted as L-PNCC in our paper. L-PNCC 
uses the time-varying lower envelope of the power sequence as a 
noise estimate for each channel. This lower envelope is computed 
by an Asymmetric Noise Suppression (ANS) filter. The noise 
subtraction is applied to both training and testing data. 

Both PNCCs were studied under clean training/noisy testing 
conditions in [1,2]. However, in practice, especially in ASR 
industry, it is not easy to always obtain clean training corpora. We 
found that G-PNCC generally had higher accuracy than L-PNCC 

under clean training/noisy testing conditions, whereas L-PNCC 
worked better along the other way. In this paper, we developed a 
Combined PNCC (C-PNCC) algorithm that combines and 
enhances the advantages of both G-PNCC and L-PNCC. Extensive 
experiments showed that C-PNCC was superior to both previous 
PNCCs for clean training/noisy testing conditions, and also 
achieved reasonably good performance for noisy training/clean test 
environment.  

 
2. COMBINED PNCC 

 
2.1. Training 
 
Figure 1 is the block diagram of the training phase of C-PNCC. 
After a pre-emphasis filter and 256-point magnitude squared 
STFT, each 15ms frame is weighted by a 40-channel gammatone 
filter bank. The short time power output sequence of each channel i 
is mapped to the medium-duration power domain by averaging 
over 2𝑀𝑀1 + 1frames centered at the current frame according to 
equation (1): 
 

 
𝑄𝑄(𝑖𝑖, 𝑗𝑗) =

1
2𝑀𝑀1 + 1 � 𝑃𝑃(𝑖𝑖, 𝑗𝑗′)

𝑗𝑗′=𝑗𝑗+𝑀𝑀1

𝑗𝑗′=𝑗𝑗−𝑀𝑀1

  (1) 

 
where i is channel index, j the frame index, and P(i,j) the 
gammotone short time output power. 

A weakness of G-PNCC is that it does not remove any noise 
in the training database. Thus, matching the AM-GM ratio of the 
test data, which is mathematically proved in [8] to be an increasing 
function of the channel SNR, to that of the training data degrades 
the performance if test data is cleaner than training data. To 
address this issue, we pre-process each training utterance by 
subtracting the lower envelope of each channel i in each training 
sentence. This lower envelope is computed by an Asymmetric 
Noise Suppression (ANS) filter, whose detailed description is 
given by [2]. Figure 2 depicts the 8th gammatone channel medium-
duration power sequence and its lower envelope of a 0dB case 
(additive street noise). This lower envelope can be viewed as a 
simple version of the Minimum Statistics noise estimation 
algorithms in [9,10], where the estimation starts from the minimum 
power of a window and recursively adjusts its value by minimizing 
the estimation mean square error. As Figure 2 shows, the lower 
envelope tends to bias toward lower values. We will explain how 
to compensate this bias in the testing phase. As a preprocessing 
step, it has great simplicity. Furthermore, the amplitude of this 
estimate is time-varying. Experiments will show the advantage of 
this time-varying estimate relative to the constant noise estimate 
employed in G-PNCC. The residual sequence with negative 
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Fig. 1.  Block diagram of C-PNCC training processing 

 
Fig. 2. Medium-duration power sequence, its lower envelope and true noise power of the 8th channel, 0dB speech corrupted by street noise. 
The true noise is obtained by eliminating the speech and computing the power of the noise only at the gammatone filter output 

segments rectified to 0 is then processed by the ANS filter to create 
a noise floor. We denote the maximum between this floor and the 
residual sequence by 𝑄𝑄�(𝑖𝑖, 𝑗𝑗). Then, as in previous PNCCs [1,2], a 
frequency smoothed gain factor is computed by averaging over 
consecutive 2𝑁𝑁1 + 1  channels for each fixed frame. This gain 
factor is used to convert the medium-duration power to short-time 
power according to equation (2), where i is the channel index, j the 
frame index. 

 

                    𝑃𝑃�(𝑖𝑖, 𝑗𝑗) = �
1

2𝑁𝑁1 + 1 �
𝑄𝑄�(𝑖𝑖′, 𝑗𝑗)
𝑄𝑄(𝑖𝑖′, 𝑗𝑗)

𝑖𝑖′=𝑖𝑖+𝑁𝑁1

𝑖𝑖′=𝑖𝑖−𝑁𝑁1

� ∙ 𝑃𝑃(𝑖𝑖, 𝑗𝑗)                 (2) 

 
To cancel the bias of the initial noise estimation, we use the 

AM-GM ratio based noise searching algorithm in G-PNCC. The 
theoretical base of the AM-GM searching is that a noisy power 
sequence can be properly modeled by a gamma distribution [8], 
and a constant noise subtraction in G-PNCC does not change this 
power distribution. However, the time-varying noise removal in C-
PNCC distorts this distribution. Consequently, the AM-GM ratio 
cannot properly reflect the SNR of each channel. To reduce this 
“distribution distortion”, before computing the AM-GM ratio, a 
small portion of the original speech is added to the distorted 
distribution using a “spectral weighting factor” 𝜆𝜆𝑠𝑠  (0 < 𝜆𝜆𝑠𝑠 < 1) 
according to the equation: 

 
         𝑃𝑃𝑙𝑙(𝑖𝑖, 𝑗𝑗) = 𝜆𝜆𝑠𝑠𝑃𝑃(𝑖𝑖, 𝑗𝑗)+(1 − 𝜆𝜆𝑠𝑠)𝑃𝑃�(𝑖𝑖, 𝑗𝑗)                           (3) 

 
where  𝑃𝑃�(𝑖𝑖, 𝑗𝑗) is the distorted power as in equation (2), and 𝑃𝑃(𝑖𝑖, 𝑗𝑗) 
is the original speech as in equation (1). The value of 𝜆𝜆𝑠𝑠  has 
significant impact on the recognition accuracy. Table 1 lists the 
recognition accuracy for TIMIT with different 𝜆𝜆𝑠𝑠 values under low 
SNR pink noise. The case 𝜆𝜆𝑠𝑠 = 0  corresponds to no spectral 
weighting. In this case, the distribution distortion causes 
degradation compared with direct G-PNCC, where there is no 
distribution distortion. In our work, a good value for  𝜆𝜆𝑠𝑠  is 0.05. 

Each 𝑃𝑃𝑙𝑙(𝑖𝑖, 𝑗𝑗) is then power function amplitude scaled with a 
power value 1/15, and is output to the DCTC step. In parallel, 
the 𝑃𝑃𝑙𝑙(𝑖𝑖, 𝑗𝑗)’s are converted back to the medium-duration power 
domain according to equation (1), except that we use 2𝑀𝑀2 + 1 
frames this time. The AM-GM ratio G(i) is then computed for each 
channel i according to equation (4), where Ω(𝑖𝑖, 𝑗𝑗) is the medium 

duration power; J is the total number of frames. Finally, a 
𝐺𝐺𝑡𝑡𝐹𝐹𝐹𝐹𝑖𝑖𝐹𝐹(𝑖𝑖) is obtained by averaging over G(i)’s of all utterances and 
stored as the average SNR level of the training set for channel i. In 
our work, we use 𝑀𝑀1 = 4,  𝑀𝑀2 = 10. 

                    𝐺𝐺(𝑖𝑖) = ln  [
1
𝐽𝐽�Ω(𝑖𝑖, 𝑗𝑗)] −

1
𝐽𝐽 � lnΩ(𝑖𝑖, 𝑗𝑗)

𝐽𝐽

𝑗𝑗=1

𝐽𝐽

𝑗𝑗=1

                   (4) 

 

 
2.2. Testing 
 

 
Fig. 3. Block diagram of C-PNCC test phase 

Figure 3 depicts the block diagram of the test phase. It is very 
similar to the training steps in Figure 1. So, we use “⋯” to skip 
some of the identical blocks. The key step in the testing phase is to 
offset the bias of the initial noise subtraction for each test 
utterance. For each channel i, we start from -10dB relative to the 
minimum power of that channel, and if the G(i) value becomes 
larger than 𝐺𝐺𝑡𝑡𝐹𝐹𝐹𝐹𝑖𝑖𝐹𝐹(𝑖𝑖) after this noise estimate is assumed to have 
been subtracted, this estimate is regarded as the final compensation 
for the bias; otherwise, we increase the estimated noise level by 
1dB and repeat this processing. The final noise adjustment is 
subtracted after the iterations are done, and the residual is 
frequency smoothed using equation (5), where 𝑃𝑃𝐺𝐺(𝑖𝑖, 𝑗𝑗) is the short 
time power which is then power function scaled; Ω�(𝑖𝑖, 𝑗𝑗)  is the 
medium duration power after making the final noise adjustment. In 
our work, the values for 𝑁𝑁1 and 𝑁𝑁2 are 𝑁𝑁1 = 3, 𝑁𝑁2 = 8. Figure 4 
shows the overall estimate of the noise with the bias cancelled for a 
test sentence.  

                 𝑃𝑃𝐺𝐺(𝑖𝑖, 𝑗𝑗) = �
1

2𝑁𝑁2 + 1 �
Ω�(𝑖𝑖′, 𝑗𝑗)
Ω(𝑖𝑖′, 𝑗𝑗)

𝑖𝑖′=𝑖𝑖+𝑁𝑁2

𝑖𝑖′=𝑖𝑖−𝑁𝑁2

� ∙ 𝑃𝑃𝑙𝑙(𝑖𝑖, 𝑗𝑗)                (5) 
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Fig. 4. The lower envelope, true noise power, and the overall noise estimate of the 8th channel. The speech is corrupted by 0dB street noise. 
The overall estimate consists of a time-varying initial estimate and a constant offset of the bias made by AM-GM searching.

 

3. EXPERIMENTAL RESULTS 
 
To evaluate different PNCCs, experiments were conducted using 
TIMIT for a 39 phoneme recognition task. 3696 and 1344 
sentences were used for training and testing respectively. 13 
Discrete Cosine Transform Coefficients (DCTCs) and 6 Discrete 
Cosine Series Coefficients (DCSCs) as suggested in [11,12] were 
used to encode the spectrum after PNCC processing. The baseline 
MFCC used 39 features (including delta and acceleration terms). A 
3-state HMM model with 32 Gaussian mixtures was built for each 
phone. The training and decoding were both run with HTK 3.4. For 
better comparisons, all the parameters in the three PNCC methods 
were optimized. 
 
3.1. Stationary noise 
 

 
Fig. 5. Comparison of PNCCs for stationary noise. Top: clean 
training/noisy test cases. Bottom: 10dB training/cleaner testing 
cases. Left: white noise. Right: pink noise. 

First, two stationary noises were added respectively. The results 
are presented in Figure 5. The left panel is for white noise, and the 
right panel is for pink noise. The top panel is for training on clean 
speech, and testing varying from clean speech to 0dB; the bottom 
panel is for training on 10dB noisy speech, and testing from 10dB 
to clean speech. The vertical axis is the recognition accuracy and 
the horizontal axis represents the SNRs of the test data. From the 
top panel, C-PNCC has the highest accuracy for clean 
training/noisy test conditions, with G-PNCC the second best. This 
shows the time-varying noise estimate is superior to a constant 
noise estimate, even for stationary noise. Notice that though G-
PNCC is significantly better than L-PNCC under clean 
training/noisy testing conditions, especially for low SNRs, it 

degrades dramatically along the other way in the bottom panel. 
However, C-PNCC shows improvements for clean training 
conditions (top panel) while remains almost the same performance 
as L-PNCC for noisy training/clean testing environment. In the 
bottom panel, the average degradation of C-PNCC relative to L-
PNCC is less than 1% for each type of noise. 
 
3.2. Non-stationary noise 
 

 

 
Fig. 6. Comparison of PNCCs for non-stationary noise. Top: clean 
training/noisy test cases. Bottom: 10dB training/cleaner testing 
cases. Left: street noise. Right: mixed noise. 

Figure 6 presents the results for two types of non-stationary 
noise that are widely encountered for most ASR applications. The 
left panel is for street noise, which was recorded during peak time 
in a street in New York City. The right panel is for “mixed noise”, 
which contains about 60 interfering speakers as well as background 
music in a bar. The top panel is again clean training/noisy testing 
settings, and the bottom panel for 10dB training/cleaner testing 
scenario. Similarly to the previous cases, C-PNCC has the best 
performance under clean training conditions. Meanwhile, it also 
provides superior performance when test data is cleaner than 
training data (bottom panel). It is also noticed that though L-PNCC 
performs better than G-PNCC in the bottom panel, they both 
degrade compared with the baseline MFCC front-end for some test 
SNRs. However, C-PNCC provides solid improvement relative to 
the baseline MFCC front-end. 
 
3.3. Comparison with other front-ends 
 
In this section, we present a brief comparison among C-PNCC, 
gammatone+power amplitude scaling, RASTA-PLP and baseline 
MFCC front-end. The comparison was conducted for clean 
training/noisy test setting using the two non-stationary noises in 
Section 3.2. Both the baseline MFCC and RASTA-PLP front-ends 
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use 39 features. The RASTA-PLP front-end is an implementation 
of the algorithm described in [13]. 
 

 
Fig. 7. Comparison of C-PNCC with baseline MFCC, RASTA-
PLP and gammatone+power front-end for clean training/noisy 
testing conditions. Left: street noise, Right: mixed noise. 
  

Figure 7 depicts the results. The left panel is for street noise, 
and the right panel is for mixed noise. The MFCC and RASTA-
PLP front-end have very close performance, and C-PNCC has 
significant improvements compared with the other three front-
ends. It is interesting to see that the gammatone+power method did 
not provide improvement compared with the baseline MFCC. It is 
even worse in the mixed noise case. 

In the next experiment, we kept the mel filter bank structure 
in the baseline MFCC, but replaced the 39 features with 78 
spectral/temporal features (13 DCTC/6DCSC), which is the same 
set of features used in the gammatone+power front-end. We also 
replaced the logarithmic amplitude scaling in the MFCC with a 
power-law nonlinearity. The power value used was 1/15 in both 
MFCC and gammatone front-ends. Again, we plot the accuracy of 
the mel+power and gammatone+power front-ends in Figure 8. 

 

 
Fig. 8. Comparison of mel+power and gammatone+power front-
ends in the presence of street noise (left) and mixed noise (right) 
under clean training/noisy testing conditions. 

The result shows that the mel+power front-end constantly 
performs better than the gammatone+power front-end for the two 
non-stationary noises at all SNR levels. Since the only difference 
in these two front-ends is the filter bank type, a tentative reason is 
that the mel triangular filter shape has sharper onset than the 
gammatone filter, thus may render better characterization of the 
temporal masking effect. This is based on the theory in [14,15] that 
human ears tend to focus more on the onset of the power envelope 
than on the falling edge. We also found (not shown in this work) 
that in the presence of stationary noise, such as white noise or pink 
noise, the same experiment had different results: the 
gammatone+power front-end performed constantly better than the 
mel+power front-end. This might be because the temporal masking 
effect in the presence of stationary noise is not as strong as it is 
with non-stationary noise.  

Based on this idea, the final experiment is to compare the 
performance of mel C-PNCC with gammatone C-PNCC. We 
implemented the C-PNCC noise reduction algorithm to 26 mel 
channels in place of the 40 gammatone channels. Since there were 

fewer channels needed, the frequency smoothing parameter  𝑁𝑁2 in 
equation (5) was reduced to 3; the other parameters remained 
unchanged (𝑀𝑀1 = 4,𝑁𝑁1 = 3,𝑀𝑀2 = 10,𝜆𝜆𝑠𝑠 = 0.05). The experiment 
configuration was the same as Section 3.2. 

 

 
Fig. 9. Comparison of mel C-PNCC with gammatone C-PNCC. 
Left panel: street noise. Right panel: mixed noise. Top panel: clean 
training/noisy testing. Bottom panel: 10dB training/cleaner testing. 
 

The results are listed in Figure 9. The mel C-PNCC has very 
similar performance as the gammatone C-PNCC. Compared with 
the baseline MFCC, which does not have noise reduction part, the 
mel C-PNCC obtains substantial improvements both for clean 
training/noisy test and 10dB training/cleaner test scenarios.  

According to this result, using mel filterbank can reduce 
computational load in PNCC processing, while maintain the 
performance. Since all PNCCs operate on a channel-by-channel 
basis, using 26 mel frequency channels can reduce the run time by 
approximately 1/3 compared with 40 gammatone channels. 

 
4. CONCLUSIONS  

 
In this paper, we proposed a C-PNCC algorithm which combines 
and enhances the advantages of G-PNCC and L-PNCC. Extensive 
experiments were conducted, including stationary noise and non-
stationary noise. Both clean training/noisy testing and noisy 
training/cleaner testing conditions were investigated. C-PNCC 
showed promising performance in all cases. In addition, a 
comparison of PNCC front-end with other front-ends was 
conducted. The same advantage of C-PNCC was also verified by 
mel filter bank, which had comparable performance as gammatone 
filter bank, but required less computations.   
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ABSTRACT 

 
For applications such as tone modeling and automatic tone 
recognition, smoothed F0 (pitch) all-voiced pitch tracks are 
desirable. Three pitch trackers that have been shown to give 
good accuracy for pitch tracking are YAAPT, YIN, and PRAAT. 
On tests with English and Japanese databases, for which ground 
truth pitch tracks are available by other means, we show that 
YAAPT has lower errors than YIN and PRAAT. We also 
experimentally compare the effectiveness of the three trackers 
for automatic classification of Mandarin tones. In addition to F0 
tracks, a compact set of low-frequency spectral shape trajectories 
are used as additional features for automatic tone classification. 
A combination of pitch trajectories computed with YAAPT and 
spectral shape trajectories extracted from 800ms intervals for 
each tone results in tone classification accuracy of nearly 77%, a 
rate higher than human listeners achieve for isolated tonal 
syllables, and also higher than that obtained with the other two 
trackers. 
 
Index Terms: pitch tracking, tone classification, Mandarin 
Chinese, fundamental frequency 

INTRODUCTION AND BACKGROUND 

Accurate fundamental frequency (F0) (commonly referred to as 
pitch—the terms pitch and F0 are used interchangeably in this 
paper) tracking in speech remains an elusive goal, especially for 
noisy and/or band-limited speech, typically the scenarios where 
reliable pitch tracking would be most useful. Good results have 
been reported by Talkin in RAPT where a normalized cross 
correlation function is used 0. High accuracy pitch tracking 
results have also been obtained by the YIN algorithm, which 
uses a modified version of the autocorrelation method 0. 
Probably the most widely used tool for pitch tracking is the 
speech analysis program PRAAT [1] because it provides fairly 
reliable tracking and is readily available. Since about 1980, 
several pitch trackers have been developed and several studies 
have been done to evaluate these trackers [5, 7]. Our own tool 
for pitch tracking is named YAAPT for “Yet Another Algorithm 
for Pitch Tracking”. 

For automatic recognition of tones in tonal languages such 
as Mandarin, robust all-voiced pitch tracking is especially 
important, as pitch is widely considered as the most important 
acoustic correlate of a tone. 

In this paper, we first summarize and illustrate the YAAPT 
method in the remainder of this section. Section 2 introduces 
several modifications motivated by the desire to improve 
automatic tone classification and describes a method for 
computing spectral temporal features, which are effective in 
addition to pitch for use in tone classification. The evaluation 

results of several experiments, which illustrate the effectiveness 
of YAAPT and the additional features, are reported in Sections 3 
and 4. For control purposes, experimental results obtained with 
YIN and PRAAT pitch trackers are also given.  
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Figure 1: YAAPT flow chart 

The main signal processing steps in YAAPT are illustrated 
in figure 1. For each frame of speech, multiple pitch candidates 
are computed using the normalized cross correlation. A 
smoothed pitch track is computed from the spectrogram of the 
squared signal; to some extent the squaring restores the 
fundamental, which is likely to be missing from band-limited 
speech such as telephone speech. All F0 candidates, both time 
domain and frequency domain, as well as an unvoiced candidate, 
are assigned merit values and the highest overall merit path is 
determined using dynamic programming. More details, as well 
as illustrations of the various steps involved, are given in [12].   
All three of these trackers have settings to minimize “Gross” 
error (large errors in the voiced sections of speech) or “Big” 
error, which takes into account both large errors in the voiced 
speech regions, and voiced/unvoiced decision errors.   
Unfortunately, neither of these minimum error cases is best 
suited for computing pitch tracks for Mandarin tone 
classification.    
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ALGORITHMS 

YAAPT improvements 

The most significant change is the introduction of additional 
post-processing techniques to refine the final pitch tracks, 
especially for the case when the track is intended to be all 
voiced. With the previous settings, as given in [12], optimized 
for minimum gross error, visual inspection of computed pitch 
tracks showed apparent abnormalities, especially in the 
interpolated pitch values through unvoiced regions. 
Nevertheless, the gross error values for YAAPT were low, since 
the estimated pitch values in actual unvoiced regions were not 
considered in the error calculation.  
 

 
Figure 2: Illustration of YAAPT F0 tracking. Original 
(Blue), revised (Red), ground truth reference (Black). 

To improve YAAPT, the algorithm was changed and now 
always determines the minimum big error track with voicing 
decisions, even if finally an all voiced (minimum gross error) 
track is desired. Heuristics are then incorporated to identify and 
eliminate pitch values which appear to be in error due to pitch 
halves or doubles. If a track with minimum gross error is desired, 
post processing then includes cubic polynomial interpolation 
through the unvoiced regions using a filtered version of the 
calculated track. This method was empirically determined to 
work effectively at reducing error and producing a smooth track. 
Figure 2 above depicts the ground truth pitch track, the former 
YAAPT track, and the YAAPT track with the modifications 
introduced in this paper.  

The last of the modifications to YAAPT was a code 
refinement to improve the processing time and accuracy. One of 
the more significant of these modifications was to change an 
inner loop for the spectral harmonic correlation calculation to 
reduce computational time. Two other changes to this section of 
code helped improve overall performance by more accurately 
calculating the spectral track, even with a shorter FFT length for 
spectral calculations. These changes corrected for possible 
frequency misalignment between temporal and spectral pitch 
candidates, which depended on the frequency resolution (FFT 
length). Consequently, a shorter FFT length can be used, 
decreasing computational time, while not significantly degrading 
performance. These code refinements decreased overall 

computation time by around 25% and decreased error rates by 
small percentages. 

Additional spectral temporal features useful for tone 
classification 

In our initial work with Mandarin tone recognition 0, we 
observed that the four primary Mandarin tones (High, Rising, 
Falling, Dipping) were also relatively apparent from inspection 
of the low frequency region of the spectrogram. Therefore, 
global spectral shape trajectories, computed with a small number 
of spectral Discrete Cosine Transform Coefficients (DCTCs) 
each of which is encoded with several Discrete Cosine Series 
Coefficients (DCSCs), appeared to be a relatively effective 
approach for computing tone features. The details of DCTC and 
DCSC calculations are given elsewhere [13]. Summarizing 
briefly, DCTCs are coefficients of a cosine-like basis vector 
expansion of speech log magnitude spectra, where the cosine 
basis vectors are modified to take into account a mel-like 
frequency scale.  A DCTC representation of speech spectra is a 
smoothed representation, with degree of smoothing determined 
by the number of DCTCs used. A DCSC encoding of any feature 
over time (such as a DCTC term or pitch) is a cosine basis vector 
expansion over time, but with the cosine basis vectors modified 
to give more resolution near the center of the time interval and 
less resolution near the endpoints of the interval. In our work, the 
time resolution of a DCSC representation was determined by a 
Kaiser window, with the degree of resolution variation 
determined by the Kaiser constant.  The DCTCs/DCSCs are 
similar to MFCCs and delta/acceleration terms 0, but more 
general and flexible.  

EXPERIMENTAL EVALUATIONS OF 
PITCH TRACKING ACCURACY 

In order to evaluate the accuracy of YAAPT for pitch tracking 
accuracy, pitch tracks were computed from two databases, the 
Keele pitch database 0 and a Japanese database 0, for which 
ground truth pitch tracks are available. The Keele database 
contains 10 sentences, each about 30 seconds long, with each 
sentence spoken by a different British speaker. Both studio 
quality and telephone versions of the speech were used. The 
Japanese database consists of 30 utterances by 14 male and 14 
female speakers, resulting in a total of 840 utterances. 

The pitch tracks were computed and compared using 
YAAPT, YIN, and PRAAT for both full bandwidth and 
telephone and/or simulated telephone conditions. Tests were 
done with clean versions of the speech and also at 5 dB SNR 
levels with additive white noise and additive babble noise. For 
YAAPT and PRAAT, tracks were computed both for an all-
voiced condition and a condition for which the tracker made 
voiced/unvoiced decisions. For YIN, the track is always 
considered to be all-voiced, so that was the only case tested. 

Results in terms of Big Error and Gross Errors are given in 
tables 1, 2, and 3 for clean speech, white noise at a 5 dB SNR 
(W-5), and babble noise at a 5 dB SNR (B-5).  
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Table 1:. Big and Gross errors (%) with the Keele database 

  Studio Simulated telephone 
 Tracker Clean W-5 B-5 Clean W-5 B-5 
Gross 
Error 

YAAPT 3.1 3.4 7.9 4.6 6.4 28.2 
PRAAT 5.2 7.8 17.3 11.2 14.3 29.8 
YIN 3.0 4.6 14.8 21.0 27.3 38.5 

Big 
Error 

YAAPT 6.1 8.1 21.7 14.0 16.8 43.8 
PRAAT 8.7 19.9 34.2 15.4 21.3 47.5 

Table 2:. Errors (%) with Keele telephone speech 

  Telephone 

 Tracker Clean W-5 B-5 
Gross 
Error  

YAAPT 4.9 9.4 23.8 
PRAAT 12.6 22.9 31.2 
YIN 14.0 26.3 35.0 

Big 
Error  

YAAPT 9.9 20.5 45.9 
PRAAT 16.3 30.1 44.6 

Table 3:. Big and Gross errors (%) with the Japanese database 

  Studio Simulated telephone 
 Tracker Clean W-5 B-5 Clean W-5 B-5 
Gross 
Error 

YAAPT 1.8 2.9 4.0 4.4 7.3 24.4 
PRAAT 4.1 5.9 15.4 6.4 11.2 28.7 
YIN 1.7 2.9 13.0 14.5 21.0 34.5 

Big 
Error 

YAAPT 5.0 7.2 15.3 12.2 17.1 35.1 
PRAAT 7.1 17.9 31.0 10.1 23.3 43.8 

 
For the clean full bandwidth conditions, the errors are small 

and fairly similar for all three pitch tracker methods. However, 
for most of the noisy and or band-limited cases, YAAPT results 
in lower error rates than for the other two trackers. For example, 
for the case of Keele telephone speech, and additive white noise, 
the gross error for YAAPT is under 10%, whereas for the other 
two pitch trackers, it is over 20%. Note that for comparable cases 
tested, error values are quite similar to those obtained in [12]; 
although YAAPT was “improved,” the changes are more 
apparent by visual inspection of the tracks. Big and Gross error 
figures changed very little. 

EXPERIMENTAL EVALUATIONS OF 
TONE CLASSIFICATION 

Although YAAPT gives lower error rates than either YIN 
or PRAAT, it was still not clear which tracker would be the most 
effective for Mandarin tone classification. Therefore a series of 
tone classification experiments, comparing the three trackers, 
was performed. 

The database used was the Shanghai region portion of 
RASC863 0. Only the four prominent tones of Mandarin (H, R, 
F, D) were used. Tone labels supplied with RASC863 were 

considered as ground truth. A multilayer feed-forward neural 
network classifier, trained with back propagation, was used for 
classifying tones from a combination of pitch and/or 
DCTC/DCSC spectral features. The number of network inputs 
ranged from 7 to 42, as described below, depending on the 
feature set under evaluation. In all cases, the network had 50 
hidden nodes in the first hidden layer, 25 nodes in the second 
hidden layer, and 4 output nodes (one for each of the four tones). 
The overall configuration of the network (with two hidden layers 
with sigmoidal nonlinearities and number of nodes mentioned) 
was determined from pilot tests. A total of 1539 sentences were 
used for training; 670 sentences were used for testing.  

Five feature conditions were tested in conjunction with each 
pitch tracking method:   Spectral trajectory features only (35 
features): computed with 5 DCTC terms each encoded with 7 
DCSC terms, from a frequency range of 50 to 800 Hz. These 
particular conditions are consistent with observations of 
spectrograms that indicate tonal information is most easily 
observed in the low frequency region over segments longer than 
100 ms.  

1. “Raw” pitch trajectories (P) (7 features): encoded with 7 
DCSC terms.  

2. Normalized pitch trajectories (NP) (7 features): also each 
encoded by 7 DCSC terms. The normalization is 
accomplished by first computing the mean and standard 
deviation of the pitch over the entire sentence from which 
each tone segment is extracted. These mean values are 
then subtracted from pitch values in each segment, and the 
resultant values divided by the standard deviation. 

3.  A combination of feature sets 1 and 2. (42 features) 
4.  A combination of feature sets 1 and 3. (42 features)  
 

In addition to testing each of the five feature cases above, 
for each of the three pitch trackers (15 conditions), since tones 
clearly have a temporal aspect, four different segment lengths 
were evaluated for classifying tones: 100 ms, 200 ms, 400 ms, 
and 800 ms. For each of these cases, segments were selected 
with a midpoint equal to the midpoint of the labeled tone. For the 
longer segment lengths, undoubtedly the segments extended into 
following and/or proceeding tones. However, this additional 
context was found to be somewhat beneficial, as shown in the 
following results. Results, in terms of tone classification 
accuracy, are given in figure 4 for YAAPT, YIN, and PRAAT 
with feature set 1 (DCTC), set 2(P), set 3(NP), set 4 (DCTC+P) 
and set 5 (DCTC+NP).  

Several conclusions can be drawn about the tone 
classification results: 

1. The features obtained with YAAPT result in 
considerably higher tone classification accuracy than 
for pitch features obtained with the other two trackers 
except for the shortest segment length tested (100 ms). 
The highest accuracy obtained with YAAPT based 
pitch tracks (76.9%) is 4.1% higher than the highest 
accuracy obtained with YIN and 5% higher than the 
best result obtained with PRAAT, and higher than the 
accuracy of humans for recognizing context-free tones 
[8] (~75%). 
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2. Although pitch features are most important for tone 
classification, the addition of spectral shape trajectory 
features improves accuracy by about 5%. 

3. Pitch normalized features are more effective than raw 
pitch features, at least for YAAPT for shorter segment 
lengths.  For the case of YIN and PRAAT, and 
YAAPT for long segment lengths, pitch normalization 
doesn’t appear to be beneficial.  

4. Tone classification accuracy improves as segment 
length increases, showing the importance of the long 
temporal variation. 

 
We hypothesize that YAAPT is superior to both YIN and 

PRAAT for Mandarin tone classification primarily because of 
the better interpolation through unvoiced regions as illustrated in 
figure 3, where PRAAT and YIN can be seen to exhibit large 
anomalies compared to YAAPT, primarily in the unvoiced 
regions.  Although details are not given here, due to length 
constraints, the previous version of YAAPT (as in [12]) resulted 
in tone classification accuracies typically 1% to 7% lower than 
for the YAAPT results reported here. 

 

 
Figure 3: Comparison of trackers. Highlighted 
(unvoiced) portions show large anomalies for PRAAT 
and YIN. 

CONCLUSIONS  

This paper presents several modifications to YAAPT including a 
smooth interpolation of pitch through unvoiced regions with the 
interest of improving pitch modeling for Mandarin tones. The 
experiments demonstrate that YAAPT has lower errors, 
especially for noisy bandlimited speech, than either YIN or 
PRAAT pitch trackers. The YAAPT features, when combined 
with DCTC/DCSC features to capture spectral-temporal 
trajectories, are also shown to be more effective than either YIN 
or PRAAT pitch features.   
The YAAPT algorithm is available at 
http://www.ws.binghamton.edu/zahorian/yaapt.htm as a 
MATLAB function, along with a user guide and 
recommendations for parameter settings. We have begun a series 
of character recognition experiments with continuous Mandarin 
to more thoroughly compare the effects of different pitch 

 

 
 

Figure 3: Tone classification accuracy for features based 
on YAAPT (top), YIN (middle) and PRAAT (bottom).  
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ABSTRACT 

In this paper, we evaluate the front-end of Automatic Speech 
Recognition (ASR) systems, with respect to different types of 
spectral processing methods that are extensively used.   
Experimentally, we show that direct use of FFT spectral values 
is just as effective as using either Mel or Gammatone filter 
banks, as an intermediate processing stage, if the cosine basis 
vectors used for dimensionality reduction are appropriately 
modified.  Furthermore it is shown that trajectory features 
computed over intervals of approximately 300ms are 
considerably more effective, in terms of ASR accuracy, than are 
delta and delta-delta terms often used for ASR.  Although there 
is no major performance disadvantage if a filter bank is used, 
simplicity of analysis is a reason to eliminate this step in speech 
processing.   The experimental results which confirm the above 
assertions are based on the TIMIT phonetically labeled database.  
The assertions hold for both clean and noisy speech. 
 
 Index Terms: DCTC/DCSC, MFCC, Gammatone filter bank, 
Mel filter bank, ASR. 
 

1. INTRODUCTION 
 

All automatic speech recognizers perform spectral analysis at 
the front end which converts the speech signal, possibly noisy 
and/or degraded, into values from which useful features can be 
easily computed. The front end spectral analysis is performed by 
calculating the short time Fourier transform (STFT) of the 
speech signal, either using an FFT, a filter bank, or a 
combination of the two methods.  For the combination method, 
the filter bank is approximated by summing weighted 
combinations of FFT magnitude values. The filter bank 
approach, even if derived from FFT values, is thought to be 
advantageous since it can be designed to mimic the functionality 
of the cochlea of the human auditory system, such as a nonlinear 
(“warped”) frequency scale.  

The majority of ASR systems are implemented using a 
Mel filter bank as the spectral analysis front end, followed by a 
cosine transform based feature extraction which is shown to 
outperform other signal processing methods [1]. Very recently,  
another filter bank has been presented as a superior alternative to 
the triangular-shaped Mel filters called the Gammatone filter 
bank, which simulates the motion of the basilar membrane 
within the cochlea of the human auditory system. It was first 
introduced by Johannsma (1972) to describe the shape of the 
impulse response function of the auditory system as estimated 
by the reverse correlation function of neural firing times. The 
general thinking is that since the Gammatone filter bank 
approximates the human auditory system better than the Mel 
filter bank, it should also be superior for ASR applications [2]. 

The Gammatone filter is defined in the time domain 
(impulse response function) as: 
 

 𝑔𝑔(𝑡𝑡) = 𝐹𝐹𝑡𝑡𝐹𝐹−1𝐹𝐹−2𝜋𝜋𝜋𝜋𝑡𝑡cos (2𝜋𝜋𝑓𝑓𝑡𝑡 + Ø)                   (1) 
 

where f is the frequency, Ø is the phase of the carrier, 𝐹𝐹 is the 
amplitude, n is the filter order, b is the bandwidth and t is  time. 

Front-end spectral analysis can also be performed 
without using any filter bank, but simply using an FFT directly. 
In either case, spectral values (that is FFT values or filter bank 
outputs, both converted to magnitudes), are typically reduced in 
dimensionality using some type of cosine transform.  If the filter 
bank step is used, cosine basis vectors can be used directly.   
However, if the FFT magnitudes are used as the direct input to 
the cosine transform, the cosine basis vectors should be 
modified to account for the non-uniform frequency resolution. In 
order to incorporate spectral trajectory information into ASR 
feature sets, additional terms are generally computed from 
blocks of frame-based features, such as delta terms.  

In the following sections we compare spectral features 
computed as cosine transforms of  filter bank outputs with 
features computed as modified cosine transforms (DCTCs) of 
FFT spectral magnitudes directly.  We also compare delta type 
trajectory features with trajectory features computed over much 
longer time intervals using another set of modified cosine basis 
vectors (DCSCs).   More details of the more common spectral 
and feature calculation method (MFCCs with delta and delta-
delta terms are given in [3] and [4].  More details of the 
DCTC/DCSC general method are given in [5], [6] and [12].  All 
the methods are evaluated using as much similarity of 
parameters and recognizer as feasible (such as frequency range, 
# of HMM mixtures, etc.) in order to make comparisons most 
meaningful. 
 

2. FFT BASED SPECTRAL ANALYSIS 
 

The most common spectral analysis method for speech 
recognition uses a frame-based approach in which the time 
varying speech signal is described by a stream of feature vectors, 
with each vector reflecting the spectral magnitude properties of a 
relatively short (10-30ms) segment (frame) of the signal. For 
experimental results reported in this paper, 16 kHz sampling rate 
speech signals are short-time Fourier transform (STFT) analyzed 
using a 10ms Kaiser window with a frame space of 2ms. The 
spectrogram of a typical speech signal is as shown in Figure 1. 
The FFT spectral values are used as the front-end for 
DCTC/DCSC feature extraction, as described later. The frame 
length and frame spacing mentioned were empirically 
determined as providing most accurate ASR results. 
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Figure 1: FFT spectrogram 

 
3. FILTER BANK BASED SPECTRAL ANALYSIS 

 
A filter bank can be regarded as a crude model for the initial 
stages of transduction in the human auditory system. A set of 
band pass filters is designed so that a desired portion of the 
speech band is entirely covered by the combined pass bands of 
the filters composing the filter bank. The output of the band pass 
filters are considered to be the time varying spectral 
representation of the speech signal.  

For the experiments given in this paper, we evaluate two 
commonly used filter banks: the Mel filter bank and Gammatone 
filter bank. Either the DCTC/DCSC method (but without 
frequency warping) or the more common method used for 
MFCC features (i.e., delta terms rather than DCSCs) are used.  
Results are compared for the filter bank approaches versus the 
FFT-only spectral method.   
 
3.1. MEL FILTER BANK  
The Mel filter bank is a series of triangular band pass filters, as 
depicted in Figure 2, designed to simulate the band pass filtering 
believed to be similar to that occurring in the auditory system. 
 

 
Figure 2: Frequency response of 16 channel Mel filter bank and the 
normalized versions of the filters, as used for MFCCs. 

 
To convert the frequency in Hz into frequency in Mels the 
following equation is used:  

𝑚𝑚 = 1127.01048 ∗ 𝑙𝑙𝑐𝑐𝑔𝑔𝐹𝐹 �1 + 𝑓𝑓
700

�                   (2) 

On a linear frequency scale, the filter spacing is approximately 
linear up to 1000 Hz and approximately logarithmic at higher 
frequencies. For actual implementation, the Mel filter bank is 
computed by first computing the power spectrum with an FFT, 
and then multiplying the power spectrum by the Mel filter bank 
coefficients. In Figure 3 is shown a spectrogram based on 32 
Mel filters.   Note that this spectrogram is qualitatively similar to 
the direct FFT spectrogram shown in Figure 1. The details of the 
two spectrograms are quite different since the frequency range is 
more quantized in Figure 3  and the frequency scale is 
effectively in Mels rather than linear. However, it should be 

noted that the Mel spectrogram, or Mel filters, are derived from 
the FFT spectral values and thus are simply an intermediate step 
in processing.   

 
Figure 3: 32 channel Mel spectrogram 

 
3.2. GAMMATONE FILTER BANK 
A Gammatone filter is a linear filter with impulse response 
described as the product of a (gamma) distribution and 
sinusoidal (tone), hence the name Gammatone. The filter bank is 
a combination of individual Gammatone filters with varying 
bandwidth based on the Equivalent Rectangular Bandwidth 
(ERB) scale. For moderate sound pressure levels, Moore et al 
[7] [8] estimated the size of ERBs for humans as:  

𝐸𝐸𝐸𝐸𝐵𝐵[𝑓𝑓] = 24.7 + 0.108 ∗ 𝑓𝑓𝑐𝑐                      (3) 

The value ERB[f] is used as the unit of center frequency 
𝑓𝑓𝑐𝑐   on the ERB scale. For example, the value of ERB[f] for a 
center frequency of 1 kHz is about 132.64, so an increase in 
frequency from 975 to 985 Hz represents a step of one ERB[f]. 
Each step in ERB roughly corresponds to a constant distance of 
about 0.89 mm on the basilar membrane [9].   

As the center frequency increases the bandwidth of the 
filter bank increases. A 16 channel Gammatone FFT based filter 
bank frequency response is shown in Figure 4. 
 

 
Figure 4:  Frequency response of 16 channel Gammatone filter bank 
 

The Gammatone filter bank can be implemented using 
sums of weighted FFT power spectrum values [10], exactly as 
for the Mel filter bank except using the weights corresponding to 
Figure 4, rather than the Mel filter weights shown in Figure 2.   
Alternatively, the Gammatone real filters can be implemented as 
actual IIR or FIR filters, followed by rectification and low pass 
filters, as depicted in Figure 5.  Figure 6 depicts the Gammatone 
spectrogram of the same sentence as was used to construct the 
spectrograms for Figures 1 and 3. 

 
 
 
 
 
Figure 5: Block diagram of Gammatone using actual filters (difference 

equations) in first block 

Gammatone Filter 
Bank 

Full wave 
Rectifier 

Resample Low Pass 
Filter 
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Figure 6:  32 channel Gammatone spectrogram 

 
4. DCTCs/ DCSCs BASED FEATURE EXTRACTION 

 
Typically FFT spectral magnitudes or filter bank outputs are 
dimensionality reduced with a cosine or cosine-like transform 
for each frame of spectral values.  Several frames of cosine 
transform coefficients are further processed in overlapping 
sliding blocks to form spectral trajectory features.  Although 
both of these steps are very “standard,” especially for the case of 
Mel filter bank spectral values for the preceding step, in this 
section we review these transforms especially as they relate to 
using FFT spectral values directly.    

The first step of this feature calculation is to compute 
DCTC terms from the spectrum X, with the frequency f 
normalized to a [0, 1] range, as follows 

𝐷𝐷𝐶𝐶𝐷𝐷𝐶𝐶(𝑖𝑖) =  ∫ 𝐹𝐹 �𝑋𝑋�𝑔𝑔(𝑓𝑓)��𝜙𝜙𝑖𝑖(𝑓𝑓)𝑑𝑑𝑓𝑓1
0                (4) 

 In this equation, i is the DCTC index, a(X) is a nonlinear 
amplitude scaling and g(f) a nonlinear frequency warping. Φi(f) 
is the 𝑖𝑖𝑡𝑡ℎ basis vector over frequency computed as: 

𝜙𝜙𝑖𝑖(𝑓𝑓) =  cos [𝜋𝜋𝑖𝑖𝑔𝑔(𝑓𝑓)] 𝐹𝐹𝑖𝑖
𝐹𝐹𝑓𝑓

                           (5) 

The crucial elements of this approach are the selection 
of the nonlinear amplitude scaling a(X) and the nonlinear 
frequency scaling g(f) so that the cosine transform is with 
respect to a perceptual scale.  In practice, the scaling a(X) is 
typically a log, and the scaling g(f) is a Mel-like function unless 
the first step is a Mel-like filter bank, in which case g(f) = f, 
dg/df = 1, and the basis vectors are “regular” cosines.   

   
Figure 7: Mel frequency warping used for Mel filter bank center 

frequencies (top red curve), and “optimum” Mel frequency warping used 
for FFT-only/DCTC/DCSC method (bottom blue curve) 

 
For the case of FFT-only spectral analysis frequency, 

g(f) is a  Mel-like “warping” function, which has the effect of 
modifying the  cosine basis vectors, according to Eq. 5.  The 
results presented in this paper for the DCTC/DCSC expansion of 
FFT spectra were based on this Mel-like warping (lower blue 
curve in Figure 7), which was empirically found to perform 
better than the more precise Mel warping as given in Eq. 2 and 
also depicted in Figure 7. 

In order to create the DCSC features that represent the 
spectral evolution of DCTCs over time, as an alternative to delta 
and delta-delta terms typically used with MFCCs, a cosine basis 
vector expansion over time is performed using overlapping 
blocks of DCTCs. That is, the DCSCs are computed as: 

       𝐷𝐷𝐶𝐶𝐷𝐷𝐶𝐶(𝑖𝑖, 𝑗𝑗) =  ∫ 𝐷𝐷𝐶𝐶𝐷𝐷𝐶𝐶�𝑖𝑖, ℎ(𝑡𝑡)�𝛩𝛩𝑗𝑗(𝑡𝑡)𝑑𝑑𝑡𝑡1
0                 (6) 

where Θj(t) is the 𝑗𝑗𝑡𝑡ℎ  basis vector over time computed as: 

                            𝛩𝛩𝑗𝑗(𝑡𝑡) = cos [𝜋𝜋𝑖𝑖ℎ(𝑡𝑡)] 𝐹𝐹𝑓𝑓
𝐹𝐹𝑡𝑡

                              (7) 

In this equation, h(t) is a time warping function and t 
is  normalized to [0,1] over a selected segment (a "block").  In 
practice, t is discrete, corresponding to a frame index, and the 
integral is computed using a sum of all frames in the block. The 
calculation is repeated for each overlapping block, with the 
block spacing some integer multiple of the frame spacing.  

 
5. PHONETIC RECOGNITION EXPERIMENTS 

 
Phonetic recognition experiments were conducted using the 
TIMIT phonetically-labeled database. 3296 sentences from 462 
speakers were used for training and 1344 sentences from 168 
speakers were used for test.  SA sentences were excluded. A 
frequency range of 100 to 8000 Hz was used for all experiments. 
Experiments were conducted with clean, 20 dB SNR, 10 dB 
SNR, and 0dB SNR speech.   For all conditions, training and test 
conditions were matched with respect to noise; additive white 
Gaussian noise was used for noise. 

The objective of the experiments was to compare 
phoneme recognition accuracy for four spectral analysis 
methods, as depicted in Figure 8, and also to compare to a 
control case (13 MFCCs with delta and acceleration terms, or 39 
total terms, derived from a Mel filter bank, as implemented in 
HTK). 

 
 
 
 
 
 
 
 

 
 

 
Figure 8: Block diagram of phonetic speech recognition process 

 
Five cases, as depicted in Figure 8, and outlined below 

were tested. 
Case 1: FFT spectrum directly used as front end for 

DCTC/DCSC feature, using frequency warping (Figure 7). 
Case 2: DCTC/DCSC feature extraction applied to 

Mel filter bank spectrum. Since the filter bank already has 
warping in it, the DCTC basis vectors have no warping.  

Case 3&4: Gammatone filter banks (FFT-based and 
actual filters cases) used as front end for DCTC/DCSC features, 
with no frequency warping used for DCTCs.  

HMM Modeling  

Case 2: FFT 
Mel Filter 

Bank 

Case 3:  FFT 
Gammatone 

Case 4:  
Gammatone Real 

Filter Bank 

DCTC/DCS Features 

Speech signal         
Fs = 16k Hz 

Case 5: 
MFCC 

Features 

DCTC/DCSC 
Features with warping 

HMM 
Modeling  

  Case 1: FFT  Speech signal         
Fs = 16kHz 
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Case 5: HTK MFCC features with delta terms. 
For all experiments with DCTC/DCSC features, a 

frame spacing of 2ms (500 frames per second) was used.  Blocks 
were comprised of 150 frames (300ms) and spaced 8ms apart 
(125 blocks per second).   Experiments were conducted with 
both 78 features (13 DCTCs times 6 DCSCs), and the more 
standard 39 features (13 DCTCs times 3 DCSCs).  

HMMs with 3 hidden states from left to right with 16 
Gaussian mixtures were used for phonetic recognition 
experiments. A total of 48 (eventually reduced to 39 phones) 
context independent monophone HMMs were created using the 
HTK toolbox (Ver3.4) [12]. The bigram phone information 
extracted from the training data was used as the language model.  
 

6. RESULTS 
 

Phonetic recognition accuracy (based on 39 phones) obtained for 
all 5 cases is given in Table 1. It can be seen that there is 
negligible or no improvement when filter bank techniques are 
used. For results in Table 1, 39 features were used. The 
experiment was repeated with 78 features for all cases except 
MFCC, and results are given in Table 2.   
  

Table 1: Accuracy (%) comparison for 39 features 
SNR 
(dB) 

FFT 
only 

Mel 
FB 

Gammatone 
FFT FB 

Gammatone 
Real FB 

MFCC 

Clean 69.2 68.5 69.8 69.1 62.8 
20 dB 64.2 63.5 63.7 63.4 
10 dB 56.3 55.0 55.8 55.0 
0 dB 42.2 41.5 41.4 40.5 

 
Table 2:  Accuracy (%) comparison for 78 features 

SNR 
(dB) 

FFT 
only 

Mel FB Gammatone 
FFT FB 

Gammatone 
Real FB 

Clean 71.2 69.7 71.1 70.1 
20 dB 65.8 64.7 65.8 64.9 
10 dB 58.0 58.1 58.1 56.9 
0 dB 43.4 42.5 42.8 41.8 

 
Both case 2 and case 5 in Table 1 used Mel warping, but there is 
a considerable difference in the performance of the two.  To 
investigate the possible reason for this, the delta terms and the 
DCSC terms were removed from MFCC using HTK and Mel 
filter bank respectively, and the results shown in Table 3 were 
obtained. 

Table 3: Performance comparison of MFCC and Mel filter bank. 
# Channels Mel FB MFCC{HTK} 

100-6000 100-8000 100-6000 100-8000 
32 {FL=10ms, 
FS =2ms} 

53.9 53.9 52.8 53.2 

32 {FL=25ms, 
FS =10ms} 

49.1 49.1 50.7 50.2 

20 {FL=10ms, 
FS =2ms} 

53.3 53.3 53.5 53.4 

20 {FL=25ms, 
FS =5ms} 

48.9 48.9 50.6 50.6 

26 {FL=10ms, 
FS =2ms} 

53.9 53.9 51.0 50.5 

26 {FL=25ms, 
FS =10ms} 

50.3 50.3 53.9 50.4 

 
‘FL’ is the frame length and ‘FS’ is the frame spacing that is 
used.  The results show that when the delta terms and the DCSC 
terms are removed, the performance of MFCC computed using 

HTK is similar to that of the Mel filter bank implemented in our 
code.  Thus, presumably, the advantage of our Mel filter bank 
versus the HTK filter bank is due to the difference in the way the 
spectral change information was represented. Mel FB and 
MFCC (HTK) was also tested by varying the high frequency 
range from 6000- 8000 Hz and both the cases are reported in 
Table3.  

 
As yet another test, Table 4 shows the accuracy obtained with 
the Gammatone filter bank as the number of channels is varied 
from 8 to 128. Although there is a very slight improvement 
when using 64 channels, this comes at the expense of more 
computational time and complexity, so we considered the 
“standard” as 32 channels for the Gammatone filters, and used 
32 channels for all the results (except for Table 4 results) in this 
paper. 
 

Table 4:  FFT Gammatone performance as number of filters is varied. 
  

SNR 
(dB)/Channels 

8 16 32 48 64 128 

Clean 64.5 69.4 71.7 71.3 71.4 71.1 
20 dB 60.1 64.8 65.8 65.8 65.9 65.9 
10 dB 50.8 56.0 58.1 58.1 59.3 58.1 

 
To test the statistical significance of the differences in accuracy 
for the results given in this paper, we performed several we 
performed several t-tests by dividing the 1344 sentences of test 
into sets of 96 sentences each.  Using the means and variances of 
the groups of 14 independent tests, and using standard statistical 
hypothesis testing methods [13], it was determined that 2% 
differences are significant at the 97.5% confidence level, and 1% 
differences are significant at the 90% confidence level.    Thus, 
for example, in Table 1, for a fixed SNR, many of the results are 
statistically similar, except for MFCC results, which are lower 
than for all the other methods shown. 
 

7. CONCLUSIONS 
 
From the experimental data, we conclude that FFT-based 
spectral analysis in both clean and noisy conditions with a Mel-
like frequency scale incorporated using frequency warping for 
DCTC features performs nearly identically to cochlea-motivated 
filter bank spectral analysis.  Directly using the FFT spectrum, 
without the intermediate filter bank prior to  feature calculations, 
has the advantage of simplicity and would appear to be a better 
front end strategy for spectral front end calculations for speech 
processing.  The DCSC method for computing spectral 
trajectory features is experimentally shown to result in much 
higher ASR accuracy than obtained with delta and delta-delta 
terms. 
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“Yet another Algorithm for Pitch Tracking -YAAPT” was published in a 2008 JASA paper 
(Zahorian and Hu), with additional experimental results presented at the fall 2012 ASA meeting 
in Kansas City.  The results presented in both the journal paper and at the fall 2012 meeting 
indicated that YAAPT generally has lower error rates than other widely used pitch trackers (YIN, 
PRAAT, RAPT).   However, even YAAPT-created pitch tracks had significant “large” errors 
(pitch doubling and pitch-halving) for both clean and noisy speech.  Recently additional post-
processing heuristics have been incorporated to reduce the incidence of these type errors—thus 
reducing the need for hand correcting pitch tracks for situations where extremely accurate tracks 
are desired.   For the case of an all-voiced track, interpolation through unvoiced intervals has been 
improved.    The updated version of YAAPT is presented along with experimental results.    The 
experiments are conducted with multiple databases, including British English, American English, 
and Mandarin Chinese.   For most conditions evaluated, YAAPT gives better performance than 
the other fundamental frequency trackers.  
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ARPA  Advanced Research Project Agency 
AFRL  Air Force Research Laboratory 
ASR  Automatic Speech Recognition 
DCT  Discrete Cosine Transform 
DCTC  Discrete Cosine Transform Coefficient 
DCS  Discrete Cosine Series 
DCSC  Discrete Cosine Series Coefficient 
FFT  Fast Fourier Transform 
HMM  Hidden Markov Model 
HTK  Hidden Markov Model Toolkit 
LDC  Linguistic Data Consortium 
LM  Language Model 
MFCC  Mel-Frequency Cepstral Coefficient 
NN  Neural Network 
OOV  Out of Vocabulary 
PNCC              Power Normalized Cepstral Coefficient 
RASC863  Regional Accented Speech Corpus by National 863 Project 
863                  Mandarin Chinese Database by National 863 Project 
TIMIT  Texas Instruments--Massachusetts Institute of Technology 
YAAPT           Yet Another Algorithm for Pitch Tracking 
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