
DETAILED PHONETIC LABELING OF MULTI-LANGUAGE
DATABASE FOR SPOKEN LANGUAGE PROCESSING
APPLICATIONS

BINGHAMTON UNIVERSITY

MARCH 2015

FINAL TECHNICAL REPORT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

STINFO COPY

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

AFRL-RI-RS-TR-2015-057

 UNITED STATES AIR FORCE  ROME, NY 13441 AIR FORCE MATERIEL COMMAND

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for any purpose
other than Government procurement does not in any way obligate the U.S. Government. The fact that
the Government formulated or supplied the drawings, specifications, or other data does not license the
holder or any other person or corporation; or convey any rights or permission to manufacture, use, or
sell any patented invention that may relate to them.

This report is the result of contracted fundamental research deemed exempt from public affairs security
and policy review in accordance with SAF/AQR memorandum dated 10 Dec 08 and AFRL/CA policy
clarification memorandum dated 16 Jan 09. This report is available to the general public, including
foreign nationals. Copies may be obtained from the Defense Technical Information Center (DTIC)
(http://www.dtic.mil).

AFRL-RI-RS-TR-2015-057 HAS BEEN REVIEWED AND IS APPROVED FOR PUBLICATION IN
ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT.

FOR THE DIRECTOR:

/ S / / S /
STANLEY WENNDT ROBERT KAMINSKI for
Work Unit Manager WARREN H. DEBANY, JR.

Technical Advisor, Information
Exploitation & Operations Division
Information Directorate

This report is published in the interest of scientific and technical information exchange, and its
publication does not constitute the Government’s approval or disapproval of its ideas or findings.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of
information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

MARCH 2015
2. REPORT TYPE

FINAL TECHNICAL REPORT
3. DATES COVERED (From - To)

JAN 2012 – JAN 2015
4. TITLE AND SUBTITLE

DETAILED PHONETIC LABELING OF MULTI-LANGUAGE DATABASE
FOR SPOKEN LANGUAGE PROCESSING APPLICATIONS

5a. CONTRACT NUMBER
FA8750-12-1-0093

5b. GRANT NUMBER
N/A

5c. PROGRAM ELEMENT NUMBER
65502F

6. AUTHOR(S)

Stephen A. Zahorian

5d. PROJECT NUMBER
3480

5e. TASK NUMBER
BI

5f. WORK UNIT NUMBER
NG

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Binghamton University
Department of Electrical and Computer Engineering
Binghamton, NY 13902-6000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Air Force Research Laboratory/RIGC
525 Brooks Road
Rome NY 13441-4505

10. SPONSOR/MONITOR'S ACRONYM(S)

AFRL/RI
11. SPONSOR/MONITOR’S REPORT NUMBER

AFRL-RI-RS-TR-2015-057
12. DISTRIBUTION AVAILABILITY STATEMENT
Approved for Public Release; Distribution Unlimited. This report is the result of contracted fundamental research deemed
exempt from public affairs security and policy review in accordance with SAF/AQR memorandum dated 10 Dec 08 and
AFRL/CA policy clarification memorandum dated 16 Jan 09.
13. SUPPLEMENTARY NOTES

14. ABSTRACT
The main objective of this research was to explore and refine methods for detailed phonetic labeling (English
or Russian) and character level labeling (Mandarin). Much of the work involved new front end signal
processing methods designed to improve acoustic phonetic representations for speech. This resulted in
recognition rates for TIMIT (English) of 74%, among the highest reported in the literature. A complete
character recognition system for Mandarin was developed and tested. Character recognition rates as high as
88% were obtained, using an approximately 40 training databases. For the case of Russian, a system for
automatically converting Russian to morphemes, a kind of base syllable, was created and tested. A suite of
tools for front end processing, automatic forced alignment, and a complete automatic recognition system are
described.
15. SUBJECT TERMS

Broad phonetic classes, Forced Alignment, Front-end Feature Extraction, Speech Recognition

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

19a. NAME OF RESPONSIBLE PERSON
STANLEY J. WENNDT

a. REPORT
U

b. ABSTRACT
U

c. THIS PAGE
U

19b. TELEPHONE NUMBER (Include area code)
N/A

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

137

Table of Contents
LIST OF FIGURES .. ii
LIST OF TABLES ... iii
1. SUMMARY .. 1
2. PROJECT INTRODUCTION ... 1
3. GENERALIZED SPECTRAL-TEMPORAL FEATURES FOR REPRESENTING SPEECH INFORMATION 3
3.1. Introduction and background ... 3
3.2. Method ... 7
3.3. Implementation .. 15
3.4. Experimental Evaluation .. 21
3.5. Conclusion ... 29
4. AUTOMATIC WORD TO MORPHEME DECOMPOSER FOR RUSSIAN .. 30
4.1. Introduction .. 30
4.2. Morpheme Database .. 31
4.3. Background .. 31
4.4. Data preparation ... 32
4.5. Decomposition algorithm ... 33
4.6. Experimental results ... 35
4.7. Conclusion ... 35
5. NON-UNIFORM FRAME SPACING FOR SPEECH FEATURE CALCULATIONS ... 35
5.1. Introduction .. 35
5.2. L1-Norm Frame Deletion ... 37
5.3. Non-Uniform Regression Analysis .. 41
5.4. Experiments and Results .. 44
5.4.1. L1-Norm Deletion Experiments and Results 47
5.4.2. Regression Analysis Experiments and Results 48
5.5. Conclusions and Future Work .. 48
6. A TOOLBOX FOR A COMPLETE AUTOMATIC SPEECH RECOGNITION STSTEM 49
6.1. Overview .. 49
6.2. Feature extraction (Tool_ComputeFeat.m) .. 50
6.3. Training monophones (Tool_trainMono2.m) ... 51
6.4. Training triphones (Tool_trainTri.m) ... 55
6.5. Language modelling (Tool_trainLM.m) .. 66
6.6. Decoding (Tool_Decode.m) ... 73
6.7. Experimental results ... 77
7. FORCED ALIGNMENT TOOL USER GUIDE .. 80
7.1. Overview .. 80
7.2. Tool_Compute_Feat .. 81
7.3. Tool_trainFA ... 84
7.4. Tool_FA ... 90
8. A TOOL FOR SPEECH FEATURE EXTRACTION – TFRONTM GUIDE .. 94
8.1. Fundamentals of Speech Feature Extraction .. 94
8.2. Program Setup .. 94
8.3. Tool_ComputeFeat .. 95
8.3.1. Function .. 95
8.3.2. Use .. 95
8.4. Tfrontm .. 96
8.4.1. Function .. 96
8.4.2. Use .. 96
8.5. CP_feat .. 97
8.5.1. Function .. 97
8.5.2. Use .. 97
8.5.2.1. INIT Mode ... 98
8.5.2.2. PROC Mode ... 98
8.6. Rd_spec.. 99
8.6.1. Function .. 99
8.6.2. Use .. 99
9. REFERENCES ... 101
APPENDIX A – PUBLICATIONS AND PRESENTATIONS .. 106
LIST OF SYMBOLS, ABBREVIATIONS AND ACRONYMS ... 131

i

LIST OF FIGURES

Figure 1: Comparison of the MFCC and PLP structure.. .. 5
Figure 2: Block diagrams of the proposed frontend. ... 8
Figure 3: Normalized bilinear warping with different warping factors. Mel and Bark warping 10
Figure 4: Desirable time resolution dh/dt for low and high frequencies using a Kaiser window. 12
Figure 5: Two-dimensional basis vector ϕ_(1,1) (t,f), with uniform time warping over all frequencies 13
Figure 6: Two-dimensional basis vector ϕ_(1,1) (t,f) with linear frequency scale .. 13
Figure 7: Real part of Gabor filters on the physical time-frequency plane.. 15
Figure 8: The first 3 DCTC and DCSC basis vectors.. 16
Figure 9: Spectrogram of a speech segment and two rebuilt spectrograms.. ... 17
Figure 10: Spectrogram of a signal consisting of a sequence of sinusoids .. 18
Figure 11: Unified frontend structure ... 19
Figure 12: The first three unified static basis vectors resulting from 26 Mel filters, and the first three unified dynamic

basis vectors of the delta method. .. 20
Figure 13: Frequency count of the 39 phone categories in 3696 training and 1344 testing utterances. 22
Figure 14: : Phonetic recognition accuracy as function of frame length using 21, 23, and 25 DCTCs 23
Figure 15: The effect of frame length and frame space on phonetic recognition accuracy for 21 DCTCs 24
Figure 16: Phonetic recognition accuracy as function of frequency warping for two cases. ... 25
Figure 17: Phonetic recognition accuracy as function of block space, with block length fixed at 251ms. 26
Figure 18: Phonetic recognition accuracy as function of time warping factor for 251 ms blocks 26
Figure 19: Phonetic recognition accuracy as function of combinations of DCTCs and DCSCs. 27
Figure 20: Data Format ... 32
Figure 21: Longer suffixes come first. .. 35
Figure 22: Original Spectrogram of Example Utterance ... 38
Figure 23: Original Spectrogram/L1-Norm Frame Deletion Spectral Derivative Vector Plot .. 38
Figure 24: Original Spectrogram/L1-Norm Spectral Derivative Weighted by Frame Energy .. 39
Figure 25: Original Spectrogram/L1-Norm Frame Deletion for 50% Threshold/Reinterpolated Spectrogram 40
Figure 26: - Regression Analysis (Scaling Factor=2.5) .. 42
Figure 27: Regression Analysis (Scaling Factor=5) .. 43
Figure 28: Regression Analysis (Scaling Factor=7.5) ... 43
Figure 29: Regression Analysis (Scaling Factor=10) .. 44
Figure 30: Plot of Accuracy (%) vs. Block Space (control—in ms) .. 46
Figure 31: Character accuracy using tonal monophone and triphone models versus number of mixtures. 79

ii

LIST OF TABLES

Table 1: 61 TIMIT phones, as reduced to 48 for training, and 39 categories for testing ... 21
Table 2: “Optimum" parameter settings for large feature set .. 28
Table 3: “Optimum” 75 feature ASR accuracies .. 28
Table 4: “Optimum" parameter settings for small feature set ... 28
Table 5: “Optimum” 27 feature ASR accuracies .. 29
Table 6: Decomposition of a word into morphemes. .. 30
Table 7: Morpheme Database. .. 31
Table 8: Number to word conversion of 2,324,015. .. 33
Table 9: Possible inflections for suffix ‘к’. ... 34
Table 10: The decomposition of word ‘перестройка’. ... 34
Table 11: Sample of two-root words. .. 34
Table 12: Accuracy vs Block Spacing (ms) .. 46
Table 13: L1-Norm Frame Deletion Accuracy vs Threshold Factor ... 47
Table 14: L1-Norm Frame Deletion Accuracy of Feature Matrix vs Threshold Factor .. 47
Table 15: Regression Analysis Accuracy vs Scaling Factor ... 48
Table 16: Results for tonal phone acoustic models, LM=bigram .. 78
Table 17: Results for basephone acoustic models, LM=bigram.. 78
Table 18: Results using different pitch trackers, LM=bigram ... 79
Table 19: Accuracy using bigram and trigram models for tonal triphones ... 80

iii

1. SUMMARY

This report gives a detailed summary of research work completed under Air Force
Research Laboratory (AFRL) Award No. FA87501210093, “Detailed Phonetic Labeling
of Multi-Language Database for Spoken Language Processing Applications,” over the
time period (Jan 19, 2012 – Jan 18, 2013).

2. PROJECT INTRODUCTION

The main goals of this project were to investigate and test methods and tools to enable
more accurate phonetic labeling of speech databases in various languages. Such methods
and tools are valuable for developing automatic speech recognition (ASR) systems in
these languages. One of the biggest hurdles to further improvements in ASR accuracy
and robustness is the need for really large speech databases in multiple languages. One of
the big assets to ASR research is the availability of large open source databases along
with text annotations at the sentence level. However, for ASR applications, this text
information should be “force” aligned with the acoustic signal, in terms of an accurate
phonetic level transcription. In this work, we focus on the front end signal processing to
improve phonetic level recognition, with experimental work in three languages- -
English, Mandarin, and Russian. The report contains six major sections, each with its
own introduction and conclusion. This report also contains copies of four conference
papers and 1 conference abstract, for work supported by this project. In the remainder of
this overall introduction, we give a brief executive summary of the major sections of this
report.

Section 3, “Generalized spectral-temporal features for representing speech information,”
reports a detailed mathematical and experimental investigation of a method for
computing speech features as weighted sums of spectral values about each instant in time.
This method is viewed as a general framework which includes the commonly used
MFCCs (or other filterbank implementations in place of the Mel filterbank used to
compute MFCCs), delta, and delta-delta, features. Some other frontend methods, such as
perceptual linear prediction (PLP) and Gabor filtering, although are not entirely covered
mathematically by this framework, can still be studied using the unified basis vector point
of view, which reveals the essence of features as linear transformations of the spectrum.
Although these weighted sums are most generally characterized as two dimensional basis
vectors over time and frequency, the most effective implementation found is based on
two one-dimensional sets of basis vectors. The first step, summing over frequency, is
referred to as a DCT (Discrete Cosine Transform), with resulting features called DCTCs
(last C being Coefficient). The DCTCs are then summed over time to create DCSCs
(Discrete Cosine Series Coefficients). Using DCTC/DCSC features and an HMM
recognizer, the highest accuracy phonetic recognizer obtained with English (74%) is an
improvement over the best accuracy obtained with the more typical 39 MFCC feature set
(71.4%).

Approved for Public Release; Distribution Unlimited.
1

Section 4, “Automatic word to morpheme decomposer for Russian,” reports progress on
an approach to ASR for Russian. Unlike English, and many other western European
languages, Russian has a very unconstrained grammar system (many allowable word
orderings, with essentially the same meaning) and an extremely large word vocabulary.
Words can however be decomposed into base units called morphemes, consisting
primarily of prefixes, roots, and suffixes. The base part of the meaning is the root. There
are orders of magnitude fewer roots than words in Russian, and one approach to Russian
ASR would be to first recognize morphemes (especially roots) and then reconstruct
words from morpheme strings and grammar rules. However, to develop a Russian ASR
system, an automatic word to morpheme convertor is needed for training purposes.
Although such convertors exist they are all proprietary, not well described, and not
available for general use. In this section of the report, a word to morpheme convertor is
described and developed using open source Matlab code. Limited experimental tests have
shown the convertor to be extremely accurate.

Section 5, “Non-uniform frame spacing for speech feature calculations,” is a report on
our efforts to improve HMM based ASR accuracy by computing features with variable
frame spacing. It is quite clear from basic principles of speech production that some
temporal regions in a time-frequency representation of speech are changing quite rapidly
(for example stop consonants) whereas other regions (especially vowels) are changing
much more slowly. Although one approach to improving accuracy would seem to be to
sample features at a fast enough rate to accommodate the rapidly changes regions of the
short time spectrum, in practice, at least with HMM recognizers, this “oversampling”
actually degrades accuracy. In this section of the report a few methods for non-uniform
sampling of features and corresponding experimental results are summarized.
Unfortunately none of these methods proved useful in terms of improving ASR accuracy.
However, we still speculate that better measures of spectral change coupled with
modifications to the recognizer itself, have promise for this general approach.

Section 6, “A toolbox for a complete automatic speech recognition system,” describes a
suite of tools for developing an automatic speech recognition system. The kernel of the
toolbox is the Hidden Markov Model ToolKit Version 3.4 (HTK 3.4). The framework is
developed in Matlab running under the MS windows operating system. Key steps include
forced alignment (if needed), front end feature calculations, acoustic model training,
including monophone and triphone models, language modeling (two options available,
one for building a simple bigram, another for more complex n-gram tasks), and decoding
(which provides two decoders, one for a small vocabulary task, one for a large
vocabulary task).

Section 7, “Forced alignment tool package user manual,” is a suite of tools, also based on
Matlab and the HTK, which describes in detail the use of the forced alignment part of the
ASR toolbox, from section 6. This toolbox creates accurate phonetic labelling of
pronunciations from the raw wave files and word level transcriptions. The output of this
toolbox is used in subsequent tools.

Approved for Public Release; Distribution Unlimited.
2

Section 8, “A tool for speech feature extraction--tfrontm guide,” describes the setup and
use of the front end analysis package which can be used with the ASR toolbox, from
section 6. This tool is completely written in Matlab. The center pieces is DCTC/DCSC
analysis, as described in section 3, but there are also options for MFCCs, deltas, pitch
tracking, and other front end analysis types.

3. GENERALIZED SPECTRAL-TEMPORAL FEATURES FOR
REPRESENTING SPEECH INFORMATION

3.1. Introduction and background

Over many years, for both automatic speech recognition (ASR) and general speech
science applications, there is an ongoing search for “good” acoustically derived features.
The meaning of “good” depends on the particular intended usage, but generally includes
the following elements:

1. Relevance: Generally, speech features should closely reflect the main characteristics
of speech activities for speech production and/or speech perception. For the case of
features intended for use in speech science or speech therapy applications, this property is
very important. For ASR applications, this property is only indirectly important.
Presumably, but not necessarily, features which mimic human processing of speech will
also be more effective for ASR.

2. Compactness: Due to issues such as the “curse of dimensionality" [1] in obtaining
robust estimates of parameter distributions in various tasks, such as speech recognition,
speaker identification, etc., the information in speech should be encoded with a relatively
small number of features.

3. Completeness: The features should represent all speech information of interest.

4. Robustness: “Good" speech features should have very similar values for similar
sounding speech, even in the presence of noise. Humans clearly have the ability to
recognize speech sounds under a broad range of conditions, including distortion and
noise. For ASR, a goal is that recognition be accurate under a similar broad range of
conditions.

In this section of this report, a speech frontend is presented which extracts speech
features guided by the above general principles, and for which tradeoffs can easily be
explored to tune features for best “performance.” The primary tradeoffs explored are
between time and frequency resolution, a fundamental issue in short time spectral
analysis.

As mentioned above, speech production and perception aspects of speech science form
the foundation for signal processing to extract speech features. In terms of speech
production, by far the most widely used acoustic features for characterizing vocal tract
shape are formants. According to the classic Peterson and Barney's vowel study [2],

Approved for Public Release; Distribution Unlimited.
3

formants, corresponding to resonant frequencies (poles) in the vocal tract, are most
effective for distinguishing vowels. However, for many more complex phones, such as
fricatives, nasals, and stop consonants, poles of the vocal tract transfer function are not
sufficient, and zeros must be considered. For ASR applications, guided by the underlying
importance of the formants, and the signal processing idea that nearly any transfer
function can be approximated by a high order all pole model, the vocal tract is greatly
simplified to an all-pole system, such as in the Perceptual Linear Predictive (PLP)
frontend [3]. More typically, however, for ASR, a pole or pole-zero approximation to the
vocal tract model is replaced by cepstral features [4], which primarily extract vocal tract
information from the log magnitude of the spectral envelope, and remove voice source
information, and thus, implicitly encode the formants.

Speech perception research, both from the physiology and psychoacoustic fields,
establishes the fundamental theory for many widely used speech frontends. Typically,
frequency and time resolution of speech perception are the dominant two considerations
that a frontend is designed upon. As pointed out in Zwicker's work [5], frequency
resolution stems from the cochlea's frequency selectivity properties: a sound wave, when
travelling along the basilar membrane, causes maximum displacement of the membrane
oscillation at different positions and with different resolutions for different frequency
components. This physiological property, leads to the development of various perceptual
frequency scales, and these perceptual scales, in turn, lead to the use of auditory filter
banks to mimic the frequency selectivity of human ears.

As one example, Mel Frequency Cepstral Coefficients (MFCCs), proposed by Bridle and
Brown [6], are widely used as speech features. Figure 1(a) is a block diagram of a typical
MFCC frontend. After being pre-emphasized and taking the Short Time Fourier
Transform (STFT), a speech signal is filtered through a set of triangular filters which
evenly partitions the Mel scale into 26-30 equal-width bins. On the Mel scale, according
to Stevens et al. [7], the "perceived frequency” (pitch) becomes linear. For example,
psychologically, a pitch of 1000 Mels is 2 times higher than a pitch of 500 Mels. The
bandwidths of these filters reflect perceptual frequency resolution. The nonlinear
logarithmic-like frequency “warping” function that maps the Hertz scale to the Mel scale
results in a higher bandwidth in the Hertz domain as frequency increases. Thus, the
frequency resolution decreases at high frequencies, which means that a wider range of
frequency components are perceptually nearly identical. The output power of each filter
channel is then nonlinearly amplitude scaled to convert the physical loudness to the
psychologically perceived loudness, which is linearly proportional to the neuron firing
rate of the auditory nerves [8]. Then, these amplitude-scaled speech powers on the Mel
scale are converted into a set of cepstral features by taking the Discrete Cosine Transform
(DCT), which also eliminates the heavy correlations among the filter bank output powers
due to the overlapping of the channels.

Approved for Public Release; Distribution Unlimited.
4

Figure 1: Comparison of the MFCC and PLP structure. These block diagrams produce static features. The first

and second order differentials of the static features are usually appended as dynamic features.

Another fundamental perceptual scale which is used to create auditory filter banks is the
Bark scale. This scale is based on the concept of Critical Bands in Fletcher's canonical
paper [9], in which he first pointed out that frequency components in the same critical
band are perceptually nearly indistinguishable. One popular use of the Bark scale is the
PLP frontend developed by Hermansky [3]. Figure 1(b) depicts the block diagram of this
frontend. Suggested by Hermansky, the complex frequency components in the speech are
filtered through typically 16 trapezoids uniformly spaced on the Bark scale, with the
bandwidth of each channel approximately 4 Barks. Though the Bark frequency warping
and the Mel frequency warping are derived using very different psychoacoustic methods,
they both have high frequency resolution at low frequencies and low frequency resolution
at high frequencies. Unlike the MFCC frontend, in the PLP framework, the pre-emphasis
step is performed by an equal-loudness compensation for each filter channel output as an
approximation to the nonequal sensitivity of human hearing at different frequencies [10].
Another salient difference from MFCCs is the Linear Predictive (LP) processing in the
Bark domain, which explicitly models the formant positions of the vocal tract by a set of
LP coefficients computed by Durbin's recursive method [11], and finally, these LP
coefficients are converted into a set of cepstrum coefficients by another recursion [12].
As a variant to the Bark scale, Moore and Glasberg proposed the Equivalent Rectangular
Bandwidth (ERB) scale [13], and they showed that the auditory frequency resolution can
be more precisely described by the ERB scale than the Bark scale based on the famous
"notched-noise data" experiments. Based on this scale, gammatone filter banks were first
proposed by Patterson et al [13], and Slaney in [14], proposed an efficient
implementation of the gammatone filter bank by viewing each filter as a cascade of four
2nd order filter stages.

These perceptual scales for frequency only capture the static frame-based frequency
information of the speech spectrum. They do not characterize spectral trajectories over
time. However, in principle, a sufficiently large set of frequency-based features, plus
voice source information, should contain nearly all speech information, since high quality
speech can be synthesized from these static features, with no need for temporal

Approved for Public Release; Distribution Unlimited.
5

information. Thus, for ASR, at least in principle, a powerful recognizer should also be
able to extract the dynamic trajectory and make decisions from static features alone.
Although the fundamental strength of HMMs (that is Hidden Markov Models, the
dominant and effective method for modeling acoustic phonetic information in ASR
systems) is the ability to recognize patterns in temporal sequences of variable length,
apparently the HMM framework is not able to adequately capture the patterns contained
in sequences of static speech features alone. The dynamic features appear to make these
static patterns more easily discernible. For the case of HMM ASR systems, dynamic
features can be viewed as a compensation for a deficiency in HMMs.

In [15,16,17,18], a simple but very effective type of dynamic features is obtained by
computing the time “derivatives” of the static features. Empirically, it has been
determined that ASR performance improves considerably (reduction in error rate on the
order of 20%) if the so called delta and acceleration (the second order differential) terms
are appended to the static features. Mathematically, the delta terms are computed as:

𝛥𝛥𝑡𝑡 = ∑ 𝜃𝜃(𝑐𝑐𝑡𝑡+𝜃𝜃−𝑐𝑐𝑡𝑡−𝜃𝜃)𝛩𝛩
𝜃𝜃=1

2∑ 𝜃𝜃2𝛩𝛩
𝜃𝜃=1

 (1)

where 𝛥𝛥𝑡𝑡 is the differential at time t computed in the context from the static coefficients
𝑐𝑐𝑡𝑡−𝜃𝜃 to 𝑐𝑐𝑡𝑡+𝜃𝜃 , with 2𝛩𝛩 + 1 being the window length. It can be seen that this method
simply estimates the continuous time derivative at each time instant using its discrete
time approximation. It does not account for the non-uniform time resolution of the human
auditory system.

Spectral-temporal modulation features are much more effective than the delta method in
solving the problem of non-uniform time-frequency resolution as well as efficient
sampling of short time representation. In 1994, Drullman et al. [19] found that the most
important spectral trajectory information over time for speech perception was in the range
of 1-16Hz modulation frequencies. Highlighted by this finding, conceptually, modulation
features are typically computed by first dividing the spectrum into frequency bands, and
then representing the trajectory envelope of each band by temporal features. In order to
exploit the information at the modulation frequencies, relatively long time blocks are
analyzed. The modulation features of each band are usually either fully appended to the
static features, or selected by algorithms. To encode the temporal trajectory of spectral
bands by modulation features, various methods have been proposed. In [20], Athineos et
al. use the dual of conventional linear prediction in the time domain for each sub-band to
model the poles of the temporal envelope. In [21], Valente and Hermansky developed a
hierarchical and parallel scheme combining independent classifier outputs and
modulation frequency channels.

More recently, Gabor-filter-based approaches to extracting modulation features with
direction oriented time-frequency resolution have been proposed. Gabor filters are
defined using the product of a two-dimensional Gaussian envelope and a complex
exponential function with a localized region in the time-frequency plane. The strength of
the Gabor filter bank is that it captures Localized Spectro-Temporal Features (LSTFs) as
suggested in [22,23]. However, the large number of parameters, which allow Gabor

Approved for Public Release; Distribution Unlimited.
6

filters to be tuned toward different directions of the spectral-temporal modulation, present
the problem of how to select the most effective and compact feature set for ASR. One
feature selection method proposed in [24] uses a Feature-Finding Neural Network
(FFNN). The importance of each feature is evaluated by the increase of RMS
classification error after its removal from the feature set. Though the linear classifier has
a relatively fast converging rate, the training process is still much slower than that for
other conventional ASR feature extraction methods.

Based on this prior extensive ground work, this section presents a generalized spectral-
temporal feature extraction frontend for representing speech information. This feature set
presents a detailed look at one general flavor of time-frequency features, focusing on the
primary properties of human hearing: frequency and time resolution, but which
encompasses quite a range of time-frequency representation options. It’s not just one
specific type of frontend, but should be viewed as a unified framework that realizations
of the general time-frequency concepts can be easily implemented and tuned. Based on a
set of frequency warping and frequency-dependent time warping functions, it’s flexible
enough to easily evaluate the relative importance of the spectral and temporal features,
and to explore the trade-off between frequency selectivity and time resolution. In addition,
a wide range of conventional filter bank-based static features as well as the time
derivative dynamic terms can be easily incorporated into this generalized framework by
modifying the basis vectors. Thus, it provides a common yardstick to study, compare and
develop different time-frequency representations.

3.2. Method

In general terms, the spectral-temporal features that are the primary focus of this section,
are viewed as weighted sums of short time spectral magnitudes, computed at each
(sample) instant of time, from all short-time spectral frequency components in a temporal
region centered at each sample instant in time. Figure 2(a) presents a high level diagram
of the proposed frontend. After an utterance has been pre-emphasized and segmented into
frames, a time-frequency representation (TFR) of the speech, denoted by 𝑋𝑋(𝑡𝑡,𝑓𝑓) is
obtained by computing the magnitude-squared Short-Time Fourier Transform (STFT). In
this work, the notation t and f denote the physical time (in seconds) and frequency (in
Hertz). The STFT has uniform frequency and time resolution over the entire time-
frequency plane, determined by the analysis window shape and width [25]. This
representation does not take into account the non-uniform perceptual scale of the
peripheral auditory system. Thus, we first define 𝑡𝑡′ and 𝑓𝑓′ as perceptual time and
frequency scales, whose desirable properties will be described in detail. Then, a set of
features 𝐹𝐹𝐹𝐹𝐹𝐹𝑡𝑡(𝑖𝑖, 𝑗𝑗) for the time block centered at time instant t, can be expressed as:

𝐹𝐹𝐹𝐹𝐹𝐹𝑡𝑡(𝑖𝑖, 𝑗𝑗) = ∫ ∫ 𝐹𝐹(𝑋𝑋′(𝑡𝑡′,𝑓𝑓′)) ∙ 𝐵𝐵𝐵𝐵𝑖𝑖,𝑗𝑗(𝑡𝑡′,𝑓𝑓′)𝑑𝑑𝑓𝑓′𝑑𝑑𝑡𝑡′ 1
𝑓𝑓′=0

1
2�

𝑡𝑡′=−1 2�
 (2)

In Eq.2, the feature extraction is performed entirely using perceptual scales, where
𝑋𝑋′(𝑡𝑡′,𝑓𝑓′) is the power spectrum of a time-frequency block on this domain, in which the
frequency 𝑓𝑓′ has been normalized to the range of {0,1} by subtracting an offset and

Approved for Public Release; Distribution Unlimited.
7

dividing by a scaling factor. Similarly, the perceptual time 𝑡𝑡′ has been normalized to the
range of {− 1

2� , 1 2� }, with 𝑡𝑡′ = 0 corresponding to the center of the time block, which
typically spans approximately 200ms (unscaled physical time). The function 𝐹𝐹(∙)
nonlinearly maps the power spectrum to a psycho-loudness scale, typically using a
logarithmic scaling, or a power-law nonlinearity [26]. Finally, the amplitude-scaled
power spectrum is weighted by a set of two-dimensional basis vectors 𝐵𝐵𝐵𝐵𝑖𝑖,𝑗𝑗 also defined
for the perceptual domain (𝑡𝑡′,𝑓𝑓′) . The number of features extracted from a time-
frequency block depends on the number of basis vectors used.

Figure 2: Block diagrams of the proposed frontend. (a). The amplitude-scaled power spectrum is weighted by a
set of 2-D basis vectors. (b). The DCTC-DCS implementation. In this method, DCTCs are computed first,
followed by DCS. The time warping in the DCS basis vectors is uniform for all frequencies. (c). The DCS-
DCTC implementation. A set of DCS coefficients is obtained, followed by DCTC. This
implementation enables frequency-dependency in the DCS basis vectors.

In this section, a set of two-dimensional cosine basis vectors for 𝐵𝐵𝐵𝐵𝑖𝑖,𝑗𝑗 are used to
compactly encode the spectral envelope as well as the spectral trajectory, and also to de-
correlate the features. Specifically, the 2-D cosine basis vectors operating in the
perceptual space are defined as:

𝐵𝐵𝐵𝐵𝑖𝑖,𝑗𝑗(𝑡𝑡′, 𝑓𝑓′) = 𝑐𝑐𝑐𝑐 𝑠𝑠(𝜋𝜋𝑖𝑖𝑓𝑓′) ∙ 𝑐𝑐𝑐𝑐𝑠𝑠(𝜋𝜋𝑗𝑗𝑡𝑡′) (3)
0 ≤ 𝑖𝑖 ≤ number of frequency bins, 0 ≤ 𝑗𝑗 ≤ block length in frames

From Eq. (2) and (3), it can be seen that the warping from f to 𝑓𝑓′ and t to 𝑡𝑡′, together
with their derivatives 𝑑𝑑𝑓𝑓′ and 𝑑𝑑𝑡𝑡′ characterize the desired frequency and time resolution
of human hearing. The following few paragraphs mathematically show how the nonlinear
mappings are incorporated into the feature calculations.

Considering frequency variables first, a frequency warping, which specifies the relation
between the perceptual frequency 𝑓𝑓′ and the physical frequency 𝑓𝑓 is defined:

 𝑓𝑓′ = 𝑔𝑔(𝑓𝑓), 0 ≤ 𝑓𝑓 ≤ 1 (4)

Approved for Public Release; Distribution Unlimited.
8

where the physical frequency range has also been normalized to {0,1}1. Thus, the 𝑑𝑑𝑓𝑓′
term in Eq. (2) is equivalent to:

 𝑑𝑑𝑓𝑓′ =
𝑑𝑑𝑔𝑔
𝑑𝑑𝑓𝑓

𝑑𝑑𝑓𝑓 (5)

As per the discussion in a previous section, one reasonable choice for the form of the
frequency warping 𝑔𝑔(𝑓𝑓), is a Mel-shape warping defined as:

𝑔𝑔(𝑓𝑓) = 𝐶𝐶 ∙ 𝑙𝑙𝑐𝑐𝑔𝑔10(1 +
𝑓𝑓
𝑘𝑘

) (6)

where k is an adjustable warping factor between 0 and 1 that controls the degree of the
warping, and the constant 𝐶𝐶 is chosen to insure that 𝑓𝑓 = 1 is mapped to 𝑓𝑓′ = 1. It's easy
to see that this Mel-shape warping becomes the normalized version of the most widely
used "standard" Mel warping proposed by O'Shaughnessy [27] if k=0.0875 and C=0.9137
for the frequency range of 0 to 8000Hz. Another option, according to Smith and Abel's
work [28], is to use a bilinear warping to mimic the Bark scale, as per:

𝑔𝑔(𝑓𝑓) = 𝑓𝑓 +
1
𝜋𝜋
𝑡𝑡𝐹𝐹𝑡𝑡−1 �

𝛼𝛼 ∙ 𝑠𝑠𝑖𝑖𝑡𝑡(2𝜋𝜋𝑓𝑓)
1 − 𝛼𝛼 ∙ 𝑐𝑐𝑐𝑐𝑠𝑠(2𝜋𝜋𝑓𝑓)� (7)

with α being the warping factor ranging from 0 to 1. In Figure 3, a family of five bilinear
warpings with different 𝛼𝛼 values are plotted, starting from 𝛼𝛼 = 0 , and gradually
increasing. For comparison, the normalized Mel warping using O'Shaughnessy's equation
in [27], and the normalized Bark warping according to Wang et al. are also depicted [29].
The Mel and the Bark warping can be closely approximated by the bilinear warping using
appropriate warping factors.

1 In the derivation of the frequency warping g(f) and its derivative, for convenience, the normalized frequency range
{0,1} of f corresponds to the full un-normalized range {0, Fs/2} where Fs/2 is the Nyquist frequency. The normalized
perceptual frequency f’ in {0,1} corresponds to the range of 0 to the perceptual frequency of Fs/2. In practice, if the
desired frequency range is not {0, Fs/2}, one can simply extract the corresponding segment of the full warping curve
defined in Eq.(6) or (7), as well as their derivatives, and re-normalize this segment of g(f) to the range of {0,1}.

Approved for Public Release; Distribution Unlimited.
9

Figure 3: Normalized bilinear warping with different warping factors. Mel and Bark warping shown for

comparison.

From Eq. (5), in contrast to using an auditory filterbank to determine frequency
selectivity, such as in the MFCC, PLP or gammatone frontends [3,6,13], the derivative of
the frequency warping determines the frequency resolution for each frequency. In the
filterbank methods, the range of perceptually indistinguishable frequency components
that fall into a channel is quantified by the filter bandwidth, which in turn is determined
by the warping function. So, we can view a filterbank as a quantizer which partitions the
perceptual frequency scale into a finite number of equal but coarse intervals. In the
proposed approach, this quantization is effectively continuous (in practice limited only by
the frame length of each analysis window and the spacing of FFT samples used to
compute the original spectrum). The frequency selectivity is reflected by the derivative
term dg(f)/df in a straightforward way.

The frequency selectivity term can be interpreted from a physiological perspective. The
term dg/df can be thought of as how far the maximal displacement position advances
along the basilar membrane caused by a 1 Hz change at frequency f. On the physical f
scale, the same ∆𝑓𝑓 corresponds to small displacement at high frequencies versus large
displacement at low frequencies. Thus, the frequency resolution is non-unifrom, as
defined by dg/df. However, on the perceptual 𝑓𝑓′ scale, this non-uniformity vanishes since
frequency components in the same ∆𝑓𝑓′ covers approximately the same range along the
basilar membrane for both low and high frequencies.

Next, the relation between the perceptual time 𝑡𝑡′ and linear time t is specified through a
time warping with the range of t also normalized, but to the range {− 1

2� , 1 2� }:

𝑡𝑡′ = ℎ(𝑡𝑡,𝑓𝑓) − 1
2
≤ 𝑡𝑡 ≤ 1

2
 , 0 ≤ 𝑓𝑓 ≤ 1 (8)

The perceptual time 𝑡𝑡′ can be viewed as a psychological time scale that defines a
“pseudo” time instant at which an acoustic event (such as the evolution of the spectral
envelope over time) that happens at physical time t is perceived by the auditory neurons.

0 1000 2000 3000 4000 5000 6000 7000 8000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Frequency (Hz)

N
or

m
al

iz
ed

 p
er

ce
pt

ua
l f

re
qu

en
cy

α=0.2

Mel

α=0

Bark
α=0.45

α=0.52

α=0.85

Approved for Public Release; Distribution Unlimited.
10

The insight of this perceptual time is more clear and relevant in terms of its derivative
with respect to 𝑡𝑡:

𝑑𝑑𝑡𝑡′ =
𝑑𝑑ℎ(𝑡𝑡,𝑓𝑓)
𝑑𝑑𝑡𝑡

 (9)

This time resolution term indicates how far apart two events, separated by unit time (1
sec) on the linear scale, are when they are perceived. A large value means that two
acoustic events are clearly psychologically distinguishable whereas a small value shows
that the time boundary between events is blurred, and thus cannot be well resolved. When
characterizing the temporal trajectory of a frequency component 𝑓𝑓 over the period of a
time block, it's reasonable to use non-uniform time resolution by imposing higher
resolution near the center of the block, which is the current "observation" frame, than at
the far ends. This can also be explained by the relative importance of the spectral
information: to identify the content of the current frame with the help of its left and right
context, it is reasonable to assume high relative importance for contexts close to the
current frame than for those far it. Hence, important temporal changes of the spectrum
envelope need to be clearly resolved, whereas less helpful parts are suppressed.
Therefore, in this work, the choice of the shape for dh/dt is approximately Gaussian over
a time block for each frequency. In the experimental work, a Kaiser window for dh/dt is
used, which has one parameter, defined as the time warping factor, that conveniently
controls the degree of warping.

Note that in Eq. (8), the time warping is shown with dependence on frequency 𝑓𝑓, and so
is the case for the time resolution in Eq. (9). This allows an exploration of the trade-off
between frequency and time resolution, including making these tradeoffs frequency
dependent, which is a basic property of the peripheral auditory filters. Based on the
psychoacoustic masking experiments in [30], the very narrow bandwidth at low
frequencies produces high frequency resolution, but also prolongs the "ring" time at the
onset and offset transients for short signals, and thus degrades the time resolution of the
excitation patterns. This trade-off is also justified in [31] by neurophysiological
experiments and in [32], by the gap-in-noise detection experiments, which provides
evidence that human subjects are able to detect short gaps with higher time resolution
between narrow band noise segments with increasing center frequencies. Despite these
properties of human hearing, it's not yet clear whether this trade-off has a significant
impact on ASR. Our work provides one way to account for and examine this effect by
incorporating frequency-dependency in the time warping. Specifically, the shape for the
term dh/dt can be made more “peaky” at high frequencies than at low frequencies. Figure
4 plots the desirable time resolution using a Kaiser window with different warping factors
for different frequencies. The time resolution is non-uniform both over time within a
block and over frequency.

Approved for Public Release; Distribution Unlimited.
11

Figure 4: Desirable time resolution dh/dt for low and high frequencies using a Kaiser window. The time

resolution is non-uniform over both time and frequency.

Now that the principles and reasonable forms of the frequency and time warping have
been established, also note that the magnitude of the power spectrum on the perceptual
scale is the same as it is on the physical time-frequency domain, and with t and 𝑡𝑡′, 𝑓𝑓 and
𝑓𝑓′ being normalized to the same range respectively, Eq. (2) can be rewritten in terms of t
and f by substituting in Eq. (3)(4)(5)(8)(9):

𝐹𝐹𝐹𝐹𝐹𝐹𝑡𝑡(𝑖𝑖, 𝑗𝑗) = � � 𝐹𝐹�𝑋𝑋(𝑡𝑡, 𝑓𝑓)� ∙ 𝑐𝑐𝑐𝑐 𝑠𝑠�𝜋𝜋𝑖𝑖𝑔𝑔(𝑓𝑓)�
𝑑𝑑𝑔𝑔(𝑓𝑓)
𝑑𝑑𝑓𝑓

1

𝑓𝑓=0

1
2�

𝑡𝑡=−1 2�

∙ 𝑐𝑐𝑐𝑐 𝑠𝑠�𝜋𝜋𝑗𝑗ℎ(𝑡𝑡,𝑓𝑓)�
𝑑𝑑ℎ(𝑡𝑡,𝑓𝑓)
𝑑𝑑𝑡𝑡

𝑑𝑑𝑓𝑓𝑑𝑑𝑡𝑡 (10)

Eq. (10) can be more conveniently interpreted by defining modified basis vectors over
frequency f (compared to the original form over 𝑓𝑓′) as:

𝜑𝜑𝑖𝑖(𝑓𝑓) = 𝑐𝑐𝑐𝑐 𝑠𝑠�𝜋𝜋𝑖𝑖𝑔𝑔(𝑓𝑓)�
𝑑𝑑𝑔𝑔(𝑓𝑓)
𝑑𝑑𝑓𝑓

 (11)

 0 ≤ 𝑖𝑖 ≤ number of frequency bins

and modified frequency-dependent basis vector over time t as:

𝜓𝜓𝑗𝑗(𝑡𝑡, 𝑓𝑓) = 𝑐𝑐𝑐𝑐 𝑠𝑠�𝜋𝜋𝑗𝑗ℎ(𝑡𝑡, 𝑓𝑓)�
𝑑𝑑ℎ(𝑡𝑡,𝑓𝑓)
𝑑𝑑𝑡𝑡

 (12)
 0 ≤ 𝑗𝑗 ≤ block length in frames

Using the basis vectors in Eq. (11) (12), Eq. (10) can be rewritten as:

𝐹𝐹𝐹𝐹𝐹𝐹𝑡𝑡(𝑖𝑖, 𝑗𝑗) = ∫ ∫ 𝐹𝐹(𝑋𝑋(𝑡𝑡,𝑓𝑓)) ∙ 𝜙𝜙𝑖𝑖,𝑗𝑗(𝑡𝑡,𝑓𝑓)𝑑𝑑𝑓𝑓𝑑𝑑𝑡𝑡 1
𝑓𝑓=0

1
2�

𝑡𝑡=−1 2�
 (13)

where the modified two-dimensional basis vectors 𝜙𝜙𝑖𝑖,𝑗𝑗(𝑡𝑡,𝑓𝑓) is the product of the basis
vectors in Eq. (11) and (12).

-125 -100 -75 -50 -25 0 25 50 75 100 125
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

Time (ms)

Ti
m

e
re

so
lu

tio
n

High frequency
Low frequency

β=5

β=30

Approved for Public Release; Distribution Unlimited.
12

Figure 5: Two-dimensional basis vector ϕ_(1,1) (t,f), with uniform time warping over all frequencies using a

Kaiser window with β=5, but a bilinear frequency warping with varying degree.

Figure 6: Two-dimensional basis vector ϕ_(1,1) (t,f) with linear frequency scale but frequency-dependent time

warping using a Kaiser window. β_low and β_high are the low and high frequency warping factors.

In Figure 5, the two-dimensional basis vector 𝜙𝜙1,1(𝑡𝑡,𝑓𝑓) is plotted with uniform time
warping over the entire frequency range, using a Kaiser window with 𝛽𝛽 = 5, but with
various values of 𝛼𝛼, i.e. the degree of the bilinear frequency warping. It can be seen that
starting from the linear frequency scale which has uniform resolution, the basis vector
becomes more sharply peaked at low frequencies as we impose higher frequency
resolution at low frequencies through a larger warping factor, i.e. higher dg/df values. In
Figure 6, the same basis vector is plotted using increasing time warping as frequency

Approved for Public Release; Distribution Unlimited.
13

increases. The Kaiser window 𝛽𝛽 value is linearly interpolated between 𝛽𝛽𝑙𝑙𝑙𝑙𝑙𝑙 and 𝛽𝛽ℎ𝑖𝑖𝑖𝑖ℎ.
The higher time resolution for high frequencies makes the basis vector more concentrated
near the center of the block.

Another option for the two-dimensional basis vectors, rather than the cosine expansion, is
to use a Gabor filterbank. As described in the work of [22,23,33], Gabor filtering is
performed by a two-dimensional correlation (which is slightly different than the
integration operation in this work) between the Gabor filterbank and the perceptual time-
frequency plane (𝑡𝑡′,𝑓𝑓′). Each filter is defined as:

𝐺𝐺(𝑡𝑡′, 𝑓𝑓′) = 𝑡𝑡(𝑡𝑡′,𝑓𝑓′) ∙ 𝐹𝐹(𝑡𝑡′,𝑓𝑓′) (14)

where 𝑡𝑡(𝑡𝑡′, 𝑓𝑓′) is a Gaussian envelope centered at (𝑡𝑡0′ , 𝑓𝑓0′):

𝑡𝑡(𝑡𝑡′,𝑓𝑓′) =
1

2𝜋𝜋𝜎𝜎𝑓𝑓𝜎𝜎𝑡𝑡
𝐹𝐹𝑒𝑒𝑒𝑒 �

−(𝑓𝑓′ − 𝑓𝑓0′)2

2𝜎𝜎𝑓𝑓2
+
−(𝑡𝑡′ − 𝑡𝑡0′)2

2𝜎𝜎𝑡𝑡2
� (15)

and 𝐹𝐹(𝑡𝑡′,𝑓𝑓′) is the complex Euler function:

𝐹𝐹(𝑡𝑡′,𝑓𝑓′) = 𝐹𝐹𝑒𝑒𝑒𝑒�𝑗𝑗𝜔𝜔𝑓𝑓(𝑓𝑓′ − 𝑓𝑓0′) + 𝑗𝑗𝜔𝜔𝑡𝑡(𝑡𝑡′ − 𝑡𝑡0′)� (16)

The width of the Gaussian envelope is defined by 𝜎𝜎𝑓𝑓 and 𝜎𝜎𝑡𝑡 , and the modulation
frequencies 𝜔𝜔𝑓𝑓 and 𝜔𝜔𝑡𝑡 modulates the filter in particular directions. In Figure 7, we plot
the real part of a group of Gabor filters on the physical time-frequency domain centered
around 1000Hz and zero time instant, with various directions tuned by the modulation
frequencies. Indeed, directionality is the most salient difference between Gabor filters
and the cosine expansion used in this section. Gabor filters can be adjusted towards any
directions whereas the cosine transform only represents modulation of the spectrum along
the vertical and horizontal axis (compare Fig.7 with Fig.5,6). The deeper reason is that
the Gabor approach and the method presented in this section model very different
auditory properties. The directionality of the Gabor frontend stems from the response of
the neurons to combinations of spectral-temporal modulation frequencies in the spectral-
temporal receptive field [34], whereas the proposed framework in this section aims to
model the time-frequency tradeoff of the peripheral auditory system.

Approved for Public Release; Distribution Unlimited.
14

Figure 7: Real part of Gabor filters in the physical time-frequency plane. Directions are determined by ω_f and

ω_t. The unit of ω_t/2π is Hz, and the unit of ω_f/2π is cycles/Hz.

As mentioned before, a big drawback of the Gabor frontend is the extremely large
number of features typically computed with this approach. Feature selection is usually
conducted by a Feature Finding Neural Network [24]. In addition to the obvious issue of
computational time, another "pitfall" is that feature selection may result in an optimal set
only for the database used during this selection. The proposed frontend in this work does
not have these issues, since the 2-D cosine basis vectors compactly and efficiently encode
both the spectral envelope as well as the spectral trajectory with appropriate resolution,
thus yielding a relatively small number of features for each block. However, it is feasible
to modify the proposed frontend to account for the directionality of spectral-temporal
patterns in a similar but not totally identical way as the Gabor filterbank (the modified
features using cosine basis vectors are not as "localized" as the Gabor features). In our
prior work [35], this is achieved by the idea of rotating the 2-D cosine basis vectors by
various angles.

3.3. Implementation

The 2-D integral in Eq. (10) can be implemented in various ways, depending on the order
of the two 1-D integrations. All the continuous integrations are carried out by vector
inner product between basis vectors and the sampled time-frequency plane. First, if the
dependence on f is omitted in the time warping, i.e. uniform time warping for all
frequency components, integrating by any order (first over f, and then over t, or the
reverse) are equivalent. Conventionally, frequency integration is performed first, which
generates a set of static features called Discrete Cosine Transform Coefficients (DCTCs):

𝐷𝐷𝐶𝐶𝐷𝐷𝐶𝐶(𝑖𝑖) = ∫ 𝐹𝐹(𝑋𝑋(𝑡𝑡,𝑓𝑓)) ∙ 𝜑𝜑𝑖𝑖(𝑓𝑓)𝑑𝑑𝑓𝑓 1
𝑓𝑓=0 (17)

Approved for Public Release; Distribution Unlimited.
15

where 𝜑𝜑𝑖𝑖(𝑓𝑓) is the ith static basis vector, as defined in Eq. (11). Then, the trajectory of
these DCTCs is encoded by the integration over time, yielding a set of Discrete Cosine
Series Coefficients (DCSCs), which are also referred to as dynamic features:

𝐷𝐷𝐶𝐶𝐷𝐷𝐶𝐶(𝑖𝑖, 𝑗𝑗) = ∫ 𝐷𝐷𝐶𝐶𝐷𝐷𝐶𝐶(𝑖𝑖)
1
2�

t=−1 2�
∙ 𝜓𝜓𝑗𝑗(𝑡𝑡)𝑑𝑑𝑡𝑡 (18)

where 𝜓𝜓𝑗𝑗(𝑡𝑡) is the jth dynamic basis vector, as defined in Eq. (12) with the dependence
on f being removed. These DCSCs features are then input to the recognizer. The diagram
of this implementation was plotted in Figure 2(b). Figure 8 depicts the first three DCTC
and DCSC basis vectors, using a Mel-shape and a Kaiser window of 𝛽𝛽 = 5 for frequency
and time warping respectively. The zeroth terms represent the envelope of the basis
vectors, which also define the spectral/temporal resolution.

Figure 8: The first 3 DCTC (left-a) and DCSC (right-b) basis vectors. A Mel-shape and a Kaiser window are

used for frequency and time warping respectively.

Unlike some other spectral-temporal modulation frontends, such as RASTA [36], TRAPS
[37], as well as the Gabor method mentioned in the previous section, in which
modulation frequencies are explicitly defined, the DCTC and DCSC basis vectors in the
proposed frontend do not use this concept. However, the DCSC basis vectors achieve
similar effects as non-causal FIR low pass temporal filters, by encoding the temporal
evolution of integrated spectral dynamics. Similarly, the DCTCs can also be viewed as
outputs of spectral low pass filtering. Based on this idea, parameters in the DCTC/DCSC
implementation can be flexibly varied to examine the trade-off of the overall spectral-
temporal resolution. It should be pointed out that the meaning of the "overall" spectral
and temporal resolution being discussed at this point is somewhat different than the
auditory time-frequency resolution built into the warping of the basis vectors, as
presented in previous sections. Here, the overall spectral-temporal resolution, based on
the filtering point of view, can be interpreted as how much detail of the static spectrum
and dynamic trajectory are preserved after the low pass filtering, whereas the time-
frequency resolution represented by the derivatives of the warping (which, as discussed
in previous sections, also poses a trade-off effect) is an intrinsic property of human
hearing. As mentioned, the proposed DCTC/DCS frontend can be tuned to emphasize
either side of the overall spectral or temporal resolution. For increased emphasis on the
spectral information, a long frame length and a relatively large number of DCTCs can be

0 1000 2000 3000 4000 5000 6000 7000 8000
-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Frequency (Hz)

A
m

pl
itu

de

BVF0

BVF1
BVF2

BVF0

BVF1

BVF2

-125 -100 -75 -50 -25 0 25 50 75 100 125
-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

Time (ms)

A
m

pl
itu

de

BVT0

BVT1

BVT2

BVT0

BVT1

BVT2

Approved for Public Release; Distribution Unlimited.
16

employed, with a relatively small number of DCSCs computed from a long block length,
whereas for increased emphasis on the overall time resolution, a short frame length and
frame spacing can be used with a relatively large number of DCSCs computed from a
relatively short block length.

Figure 9: Spectrogram of a speech segment (upper panel) and two rebuilt spectrograms. The bottom left one has
high spectral resolution and low temporal resolution while the bottom right one has low spectral resolution but

high temporal resolution.

Figure 9 graphically illustrates this spectral-temporal trade-off. The top panel depicts the
spectrogram of a speech segment; two rebuilt spectrograms, from DCTC/DCSC terms,
are presented in the bottom panels. The left one has high spectral resolution but low
temporal resolution. It is rebuilt using 16 DCTCs, which are computed with a 25ms frame
length, a 10ms frame space and 4 DCSCs using a block length of 50 frames (500ms). The
one in the right bottom panel has low spectral resolution, but high temporal resolution. It
is computed from 8 DCTCs with a 5ms frame length, spaced by 2ms, and 6 DCSCs with
a block length of 100 frames (200ms). The low frequency components in both rebuilt
spectrograms are represented with relatively higher auditory frequency resolution due to
the Mel-shape warping. Comparing the two rebuilt spectrograms, the left panel preserves
more spectral details in each frame whereas in the right panel, most spectral details are
eliminated. Also, the spectral trajectory in the left panel is smeared, while in the right
panel, the trajectory is rebuilt with much more detail.

In the case where the frequency-dependence remains in the time warping, as originally
proposed in the previous section, the 2-D integration in Eq. (10) can be implemented by
integrating over the time axis first, followed by another integration over frequency.
Figure 2(c) depicts the diagram of this configuration. In this case, Eq. (10) can be
rearranged as:

Approved for Public Release; Distribution Unlimited.
17

𝐹𝐹𝐹𝐹𝐹𝐹𝑡𝑡(𝑖𝑖, 𝑗𝑗) = � 𝑐𝑐𝑐𝑐𝑠𝑠 (𝜋𝜋𝑖𝑖𝑔𝑔(𝑓𝑓))
𝑑𝑑𝑔𝑔(𝑓𝑓)
𝑑𝑑𝑓𝑓

𝑑𝑑𝑓𝑓� 𝐹𝐹(𝑋𝑋(𝑡𝑡,𝑓𝑓))
1
2�

𝑡𝑡=−1 2�

1

𝑓𝑓=0

∙ 𝑐𝑐𝑐𝑐𝑠𝑠 (𝜋𝜋𝑗𝑗ℎ(𝑡𝑡,𝑓𝑓))
𝑑𝑑ℎ(𝑡𝑡,𝑓𝑓)
𝑑𝑑𝑡𝑡

𝑑𝑑𝑡𝑡 (19)

The inner integral defines a set of frequency-dependent DCSCs:

 𝐷𝐷𝐶𝐶𝐷𝐷𝐶𝐶(𝑗𝑗,𝑓𝑓) = ∫ 𝐹𝐹(𝑋𝑋(𝑡𝑡,𝑓𝑓)) ∙ 𝜓𝜓𝑗𝑗(𝑡𝑡,𝑓𝑓)𝑑𝑑𝑡𝑡
1
2�

𝑡𝑡=−1 2�
 (20)

where 𝜓𝜓𝑗𝑗(𝑡𝑡,𝑓𝑓) is the jth DCS basis vector for frequency f, as defined in Eq. (12). Then,
the outer integral over frequency computes the DCTCs, which yields the final features:

𝐹𝐹𝐹𝐹𝐹𝐹𝑡𝑡(𝑖𝑖, 𝑗𝑗) = 𝐷𝐷𝐶𝐶𝐷𝐷𝐶𝐶(𝑖𝑖, 𝑗𝑗) = ∫ 𝐷𝐷𝐶𝐶𝐷𝐷𝐶𝐶(𝑗𝑗,𝑓𝑓) ∙ 𝜑𝜑𝑖𝑖(𝑓𝑓)𝑑𝑑𝑓𝑓1
𝑓𝑓=0 (21)

where 𝜑𝜑𝑖𝑖(𝑓𝑓) is the ith DCTC basis vector as in Eq. (11).

Figure 10: Spectrogram of a signal consisting of a sequence of sinusoids (top), each 125ms long, with a frequency
step size of 500Hz. The middle panel rebuilds this signal using uniform time resolution over all frequencies, and

the bottom panel rebuilds it with it with increasingly higher time resolution as frequency increases.

In Figure 4, the desired time resolution is plotted as a function of f, i.e. DCSCs for low
frequencies are computed using low time resolution while DCSCs for high frequencies
use higher time resolution. Figure 10 graphically compares the effects of uniform time
resolution DCTC/DCS implementation and the frequency-dependent variation. The top
panel shows the original spectrogram of a sequence of sinusoids, each 125ms long, with
adjacent frequencies separated by 500Hz. The middle spectrogram is a rebuilt version of
this signal, using 13 DCTCs and 3 DCSCs with uniform time resolution over all

Approved for Public Release; Distribution Unlimited.
18

frequencies. The time resolution within each block is specified by a Kaiser window with
𝛽𝛽 = 5 . The bottom panel presents another reconstructed spectrogram also using 13
DCTCs and 3 DCSCs, but with variable time resolution over frequency. The Kaiser
window 𝛽𝛽 values are linearly interpolated between 5 and 15 in this case. In the bottom
panel, the time instances at which frequency changes become more clearly marked as
frequency increases, which shows increasing time resolution, but in the middle panel, the
transitions between adjacent sinusoids are uniform at all frequency boundaries.

Figure 11: Unified frontend structure

In our previous work [38], we have experimentally shown that in the "standard" MFCC
frontend (or other auditory filterbank in place of the Mel filterbank), whose diagram is
plotted in Figure 1(a), the nonlinear amplitude scaling can be moved to immediately
before the filterbank without degrading the ASR performance. Then, the filterbank
weights can be combined with the regular cosine basis vectors (i.e. unwarped basis
vectors) by a simple matrix multiplication, which yields the definition of a set of
"unified" static basis vectors. Mathematically, suppose the rows of the matrix W contain
the filterbank channel response, and the rows of 𝑩𝑩𝑩𝑩𝑩𝑩𝒓𝒓𝒓𝒓𝒓𝒓 contain the regular cosine basis
vectors, this unification can be expressed by:

 𝑩𝑩𝑩𝑩𝑩𝑩𝒖𝒖𝒖𝒖𝒖𝒖 = 𝑩𝑩𝑩𝑩𝑩𝑩𝒓𝒓𝒓𝒓𝒓𝒓𝑾𝑾 (22)

In the proposed DCTC/DCS frontend, the unified static basis vectors take the form of a
continuous frequency warping g(f), whereas in the MFCC frontend, this warping is
implemented by a filterbank. The static features are obtained by a weighted sum of the
amplitude-scaled FFT spectrum. Also, we have shown in [38], that the dynamic delta and
higher order terms defined in Eq. (1) can also be computed by a summation of the static
features, weighted by a set of dynamic basis vectors, in which the nth order basis vector
with respect to absolute time is the convolution of all the lower order basis vectors each
with respect to its previous order. Thus, a set of unified dynamic basis vectors 𝑩𝑩𝑩𝑩𝑩𝑩𝒖𝒖𝒖𝒖𝒖𝒖
can be defined. The DCS and the delta differential terms are two specific forms of
𝑩𝑩𝑩𝑩𝑩𝑩𝒖𝒖𝒖𝒖𝒖𝒖. With the unified perspective, the final output features F can be rewritten as:

Approved for Public Release; Distribution Unlimited.
19

𝑩𝑩 = 𝑩𝑩𝑩𝑩𝑩𝑩𝒖𝒖𝒖𝒖𝒖𝒖 ∙ [𝑩𝑩𝑩𝑩𝑩𝑩𝒖𝒖𝒖𝒖𝒖𝒖 ∙ 𝐹𝐹(𝑿𝑿)]𝑇𝑇 (23)

where 𝐹𝐹(𝑿𝑿) is the amplitude-scaled FFT power spectrum. Figure 11 depicts the block
diagram of this unified framework. Eq. (23) reveals the essence of speech features: they
can be viewed as a series of linear transformations of the spectrum scaled by an auditory
nonlinearity, with optional peripheral nonlinearities in between (dashed blocks in the
diagram), such as a family of the sigmoid-shape functions proposed in the work of
[39,40], which can improve the noise robustness of frontends. These linear
transformations are represented by the unified basis vectors. Filterbanks (or other parts)
exert their impact on system quality by shaping the basis vectors implicitly. Thus, the
unified basis vectors determine the properties of a frontend. In this sense, the scheme
gives us a common “yardstick” to analyze and compare frontends which appear to be
different or similar based on the properties of the unified basis vectors.

A high level comparative study can be performed between the standard MFCC frontend
(or other type of filterbanks in place of the Mel filterbank, such as gammatone, or the
trapezoids in PLP) and the proposed DCTC/DCSC frontend by looking at their unified
basis vectors. It's important to notice that though the MFCC frontend and the
DCTC/DCSC frontend are based on different logic, they become mathematically
identical under the unified framework, except the basis vectors are somewhat different.
Figure 12 depicts the first three unified static basis vectors using 26 Mel filters, and the
first three unified dynamic basis vectors representing the zeroth order, and delta and
acceleration terms. The unified static basis vectors resulting from the Mel filterbank are
not as “smooth” as the ones using the continuous Mel-shape warping g(f), which were
plotted in Figure 8(a). This is due to the quantization effect. Also, the unified dynamic
basis vectors of the differential terms are discrete. Comparing the zeroth order in Figure
12(b) and Figure 8(b), the envelope in Figure 8(b) defines a non-uniform time resolution
with the center of the block being emphasized and gradually decreasing towards the ends,
while the delta method uses the central term only. This implies that the discrete delta
dynamics may not account for the time resolution in encoding the spectral trajectory as
well as the proposed DCS basis vectors do.

Figure 12: (Left-a) The first three unified static basis vectors resulting from 26 Mel filters, and (right-b) the first

three unified dynamic basis vectors from the delta method.

0 1000 2000 3000 4000 5000 6000 7000 8000
-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

Frequency (Hz)

A
m

pl
itu

de

BVF0

BVF1
BVF2

BVF0

BVF1BVF2

-40 -30 -20 -10 0 10 20 30 40
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Time (ms)

A
m

pl
itu

de

BVT0

BVT1
BVT2

BVT0

BVT1

BVT2

Approved for Public Release; Distribution Unlimited.
20

3.4. Experimental Evaluation

A. Experimental Configuration
All the discussion in sections 3.2 and 3.3 involved signal processing techniques for
computing spectral features (DCTCs) and spectral evolution features (DCSCs). Although
the signal processing for computing these features was motivated by properties of human
hearing, the proper way to evaluate the effectiveness of these features for ASR, and to
investigate tradeoffs in time and frequency resolution as that affects ASR performance, is
to do a comprehensive suite of ASR tests for various conditions and parameter settings.
All experiments reported in this section are for phone recognition, with monophone
models, using the TIMIT database [41] and HTK ver3.4 HMM recognizer [42]. As is
typically done with this database, the entire database, except for SA sentences, was used
for either training (462 speakers, 8 sentences/speaker, approximately 189 minutes of
training speech) or testing (168 speakers, 8 sentences/speaker, approximately 69 minutes
of testing speech). The sampling rate for TIMIT is 16000 samples/second. As is also
typically recommended for experiments with this data in [43], the original set of 61
labeled phones were collapsed to 48 phones to create 48 phone models, with a further
reduction to 39 phone categories for scoring, as listed in Table 1. Seven groups of similar
phones were formed in the reduction from 48 phones to 39 categories:
{sil,cl,vcl,epi},{el,l},{en,n}.{sh,zh},{ao,aa},{ih,ix},{ah,ax}. Confusions among phones
within each group in testing were not considered errors. The numbers of instances of each
of the 39 phone categories are shown in Figure 13.

Table 1: 61 TIMIT phones, and as reduced to 48 for training, and 39 categories (shaded) for testing.

All HMM acoustic models had three hidden states (plus a non-emitting entry and exit
state). A bigram language model was used based on phone bigram frequencies. As is
virtually always the case for ASR experiments, primary results for each experiment are
given for test data accuracy. However, such results depend not only on the features, but
also on the size of the database and complexity of the recognizer. To better estimate the
potential for each “best” set of feature parameters, two additional experimental results are
given. First, the recognizer is tuned by adding more mixtures, until test accuracy is
maximized. This condition is referred to as “BIG_REC.” Finally, an accuracy result is
given with the original training and test data combined as new training data, but with test
results still based on the original test data set. This result could be viewed as an upper

Approved for Public Release; Distribution Unlimited.
21

bound on the potential of a particular set of features, if a really large training set were
available, implying that the training set represents the test set really well. This result is
referred to as “BIG_DATA.” It is important to note that results for both BIG_REC and
BIG_DATA are obtained with the identical feature settings reported as “best” for each
experiment.

Figure 13: Frequency count of the 39 phone categories in 3696 training and 1344 testing utterances.

In all cases, processing begins with a pre-emphasis using a second order IIR filter:

𝑦𝑦[𝑡𝑡] = 𝑒𝑒[𝑡𝑡] − 0.95𝑒𝑒[𝑡𝑡 − 1] + 0.494𝑦𝑦[𝑡𝑡 − 1] − 0.64𝑦𝑦[𝑡𝑡 − 2] (24)

This second order filter with a peak at approximately 3200Hz is a reasonably good match
to the inverse of an equal-loudness contour. In previous work [44], we have found that
the complex pole pair results in slightly higher ASR accuracy than the first order pre-
emphasis (𝑦𝑦[𝑡𝑡] = 𝑒𝑒[𝑡𝑡] − 0.95𝑒𝑒[𝑡𝑡 − 1]). The next step was to segment the signal into
overlapping frames, using a Kaiser window with β of 6 (similar to a Hamming window).
A 512 point FFT of each frame was computed, and log magnitudes were then computed
over the frequency range of 100Hz to 7000Hz. For each frame, the log magnitudes were
lower limited to 40dB below the largest magnitude of that frame. In previous work [45],
this simple floor was found to improve ASR accuracy slightly for clean speech and more
substantially for noisy speech. Thus each sentence was converted to a matrix of spectral
values, which were then further processed by the DCTC/DCSC methods presented in
Section II & III.

B. Experiment Set 1—DCTC Features Only (Static Features)
For the experiments reported in this section, DCTC features only were computed for each
frame. The number of DCTCs was varied (9 to 25 in steps of 2); frame length was varied
(5, 10, 15, 20, 25, 30, and 40ms); frame space was varied (2 to 20ms); and the type and
degree of frequency warping was varied. Not all combinations of parameter values
were evaluated, due to the very large number of combinations which would be required.
Rather, most of the parameter values were fixed at what appeared to be the best values,
based on pilot experiments, and then a subset of parameter values was varied and
performance evaluated. This process was repeated to both examine effects from changes
in parameter values and to empirically optimize all parameters for best ASR
performance.

0

1

2

3 x 104

oy uh aw th ch y jh g ng
sh

+z
h

ow hh dx ay uw
v b f w ey ae dh d p eh m z k t

ao
+a

a er iy r
el

+l
ah

+a
x s

en
+n

ih
+i

x
si

l+
cl

+v
cl

+e
pi

Number of phoneme instances for training data

0

5000

10000

15000

oy uh aw ch ch jh y ng g
sh

+z
h hh uw ow dx ay v ae ey d b dh w f p k z eh
t m

ao
+a

a er iy r s
el

+l
ah

+a
x

en
+n

ih
+i

x
cl

+e
pi

Number of phoneme instances for testing data

Approved for Public Release; Distribution Unlimited.
22

Figure 14: Phonetic recognition accuracy as function of frame length using 21, 23, and 25 DCTCs

Experiment B1—Overall spectral resolution effect for static features: The goal here was
to examine effects on ASR performance as a function of overall spectral resolution as
determined both by frame length and number of DCTCs used. For these experiments, the
frame space was fixed at 8ms, and Mel frequency warping was used. Using 16 mixture
HMMs, the number of DCTCs was varied from 9 to 25, and the frame length was varied
from 5ms to 40ms. For all combinations tested, ASR accuracy varies from approximately
49% to 57%. However, considering only the range of frame lengths of at least 10ms and
at least 13 DCTCs, the range of ASR accuracies is 53% to 57%. Figure 14 plots ASR
accuracy using 21, 23, and 25 DCTCs, as a function of frame length. It also contains the
plot of accuracy using the MFCC method using 26 filters and 15 DCTCs with frame
space fixed at 8ms. The absolute best accuracy (57.0%) was obtained with 20ms frames
with spectra encoded with 25 DCTCs. However, the increase in performance for more
than 19 DCTCs is minimal, typically less than 0.3%. For the case of static features, frame
lengths ranging from 15ms to 30ms results in fairly similar ASR accuracies (difference of
less than 0.56% for best result for each frame length). The BIG_REC accuracy is 58.2%
(64 mixtures) and BIG_DATA accuracy is 68.5%, thus implying that a high order
recognizer trained with a very large data set, using the best parameter values reported
here, could improve accuracy at most, by approximately 10%.

Experiment B2—Overall time resolution effect for static features: To examine the effect
of the overall time resolution on static speech features, the feature “sampling rate” was
varied by varying the frame spacing from 2ms to 20ms. Since the time resolution also
depends on the frame length used for FFT calculations, these tests were done with four
frame lengths (5, 10, 20, and 30ms). However the number of DCTCs was fixed at 21, and
all other parameters were the same as for experiment B1. Results are shown in Figure 15
as compared to the MFCC method using 26 filters and 21 DCTCs with a frame length of
20ms.

5 10 15 20 25 30 35 40
53

53.5

54

54.5

55

55.5

56

56.5

57

57.5

Frame Length (ms)

Ac
cu

ra
cy

 (%
)

DCTC 21
DCTC 23
DCTC 25
MFCC

Approved for Public Release; Distribution Unlimited.
23

Figure 15: The effect of frame length and frame space on phonetic recognition accuracy for 21 DCTCs

Overall results vary from 34.4% (5ms frames spaced 20ms apart) to 58.2% (10ms frames
spaced 5ms apart). ASR accuracy always degrades as the frame space increases beyond
certain levels for different frame lengths, with the most severe degradation for the shorter
frame length cases. The best performance for each frame length varies over a small range
of 57.3% to 58.6%. Not unexpectedly, the best performance is achieved for shorter frame
spaces and for the shorter frame length cases. The most surprising result is that accuracy
degrades for all frame length cases as the frame space is made very short. Presumably,
oversampling of features in time has a deleterious effect on the HMM recognizer, which
might be related to the very high correlations of features from frame to frame. The overall
best performance of 58.6% was obtained with 10ms frames, spaced 5ms apart. The
BIG_REC accuracy is 60.0% (64 mixtures) and BIG_DATA accuracy is 69.7%, thus
implying that a high order recognizer trained with a very large data set, for feature
conditions reported in this experiment, could improve accuracy by, at most, 11%.

Experiment B3—Effect of frequency warping (auditory frequency resolution) on static
features: To test the effect of frequency warping, which determines the auditory
resolution of frequency selectivity, bilinear frequency warping was used as implemented
in Eq. (7) with a single parameter 𝛼𝛼 to control the degree of warping. Bilinear warping
with a coefficient of 0.45 closely approximates Mel warping and a coefficient in the
range of 0.5 to 0.57, according to the work in [28] can be used to mimic the Bark warping.
Since pilot experiments showed that the effects of frequency warping depend on the
number of DCTC features and recognizer order (i.e., number of HMM mixtures), these
tests were done for two cases: 13 DCTCs and 8 mixture HMMs, 21 DCTCs and 16
mixture HMMs. In these experiments, 10ms frames, spaced 5ms apart were used. Results
are shown in Figure 16, as the warping coefficient varies from 0 (linear warping) to 0.8
(over warped).

The effect of warping is more apparent for the 8 mixture case than for the 16 mixture
case (approximately 3% increase in accuracy from linear warping to the best warping
with a warping factor value around 0.45 for 8 mixture models versus less than 1%
improvement in accuracy for 16 mixture case over the same range of warping). In
general, for the larger number of DCTCs and HMM mixtures, the frequency warping has
a smaller effect, and best performance is achieved with less warping than Mel (bilinear
coefficient of 0.20 versus 0.45). Note that as a control, the normalized version of the

2 4 6 8 10 12 14 16 18 20
30

35

40

45

50

55

60

Frame Space (ms)

Ac
cu

ra
cy

 (%
)

Frame Length=5
Frame Length=10
Frame Length=20
Frame Length=30
MFCC Frame Length=20

Approved for Public Release; Distribution Unlimited.
24

"standard" Mel warping, as proposed by O'Shaughnessy [27] was evaluated, and the
result was within 0.1% of the bilinear warping coefficient of 0.45 case, for both 13
DCTCs (8 mixtures) and 21 DCTCs (16 mixtures).

Figure 16: Phonetic recognition accuracy as function of frequency warping for two cases.

The BIG_REC accuracy is 59.0% (64 mixtures) and BIG_DATA accuracy is 68.4%, thus
implying that a high order recognizer trained with a very large data set, for the best
conditions as reported here, could improve accuracy by at most, approximately 9%.

C. Experiment set 2 —Dynamic features (DCTCs and DCSCs)
In these experiments, a myriad of parameters were varied which were believed to be
significant for the case of features (DCTCs/DCSCs), which represent spectral-temporal
characteristics in a block of frames centered on each frame. These parameters include
number of DCTCs, number of DCSCs, frame length, frame spacing, frequency warping
coefficient, block length, block spacing, and time warping coefficient. Not all
combinations of parameters were tested, due to both the very large number of cases and
low likelihood that some cases would have much effect on ASR accuracy. Based on both
pilot experiments and the results reported above, in most of these experiments (C1, C2,
C3) many of these parameters were either fixed to a single value, or restricted to a short
range. The frequency warping was bilinear with a coefficient of 0.2. The frame length
and frame spacing were fixed at 10ms and 1ms, and the block length was fixed at 251
frames (i.e. 251ms block composed of 125ms left and right context plus center frame).
The block spacing (which serves as feature spacing to the recognizer) used to control the
feature “sampling rate,” the time warping coefficient, as well as the number of
DCTCs/DCSCs were varied to examine their impacts on the spectral-temporal resolution.
The number of HMM mixtures used was 32, due to the large dimensionality of the
feature space.

Experiment C1—39 features (13 DCTCs/3 DCSCs) experiments: As a starting point, and
also since 39 MFCC features are often used for ASR systems, the first set of experiments
was performed with 39 features—13 DCTCs each encoded with 3 DCSCs. First, the
effect of block spacing from 4ms to 12ms on ASR accuracy was evaluated, with results
depicted in Figure 17. The frame length was fixed at 10ms, and bilinear frequency
warping (coefficient of 0.2) was used. The time warping coefficient was 40, using a

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
53

54

55

56

57

58

59

Warping coefficients

Ac
cu

ra
cy

16 Mixtures & 21 DCTCs
8 Mixtures & 13 DCTCs

Approved for Public Release; Distribution Unlimited.
25

Kaiser window. The effect of block space on ASR accuracy is quite small, varying only
1.7% from the lowest accuracy case (12ms block space) to the highest accuracy case
(8ms).

Figure 17: Phonetic recognition accuracy as function of block space, with block length fixed at 251ms.

The BIG_REC accuracy is 71.6% (64 mixtures) and BIG_DATA accuracy is 79.8%, thus
implying that for a high order recognizer trained with a very large data set, accuracy
could improve, at most, by approximately 9%.

Experiment C2—39 features (13 DCTCs, 3 DCSCs), test of time warping effect (auditory
time resolution): In this experiment, the conditions are identical to those for Experiment
C1, except that the block length is effectively adjusted by varying the time warping
coefficient from 5 to 50 in step of 5, thus creating increasing auditory time resolution.
The block spacing is fixed at 8ms, as per the best result in Experiment C1. Results are
depicted in Figure 18. The highest accuracy (70.7%) is obtained with a time warping
coefficient of 40, but the results do not change much as the time warping is varied from
25 to 50.

Figure 18: Phonetic recognition accuracy as function of time warping factor for 251 ms blocks, with a fixed

block spacing of 8ms.

The BIG_REC and BIG_DATA accuracy for this experiment is identical to that of
Experiment C2, implying that for a high order recognizer trained with a very large data
set, accuracy could improve, at most, by approximately 9%.

4 5 6 7 8 9 10 11 12
68.5

69

69.5

70

70.5

71

Block Space (ms)

Ac
cu

ra
cy

 (%
)

5 10 15 20 25 30 35 40 45 50
63

64

65

66

67

68

69

70

71

Time Warp

Ac
cu

ra
cy

 (%
)

Approved for Public Release; Distribution Unlimited.
26

Experiment C3—Overall Spectral-temporal effect: In this experiment, accuracy is
evaluated with combinations of the number of DCTCs (9 to 23, in step of 2) and the
number of DCSCs (3, 4, 5, 6). These combinations reflect the trade-off between the
overall spectral and temporal resolution. Other parameters are fixed as per the “best”
settings from previous experiments (frame length of 10ms, frame space of 1ms, bilinear
frequency warping with coefficient of 0.2, 251ms block length, 8ms block space, and
time warping of 40). Results are shown in Figure 19.

Figure 19: Phonetic recognition accuracy as function of combinations of DCTCs and DCSCs. Other parameters

are fixed at their "optimal" values.

For all conditions tested in this experiment, the absolute best accuracy (72.6%) was
obtained with 15 DCTCs and 5 DCSCs (75 features). As the number of DCTCs increases
beyond about 15, the performance begins to decrease. The number of DCSCs has similar
effect. The BIG_REC accuracy is 73.8% (96 mixtures) and BIG_DATA accuracy is
85.7%, thus implying that a high order recognizer trained with a very large data set, could
improve accuracy by, at most, approximately 13%.

Experiment C4—“Optimal” parameter values for DCTC/DCSC features-large feature set:
Based on the results of Experiment C3, several parameters were further varied. None of
the settings tuned improved recognition accuracy by more than .2% above the results
reported in Experiment C3. For sake of completeness, the “optimum” settings are listed
in Table 2 and accuracies presented in Table 3. Note that “optimum” is only with respect
to settings evaluated. However, given the relative insensitivity of ASR accuracy to the
settings varied, it does seem unlikely that any other settings, within the framework
described in this section, would results in substantially higher ASR accuracy.

3 4 5 6
67

68

69

70

71

72

73

No. of DCS

Ac
cu

ra
cy

 (%
)

DCTC=9
DCTC=11
DCTC=13
DCTC=15
DCTC=17
DCTC=19
DCTC=21
DCTC=23

Approved for Public Release; Distribution Unlimited.
27

Table 2: “Optimum" parameter settings for large feature set

Parameter Value
Frame Length 8 ms
Frame Spacing 1 ms

FFT Length 512
Frame Window Kaiser window, β = 6

Frequency Warping Bilinear, α= 0.2
Number of DCTCs 15
Number of DCSCs 5
Frames per Block 250 frames

Block Spacing 7ms
Time Warping Kaiser window, β = 40

Table 3: “Optimum” 75 feature ASR accuracies

Condition Number of HMM
mixtures

Accuracy (%)

Regular test 32 72.8%
BIG_REC 96 74.0%

BIG_DATA 96 85.2%

Experiment C5—“Optimal” parameter values for DCTC/DCSC features-small feature
set: The best results reported in the previous section were based on a large number of
features (75). Based on the rationale that “optimum” parameter settings for a much
smaller feature set, in this experiment, “optimum” parameter settings were
experimentally determined for a small feature set (27 features). The values are given in
Table 4 and accuracies listed in Table 5. As before, “optimum” is only with respect to
settings evaluated.

Table 4: “Optimum" parameter settings for small feature set

Parameter Value
Frame Length 8 ms
Frame Spacing 1 ms

FFT Length 512
Frame Window Kaiser window, β = 6

Frequency Warping Bilinear, α= 0.45
Number of DCTCs 9
Number of DCSCs 3
Frames per Block 250 frames

Block Spacing 7ms
Time Warping Kaiser window, β = 50

Approved for Public Release; Distribution Unlimited.
28

Table 5: “Optimum” 27 feature ASR accuracies

Condition Number of HMM
mixtures

Accuracy (%)

Regular test 16 69.3%
BIG_REC 64 69.0%

BIG_DATA 64 77.8%

3.5. Conclusion

This section presented a generalized spectral-temporal feature extraction frontend for
representing speech information. The feature set is motivated by the attempt to mimic
two primary properties of human hearing: frequency and time resolution. Based on
frequency warping and frequency-dependent time warping built into modified 2-D cosine
basis vectors, the relative importance of spectral and temporal features could easily be
evaluated, and the trade-off between auditory frequency selectivity and time resolution
was explored. A wide range of ASR experiments was conducted based on the
DCTC/DCSC implementation of the proposed framework to comprehensively study the
spectral-temporal resolution effects of human hearing by tuning the parameters of the
frontend towards either side of the spectral-temporal trade-off, and the "optimum"
combining point was found.

In addition to the DCTC/DCSC method, which uses uniform time warping for all
frequencies, we also implemented the DCSC/DCTC variation, which incorporates
frequency-dependent time warping (experimental results not presented). Specifically, we
used the best warping factors obtained in the DCTC/DCS experiments (i.e. 50 for the 27
feature case and 40 for the 75 feature case) as the baseline, and imposed smaller time
warping for lower frequencies compared to higher frequencies, with averages fixed at the
baseline values. The results only showed a minor effect on the recognition accuracy. This
seems to imply that, although this auditory effect has been verified by neurophysiological
and psychoacoustic studies [30,31,32], it does not play a crucial role, at least for the
phone recognition ASR task evaluated in this section. Based on the ground work of the
proposed frequency-dependent DCSC/DCTC scheme, which provides a tool to explore
the auditory time-frequency trade-off, it still remains an open area for future research to
further study whether this frequency-dependency is important for various ASR tasks, and
if it is, how to more effectively incorporate this theory into an ASR frontend.

Another possible direction in the future work involves the idea of using a non-symmetric
window for the time resolution, i.e. the dh/dt term in the DCS basis vectors. Acoustic
evidence found in [46] shows that the left context is more informative than the right
context in phoneme recognition. This finding implies that a non-symmetric window,
tilted toward the left side of the center point for a time block, thus assigning higher time
resolution to the left context, might be beneficial.

Approved for Public Release; Distribution Unlimited.
29

4. AUTOMATIC WORD TO MORPHEME DECOMPOSER FOR RUSSIAN

4.1. Introduction

The Russian language is a synthetic language. That is, words are constructed from basic
building blocks called morphemes (prefix, root, suffix and inflection) [47]. The same
morphemes can be used to form new and different words. A prefix, root and suffix make
up the stem of the word. For example, the word ‘подходящий,’ translated to
‘appropriate’ shown in Table 6, consists of the prefix ‘под’, root ‘ход’, and suffix ‘ящ’.
These morphemes make up the stem plus the inflection ‘ий’. The stem may contain just
one morpheme, that is the root, or several morphemes, including several prefixes,
suffixes, and roots.

Russian words are on average longer than words of other languages, and exhibit clearer
morphological patterns [2]. As a result, longer fragments of speech must be analyzed
during the speech recognition process.

Table 6: Decomposition of a word into morphemes.

Подходящий
Под ход Ящ ий

Prefix root Suffix inflection
Stem

The Russian vocabulary contains more than 160 thousand lemmas, or words in canonical,
or dictionary, form [49]. Usually, the inflections of the word will change, while the stem
of the word remains the same. As a result, there are a high number of conjugated
(inflected) word forms with different inflections but only one stem. For example, the verb
“делать” or “to do” has over 100 word forms.

Noun inflections identify number (singular or plural) and can be conjugated to six
different cases. Similarly, verb inflections identify gender, number, tense, voice, aspect
etc. Additionally, pronouns, adjectives and numerals can be conjugated with different
inflections [47]. Consequently, the number of unique word forms to be recognized by a
Russian ASR system increases to over 3.7 million [50].

Another peculiarity of Russian is that sentences are not defined by a strict set of
grammatical construction rules because inflections convey all the grammatical meaning
within a sentence [51]. Changing the word order within a sentence does not alter the
meaning. However, depending on text style, some word orderings are preferred
stylistically over others.

The specifics of the Russian language, like longer words, relaxed ordering of words
within a sentence, and the amount of unique words, decrease the performance of
conventional ASR systems that use traditional approaches, such as n-grams, for the
statistical language model [52]. Instead, morpheme level representation of speech is

Approved for Public Release; Distribution Unlimited.
30

proposed for use in automatic speech recognition systems. Use of morphemes decreases
the size of the vocabulary of base lexical units by several orders and increases the speed
of Russian ASR systems as will be explained below.

4.2. Morpheme Database

The database of prefixes, suffixes and inflections was created using the Vocabulary of
Morphemes of the Russian Language by Kuznetsova and few other published dictionaries
[53-56]. The root database was kindly provided by Dr. Kaprov of the St. Petersburg
Institute for Informatics and Automation of Russian Academy of Sciences. The total
number of morphemes to be recognized by the ASR system is a little over 17,000, as
shown in Table 7. This is a drastic reduction from over 3.7 million unique words that
need to be recognized by the Russian ASR system.

Table 7: Morpheme Database.

Prefix 79
Root 16776

Suffix 478
Inflection 49

4.3. Background

There has been much research done on word and stem level Russian ASR systems that
are speaker independent and large vocabulary, such as the trigram statistical model,
developed by IBM [57]. This system was trained by 30,000 utterances. The trigram LM
was trained on 40 million word textual data. A system of Russian phonetic sub-groups
and a set of rules for phonetic transcription of words were developed. This system
attained 5% word error rate (WER) but it was not further developed due to inflective
nature of Russian, its huge vocabulary, and the rigid word ordering of words within a
sentence.

In 1999 – 2001, a collaborative project by Intel and All-Russian Research Institute of
Experimental Physics – Software Technology Laboratory (VNIIEF-STL) resulted in a
large vocabulary Speech Developer Toolkit (STD) [58]. The toolkit involves modules for
vector calculation, construction and adaptation of acoustic models, speech decoding by
finite state and stochastic grammars etc. Currently, VNIIEF-STL is developing a Russian
ASR system with a vocabulary of over one million words.

There is only one commercially available Russian ASR system today. The line of
“Gorynich” systems was developed by “VoiceLock” on the basis of the Dragon system.
This system’s recognition accuracy is ~70%.

Speech Informatics Group of St. Petersburg Institute for Informatics and Automation of
the Russian Academy of Sciences (SPIIRAS) introduced a morpheme level Russian ASR
system in 2005 [59, 63]. The morpheme database of over 17,000 morphemes was
employed which greatly reduced the vocabulary of recognizable lexical units and

Approved for Public Release; Distribution Unlimited.
31

increased the machine processing speed. This system attained 90% recognition accuracy
with a very small vocabulary of 1850 words.

Overall, in the past decade attempts by companies like Intel and IBM to create speaker
independent Russian ASR systems for large vocabularies were unsuccessful. The Russian
ASR system developments presented were either halted for economic reasons, did not
have large vocabularies, or did not yet attain significant WER improvements [47].

The motivation for the present work is to provide an open source tool for a Russian word
to morpheme decomposer. Such a tool is needed as a first step in implementing
morpheme level LM, which could be an important part of an overall Russian ASR
system, due to the structure of Russian, as mentioned above. The intention is to combine
the morpheme level with root and/or word level LMs to improve accuracy for Russian
ASR systems. The goal for the ASR system is speaker independence and large
vocabulary. Its simplicity of implementation and accuracy of decomposition makes it a
great tool to have. The size of the program with the prefix, suffix and inflection databases
is only 44 KB.

In contrast, there are two tools available online for word to morpheme decomposition
[55, 56]. These tools have several issues associated with them: these are commercial
tools, they are not available in source code format, and there are no publications or
documentation associated with them available to the public. Furthermore, the method
presented here is simple, accurate and only uses the databases of prefixes, suffixes and
inflections and not the biggest – root database. The work by Aleksey Karpov of SPIIRAS
uses all four databases and has a very sophisticated algorithm that runs through each
morpheme database several times for every word decomposition [63]. This makes the
program slow and difficult to implement. Similarly, the work by Edward Whittaker of the
University of Cambridge [52, 62] uses only 28 prefixes and sixty suffixes for
decomposition of a word. The prefixes and suffixes were then separated systematically
from the word beginnings and ends, respectively, using a simple string matching
operation. All words were eligible for decomposition and the two morphemes were
separated wherever a match was made, irrespective of whether the match was
linguistically correct or not. Consequently, this resulted in numerous incorrect
decompositions.

4.4. Data preparation

All textual data is preprocessed to fit the requirements of the HTK toolkit [60]. The
format of data is one word per line, all punctuation is removed, and there are no capital
letters and numbers. For example, the final format of the word ‘перестройкa’, or
‘restructuring,’ is shown in Figure 20. Start symbol, <s>, is followed by white space, then
Russian word, followed by a white space and end symbol, </s>. 1500 words of data were
used for initial development and testing, and 20,000 words of data were used for more
thorough testing.

<s> перестройка </s>
Figure 20: Data Format

Approved for Public Release; Distribution Unlimited.
32

A special program was written to convert numbers to words. This is needed since the
convention in Russian (as well as most other languages) is to write numbers as
“numbers” but speak them as words. This program takes care of conjugation of numerals
within a sentence to convey correct grammatical meaning. For example, the numeral “3rd”
or “третий” has 29 word forms.

Consider the conversion example for the number 2,324,015. First, the number is divided
by a million, and the correct conjugated form of the word ‘million’ and digit are
determined. Here, digit.m is accessed to arrive at two or “два,” and million.m to arrive at
a million or “миллиона.” Second, since thousands are in hundreds, the hundred.m
function is accessed. Here, proper word for 300 is “триста.” Then, ten.m is accessed for
20 which is “двадцать.” It is followed by digit.m which results in “четыре.” For
thousands, the proper term is “тысячи” and attained via thousand.m. The last term
fifteen or “пятнадцать” is obtained from teen.m. The final term of the number in words
is “два миллиона триста двадцать четыре тысячи пятнадцать.”

Table 8: Number to word conversion of 2,324,015.

digit.m Два Четыре
ten.m двадцать
hundred.m Триста
teen.m пятнадцать
thousand.m Тысячи

million.m миллиона

4.5. Decomposition algorithm

The first effort made to write a word to morpheme decomposition program was coded in
C++. The word decomposition error (WDE) for this initial code was 5% and there was no
clear way to reduce this WDE. After much deliberation, a completely new approach was
taken, and implemented in MATLAB, due to the much higher level of built in useful
functions for the decomposer. Overall, the new decomposition algorithm, described in
this section, is greatly simplified from the first version (and much more accurate). This
algorithm uses the prefix, suffix, and inflection databases only. The root database of
16776 morphemes is not employed. The textual data processing time is greatly decreased
and, most importantly, the WDE is decreased to less than 0.2%. The accuracy was
examined manually and compared to online server tools [55, 56].

The algorithm first looks for the start symbol and searches for the prefix match. Once the
prefix matches, the morpheme is separated from the rest of the word by a delimiter. Next,
the algorithm looks for the end symbol and searches for both the suffix and inflection
matches. Delimiters are put before and after the suffix once both morphemes are
matched. For each suffix there are only a certain number of inflections possible, which

Approved for Public Release; Distribution Unlimited.
33

can range from zero to 49 inflections. In Table 9, suffix ‘k’ has 32 possible inflections.
All possible inflections for each of 478 suffixes have been compiled.

Table 9: Possible inflections for suffix ‘к’.

Suffix Possible inflections

К

ый, ий, ой, ей, ое, ее, ые, ие,
ого, его, ому, ему, ая, яя,
их, ых, ах, ыми, ими, ами,
ым, им, ом, ем, ою, ею, ую,
юю, у, о, а, и

The decomposition of the word ‘перестройка’ using this algorithm is shown in Table 10.
By first looking at the start symbol, the prefix ‘пере’ is found and a delimiter ‘/’ is placed
after it. Next, the end symbol is found and the suffix ‘к’ plus the 31st ending ‘a’ are
matched, and a delimiter is placed before and after the suffix. The root of the word
“строй” is separated as a result. Morphemes are not labeled during the decomposition
process as this does not aid the morpheme recognition step.

Table 10: The decomposition of word ‘перестройка’.

function morpheme ‘<s> перестройка
</s>’

prefix.m ‘пере’ ‘<s> пере/стройка
</s>’

suffix.m ‘к(a/>)’ ‘<s> пере/строй/к/а
</s>’

An algorithm for automatically parsing speech and breaking it into parts almost never has
100% accuracy. The decomposition algorithm presented here is not an exception to this
unfortunate reality. There are three main exception categories with this algorithm: two-
root words, over-decomposition, and root-suffix overlap.

4.5.1. Exceptions to the Algorithm – Two-root Words

There are over one hundred words composed from two roots connected directly without a
morpheme [case 1], by a suffix [case 2], a combination of suffix and prefix [case 3], or a
combination of two suffixes [case 4], as shown in Table 11. Roots are shown in bold. A
database of two-root words has been compiled and included within a prefix.m function as
a special case handle.

Table 11: Sample of two-root words.

1 Авиа/мотор/н/ый 2 Вод/о/лаз
3 Лес/о/за/готов/к/а 4 Даль/н/е/восточ/н/ый

4.5.2. Exceptions to the Algorithm – Over-decomposition

Approved for Public Release; Distribution Unlimited.
34

In Russian, there are over 470 suffixes. Certain short suffixes may match parts of longer
suffixes, which may result in longer suffixes being incorrectly decomposed if there is a
possible inflection match. Additionally, a long suffix may be decomposed once more by a
shorter suffix which results in over-decomposition. A solution was introduced to avoid
this complication. All suffixes that had matches in parts were put in one line of code, as
shown in Figure 21. Once there is a long suffix match shorter suffixes are not even
considered for decomposition.

oвищ лищ бищ ищ
Figure 21: Longer suffixes come first.

4.5.3. Exceptions to the Algorithm – Root-suffix Overlap

In a few rare instances parts of the root and suffix may overlap, resulting in incorrect
decomposition. A database of root-suffix overlaps has been compiled and included within
the suffix.m function as a special handle. The root ‘голов’ for the Russian word
‘головизна’ overlaps with the suffix ‘овизн,’ resulting in incorrect decomposition. To
avoid this issue the word ‘головизна’ along with another 45 exceptions are included
within the suffix.m function as a special handle cases.

4.6. Experimental results

The program was trained on a textual data of 1500 words obtained from [54] and
achieved 100% accuracy. The WDE of 0.2% was obtained for the test data of
approximately 20,000 words from the Russian open-source YouTube database [61]. The
textual data used for the experiment was of conversational format. The accuracy was
examined manually and compared to online server tools [55, 56].

4.7. Conclusion

Today, only two online server decomposers are available for commercial use. In contrast,
the off-line, compact decomposer is in the public domain, free of charge, and intended to
further the research in the Russian ASR systems area. The WDE rate of the tool is very
low and makes it very reliable. Subsequently, this tool will be used in building a
morpheme level LM, followed by a morpheme level acoustic model. These are intended
to be used along the word level language and acoustic models within the Russian ASR
system to improve on recognition accuracy.

5. NON-UNIFORM FRAME SPACING FOR SPEECH FEATURE
CALCULATIONS

5.1. Introduction

The primary objective of the work reported in this section of the report is to investigate a
number of algorithmic (i.e. automatic) methods for non-uniform time sampling of speech
features and to determine the merits of these methods for improving the accuracy of

Approved for Public Release; Distribution Unlimited.
35

automatic speech recognition. Since the accuracy of an ASR system using fixed frame
spacing depends on what that spacing is, an important constraint used in this work is to
consider only methods for variable frame spacing such that the average frame spacing is
the same for each sentence long utterance. That is, the total number of frames for each
utterance is the same for the fixed spacing approach (the control) and the variable spacing
method.

The general strategy used is to first develop a number of mathematical methods for
controlling the frame spacing, subject to the constraint mentioned above, and then to test
these methods with ASR experiments. All of the experimental testing was done using the
TIMIT acoustic-phonetic database (widely used in the ASR community) and using a
powerful Hidden Markov Model Toolkit for the recognizer. All experimental results are
in terms of phonetic recognition accuracy. Experimental tests were done primarily with
clean speech, and a limited number with white noise added to clean speech.

Three algorithms were considered: L1-Norm frame deletion, Delta Coefficients frame
deletion, and non-uniform regression analysis. Only the L1-Norm frame deletion and
non-uniform regression analysis are considered here, both theoretically and
experimentally.

The idea of non-uniform frame spacing stems from the theory that consonant sounds are
not well represented by a fixed frame spacing. In other words, even though it is typically
assumed that a speech signal is stationary over a time period of approximately 10-20ms,
and adequately modeled using 25ms overlapping frames spaced apart 8ms, literature has
shown that this assumption is not always valid. In order to solve this problem, the
adoption of variable frame spacing seems like a plausible approach. That is, the frame
spacing for consonants (or rapidly varying spectral regions) can be made to be much
shorter than in the vowel regions (slowly varying spectral regions). Thus, as a function of
frame index, the rapidly changing portions of a speech signal are lengthened to increase
their weight in the feature extraction stage of ASR. There are a few ways to approach this
problem. One way is to oversample a speech signal to the point where consonants have
sufficient representation. The problem with this approach is that the computational load
becomes burdensome since the vowel and other slowly changing portions of a speech
signal are unnecessarily over sampled. The chance of insertion errors also increases with
this approach. Insertion errors occur when the ASR system recognizes extra phonemes
that are not really present. Furthermore, as shown later, this oversampling actually can
degrade ASR accuracy.

Another way to approach the problem is to create a deletion criterion that removes frames
of a speech signal that vary slowly over time. The key to such an approach becomes the
chosen deletion criterion. The measure of speech variation is not an exact science since
no two people speak the same way, so difficulty arises in developing a threshold for
frame deletion. In this work, three methods of frame deletion were examined, as
mentioned previously.

Approved for Public Release; Distribution Unlimited.
36

One basic assumption in the theoretical development and experimental work reported in
this thesis is that the average frame rate is unchanged. As demonstrated experimentally
in a later section, HMM ASR system accuracy does depend on the frame spacing, for the
typical fixed frame rate approach. And, interestingly, the overall best frame spacing is
not the shortest one, but some intermediate value of about 8 ms. To avoid the possible
confounding effects of changing the overall frames rate, in our work, we only considered
variable frame rates where the average frame rate, in each sentence, was unchanged from
the control fixed frame rate. The basic approach is to begin by oversampling and then to
delete and /or resample features to match the control fixed frame rate case. This
“resampling” is done using the interp1 function in Matlab, which is a 1-D linear
interpolation procedure. Although the interp1 function was used with the default linear
method, other interpolation methods such as cubic or spline could be implemented.

5.2. L1-Norm Frame Deletion

The method of measuring spectral change using L1-Norm between a frame and the
subsequent frame is explained in this section. Shown below is the spectrogram of a three
second utterance of the sentence “Don’t ask me to carry an oily rag like that,” spoken by
a female speaker.

In this spectrogram there are 1810 frames, each represented by 189 frequency values (100
Hz to 7000 Hz). This spectrogram is essentially a 189x1810 (mxn) matrix of amplitude
values at varying frequency and time locations. This particular spectrogram was
generated with a frame space of 2 ms. The L1-Norm method of frame deletion follows a
fairly simple initial procedure:

1) Each frame (column vector of size m x 1) of the spectrogram is subtracted from the
next frame which gives an m x n-1 matrix.
2) The absolute value of each column is then taken so that all differences are positive
3) All values in each new column are summed, to produce a 1 x n-1 vector. This 1 x n-1
vector is the L1-Norm measure of spectral change. A plot of this vector is figured below
for the corresponding spectrogram

Approved for Public Release; Distribution Unlimited.
37

Figure 22: Original Spectrogram of Example Utterance

Figure 23: Original Spectrogram (Top)/ L1-Norm Frame Deletion Spectral Derivative Vector Plot (Bottom)

Approved for Public Release; Distribution Unlimited.
38

At a glance the variation between the noise and speech portions of the spectrogram is
almost indiscernible. The only acceptable parts of the spectral derivative plot are the
spikes which show the beginning or ending of spoken speech. The rest of the plot does
not do a good job in differentiating speech and non-speech, or consonant and vowel
portions of the spectrogram. To address this problem, the energy of each individual
frame is taken into account, and used as a weight to put more emphasis on spoken speech
and less emphasis on noise. The way this is done is by multiplying the spectral derivative
value by the average amplitude in the current frame. An equation to show how this is
done is given below.

𝐷𝐷(𝑖𝑖) = 𝐷𝐷(𝑖𝑖) ∗ ∑𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹(𝑖𝑖)
max (𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑐𝑐𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹)

 (25)

“Σ” in the equation means sum all values. This equation basically scales the spectral
derivative by the “energy,” loosely speaking, of the current frame. The maximum of the
frequency index is 189, which is the total number of values you would sum for each
Frame(i). The measure of spectral change, after doing this extra step, is given in the
figure below.

Figure 24: Original Spectrogram (Top)/ L1-Norm Spectral Derivative Weighted by Frame Energy

Now, the noisy and slowly changing regions (vowels) have lower measures of spectral
change. This appears to be much better, graphically speaking, than the previous plot of
spectral variation. However, there still remains the problem of selecting a sufficient
threshold criterion. Large swaths of successive frames can be discarded if the threshold

Approved for Public Release; Distribution Unlimited.
39

for deletion is too low. Conversely, an insignificant amount of frames would be removed
if the threshold for deletion is too high. In order to account for this problem, an additional
check was implemented in the algorithm for selecting which frames are to be deleted. A
check is placed on the maximum number of frames “allowed” to be deleted in succession,
regardless of the spectral variation. Experimentation shows that setting this check to four
frames gives the best performance. That is, for the cases tested, removing more than four
frames in succession does more harm than good in the overall algorithm for non-uniform
frame spacing. The last piece of the algorithm that needs to be determined is the actual
threshold criterion. There are two general ways to select a threshold criterion. One way is
a global threshold based on the average spectral variation of a speech database. The other
way is a local threshold based on the variation in each individual utterance. For the
experiments reported here, the latter approach was used. For each individual utterance in
the database, a percentage of the average variation was used as the threshold. Different
percentages were tested to obtain the optimal level (empirically speaking). After the
frames were discarded, one final step was taken to ensure that the time information
remains sufficient in the recognition portion of ASR. That step was to re-interpolate to
the original number of frames. The figure below gives the original spectrogram, the
spectrogram after deleting frames based on a 50% threshold, and the final spectrogram
after re-interpolating to the original 1810 frames.

Figure 25: Original Spectrogram (Top)/ L1-Norm Frame Deletion for 50% Threshold (Middle)/ Reinterpolated

Spectrogram (Bottom)

The next step was to establish the criteria for frame deletion. In addition to choosing a
threshold for deletion based on the average variation of the utterance, a check on the

Approved for Public Release; Distribution Unlimited.
40

number of frames to be deleted in succession was also implemented. As in the L1-Norm
frame deletion algorithm, deletion of more than four frames in succession was found to
be more detrimental than beneficial to the overall recognition performance. The
algorithm thus included a four frame check to prevent this from occurring.

5.3. Non-Uniform Regression Analysis

A recursive approach to reshaping the spectrogram was also developed. To explain this
method, this section of this thesis provides a description and simplified example of the
algorithm used. The ultimate goal remains the same--non-uniformly readjust the frame
space to account for variability in the spectrogram, while keeping the average frame
spacing in each utterance (total number of frames per utterance) fixed. A primary
difference between the method presented in this section, and the methods of the previous
two sections, is that the constraint of keeping the average frame spacing fixed is
fundamentally integrated into this method, rather than requiring a final interpolation, as
needed in the previous two methods. However, the method of this section still critically
depends on a measure of spectral change.

To begin, let us assume we have a spectrogram from which we arbitrarily generate a
function, 𝑑𝑑 , of spectral change. In other words, for rapidly changing portions of the
spectrogram, d values are higher. Since reshaping the spectrogram according to a variable
frame space was the goal, the inverse of 𝑑𝑑 is computed to provide a non-uniform frame
spacing function, 𝑔𝑔. For large variations in the spectrogram, there are small values of 𝑔𝑔
(small frame spacing). This 𝑔𝑔 function can be linearly scaled (ax+b type scaling) to a
specified maximum and minimum value for 𝑔𝑔 (𝑔𝑔𝐹𝐹𝐹𝐹𝐹𝐹 and 𝑔𝑔𝐹𝐹𝑖𝑖𝐹𝐹). Since the intent is to use
g to scale the frame space T, we can also predefine the bounds of the frame space
between 𝐷𝐷𝐹𝐹𝑖𝑖𝐹𝐹 and 𝐷𝐷𝐹𝐹𝐹𝐹𝐹𝐹. The reason for this is to prevent scenarios where 𝑔𝑔 may be so
small or large that it would result in really small or really long frame spaces. Assuming
an original frame space of 2ms, reasonable values for 𝐷𝐷𝐹𝐹𝑖𝑖𝐹𝐹 and 𝐷𝐷𝐹𝐹𝐹𝐹𝐹𝐹 might be 1ms and
3ms respectively. We now need to find parameters that will shape 𝑔𝑔 using the predefined
values for 𝐷𝐷𝐹𝐹𝐹𝐹𝐹𝐹 and 𝐷𝐷𝐹𝐹𝑖𝑖𝐹𝐹 using the system of linear equations below.

𝐷𝐷𝐹𝐹𝐹𝐹𝐹𝐹 = 𝐹𝐹 ∗ 𝑔𝑔𝐹𝐹𝐹𝐹𝐹𝐹 + 𝑏𝑏 (26)
𝐷𝐷𝐹𝐹𝑖𝑖𝐹𝐹 = 𝐹𝐹 ∗ 𝑔𝑔𝐹𝐹𝑖𝑖𝐹𝐹 + 𝑏𝑏 (27)

With two equations and two unknowns, we easily solve for a and b. Now the new frame
space function, 𝑔𝑔𝐹𝐹𝐹𝐹𝑙𝑙, is given by the following equation.

𝑔𝑔𝐹𝐹𝐹𝐹𝑙𝑙 = 𝐹𝐹 ∗ 𝑔𝑔 + 𝑏𝑏 (28)

This is the general idea for reshaping the 𝑔𝑔 function. As an example, let us assume we
have a 𝑔𝑔 function with 100 values generated from 100 frames of a spectrogram. If there
was an initial fixed frame space of 2ms, then the total time length of all frames would be
200ms. Now, we also assume constraints 𝐷𝐷𝐹𝐹𝑖𝑖𝐹𝐹 and 𝐷𝐷𝐹𝐹𝐹𝐹𝐹𝐹 of 1ms and 3ms. The ratio of
𝐷𝐷𝐹𝐹𝐹𝐹𝐹𝐹 to 𝐷𝐷𝐹𝐹𝑖𝑖𝐹𝐹 is called the scaling factor, 𝑐𝑐. Let’s say after calculating the g function we
arrive at three different levels of variation. The levels are small frame space, medium

Approved for Public Release; Distribution Unlimited.
41

frame space, and large frame space (large variation, medium variation and large
variation, respectively). If 25 𝑔𝑔 function values are small, 50 are medium, and 25 are
large, we can use this to recreate the g function knowing that the total time must still add
up to 200ms, and that the values must remain within the 𝐷𝐷𝐹𝐹𝑖𝑖𝐹𝐹 and 𝐷𝐷𝐹𝐹𝐹𝐹𝐹𝐹constraints. We
then recursively hone in on the ideal number of small, medium, and large frames with
different frame space values that retain the parameter constraints. The ultimate goal is to
keep the total sum of frame space values roughly equal to the original sum. In the
algorithm, the original sum would have been scaled to 1 second, so the new sum must
also be roughly equal to 1 second. Ideally it would be exactly 1 second, but for real
signals there is an error. Consequently creating an error threshold would allow for the
algorithm to perform its task of producing the new vector of frame space values. The
error threshold used was 0.002 (0.2%). Plots of the original spectrogram along with the
spectrograms after the algorithm (with scaling factors c=2.5, 5, 7.5, and 10) are shown in
the figures below.

Figure 26: Regression Analysis (Scaling Factor=2.5)

Approved for Public Release; Distribution Unlimited.
42

Figure 27: Regression Analysis (Scaling Factor=5)

Figure 28: Regression Analysis (Scaling Factor=7.5)

Approved for Public Release; Distribution Unlimited.
43

Figure 29: Regression Analysis (Scaling Factor=10)

As can be observed from these figures, the noisy regions seem to slowly disappear
whereas the faster changing and speech portions stretch as the scaling factor increases.
However, upon closer examination, it can be seen that that vowel regions also stretch due
to the fact that they change faster than the noisy and silent regions. This is one major
drawback to the regression analysis algorithm, because ideally we would want the vowel
regions to shrink just as much as the noisy and silent regions. Because of this drawback,
the current algorithm for regression analysis does not give a reasonable performance.
Future changes to the algorithm may fix this drawback and consequently lead to an
improved recognition performance.

5.4. Experiments and Results

The non-uniform frame spacing was tested with phonetic recognition experiments using
the TIMIT database. Thirty nine features were extracted using the DCTC/DCSC feature
extraction method (13 DCTCs and 3 DCSCs). Speech was sampled at 16 kHz. A frame
size of 8ms with an initial frame space of 2ms was used to generate the spectrograms in
all experiments unless otherwise stated. A Kaiser window with 𝛽𝛽 = 6 was used as a
window for each speech frame. As previously stated, the DCTC warping factor, 𝛼𝛼, was
set at 0.15 for all experiments. For the HMM phase, a 3 state model with 16 mixtures was
used.

The algorithms for frame deletion were used in experiments with varying threshold
factors, C. The threshold factor C represents a percentage of the average rate of spectral
variation. If the spectral variation at any point in the spectrogram is greater than the
threshold factor, then the corresponding frames are kept. If not, the frames are discarded.

Approved for Public Release; Distribution Unlimited.
44

An additional condition of the number of frames allowed to be deleted in succession had
to also be met. After the frame deletion algorithm was finished, a linear interpolation was
performed on the spectrogram to return to the original number of frames. Interpolation
was accomplished with the use of the “interp1” function in Matlab. As previously
mentioned, the function was used in the default mode of 1-dimensional linear
interpolation of the input data.

As mentioned in the DCSC section, the block jump is an integer number of frames over
which the DCSC features are calculated. The frame space multiplied by the block jump
yields the block space, or the time shift over which these DCSCs are calculated. A set of
experiments were performed with a 1ms frame space and varying the block jump from 1
to 20. In other words, a block space from 1-20 ms was tested, which is an effective frame
space from 1-20 ms, from the point of view of the HMM recognizer. It is important to
note that the HMM was only presented a feature matrix, and was given the time spacing
in ms between successive columns of the matrix, and considered this to be the frame
spacing. The initial frame spacing used in the first step of spectral processing is
essentially irrelevant to the HMM. Thus, in the majority of experiments reported in this
thesis, the initial frame spacing was 2 ms and the block spacing was 4 frames, so the
effective frame spacing (or block spacing) was 8 ms.

The purpose of the experiment reported here is to show that varying the frame spacing
(from the viewpoint of the HMM), or block spacing, (from the viewpoint of our front end
analysis program) does indeed have an effect on the recognition performance. It is
important to note that the smallest possible frame space (more frames) is not necessarily
the best. Consequently, selecting “good” frames becomes all the more important. Non-
uniform frame spacing was not performed in these initial phonetic recognition
experiments. The results are shown in the table below.

Approved for Public Release; Distribution Unlimited.
45

Table 12: Accuracy vs Block Spacing (ms)

Block space (ms) Accuracy
(%)

1 63.16
2 63.16
3 67.09
4 68.54
5 69.44
6 69.65
7 69.82
8 69.7
9 69.26
10 69.34
11 68.71
12 68.05
13 67.5
14 66.26
15 64.98
16 63.65
17 61.98
18 60.35
19 58.15
20 55.98

Figure 30: Plot of Accuracy (%) vs. Block Space (control—in ms)

0 2 4 6 8 10 12 14 16 18 20
55

60

65

70

Block Spacing (ms)

P
er

fo
rm

an
ce

 (%
)

Varying Block Spacing

Approved for Public Release; Distribution Unlimited.
46

5.4.1. L1-Norm Deletion Experiments and Results

The baseline accuracy for phonetic recognition was 68.17%. It should be noted that this
baseline accuracy is not listed in the previous table because the log energy was not
included in the generated features. The baseline performance was generated without the
use of a deletion algorithm. A table comparing performance values of varying threshold
factors, C, is given below for the L1-Norm deletion algorithm. Recall that C is the
fraction of the overall rate of spectral variation of a particular utterance.

Table 13: L1-Norm Frame Deletion Accuracy vs Threshold Factor

Threshold Factor (C) Accuracy (%)
0.05 68.28
0.075 68.51
0.1 68.4
0.15 68.27
0.2 68.22
0.3 66.15

From approximately 5% to 20%, an improvement over the baseline is observed, with the
best performance at 7.5%. In other words, if frames that change faster than 7.5% of the
average spectral variation are kept, then a small performance boost is observed.

An additional experiment using the L1-Norm frame deletion algorithm was performed on
the feature matrix instead of the spectral values. In other words, instead of using the
spectrogram as the focal point for measuring spectral variation, the DCTC feature matrix
was used. An initial frame space of 4ms (block space 8 ms) was used. The results of this
experiment are shown in the table below. (Baseline = 68.17%)

Table 14: L1-Norm Frame Deletion Accuracy of Feature Matrix vs Threshold Factor

Threshold Factor (C) Accuracy (%)
0.1 68.24
0.125 68.24
0.15 68.27
0.2 68.30
0.25 68.39
0.3 68.16
0.4 67.87
0.5 67.93
0.6 67.71
0.7 67.6

The results suggest that reshaping the feature matrix did not benefit performance to any
significant degree. It should be clarified that further testing should be done as this was not
one of the original goals of this work, and thus only tested on a small scale.

Approved for Public Release; Distribution Unlimited.
47

5.4.2. Regression Analysis Experiments and Results

The results for the Regression Analysis experiments are given in this section. As shown
in previous figures, varying the scaling factor, c, causes the spectrogram to change. A
higher value for c yields a much more warped spectrogram relative to the original. The
table below gives four different scaling factors (2.5, 5, 7.5 and 10) and the corresponding
performances.

Table 15: Regression Analysis Accuracy vs Scaling Factor

Scaling Factor Accuracy (%)
2.5 67.98
5 67.54
7.5 66.73
10 66.05

Recall the baseline of 68.17%. Although there is no boost in performance, it must be
noted that greatly changing the spectrogram, in the form of a very high scaling factor,
does not degrade the overall performance significantly. This means that a large amount of
frames can be deleted without much degradation to the performance.

In the experiments for the Regression Analysis algorithm, as explained in section 5.3, the
results were not as good as those obtained with the L1-Norm experiments. However,
these experiments do add credence to the notion of non-uniform frame spacing. It shows
that a proportion of frames can be non-uniformly spaced while still maintaining roughly
the same effective performance.

Experiments with noisy speech (20dB SNR) were also conducted. The results
demonstrate that for noisy speech, an even higher threshold factor can be used in the
frame deletion algorithms compared to clean speech (80dB SNR). In other words, more
frames can be deleted without a big degradation to the baseline performance of noisy
speech. As previously expressed in section 2.6, non-uniform frame spacing has somewhat
of a superior effect, relative to clean speech, when it comes to the amount of frames that
are “allowed” to be deleted before there is any significant effect on the recognition
performance. However, there were no significant improvements in the performance over
the baseline. Further testing with a better measure of spectral derivative would be
necessary to show recognition performance improvements.

5.5. Conclusions and Future Work

The results of this research demonstrate that there is potential for improvement in the area
of non-uniform frame spacing in ASR. Although many methods have already been tested,
there are still many more ways to approach non-uniform frame spacing. Particularly, the
measure of spectral change is a fundamental topic that must be “solved.” There are
many ways to measure the spectral change of a speech signal. L1-Norm distance, delta
coefficients and entropy are among these measures of spectral change. Additionally, the

Approved for Public Release; Distribution Unlimited.
48

criteria for frame selection in terms of a threshold value are also modular which opens up
further possibilities for testing.

6. A TOOLBOX FOR A COMPLETE AUTOMATIC SPEECH RECOGNITION
STSTEM

6.1. Overview

This toolbox constructs a complete ASR system. This toolbox is coupled with the forced
alignment tool package, which has a separate manual. The forced alignment tool package
is used to find the correct phonetic pronunciation transcriptions for a large dataset. To use
the ASR toolbox, the basic assumption is that the correct phonetic transcriptions have
been made available, either by running the forced alignment toolbox, or by manual
labeling. The examples and steps in this tutorial assume that the phonetic transcriptions
are created by the forced alignment toolbox. So, please run the forced alignment toolbox
for the training database before implementing the examples in this tutorial. However, for
other database where the transcriptions (in HTK MLF format) are already available, such
as the Youtube database, it is also very easy to use this ASR toolbox without any need to
do forced alignment beforehand. We will also briefly talk about this point in the training
step. In this tutorial, our task is to build a system for Mandarin Chinese character level
ASR using the toolbox. The steps involved in this task are:

1. Feature extraction for both training and test data.
2. Training monophones.
3. Training triphones.
4. Training a language model.
5. Decoding

The feature extraction step is exactly the same as in the forced alignment step, and the
monophone training step has only a slight difference. Therefore, these two steps are only
briefly explained. We focus mainly on steps 3 to 5. Additonally, near the end of this
section of the report, a few experimental results are given.

Along with this manual, two folders are provided. In the folder “Tools,” there are all the
tool matlab files and their setup files, and in the folder “files needed,” are all other files
needed. These files are for all steps. As we go along steps 1-2-3-4-5, different files will
be copied to our experiment folder.

Consistent with the tool format in the forced alignment package, each tool in this ASR
toolbox is a matlab m file, and each m name begins with “Tool_...” A setup file is needed
for each tool, and is the only argument that can be passed when the tool is called. The
extension of all the setup files is “.dcf,” and for clarity, the setup file names also begin
with “Tool_...” For example, the setup file for the tool “Tool_Decode.m” is
“Tool_Decode.dcf,” and when this tool is called, the format is
Tool_Decode(‘Tool_Decode.dcf’). The setup file for a tool contains all the control

Approved for Public Release; Distribution Unlimited.
49

options and parameters for that tool. The setup file and the matlab file should be placed in
the same experiment folder. Next, steps 1 to 5 are illustrated.

6.2. Feature extraction (Tool_ComputeFeat.m)

6.2.1. Data preparation

As in the forced alignment step, before we run this feature extraction tool, some data
preparation needs to be done. First, create a folder called “data.” Inside this folder, create
a subfolder called “train_wave.” This is the folder where all the training wave files are to
be placed. Copy all the training wave files into this folder. Similarly, create another
folder called “test_wave,” and copy all the test wave files into this folder. Next, go
outside “data” folder, and create a folder called “exp.” This will be the experiment folder.
Then, copy "Tool_ComputeFeat.m" from “Tools” folder into “exp” folder. This matlab
file is the feature extraction tool. Since we want to extract features for both training and
test data, we need to call this tool twice, and each time pass a different setup file. Please
copy “Tool_ComputeFeat_train.dcf” and “Tool_ComputeFeat_test.dcf” from “Tools”
folder into “exp” folder. These are the setup files for extracting training and test features
respectively. In addition, also copy "readhtk.m" file from "files needed" folder into "exp."

A list of all the wave files in “train_wave” and “test_wave” folders are needed for the
feature extraction tool to read in wave files. Since it is assumed that the forced alignment
step has already been run, which also requires the training wave file list in the feature
extraction processing, we can simply create a folder “lists” inside the “exp” folder, and
copy the training wave file list into “lists” folder. Then, rename this list to
“train_wavefile.lst.” The same list used in the forced alignment step is called
“wavefile.lst,” but here, we need to distinguish the training list from the test list.
However, if we do not have this list from previous steps, we can simply create it using a
short program provided in the “files needed” folder called “makelist.m.” Please copy this
file into “exp” folder. The description of how to use this short program was explained in
details in the forced alignment manual, feature extraction step. After running this
program, the folder “lists”, and the wave file list will be generated. The folder name
“lists” and the wave file list name “train_wavefile.lst” can be set in the program.
Similarly, since we do not have the test wave file list yet, we can use “makelist.m” to
create one and put it in “lists” folder also.

For simplicity, these two lists are also provided in “files needed” folder. We can simply
copy them into “lists” folder if we do not want to manually create them.

6.2.2. Run tool

The detailed explanations of each option in the setup file is provided in the forced
alignment manual. First, please refer to the feature extraction step in that manual. The
only difference is that we need to call the tool (Tool_ComputeFeat.m) twice since we
want to extract features for both training and test data. Assuming that you have already

Approved for Public Release; Distribution Unlimited.
50

read the procdure for the feature extraction step in the forced alignment manual, then,
open a new matlab file in the experiment directory (“exp” folder), and write:

copyfile ('cp_MFCC.ini', 'tfront\cp_fea13.ini');
copyfile ('snr_801.trn', 'tfront\tfrontm.dat');
copyfile ('v7\tfrontm.exe', 'tfront\tfrontm.exe');
Tool_ComputeFeat(‘Tool_ComputeFeat_train.dcf’);
Tool_ComputeFeat(‘Tool_ComputeFeat_test.dcf’);

Then, save this new file as “do_main.m.” This is similar to the main function in a C
program, which is responsible for calling different tools in sequence. In our example, we
choose to use the standard MFCC method provided in the tfrontm frontend. A brief
description on how to setup tfrontm frontend is also given in the forced alignment
manual, feature extraction step. Please read the corresponding steps first. The “do_main”
function here assumes that you have already compiled the “tfrontm.m” file, thus, a
“tfrontm.exe” was generated. In the forced alignment step, we used 42 features (39
MFCC features plus pitch), which was specified by “cp_42.ini,” but in this example, we
will use the standard 39 MFCC features without pitch first. So, the corresponding
configuration file changed to “cp_MFCC.ini,” which can be found in “files needed”
folder.

Later on, we will also extract features with pitch (MFCC+pitch) in another experiment,
and compare the performance without pitch features. In that experiment, we will use
“cp_42.ini,” which is also provided in the “files needed” folder. We need to choose
which pitch tracker to use. The option “spare2” in “cp_42.ini” gives 3 methods: 1 for
Yaapt, 2 for Yin, and 3 for Praat, and “spare1” controls all voiced mode or partially
voiced mode in Yaapt. The option “Pitch” needs to be set to 1, in order to enable pitch
tracking. If you want to use Praat pitch tracker, then, in addition to the steps illustrated in
the forced alignment manual, tfrontm frontend steps, you also need to copy “praatcon”
and “pitch.praat” files from “files needed” folder to “exp” folder. You can choose all
voiced mode or voiced/unvoiced mode in “pitch.praat” file by removing or adding the #
sign (which means to comment out the corresponding row).

After the feature extraction step, a “train_feat” and a “test_feat” folders will be generated
inside “data” folder, and inside these two folders are the training and test feature files. In
addition, a “train_wavefile.lst” and a “test_wavefile.lst” file will be generated inside
“lists” folder. These are the lists of feature files for training and test data.

6.3. Training monophones (Tool_trainMono2.m)

This tool is for monophone training. Its setup file is “Tool_trainMono2.dcf.” The training
stage is almost the same as the same tool in the forced alignment step (Tool_trainFA.m).
However, there are two major differences. One is the transcription preparation step; the
other one is that there is an additional option called “Triphone_later” in the initialization
step. We will mainly focus on these two differences in this section.

Approved for Public Release; Distribution Unlimited.
51

First, please copy the setup file “Tool_trainMono2.dcf” from “Tools” folder to “exp”
folder. Next, create a subfolder “labs” in the “exp” folder. Then, go to the same “labs”
folder in your forced alignment experiment folder, and copy the outcome of the last
round forced alignment to “labs” folder of our current task example. If you have run the
forced alignment step using the provided setup file (Tool_FA.dcf) in the forced alignment
package, the last round outcome should be “aligned_6.mlf.” This is the “perfect” version
of the phonetic transcriptions of the training data. Rename this file to
“trainphone_sp.mlf.” This file is also available in the “files needed” folder, and you can
just copy it from there to “labs” folder for convenience. But it is strongly recommended
that you first run the forced alignment package by yourself to get familiar with similar
tools.

A byproduct of the forced alignment step is a list of all the monophones in the training
data, including the short pause “sp.” We will use this list in our ASR task. Please go to
“lists” folder in your forced alignment experiment folder, and copy the file
“monophone_sp” to the “lists” folder of our ASR task. For convenience, this list can also
be found in “files needed” folder.

Then, let’s open “Tool_trainMono2.dcf” file and focus on the transcription preparation
step. The purpose of this step is to delete the short pause (sp) between words from the
transcription “trainphone_sp.mlf.” The output is simply the transcription without “sp.”
The reason why we need both the transcription with and without “sp” is that the “sp”
model is a short pause between every two words, so, this model is a one-state model,
whose parameters are copied from and tied to the central state of the silence (sil) model,
which is a 3-state model. To do this, at the beginning of training, a phone set of low
mixture models (usually 1 mixture) will be trained using the transcription without “sp,”
and then, the “sp” model will be introduced by copying the central state of the silence
model. After this point, we will use the transcription with “sp” to keep training the
models. The forced alignment transcription contains the “sp” model. So, at the beginning
of training, we need to delete it from the transcription.

The followings are the options to delete “sp”.
Trans_prep: y means to turn on transcription preparation; n means to turn it off.
PhoneMLF_sp: this is the path of the transcription with “sp.” It is the input of this step. In
our setup file, the path is labs\trainphone_sp.mlf.
Conf_deleteSP: this is the path of the configuration file for the underlying HTK tool
(HLEd) to conduct this deletion. In our example, please copy the file “deleteSP.led” from
“files needed” folder to “toolconfs” folder. You should have already created the
“toolconfs” folder inside “exp” folder in the feature extraction step if you choose to use
HTK_MFCC or HTK_PLP frontend, as explained in details in the forced alignment
manual, feature extraction section. “toolconfs” folder is where we put all the
configuration files of the underlying HTK tools. However, since in our example, we’ve
chosen to use the tfrontm MFCC frontend, which is not controlled by HTK, you may
have not created this folder. So, please create “toolconfs” folder first if that’s the case.

Approved for Public Release; Distribution Unlimited.
52

PhoneMLF_nosp: this is the path for the output transcription without “sp.” In our
example, it is set to “labs\trainphone_nosp.mlf.” So, a MLF file “trainphone_nosp.mlf”
will be generated in the folder “labs.”
PhoneList_nosp: this is the path for the output phone list without “sp.” In our example, it
is set to “lists\monophone_nosp.” This list, along with the transcription, will be used to
train the phone set without “sp.”

Notice that the operations in the transcription preparation step are based on the
assumption that the phonetic transcription with “sp” is generated by the forced alignment
package. However, in some cases, the transcription is already available in MLF format,
such as the Youtube database, and it is possible that there is even no “sp” in the
transcription. In this case, there is no need to delete any “sp.” However, we still need a
list of all the phones encountered in the transcription. So, we can follow the following
steps:
a. Set “Trans_prep” to y, since we still need to generate the phone list.
b. Set “PhoneMLF_sp” to the path of your phonetic MLF file. Note that do not try to
change the parameter name “PhoneMLF_sp,” because otherwise, the code of the tool
will also need to be changed. Though the parameter name is “PhoneMLF_sp,” that is
only for clarity. You need to be aware that in this case, this is just your phonetic
transcription MLF path.
c. For “Conf_deleteSP,” you can still leave the configuration file path
“toolconfs\deleteSP.led” here. Since there is actually no “sp” in the transcription, the
underlying HTK tool (HLEd) won’t do anything though the command in the file
“deleteSP.led” (DE sp) means to delete “sp” from the transcription. The other way is to
make the file “deleteSP.led” an empty file.
d. For the output file parameter “PhoneMLF_nosp,” this is exactly the same as the input
file parameter “PhoneMLF_sp” because there is no “sp” involved. Suppose your input
MLF file name is “trainphone.mlf,” you can make the output file name
“trainphone1.mlf,” but they are exactly the same files.
e. “PhoneList_nosp,” in this case, is the list of monophones in the transcription, and is
what we really want. You can specify the file path as you want here.

This is how the transcription preparation step generalizes to the case where the MLF is
not obtained from the forced alignment. In the training stage, there are a couple of other
places that require inputs of the MLF transcription or phone list, both with and without
“sp.” So, we can simply provide the same file for the “sp” version and “non-sp” version.
For example, in the embedded training stage, we can set the entries “hmmList_nosp” and
“hmmList_sp” both to the path of our sole HMM list. In addition, remember to set the
entry “fix_sil” to n, because we do not introduce the “sp” model in this case. The
meaning of “fix_sil”, as well as how the “sp” model is created, and how the silence
model is fixed, are described in details in the forced alignment manual. Please refer to
“Tool_trainFA” section for details.

The transcription preparation in this training tool assumes that a MLF format
transcription is already available, such as the “trainphone_sp.mlf” file in our example,
and any editing should be made based on this MLF file. However, it is often the case that

Approved for Public Release; Distribution Unlimited.
53

the initial transcription is in its “raw” format, not MLF format. The “raw” format may
take on many possible patterns. For example, in TIMIT database, there is one phonetic
transcription for each wave file, and the transcription has time markers for each phone.
The reason why we start from a MLF is that it is very difficult to use the same piece of
code to convert different raw formats into a MLF format. The code to make this
conversion may vary, depending on the specific raw format, and it also makes the tool
setup file very cumbersome with so many options for different variations. So, we have to
assume that a user has already got this MLF format of transcription. It is recommended
that you go through the tool “HLEd” in HTKbook, section 17.10 to learn how to make
this MLF file. An example for TIMIT database is as follows:

In the matlab command window, type in:
arg = sprintf('-G TIMIT -i %s -l * -n %s -S %s %s', 'trainphone.mlf',
'hmmList','trnp_exsa.lst','phn2cmu39.led');
system(sprintf('HLEd -A -T 1 %s', arg));

Then, a MLF file “trainphone.mlf,” and a HMM list “hmmList” will be generated in your
current matlab directory. One input is a list “trnp_exsa.lst,” which is a list of all the raw
phonetic transcriptions with one transcription for one wave file. Each file path in this list
is with respect to your current matlab directory. Another input is a configuration file
“phn2cmu39.led,” which is provided in the “files needed” folder. It converts the TIMIT
original phone set to the CMU phone set. A “phn2lab48.led” configuration file is also
provided, which converts the TIMIT original phone set to the 48 phone set. A user can
choose which phone set to be trained. These input files should also be placed in your
current matlab directory. “-G TIMIT” means that the time markers in the raw
transcription files are in TIMIT format, whose unit is sample index. After conversion, the
base unit will change to HTK format, which is 100ns.

With this MLF file as well as the HMM list, there is no need to make any further editing
in the transcription preparation step of the monophone training tool, since the original
phone set has already been converted to the 39 phone set by the commands above. So,
you can simply set “Trans_prep” to n. Whenever the tool requires the MLF or HMM list
in the setup file, either with “sp” or without “sp,” simply pass the same MLF and the
HMM list path to both places.

This ASR toolbox is designed for a large database. The training method for a large
database includes two steps: flat start initialization and embedded training. The concepts
of flat start and embedded training are explained and illustrated in the forced alignment
manual. Both steps do not require time stamps in the phonetic transcriptions. For some
small databases, such as TIMIT, the phonetic transcriptions have time stamps for each
phone. For such a database, the training method also consists of two steps: boost
initialization and embedded training. The boost initialization uses the time markers to cut
out feature segments for each phone, and each phone model is trained by its own feature
segments individually. The underlying HTK tools for the boost initialization are HInit
and HRest. An overview of the boost initialization algorithm can be found in HTKbook,
section 2.3.2. At this point, this ASR toolbox only supports the flat start+embedded

Approved for Public Release; Distribution Unlimited.
54

training mode, and this is also why the monophone training tool is called
“Tool_trainMono2.” A “Tool_trainMono1” will be developed, which only supports the
boost+embedded training mode, which is the typical training method for small databases
whose phonetic transcriptions contain time markers.

A new option “Triphone_later” is added to the initialization step, compared with the
training tool in the forced alignment package. If we want to use monophones to form
triphones in the next step, we should set “Triphone_later” to y. Triphones can only be
formed by 1-mixture monophones. In other words, we can not first train a set of 16-
mixture monophones, and use them to form a set of 16-mixture triphones. We can only
start from 1-mixture triphones, which are built from 1-mixture monophones, and then, the
mixture splitting will be conducted to these 1-mixture triphones to split the mixtures till
the desired order is reached. The triphone mixture splitting sequence is specified in the
triphone training tool (Tool_trainTri.m). So, if we set “Triphone_later” to y, the
monophone mixture splitting sequence will not have any effect. The number of mixtures
given by “numMixture” will be forced to 1, though it is specified as 1;2;4;6;8;12;16 in
the setup file. Also, only the first number of the iteration sequence will be preserved,
though it is set as 3;5;5;6;6;7;7. So, all the monophones will be 1-mixture phones, and 3
iterations will be conducted to train these monophones. Thus, in a word, setting
“Triphone_later” to y in the initialization step guarantees that all monophone models are
1-mixture models. Later on, these 1-mixture models will form triphones. If triphones are
not wanted, we can simply set “Triphone_later” to n. In this case, the mixture splitting
sequence will be performed, and multiple mixture monophones will be generated.

All the other options and parameters in the setup file are the same as those in the
monophone training tool of the forced alignment package. Please read through and
implement section 2, Tool_trainFA in the forced alignment manual. In our task example,
a set of 1-mixuture monophones will be generated in the folder “hmms\fhmm_mono.”

6.4. Training triphones (Tool_trainTri.m)

After we’ve got a set of 1-mixture monophones, triphones will be made from these
monophones. There are two types of triphones: internal word triphones and cross word
triphones. Before we get into the details of the tool, let’s first get to know what they are.
The formation of internal word triphones is bounded by the inter-word short pause “sp”
and the silence (sil). Here is an example of how to convert monophone transcription into
internal word triphone transcription:
Original sentence: sil this sp man sp…
Monophone sequence: sil th ih s sp m ae n sp…
Internal word triphone sequence: sil th+ih th-ih+s ih-s sp m+ae m-ae+n ae-n sp…

In the above example, the monophone sequence is converted to the internal word triphone
sequence. A triphone consists of a central phone, a left phone, and a right phone. For
example, in the triphone “th-ih+s”, “ih” is the central phone, “th” the left phone, and “s”
the right phone. In HTK, we use a “-“to represent the left context, and a “+” to represent
the right context. Note that the word boundary markers “sil” and “sp” are not used to

Approved for Public Release; Distribution Unlimited.
55

form triphones. They block the addition of context at word boundaries, such that some
biphones (or monophones) will also be generated. For this reason, when we talk about
internal word triphones from now on, we will simply call them triphones, but reader
should be aware that the concept of “triphones”, in the internal word case, also includes
biphones or monophones.

The formation of cross word triphones is not subject to the word boundaries. This is why
it is called cross word triphones. Next, let’s look at the same example:

Original sentence: sil this sp man sp…
Monophone sequence: sil th ih s sp m ae n sp…
Cross word triphone sequence: sil sil-th+ih th-ih+s ih-s+m sp s-m+ae m-ae+n ae-n+…

As can be seen from this example, the formation of cross word triphones is not restricted
to “sil” and “sp.” “sil” is regarded as the context of the center phone, whereas in the
internal word style, “sil” can not be a part of any triphones. When building triphones, the
“sp” is “jumped over”, so that monophones from adjacent words are combined into a
triphone, such as “ih-s+m.” However, the “sp” is not totally ignored. It is actually shifted
to the right by one phone. There are different ways to deal with “sil” and “sp” when
making cross word triphones. The method in the above example is adopted by the
RMHTK, which is an example of how to build HTK based systems for the ARPA RM
task. It can be downloaded from http://htk.eng.cam.ac.uk/download.shtml. Another way of
making cross word triphones can be found from www.keithv.com/software/htk/. In our
example, we will use the method in the above example.

After knowing what triphones are, we will get into the procedures of triphone training.
We will start from internal word triphones.

6.4.1. Internal word triphones

Copy “Tool_trainTri.m” from “Tools” folder to “exp” folder, and copy the setup file
“Tool_trainTri_inword.dcf” from “Tools” folder to “exp” folder. You may notice that
there is another setup file “Tool_trainTri_xwd.dcf.” That is the setup file for cross word
triphones. Training internal word and cross word triphones follows the same steps. So,
only one tool (Tool_trainTri.m) covers both cases. Different setup files will be passed to
the tool respectively.

Next, please open “Tool_trainTri_inword.dcf.” We will explain tutorially the theory
behind each step as we go through the setup file.
Trace_on, Clean_up, LogDir: these three terms are the same as in the monophone
training. “Trace_on” enables the progress to be displayed on the screen. “Clean_up”
deletes the old triphone models in each step before new models are generated. “LogDir”
specifies a log directory inside which a progress report “progress_trainTri.log” will be
generated.

Approved for Public Release; Distribution Unlimited.
56

http://htk.eng.cam.ac.uk/download.shtml
http://www.keithv.com/software/htk/

To train internal word triphones, we must first have internal word triphone transcriptions.
In the first example above, we have learnt how to convert monophone transcriptions to
the internal word triphone version in theory. This conversion is implemented by the
transcription preparation step. This step has two inputs and two outputs.

Trans_prep: set this to y enables the conversion, and n turns it off.
PhoneMLF: this is the path of the monophone transcription MLF file, which is an input.
Note that in the setup file, this is set to “labs\trainphone_sp.mlf.” This is the transcription
with “sp” between each two words. To make internal word triphones, there must be a
word boundary marker, such as “sp.”
Conf_mon2tri: this is the path of the configuration file for the underlying HTK tool
(HLEd) to convert monophones to internal word triphones. Please copy the file
“mktri_inword.led” from “files needed” folder to “toolconfs” folder. In
“mktri_inword.led” file, there are two commands: each WB specifies a word boundary
marker, and TC means to expand the monophone transcription to triphone transcription.
TriMLF: this is the output triphone MLF path. We set it to be “labs\traintri_inword.mlf.”
Trilist_ini: this is another output, which is a list of all the triphones in the transcription
TriMLF. Note that this list only covers the triphones in the training data. But many
triphones, which are not in this list, may appear in the test data. To solve this problem, we
will have another full list in a later step. So, at this point, this list will only be used for
triphone initialization, as implied by the name of the term “Trilist_ini.”

After we obtain the internal word triphone transcription, we can begin the training
processing. There are two main steps: initialization and making tied state triphones. We
will describe both steps later. But before we get into the details, there are some global
settings and files needed by both steps.

Train_on: y turns on training; n turns off training.
Feat_List: this is the training feature file list. Both steps will need this list.
Tri_MLF: this is the triphone transcription MLF file generated in the transcription
preparation step. Both steps will need this transcription.
Src_hmmfolder: this is the monophone HMM folder, which is the starting point of
making triphones. Our monophones are stored in “hmms\fhmm_mono.”
Final_hmmfolder: this is the folder to store the final triphone models after initialization
and making tied state triphones. This folder is the end point of training. We will place the
final triphone models in “hmms\fhmmtri_inword.” This directory will be automatically
created.
embdOptStr: this is the pruning threshold sequence of the embedded training, which has
the same meaning as in monophone training.
Conf_embd: this is the configuration file path for the underlying HTK tool (HERest) of
embedded training. There should be a “herest.conf” file already copied to “toolconfs”
folder in the monophone training step.

Next, we come to the initialization step. The initialization of triphones is somewhat
analogous to the flat start initialization of monophones. First, HTK will read in a list of
triphones to be initialized. Then, for all the triphones in this list that have the same central

Approved for Public Release; Distribution Unlimited.
57

phone, HTK will make a copy of the parameters of the central phone (which is a
monophone), and use it as the initial parameters of all these triphones. For example, for
all the triphones of the format *-b+* (this includes *-b+*, *-b, b+*, b), the parameters of
monophone b will be used as the initialization of all triphones of *-b+*. Then, embedded
training will be conducted for a couple of iterations, and these initial parameters will
change correspondingly.

A problem is obvious: the number of triphones is huge. If each triphone requires its own
samples to be trained, then, the parameter estimates will be very poor since many
triphones only appear once or twice. So, in the initialization processing, in addition to the
“clone” operation described above, the transition matrices of all the triphones in the class
-b+ will be tied together. Generally speaking, tying means that one or more HMMs
share the same set of parameters. When reestimating tied parameters, the data which
would have been used for each of the original untied parameters is pooled so that a much
more reliable estimate can be obtained.

Of course, tying could affect performance if performed indiscriminately. Hence, it is
important to only tie parameters which have little effect on discrimination. This is the
case in the initialization where the transition parameters do not vary significantly with
acoustic context but nevertheless need to be estimated accurately. Some triphones will
occur only once or twice and so very poor estimates would be obtained if tying was not
done.

With this background, let’s go into the setup file to see the initialization part.

Init: y turns on the initialization; n turns it off.
Iteration_init: this is how many iteration of embedded training to be conducted after
initialization.

There are three inputs for initialization.

hmmlist_mono: this is the monophone HMM list path. Since the initial parameters of
each triphone is copied from its central phone, we need to pass this monophone list to
HTK to specify which monophones to copy from. Note that in the setup file, this list
includes the “sp” model, because “sp” is also a member in the triphone list, and so it
needs to be carried through all stages.
Trilist_init: this is the triphone HMM list path. This list is generated in the transcription
preparation stage. The triphones in this list are to be initialized.
Conf_init: this is the configuration file path for the underlying HTK tool (HHEd) to copy
parameters as well as tie transition matrices. Please copy the file “tieTrans.hed” from
“files needed” folder to “toolconfs” folder. Let’s look at a command in this configuration
file: TI T_zh {(*-zh+*,zh+*,*-zh).transP}. The command “TI” means to tie a parameter;
{(*-zh+*,zh+*,*-zh).transP} means that the parameter to be tied is the transition matrices
(specified by transP) of all the triphones whose central phone is zh. The “T_zh” is the
macro name of the tied matrix, which means for all the triphones in this class, they will
have an identical transition matrix called “T_zh.” Note that there is no “sil” and “sp” in

Approved for Public Release; Distribution Unlimited.
58

these commands, since “sil” and “sp” have no left or right contexts according to the
internal word rule of forming triphones. But it does not matter if they are in this file; for
example, there is a command TI T_sp {(*-sp+*, sp+*,*-sp).transP}. In this case, a
warning will show up, saying there is nothing to tie for this class, but it won’t hang up the
program.

It is very easy to write a short program to create this configuration file by passing it a
monophone list (without sp and sil), and each monophone will be expanded into a
command of the form “TI…” The content of this configuration file changes with the
monophone list. So, if you have your own phone set in your own task, please write a
program to make this configuration file by yourself.

However, at this point, the configuration file only does the tying job by executing each
“TI” command. It does not include the cloning job, as described above. Actually, what
the tool does is that it will add a row before all the “TI” commands, which is “CL
lists/trilist_ini_inword,” and rename this complete configuration file as “mktri.hed,” and
save it to our experiment folder “exp.” The command “CL” simply means clone. The
initial triphone list “lists\trilist_ini_inword” is specified by the “Trilist_init” entry in the
setup file. Then, the tool will use “mktri.hed” as the complete configuration file to
conduct both cloning and tying.

There are two output entries in the initialization step:

TgtDir_init: this is the directory to save the initialized triphones. A folder
“hmms\hmm3_init_inword” will be automatically created as specified in the setup file.
Stat_embd: this is a statistical file generated by the embedded training. As indicated in
the setup file, 3 iterations of embedded training will be performed after initialization.
After each iteration, a statistical file “toolconfs\hstats” will be generated. The newer one
will overwrite the old one. The last round statistical file will be used in the next step,
which is making tied state triphones.

Next, before we go into the tool implementation of the last step, a theoretical overview is
very helpful for us to understand what this step does.

The outcome of the initialization step is a set of triphones with all triphones with the
same central phone sharing the same transition matrix. However, there are two problems
remaining. First, the data insufficiency problem is still prominent, since only the
transition matrix in each triphone class is tied. When estimating these models, many of
the variances in the output distributions will be floored. Second, the triphones that have
been trained so far are all from training data; but many possible triphones that might
appear in the test data are missing from the training data. To solve these two problems,
the last step in building triphones is to tie states within each triphone set (class) that has
the same central phone, so that data will be shared when estimating the parameters of
each tied state.

Approved for Public Release; Distribution Unlimited.
59

Unlike the initialization step, which ties the transition matrices of all the triphones in the
same class, how to partition the states of all the triphones with the same central phone
into different clusters requires phonetic knowledge. In simple words, states of triphones
with similar co-articulation effect is most likely to be tied together. A common
characteristic of the triphones in the same cluster is that the co-articulatory impact of their
left and right contexts to the central phone is similar across the cluster.

A decision tree based method is used to decide which triphones are to be put in a cluster.
First, a question set is carefully designed according to similar co-articulatory impact of
the left context and right context. Each question is a binary question. Let’s give two
examples of English question set. Here is one example of a left context question:

QS “L_Class-Stop” {p-*,b-*,t-*,d-*,k-*,g-*}
“QS” means that this is a question, and “L_Class-Stop” is the question name. This
question simply asks: is the left phone of the central phone a stop consonant, namely, one
of p, b, t, d, k, g? Recall that HTK uses “-“ to represent the left phone of a central phone.
Here is another example of a right context question:
QS “R_Nasal” {*+m,*+n,*+ng}
This question asks: is the right phone of the central phone a nasal consonant, or namely,
one of m, n, ng? It can be seen that each question represents a group of phones that have
similar impact on the pronunciation of the central phone.

The decision tree is constructed based on these questions. For example, suppose we want
to make clusters of state 2 of all the triphones with a central phone “aw.” Before
clustering, there might be hundreds of triphones in this set. Initially, state 2’s of all the
triphones in this set are pooled at the root of a tree (the tree has not been built yet). Then,
the question set is loaded. Since the answer to each question is binary, by answering a
question, the initial pool will be split into two pools. Splitting any pool into two will
increase the log likelihood of the training data for that state, since it provides twice as
many parameters as the original pool (because each sub-pool has its own Gaussian output
density) to model the same amount of data. After all the questions have been scanned
through, the one question that provides the biggest improvement of the log likelihood of
the training data will be selected as the first branch of the decision tree. This branch gives
the best split of the root node, and two descendent nodes are generated by this splitting.
The first part of the original pool is placed at one descendent node, and the second part is
at the other descendent node. Then, the pool at each descendent node is split again by the
locally optimized question (locally means the question maximizes the improvement of
the likelihood of training data at that local node). Thus, this processing repeats and a
decision tree is built by this top-down sequential optimization process. As the tree keeps
growing, the maximal improvement of the log likelihood of the training data brought by a
splitting at a descendent node gets smaller. When the maximal improvement at any node
falls below a user defined threshold, the construction of the tree stops. It is easy to see
that a smaller threshold makes the splitting process last longer, and thus, makes the tree
bigger. When the process stops, the nodes at the very bottom of the tree, who do not have
any descendants, are called leaf nodes, or senones. The states at each senone are tied
together. From now on, these states will share the same training data, and have identical

Approved for Public Release; Distribution Unlimited.
60

output density parameters. A more detailed explanation of the decision tree based method
which includes a pictorial example can be found in the HTKbook, section 10.5. A basic
paper on this tree-based tying can be found in [77].

There are a couple of points revealed from the descriptions above. First, the design of the
question set is crucial for the quality of the tying. Ideally, the question set would include
every possible context which can influence the acoustic realization of the central phone,
and can include any linguistic or phonetic classification which may be relevant. There is
no harm in creating unnecessary or “meaningless” questions, since only the questions that
give the maximal increase in the log likelihood of the training data will be selected in the
tree construction processing. Second, the user defined stop criteria determines the number
of tied states (leaf nodes). The smaller it is, the more splitting will be conducted, and
therefore, more tied states will be generated. In a triphone system, the number of
triphones is not that important. What matters is the number of tied states, because they
are what get trained. So, this user defined threshold needs to be tuned according to the
amount of data we have.

Finally, another advantage of this decision tree based clustering is that it’s able to
synthesize the triphones which never appear in the training data. In other words, even if a
triphone does not have any samples in the training data, it can still be trained. This is
because after the state tying, there is actually no longer a concept tied to any individual
triphone. The states of each triphone are categorized into different clusters. So, for any
triphone which is not in the training data, each of its states will first find the
corresponding tree, and then descends that tree by answering the questions at each node
until it gets to one of the leaf node. Then, it will use the parameters of this leaf node as its
own estimates for that state.

With this background, let’s focus on the tool to implement these algorithms. Please focus
on the “Tied state triphones” part of the setup file.

Tie: y turns on the state tying; n turns it off. Once it is turned on, the models will be
loaded from “TgtDir_init,” which is the target folder of the initialization step, and the tied
models will be saved in “Final_hmmfolder,” which is the folder to store final HMM
models.
Iteration_tie: this is how many iterations of embedded training will be performed after
making tied state triphones.

Let’s skip the two configuration files specified by “Question” and “TB” for the time
being, and focus on the “Full_list” entry as one of the inputs. As stated in the
background, after the decision trees have been built, unseen triphones in the training data
will be synthesized using the trees. To do this, we need to manually create a “full list”
which contains all possible internal word triphones for our ASR system, so that HTK will
collect those unseen triphones with respect to the training data from this full list. Since
the vocabulary of an ASR system consists of all possible words that can be decoded in
theory, we can easily find all possible internal word triphones by converting the

Approved for Public Release; Distribution Unlimited.
61

monophone pronunciation of each word in the dictionary to its internal word triphone
form, and make a list of it. To make this conversion, please follow the following steps:

a. Create a folder called “dicts” inside “exp” folder, and copy the dictionary file
“dict863_tone_sp1” from “files needed” folder to “dicts” folder. Note that a “sp” is
appended after each pronunciation entry.
b. Copy the configuration file “global.ded” from “files needed” folder to “exp” folder.
c. Make sure that your matlab directory is “exp.” Then, in your command window, type
in this command:
system(sprintf(‘HDMan –b sp –g %s %s %s’,
‘global.ded’,’tridict’,’dicts\dict863_tone_sp1’));

The command “HDMan” is the HTK tool to manipulate a dictionary, and the option “-b
sp” specifies “sp” as the word boundary. Note that the original dictionary to be converted
must be in sorted order; otherwise, “HDMan” won’t work. The dictionary provided is
already in sorted order. Then, a file “tridict” will be generated inside “exp” folder. This is
the internal word triphone dictionary. The monophone pronunciations have been
converted to its internal word triphone format. You may find that the Chinese words all
become numbers. Those numbers are the encoding of the Chinese characters. But this
does not matter because what we want is the triphone pronunciations, not the Chinese
words. Then, you can write a program to get rid of those Chinese words and only
preserve the triphones. Such a matlab program called “remove.m” is provided in “files
needed” folder. Copy this file to “exp” folder, and the words will be eliminated after
running this program. Then, use a text editor to open the output file “tlist,” and replace all
spaces by line breakers (\n) and remove empty lines. However, this list contains
duplicated entries. Please copy the file “tlist” to a Linux system, and open a terminal.
Then, type in the following two commands:

dos2unix tlist
awk ‘!a[$0]++’ tlist>fulllist_inword

Then, a “fulllist_inword” will be generated. Only one entry of each duplicated entries is
preserved. Copy this file back to the “lists” folder inside the “exp” folder. Note that in
HTKbook section 3.3, the tutorial example, there is a “-n fulllist” term in HDMan
command. A “fulllist” will be generated after the conversion of the dictionary. However,
please do not use this method, since this “fulllist” misses some triphones, which will
result in errors in following steps. For your convenience, a “fulllist_inword” is provided
in the “files needed” folder using the recommended method above. This full list comes
from the dictionary “dict863_tone_sp1.” In your own project, you need to make your
own full list if a different dictionary is used.

Full_list: make a full list of all possible internal word triphones from the dictionary, and
specify its file path here.

Now, let’s go back to the two configuration files Question and TB.

Approved for Public Release; Distribution Unlimited.
62

Question: this is the question set for building the decision tree. An example question set
formed by Chinese tonal phones is provided. Please copy the file “Quest.hed” from “files
needed” folder to “toolconfs” folder, and specify the file path here. There is an English
question set. It can be found in HTK samples\RMHTK\lib\quests.hed. The HTK samples
can be downloaded from the official website of HTK.
TB: please copy “TB.hed” file from “files needed” folder to “exp” folder. Let’s look at
one of the TB commands in this file:
TB 2000.0 "zh_s2" {("zh","*-zh+*","zh+*","*-zh").state[2]}
Each TB command constructs a decision tree for a state of a triphone set. In this
command, a decision tree will be built for state 2 of the triphone set with the central
phone “zh.” The procedures of building this tree is described in the background section.
The number 2000 is the user defined stop criteria for the growth of the tree. This number
needs to be tuned according to the amount of training data. In our example, 2000 is the
optimal setting for tonal internal word triphones.

A Perl script “mkclscript” can be found in HTK samples\RMHTK\perl_scripts to
generate this TB file. It is run under Linux. The threshold number as well as a
monophone list excluding “sil” and “sp” are needed as two arguments of the program.

In addition to the full list of all the possible triphones, there are other two inputs:

Stat_embd: this is the statistical file generated by the last round of the embedded training
after the initialization step. This file needs to be loaded at the beginning of the clustering
processing. After the state tying, it becomes useless, and will be overwritten by
embedded training.
Trilist_init: this is the initial triphone list file path. The clustering will be conducted to
each triphone in this list.

In addition to a new set of tied state (also tied transition matrices) triphones stored in the
“Final_hmmfolder,” another two outputs will also be produced:

Trilist_tied & Tree: “Trilist_tied” is the output file path for a list of all compact tied-state
triphones. In our example, it is set to “lists\tiedlist_inword.” “Tree” the path where the
decision trees get saved to. To be specific, before making decision trees, the tool will first
merge the question set “Quest.hed” and the TB file “TB.hed” together, and a new file
“tree.hed” will be generated inside “exp” folder. Then, it writes in the following 3 lines at
the end of “tree.hed.” Then, “tree.hed” will be used as the complete configuration file for
the decision tree construction as well as state clustering.
AU "lists/fulllist_inword"
CO "lists/tiedlist_inword"
ST "toolconfs/trees_inword"

“AU” means to synthesize all the unseen triphones in the full list after trees have been
built. After state tying, it is possible that for some triphones with the same central phone,
their three emitting states all fall into the same leaf node in corresponding trees. Thus,
these triphones become exactly identical (recall that their transition matrices are already

Approved for Public Release; Distribution Unlimited.
63

tied together, thus also the same). The “CO” command finds such triphones and tie them
together, producing a new list of models whose path is designated by “Trilist_tied.” This
final list will be used to load HMMs in the following embedded training and decoding
steps. Finally, the generated decision trees will be saved to the path
“toolconfs\trees_inword.”

Till now, we have completed making 1-mixture triphones. These 1-mixture triphones are
saved in the directory “hmms\fhmmtri_inword” specified by “Final_hmmfolder” entry.
However, if we want to get multiple mixture triphones, we can carry out the mixture
splitting processing, controlled by the last 4 entries in the setup file. The splitting is
directly conducted to the models in the folder “Final_hmmfolder.”

Split: y enables mixture splitting; n disables it.
numMixture & Iteration: these are the mixture splitting sequence as well as the number of
iteration sequence.
numState: this is the number of emitting states.

At this point, the models in the “hmms\fhmmtri_inword” folder become 16-mixture
models, as specified by the mixture splitting sequence. We need to emphasize again that
multiple mixture triphones can ONLY be obtained by splitting mixtures from 1-mixture
triphones. Directly making multiple mixture triphoens from multiple mixture
monophones is not permitted. In fact, when the tool loads monophones before triphone
initialization step, it will first check whether the monophones are 1-mixture. If not, the
tool will give out an error and stop proceeding.

6.4.2. Cross word triphones

The theory of making cross word triphones is the same as that of internal word triphones.
There are two differences. First, the conversion from monophones to cross word
triphones is not subject to the word boundary marker “sil” and “sp.” Second, due to the
first property, the full list in making tied state triphones can not be obtained from the
dictionary. We will only focus on these two differences. All other steps are the same as in
the internal word triphone case.

Please copy the setup file “Tool_trainTri_xwd.dcf” from “Tools” folder to “exp” folder.
This setup has exactly the same format and entries as the setup file for the internal word
triphones. So, it can be called by the tool in the same way:
Tool_trainTri(‘Tool_trainTri_xwd.dcf’);

The first different place is in the transcription preparation step:

Conf_mon2tri: this is the configuration file path for the conversion between monophones
to cross word triphones. Please copy the file “mktri_xwd.led” from “files needed” to
“toolconfs” folder, and specify the file path here. “mktri_xwd.led” makes cross word
triphones from monophones in the same way as in the example above.

Approved for Public Release; Distribution Unlimited.
64

The second different place is in the tied state triphone step:

Full_list: since the cross word triphones can be formed by monophones across adjacent
words. The full list of the system cannot be extracted from the dictionary. We need to
find all possible cross word triphones in the task language in a brute force way, and put
them in the list. Making this list requires linguistic knowledge. Given a list of all
monophones, randomly combining three of them into a triphone is not a good way,
because certain combinations are illegal in a language. These illegal triphones will
become burden of the system since they require more training data, and will never be
used in a recognition network. In a Chinese system, all possible triphones can be found
by the rules of how Initials and Finals form a syllable.

Specifically, the first rule is that a syllable in Chinese is formed by an Initial and a Final.
The Final always goes after the Initial. The pronunciation of a character is specified by a
syllable, and a word is formed by characters. So, when creating triphones, if the middle
phone is an Initial, then, its right context can only be a Final, and its left context can be
either “sil” (if this character is the first character of a sentence) or a Final. Similarly, if
the middle phone is a Final, then, its right context can be any Initial or “sil” (if this
character is the last character of a sentence), and its left context can only be an Initial.
Another rule is that there are only certain Finals which are allowed to append an Initial
when forming a syllable. For example, for the Initial “j,” the Final “ong” is invalid to
form a syllable, but “iong” is a valid Final for “j.” So, knowing the valid Final sets for
each Initial, we can further rule out a lot of invalid triphones.

A full list called “fulllist_xwd” made by these rules is provided in “files needed” folder.
Please copy this file to “lists” folder. This list contains all valid triphones in Chinese
made from the monophones covered by our task. There are one or two monophones not
covered by our task database, but are valid Chinese monophones. So, this full list is not
really 100% complete, but is appropriate for our task.

For a language which does not have too many monophones, such as English, it is fine
(though not recommended) to “brute force” use all possible combinations, regardless of
any linguistic rules. A Perl script can be found in HTK
samples\RMHTK\perl_scripts\full_list.prl, which generates all possible monophones,
biphones, and triphones for a cross word system from a monophone list (the monophone
list should remove sil and sp first). Minor change to the program can be made to output
only those cross word triphones.

All the other entries in the cross word triphone setup file are the same as the internal
word one, except some file or folder names are appended by “_xwd” to distinguish from
the internal word ones. So far, all the acoustic aspects of our ASR system have been
completed.

Approved for Public Release; Distribution Unlimited.
65

6.5. Language modelling (Tool_trainLM.m)

In the previous steps, we have generated a set of acoustic models. In this step, we will
focus on language modelling. The tool for language modelling is “Tool_trainLM.m,” and
its setup file is “Tool_trainLM.dcf.” Please copy these two files from “Tools” folder to
“exp” folder.

Though, in this manual, language modelling is placed in the fourth step, it’s
recommended that you run this tool apart from other steps. Do not connect this step with
others. First, the language model is not likely to change with other steps. We could have
different features, or different acoustic models, but these changes won’t lead to any
changes for the language model. So, it is usually the case in a large vocabulary ASR
system that a language model should be prepared before other steps. Once it has been
created, it does not change with other components. Second, a language model is a
complete system by itself. It can be trained and evaluated isolated from any acoustic
factors. It has its own training data and test data, both in text format. In other words, we
do not need a complete ASR system to either train or tune a language model. So, people
always train and tune up a language model towards different tasks without any acoustic
data, and then put it in the whole system. Third, all language models for an ASR system
comply with a set of standard format (ARPA format). There are various software
specialized on language model analysis, such as SRILM and CMU_Cam_Toolkit. They
provide much more powerful and flexible choices for making a language model than
HTK. So, people always use such language-model-specialized software to generate better
language models, and then connect them with other components of the ASR system in
HTK environment. This connection is enabled by the standard format of language
models.

No matter which software is selected, a background of language modelling is important.
It is too long to give a detailed background in a manual for a complete system. Please
refer to Chapter 14 of HTKbook for fundamental knowledge on language modelling. We
will get into the task description and tool description directly.

In our example, the training data of the language model is a subset of the transcriptions of
the acoustic wave files. The sentences in the wave files are divided into 4 groups
(A,B,C,D). We use all speakers who speak A, B, C, and some speakers who speak D as
the training data for the acoustic model, and use the rest of speakers from D as the test
data. The language model training data is the transcriptions of A, B and C. But we also
add the words in D into the vocabulary of our language model. There are many words in
D that are unseen in A, B, C. These unseen words will still be assigned unigram
probabilities according to the smoothing algorithm, which means in theory, it is at least
possible for them to be correctly decoded.

This tool supports two methods. The first one uses the transcription of the acoustic data to
build a simple bigram model. The second method uses plain text from any sources to
create any n-grams specified by user. Let’s first look at method 1.

Approved for Public Release; Distribution Unlimited.
66

Please open “Tool_trainLM.dcf.” Before getting into method 1, there are 4 global settings
for the tool:

Trace_on: y enables envision of progress on the screen; n turns it off.
Train_on: y turns on LM training; n turns it off.
Convert_on: this step is to convert an ARPA format LM to a lattice format. In the
decoding step, the decoder Hvite works with the lattice format of a language model, not
its ARPA format. For a detailed description what a lattice network is, please refer to
HTKbook section 12.2. The other decoder HDecode works directly with the ARPA
format. So, there is no need to make this conversion is HDecode is to be used in the next
step.
Log: as in other tools, a progress report “progress_trainLM.log” will be generated inside
the folder specified here.

6.5.1. Method 1

Method 1 is a relatively simple method to create a LM. The source data usually comes
from the transcriptions of the wave files, one transcription in one separate file, with one
word in one row. The tool will first convert these “raw” transcriptions into a MLF file,
and then, the LM is built from the MLF file.

One major restriction for this method is that we cannot pass it a predefined vocabulary.
By default, this method uses all the words encountered in the transcriptions. The
vocabulary is the first important step in building a LM. In theory, for those out-of-
vocabulary (OOV) words in the source data, they should be either mapped to an unknown
class, or simply thrown away. For those words in the vocabulary, but not in the source
data, they will also be assigned probability based on various smoothing algorithm. Due to
the restriction of not accepting the vocabulary, we will not use this method in our task.
We will only show the meaning of the setting parameters of this method in the setup file.

Another major restriction for this method is that it only creates bigram models, and the
smoothing algorithm is crude (a simple absolute discounting). Thus, this method is often
used in phoneme recognition experiments, such as TIMIT. However, we still provide it in
the tool as a convenient and quick method. Its settings are as follows. Some parameters
are appended by a “1”. This is only to distinguish this method with method 2.

Method1_on: y turns on this method; n turns it off.
Startword1 & Endword1: internally, when processing each sentence, a startword as
specified here will be prefixed to the sentence. Similarly, an endword will be appended
after each sentence. The startword and endword avoid confusion of counting the last
word a sentence and the first word of the next sentence as a bigram. In our example, we
use “SENT_START” and “SENT_END” as the startword and endword. Note that these
words must be in the dictionary. Make sure they have the following entries:
SENT_START [] sil
SENT_END [] sil

Approved for Public Release; Distribution Unlimited.
67

OptString: this string specifies the unigram floor count and the bigram count threshold. A
straightforward mathematical form of these parameters can be found in HTKbook,
section 17.14.2.
Discount: this is the discount factor in the bigram. Each bigram count will subtract this
factor to make room for the unseen events. Its mathematical form can be found in
HTKbook, section 17.14.2.
datalist1: this is the only input for the LM, which is a list of all the transcription files.
Please copy “LMdata_trs.lst” from “files needed” folder to “lists” folder, and specify the
file path here. Then, create a folder called “train_word_trs” inside “data” folder, and copy
all the transcription files in the list into this folder. The list “LMdata_trs.lst” contains all
transcription files of A, B, C. Since this method cannot account for unseen words, these
words will be totally missing from the bigram generated. So, many words in D (which is
our test data) cannot be decoded correctly.

There are three output settings:

LM_folder1: specify the folder to store the bigram model generated. This folder will be
automatically created.
LM_name1: specify the output bigram model file name (only the file name, not the full
path).
wordlist: as a byproduct, a word list consisting of all the words in the LM training data
will be output. In our example, the file path is “lists\wordlist_abc.” This word list only
contains words from A, B, C. Note that the startword and endword are also in the list.

6.5.2. Method 2

Now, let’s focus on method2. This method is much more sophisticated than method 1. It
supports any n-gram specified by user, and also supports a user-defined vocabulary. All
the OOV words are mapped to a unknown class called !!UNK. Any unseen words (which
means the word is in the vocabulary but not in the training data) will also be assigned
probabilities. So, at least, they can possibly be correctly decoded. From the setup file, it
looks that this method is pretty simple. However, there are many intermediate steps in the
method, which are hidden from the user. It’s recommended that a user should read
through HTKbook section 15.1 to 15.3 to learn these intermediate steps. Now, let’s look
at the parameter settings for this method. For those entries with a “2” appended, the
purpose is to distinguish then from method 1.
First, there are some global settings for this method:

method2_on: y turns on method2; n turns it off.
Startword2 & Endword2: these are the start word and end word of each sentence. In this
method, the source data format is different from that of method 1. Each row has one
sentence. Each sentence starts with the startword, and ends with the endword, as
specified by Startword2 and Endword2. These data can come from anywhere, not
necessarily from the transcriptions. There is actually an important step called “data
preparation” skipped in this manual. A very large amount of cleaning-up needs to be
done in this step. For example, punctuation need to be removed, and digital numbers need

Approved for Public Release; Distribution Unlimited.
68

to be converted to words. If the source data is downloaded from websites, the headers and
hyperlinks are to be removed. In a word, only the pure “language” will be preserved. For
Chinese, the character encoding scheme needs to be unified to GB2312, and sentences
need to be segmented into words.

This tool assumes that this work has been done. In our task, the LM training data is
provided in the file “863data_abc” in the “files needed” folder. Please open it to see the
“clean” format of the data. In our example, the startword and endword are still
“SENT_START” and “SENT_END.” The training data is the transcriptions of A, B and
C. In a large vocabulary task, the LM training data usually comes from various sources of
human life, depending on the recognition task. The size of the training data easily
achieves tens of Gigabytes. For our example task, we will use the transcription data for
simplicity.

LM_order: specify the order of the language model. For example, 2 means a bigram; 3
means a trigram. We will first build a bigram model.
DCtype: this is the type of discounting algorithm. HTK provides two types: TG for Good
Turing method, and ABS for absolute discounting. Please refer to HTKbook Chapter 14
for details of these two algorithms.
cutoffs: this is the cutoff sequence for the language model. Cut-off is used to throw away
those grams who appear infrequently enough. With cut-off, the model size can be greatly
reduced, and more frequently observed shorter-context estimates can be made more
robust. The cutoff sequence is used to specify a sequence of thresholds. A n-gram that
appear more often than its threshold will be preserved when computing the probability
estimate; otherwise, this n-gram entry will be thrown away. For example, if the language
model order is 3 (a trigram), and the cutoff sequence is 1;1, this means all the bigrams
who appear at least two times (greater than 1 time) in the training data will be preserved,
so are the trigrams. The rest of them will be discarded. Note that there is no cutoff for a
1-gram (unigram). All the unigrams will be kept. So, the cutoff sequence is only effective
when LM_order is at least 2, and when that is the case, the length of the cutoff sequence
must equal to LM_order-1, and it is obvious that setting a cutoff factor to 0 means that all
of the corresponding n-grams will be preserved. If the LM_order is set to 1, then, the
cutoff sequence can be set to any length with any number (since it loses effect for a
unigram). In fact, when running this tool, a table will show up on the screen. This table
counts how many n-grams will be left when different cutoffs are set. For example, in the
following table, it says that a cutoff factor 0 for bigram will make 11181 entries, and a
cutoff 1 will have only 1045 entries left. In our example, we set the cutoff to 0, which
means we will preserve all the bigram counts.
cutoff 1-g 2-g
 0 4488 11181
 1 1610 1045
 2 936 351
LM_format: specify the format of the language model. The available choices are text
format and binary format. In a large vocabulary task, the language model is usually very
large. Setting it to “binary” will convert the bigram and any higher order grams to its
binary format, and only leave the unigram part in its text format. Thus, the storage size of

Approved for Public Release; Distribution Unlimited.
69

the LM will be much smaller. Setting this term to “text” will make the whole file in its
text format.
Max_vocab: this term specifies the maximum number of unique words the training data
is allowed to have. If the training text contains more unique words than this number, an
error will be given.
Next, there are two input files:
datalist2: this is the list of all the training data for the language model. Each file in this
list complies with the same format: one sentence in one row, and each sentence starts
with the specified startword, and ends with the endword. Please copy the file
“LMdata_text.lst” from “files needed” folder to “lists” folder, and put the file path here.
Then, create a folder called “LMtext” inside the folder “data,” and copy the training data
file “863data_abc” from “files needed” folder to “LMtext” folder.
vocabulary: this is the vocabulary of the LM. Please copy the file “wordlist_abcd” from
“files needed” folder to “lists” folder. This list is manually extracted from all the
sentences in A, B, C, D. There are many words in group D (which is our recognition
task), which are unseen in the training data (A, B, C). But due to the smoothing
algorithm, these words will be assigned equal probabilities as unigrams, so that they are
still likely to be decoded correctly by the decoder. In many cases, the vocabulary is a
subset of the training data. For example, it might be the top 20,000 most frequent words
in the training data. In this case, those OOV words (out-of-vocabulary words) will be
mapped to a unknown class called !!UNK in the generated LM. If “vocabulary” is set to
“none” (case insensitive), this simply means that no vocabulary is provided. In this case,
all the words encountered in the training data will be counted as in-vocabulary words,
and are used to generated the LM.

Note that the vocabulary provided MUST include the startword and the endword as two
entries. In our example, please notice that SENT_START and SENT_END are in the list
“wordlist_abcd” in addition to those “real” words in the text. However, the vocabulary
must NOT include the entry !!UNK. This is because !!UNK is the unknown class marker
to the system, which will be automatically generated, not an input word, since logically, a
user cannot input an “unknown” word to the system.

There are two output settings:

LM_folder2: this is the folder to store the output LM, which will be automatically
generated if it does not already exist.
LM_name2: this is the output LM file name.

After running this tool, a bigram LM model “bigram2” will be generated inside the
“LMs” folder. Please open this file. It’s interesting to notice that the !!UNK entry appears
in the unigram. Theoretically, it shouldn’t be there, since all the words in the training data
set (A, B, C) are covered by the vocabulary, which is formed by words from A, B, C, D.
So, there should not be any unknown words. In fact, internally, when creating a LM,
HTK will first assign each new word in the training data a number. All the following
operations are based on this mapping. When a vocabulary is passed to HTK, the unknown
class !!UNK will be added to this mapping forcefully, regardless of whether there are

Approved for Public Release; Distribution Unlimited.
70

OOVs or not (this mapping file=vocabulary+!!UNK). So, since there is actually no
!!UNK in the training data, but !!UNK is in the mapping file, it will be regarded as an
unseen word, just as those “real” unseen words, which are in set D, but never appear in
the training data composed of A, B, C. Thus, !!UNK becomes a unigram and is assigned
a probability by the smoothing algorithm.

So, due to this issue, when you know ahead of time that there is no OOV words in the
training data, just set “vocabulary” to “none” rather than leaving it there. Apparently,
setting “vocabulary” to “none” in this case will result in a more accurate LM, since there
will be no nuisance !!UNK, which will affect the estimates of other grams.

As practice, you can change the LM_order and cutoff sequence to create a trigram LM
model, or even higher order.

6.5.3. Converting ARPA bigram model to a lattice network

The final step is to convert the ARPA format LM to the lattice format. In the decoding
step, we will use two decoders respectively. One is Hvite, and the other one is HDecode.
Hvite only works with a word lattice network, not the language model directly. But
HDecode works directly with ARPA LMs (both bigram and trigram). So, this step is to
prepare for Hvite. There is no need to make this conversion if HDecode is to be used.

For a detailed description on what a lattice network is, please refer to HTKbook section
12.2. The conversion from the ARPA format to the lattice format only works for bigram
models. It does not work for any higher order models. Then, the question is: how does the
decoder Hvite work with a trigram model, since trigram models can not be converted to
the lattice format? Later on, you will know that Hvite will first use the bigram lattice
network to do the first round of decoding. Then, another HTK tool HLrescore will be
called to expand the output lattice for each sentence to incorporate the trigram and
rescore each path in this network. In this processing, the ARPA format trigram will be
passed to do the expansion. So, only the bigram model needs to be converted to the lattice
format.

With this background, let’s look at how the tool implements this conversion. First, a basic
point will be made. In our example, as well as the results reported in a later section, we
will not use the LMs generated by HTK. Instead, those results are based on LMs
generated by SRILM (Stanford Research Institute Language Modelling Toolkit), which is
a dedicated toolkit for language modelling. This toolkit provides much more powerful
and flexible options in making LMs than HTK. As mentioned before, because of the
standard ARPA format, we can easily use LMs generated by other tools other than HTK
in the decoder of HTK. Our task is an appropriate example of this kind. The only thing to
do is to convert the ARPA bigram model into its lattice format if Hvite is to be used in
the next step.

So, first turn off “Train_on” and turn on “Convert_on.” Then, please copy the two LM
files “bigram_abc” and “trigram_abc” from “files needed” folder to “LMs” folder. These

Approved for Public Release; Distribution Unlimited.
71

are the bigram and trigram models made by SRILM. Its training data is also the
transcription sets A, B, C, and the vocabulary is also all the words in A, B, C, D. The
smoothing algorithm is Witten Bell, which is not an option in HTK LM tools. Please
open either of these two LMs. It might be noticed that there is no !!UNK in the LM,
whereas in the HTK-based LM, there is. SRILM provides an option to turn off !!UNK.
Let’s look at the setting parameters of the conversion step:

Startword & Endword: again, please specify the startword and endword in the LM to be
converted.

Two input files are needed:

Bigram: this is the bigram file path. In our example, it is set to “LMs\bigram_abc.” Recall
that the conversion only works for bigram models.
wrdlist: a word list is needed. This word list must cover all the words in the LM,
including the startword, endword, and !!UNK (if !!UNK appears in the LM). Please copy
the file “wordlist_abcd_unk” from “files needed” folder to “lists” folder, and specify the
file path here. Compared with the vocabulary file “wordlist_abcd”, a !!UNK entry is
added in the last row. In our task, the LM “bigram_abc” does not have a !!UNK term.
However, it does not matter that the word list has this extra term in this case, because the
only requirement is that the word list needs to fully cover all the words in the LM. Extra
words do not affect anything. However, if the LM “bigram2”, which is the one generated
using method 2 in this tool were to be converted, then, the word list MUST contain
!!UNK since this entry did appear in this LM.

A side point needs to be illustrated. As mentioned in method 2, sometimes, we know
ahead of time that there are no OOV words in the training data. So, in order to avoid a
nuisance !!UNK, we set “vocabulary” to “none.” Since we do not need to provide any
word list in that step, we might forget to make one for the conversion step. Unlike
method 1, method 2 won’t automatically generate a word list for us to use in the
conversion step. So, when method 2 is selected, a warning will be given, reminding the
user that a word list needs to be manually prepared whether a vocabulary is necessary or
not.

There are two output settings:

Network_folder: specify the folder to store the output lattice file.
Network_name: specify the lattice file name.

As specified in the setup file, a folder “Networks” will be automatically generated, inside
which the lattice file “network” will be stored. This file will be used in the Hvite
decoding step.

As practice, please convert “bigram2,” which is the bigram generated by method 2 into
its lattice format. If you do so, you might notice that in the output lattice file, there will be
no !!UNK term, though !!UNK indeed is in the bigram model, as well as in the word list

Approved for Public Release; Distribution Unlimited.
72

of the conversion step. This is because the decoder Hvite requires that all the words in the
lattice network must have at least a pronunciation entry in the dictionary. However, what
should the pronunciation of the !!UNK be? Some people use silence (sil) as its
pronunciation. This solution does make the decoder work. But it does not make sense.
Logically, !!UNK means a class of words not known to the system. They are out of the
vocabulary, which defines all the words capable of being recognized by the system. Then,
what should be the pronunciation of a word unknown to the system? No one actually
knows. So, in this tool, we do not have an entry !!UNK in the pronunciation dictionary,
since the system does not know its pronunciation. But to make Hvite work, we have to
delete !!UNK from the lattice during the conversion. The other decoder HDecode does
not have this problem. It is able to deal with !!UNK in a LM, and it works directly with
the ARPA LM format. Also, there is no need to have the !!UNK entry in the
pronunciation dictionary, which makes logical sense.

6.6. Decoding (Tool_Decode.m)

With the acoustic and language models at hand, we are ready for the final step: decoding.
The tool for the decoding step is “Tool_Decode.m,” and its setup file is
“Tool_Decode.dcf.” Please copy these two files from “Tools” folder to “exp” folder.

This tool provides two decoders: Hvite and HDecode. Hvite is suitable for small and
medium size vocabulary systems, and works better for monophone and internal word
triphones. It becomes progressively inefficient as the size of the vocabulary grows and
cross word triphones are used. HDecode is a dedicated decoder for large vocabulary
systems. It only works with cross word triphones, which is the typical acoustic model
type for any large vocabulary system. HDecode is much more efficient (much lower real
time factor) than Hvite when cross word triphones are used in both decoders.

Please open the setup file "Tool_Decode.dcf." Let's first look at the global settings for
both decoders.

Trace_on: 'y' displays the progress on the screen; 'n' turns it off.
Clean_up: 'y' cleans up the old output MLF file (for both decoders), as well as the output
lattice file (for Hvite) before new ones are generated. 'n' turns it off.
LogDir: a progress report "progress_decode.log" will be generated in this directory. Note
that the percentage accuracy is also written to this report.
Decode_on: 'y' turns on decoding. 'n' turns it off.
Feat_list: this is the feature file list path. It contains all the feature files to be decoded.
Both decoders need this list.
Feat_folder: this is the feature file folder. This entry is only for the use of Hvite. Along
with the decoded MLF file, a lattice network for each feature file will also be generated.
These lattice files will be used in decoding with a trigram (Hvite works directly with a
bigram only. To use a trigram, a lattice network based on the bigram decoding must be
generated first). They are placed in the same folder as the features. So, the tool will copy
these lattices from the feature file folder specified by "Feat_folder" to another folder
called "Lattice_folder" (specified later) . When the trigram decoding is turned on, lattice

Approved for Public Release; Distribution Unlimited.
73

files will be loaded from "Lattice_folder" (the original ones in "Feat_folder" will be
deleted). The other decoder HDecode works directly with a trigram model. So, there is
no need to specify the "Feat_folder" for copying lattices.
Startword & Endword: these are the startword and endword of each sentence in the
language model. They are exactly the same as those specified in the LM generation step.
These sentence start and end tokens need to be specified for both decoders. Note that in
the dictionary, there must be two entries for these words. In our example, they are:
SENT_START [] sil
SENT_END [] sil
Result_folder: this is the folder to store the output MLF file. Note that the percentage
accuracy will be written the progress report "progress_decode.log." The folder specified
in the entry only stores the output MLF file.
Test_trslist: this is a list of all the ground truth transcriptions of the test data for the
computation of the recognition accuracy. Please copy the file "test_wordtrs.lst" from
"files needed" folder to "lists" folder and specify the path here. Then, create a folder
"test_word_trs" inside "data" folder, and copy all the transcriptions of the test data into
this folder. The transcription must be in its raw format: one transcription for one
sentence, and one word in each row. The tool will first convert the raw format to its MLF
format. In the conversion, each Chinese word will be split into characters, since people
compute the character level accuracy in a Chinese ASR system. So, in the MLF file, there
is one Chinese character in one row. If the task language is English, this "splitting" will
lose effect. So, an English word is still an English word. There is no need to specify
which language we are recognizing.

Next, let's look at the first decoder: Hvite

6.6.1. Hvite

Before we get into the settings, there are some general properties and restrictions of this
decoder:
a. Hvite supports decoding with monophone, internal word triphone, and cross word
triphone.
b. Hvite supports decoding with bigram LM directly. The LM must be in its lattice
format.
c. To use a trigram, the output lattice for each feature file is expanded by the trigram, and
each path in the expanded network is rescored. The path with the highest score is selected
as the output. So, the trigram decoding is based on the result of the bigram decoding. The
trigram is in its original ARPA format.
 d. As mentioned in the language model generation part, Hvite does not work with the
unknown word class !!UNK. So, when converting the bigram model to its lattice format
in the language model tool, the !!UNK is deleted.

Now, let's look at the settings for Hvite (in addition to the global settings for both
decoders).
Hvite_on: 'y' turns on Hvite. 'n' turns it off.

Approved for Public Release; Distribution Unlimited.
74

HMM_type: this is the underlying acoustic model type. 'iwd' for internal word triphones;
'xwd' for cross word triphones; 'mono' for monophones. In our example, this is set to
'iwd'.
Dict_hvite: specify the dictionary file path. The word lattice network will be expanded
into the underlying phoneme network by looking up this dictionary. So, the dictionary
must contain all the words in the language model, including the sentence startword and
endword. Please create a folder "dicts" inside "exp" folder, and copy the file
"dict863_tone_sp1" from "files needed" into "dicts" if you have not done so in the
triphone training step, and specify the file path here.
HMM_folder_hvite: this is the directory to load all HMM models. In our example, the
HMMs are stored in "hmms\fhmmtri_inword."
HMM_list_hvite: this is the list of all the HMMs. In our example, it is set to
"lists\tiedlist_inword."
Conf_iwd, Conf_xwd & Conf_mono: these are the configuration files for decoding with
internal word triphones, cross word triphones, and monophones. Please copy the files
"hvite_iwd.conf," "hvite_xwd.conf" and "hvite_mono.conf" from "files needed" folder to
"toolconfs" folder, and specify the paths in the corresponding places. The tool will locate
which file to use according to the "HMM_type" specified above. Note that you do not
need to specify all three files at the same time, because only one HMM_type is used in
each decoding processing. You can leave the other two places anything but empty, such
as 'none.'
HviteOptstring: this string controls related parameters for Hvite. Frequently used ones are
-t, -s, -p, -u, -v. In our example, '-t' is the pruning factor. It greatly affects the speed and
accuracy of the decoder. Larger -t value leads to higher accuracy, but lower speed.
Typical values for -t are between 200 to 250. '-s' is the language model scale factor,
which also has significant impact on the accuracy of the decoder. Normally speaking, its
value is affected by the size of the vocabulary as well as the size of the HMM set. Typical
values for a large vocabulary system are 12-15. Larger size of the vocabulary and HMM
set leads to large value of -s. '-p' is the word insertion penalty factor. Normally, its value
is fixed at 0. You can add -u and -v in the string to see what impact they will have on the
accuracy. For the detailed meaning of these options, please refer to HTKbook section
17.23.

The followings are for bigram decoding.

Bigram_on: 'y' enables decoding with a bigram. 'n' turns it off.
Network: specify the bigram lattice network file path as an input. As described above,
Hvite only works with bigram lattice format, not ARPA format.
Rec_output_bg: specify the file name for the decoded MLF using a bigram. Note that
only specify the file name here, not the full path. This file will be generated in the
directory specified in "Result_folder."
Lattice_folder: specify the folder to store the output lattice for each feature file. These
lattices will be used in the trigram decoding. In our example, it is set to be
"..\data\Lattice." A folder "Lattice" will be automatically created inside "data" folder.
Lattice_list: specify the file path for a list of all the lattices. This is an output. This list
will be used in the trigram decoding.

Approved for Public Release; Distribution Unlimited.
75

The followings are trigram decoding settings:

Trigram_on: 'y' turns on trigram decoding; 'n' turns it off.
Trigram: specify the trigram file path. In our example, it is set to "LMs\trigram_abc." As
described in the language model task, this trigram is built from training data A, B, C. But
all the words in A, B, C, D are put in the vocabulary. Note that this trigram is in ARPA
format, not in lattice format.
Latlist: this is the file path for the list of all the lattices generated in the bigram decoding
step. Each lattice network in this list will be expanded by the trigram, and each path will
be rescored (only the language model score, the acoustic score remain unchanged). The
path with the highest score in a network will be selected as the output sequence for the
trigram decoding.
Conf_rescore: this is the configuration file path for the trigram decoding. This
configuration file will be automatically generated in the path specified.
HLrescore_Optstring: this string has the same meaning as the "HviteOptstring." For a
detailed list of options, please refer to HTKbook section 17.13.
Rec_output_tg: specify the output MLF file name for the trigram decoding. Again, this is
only the file name. The file will be generated inside the folder specified by
"Result_folder."

Next, let's look at the other decoder: HDecode. This decoder is not included in the regular
HTK package. An additional, more restrictive license must be agreed in order to
download HDecode. HDecode can be downloaded from the official website of HTK. This
manual assumes that it has been correctly installed.

Again, let's first look at the general properties and restrictions for this decoder.
a. HDecode is designed for large vocabulary task. It ONLY works with cross word
triphones.
b. HDecode works directly with bigram and trigram models. The LMs are in the ARPA
format.
c. sil and sp models are reserved as silence models. sil must be used as the pronunciation
for the sentence start and sentence end tokens in the dictionary. sp is the short pause
between words. sp is automatically added to the end of all pronunciation variants of each
word in the recognition dictionary. So, each word in the dictionary MUST NOT have a sp
appended.
d. Only the sentence start and end tokens (SENT_START, SENT_END in our example)
are allowed to have sil as their pronunciations. sil can NOT appear anywhere else.
e. In the HMM set, only sil and sp are allowed to be monophones. Others must be cross
word triphones.
f. HDecode works with unknown class !!UNK. So, the LMs are allowed to have !!UNK
entries. !!UNK should not appear in the dictionary.

As stated in the Hvite section, Hvite also works with cross word triphones. However,
Hvite is much less efficient than HDecode, especially for a large vocabulary task. Though
Hvite has very close accuracy as HDecode, HDecode has a much lower real time factor.

Approved for Public Release; Distribution Unlimited.
76

So, HDecode is strongly recommended for large vocabulary tasks with cross word
triphone models.

Now, let's look at the settings for HDecode in the tool (in addition to the global settings
for both decoders).
HDecode_on: 'y' turns on HDecode. 'n' turns it off. Note that HDecode and Hvite can not
be turned on at the same time. Only one decoder is allowed in one decoding processing.
Conf_hdecode: this is the configuration file path for HDecode. This file will be
automatically generated.
HdecodeOptstring: this is the operation string of HDecode. The options in this string have
the same meaning as those in Hvite. Please refer to HTKbook, section 17.6 for details of
all the available options.
Use_bigram: 'y' turns on bigram decoding. 'n' turns it off. Note that HDecode works
directly with bigram and trigram models. So, there is no need to run bigram decoding
first in order to use a trigram model.
Use_trigram: 'y' turns on trigram decoding. 'n' turns it off.
HMM_folder_hd: this is the folder to load HMMs. In our example, all the cross word
triphones are stored in "hmms\fhmmtri_xwd."
HMM_list_hd: this is the list of all HMMs to be loaded. In our example, the file path is
set to "lists\tiedlist_xwd."
LM_bigram & LM_trigram: these are the file paths for LMs. There should be two files
"bigram_abc" and "trigram_abc" in the folder "LMs." HDecode works directly with the
ARPA format, not the lattice format. Note that there is no need to specify the paths for
both LMs. Depending on which order of LM is to be used (set by Use_bigram and
Use_trigram), only the corresponding LM file path needs to be specified. The other place
can be set to anything but empty, such as 'none' or '\'.
Dict_hd: this is the dictionary file path for HDecode. Please copy the file
"dict863_tone_nosp" from "files needed" folder to "dicts" folder and specify the path
here. In this dictionary, all the sp's have been removed, and silence pronunciation (sil)
only occurs in the sentence start and end tokens. Note that if your dictionary is copied
from the forced alignment step, there should be an entry "SENT_Boundary [] sil." Please
remove this entry to make sure that sil only occurs in the sentence start and end entries.
Rec_hd_bg: this is the output MLF file name for bigram decoding. Again, this is only the
file name. This file will be stored in the folder specified by "Result_folder" in the global
settings.
Rec_hd_tg: similarly, this is the output MLF file name for trigram decoding.

At this point, we've completed all the steps in this ASR system. The percentage accuracy
for the test data can be found in the progress report "progress_decode.log."

6.7. Experimental results

In this section, a series of experiments are conducted using this ASR toolbox. The
database is the 863 Mandarin Chinese database. 78 women speakers from this database
were used to train acoustic models. There are 2185 training sentences, which are divided
into 4 groups: A, B, C, D, and each group of sentences are spoken by multiple speakers,

Approved for Public Release; Distribution Unlimited.
77

resulting in 37116 utterances. 4 speakers from group D are included in the training data.
The test data is formed by another 5 speakers from group D, resulting in 3125 utterances.
For the language model, the training data consists of the transcriptions of A, B, C. But we
put all the words in A, B, C, D into the vocabulary. There are many words in D that are
unseen in A, B, C. So, according to the smoothing algorithm, these words are assigned
equal probabilities as unigrams.

In Table 17, we present the Chinese character level percentage accuracy results using
tonal phone acoustic models. All the models are 16-mixture models. Two feature types
are used: baseline MFCC method, and the spectral/temporal method. The baseline
MFCC uses frame length 25ms, and frame space 10ms, and has 39 features (12 DCTC
coefficients+log energy+delta and acceleration terms). The spectral/temporal method
uses 13 DCTC and 6 DCS (78 features), frame length 25ms, frame space 2ms, and block
length 102ms (51 frames), block space 12ms (6 frames). As stated before, in forming
triphones, the TB factor controls the degree of state tying, thus has great influence on the
accuracy. The other factor used in state tying called 'RO' is fixed at 100. Also, in the
decoding stage, the language model scale factor '-s' can affect the accuracy significantly.
So, in Table 16, we also list the optimal values for TB and s wherever applicable. A
bigram model is used for all the results in Table 16.

Table 16: Results for tonal phone acoustic models, LM=bigram

 Monophone Internal word
triphone

Cross word triphone

MFCC 80.3% 84.7% 85.5%
FFT+DCTC/DCS 82.4% 86.1% 87.5%
TB value None 2000 for both

methods
2000 for both
methods

-s value 10 for both methods 12 for both
methods

12 for MFCC, 15 for
FFT+DCTC/DCS

In Table 17, we present the same results using base phone acoustic models. The models
are 16-mixture models. The feature types are the same as in the previous experiments.
The baseline MFCC still uses 25ms frame length, and 10ms frame space, 39 features. The
spectral/temporal method uses 78 features (13 DCTC/DCS) as before. The frame length
is still 25ms, frame space 2ms, black length 102ms (51 frames); but the optimal block
space changes to 14ms (7 frames). Again, the same bigram LM is used in this group of
experiments.

Table 17: Results for basephone acoustic models, LM=bigram

 Monophone Internal word
triphone

Cross word
triphone

MFCC 75.9% 81.5% 82.5%
FFT+DCTC/DCS 77.6% 82.7% 84.2%
TB value None 2500 for both

methods
2500 for both
methods

-s value 7 for both methods 10 for both methods 10 for both methods

Approved for Public Release; Distribution Unlimited.
78

In Figure 31, we compare the character level accuracy using tonal monophone and cross-
word triphone. The feature used is 42 MFCC including pitch (39 MFCC features+3 pitch
features). The number of HMM mixtures increases from 1 mixture to 32 mixtures. The
triphone performance is significantly better than monophone.

Figure 31: Character accuracy using tonal monophone and triphone models versus number of mixtures.

In Table 18, we compare three different pitch trackers: Yaapt, Yin and Praat. The
acoustic models are 16-mixture tonal monophones. The baseline is still MFCC method
(39 features without pitch). Pitch features are used in the comparison, resulting in 42
features (39 MFCC features+3 pitch features). Pitch is normalized by the mean and
standard deviation of the whole sentence, and its delta and acceleration terms are
incorporated. All voiced mode is used in the computation of pitch. The language model is
still the same bigram model. The optimal '-s' value is 10 both all of them.

Table 18: Results using different pitch trackers, LM=bigram

 Tonal monophone
MFCC 80.3%
MFCC+Yaapt 83.1%
MFCC+Yin 82.5%
MFCC+Praat 82.7%

Finally, in Table 19, we compare the results using bigram and trigram models. Similar to
the bigram model, the trigram is built out of the training data A, B, C, and has all the
words in A, B, C, D in the vocabulary. The acoustic models used are tonal internal word
triphones and cross word triphones. The feature type used is 78 spectral/temporal features
as in Table 16. The optimal TB and -s values are also listed in Table 16. The trigram -s
value is the same as that of the bigram.

Approved for Public Release; Distribution Unlimited.
79

Table 19: Accuracy using bigram and trigram models for tonal triphones

 Bigram Trigram
Internal word triphone 86.1% 86.3%
Cross word triphone 87.5% 87.6%

As expected, the trigram model does not help much to improve the overall accuracy. This
is because many words in the test data are missing in the training data. So, these unseen
words only exist in unigram format, not trigram. Perplexity can be used to evaluate two
language models with the same vocabulary on the same test data set. Lower perplexity
means a better language model. The LM evaluation is not included in the ASR toolbox.
Please refer to HTKbook section 15.4 for details. As practice, you can use the HTK tool
LPlex to compute the perplexity of the bigram and trigram models used in our task
example. It will be found that their perplexity on the same test data set is almost the
same.

7. FORCED ALIGNMENT TOOL USER GUIDE

7.1. Overview

This package is designed for finding the correct pronunciation transcriptions for a large
dataset. Usually, a large database does not provide phone level transcriptions. The phone
level transcriptions, however, are needed for training HMM models. To find the correct
phone level transcriptions, the basic assumption is that a database of wave files with
associated word level transcriptions for each sentence is already available. A
pronunciation dictionary for each word in the database is also needed. In the dictionary,
some words might have multiple pronunciations. So, these words should have multiple
entries. If a long (several minute) speech passage, with transcription is available, this
long passage should first be segmented into short sentence level (typically around 5 to 10
seconds each) segments with associated text transcriptions for each sentence, in order for
the forced alignment and training to work well. If phonetic level transcriptions are
already available, (i.e., TIMIT), this step is not needed at all, since essentially this step
is only needed to create the phonetic level transcriptions. When dealing with a large
database, the training stage of an ASR system involves two steps: initialization and
embedded training. In initialization, usually all the models will be initialized by the
global mean and covariance of all the acoustic features in the same manner. After
initialization, the next step is embedded training. HTK will connect the models
embedded in each sentence according to its phone transcription, and accumulate the
statistics such as the mean and covariance, using the Baum-Welch method. Once all the
data in the database has been processed, the accumulated statistics will be used to re-
estimate the model parameters for all the models simultaneously. Since the model
connection in embedded training depends entirely on the phonetic transcription, and
embedded training is the core step in the training stage, it is very important to insure
correct phonetic transcriptions using forced alignment. Note that the embedded training
step does not need or use time markers at the phonetic level

Approved for Public Release; Distribution Unlimited.
80

Generally speaking, the forced alignment task includes three steps: feature extraction,
training an initial set of models, and forced alignment. Before these three steps, the
starting point is a set of wave files, along with a set of word level transcriptions, as stated
above. After the features have been extracted for each wave file, the word level
transcription of each sentence will be expanded to an initial phonetic transcription using
the pronunciation dictionary. For words that have multiple pronunciations, this initial
phonetic transcription will arbitrarily use the first pronunciation, regardless of the true
pronunciation by the speaker. This is why forced alignment is needed. Then, an initial set
of HMM models will be trained using this set of initial phonetic transcriptions. The
training involves two steps: flat start initialization and embedded training as described
above. Finally, this initial set of models will be used to find the correct phonetic
transcription of each sentence based on the features, namely, what the speaker really
pronounced. Meanwhile, the updated phonetic transcriptions are used to retrain the HMM
models. This processing will be iterated a few times. After the last iteration of forced
alignment, the resulting phonetic transcription will be regarded as the "perfect" version,
and will be used in all the other parts of an ASR system.

The forced alignment tool package includes three separate tools:
1. Tool_Compute_Feat: this tool is used to extract features from a list of wave files.
2. Tool_trainFA: this tool is used to train an initial set of HMM models.
3. Tool_FA: this tool is used to do forced alignment and retrain the HMM models.

Note that tools 1 and 2 can be used for tasks other than forced alignment. However,
before tool 3 can be used, features files must be created and an initial set of HMM
models are needed—meaning that either tool 1 and tool 2 must be used first, or the
features and acoustic models must be created with some other similar tools, which use
the same file formats as tools 1 and 2. Note that the forced alignment tool, in addition to
creating the phonetic transcriptions, updates HMM acoustic models.

Each tool is a matlab m file, and each m name begins with “Tool_...” A setup file is
needed for each tool, and the default file name of the setup file is always the same as the
matlab file name, except the file extension is “dcf” rather than “m.” For example, the
default setup file for Tool_trainFA.m is Tool_trainFA.dcf. The setup file for a tool
contains all the control options and parameters for that tool. When a tool is called, the
setup file is the only argument that can be passed. For example, to call Tool_trainFA.m,
the format will be Tool_trainFA(‘Tool_trainFA.dcf’). The setup file and the matlab file
should be placed in the same experiment folder. If no argument is provided for a tool, the
default setup file is assumed (same name as the tool name, except extension “.dcf.”)
Next, a detailed description of how to use each tool is given.

7.2. Tool_Compute_Feat

7.2.1. Data preparation

Before you run this tool, some data preparation needs to be done. First, create a folder
called “data.” Inside this folder, create a subfolder called “train_wave.” This is the folder

Approved for Public Release; Distribution Unlimited.
81

where all the training wave files are to be placed. Copy all the training wave files into this
folder. Next, go outside “data” folder, and create another folder called “exp.” This will be
your experiment folder. Then, copy "Tool_Compute_Feat.m" and
"Tool_Compute_Feat.dcf" from the folder "Tool_FA" into the “exp” folder. In addition,
also copy "readhtk.m" file from "files needed" folder into "exp."

In addition, you need to make a list of all the wave files to be processed. You can easily
write a program to do this. A short program called “makelist.m” is provided to do this
(copy this program from "files needed" folder into “exp” folder). In this program, you
need to specify which folder the wave files are stored (“..\data\train_wave” in this case).
The path is with respect to the experiment path. After you run the program, a folder
“lists” will be created, inside which a list file“wavefile.lst” is created (These names can
be changed easily in this program). This list will look like this with each file in one row:

..\data\train_wave\F00C1041.WAV

..\data\train_wave\F00C1042.WAV

..\data\train_wave\F00C1043.WAV

..\data\train_wave\F00C1044.WAV

..\data\train_wave\F00C1045.WAV

..\data\train_wave\F00C1046.WAV

..\data\train_wave\F00C1047.WAV

After the steps above have been completed, and the dcf file is edited as explained beow,
the tool can be run to extract features.

7.2.2. Run tool

Use a text editor to open the file "Tool_Compute_Feat.dcf" inside "exp" folder. First, you
will see some control questions such as "Trace_on," "Feat_on," etc. These are the options
to turn on/off these functionalities. The only two valid answers for such questions are "y"
and "n" (case insensitive). There are some other files or folders that you need to specify
for the tool in this setup file. We describe each of them later in this document. Also, you
can indicate comment lines using "%" at the beginning of the line. A comment line does
not have to end with another "%. For clarity, "%" can be placed at each end.

Make sure that the setup file does not contain any "tab" (\t). "\t" is not recognized by the
tool code.

To begin with, in the dcf setup file, there is a section called "Global settings." It has three
items:

Trace_on: if you set "y," you will be able to see the progress of the feature extraction for
each utterance on your screen. You can turn it off by setting "n."
Clean_up : "y" means to clean up (i.e., remove) all the old feature files in your feature file
folder (specified later) before feature extraction.

Approved for Public Release; Distribution Unlimited.
82

LogDir: you can specify a folder to store a progress report. The report is named as
"progress_feat.log." This report will keep track of whether an error happened, how many
features for each wave file, and what kinds of features were extracted, etc.
Next, there are two questions:
Feat_On: "y" means to turn on feature extraction. "n" means to turn it off.
FrtEnd_opt: this is to select different feature extraction methods. There are three
available options: HTK_MFCC, HTK_PLP and User. HTK_MFCC and HTK_PLP are
provided by HTK, and "User" means the tfrontm frontend. These options are all case-
insensitive. If you choose to use tfrontm frontend, there are some extra steps to follow
before you use it.
a. Copy the folder "v7" in "files needed" to "exp."
b. Open a command window, compile "tfrontm.m" inside "v7" using "mcc" command,
then create a folder called "tfront" inside "exp" folder, and copy the file "tfrontm.exe"
from "v7" to "tfront." Note that you need to have a “C” compiler installed (such as
Microsoft visual C). The version of the C compiler (64 or 32 bit) needs to match that of
your matlab. The Matlab compiler toolbox is also needed.
c. Copy the file "cp_42.ini" from "files needed" folder to "tfront" folder, and rename the
file "cp_fea13.ini".
d. Copy the file "SNR801.trn" from "files needed" folder to "tfront" folder, and rename it
"tfrontm.dat."
Please refer to a detailed description of the tfrontm frontend if you want to use it.

Note that no matter which frontend you use, the wave files are always needed. In tfrontm
frontend, we provide a function called "rd_audio.m." The wave file format supported by
this function includes: NIST (which is used by TIMIT, also called SPHERE), WAVE (
also called RIFF, which is the Microsoft WAVE files used on PCs), and RAW (which
has no headers).
Wave_List: you need to specify the wave file list that contains all the wave files to be
processed. In the example, "lists\wavefile.lst" is provided. This was generated by the
program "makelist.m." This list, and a procedure for making the list, was described
above.

Next, note that no matter which frontend you choose, two things will be generated:
Feat_folder: this is the folder that stores all the feature files generated. You do not need
to create this folder manually. It will be automatically created. You only need to specify
its path. In our example, the path is "..\data\Feat." Again, the path is with respect to the
experiment folder, which is "exp."
Feat_List: A list of all the feature files will also be generated for later use. This is where
you specify the path of this list. In our example, as specified, a "featfile.lst" will be
generated in the folder "lists."

Next, we come to the "HTK_MFCC" settings. First, create a folder called "toolconfs"
inside the "exp" folder, and copy the file "hcopy_MFCC.conf" from "files_needed" folder
into "toolconfs." "hcopy_MFCC.conf" is a configuration file for HTK_MFCC frontend. It
specifies a set of necessary parameters for this frontend, such as the frame length, frame

Approved for Public Release; Distribution Unlimited.
83

space, wave file format, number of filterbank channels, etc. Please read Chapter 5 of the
HTKbook for details. Then, specify the configuration file path in "Conf_MFCC."

Note that in our example, the wave file format is WAVE, which needs to be known
ahead. So, as you can see in "hcopy_MFCC.conf," the "SOURCEFORMAT" is also set
to "WAV" to match the wave file format. If you change to TIMIT database, you need to
change "SOURCEFORMAT" to "NIST" because that is the wave file format in TIMIT.
Chapter 5 of the HTKbook provides details of all the wave file format supported by HTK.
Conf_MFCC: specify the configuration file for HTK_MFCC frontend.

Similarly, if you want to use HTK_PLP frontend, you need to copy the file
"hcopy_PLP.conf" from "files_needed" folder into "toolconfs" and specify its location in
"Conf_PLP." Also, change "FrtEnd_opt" to HTK_PLP
Conf_PLP: specify the configuration file for HTK_PLP frontend.

Finally, if you want to use the user defined tfrontm frontend, you need to specify its
configuration file as well in "Conf_tfrontm." Please refer to our tfrontm manual for
detailed description for this frontend.
Conf_tfrontm: specify the configuration file for tfrontm. As described before, the location
of this file is tfront\tfrontm.dat.

You do not need to specify the configuration files for all three frontends since you will
only use one of them at a time. The tool will only check the file location according to
which frontend you selected. However, do NOT leave any configuration file place blank.
For example, if you choose "User" as your frontend, you can put a "\" or "N\A", or
"None" (or anything meaningful to you) in Conf_MFCC and Conf_PLP, and only specify
the configuration file in Conf_tfrontm. But do NOT leave Conf_MFCC and Conf_PLP
blank.

7.3. Tool_trainFA

This tool is to train a set of initial acoustic models for forced alignment.

7.3.1. Data preparation

Before you run this tool, you need to prepare a set of word level transcriptions for the
wave files. Usually, when you deal with a large database, you do not have the phone level
transcriptions; you only have the word level transcriptions for the utterances. The
"standard" word level transcriptions HTK can use have one word in each row, and one
transcription file for each sentence. Note that the file name of a transcription file must be
identical to the file name of the feature file for that sentence (However, the extensions
can be anything). Since there are many possible formats that the original word
transcriptions can have when you obtain the database, there is no "standard" code to
convert it to the HTK acceptable format. You need to write your own code to do this step.
In our example, you need to create a folder called "train_word_trs" inside the folder

Approved for Public Release; Distribution Unlimited.
84

"data," and put all the "standard" word level transcriptions you made into this folder. To
make it clear, you can set the extension of the transcription files to be ".WRD."

Also, you need a list of all the transcription files. You can make this list using
"makelist.m". You need to change the "path_wave" variable to "..\data\train_word_trs,"
and change "listfile" to "wordtrs.lst," and run the program. A "wordtrs.lst" will be
generated in the "lists" folder.

Copy "Tool_trainFA.m" and "Tool_trainFA.dcf" from "Tool_FA" folder into "exp"
folder.

7.3.2. Run tool

Use a text editor to open "Tool_trainFA.dcf". Again, you will see the same three global
settings. "Trace_on" has the same meaning as before. But "Clean_up" has different
meaning:

Clean_up: if this is set to "y", each target HMM folder (specified in later steps) will be
cleaned up before new models are generated, if there are any old models in those folders.
By “clean up” we mean that existing models will be deleted.
LogDir: again, you can specify a folder to store a progress report for the training
processing. The default report file name is "progress_trainFA.log." In this report, some
information will be provided, such as the number of mixtures, the number of states, the
progress of mixture splitting, and the feature vector length, etc.

The next step is "transcription preparation." In the very beginning, you have created a set
of word level transcriptions for all the utterances, and a list of all these transcription files
as well. In HTK, what is used is the "MLF" format of these transcriptions. Basically, a
MLF file puts all the transcriptions in one file, and prefixes each file by its path.
"transcription preparation" step converts the original word level transcriptions to its MLF
format, and also generates initial phone transcriptions based on the word MLF file.
Trans_prep: "y" turns on transcription preparation. "n" turns it off.
Gen_Word_MLF: "y" converts the original word level transcriptions to a MLF file.
Word_trs_list: you need to provide a list of all the original word transcriptions to
convert. In our example, it is lists\wordtrs.lst.
Conf_wrdmlf: this is the configuration file to make the MLF file. Copy "wordmlf.led"
file from "files needed folder" to "toolconfs" folder, and specify the file path here.
WordMLF: this is the output MLF file. You need to manually create a folder called
"labs" inside "exp" folder, and a MLF file "word.mlf" will be generated inside "labs" as
specified in WordMLF place.

After the word MLF file has been generated, the next step is to create two phone level
MLF files. The first MLF file does not contain "sp," which is a short pause after each
word; the second MLF file has a "sp" after each word. Later on, a set of low order HMM
models (usually 1 or 2 mixtures) that does not have "sp" model will be trained using the
first phone level MLF file, and then, a "sp" will be introduced, and the second MLF will

Approved for Public Release; Distribution Unlimited.
85

be used to train this expanded set of HMM models. So, here, we need two MLF files for
later use.
Gen_Phn_MLF: "y" means to generate phone level transcriptions. "n" turns it off.

Four input files are needed to generate phone level transcriptions:
WordMLF: this is the word MLF generated in the last step. Put the same file path here as
in WordMLF.
Dict: a dictionary file is needed to convert word MLF to phone MLF. Manually create a
folder called "dicts" inside the "exp" folder, and copy the file "dict863_tone_sp1" from
"files needed" folder into "dicts" folder. Then, specify the dictionary file path in Dict. If
you open this file, you will see that all the words are placed on the left side, and their
phone pronunciations are on the right. Many words have multiple pronunciations. Note
that a "sp" is appended after each word. There is an entry "SENT_Boundary," and its
pronunciation is "sil." This entry is for the forced alignment step, where the
"SENT_Boundary" will be added before and after each sentence.
Conf_wrd2phn_nosp: this is the configuration file to convert the word MLF to the phone
MLF without "sp." Copy the file "word2phn_nosp.led" from "files needed" folder into
"toolconfs" folder, and specify the path here.
Conf_wrd2phn_sp: this is the configuration file to convert the word MLF to the phone
MLF with "sp." Copy the file "word2phn_sp.led" from "files needed" folder into
"toolconfs" folder, and specify the path.

If you open either "word2phn_sp.led" or "word2phn_nosp.led", you will see a couple of
commands, one command in each row. For example, "EX" means to expand each word
with its phone pronunciation; "IS sil sil" means to insert a "sil" before and after each
sentence. For a complete set of command descriptions, please refer to HTKbook section
17.10.

Four output files will be generated:
PhoneMLF_nosp: this is the phone MLF file without "sp." In this example, it is
generated in "lab" folder, and its file name is phone_nosp.mlf.
PhoneMLF_sp: this is the phone MLF file with "sp" between words. In this example, its
file path is labs\phone_sp.mlf.

Note that when HTK expands each word, only the first pronunciation of each word in the
dictionary will be used. So, both the phone MLF files contain only the first pronunciation
of each word. These initial MLF's will be used to train an initial set of HMMs. Then,
forced alignment will be used to find the correct pronunciations according to the acoustic
information.
PhoneList_nosp: a list of all the phones encountered will be generated. This list does not
contain "sp." it will be placed in the "lists" folder, and its file name is "monophone_nosp"
as specified.
PhoneList_sp: a list of all the phones encountered will be generated. This list contains
"sp." Specify its location in a similar way.

Approved for Public Release; Distribution Unlimited.
86

At this point, the transcription preparation step is done. These four output files will be
used in the training step. Note that if you have already done this step, you can simply turn
off "Trans_prep."

The next step is to train a set of HMM models for forced alignment. Similarly, there are
some global settings to be specified at the beginning.
Train_on: "y" turns on training. "n" turns it off.
Feat_List: this is the feature file list generated by the feature extraction tool. In
Tool_Compute_Feat.dcf, it is specified in "Feat_List" place. Put the same file path here
for training.
Feat_List_ini: HTK computes the global mean and variances of all feature files provided
to initialize each HMM model. However, sometimes, this will be a poor initialization for
the following step, which is called embedded training. Empirically, do not use short
sentences to initialize the models. If many short sentences (1 or 2 seconds long) are used
for initialization, the embedded training step will fail. You should use long sentences, at
least 3 seconds long each. So, you can select a subset of all utterances, and make a list of
them, then, use this list of feature files to initialize the models. In our example, this list is
located as "lists\featfile_ini.lst." After the models have been initialized, the full feature
file list "Feat_List" will be used to do the embedded training.
numState: the number of emitting states. Two non-emitting states will also be used (one
before and one after the emitting states). For example, if numStates=3, then, there are
actually 5 states.
numMixture: specify the mixture splitting sequence. The models usually start from a low
order (such as 1 mixture), and then gradually split to the desired order, each time
increasing by a small amount. Each splitting step is separated by a ";." For example,
"1;2;4;6;8;12;16" means to start from 1 mixture models, and split to 2 mixture models,
and then 4, 6, 8, 12, 16. You can directly start from a high order model, such as 16, but
usually won't get robust training. It's strongly recommended that you go through this
splitting processing. You can refer to HTKbook section 10.6 and section 17.8 for details
of how the splitting works and why it is more robust than directly starting from a high
order.
Iteration: this specifies how many iterations of training will be conducted after each
splitting. Again, this sequence is separated by ";" and it must have the same length as the
mixture splitting sequence. For example, "3;5;6;7;7;7;7" means 3 iterations of training for
1 mixture models, 5 for 2 mixture models, etc, if numMixture is set to be
"1;2;4;6;8;12;16."
Final_hmmfolder: this is for convenience. In our example, this folder path is set to be
"hmms\fhmm." These folders (hmms and fhmm) will be created automatically inside
"exp" folder. There are two steps in model training: initialization and embedded training.
You will notice that for each step, there is a "target folder" in the setup file to store the
HMMs after each step (hmm1 for initialization and hmm2 for embedded training in our
example). However, you may forget which step you stop at in training. So, in the forced
alignment stage, when loading the HMMs, you do not know where to load the HMMs.
Hence, a final HMM folder needs to be specified to store the final HMMs, no matter
which training step you stop at. That means: if you choose to do the embedded training,
the models from hmm2 (which is the target folder for embedded training) will be copied

Approved for Public Release; Distribution Unlimited.
87

to the final HMM folder; if you stop at initialization, the models from hmm1 (which is
the target folder for initialization) will be copied to the final HMM folder. Hence, you
can always load HMMs from the final HMM folder in the forced alignment step. In
addition, if you want to modify the previously trained HMMs, such as adding more
mixtures by splitting, or adding more training iterations, you can directly load HMMs
from the final HMM folder without memorizing which step you were at when you
stopped last time.

Next, we come to the initialization settings.
Init: "y" turns on initialization; "n" turns it off.

Then, 4 input files/folders are needed for initialization.
hmmList_nosp: this is the list of HMMs generated by the transcription preparation step.
This list does not include "sp" model. Later on, a "sp" model will be introduced after the
first mixture model (1 mixture in our example) is trained.
SrcDir_init: this is the source directory for the prototype HMM to be initialized. In HTK,
before initialization, a prototype HMM needs to be defined. Basically, the prototype
defines the topology of the HMM, including the number of states, the transition format,
the covariance matrix type, etc. In our example, a directory "hmms\proto" will be
automatically created, and a prototype HMM will be generated inside this folder, as
specified by SrcDir_init.
Conf_proto: this is the configuration file to generate the prototype HMM. You only need
to specify the file path here. In our example, the file name is "puser.pcf," and it will be
placed in "toolconfs" folder. This file will be automatically generated. You need to copy
"makeProto.m" file from "files needed" folder to "exp" folder first.
Conf_init: this is the configuration file to initialize the models. You need to copy the file
"hcompv.conf" from folder "files needed" into "toolconfs" folder, and specify the path
here.

The output of the initialization step is a set of HMM models stored in the target folder.
TgtDir_init: this is the target folder for the initialization step. A set of new HMM models
will be saved in the directory specified here. This directory is automatically generated. It
is set to hmms\hmm1 in our example. Note that this set of models do not have "sp."

At this point, a set of models have been initialized.

The next step is embedded training. There are four global settings for this step.
Embed_train: "y" turns on embedded training; "n" turns it off
fix_sil: "y" means to introduce a "sp" model after the first low order model (does not
include "sp") has been trained. Specifically, the "sp" model is copied from the central
state of the silence model, and is a one state model (there are two non-emitting states, one
emitting state). There is a direct transition between the entering and exit states, namely,
the two non-emitting states, because there are actually no short pauses between words
sometimes. The silence model is also modified. A forward and a backward transitions are
added between the first and the third emitting states. You can refer to HTKbook section
3.2.2 for more details.

Approved for Public Release; Distribution Unlimited.
88

The code of the tool works in this way: before embedded training starts, it will first check
whether a "sp" model is already in the model set loaded (specified by SrcDir_Embd).
This is because sometimes, you have already trained a set of models including "sp," and
you only want to modify this set of models, such as adding mixtures, or adding training
iterations. In this case, you can simply turn off the initialization step, and only perform
the embedded training step. If a "sp" model is found in the model set, "fix_sil" will be
forced to "n," because there is no need to re-introduce the "sp" model and modify the
silence model.

After the "sp" model is introduced, a couple of iterations of training will be performed
according to "fix_iter" specification, then, the model mixtures will be split, starting from
the second lowest mixture, according to the "numMixture" sequence.
fix_iter: this is how many training iterations after the "sp" model has been introduced.
embdOptStr: this is a pruning threshold for embedded training. Normally, you can set it
to "-t 250.0 150.0 1000.0" and no need to change. Do not omit the " " on both sides. You
can refer to HTKbook section 17.7 for details.

Seven input files/folders are needed as the input of embedded training.
SrcDir_embd: this is the source directory to load HMMs for embedded training. In our
example, we have initialized a set of models. So, we need to load models from
hmms\hmm1, where the initial models are stored.

You do not have to always load models from the initialization step. You can actually load
models from anywhere. For example, if you already have a set of models in the
"Final_hmmfolder," and you want to perform embedded training for this set of models,
such as adding more mixtures, or adding more iterations for the models, you can set
"SrcDir_embd" to "Final_hmmfolder."

hmmList_nosp & hmmList_sp: these are the HMM list with and without "sp." They are
generated in the "transcription preparation" step. As stated, before embedded training
begins, the tool will first check if a "sp" model already exists; if yes, "fix_sil" will be
forced off, and "hmmList_sp" will be used; if no, the first low order model will be trained
using "hmmList_nosp," and then, the tool will check "fix_sil;" if "fix_sil" is yes, then, the
"sp" model will be introduced, and "hmmList_sp" will be used from then; if "fix_sil" is
no, then, "hmmList_nosp" will be used all the way till the end.
monoMLF_nosp & monoMLF_sp : these are the phone level transcription with and
without "sp." They are also generated in the "transcription preparation" step. Their usage
is the same as that of hmmList_nosp & hmmList_sp.
Conf_embd: this is the configuration file for embedded training. You need to copy
"herest.conf" from "files needed" folder to "toolconfs" folder, and specify the path here.
Conf_sil: this is the configuration file for fixing the silence. You need to copy "sil.hed"
from "files needed" to "toolconfs" folder, and specify the path here. If you open "sil.hed"
file, you will see a couple of commands such as "AT," "TI." "AT" means to add a
transition between two states. "TI" means tie the designated states of two models

Approved for Public Release; Distribution Unlimited.
89

together, so that they will have the same mean and covariance matrix. You can refer to
HTKbook section 17.8 for more details.

There are two outputs for embedded training.

TgtDir_embd: this is the target folder where the output HMMs are stored. In our
example, the directory is hmms\hmm2.
Stat_embd: this is a statistic file generated by embedded training. This is only a
byproduct. You won't need it in the forced alignment state.

At this point, the embedded training is done.

We have described how to train a set of models from the initialization step till the end.
Yet, there are cases that you already have a set of models, and suppose you only want to
create more mixtures based on this set of models. Suppose you have a set of 8 mixture
models with "sp," and you want to create 16 mixture models. Here is how you do it with
the tool:

a. turn off "Trans_prep" and turn on "Train_on," then turn off "Init."
b. turn on "Embed_train."
c. you can leave "fix_sil" either y or n. (set it to n if your 8 mixture models do not have
"sp")
d. set SrcDir_embd to "hmms\fhmm" or to "hmms\hmm2," and set TgtDir_embd to
"hmms\hmm2."
e. Set numMixture to 8;16. Do not set it to 16 only.
f. Set Iteration to 0;7. Do not set it to 7 only.

7.4. Tool_FA

After a set of initial HMMs have been trained, we come to the forced alignment step.
Please copy "Tool_FA.m" and "Tool_FA.dcf" from "Tool_FA" folder to "exp." Then,
open "Tool_FA.dcf" file.

In simple words, the forced alignment is an iterative processing. The phone transcriptions
will be corrected using the set of models obtained in the training stage, then, the new
transcription will be used to refine the models. This processing will be repeated for a
couple of iterations. The final transcription will be the "perfect" version.

Again, at the beginning, there are three global options. "Trace_on" has the same meaning
as in other tools.
Clean_up: "y" means to clean up the refined model before forced alignment begins, and
also clean up the old aligned transcriptions before forced alignment.
LogDir: a progress report will be generated in this folder. The file name is
"progress_FA.log." The report keeps track of how many iterations there are, and how
much change was made in the aligned transcription after each iteration, etc.

Approved for Public Release; Distribution Unlimited.
90

After global settings, there are other settings for forced alignment.
FA_on: "y" turns on forced alignment; "n" turns it off.
FA_iteration: how many iterations are needed. One iteration includes: first, update the
phone transcriptions using current models; second: re-train the models using the updated
phone transcriptions.
Embd_iteration: this is how many embedded training iterations are needed to retrain the
models each time after the transcriptions are updated. Again, the numbers are separated
by ";" and the length of this sequence must be equal to FA_iteration. A zero means that
the models will not be retrained after forced alignment.
Output_level: this specifies what you want to see in the aligned phone level
transcriptions. "-o SWT" means that you only want the aligned phones. Scores (S), words
(W) and time boundaries (T) will be suppressed. Do not forget the " " on both sides. You
can refer to HTKbook section 17.8 for more details.
Prune_FA: this is a prune factor for the decoder in forced alignment mode. The smaller
the first number is, the faster the decoder will be, but more sentences will not be
successfully aligned. The bigger the last number is, the more sentences will survive, but
the speed will also be slower. You can refer to HTKbook section 17.8 for more details.
Prune_embd: this is the same prune factor for embedded training as that in embdOptStr in
Too_trainFA.dcf.
Init_phoneMLF: specify the initial phone level transcription file path (before any forced
alignment iterations). Actually, the forced alignment processing itself does not need it.
This is for statistical purpose. Each time after the transcription is updated, the tool will
compute how much change between the new transcription and the old one, as you will
see in the report. The first updated transcription will be compared with this initial one.

There are seven input files/folders needed by forced alignment and model refinement.
WordMLF: this is the word level MLF file generated in the "transcription preparation"
step in Tool_trainFA.dcf.
Feat_List: this is the list of all the feature files to be aligned. This list is generated in the
feature extraction step.
Dict: this is the dictionary file. Note that a "SENT_Boundary" should be in the
dictionary. In our example, the dictionary has a "sp" after each word. If your model set
does not include "sp," you should delete "sp" from this dictionary as well.
hmmList: a list of all the HMMs generated in the "transcription preparation" step in
Tool_trainFA.dcf. This list needs to match the model set (whether there is a "sp" or not)
SrcDir_hmm: this is the folder to load the initial HMMs. In our example, all the initial
HMMs are stored in "hmms\fhmm" folder. These HMMs will be used to do the first
round of forced alignment.
Conf_FA: this is the configuration file for the decoder. Copy "hvite.conf" from "files
needed" folder to "toolconfs" folder, and specify the file path here.
Conf_embd: this is the configuration file for embedded training.

There are three output files/folders generated.

aligned_folder: this is the folder to store the aligned transcriptions in each iteration. If
Clean_up is turned on, the old aligned transcriptions will be cleaned up first. A series of

Approved for Public Release; Distribution Unlimited.
91

transcription files named as aligned_1.mlf, aligned_2.mlf,... will be generated. In our
example, we specify this folder to be "labs."
TgtDir_hmm: this is the folder to store the retrained models in each iterations. In our
example, a "refined_hmm" folder will be generated inside hmms folder, as specified. The
refined models are used to do forced alignment in the next iteration.
Stat_embd: this is a statistic file generated by embedded training.

At this point, a set of aligned MLF files have been generated. The final "aligned_N.mlf"
(in our example, N=6) is the "perfect" phone transcription. In addition, a set of well
trained HMM models are stored in the folder "hmms\refined_hmm."

Since you have got a set of well trained HMMs, they can be used to align new data. Here
are the main steps in aligning new transcriptions using a well trained model set.

a. Use the feature extraction tool (Tool_Compute_Feat.dcf) to extract features. Note that
the feature type needs to match those used to train the models; for example, they are both
39 MFCC features.
b. In the tool for training (Tool_trainFA.dcf), turn on "Trans_prep," and
"Gen_Word_MLF," turn off "Gen_Phn_MLF." So, the word level transcription of the
new data will be generated. Turn off "Train_on."
c. Set FA_on to "y" in Tool_FA.dcf.
d. Set FA_iteration to 1. Since the models are well trained, you normally do not need
multiple iterations. Of course, you can do that if you want.
e. Set Embd_iteration to 0. Again, since the models are well trained, you do not need to
retrain them.
f. Set SrcDir_hmm to "hmms\refined_hmm," where the well trained HMMs are stored.
Also, specify the list of HMMs in hmmList, in accordance to the refined HMMs.
g. Set "Init_phoneMLF" to "labs\aligned_1.mlf." Since there is actually no initial phone
transcription for the new data (because the models exist already, so no need to generate
initial phone transcription to train any models), yet a place holder is still needed, we can
put the aligned MLF here. Of course, in the progress report, it will tell you no change was
made between the "initial transcription" and aligned.mlf, since they are the same files. So,
you can ignore the progress report in this case.

Now, you are all done with forced alignment. The final aligned transcription will be used
in subsequent tools.

A working example is provided. The main output of the forced alignment tool package is
put in the folder “files generated.” The database used is 863 Mandarin Chinese database.
The phonetic transcriptions of 74 women speakers, namely, 34616 sentences, were forced
aligned. The wave files, as well as the feature files are not included, since they are too
big. The tool setup files used are exactly the same as the ones provided in the Tool_FA
folder, as described in this manual. If you go through the steps in this manual using the
same data, and same files as provided, you will get identical outputs. For feature
extraction, 42 features were generated using the tfrontm MFCC method. These features
consist of 12 DCTCs, 1 log energy, 1 pitch (14 static features), and delta, and delta-delta

Approved for Public Release; Distribution Unlimited.
92

terms. For training, 174 tonal phones were trained, including 27 Initials, 145 tonal Finals,
and two silence models (sil and sp).

First, open “Log” folder. Inside this folder, you can see the progress reports for feature
extraction (progress_feat.log), training initial models (progress_trainFA.log), and
forced alignment (progress_FA.log). In progress_feat.log, it records that the frontend
selected was “User,” and the feature dimension was 42. In progress_trainFA.log, you can
see what happened in order. First, the tool did data preparation. This converted word
transcriptions to word MLF, and then converted this word MLF to phone MLF. Then, the
training started. The mixture splitting sequence as well as the iterations for each mixture
splitting was recorded. The flat start initialization was performed first, and the embedded
training followed. At the beginning of the embedded training, there was no “sp” model.
After the first low order model (1 mixture) had been trained, the “sp” model was
introduced, and the silence model was fixed. Then, a list of current number of mixtures
being trained was given. After the desired order was achieved (16 mixtures), the models
were copied to “hmms\fhmm” folder from “hmms\hmm2” folder. Finally, in
progress_FA.log, you can see the progress of the forced alignment and model refinement.
As you see, the forced alignment iteration was specified to be 6, and each time the
phonetic transcriptions were updated, the models were retrained 3 times. In the last
iteration, only forced alignment was performed, and the models were not refined (as a 0
was specified for the last iteration). After the forced alignment began, the tool checked
how much change was made between the updated phonetic transcription and the old
transcription obtained in the last round. For example, after the first iteration, it shows that
the accuracy was 98.74%. This means that 1.26% of all the phones in the initial
transcriptions (before forced alignment) were corrected by the first round forced
alignment. Next, the models were retrained using this updated transcription. Then, the
forced alignment was performed again, using the refined models. This time, the accuracy
became 99.64%. This means that 0.36% of all the phones in the old transcriptions
(obtained in the first round) were corrected by the second round forced alignment. This
processing kept going until the desired number of iterations was achieved. Note that as
the models kept being refined by the updated transcriptions, the accuracy between two
consecutive transcriptions got higher. This shows that fewer and fewer phonetic
pronunciations were updated by forced alignment, as most of them were already
corrected by previous iterations.

Next, open “labs” folder. You can see 6 phone level MLF files generated by the forced
alignment iterations. They were named as aligned_1.mlf, aligned_2.mlf, etc. In our
example, aligned_6.mlf is assumed to be the “perfect” version, since it was generated by
the last iteration. This version will be used in other parts of the ASR system. The files
phone_nosp.mlf, and phone_sp.mlf are the initial phone transcriptions without and with
“sp.” The file word.mlf is the word level MLF file of all the sentences.

Finally, open “hmms” folder. “fhmm” folder stores the HMM models before model
refinement by forced alignment step. In other words, these models were trained by the
initial phone transcriptions. In order to get these models, the initialization and embedded
training were conducted. The models after initialization step were stored in “hmm1,” and

Approved for Public Release; Distribution Unlimited.
93

the models after embedded training were stored in “hmm2.” The “refined_hmm” folder
stores the refined models. This set of refined models are well trained. It can be used to
forced align new data as described by steps a-g above. The “proto” folder stores the
model prototype. This prototype defines the model topology. In either fhmm, hmm1,
hmm2, or refined_hmm folders, you can find two files, “hmmdefs” and “macros.”
“hmmdefs” has all the parameters of all the models. “macros” defines some “global”
parameters which are identical for all models, such as the feature vector dimension, and a
variance floor. If any variance of any state in a model falls below this floor, it will be
clamped to this floor. “macros” was generated in the initialization step and remained
unchanged in all subsequent steps. “hmmdefs” got updated after each embedded training
iteration.

8. A TOOL FOR SPEECH FEATURE EXTRACTION – TFRONTM GUIDE

8.1. Fundamentals of Speech Feature Extraction

ASR (Automatic Speech Recognition) is an automatic system which aims to convert
voice to text. For processing the speech some steps should get considered. These steps are
summarized as: collecting speech, preprocessing, feature extraction, recognition using
models and outputting the text. Feature extraction is the focus of this section of the
report.

The accuracy of recognition is highly depends on feature extraction so it is so important
to compute “good” features. One of the popular feature types are MFCCs. The MFFC
method is covered in elsewhere [1] , so the MFCCs are not discussed further here. The
process of this feature extraction is summarized in figure 1.

In [3], a new feature extraction method is developed, with features referred to as
DCTCs/DCSCs. The idea is to capture spectro-temporal patterns of the speech by using a
discrete cosine transform (DCT) to compute DCTC/DCSC terms. DCTCs represent the
spectral pattern in the frequency domain, and DCSCs represent the temporal pattern as
DCTCs change over time. This method is also clearly described in [5].

8.2. Program Setup

1) Copy all the desired wave files to a wave folder. The default assigned folder in the

code is “..\Data\train” for train data and “..\Data\train” for test data.
2) Make the wave file list for future use in “lists\trnw_exsa.lst” and

“lists\tstw_exsa.lst”. There is a code provided called “make_wave_dir.m”
which makes this list automatically. It reads the wave files from the default audio
folder and copies the list to the default folder.

3) Define two setup files “Tool_ComputeFeat_train.dcf” and
“Tool_ComputeFeat_test.dcf” which indicate the audio folder and extracted
feature folders and files.

4) Feature extraction configuration file. One sample of this file is “cp_dcs.ini”.
An explanation of how to make this configuration file is provided in section 6.

Approved for Public Release; Distribution Unlimited.
94

5) Create another configuration file called “snr_801.trn” (See section 4 for
details).

8.3. Tool_ComputeFeat

8.3.1. Function

This Matlab function is designed to compute features and store them in feature files.
There is an input for this function which contains some preliminary specifications. Some
functions which are called within this function are as below:
HCopy
readhtk
tfrontm
Hcopy is a HTK software tool (© COPYRIGHT 2001-2009 Cambridge University
Engineering Department) which is used to extract the MFCC features of the speech
signal. For more detail refer to [1].
Readhtk, is an htk related file (designed by Mike Brookes [2]) which reads the htk
parameter files.
Tfrontm, is a software generated by Binghamton University Speech lab group for
DCTC/DCSC feature extraction [3]. For complete description please refer to section 4.

8.3.2. Use

The command line of Tool_ComputeFeat is as below:
Tool_ComputeFeat(CmdFile)
This CmdFile is a configuration file. In default name of this file is
“Tool_ComputeFeat_train.dcf.” The terms of this configuration files are as below:

Tool_ComputeFeat_train.dcf
Terms Default Value Description
Trace_on Y Enables progress report for each tool if it is chosen to

be “n”, it only shows the current command line.
Clean_up

Y Enables cleaning the target folder in each step.

LogDir

Log

This is the folder to store the progress log file. A
“progress.log” file will be generated in this folder.

Feat_On

y Enables the feature extraction.

Approved for Public Release; Distribution Unlimited.
95

Tool_ComputeFeat_train.dcf
Terms Default Value Description
FrtEnd_opt

User

Some Frontend selections:
HTK_MFCC, For MFCC
frontend in HTK
HTK_PLP, For PLP frontend
in HTK
User, User designed
Frontend
The default value is
HTK_MFCC

Wave_List lists\trnw_exsa.lst

The list of the wave files are
shown in this file.

Feat_folder ..\Data\train

This is the folder which the
extracted features are stored
in.

Feat_List lists\trn_exsa.lst

The list of the feature files.

Conf_MFCC toolconfs\hcopy_MFCC.conf

This is the configuration file
for MFCC feature extraction.

Conf_PLP

toolconfs\hcopy_PLP.conf

This is the configuration file
for PLP feature extraction.

Conf_tfrontm

tfront\tfrontm.dat

This a configuration file for
the tfrontm function.

8.4. Tfrontm

8.4.1. Function

This is the function which reads some input files, compute features, and writes them to an
output file (*.mfc) using the wr_feat function. There are several other functions used
by tfrontm. The key configuration files are tfrontm.dat (for some general
specifications of tfrontm) and CP_FEA13.ini (for more detailed specifications).
The functions which are used directly by tfrontm are:
Cp_feat
wr_feat
Cp_feat.m does some calculations and computes the features (refer to section 5). Wr_feat
writes the computed features in a specific order into desired (*.mfc) files.

8.4.2. Use

The command line for this function is:

Approved for Public Release; Distribution Unlimited.
96

tfrontm(CmdFile,Wave_List,Feat_List,Feat_folder)
where:
CmdFile: is generally names tfrontm.dat and contains some general properties of
tfrontm function. More details are given in table below.
Wave_List: is the list of the wave files which are to be processed.
Feat_List: is the list of the feature files.
Feat_folder: is the folder of the feature files.

Tfrontm.dat
Terms Default Value Description
FILE_ID TFRONT_SPEC This is File _ID
SNR 300 The SNR value
FEAT_FILE tfront\CP_FEA13.INI

Default file name of the tfrontm function
configuration. (See next table)

FILE_TYPE HTK

Feature file formats: TYPEA1, TYPEB1, or
HTK

PARMTYPE USER Parameter type of HTK

8.5. CP_feat

8.5.1. Function

This function has two modes, init and proc. This function does some calculations on
wave files and returns the features (matrix) plus some specifications of the wave file.

8.5.2. Use

The command form is:
[Feat,OutPars,addPars]=cp_feat(DoWhat,X,specFile, InitPars)
The input parameters are:
DoWhat: indicates what type of function is going to be done. It can be either ‘init’
(which indicates doing some preliminary calculations, such as DCTC and
DCSC basis vectors) or ‘proc’ (which computes the actual features).
X: samples read from a speech file (i.e., a speech waveform). This is only needed for the
‘proc’ mode.
specFile: is the configuration file (by default it is CP_fea13.ini.
InitPars: is a vector whose first element is the sample rate of the wave file and
whose second element is the length of the Data (X) which is read from the audio file.
The outputs of cp_feat are:
Feat: Features (a matrix) which are extracted in ‘proc’ mode. In ‘init’ mode, Feat has
no meaning.
OutPars: In ‘init’ mode, it returns a vector with 3 elements--Sample rate, Frame jump
and Block jump.

Approved for Public Release; Distribution Unlimited.
97

addPars: In ‘init’ mode, it this is a vector with 12 character values. These values are
number of DCTCs, number of DCSCs, frame length, Gammatone width, Window length
of ∆, ∆ − ∆, ∆ − ∆ − ∆, Static warping type, Pitch tracker type and amplitude scaling.

8.5.2.1. INIT Mode

In this method first the content of the configuration file (CP_fea13.ini) is read by rd_spec
function (see section 6) and the results are stored in the CP_Parse variable. Then a
filter is initialized based on some defined poles and zeros using PreFilt function.
Then filter bank weights are computed using genfw function (W). Based on the number
of DCTCs and the frequency warping method, the frequency basis vector (bvF) is
computed using genbv function.

If the dynamic type is selected as DCS, time basis vectors are also computed. This is
done by again using the genbv function which incorporates time warping.
If DELTA is selected as the dynamic type, the genbv function is called with ‘d’ (which
is defined within the function) and the length of the ∆.

8.5.2.2. PROC Mode
After computation of basis vectors, it is time to compute the features. The first step is to
filter the speech data to with the PreFilt function. If pitch tracking type, which is
defined using the Tracker_type option in CP_FEA13.ini, is set to anything but
NONE (see section 6), a function named pitch_tracker calculates the pitch values.
Based on the type of the pitch normalization chosen in CP_FEA13.ini file, the mean,
variance or both of them are computed for the fro all pitch values for one file.

The next step is to compute the feature based on the audio file data. This data is extracted
for each frame based on the Frame time and space and framed by a Kaiser window. The
FFT of the signal is computed and the magnitude of this FFT is computed between 0 and
Fs/2. If the Amplitude_scaling is set to LOG, the log of this magnitude is
computed. Otherwise, using the number which is specified in this variable, the magnitude
raised to the power of the number, is computed.

For energy computations, if the Log_Energy_Flag is enabled, the energy of of each
frame of the signal is computed. If Log_Expand_Flag is enabled, the energy data is
added to the end of features, otherwise the energy data will substitute the last line of
computed features.

After computing the static features, dynamic features are computed. First the number of
blocks to process are defined by dividing the Number of frames by block jump. Then the
obtained feature blocks are multiplied to time basis vectors of ‘init’ mode.

Approved for Public Release; Distribution Unlimited.
98

8.6. Rd_spec

8.6.1. Function

This function is mainly designed to read the configuration file of the feature extraction
and return the value to other functions.
This function is called in cp_feat function in ‘init’ mode.

8.6.2. Use
This function is used as below:
[Params,Use_term,LogEnergy,Param_char]=rd_spec(FileName,Ini
tPars)
The inputs are:
FileName: The configuration file (default: CPFEA13.INI)
InitPars: It was described on section 5 as InitPars
Out puts:
Params: The numeric values of configuration file
Use_term: Number of used features
LogEnergy: A vector of some log energy flags
Param_char: The characteristic values of configuration file

As it was said on section 7.5, there is another configuration file which contains some
more details about the feature extraction. This file is defined in main root and is copied to
tfront folder in the beginning of running the code. These file specifications are as below:

Approved for Public Release; Distribution Unlimited.
99

CP_Fea13.ini (configuration file)
Variable Default Value Description
Basic parameters
Sample_rate 16000 Hz Sample rate
Frame_length 8 ms
Frame_space 2 ms
FFT_length 256 points
Kaiser_window_beta 6
Prefilt_Center_Freq 3200 Hz Pre-filtering center (0 means no pre-filter)
Spectral_range 40 dB
Spectral Analysis
Low_freq_limit 100 Hz 0~300 Hz
High_freq_limit 7000 Hz 3000~8000 Hz
Amplitude_scaling LOG It can be LOG or any value which will be the

power.
Numb_filters 26 Number of filters in filterbank
plot_spec 0 Enables the plot of spectrogram

CP_Fea13.ini (configuration file)
Variable Default Value Description
shift_deg_NonSym 0.5 Shifting degree using non-symmetric window
Log_Energy_Flag 1 Enables adding energy as one of the features
Log_Expand_Flag 0 Enables adding the energy feature as an

additional feature or substitutes the latest feature.
Width_gammatone 1.0 Width of Gammatone filter
Static features
Numb_dctcs 13
DCTC_type FFT FFT, MEL , GAMMA (Gammatone)
Static_warp_type MEL NONE, MEL, BILINEAR
Static_Warp_factor 0.15
Dynamic features
Dyn_Type DCS DCS, DELTA
Numb_dyn_terms 3 Number of dynamic terms. It is inactive if

DELTA is chosen for Dynamic type.
Time_warp_type KAISER KAISER, GAUSSI, SIGMOI, NONSYM
Time_warp_factor 25
Block_length 151
Block_jump 4
BVF_norm_flag 0
BVT_norm_flag 0
Delta_window_length 2 Window length of ∆
Accelator_window_length 2 Window length of ∆-∆
Delta3_window_length 0 Window length of ∆-∆-∆
Pitch Features
Tracker_type NONE NONE, YAAPT, YIN, PRAAT
All_part_voice_yappt 0 Used to control all voiced (0) or partially voiced

(1) in YAPPT
Pitch_Normalization NONE NONE, MEAN, VARIANCE, BOTH
Use_term* NONE USER, NONE (NONE uses all features)

* For Use_term, there is a table at the end of the file. If this variable is set to NONE, this
table will be skipped, otherwise all the DCTCs and related DCSCs are used. Use_term is
basically used to eliminate some of the computed DCSC/DCSC terms from the feature
matrix.

Approved for Public Release; Distribution Unlimited.
100

9. REFERENCES

[1] R.E. Bellman, Dynamic Programming, Dover Publications Reprint edition, March 4,
2003.
[2] G.E. Peterson and H.L. Barney, "Control methods used in a study of the vowels," J.
Acoust. Soc. Am., vol.24, no.2, pp.175-184, March. 1952.
[3] H. Hermansky, "Perceptual linear prediction analysis of speech," J. Acoust. Soc. Am.,
vol.87, no.4, pp.1738-1752, Apr,1990.
[4] B.P. Bogert, M.J.R. Healy and J.W. Tukey, "The quefrency analysis of time series for
echoes: cepstrum, pseudo autocovariance, cross-cepstrum and Saphe cracking,"
Proceedings of the Symposium on Time Series Analysis (M. Rosenblatt, Ed) Chapter 15,
pp.209-243, New York: Wiley, 1963.
[5] E. Zwicker and H. Fastl, Psychoacoustics, Facts and Models, Chapter 3, pp.25-28,
Springer-Verlag 1990.
[6] J.S. Bridle and M.D. Brown, "An experimental automatic word-recognition system,"
JSRU Report, no.1003, Joint Speech Research Unit, Ruislip, England, 1974.
[7] S.S. Stevens, J. Volkmann and E.B. Newman, "A scale for the measurement of the
psychological magnitude pitch," J. Acoust. Soc. Am., vol.8, no.3, pp.185-190, 1937.
[8] X. Zhang, M.G. Heinz, I.C. Bruce, and L.H. Carney, "A phenomenological model for
the response of auditory-nerve fibers: I. nonlinear tuning with compression and
suppression," J.Acoust. Soc. Am., vol.109, no.2, pp.648-670, Feb.2001.
[9] H. Fletcher, "Auditory patterns," Reviews of Modern Physics, vol.12, Jan. 1940.
[10] D.W. Robinson and R.S. Dadson, "A redetermination of the equal-loudness relations
for pure tones," British Journal of Applied Physiology, vol. 7, pp.166-181, 1956.
[11] J. Makhoul, "Linear prediction: a tutorial review," Proceedings of the IEEE, vol.63,
pp.561-580, 1975.
[12] L. Rabiner and R. Schafer, Digital Processing of Speech Signals, Prentice Hall, Inc.,
Englewood Cliffs, New Jersey, 1978.
[13] P.D. Patterson, K. Robinson, J. Holdsworth, D. McKeown, C. Zhang, and M.H.
Allerhand, "Complex sounds and auditory images," in Auditory and Perception. Oxford,
UK: Y. Cazals, L. Demany, and K. Horner, (Eds), Pergamon Press, 1992, pp.429–446.
[14] M. Slaney, "An efficient implementation of the Patterson-Holdsworth auditory filter
bank," Apple Technical Report, no.35, Advanced Technology Group, Apple Computer,
Inc., Cupertino, CA, 1993.
[15] S. Memon, M. Lech and N. Maddage, "Speaker verification based on different
vector quantization techniques with Gaussian mixture models," in Third Int. Conf. on
Network and System Security, 2009, pp.403-408.
[16] H.S. Jayanna and S.R.M. Prasanna, "Fuzzy vector quantization for speaker
recognition under limited data conditions," TENCON 2008-IEEE Region 10 Conference,
2008, pp.1-4.
[17] J. Chen, K.K. Paliwal, M. Mizumachi and S. Nakamura, "Robust MFCCs derived
from different power Spectrum," in Eurospeech 2001, Scandinavia, 2001.
[18] C. Wang, Z. Miao and X. Meng, "Differential MFCC and vector quantization used
for real-time speaker recognition system," in IEEE Congress on Image and Signal
Processing, 2008, pp.319-323.

Approved for Public Release; Distribution Unlimited.
101

[19] R. Drullman, J.M. Festen and R. Plomp, "Effect of reducing slow temporal
modulations on speech reception," J. Acoust. Soc. Am., vol. 95(5), pp.2670-2680, 1994.
[20] M. Athineos, H. Hermansky and D.P.W Ellis, "LPTRAPS: linear predictive
temporal patterns," in Proc. of Interspeech, Jeju Island, Korea, pp. 1154-1157, 2004.
[21] F. Valente and H. Hermansky, "Hierarchical and parallel processing of modulation
spectrum for ASR applications," in ICASSP-2008, April 2008, pp.4165-4168.
[22] M. Kleinschmidt, "Methods for capturing spectro-temporal modulations in automatic
speech recognition," Acustica united with acta acustica, vol. 88, pp. 416–422, 2002.
[23] M. Kleinshmidt, "Localized Spectro-Temporal Features for Automatic Speech
Recognition," in Eurospeech 2003, Sept. 2003, Switzerland.
[24] T. Gramß, "Fast algorithms to find invariant features for a word recognizing neural
net," in IEEE 2nd International Conference on Artificial Neural Networks, Bournemouth,
1991, pp. 180–184.
[25] J. Allen, "Short term spectral analysis, synthesis, and modification by Discrete
Fourier Transform," IEEE Trans. Acoust., Speech, and Signal Processing, vol. ASSP-25,
no. 3, pp. 235-238, June. 1977.
[26] C. Kim and R.M. Stern, "Feature extraction for robust speech recognition using a
power-law nonlinearity and power-bias subtraction," in INTERSPEECH-2009, Sept.2009,
pp.28-31.
[27] D. O'Shaughnessy, Speech communication: human and machine. Addison-Wesley,
1987. pp.150.
[28] J.O. Smith and J.S. Abel, "The Bark bilinear transform," in Proceedings of the IEEE
Workshop on Applications of Signal Processing to Audio and Acoustics, New Paltz, New
York, IEEE Press, Oct. 1995.
[29] S. Wang, A. Sekey and A. Gersho, "An objective measure for predicting subjective
quality of speech coders," IEEE Journal on Selected Areas in Communications, vol.10,
no.5, pp.819-829, June 1992.
[30] H. Duifhuis, "Consequences of peripheral filter selectivity for nonsimultaneous
masking," J. Acoust. Soc. Am., vol.54, no.6, pp.1471-1488, 1973.
[31] G.M. Bidelman and A.S. Khaja, "Spectrotemporal resolution tradeoff in auditory
processing as revealed by human auditory brainstem responses and psychophysical
indices," Neuroscience Letters,vol. 572, pp. 53-57, 2014.
[32] M.J. Shailer and B.C.J. Moore, "Gap detection as a function of frequency,
bandwidth, and level," J. Acoust. Soc. Am., vol.74, no.2, pp.467-473, Aug. 1983.
[33] B.Meyer, S.V. Ravuri, M.R. Schadler and N. Morgan, "Comparing different flavors
of spectro-temporal features for ASR," in INTERSPEECH-2011, Aug.2011, pp.1269-
1272.
[34] D.A. Depireux, J.Z. Simon, D.J. Klein, and S.A. Shamma, "Spectro-temporal
response field characterization with dynamic ripples in ferret primary auditory cortex," J.
Neurophysiol.,vol.85, pp.1220–1234, 2001.
[35] W. Ge, "Two modified methods of feature extraction for automatic speech
recognition," Master thesis, Department of Electrical and Computer Engineering,
Binghamton University, Dec.2013.
[36] H. Hermansky and N. Morgan, "RASTA processing of speech," IEEE Trans. Speech
and Audio Processing, vol.2, no.4, pp. 578–589, 1994.

Approved for Public Release; Distribution Unlimited.
102

[37] H. Hermansky and S. Sharma, "TRAPS - Classifiers of temporal patterns," in
ICSLP, 1998, vol.3, pp. 1003–1006.
[38] X. Liu and S.A. Zahorian, "A unified framework for filterbank and time-frequency
basis vectors in ASR frontends," to appear in ICASSP-2015, Brisbane, Australia, Apr.
2015.
[39] B.Y. Chiu, R. Bhiksha and R.M. Stern, "Towards fusion of feature extraction and
acoustic model training: a top down process for speech recognition," in INTERSPEECH-
2009, Sept.2009, pp.32-35.
[40] B.Y. Chiu and R.M. Stern, "Analysis of physiologically-motivated signal processing
for robust speech recognition," in INTERSPEECH-2008, Sept.2008, pp.1000-1003.
[41] V. Zue, S. Seneff, and J. Glass, "Speech database development at MIT: TIMIT and
beyond," Speech Communication, vol. 9, pp. 351-356, 1990.
[42] S. Young et al., "The HTK Book (for HTK Version 3.4)," retrieved from
http://htk.eng.cam.ac.uk/. Cambridge University, revised for HTK Version 3.4 in March
2009.
[43] K. Lee and H. Hon, "Speaker-independent phone recognition using Hidden Markov
Models," IEEE Trans. on Acoust., Speech, and Signal Processing, vol.37, no. 11,
pp.1642-1648, Nov.1989.
[44] Z.B. Nossair, P.L. Silsbee and S.A. Zahorian, "Signal modeling enhancement for
automatic speech recognition," in Proceedings of ICASSP-95, vol. 1, pp.824-827, 1995.
[45] S.A. Zahorian and B. Wong, "Spectral amplitude nonlinearities for improved noise
robustness of spectral features for use in automatic speech recognition,” J. Acoust. Soc.
Am.,, vol. 130, no.4, pp.2524, 2011.
[46] N. Mesgarani, G.S.V.S. Sivaram, S.K. Nemala, M. Elhilali and H. Hermansky,
"Discriminant spectrotemporal features for phoneme recognition," in INTERSPEECH-
2009, Sept.2009, pp.2983-2986.
[47] A. L. Ronzhin, R. M. Yusupov, I. V. Li, and A.B. Leontieva, “Survey of Russian
Speech Recognition Systems,” in Proc. SPECOM ’06, St. Petersburg, Russia, pp. 54 –
60, June 2006.
[48] A. L. Ronzhin and A. A. Karpov, “Large Vocabulary Automatic Speech Recognition
for Russian Language,” SPIIRAS, St. Petersburg, Russia, 2006.
[49] A. A. Zaliznjak, Grammatical Dictionary of the Russian Language, 4th edition,
Moscow, Russia, 2003.
[50] S. Zablotskiy, A. Shvets, M. Sidorov, E. Semenkin and W. Minker, “Speech and
Language Resources for LVCSR of Russian,” Institute of Communications Engineering,
University of Ulm, Germany, 2012.
[51] E. Whittaker and P. Woodland, “Comparison of Language Modelling Techniques for
Russian and English,” in Proc. ICSLP ’98, Sydney, Australia, 1998.
[52] E. Whittaker and P. Woodland, “Particle-based language modelling,” in Proc.
ICSLP ’00, Beijing, China, Oct. 2003.
[53] Kuznetsova, А. I. and Т. F. Efremova, Dictionary of Morphemes of the Russian
Language, 1986.
[54] Russian Grammar – Morpheme database, Institute of Russian Language, RAS,
http://rusgram.narod.ru/morf1t.html, 2014.
[55] A. N. Tikhonov, Morphemic Spelling Dictionary, Astrel, 2002,
http://slovari.yandex.ru/.

Approved for Public Release; Distribution Unlimited.
103

[56] Decomposer, http://slovonline.ru/slovar_sostav/.
[57] D. Kanevsky, M. Monkowski, and J. Sedivy, “Large vocabulary speaker-
independent continuous speech recognition in Russian language,” in Proc. SPECOM ’96,
St. Petersburg, Russia, pp. 28 – 31, 1996.
[58] V. A. Barannikoff , and A. A. Kibkalo, “The software package for constructing
speech recognition systems,” In Proc. of the III All-Russian Conference "Theory and
practice of speech research" APCO-2003, Moscow State University, Moscow, Russia, pp.
7 – 12, 2003.
[59] A. A. Karpov and A. L. Ronzhin, “Speech Interface for Internet Service Yellow
Pages,” in Proc. International IIS: IIPWM'05, Gdansk, Poland, pp. 219 – 228, June 13-
16, 2005.
[60] S. Young et al., The HTK Book, Cambridge University, 2009.
[61] S. A. Zahorian et al., “Open Source Multi-Language Audio Database for Spoken
Language Processing Applications,” in Proc. INTERSPEECH, 12th Annual Conference
of the International Speech Communication Association, Florence, Italy, August 27-31,
2011.
[62] E. W. D. Whittaker, “Statistical Language Modelling for Automatic Speech
Recognition of Russian and English,” PhD Dissertation, University of Cambridge,
Cambridge, 2000.
[63] A. L. Ronzhin and A. A. Karpov, “Implementation of Morphemic Analysis for
Russian Speech Recognition,” in Proc. SPECOM ’04, St. Petersburg, Russia, pp. 291-
296, 2004.
[64] Z.-H. Tan and B. Lindberg, “Low-complexity variable frame rate analysis for speech
recognition and voice activity detection,” IEEE J. of Selec. Top. in Sig. Proc., vol. 4, no.
5, pp. 798 – 807, 2010
[65] Milner, B., “Inclusion of Temporal Information into Features for Speech
Recognition,” Proc. ICSLP 96, pp. 256-259, 1996.
[66] Qifeng Zhu and Abeer Alwan, “On the use of variable frame rate analysis in speech
recognition,” ICASSP, pp. 3264–3267, 2000.
[67] K.M. Pointing and S.M. Peeling, “The use of variable frame rate analysis in speech
recognition,” Computer Speech and Language, vol. 5, no. 2, pp. 169–179, April 1991.
[68] Philippe Le Cerf and Dirk Van Compernolle, “A new variable frame rate analysis
method for speech recognition,” IEEE Signal Processing Letter, vol. 1, no. 12, pp. 185–
187, December 1994.
[69] J. Macías-Guarasa, J. Ordónez, et al., “Revisiting scenarios and methods for variable
frame rate analysis in automatic speech recognition,” Eurospeech, pp. 1809–1812, 2003.
[70] Zahorian, S. and Jagharghi, A. “Spectral-shape Features versus Formants as
Acoustic Correlates for Vowels,” J. Acoust. Soc. Amer., vol. 94, pp 1966-1982, 1992.
[71] L. Rabiner and B. H. Juang, Fundamentals of speech recognition.: Prentice-Hall,
Inc., 1993.
[72] S. B. Davis and P. Mermelstein, "Comparison of parametric representations for
monosyllabic word recognition in continuously spoken sentences," IEEE Trans. on
Acoustics, Speech and Signal Processing, vol. 28, pp. 357-366, 1980.
[73] H. You, Q. Zhu, and A. Alwan, “Entropy-based variable frame rate analysis of
speech signals and its application to ASR”, in Proc. IEEE ICASSP, 2004.”

Approved for Public Release; Distribution Unlimited.
104

[74] Furui, S., “On the Use of Hierarchical Spectral dynamics in Speech Recognition,”
Proc. ICASSP 90, pp. 789-792, 1990.
[75] Furui, S., “Speaker-Independent Isolated Word Recognition Using Dynamic
Features of Speech Spectrum,” IEEE Trans. ASSP, vol. 34, pp. 52-59, February 1986.
[76] S. J. Young et al., HTK: Hidden Markov Model Toolkit V3.4, Reference Manual.
Cambridge, U.K.: Cambridge Univ. Speech Group, 2004.
[77] S.J.Young, J.J.Odell,P.C.Woodland, "Tree-Based State Tying for High
AccuracyAcoustic Modelling," Cambridge University, Engineering Department.

Approved for Public Release; Distribution Unlimited.
105

APPENDIX A – PUBLICATIONS AND PRESENTATIONS

A1 X. Liu and S.A. Zahorian, A Unified Framework for Filterbank and Time-Frequency
Basis Vectors in ASR Frontends, accepted for publication in ICASSP 2015, April 2015

Approved for Public Release; Distribution Unlimited.
106

A UNIFIED FRAMEWORK FOR FILTERBANK AND TIME-FREQUENCY BASIS VECTORS
IN ASR FRONTENDS

Xiaoyu Liu, Stephen A. Zahorian

Department of Electrical and Computer Engineering, Binghamton University,
Binghamton, NY, 13902, USA

ABSTRACT

For many years, filterbanks have been widely used as one step
of frontend feature extraction for Automatic Speech
Recognition (ASR). In this paper, we propose a unified
framework for ASR frontends, by first moving the nonlinear
amplitude scaling, and then combining the filterbank weights
with the cosine basis vectors. As part of this framework, we
show that the delta terms used to encode feature dynamics can
be viewed as one realization of a set of “unified” basis vectors
over time. With this framework, frontends can be developed,
analyzed and evaluated through their basis vectors over
frequency and time.

Index Terms— Filterbank, spectro-temporal, unified, basis
vector, frontend

1. INTRODUCTION

For many years, filterbanks, implemented as weighted sums of
FFT magnitudes, are widely used as a frontend processing step
for ASR systems. Figure 1(a) is a block diagram of the
filterbank-based feature extraction approach. One commonly
used version of this approach is to compute Mel Frequency
Cepstral Coefficients (MFCCs) [1]. The MFCC features are
computed using a set of triangular bandpass filters
approximately logarithmically spaced above 1 kHz to map the
short time power in the Hz domain to the Mel domain. In recent
years, various enhanced MFCC algorithms have been
developed. In [2], a SMFCC algorithm incorporates the pitch
frequency information in building the filterbank, and in [3], the
spectral envelope of the voiced frames is enhanced to improve
the noise-robustness of the MFCCs.

To extract features from the amplitude-scaled output of the
filterbank, the Discrete Cosine Transform (DCT) is computed
using “half” cosine multiple basis vectors. The feature
calculation using these “regular” cosine basis vectors is given
by equation (1) as:

 𝐷𝐷𝐶𝐶𝐷𝐷𝐶𝐶(𝑖𝑖) = �2
𝑁𝑁
�𝐹𝐹�𝑃𝑃(𝑗𝑗)� cos�

π𝑖𝑖
𝑁𝑁

(𝑗𝑗 − 0.5)�
𝑁𝑁

𝑗𝑗=1

 (1)

where 𝐷𝐷𝐶𝐶𝐷𝐷𝐶𝐶(𝑖𝑖) is the ith DCT coefficient, N the total number
of filter channels, P(j) the output power of the jth channel, and
a() the amplitude scaling function. The DCT coefficients are
similar to the principal components of the spectrum. In [4], a
Distributed DCT (DCT-II) method is presented to remove the

correlation between filterbank outputs more completely, which
leads to a more compact set of cepstral features.

As pointed out in [5,6,7,8], the delta and acceleration
terms of the DCTCs greatly help to improve the system
accuracy since these time derivatives capture the dynamic
behavior of adjacent coefficients. The delta terms are computed
through equation (2), where 𝛩𝛩 is the window length in frames,
and higher order terms are the deltas of lower order ones.

 ∆(𝑡𝑡) =
∑ 𝜃𝜃(𝐷𝐷𝐶𝐶𝐷𝐷𝐶𝐶𝑡𝑡+𝜃𝜃 − 𝐷𝐷𝐶𝐶𝐷𝐷𝐶𝐶𝑡𝑡−𝜃𝜃)𝛩𝛩
𝜃𝜃=1

2∑ 𝜃𝜃2𝛩𝛩
𝜃𝜃=1

 (2)

Fig.1. Block diagrams of the filterbank-type frontend (a), the
unified structure (b), and the spectro-temporal system (c) in [9].

Spectro-temporal frontends capture much more detailed
dynamic information of the spectrum than the time derivative
terms. The work in [9] provides finer time resolution by
weighting time blocks of the static features with a set of
Discrete Cosine Series (DCS) expansion, and in [10], parallel
and hierarchical structures are developed based on a temporal
filterbank and in [11], two-dimensional Gabor-type features are
obtained to describe the diagonal spectro-temporal patterns.

In our work, we propose a unified framework for ASR
frontends, which is built upon a set of unified basis vectors over
time and frequency. The nonlinear amplitude scaling is moved
to immediately after the FFT magnitude step. Under this
framework, frontend systems, such as (but not limited to) [9,
11], can be characterized entirely through the unified basis

Approved for Public Release; Distribution Unlimited.
107

vectors, which thus gives a common yardstick for analyzing
frontends. We also discuss other potential benefits of this
perspective.

2. A UNIFIED FRAMEWORK

2.1. Moving the amplitude scaling to the ‘front’

It’s interesting to note that if we move the nonlinear amplitude
scaling in Figure 1(a) to before the filterbank, the filterbank
weights can then be combined with the regular basis vectors by
a simple matrix multiplication. However, this switching should
be justified by inherent auditory properties as well as ASR
experiments.

Physiologically, as the sound wave travels along the
basilar membrane in the cochlea, different frequency
components cause the amplitude of the basilar membrane
vibration at different areas. Thus, auditory models, such as the
Seneff model [12], use filterbanks to represent this frequency
analysis property. The bandwidth is designed to match the ears
resolution. The membrane vibration causes electrochemical
transformation by the hair cells in corresponding areas of the
membrane, thus “fires” the neurons by sending out spikes with
a certain strength. The nonlinear amplitude scaling
characterizes the neuron firing rate varying with different sound
intensities. A commonly used nonlinearity is the logarithmic
compression. However, indicated by more sophisticated
auditory models such as [13], this neuron firing curve shows an
“S” shape, thus, can be better approximated by a power-law
function [14].

Based on this physiological scheme, it’s not completely
accurate to say whether the nonlinear scaling should be before
or after the filterbank in a rigorous sense because the
nonlinearity should also be frequency-dependent, since the hair
cells at different areas of the basilar membrane shows distinct
sensitivity to the sound intensity. Directly mapping the original
spectrum with the nonlinearity inherently eliminates this
distinction. However, we place the nonlinearity before the
filterbank since (1) frequency-independency simplification is
made and experimentally justified by ASR systems, such as
MFCC and PLP [15], which uses an equal-loudness curve to
compensate for the simplification, (2) based on (1), there is no
compelling evidence as to where the nonlinearity should be
placed, (3) experimentally, we will show that it does not matter
much to move the nonlinearity to before the filterbanks, and
(4), as discussed below it allows the system unification which
brings benefits.

2.2. Unified basis vectors

First, with the amplitude scaling moved, it’s easy to create a set
of “unified” static basis vectors by a matrix product. Suppose
the rows of the matrix W contain the filterbank channel
response, and the rows of 𝑩𝑩𝑩𝑩𝑩𝑩𝒓𝒓𝒓𝒓𝒓𝒓 contain the regular static
cosine basis vectors, the unified version 𝑩𝑩𝑩𝑩𝑩𝑩𝒖𝒖𝒖𝒖𝒖𝒖 is given in (3),
and the amplitude-scaled FFT spectrum is weighted by 𝑩𝑩𝑩𝑩𝑩𝑩𝒖𝒖𝒖𝒖𝒖𝒖
to obtain the static DCTCs.
 𝑩𝑩𝑩𝑩𝑩𝑩𝒖𝒖𝒖𝒖𝒖𝒖 = 𝑩𝑩𝑩𝑩𝑩𝑩𝒓𝒓𝒓𝒓𝒓𝒓𝑾𝑾 (3)

In the standard MFCC framework, the dynamic (∆)
features are computed from the static DCTCs, using Eq.2. Here

we show that the ∆ terms can also be computed using basis
vector manipulations. From (2), to compute any nth order
differential term, its basis vector with respect to the previous
lower order (neglecting the constant denominator) is given by
𝒃𝒃𝒗𝒗𝐹𝐹 = [−𝜃𝜃𝐹𝐹 ,−𝜃𝜃𝐹𝐹 + 1, … ,0,1, … 𝜃𝜃𝐹𝐹] , where 𝜃𝜃𝐹𝐹 is the window
length. If we view 𝒃𝒃𝒗𝒗𝐹𝐹 as a discrete signal, with each element
representing both the amplitude and the time index (i.e. [-2,-
1,0,1,2] gives a signal whose magnitude is -2 at index -2, and -1
at index -1, etc.), then, the nth order basis vector with respect to
the DCTCs can be computed as:

 𝒃𝒃𝒗𝒗𝑩𝑩𝒖𝒖 = 𝒃𝒃𝒗𝒗𝟏𝟏 ⊛ 𝒃𝒃𝒗𝒗𝟐𝟐 …⊛𝒃𝒃𝒗𝒗𝐹𝐹 (4)

where ⊛ is the convolution operator, and each 𝒃𝒃𝒗𝒗𝒖𝒖 is the ith
order basis vector in terms of its previous lower order. Thus,
putting all 𝒃𝒃𝒗𝒗𝑩𝑩𝒖𝒖 , including the zeroth order, into rows of a
unified dynamic basis vector matrix 𝑩𝑩𝑩𝑩𝑩𝑩𝒖𝒖𝒖𝒖𝒖𝒖, the final feature
matrix F at the output is given by (5), where 𝐹𝐹(𝑿𝑿) is the
amplitude-scaled FFT spectrum.

 𝑩𝑩 = 𝑩𝑩𝑩𝑩𝑩𝑩𝒖𝒖𝒖𝒖𝒖𝒖 ∙ [𝑩𝑩𝑩𝑩𝑩𝑩𝒖𝒖𝒖𝒖𝒖𝒖 ∙ 𝐹𝐹(𝑿𝑿)]𝑇𝑇 (5)

2.3. Discussion

In this section, we present a detailed discussion on the
significance/applications of this unified frontend perspective,
whose block diagram is depicted in Figure 1(b).

First, it’s important to note that 𝑩𝑩𝑩𝑩𝑩𝑩𝒖𝒖𝒖𝒖𝒖𝒖 and 𝑩𝑩𝑩𝑩𝑩𝑩𝒖𝒖𝒖𝒖𝒖𝒖 in (5)
can take on any generalized forms, though they are derived
from a specific category of frontends. On a higher level, Eq.5
shows that features can be viewed as a series of linear
transformations of the spectrum scaled by an auditory
nonlinearity, with optional peripheral nonlinearities in between
(dashed blocks in the diagram). These linear transformations
are represented by the unified basis vectors. Filterbanks (or
other parts) exert their impact on system quality by shaping the
basis vectors implicitly. Thus, the unified basis vectors hold
and determine the properties of a frontend. In this sense, the
scheme gives us a common “yardstick” to analyze and compare
frontends which appear to be different or similar based on the
properties of the unified basis vectors.

The first example to illustrate this point is the comparison
between the “standard” MFCC and the spectro-temporal system
in [9], whose diagram is given in Figure 1(c). It’s important to
emphasize that in the unified framework, both systems compute
features in a mathematically identical manner, and the only
difference lies in the unified basis vector forms. In [9], in
computing the DCTCs, the ith basis vector 𝜙𝜙𝑖𝑖(𝑓𝑓) over
frequency 𝑓𝑓 is given by (6):

 𝜙𝜙𝑖𝑖(𝑓𝑓) = cos[𝜋𝜋𝑖𝑖 ∙ 𝑔𝑔(𝑓𝑓)] ∙
𝑑𝑑𝑔𝑔
𝑑𝑑𝑓𝑓

 (6)

where 𝑔𝑔(𝑓𝑓) is a frequency warping function. In Figure 2, we
plot the first 3 basis vectors (left) with 𝑔𝑔(𝑓𝑓) set to a Mel-shape
warping (right), and in Figure 3, we also plot the first 3 unified
basis vectors in the MFCC using a 26-channel Mel filterbank.

The unified basis vectors produced by the Mel filterbank
are less smooth than the ones generated by the Mel-shape
warping. In Figure 2, the Mel scale is represented in a
continuous manner; however, for the case in Figure 3, the basis
vectors are computed using a 26 step quantized Mel scale.

Approved for Public Release; Distribution Unlimited.
108

Thus, we might expect finer frequency resolution for the Mel-
shape warping approach, which might lead to better recognition
accuracy. However, the difference should be small, since they
are essentially two ways of implementing a Mel warping,
which can be seen by the similarities of the basis vectors.

Fig2. First 3 DCTC basis vectors (left) with an embedded Mel-
shape warping (right) in the system of [9].

Fig.3. First 3 unified DCTC basis vectors for the standard MFCC
frontend. A 26-channel Mel filterbank is combined with regular
cosine basis vectors.

To obtain dynamic features, the system in [9] uses a set of
Discrete Cosine Series (DCS) basis vectors to weight the time
blocks of the DCTCs. The ith DCS basis vector is defined in
(7):

 𝜓𝜓𝑖𝑖(𝑡𝑡) = cos[𝜋𝜋𝑖𝑖 ∙ ℎ(𝑡𝑡)] ∙
𝑑𝑑ℎ
𝑑𝑑𝑡𝑡

 (7)

where ℎ(𝑡𝑡) is a time warping function. Again, the first 3 DCS
basis vectors are plotted in Figure 4 (left) with a continuous
Kaiser window as the time warping, and in the right panel, the
first 3 differential basis vectors are presented, with BV0 refers
to the zeroth order in both cases.

Fig.4. First 3 DCS (left) and differential (right) basis vectors in
computing the dynamic features in system [9] and MFCC.

Clearly, the discrete differential (indicated by markers) and
continuous DCS basis vectors are very different, both from
their “look” and the logic used to derive them. However, as
they are put into the same unified framework, we are able to
analyze system properties through these basis vectors. If we
compare the zeroth order, DCS from [9] puts more weight on

the block center and gradually reduces on both sides, whereas
the differential case uses only the block center term. We infer
that DCS from [9] may provide finer time resolution by
“magnifying” details on different sections of a block through its
basis vectors.

Another system that can be analyzed in the unified
framework is found in [11,16], where a set of Gabor filter
based features are proposed to capture the Localized Spectro-
Temporal Features (LSTFs). However, the work of [17] shows
that LSTFs can be obtained through weighting a rotated
spectrum by the basis vectors, and since rotation of the
spectrum is equivalent to rotating the basis vectors, the LSTF
frontends are covered by the unified framework. In [17],
phonetic recognition results are obtained at different angles of
the rotation, which can be visualized and thus analyzed by the
rotated basis vectors.

Potentially superior features can also be developed through
the unified concept. As one example, motivated by the time-
frequency resolution insight of the unified basis vectors, the
static and dynamic basis vector steps could be interchanged.
This would allow the use of frequency-dependent dynamic
basis vectors, with better time resolution for the higher
frequency terms. Specifically, for a time-frequency block of the
spectrum, first fix the frequency index, and weight the
spectrum by a set of basis vectors over time, in which the time
warping is a two-dimensional function that has broader shape at
low frequencies than at high frequencies. Then, use another set
of basis vectors over frequency to weight the output of the
previous step, in which a frequency warping is embedded. As
another example, motivated by the general forms of the unified
basis vectors, we can use a non-symmetric time warping
window that emphasizes more on the left section of the block
than on the right. The auditory clue is in [18], that the left
context of a phoneme is more informative than the right
context. Two Gaussian windows with different variances can
be combined to construct this warping.

However, it should be pointed out that there are limitations
to this unified framework. It should not be viewed as a
framework that replaces frontends, nor even accounts for all of
them (e.g. PLP). However, for many cases, it reveals the
essence of features with a straightforward tool, the unified basis
vectors, as a linear transformation. Possibly more effective
systems can be developed. For frontends which might not fully
fall into this structure, their system properties can still be
studied with the view presented here. Also, the filterbank and
the regular basis vectors can still be implemented in two
separate steps as needed, to allow various techniques, such as
the PNCC algorithms [14,19] to be inserted.

3. EXPERIMENTAL EVALUATION

The goal of this section is to present the system performance
purely in terms of the unified basis vectors built from various
filterbanks and the system in [9]. Extensive tests were also
conducted to determine the effects of moving the nonlinearity.

3.1. Phonetic level recognition task

A 39 phoneme recognition task with TIMIT was conducted.
3696 and 1344 utterances (SA sentences removed) were used
for training and testing respectively. 48 3-state 32-Gaussian-

0 2000 4000 6000 8000
-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

Frequency (Hz)

A
m

pl
itu

de

BV0
BV1
BV2

BV0

BV2

BV1

-150 -100 -50 0 50 100 150
-0.3

-0.2

-0.1

0

0.1

0.2

Time (msec)

A
m

pl
itu

de

BV0

BV1

BV2

BV0

BV1

BV2

-60 -40 -20 0 20 40 60
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Time (msec)

A
m

pl
itu

de

BV0
BV1
BV2

BV0

BV1
BV2

Approved for Public Release; Distribution Unlimited.
109

mixture monophone HMMs were trained by HTK 3.4, and a
phonetic bigram language model was used for decoding.
Throughout this subsection, the optimal frame length and space
for differential dynamic basis vectors were 25ms and 10ms
respectively, and for the example spectral-temporal system of
[9] were 8ms and 2ms. The optimal block length and space for
computing DCSCs were 302ms and 8ms (151 and 4 frames). 26
and 40 channels were used for Mel and gammatone filterbank
derived basis vectors respectively. The gammatone was
implemented as in [20].

In Table 1, we examine the effect of placing the amplitude
scaling before the filterbank. Logarithmic and power functions
were tested. For the Mel and gammatone cases, the static and
dynamic basis vectors were 12 regular cosine as in Eq.1 (plus
one log-energy term) and delta/acceleration (39 features in
total), and the power was set to 0.1. To make more thorough
tests of moving the nonlinearity, PLP frontends were also
implemented, though the analysis of this frontend in the unified
framework may not be straightforward. MATLAB code to
obtain the PLP results can be found in [21], where 16
trapezoids were used as the filterbank with a Hynek’s ‘magic’
equal-loudness curve built into the weights, and the power
value was 0.33. 12 static terms were obtained from the LPC
cepstral recursion. The dynamics were delta and acceleration.
In the baseline cases (bolded), the amplitude scaling was placed
after the filterbanks.

Table 20. Phonetic accuracy (%) of placing the amplitude scaling
before/after the filterbanks

Moving the amplitude scaling to before the FB results in

only a negligible decrement in performance. Table 2 varies the
combinations of static/dynamic basis vectors, and numbers of
dynamic terms. 13 static terms including log-energy was used
with either filterbanks (Fig.3) or a Mel-shape warping (Fig.2)
built into the unified basis vectors. The baselines are again
bolded. A logarithmic nonlinearity before filterbanks was used.

Table 2. Phonetic accuracy (%) using different unified
static/dynamic basis vectors

First, with the same amount of features, the combination of

FFT+DCTC with Mel-shape warping and DCS cases are better
than the bolded baselines (larger difference with 52 features).
This is consistent with the finer frequency resolution reflected
by the static basis vectors (compare Figure 2 and 3), and also
better time resolution of the dynamic basis vectors (Figure 4).

Also, note that if we compare the 39 and 52 feature cases,
adding one more DCS basis vector brings much more
significant improvement than adding one more differential
basis vector. This again, shows that more DCS effectively
provides finer temporal information.

3.2. Word level recognition task

In this section, we report word (actually character) level
recognition to confirm the findings with the phonetic
experiments. 37116 utterances spoken by 78 women speakers
from the 863 Mandarin Chinese database were used as training
data (about 40 hours in total), and another 5 women speakers
(3125 utterances) were used as a test data. 16-mixture cross-
word triphones and a 5868-word bigram model were trained for
decoding. Throughout this section, we use character percentage
accuracy as the evaluation measurement.

In Table 3, we repeated the cases in Table 1 to further
confirm the validity of moving the amplitude scaling. The setup
parameters for the frontends were identical to those in Table 1.
The baselines are bolded.

Table 3. Character accuracy (%) of placing the amplitude scaling
before/after the filterbanks

These results strengthen the validity of moving the

amplitude scaling. In Table 4, we present two pairs of
comparisons on different static/dynamic settings. The optimal
frame length/space for the DCS scenarios were 10ms/2ms (for
the Mel+regular cosine case) and 25ms/2ms (for the
FFT+DCTC with Mel warping case). The optimal block
length/space of DCS were 142ms/14ms for both. A logarithm
scaling was placed after the filterbanks. Baselines are bolded.

Table 4. Character accuracy (%) using different unified
static/dynamic basis vectors

Again, the FFT Mel warping is better than the filterbank

Mel warping. The DCS is superior to differential dynamic basis
vectors. We predict that with such high-dimensional features,
the improvements would be more obvious with 32-mixture
models, as shown in Table 2 for phonetic recognition.

4. CONCLUSIONS AND FUTURE WORK

In this work, we developed a unified framework by moving the
amplitude scaling and modifying the basis vectors. Insights and
useful applications were discussed in detail using examples.
Extensive experiments confirmed the rearrangement of the
nonlinearity. Also, various basis vector combinations were
examined to show their determinant impacts on the system
performance. Advanced frontend features will be developed
based on this unified structure in our future work.

Approved for Public Release; Distribution Unlimited.
110

5. ACKNOWLEDGEMENT

This research is sponsored by the Air Force Research
Laboratory under agreement number FA87501210093. The
U.S. Government is authorized to reproduce and distribute
reprints for governmental purposes notwithstanding any
copyright notation thereon. The views and conclusions
contained herein are those of the authors and should not be
interpreted as necessarily representing the official policies or
endorsements, either expressed or implied, of the Air Force
Research Lab or the U.S. Government.

6. REFERENCES

[1] J.S. Bridle and M.D. Brown, “An Experimental Automatic
Word-Recognition System,” JSRU Report, no.1003, Joint Speech
Research Unit, Ruislip, England, 1974.

[2] J. Wu and J. Yu, “An Improved Arithmetic of MFCC in Speech
recognition System,” in IEEE Int. Conf. Electro., Comm., and
Control, Sept.2011, pp.719-722.

[3] K. Kaewtip, L.N. Tan and A. Alwan, “A Pitch-Based Spectral
Enhancement Technique for Robust Speech Processing,” in
INTERSPEECH-2013, Aug.2013, pp.3284-3288.

[4] M.A. Hossan, S. Memon and M.A. Gregory, “A Novel
Approach for MFCC Feature Extraction,” in IEEE 4th Int. Conf. on
Signal Processing and Communication Systems, Dec.2010.

[5] S. Memon, M. Lech and N. Maddage, “Speaker Verification
Based on Different Vector Quantization Techniques With Gaussian
Mixture Models,” in Third Int. Conf. on Network and System
Security, 2009, pp.403-408.

[6] H.S. Jayanna and S.R.M. Prasanna, “Fuzzy Vector
Quantization for Speaker Recognition under Limited Data
Conditions,” TENCON 2008-IEEE Region 10 Conference, 2008,
pp.1-4.

[7] J. Chen, K.K. Paliwal, M. Mizumachi and S. Nakamura,
“Robust MFCCs Derived From Different Power Spectrum,” in
Eurospeech 2001, Scandinavia, 2001.

[8] C. Wang, Z. Miao and X. Meng, “Differential MFCC and
Vector Quantization Used for Real-Time Speaker Recognition
System,” in IEEE Congress on Image and Signal Processing,
2008, pp.319-323.

[9] S.A. Zahorian, H. Hu, Z. Chen and J. Wu, “Spectral and
Temporal Modulation Features for Phonetic Recognition,” in
INTERSPEECH-2009, Sept. 2009, pp.1071-1074.

[10] F. Valente and H. Hermansky, “Hierarchical and Parallel
Processing of Modulation Spectrum for ASR Applications,” in
ICASSP-2008, April 2008, pp.4165-4168.

[11] M. Kleinshmidt, “Localized Spectro-Temporal Features for
Automatic Speech Recognition,” in Eurospeech 2003, Sept. 2003,
Switzerland.

[12] S. Seneff, “A Joint Synchrony/Mean Rate Model of Auditory
Speech Processing,” Journal of Phonetics, 16, pp.55-76, 1988.

[13] X. Zhang, M.G. Heinz, I.C. Bruce, and L.H. Carney, “A
Phenomenological Model for the Response of Auditory-Nerve
Fibers: I. Nonlinear Tuning With Compression and Suppression,”
J.Acoust. Soc. Am., vol.109, no.2, pp.648-670, Feb.2001.

[14] C. Kim and R.M. Stern, “Feature Extraction for Robust
Speech Recognition Using a Power-Law Nonlinearity and Power-
Bias Subtraction,” in INTERSPEECH-2009, Sept.2009, pp.28-31.

[15] H. Hermansky, “Perceptual Linear Prediction Analysis of
Speech,” J. Acoust. Soc. Am., vol.87, no.4, pp.1738-1752, Apr,
1990.

[16] B.Meyer, S.V. Ravuri, M.R. Schadler and N. Morgan,
“Comparing Different Flavors of Spectro-Temporal Features for
ASR,” in INTERSPEECH-2011, Aug.2011, pp.1269-1272.

[17] W. Ge, “Two Modified Methods of Feature Extraction for
Automatic Speech Recognition,” Master thesis, Department of
Electrical and Computer Engineering, Binghamton University,
Dec.2013.

[18] N. Mesgarani, G.S.V.S. Sivaram, S.K. Nemala, M. Elhilali
and H. Hermansky, “Discriminant Spectrotemporal Features for
Phoneme Recognition,” in INTERSPEECH-2009, Sept.2009,
pp.2983-2986.

[19] C.Kim and R.M. Stern, “Power-Normalized Cepstral
Coefficients (PNCC) for Robust Speech Recognition,” in ICASSP-
2012, March 2012, pp.4101-4104.

[20] M. Slaney, “Auditory Toolbox Version 2,” Interval Research
Corporation Technical Report, no.10, 1998.

[21]. D. Ellis. (2006) PLP and RASTA (and MFCC, and inversion)
in MATLAB using melfcc.m and invmelfcc.m. [Online].Available:
http://labrosa.ee.columbia.edu/matlab/rastamat/

Approved for Public Release; Distribution Unlimited.
111

A2 X. Liu and S.A. Zahorian, Combined PNCC Feature Extractor for Robust Speech Recognition,
CHINASIP 2014, August 2014.

Approved for Public Release; Distribution Unlimited.
112

COMBINED PNCC FEATURE EXTRACTOR FOR ROBUST SPEECH RECOGNITION

Xiaoyu Liu, Stephen A. Zahorian

Department of Electrical and Computer Engineering, Binghamton University,
Binghamton, NY 13902, USA

ABSTRACT

Recently, two major types of Power-Normalized Cepstral
Coefficients (PNCCs) were proposed as noise robust Automatic
Speech Recognition (ASR) front-end. All the literatures for these
two PNCCs assume clean training data and clean or noisy test data.
However, we find that one PNCC method has good performance
for the clean training/noisy test scenario, but degrades when test
data is cleaner than the training data. The other PNCC method
performs relatively better for noisy training/clean test conditions,
but is not very robust for the clean training/noisy test conditions.
We propose Combined PNCC (C-PNCC) algorithm, which is
superior to both previous PNCCs for clean training/noisy test
cases, and which also has reasonably good performance for noisy
training/clean test conditions.

Index Terms— C-PNCC, G-PNCC, L-PNCC, front-end,
noise reduction

1. INTRODUCTION

Two major types of PNCC feature extractors were recently
proposed in [1] and [2]. They have been proved to be superior to
many other front-end features in many aspects. PNCCs obtain
much better performance in dealing with non-stationary noise
(such as background music) than Spectral Entropy based method in
[3] and Voice Activity Detection based method in [4] since the
spectral distribution of non-stationary noise cannot be as easily
distinguished from speech spectrum as that of stationary noise.
PNCCs also require much less computations while gain better
accuracy than Vector Taylor Series algorithm in [5]. In addition,
the power normalization part in PNCCs was also integrated into
other front-end processing to improve the noise robustness, such as
the Invariant-Integration Features (IIF) and Delta-Spectral Cepstral
Coefficients (DSCC) front-ends in the work of [6] and [7], both of
which use the noise estimation algorithms in PNCCs.

The detailed descriptions for the first PNCC is given in [1],
and is abbreviated as G-PNCC in our work. This PNCC does not
use noise reduction in the training phase. In testing, it iteratively
subtracts time-constant noise estimate from a channel until the
ratio of the Arithmetic Mean to Geometric Mean (AM-GM) of that
channel achieves that of the training database. The second PNCC is
described in [2], and is denoted as L-PNCC in our paper. L-PNCC
uses the time-varying lower envelope of the power sequence as a
noise estimate for each channel. This lower envelope is computed
by an Asymmetric Noise Suppression (ANS) filter. The noise
subtraction is applied to both training and testing data.

Both PNCCs were studied under clean training/noisy testing
conditions in [1,2]. However, in practice, especially in ASR
industry, it is not easy to always obtain clean training corpora. We
found that G-PNCC generally had higher accuracy than L-PNCC

under clean training/noisy testing conditions, whereas L-PNCC
worked better along the other way. In this paper, we developed a
Combined PNCC (C-PNCC) algorithm that combines and
enhances the advantages of both G-PNCC and L-PNCC. Extensive
experiments showed that C-PNCC was superior to both previous
PNCCs for clean training/noisy testing conditions, and also
achieved reasonably good performance for noisy training/clean test
environment.

2. COMBINED PNCC

2.1. Training

Figure 1 is the block diagram of the training phase of C-PNCC.
After a pre-emphasis filter and 256-point magnitude squared
STFT, each 15ms frame is weighted by a 40-channel gammatone
filter bank. The short time power output sequence of each channel i
is mapped to the medium-duration power domain by averaging
over 2𝑀𝑀1 + 1frames centered at the current frame according to
equation (1):

𝑄𝑄(𝑖𝑖, 𝑗𝑗) =

1
2𝑀𝑀1 + 1 � 𝑃𝑃(𝑖𝑖, 𝑗𝑗′)

𝑗𝑗′=𝑗𝑗+𝑀𝑀1

𝑗𝑗′=𝑗𝑗−𝑀𝑀1

 (1)

where i is channel index, j the frame index, and P(i,j) the
gammotone short time output power.

A weakness of G-PNCC is that it does not remove any noise
in the training database. Thus, matching the AM-GM ratio of the
test data, which is mathematically proved in [8] to be an increasing
function of the channel SNR, to that of the training data degrades
the performance if test data is cleaner than training data. To
address this issue, we pre-process each training utterance by
subtracting the lower envelope of each channel i in each training
sentence. This lower envelope is computed by an Asymmetric
Noise Suppression (ANS) filter, whose detailed description is
given by [2]. Figure 2 depicts the 8th gammatone channel medium-
duration power sequence and its lower envelope of a 0dB case
(additive street noise). This lower envelope can be viewed as a
simple version of the Minimum Statistics noise estimation
algorithms in [9,10], where the estimation starts from the minimum
power of a window and recursively adjusts its value by minimizing
the estimation mean square error. As Figure 2 shows, the lower
envelope tends to bias toward lower values. We will explain how
to compensate this bias in the testing phase. As a preprocessing
step, it has great simplicity. Furthermore, the amplitude of this
estimate is time-varying. Experiments will show the advantage of
this time-varying estimate relative to the constant noise estimate
employed in G-PNCC. The residual sequence with negative

Approved for Public Release; Distribution Unlimited.
113

Fig. 1. Block diagram of C-PNCC training processing

Fig. 2. Medium-duration power sequence, its lower envelope and true noise power of the 8th channel, 0dB speech corrupted by street noise.
The true noise is obtained by eliminating the speech and computing the power of the noise only at the gammatone filter output

segments rectified to 0 is then processed by the ANS filter to create
a noise floor. We denote the maximum between this floor and the
residual sequence by 𝑄𝑄�(𝑖𝑖, 𝑗𝑗). Then, as in previous PNCCs [1,2], a
frequency smoothed gain factor is computed by averaging over
consecutive 2𝑁𝑁1 + 1 channels for each fixed frame. This gain
factor is used to convert the medium-duration power to short-time
power according to equation (2), where i is the channel index, j the
frame index.

 𝑃𝑃�(𝑖𝑖, 𝑗𝑗) = �
1

2𝑁𝑁1 + 1 �
𝑄𝑄�(𝑖𝑖′, 𝑗𝑗)
𝑄𝑄(𝑖𝑖′, 𝑗𝑗)

𝑖𝑖′=𝑖𝑖+𝑁𝑁1

𝑖𝑖′=𝑖𝑖−𝑁𝑁1

� ∙ 𝑃𝑃(𝑖𝑖, 𝑗𝑗) (2)

To cancel the bias of the initial noise estimation, we use the

AM-GM ratio based noise searching algorithm in G-PNCC. The
theoretical base of the AM-GM searching is that a noisy power
sequence can be properly modeled by a gamma distribution [8],
and a constant noise subtraction in G-PNCC does not change this
power distribution. However, the time-varying noise removal in C-
PNCC distorts this distribution. Consequently, the AM-GM ratio
cannot properly reflect the SNR of each channel. To reduce this
“distribution distortion”, before computing the AM-GM ratio, a
small portion of the original speech is added to the distorted
distribution using a “spectral weighting factor” 𝜆𝜆𝑠𝑠 (0 < 𝜆𝜆𝑠𝑠 < 1)
according to the equation:

 𝑃𝑃𝑙𝑙(𝑖𝑖, 𝑗𝑗) = 𝜆𝜆𝑠𝑠𝑃𝑃(𝑖𝑖, 𝑗𝑗)+(1 − 𝜆𝜆𝑠𝑠)𝑃𝑃�(𝑖𝑖, 𝑗𝑗) (3)

where 𝑃𝑃�(𝑖𝑖, 𝑗𝑗) is the distorted power as in equation (2), and 𝑃𝑃(𝑖𝑖, 𝑗𝑗)
is the original speech as in equation (1). The value of 𝜆𝜆𝑠𝑠 has
significant impact on the recognition accuracy. Table 1 lists the
recognition accuracy for TIMIT with different 𝜆𝜆𝑠𝑠 values under low
SNR pink noise. The case 𝜆𝜆𝑠𝑠 = 0 corresponds to no spectral
weighting. In this case, the distribution distortion causes
degradation compared with direct G-PNCC, where there is no
distribution distortion. In our work, a good value for 𝜆𝜆𝑠𝑠 is 0.05.

Each 𝑃𝑃𝑙𝑙(𝑖𝑖, 𝑗𝑗) is then power function amplitude scaled with a
power value 1/15, and is output to the DCTC step. In parallel,
the 𝑃𝑃𝑙𝑙(𝑖𝑖, 𝑗𝑗)’s are converted back to the medium-duration power
domain according to equation (1), except that we use 2𝑀𝑀2 + 1
frames this time. The AM-GM ratio G(i) is then computed for each
channel i according to equation (4), where Ω(𝑖𝑖, 𝑗𝑗) is the medium

duration power; J is the total number of frames. Finally, a
𝐺𝐺𝑡𝑡𝐹𝐹𝐹𝐹𝑖𝑖𝐹𝐹(𝑖𝑖) is obtained by averaging over G(i)’s of all utterances and
stored as the average SNR level of the training set for channel i. In
our work, we use 𝑀𝑀1 = 4, 𝑀𝑀2 = 10.

 𝐺𝐺(𝑖𝑖) = ln [
1
𝐽𝐽�Ω(𝑖𝑖, 𝑗𝑗)] −

1
𝐽𝐽 � lnΩ(𝑖𝑖, 𝑗𝑗)

𝐽𝐽

𝑗𝑗=1

𝐽𝐽

𝑗𝑗=1

 (4)

2.2. Testing

Fig. 3. Block diagram of C-PNCC test phase

Figure 3 depicts the block diagram of the test phase. It is very
similar to the training steps in Figure 1. So, we use “⋯” to skip
some of the identical blocks. The key step in the testing phase is to
offset the bias of the initial noise subtraction for each test
utterance. For each channel i, we start from -10dB relative to the
minimum power of that channel, and if the G(i) value becomes
larger than 𝐺𝐺𝑡𝑡𝐹𝐹𝐹𝐹𝑖𝑖𝐹𝐹(𝑖𝑖) after this noise estimate is assumed to have
been subtracted, this estimate is regarded as the final compensation
for the bias; otherwise, we increase the estimated noise level by
1dB and repeat this processing. The final noise adjustment is
subtracted after the iterations are done, and the residual is
frequency smoothed using equation (5), where 𝑃𝑃𝐺𝐺(𝑖𝑖, 𝑗𝑗) is the short
time power which is then power function scaled; Ω�(𝑖𝑖, 𝑗𝑗) is the
medium duration power after making the final noise adjustment. In
our work, the values for 𝑁𝑁1 and 𝑁𝑁2 are 𝑁𝑁1 = 3, 𝑁𝑁2 = 8. Figure 4
shows the overall estimate of the noise with the bias cancelled for a
test sentence.

 𝑃𝑃𝐺𝐺(𝑖𝑖, 𝑗𝑗) = �
1

2𝑁𝑁2 + 1 �
Ω�(𝑖𝑖′, 𝑗𝑗)
Ω(𝑖𝑖′, 𝑗𝑗)

𝑖𝑖′=𝑖𝑖+𝑁𝑁2

𝑖𝑖′=𝑖𝑖−𝑁𝑁2

� ∙ 𝑃𝑃𝑙𝑙(𝑖𝑖, 𝑗𝑗) (5)

Approved for Public Release; Distribution Unlimited.
114

Fig. 4. The lower envelope, true noise power, and the overall noise estimate of the 8th channel. The speech is corrupted by 0dB street noise.
The overall estimate consists of a time-varying initial estimate and a constant offset of the bias made by AM-GM searching.

3. EXPERIMENTAL RESULTS

To evaluate different PNCCs, experiments were conducted using
TIMIT for a 39 phoneme recognition task. 3696 and 1344
sentences were used for training and testing respectively. 13
Discrete Cosine Transform Coefficients (DCTCs) and 6 Discrete
Cosine Series Coefficients (DCSCs) as suggested in [11,12] were
used to encode the spectrum after PNCC processing. The baseline
MFCC used 39 features (including delta and acceleration terms). A
3-state HMM model with 32 Gaussian mixtures was built for each
phone. The training and decoding were both run with HTK 3.4. For
better comparisons, all the parameters in the three PNCC methods
were optimized.

3.1. Stationary noise

Fig. 5. Comparison of PNCCs for stationary noise. Top: clean
training/noisy test cases. Bottom: 10dB training/cleaner testing
cases. Left: white noise. Right: pink noise.

First, two stationary noises were added respectively. The results
are presented in Figure 5. The left panel is for white noise, and the
right panel is for pink noise. The top panel is for training on clean
speech, and testing varying from clean speech to 0dB; the bottom
panel is for training on 10dB noisy speech, and testing from 10dB
to clean speech. The vertical axis is the recognition accuracy and
the horizontal axis represents the SNRs of the test data. From the
top panel, C-PNCC has the highest accuracy for clean
training/noisy test conditions, with G-PNCC the second best. This
shows the time-varying noise estimate is superior to a constant
noise estimate, even for stationary noise. Notice that though G-
PNCC is significantly better than L-PNCC under clean
training/noisy testing conditions, especially for low SNRs, it

degrades dramatically along the other way in the bottom panel.
However, C-PNCC shows improvements for clean training
conditions (top panel) while remains almost the same performance
as L-PNCC for noisy training/clean testing environment. In the
bottom panel, the average degradation of C-PNCC relative to L-
PNCC is less than 1% for each type of noise.

3.2. Non-stationary noise

Fig. 6. Comparison of PNCCs for non-stationary noise. Top: clean
training/noisy test cases. Bottom: 10dB training/cleaner testing
cases. Left: street noise. Right: mixed noise.

Figure 6 presents the results for two types of non-stationary
noise that are widely encountered for most ASR applications. The
left panel is for street noise, which was recorded during peak time
in a street in New York City. The right panel is for “mixed noise”,
which contains about 60 interfering speakers as well as background
music in a bar. The top panel is again clean training/noisy testing
settings, and the bottom panel for 10dB training/cleaner testing
scenario. Similarly to the previous cases, C-PNCC has the best
performance under clean training conditions. Meanwhile, it also
provides superior performance when test data is cleaner than
training data (bottom panel). It is also noticed that though L-PNCC
performs better than G-PNCC in the bottom panel, they both
degrade compared with the baseline MFCC front-end for some test
SNRs. However, C-PNCC provides solid improvement relative to
the baseline MFCC front-end.

3.3. Comparison with other front-ends

In this section, we present a brief comparison among C-PNCC,
gammatone+power amplitude scaling, RASTA-PLP and baseline
MFCC front-end. The comparison was conducted for clean
training/noisy test setting using the two non-stationary noises in
Section 3.2. Both the baseline MFCC and RASTA-PLP front-ends

Approved for Public Release; Distribution Unlimited.
115

use 39 features. The RASTA-PLP front-end is an implementation
of the algorithm described in [13].

Fig. 7. Comparison of C-PNCC with baseline MFCC, RASTA-
PLP and gammatone+power front-end for clean training/noisy
testing conditions. Left: street noise, Right: mixed noise.

Figure 7 depicts the results. The left panel is for street noise,
and the right panel is for mixed noise. The MFCC and RASTA-
PLP front-end have very close performance, and C-PNCC has
significant improvements compared with the other three front-
ends. It is interesting to see that the gammatone+power method did
not provide improvement compared with the baseline MFCC. It is
even worse in the mixed noise case.

In the next experiment, we kept the mel filter bank structure
in the baseline MFCC, but replaced the 39 features with 78
spectral/temporal features (13 DCTC/6DCSC), which is the same
set of features used in the gammatone+power front-end. We also
replaced the logarithmic amplitude scaling in the MFCC with a
power-law nonlinearity. The power value used was 1/15 in both
MFCC and gammatone front-ends. Again, we plot the accuracy of
the mel+power and gammatone+power front-ends in Figure 8.

Fig. 8. Comparison of mel+power and gammatone+power front-
ends in the presence of street noise (left) and mixed noise (right)
under clean training/noisy testing conditions.

The result shows that the mel+power front-end constantly
performs better than the gammatone+power front-end for the two
non-stationary noises at all SNR levels. Since the only difference
in these two front-ends is the filter bank type, a tentative reason is
that the mel triangular filter shape has sharper onset than the
gammatone filter, thus may render better characterization of the
temporal masking effect. This is based on the theory in [14,15] that
human ears tend to focus more on the onset of the power envelope
than on the falling edge. We also found (not shown in this work)
that in the presence of stationary noise, such as white noise or pink
noise, the same experiment had different results: the
gammatone+power front-end performed constantly better than the
mel+power front-end. This might be because the temporal masking
effect in the presence of stationary noise is not as strong as it is
with non-stationary noise.

Based on this idea, the final experiment is to compare the
performance of mel C-PNCC with gammatone C-PNCC. We
implemented the C-PNCC noise reduction algorithm to 26 mel
channels in place of the 40 gammatone channels. Since there were

fewer channels needed, the frequency smoothing parameter 𝑁𝑁2 in
equation (5) was reduced to 3; the other parameters remained
unchanged (𝑀𝑀1 = 4,𝑁𝑁1 = 3,𝑀𝑀2 = 10,𝜆𝜆𝑠𝑠 = 0.05). The experiment
configuration was the same as Section 3.2.

Fig. 9. Comparison of mel C-PNCC with gammatone C-PNCC.
Left panel: street noise. Right panel: mixed noise. Top panel: clean
training/noisy testing. Bottom panel: 10dB training/cleaner testing.

The results are listed in Figure 9. The mel C-PNCC has very
similar performance as the gammatone C-PNCC. Compared with
the baseline MFCC, which does not have noise reduction part, the
mel C-PNCC obtains substantial improvements both for clean
training/noisy test and 10dB training/cleaner test scenarios.

According to this result, using mel filterbank can reduce
computational load in PNCC processing, while maintain the
performance. Since all PNCCs operate on a channel-by-channel
basis, using 26 mel frequency channels can reduce the run time by
approximately 1/3 compared with 40 gammatone channels.

4. CONCLUSIONS

In this paper, we proposed a C-PNCC algorithm which combines
and enhances the advantages of G-PNCC and L-PNCC. Extensive
experiments were conducted, including stationary noise and non-
stationary noise. Both clean training/noisy testing and noisy
training/cleaner testing conditions were investigated. C-PNCC
showed promising performance in all cases. In addition, a
comparison of PNCC front-end with other front-ends was
conducted. The same advantage of C-PNCC was also verified by
mel filter bank, which had comparable performance as gammatone
filter bank, but required less computations.

5. ACKNOWLEDGEMENT

This research is sponsored by the Air Force Research Laboratory
under agreement number FA87501210093. The U.S. Government
is authorized to reproduce and distribute reprints for governmental
purposes notwithstanding any copyright notation thereon. The
views and conclusions contained herein are those of the authors
and should not be interpreted as necessarily representing the
official policies or endorsements, either expressed or implied, of
the Air Force Research Laboratory or the U.S. Government.

Approved for Public Release; Distribution Unlimited.
116

6. REFERENCES

[1] C. Kim and R.M. Stern, “Feature Extraction for Robust Speech

Recognition using a Power-Law Nonlinearity and Power-Bias
Subtraction,” in INTERSPEECH-2009, pp. 28-31, Sept. 2009.

[2] C. Kim and R.M. Stern, “Power-Normalized Cepstral

Coefficients (PNCC) for Robust Speech Recognition,” in
ICASSP 2012, March. 2012.

[3] H. Mirsa, S. Ikbal, H. Bourlard, and H. Hermansky, “Spectral

Entropy Based Feature for Robust ASR,” in IEEE Int. Conf.
Acoust. Speech, and Signal Processing, pp 193-196, May.
2004.

[4] D.-S. Kim, S.-Y. Lee, and R.M. Kil, “Auditory Processing of

Speech Signals for Robust Speech Recognition in Real-world
Noisy Environments,” IEEE Trans. Speech and Audio
Processing, vol. 7, no.1, pp. 55-69, 1999.

[5] P.J. Moreno, B. Raj, and R.M. Stern, “A Vector Taylor Series

Approach for Environment-independent Speech Recognition,”
in IEEE Int. Conf. Acoust., Speech and Signal Processing, pp.
733-736, May. 1996.

[6] F. M ü ller, A. Mertins, “Noise Robust Speaker-independent

Speech Recognition With Invariant-integration Features Using
Power-bias Subtraction,” in INTERSPEECH-2011, pp. 1677-
1680, Aug. 2011.

[7] K. Kumar, C. Kim, R.M. Stern, “Delta-spectral Cepstral

Coefficients for Robust Speech Recognition,” in IEEE Int.
Conf. on Acoust. Speech, and Signal Processing, pp. 4784-
4787, May 2011.

[8] C. Kim and R.M. Stern, “Robust Signal-to-Noise Ratio

Estimation Based on Waveform Amplitude Distribution
Analysis,” in INTERSPEECH-2008, pp. 2598-2601, Sept.
2008.

[9] R. Martin, “Noise Power Spectral Density Estimation Based on
 Optimal Smoothing and Minimum Statistics,” in IEEE Trans.
 on Speech and Audio Processing, vol. 9, no.5, pp. 504-512, July
 2001.

[10] S. Seyedtabaee, H.M. Goodarzi, “Improved Noise Minimum

Statistics Estimation Algorithm for Using in a Speech-passing
Noise-rejecting Headset,” in EURASIP Journal on Advances in
Signal Processing, 2010.

[11] S.A. Zahorian, H. Hu, Z. Chen, and J. Wu, “Spectral and

Temporal Modulation Features for Phonetic Recognition,” in
INTERPEECH-2009, pp. 1071-1074, Sept. 2009.

[12] V.N. Parinam, C. Vootkuri, and S.A. Zahorian, “Comparison

of Spectral Analysis Methods for Automatic Speech
Recognition,” in INTERSPEECH-2013, pp. 3356-3359, Sept.
2013.

[13] H. Hermansky and N. Morgan, “RASTA Processing of

Speech,” in IEEE. Trans. Speech Audio Process., vol.2, no. 4,
pp. 578-589, Oct. 1994.

[14] C. Lemyre, M. Jelinek, R. Lefebvre, “New Approach to

Voiced Onset Detection in Speech Signal and Its Application
for Frame Error Concealment,” in IEEE Int. Conf. on
Acoustics, Speech, and Signal Processing, pp. 4757-4760,
May 2008.

[15] T.S. Gunawan, E. Ambikairajah, “A New Forward Masking

Model and Its Application to Speech Enhancement,” in IEEE
Int. Conf. on Acoustics, Speech, and Signal Processing, pp.
149-152, May 2006.

Approved for Public Release; Distribution Unlimited.
117

A3 H. Hu, S. A. Zahorian, P. Guzewich, and J. Wu, “Acoustic Features for Robust Classification of Mandarin
Tones,” Interspeech 2014, September 2014.

Approved for Public Release; Distribution Unlimited.
118

ACOUSTIC FEATURES FOR ROBUST CLASSIFICATION OF MANDARIN TONES

Hongbing Hu1, Stephen A. Zahorian1, Peter Guzewich1, Jiang Wu1

1 Department of Electrical and Computer Engineering, Binghamton University,

Binghamton, NY, 13902, USA
{hongbing.hu, zahorian, peter.guzewich, jiang.wu}@binghamton.edu

ABSTRACT

For applications such as tone modeling and automatic tone
recognition, smoothed F0 (pitch) all-voiced pitch tracks are
desirable. Three pitch trackers that have been shown to give
good accuracy for pitch tracking are YAAPT, YIN, and PRAAT.
On tests with English and Japanese databases, for which ground
truth pitch tracks are available by other means, we show that
YAAPT has lower errors than YIN and PRAAT. We also
experimentally compare the effectiveness of the three trackers
for automatic classification of Mandarin tones. In addition to F0
tracks, a compact set of low-frequency spectral shape trajectories
are used as additional features for automatic tone classification.
A combination of pitch trajectories computed with YAAPT and
spectral shape trajectories extracted from 800ms intervals for
each tone results in tone classification accuracy of nearly 77%, a
rate higher than human listeners achieve for isolated tonal
syllables, and also higher than that obtained with the other two
trackers.

Index Terms: pitch tracking, tone classification, Mandarin
Chinese, fundamental frequency

INTRODUCTION AND BACKGROUND

Accurate fundamental frequency (F0) (commonly referred to as
pitch—the terms pitch and F0 are used interchangeably in this
paper) tracking in speech remains an elusive goal, especially for
noisy and/or band-limited speech, typically the scenarios where
reliable pitch tracking would be most useful. Good results have
been reported by Talkin in RAPT where a normalized cross
correlation function is used 0. High accuracy pitch tracking
results have also been obtained by the YIN algorithm, which
uses a modified version of the autocorrelation method 0.
Probably the most widely used tool for pitch tracking is the
speech analysis program PRAAT [1] because it provides fairly
reliable tracking and is readily available. Since about 1980,
several pitch trackers have been developed and several studies
have been done to evaluate these trackers [5, 7]. Our own tool
for pitch tracking is named YAAPT for “Yet Another Algorithm
for Pitch Tracking”.

For automatic recognition of tones in tonal languages such
as Mandarin, robust all-voiced pitch tracking is especially
important, as pitch is widely considered as the most important
acoustic correlate of a tone.

In this paper, we first summarize and illustrate the YAAPT
method in the remainder of this section. Section 2 introduces
several modifications motivated by the desire to improve
automatic tone classification and describes a method for
computing spectral temporal features, which are effective in
addition to pitch for use in tone classification. The evaluation

results of several experiments, which illustrate the effectiveness
of YAAPT and the additional features, are reported in Sections 3
and 4. For control purposes, experimental results obtained with
YIN and PRAAT pitch trackers are also given.

F0 candidates

Filtered
Squared Speech

Filtered
Speech

Spectrum

FFT

Refined F0
Candidates

Refined F0
Candidates

Final F0

Candidate Refinement (3)

F0 Tracking (2)

F0 candidate
Estimation (3)

Spectral F0 track

F0 candidate
Estimation (3)

Preprocessing (1)

Original
Speech

Candidate Refinement (3)

Dynamic Programming (4)

F0 candidates

Figure 1: YAAPT flow chart

The main signal processing steps in YAAPT are illustrated
in figure 1. For each frame of speech, multiple pitch candidates
are computed using the normalized cross correlation. A
smoothed pitch track is computed from the spectrogram of the
squared signal; to some extent the squaring restores the
fundamental, which is likely to be missing from band-limited
speech such as telephone speech. All F0 candidates, both time
domain and frequency domain, as well as an unvoiced candidate,
are assigned merit values and the highest overall merit path is
determined using dynamic programming. More details, as well
as illustrations of the various steps involved, are given in [12].
All three of these trackers have settings to minimize “Gross”
error (large errors in the voiced sections of speech) or “Big”
error, which takes into account both large errors in the voiced
speech regions, and voiced/unvoiced decision errors.
Unfortunately, neither of these minimum error cases is best
suited for computing pitch tracks for Mandarin tone
classification.

Approved for Public Release; Distribution Unlimited.
119

ALGORITHMS

YAAPT improvements

The most significant change is the introduction of additional
post-processing techniques to refine the final pitch tracks,
especially for the case when the track is intended to be all
voiced. With the previous settings, as given in [12], optimized
for minimum gross error, visual inspection of computed pitch
tracks showed apparent abnormalities, especially in the
interpolated pitch values through unvoiced regions.
Nevertheless, the gross error values for YAAPT were low, since
the estimated pitch values in actual unvoiced regions were not
considered in the error calculation.

Figure 2: Illustration of YAAPT F0 tracking. Original
(Blue), revised (Red), ground truth reference (Black).

To improve YAAPT, the algorithm was changed and now
always determines the minimum big error track with voicing
decisions, even if finally an all voiced (minimum gross error)
track is desired. Heuristics are then incorporated to identify and
eliminate pitch values which appear to be in error due to pitch
halves or doubles. If a track with minimum gross error is desired,
post processing then includes cubic polynomial interpolation
through the unvoiced regions using a filtered version of the
calculated track. This method was empirically determined to
work effectively at reducing error and producing a smooth track.
Figure 2 above depicts the ground truth pitch track, the former
YAAPT track, and the YAAPT track with the modifications
introduced in this paper.

The last of the modifications to YAAPT was a code
refinement to improve the processing time and accuracy. One of
the more significant of these modifications was to change an
inner loop for the spectral harmonic correlation calculation to
reduce computational time. Two other changes to this section of
code helped improve overall performance by more accurately
calculating the spectral track, even with a shorter FFT length for
spectral calculations. These changes corrected for possible
frequency misalignment between temporal and spectral pitch
candidates, which depended on the frequency resolution (FFT
length). Consequently, a shorter FFT length can be used,
decreasing computational time, while not significantly degrading
performance. These code refinements decreased overall

computation time by around 25% and decreased error rates by
small percentages.

Additional spectral temporal features useful for tone
classification

In our initial work with Mandarin tone recognition 0, we
observed that the four primary Mandarin tones (High, Rising,
Falling, Dipping) were also relatively apparent from inspection
of the low frequency region of the spectrogram. Therefore,
global spectral shape trajectories, computed with a small number
of spectral Discrete Cosine Transform Coefficients (DCTCs)
each of which is encoded with several Discrete Cosine Series
Coefficients (DCSCs), appeared to be a relatively effective
approach for computing tone features. The details of DCTC and
DCSC calculations are given elsewhere [13]. Summarizing
briefly, DCTCs are coefficients of a cosine-like basis vector
expansion of speech log magnitude spectra, where the cosine
basis vectors are modified to take into account a mel-like
frequency scale. A DCTC representation of speech spectra is a
smoothed representation, with degree of smoothing determined
by the number of DCTCs used. A DCSC encoding of any feature
over time (such as a DCTC term or pitch) is a cosine basis vector
expansion over time, but with the cosine basis vectors modified
to give more resolution near the center of the time interval and
less resolution near the endpoints of the interval. In our work, the
time resolution of a DCSC representation was determined by a
Kaiser window, with the degree of resolution variation
determined by the Kaiser constant. The DCTCs/DCSCs are
similar to MFCCs and delta/acceleration terms 0, but more
general and flexible.

EXPERIMENTAL EVALUATIONS OF
PITCH TRACKING ACCURACY

In order to evaluate the accuracy of YAAPT for pitch tracking
accuracy, pitch tracks were computed from two databases, the
Keele pitch database 0 and a Japanese database 0, for which
ground truth pitch tracks are available. The Keele database
contains 10 sentences, each about 30 seconds long, with each
sentence spoken by a different British speaker. Both studio
quality and telephone versions of the speech were used. The
Japanese database consists of 30 utterances by 14 male and 14
female speakers, resulting in a total of 840 utterances.

The pitch tracks were computed and compared using
YAAPT, YIN, and PRAAT for both full bandwidth and
telephone and/or simulated telephone conditions. Tests were
done with clean versions of the speech and also at 5 dB SNR
levels with additive white noise and additive babble noise. For
YAAPT and PRAAT, tracks were computed both for an all-
voiced condition and a condition for which the tracker made
voiced/unvoiced decisions. For YIN, the track is always
considered to be all-voiced, so that was the only case tested.

Results in terms of Big Error and Gross Errors are given in
tables 1, 2, and 3 for clean speech, white noise at a 5 dB SNR
(W-5), and babble noise at a 5 dB SNR (B-5).

Approved for Public Release; Distribution Unlimited.
120

Table 1:. Big and Gross errors (%) with the Keele database

 Studio Simulated telephone
 Tracker Clean W-5 B-5 Clean W-5 B-5
Gross
Error

YAAPT 3.1 3.4 7.9 4.6 6.4 28.2
PRAAT 5.2 7.8 17.3 11.2 14.3 29.8
YIN 3.0 4.6 14.8 21.0 27.3 38.5

Big
Error

YAAPT 6.1 8.1 21.7 14.0 16.8 43.8
PRAAT 8.7 19.9 34.2 15.4 21.3 47.5

Table 2:. Errors (%) with Keele telephone speech

 Telephone

 Tracker Clean W-5 B-5
Gross
Error

YAAPT 4.9 9.4 23.8
PRAAT 12.6 22.9 31.2
YIN 14.0 26.3 35.0

Big
Error

YAAPT 9.9 20.5 45.9
PRAAT 16.3 30.1 44.6

Table 3:. Big and Gross errors (%) with the Japanese database

 Studio Simulated telephone
 Tracker Clean W-5 B-5 Clean W-5 B-5
Gross
Error

YAAPT 1.8 2.9 4.0 4.4 7.3 24.4
PRAAT 4.1 5.9 15.4 6.4 11.2 28.7
YIN 1.7 2.9 13.0 14.5 21.0 34.5

Big
Error

YAAPT 5.0 7.2 15.3 12.2 17.1 35.1
PRAAT 7.1 17.9 31.0 10.1 23.3 43.8

For the clean full bandwidth conditions, the errors are small

and fairly similar for all three pitch tracker methods. However,
for most of the noisy and or band-limited cases, YAAPT results
in lower error rates than for the other two trackers. For example,
for the case of Keele telephone speech, and additive white noise,
the gross error for YAAPT is under 10%, whereas for the other
two pitch trackers, it is over 20%. Note that for comparable cases
tested, error values are quite similar to those obtained in [12];
although YAAPT was “improved,” the changes are more
apparent by visual inspection of the tracks. Big and Gross error
figures changed very little.

EXPERIMENTAL EVALUATIONS OF
TONE CLASSIFICATION

Although YAAPT gives lower error rates than either YIN
or PRAAT, it was still not clear which tracker would be the most
effective for Mandarin tone classification. Therefore a series of
tone classification experiments, comparing the three trackers,
was performed.

The database used was the Shanghai region portion of
RASC863 0. Only the four prominent tones of Mandarin (H, R,
F, D) were used. Tone labels supplied with RASC863 were

considered as ground truth. A multilayer feed-forward neural
network classifier, trained with back propagation, was used for
classifying tones from a combination of pitch and/or
DCTC/DCSC spectral features. The number of network inputs
ranged from 7 to 42, as described below, depending on the
feature set under evaluation. In all cases, the network had 50
hidden nodes in the first hidden layer, 25 nodes in the second
hidden layer, and 4 output nodes (one for each of the four tones).
The overall configuration of the network (with two hidden layers
with sigmoidal nonlinearities and number of nodes mentioned)
was determined from pilot tests. A total of 1539 sentences were
used for training; 670 sentences were used for testing.

Five feature conditions were tested in conjunction with each
pitch tracking method: Spectral trajectory features only (35
features): computed with 5 DCTC terms each encoded with 7
DCSC terms, from a frequency range of 50 to 800 Hz. These
particular conditions are consistent with observations of
spectrograms that indicate tonal information is most easily
observed in the low frequency region over segments longer than
100 ms.

1. “Raw” pitch trajectories (P) (7 features): encoded with 7
DCSC terms.

2. Normalized pitch trajectories (NP) (7 features): also each
encoded by 7 DCSC terms. The normalization is
accomplished by first computing the mean and standard
deviation of the pitch over the entire sentence from which
each tone segment is extracted. These mean values are
then subtracted from pitch values in each segment, and the
resultant values divided by the standard deviation.

3. A combination of feature sets 1 and 2. (42 features)
4. A combination of feature sets 1 and 3. (42 features)

In addition to testing each of the five feature cases above,
for each of the three pitch trackers (15 conditions), since tones
clearly have a temporal aspect, four different segment lengths
were evaluated for classifying tones: 100 ms, 200 ms, 400 ms,
and 800 ms. For each of these cases, segments were selected
with a midpoint equal to the midpoint of the labeled tone. For the
longer segment lengths, undoubtedly the segments extended into
following and/or proceeding tones. However, this additional
context was found to be somewhat beneficial, as shown in the
following results. Results, in terms of tone classification
accuracy, are given in figure 4 for YAAPT, YIN, and PRAAT
with feature set 1 (DCTC), set 2(P), set 3(NP), set 4 (DCTC+P)
and set 5 (DCTC+NP).

Several conclusions can be drawn about the tone
classification results:

1. The features obtained with YAAPT result in
considerably higher tone classification accuracy than
for pitch features obtained with the other two trackers
except for the shortest segment length tested (100 ms).
The highest accuracy obtained with YAAPT based
pitch tracks (76.9%) is 4.1% higher than the highest
accuracy obtained with YIN and 5% higher than the
best result obtained with PRAAT, and higher than the
accuracy of humans for recognizing context-free tones
[8] (~75%).

Approved for Public Release; Distribution Unlimited.
121

2. Although pitch features are most important for tone
classification, the addition of spectral shape trajectory
features improves accuracy by about 5%.

3. Pitch normalized features are more effective than raw
pitch features, at least for YAAPT for shorter segment
lengths. For the case of YIN and PRAAT, and
YAAPT for long segment lengths, pitch normalization
doesn’t appear to be beneficial.

4. Tone classification accuracy improves as segment
length increases, showing the importance of the long
temporal variation.

We hypothesize that YAAPT is superior to both YIN and

PRAAT for Mandarin tone classification primarily because of
the better interpolation through unvoiced regions as illustrated in
figure 3, where PRAAT and YIN can be seen to exhibit large
anomalies compared to YAAPT, primarily in the unvoiced
regions. Although details are not given here, due to length
constraints, the previous version of YAAPT (as in [12]) resulted
in tone classification accuracies typically 1% to 7% lower than
for the YAAPT results reported here.

Figure 3: Comparison of trackers. Highlighted
(unvoiced) portions show large anomalies for PRAAT
and YIN.

CONCLUSIONS

This paper presents several modifications to YAAPT including a
smooth interpolation of pitch through unvoiced regions with the
interest of improving pitch modeling for Mandarin tones. The
experiments demonstrate that YAAPT has lower errors,
especially for noisy bandlimited speech, than either YIN or
PRAAT pitch trackers. The YAAPT features, when combined
with DCTC/DCSC features to capture spectral-temporal
trajectories, are also shown to be more effective than either YIN
or PRAAT pitch features.
The YAAPT algorithm is available at
http://www.ws.binghamton.edu/zahorian/yaapt.htm as a
MATLAB function, along with a user guide and
recommendations for parameter settings. We have begun a series
of character recognition experiments with continuous Mandarin
to more thoroughly compare the effects of different pitch

Figure 3: Tone classification accuracy for features based
on YAAPT (top), YIN (middle) and PRAAT (bottom).

Approved for Public Release; Distribution Unlimited.
122

ACKNOWLEDGEMENT

This research is sponsored by the Air Force Research Laboratory
under agreement number FA87501210093. The U.S.
Government is authorized to reproduce and distribute reprints for
governmental purposes notwithstanding any copyright notation
thereon. The views and conclusions contained herein are those of
the authors and should not be interpreted as necessarily
representing the official policies or endorsements, either
expressed or implied, of the Air Force Research Laboratory or
the U.S. Government.

REFERENCES

Boersma, P., and Weenink, D. (2001). “PRAAT, a system for doing
phonetics by computer,” Glot International 5(9/10), 341-345.

de Cheveigne, A., and Kawahara, H. (2002). "YIN, a fundamental

frequency estimator for speech and music," J. Acoust. Soc. Am.
111(4), 1917–1930.

Liu, Z., Zhang, P., Shao, J., Zhao, Q., Yan, Y. and Feng, J. (2007), "Tone

recognition in Mandarin spontaneous speech." Proc. of the 4th
International Conference on Non-Linear Speech Processing
(NOLISP 2007.)

Li, A., and et al. (2004), "RASC863-A Chinese speech corpus with four

regional accents," Chinese Academy of Social Sciences technical
report.

Mousset, E., Ainsworth, W. A., and Fonollosa, J. A. R. (1996). “A

comparison of several recent methods of fundamental frequency
and voicing decision estimation,” in Fourth Int. Conf. on Spoken
Language Processing (ICSLP, Philadelphia, Pennsylvania),
pp.1273–1276.

Plante, F., Meyer, G., and Ainsworth, W. A. (1995). “A pitch extraction

reference database,” in Fourth European Conf. on Speech
Communication and Technology (EUROSPEECH, Madrid, Spain),
pp. 837–840.

Rabiner, L., Cheng, M., Rosenberg, A., and McGonegal, C. (1976). “A

comparative performance study of several pitch detection
algorithms,” IEEE Trans. On Acoustics, Speech, and Signal
Processing, ASSP-24(5), 399–418.

Talkin, D. (1995). “A robust algorithm for pitch tracking (RAPT),” in

Speech Coding and Synthesis, edited by W. B. Kleijn and K. K.
Paliwal (Elsevier Science Publishers B.V., New York), pp. 495–518.

Wang, C., and Seneff, S. (2000). “Robust pitch tracking for prosodic

modeling in telephone speech,” in IEEE Int. Conf. on Acoustics,
Speech, and Signal Processing (ICASSP, Istanbul, Turkey).

Wu, J., Zahorian, S. A., and Hu, H. (2013). "Tone recognition for

continuous accented Mandarin Chinese," ICASSP 2013.

Zahorian, S. A., Hu, H., Chen, Z., and Wu, J. (2009) “Spectral and

temporal modulation features for phonetic recognition,”
INTERSPEECH 2009.

Zahorian, S. A., and Hu, H. (2008) "A spectral/temporal method for

robust fundamental frequency tracking," J. Acoust. Soc. Am. 123
(6), pp. 4559-4571. Acoustics, Speech, and Signal Processing,
ASSP-24(5), 399–418.

Zahorian, S. A., Hu, H., Chen, Z., Wu, J., “Spectral and Temporal

Modulation Features for Phonetic Recognition,” in INTERSPEECH
2009, Sept. 2009.

Approved for Public Release; Distribution Unlimited.
123

A4 V. N. Parinam, C. Vootkuri, and S. A. Zahorian, “Comparison of Spectral Analysis Methods for Automatic
Speech Recognition,” Interspeech 2013, September 2013

Approved for Public Release; Distribution Unlimited.
124

COMPARISON OF SPECTRAL ANALYSIS METHODS FOR AUTOMATIC SPEECH
RECOGNITION

 Venkata Neelima Parinam, Chandra Vootkuri, Stephen A. Zahorian

Department of Electrical and Computer Engineering, Binghamton University, Binghamton, NY 13902, USA
{vparina1, cvootku1, zahorian}@binghamton.edu

ABSTRACT

In this paper, we evaluate the front-end of Automatic Speech
Recognition (ASR) systems, with respect to different types of
spectral processing methods that are extensively used.
Experimentally, we show that direct use of FFT spectral values
is just as effective as using either Mel or Gammatone filter
banks, as an intermediate processing stage, if the cosine basis
vectors used for dimensionality reduction are appropriately
modified. Furthermore it is shown that trajectory features
computed over intervals of approximately 300ms are
considerably more effective, in terms of ASR accuracy, than are
delta and delta-delta terms often used for ASR. Although there
is no major performance disadvantage if a filter bank is used,
simplicity of analysis is a reason to eliminate this step in speech
processing. The experimental results which confirm the above
assertions are based on the TIMIT phonetically labeled database.
The assertions hold for both clean and noisy speech.

 Index Terms: DCTC/DCSC, MFCC, Gammatone filter bank,
Mel filter bank, ASR.

1. INTRODUCTION

All automatic speech recognizers perform spectral analysis at
the front end which converts the speech signal, possibly noisy
and/or degraded, into values from which useful features can be
easily computed. The front end spectral analysis is performed by
calculating the short time Fourier transform (STFT) of the
speech signal, either using an FFT, a filter bank, or a
combination of the two methods. For the combination method,
the filter bank is approximated by summing weighted
combinations of FFT magnitude values. The filter bank
approach, even if derived from FFT values, is thought to be
advantageous since it can be designed to mimic the functionality
of the cochlea of the human auditory system, such as a nonlinear
(“warped”) frequency scale.

The majority of ASR systems are implemented using a
Mel filter bank as the spectral analysis front end, followed by a
cosine transform based feature extraction which is shown to
outperform other signal processing methods [1]. Very recently,
another filter bank has been presented as a superior alternative to
the triangular-shaped Mel filters called the Gammatone filter
bank, which simulates the motion of the basilar membrane
within the cochlea of the human auditory system. It was first
introduced by Johannsma (1972) to describe the shape of the
impulse response function of the auditory system as estimated
by the reverse correlation function of neural firing times. The
general thinking is that since the Gammatone filter bank
approximates the human auditory system better than the Mel
filter bank, it should also be superior for ASR applications [2].

The Gammatone filter is defined in the time domain
(impulse response function) as:

 𝑔𝑔(𝑡𝑡) = 𝐹𝐹𝑡𝑡𝐹𝐹−1𝐹𝐹−2𝜋𝜋𝜋𝜋𝑡𝑡cos (2𝜋𝜋𝑓𝑓𝑡𝑡 + Ø) (1)

where f is the frequency, Ø is the phase of the carrier, 𝐹𝐹 is the
amplitude, n is the filter order, b is the bandwidth and t is time.

Front-end spectral analysis can also be performed
without using any filter bank, but simply using an FFT directly.
In either case, spectral values (that is FFT values or filter bank
outputs, both converted to magnitudes), are typically reduced in
dimensionality using some type of cosine transform. If the filter
bank step is used, cosine basis vectors can be used directly.
However, if the FFT magnitudes are used as the direct input to
the cosine transform, the cosine basis vectors should be
modified to account for the non-uniform frequency resolution. In
order to incorporate spectral trajectory information into ASR
feature sets, additional terms are generally computed from
blocks of frame-based features, such as delta terms.

In the following sections we compare spectral features
computed as cosine transforms of filter bank outputs with
features computed as modified cosine transforms (DCTCs) of
FFT spectral magnitudes directly. We also compare delta type
trajectory features with trajectory features computed over much
longer time intervals using another set of modified cosine basis
vectors (DCSCs). More details of the more common spectral
and feature calculation method (MFCCs with delta and delta-
delta terms are given in [3] and [4]. More details of the
DCTC/DCSC general method are given in [5], [6] and [12]. All
the methods are evaluated using as much similarity of
parameters and recognizer as feasible (such as frequency range,
of HMM mixtures, etc.) in order to make comparisons most
meaningful.

2. FFT BASED SPECTRAL ANALYSIS

The most common spectral analysis method for speech
recognition uses a frame-based approach in which the time
varying speech signal is described by a stream of feature vectors,
with each vector reflecting the spectral magnitude properties of a
relatively short (10-30ms) segment (frame) of the signal. For
experimental results reported in this paper, 16 kHz sampling rate
speech signals are short-time Fourier transform (STFT) analyzed
using a 10ms Kaiser window with a frame space of 2ms. The
spectrogram of a typical speech signal is as shown in Figure 1.
The FFT spectral values are used as the front-end for
DCTC/DCSC feature extraction, as described later. The frame
length and frame spacing mentioned were empirically
determined as providing most accurate ASR results.

Approved for Public Release; Distribution Unlimited.
125

Figure 1: FFT spectrogram

3. FILTER BANK BASED SPECTRAL ANALYSIS

A filter bank can be regarded as a crude model for the initial
stages of transduction in the human auditory system. A set of
band pass filters is designed so that a desired portion of the
speech band is entirely covered by the combined pass bands of
the filters composing the filter bank. The output of the band pass
filters are considered to be the time varying spectral
representation of the speech signal.

For the experiments given in this paper, we evaluate two
commonly used filter banks: the Mel filter bank and Gammatone
filter bank. Either the DCTC/DCSC method (but without
frequency warping) or the more common method used for
MFCC features (i.e., delta terms rather than DCSCs) are used.
Results are compared for the filter bank approaches versus the
FFT-only spectral method.

3.1. MEL FILTER BANK
The Mel filter bank is a series of triangular band pass filters, as
depicted in Figure 2, designed to simulate the band pass filtering
believed to be similar to that occurring in the auditory system.

Figure 2: Frequency response of 16 channel Mel filter bank and the
normalized versions of the filters, as used for MFCCs.

To convert the frequency in Hz into frequency in Mels the
following equation is used:

𝑚𝑚 = 1127.01048 ∗ 𝑙𝑙𝑐𝑐𝑔𝑔𝐹𝐹 �1 + 𝑓𝑓
700

� (2)

On a linear frequency scale, the filter spacing is approximately
linear up to 1000 Hz and approximately logarithmic at higher
frequencies. For actual implementation, the Mel filter bank is
computed by first computing the power spectrum with an FFT,
and then multiplying the power spectrum by the Mel filter bank
coefficients. In Figure 3 is shown a spectrogram based on 32
Mel filters. Note that this spectrogram is qualitatively similar to
the direct FFT spectrogram shown in Figure 1. The details of the
two spectrograms are quite different since the frequency range is
more quantized in Figure 3 and the frequency scale is
effectively in Mels rather than linear. However, it should be

noted that the Mel spectrogram, or Mel filters, are derived from
the FFT spectral values and thus are simply an intermediate step
in processing.

Figure 3: 32 channel Mel spectrogram

3.2. GAMMATONE FILTER BANK
A Gammatone filter is a linear filter with impulse response
described as the product of a (gamma) distribution and
sinusoidal (tone), hence the name Gammatone. The filter bank is
a combination of individual Gammatone filters with varying
bandwidth based on the Equivalent Rectangular Bandwidth
(ERB) scale. For moderate sound pressure levels, Moore et al
[7] [8] estimated the size of ERBs for humans as:

𝐸𝐸𝐸𝐸𝐵𝐵[𝑓𝑓] = 24.7 + 0.108 ∗ 𝑓𝑓𝑐𝑐 (3)

The value ERB[f] is used as the unit of center frequency
𝑓𝑓𝑐𝑐 on the ERB scale. For example, the value of ERB[f] for a
center frequency of 1 kHz is about 132.64, so an increase in
frequency from 975 to 985 Hz represents a step of one ERB[f].
Each step in ERB roughly corresponds to a constant distance of
about 0.89 mm on the basilar membrane [9].

As the center frequency increases the bandwidth of the
filter bank increases. A 16 channel Gammatone FFT based filter
bank frequency response is shown in Figure 4.

Figure 4: Frequency response of 16 channel Gammatone filter bank

The Gammatone filter bank can be implemented using
sums of weighted FFT power spectrum values [10], exactly as
for the Mel filter bank except using the weights corresponding to
Figure 4, rather than the Mel filter weights shown in Figure 2.
Alternatively, the Gammatone real filters can be implemented as
actual IIR or FIR filters, followed by rectification and low pass
filters, as depicted in Figure 5. Figure 6 depicts the Gammatone
spectrogram of the same sentence as was used to construct the
spectrograms for Figures 1 and 3.

Figure 5: Block diagram of Gammatone using actual filters (difference

equations) in first block

Gammatone Filter
Bank

Full wave
Rectifier

Resample Low Pass
Filter

Approved for Public Release; Distribution Unlimited.
126

Figure 6: 32 channel Gammatone spectrogram

4. DCTCs/ DCSCs BASED FEATURE EXTRACTION

Typically FFT spectral magnitudes or filter bank outputs are
dimensionality reduced with a cosine or cosine-like transform
for each frame of spectral values. Several frames of cosine
transform coefficients are further processed in overlapping
sliding blocks to form spectral trajectory features. Although
both of these steps are very “standard,” especially for the case of
Mel filter bank spectral values for the preceding step, in this
section we review these transforms especially as they relate to
using FFT spectral values directly.

The first step of this feature calculation is to compute
DCTC terms from the spectrum X, with the frequency f
normalized to a [0, 1] range, as follows

𝐷𝐷𝐶𝐶𝐷𝐷𝐶𝐶(𝑖𝑖) = ∫ 𝐹𝐹 �𝑋𝑋�𝑔𝑔(𝑓𝑓)��𝜙𝜙𝑖𝑖(𝑓𝑓)𝑑𝑑𝑓𝑓1
0 (4)

 In this equation, i is the DCTC index, a(X) is a nonlinear
amplitude scaling and g(f) a nonlinear frequency warping. Φi(f)
is the 𝑖𝑖𝑡𝑡ℎ basis vector over frequency computed as:

𝜙𝜙𝑖𝑖(𝑓𝑓) = cos [𝜋𝜋𝑖𝑖𝑔𝑔(𝑓𝑓)] 𝐹𝐹𝑖𝑖
𝐹𝐹𝑓𝑓

 (5)

The crucial elements of this approach are the selection
of the nonlinear amplitude scaling a(X) and the nonlinear
frequency scaling g(f) so that the cosine transform is with
respect to a perceptual scale. In practice, the scaling a(X) is
typically a log, and the scaling g(f) is a Mel-like function unless
the first step is a Mel-like filter bank, in which case g(f) = f,
dg/df = 1, and the basis vectors are “regular” cosines.

Figure 7: Mel frequency warping used for Mel filter bank center

frequencies (top red curve), and “optimum” Mel frequency warping used
for FFT-only/DCTC/DCSC method (bottom blue curve)

For the case of FFT-only spectral analysis frequency,

g(f) is a Mel-like “warping” function, which has the effect of
modifying the cosine basis vectors, according to Eq. 5. The
results presented in this paper for the DCTC/DCSC expansion of
FFT spectra were based on this Mel-like warping (lower blue
curve in Figure 7), which was empirically found to perform
better than the more precise Mel warping as given in Eq. 2 and
also depicted in Figure 7.

In order to create the DCSC features that represent the
spectral evolution of DCTCs over time, as an alternative to delta
and delta-delta terms typically used with MFCCs, a cosine basis
vector expansion over time is performed using overlapping
blocks of DCTCs. That is, the DCSCs are computed as:

 𝐷𝐷𝐶𝐶𝐷𝐷𝐶𝐶(𝑖𝑖, 𝑗𝑗) = ∫ 𝐷𝐷𝐶𝐶𝐷𝐷𝐶𝐶�𝑖𝑖, ℎ(𝑡𝑡)�𝛩𝛩𝑗𝑗(𝑡𝑡)𝑑𝑑𝑡𝑡1
0 (6)

where Θj(t) is the 𝑗𝑗𝑡𝑡ℎ basis vector over time computed as:

 𝛩𝛩𝑗𝑗(𝑡𝑡) = cos [𝜋𝜋𝑖𝑖ℎ(𝑡𝑡)] 𝐹𝐹𝑓𝑓
𝐹𝐹𝑡𝑡

 (7)

In this equation, h(t) is a time warping function and t
is normalized to [0,1] over a selected segment (a "block"). In
practice, t is discrete, corresponding to a frame index, and the
integral is computed using a sum of all frames in the block. The
calculation is repeated for each overlapping block, with the
block spacing some integer multiple of the frame spacing.

5. PHONETIC RECOGNITION EXPERIMENTS

Phonetic recognition experiments were conducted using the
TIMIT phonetically-labeled database. 3296 sentences from 462
speakers were used for training and 1344 sentences from 168
speakers were used for test. SA sentences were excluded. A
frequency range of 100 to 8000 Hz was used for all experiments.
Experiments were conducted with clean, 20 dB SNR, 10 dB
SNR, and 0dB SNR speech. For all conditions, training and test
conditions were matched with respect to noise; additive white
Gaussian noise was used for noise.

The objective of the experiments was to compare
phoneme recognition accuracy for four spectral analysis
methods, as depicted in Figure 8, and also to compare to a
control case (13 MFCCs with delta and acceleration terms, or 39
total terms, derived from a Mel filter bank, as implemented in
HTK).

Figure 8: Block diagram of phonetic speech recognition process

Five cases, as depicted in Figure 8, and outlined below

were tested.
Case 1: FFT spectrum directly used as front end for

DCTC/DCSC feature, using frequency warping (Figure 7).
Case 2: DCTC/DCSC feature extraction applied to

Mel filter bank spectrum. Since the filter bank already has
warping in it, the DCTC basis vectors have no warping.

Case 3&4: Gammatone filter banks (FFT-based and
actual filters cases) used as front end for DCTC/DCSC features,
with no frequency warping used for DCTCs.

HMM Modeling

Case 2: FFT
Mel Filter

Bank

Case 3: FFT
Gammatone

Case 4:
Gammatone Real

Filter Bank

DCTC/DCS Features

Speech signal
Fs = 16k Hz

Case 5:
MFCC

Features

DCTC/DCSC
Features with warping

HMM
Modeling

 Case 1: FFT Speech signal
Fs = 16kHz

Approved for Public Release; Distribution Unlimited.
127

Case 5: HTK MFCC features with delta terms.
For all experiments with DCTC/DCSC features, a

frame spacing of 2ms (500 frames per second) was used. Blocks
were comprised of 150 frames (300ms) and spaced 8ms apart
(125 blocks per second). Experiments were conducted with
both 78 features (13 DCTCs times 6 DCSCs), and the more
standard 39 features (13 DCTCs times 3 DCSCs).

HMMs with 3 hidden states from left to right with 16
Gaussian mixtures were used for phonetic recognition
experiments. A total of 48 (eventually reduced to 39 phones)
context independent monophone HMMs were created using the
HTK toolbox (Ver3.4) [12]. The bigram phone information
extracted from the training data was used as the language model.

6. RESULTS

Phonetic recognition accuracy (based on 39 phones) obtained for
all 5 cases is given in Table 1. It can be seen that there is
negligible or no improvement when filter bank techniques are
used. For results in Table 1, 39 features were used. The
experiment was repeated with 78 features for all cases except
MFCC, and results are given in Table 2.

Table 1: Accuracy (%) comparison for 39 features
SNR
(dB)

FFT
only

Mel
FB

Gammatone
FFT FB

Gammatone
Real FB

MFCC

Clean 69.2 68.5 69.8 69.1 62.8
20 dB 64.2 63.5 63.7 63.4
10 dB 56.3 55.0 55.8 55.0
0 dB 42.2 41.5 41.4 40.5

Table 2: Accuracy (%) comparison for 78 features

SNR
(dB)

FFT
only

Mel FB Gammatone
FFT FB

Gammatone
Real FB

Clean 71.2 69.7 71.1 70.1
20 dB 65.8 64.7 65.8 64.9
10 dB 58.0 58.1 58.1 56.9
0 dB 43.4 42.5 42.8 41.8

Both case 2 and case 5 in Table 1 used Mel warping, but there is
a considerable difference in the performance of the two. To
investigate the possible reason for this, the delta terms and the
DCSC terms were removed from MFCC using HTK and Mel
filter bank respectively, and the results shown in Table 3 were
obtained.

Table 3: Performance comparison of MFCC and Mel filter bank.
Channels Mel FB MFCC{HTK}

100-6000 100-8000 100-6000 100-8000
32 {FL=10ms,
FS =2ms}

53.9 53.9 52.8 53.2

32 {FL=25ms,
FS =10ms}

49.1 49.1 50.7 50.2

20 {FL=10ms,
FS =2ms}

53.3 53.3 53.5 53.4

20 {FL=25ms,
FS =5ms}

48.9 48.9 50.6 50.6

26 {FL=10ms,
FS =2ms}

53.9 53.9 51.0 50.5

26 {FL=25ms,
FS =10ms}

50.3 50.3 53.9 50.4

‘FL’ is the frame length and ‘FS’ is the frame spacing that is
used. The results show that when the delta terms and the DCSC
terms are removed, the performance of MFCC computed using

HTK is similar to that of the Mel filter bank implemented in our
code. Thus, presumably, the advantage of our Mel filter bank
versus the HTK filter bank is due to the difference in the way the
spectral change information was represented. Mel FB and
MFCC (HTK) was also tested by varying the high frequency
range from 6000- 8000 Hz and both the cases are reported in
Table3.

As yet another test, Table 4 shows the accuracy obtained with
the Gammatone filter bank as the number of channels is varied
from 8 to 128. Although there is a very slight improvement
when using 64 channels, this comes at the expense of more
computational time and complexity, so we considered the
“standard” as 32 channels for the Gammatone filters, and used
32 channels for all the results (except for Table 4 results) in this
paper.

Table 4: FFT Gammatone performance as number of filters is varied.

SNR
(dB)/Channels

8 16 32 48 64 128

Clean 64.5 69.4 71.7 71.3 71.4 71.1
20 dB 60.1 64.8 65.8 65.8 65.9 65.9
10 dB 50.8 56.0 58.1 58.1 59.3 58.1

To test the statistical significance of the differences in accuracy
for the results given in this paper, we performed several we
performed several t-tests by dividing the 1344 sentences of test
into sets of 96 sentences each. Using the means and variances of
the groups of 14 independent tests, and using standard statistical
hypothesis testing methods [13], it was determined that 2%
differences are significant at the 97.5% confidence level, and 1%
differences are significant at the 90% confidence level. Thus,
for example, in Table 1, for a fixed SNR, many of the results are
statistically similar, except for MFCC results, which are lower
than for all the other methods shown.

7. CONCLUSIONS

From the experimental data, we conclude that FFT-based
spectral analysis in both clean and noisy conditions with a Mel-
like frequency scale incorporated using frequency warping for
DCTC features performs nearly identically to cochlea-motivated
filter bank spectral analysis. Directly using the FFT spectrum,
without the intermediate filter bank prior to feature calculations,
has the advantage of simplicity and would appear to be a better
front end strategy for spectral front end calculations for speech
processing. The DCSC method for computing spectral
trajectory features is experimentally shown to result in much
higher ASR accuracy than obtained with delta and delta-delta
terms.

8. ACKNOWLEDGEMENTS

This material is based on research sponsored by the Air Force
Research Laboratory under agreement number FA87501210093.
The U.S. Government is authorized to reproduce and distribute
reprints for governmental purposes notwithstanding any
copyright notation thereon. The views and conclusions
contained herein are those of the authors and should not be
interpreted as necessarily representing the official policies or
endorsements, either expressed or implied, of the Air Force
Research Laboratory or the U.S. Government.

Approved for Public Release; Distribution Unlimited.
128

9. REFERENCES

 [1] S. B. D and P. Mermelstein, “Comparison of parametric
representations for monosyllabic word recognition in
continuously spoken sentences,” IEEE Trans. Acoustic., Speech,
Signal Processing, vol. ASSP- 28, no. 4, pp. 357-366, 1980

[2] Yuxuan Wang, Kun Han, DeLiang Wang “Exploring
Monaural Features for Classification-Based Speech
Segregation,” IEEE transactions on audio, speech and language
processing, Vol. 21, No. 2, February 201.

[3] Md. Afzal Hossan, S. Memon, M A Gregory, “A novel
approach of MFCC feature extraction,” IEEE Trans. On Signal
Processing and Communication 2010 4th international
conference.

[4] Wu Junqin, Yu Junjun, “An Improved Arithmetic of MFCC
in Speech Recognition System,” IEEE 201, pp 719-722

[5] S.A. Zahorian, Silsbee, P., and Wang, X., “Phone
Classification with Segmental Features and a Binary-Pair
partitioned Neural Network Classifier,” Proc. ICASSP 1997,
pp.1011-1014, 1997.

[6] M. Karjanadecha and S.A. Zahorian, “Signal Modeling for
High-Performance Isolated Word Recognition,” IEEE Trans. on
Speech and Audio Processing, 9(6), pp.647-654, 2001.

[7] S. Strahl, “Analysis and design of Gammatone signal
models,” J. Acoust. Soc. Am. 126, pp. 2379-2389, 2009.

[8] B. Moore, R. Peters, and B. Glasberg, “Auditory filter shapes
at low center frequencies,” J. Acoust. Soc. Am. 88, 132–140,
1990.

[9] B. Moore and B. Glasberg, “A revision of Zwicker’s
loudness model,” Acta. Acust. Acust. 82, 335–345, 1996

[10] Holdsworth J. et al. “Implementing a Gamma Tone Filter
Bank,” in SVOS Final Report – Part A: The Auditory Filter
bank, MRC Applied Psychology Unit, Cambridge, England,
1988.

[11] L. Rabiner, B.H. Juang, “Fundamentals of speech
Recognition,” Prentice Hall Signal Processing Series, 1993.

[12] S.A. Zahorian, Hongbing Hu, Zhengqing Chen, Jiang Wu,
“Spectral and Temporal Modulation Features for Phonetic
Recognition,” Interspeech 2009.

[13] Will Thalheimer, Samantha Cook, “How to calculate effect
sizes from published research: A simplified methodology,”A
Work-Learning Research Publication, Published August 2002.

Approved for Public Release; Distribution Unlimited.
129

A5 H. Hu, P. Guzewich, and S. A. Zahorian, “A Further Comparison of Fundamental Frequency Tracking
Algorithms,” 166th Meeting of the Acoustical Society of America, San Francisco, Vol. 134, No. 5, Pt. 2, pp. 4068,
Dec 2–6, 2013.

“Yet another Algorithm for Pitch Tracking -YAAPT” was published in a 2008 JASA paper
(Zahorian and Hu), with additional experimental results presented at the fall 2012 ASA meeting
in Kansas City. The results presented in both the journal paper and at the fall 2012 meeting
indicated that YAAPT generally has lower error rates than other widely used pitch trackers (YIN,
PRAAT, RAPT). However, even YAAPT-created pitch tracks had significant “large” errors
(pitch doubling and pitch-halving) for both clean and noisy speech. Recently additional post-
processing heuristics have been incorporated to reduce the incidence of these type errors—thus
reducing the need for hand correcting pitch tracks for situations where extremely accurate tracks
are desired. For the case of an all-voiced track, interpolation through unvoiced intervals has been
improved. The updated version of YAAPT is presented along with experimental results. The
experiments are conducted with multiple databases, including British English, American English,
and Mandarin Chinese. For most conditions evaluated, YAAPT gives better performance than
the other fundamental frequency trackers.

Words in abstract: 167

Technical area: Speech Processing and Communication Systems

(PACS) Subject classification numbers(s): 43.72.Ar, 43.72.Ne

No preference for lecture versus poster

Approved for Public Release; Distribution Unlimited.
130

LIST OF SYMBOLS, ABBREVIATIONS AND ACRONYMS

ARPA Advanced Research Project Agency
AFRL Air Force Research Laboratory
ASR Automatic Speech Recognition
DCT Discrete Cosine Transform
DCTC Discrete Cosine Transform Coefficient
DCS Discrete Cosine Series
DCSC Discrete Cosine Series Coefficient
FFT Fast Fourier Transform
HMM Hidden Markov Model
HTK Hidden Markov Model Toolkit
LDC Linguistic Data Consortium
LM Language Model
MFCC Mel-Frequency Cepstral Coefficient
NN Neural Network
OOV Out of Vocabulary
PNCC Power Normalized Cepstral Coefficient
RASC863 Regional Accented Speech Corpus by National 863 Project
863 Mandarin Chinese Database by National 863 Project
TIMIT Texas Instruments--Massachusetts Institute of Technology
YAAPT Yet Another Algorithm for Pitch Tracking

Approved for Public Release; Distribution Unlimited.
131

	LIST OF FIGURES
	LIST OF TABLES
	1. SUMMARY
	2. PROJECT INTRODUCTION
	3. GENERALIZED SPECTRAL-TEMPORAL FEATURES FOR REPRESENTING SPEECH INFORMATION
	3.1. Introduction and background
	3.2. Method
	3.3. Implementation
	3.4. Experimental Evaluation
	3.5. Conclusion
	4. AUTOMATIC WORD TO MORPHEME DECOMPOSER FOR RUSSIAN
	4.1. Introduction
	4.2. Morpheme Database
	4.3. Background
	4.4. Data preparation
	4.5. Decomposition algorithm
	4.6. Experimental results
	4.7. Conclusion
	5. NON-UNIFORM FRAME SPACING FOR SPEECH FEATURE CALCULATIONS
	5.1. Introduction
	5.2. L1-Norm Frame Deletion
	5.3. Non-Uniform Regression Analysis
	5.4. Experiments and Results
	5.4.1. L1-Norm Deletion Experiments and Results
	5.4.2. Regression Analysis Experiments and Results

	5.5. Conclusions and Future Work
	6. A TOOLBOX FOR A COMPLETE AUTOMATIC SPEECH RECOGNITION STSTEM
	6.1. Overview
	6.2. Feature extraction (Tool_ComputeFeat.m)
	6.3. Training monophones (Tool_trainMono2.m)
	6.4. Training triphones (Tool_trainTri.m)
	6.5. Language modelling (Tool_trainLM.m)
	6.6. Decoding (Tool_Decode.m)
	6.7. Experimental results
	7. FORCED ALIGNMENT TOOL USER GUIDE
	7.1. Overview
	7.2. Tool_Compute_Feat
	7.3. Tool_trainFA
	7.4. Tool_FA
	8. A TOOL FOR SPEECH FEATURE EXTRACTION – TFRONTM GUIDE
	8.1. Fundamentals of Speech Feature Extraction
	8.2. Program Setup
	8.3. Tool_ComputeFeat
	8.3.1. Function
	8.4. Tfrontm
	8.4.1. Function
	8.4.2. Use
	8.5. CP_feat
	8.5.1. Function
	8.5.2. Use
	8.5.2.1. INIT Mode
	8.5.2.2. PROC Mode
	8.6. Rd_spec
	8.6.1. Function
	8.6.2. Use
	9. REFERENCES
	APPENDIX A – PUBLICATIONS AND PRESENTATIONS
	COMBINED PNCC FEATURE EXTRACTOR for ROBUST SPEECH RECOGNITION
	ACOUSTIC FEATURES FOR ROBUST CLASSIFICATION OF MANDARIN TONES
	Abstract

	LIST OF SYMBOLS, ABBREVIATIONS AND ACRONYMS

