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Antimicrobial Activity of Nanoemulsion in Combination with
Cetylpyridinium Chloride in Multidrug-Resistant Acinetobacter
baumannii

Yoon Y. Hwang,a Karthikeyan Ramalingam,b Diane R. Bienek,a Valerie Lee,b Tao You,c Rene Alvareza

Naval Medical Research Unit—San Antonio, Fort Sam Houston, Texas, USAa; University of Texas Health Science Center—San Antonio, San Antonio, Texas, USAb; and Army
Institute of Surgical Research, Fort Sam Houston, Texas, USAc

Acinetobacter baumannii has emerged as a serious problematic pathogen due to the ever-increasing presence of antibiotic resis-
tance, demonstrating a need for novel, broad-spectrum antimicrobial therapeutic options. Antimicrobial nanoemulsions are
emulsified mixtures of detergent, oil, and water (droplet size, 100 to 800 nm) which have broad antimicrobial activity against
bacteria, enveloped viruses, and fungi. Here, we screened the antimicrobial activities of five nanoemulsion preparations against
four Acinetobacter baumannii isolates to identify the most suitable preparation for further evaluation. Among them, N5, which
contains 10% (vol/vol) Triton X-100, 25% (vol/vol) soybean oil, and 1% (wt/vol) cetylpyridinium chloride (CPC), showed the
best efficacy against A. baumannii in both its planktonic and biofilm forms and was selected for further study. Our data demon-
strate that, while the killing of planktonic forms of A. baumannii was due to the 1% CPC component of our nanoemulsions, the
breakdown of biofilms was achieved via the emulsified oil and detergent fractions. Furthermore, we documented the effect of
ethanol and NaCl in combination with N5 on planktonic A. baumannii. In killing curves of N5 combined with other agents (eth-
anol or NaCl), a synergistic effect of a >2-log decrease in CFU/ml was observed. The antibiofilm activity of N5 was confirmed via
a cell proliferation test and scanning electron microscopy. The effects of exposure to severe environmental conditions, which
simulates the field conditions in Iraq and Afghanistan, were evaluated, and this exposure did not affect the overall antimicrobial
activity of N5. These studies lay a solid foundation for the utilization of nanoemulsions against the antibiotic-resistant forms of
A. baumannii.

Over the past 15 years, Acinetobacter baumannii (an aerobic,
Gram-negative coccobacillus) has become an emerging

problematic pathogen with a wide array of antibiotic resistance
(1), representing a serious threat not only to civilian hospital pa-
tients (2) but also to military service members wounded in Iraq
and Afghanistan (3). Despite many approaches to find available
treatment options (4), A. baumannii’s low permeability of the
outer membrane (5), its ability to acquire genetic elements effi-
ciently (6), and its ability to establish biofilms (7) have made treat-
ment options limited.

Antimicrobial nanoemulsions are emulsified mixtures of de-
tergent, oil, and water (particle size, 100 to 800 nm) which have
been shown to have broad antimicrobial activity against bacteria,
enveloped viruses, and fungi (8) at concentrations that are non-
toxic in animals. When nanoemulsions function by fusing with
lipid bilayers of cell membranes, the energy stored in the oil-and-
detergent emulsion is released and destabilizes the lipid mem-
brane of the bacteria; hence their antimicrobial activity (9, 10).
The antimicrobial activity of nanoemulsions is nonspecific, unlike
that of antibiotics, thus allowing broad-spectrum activity while
limiting the capacity for the generation of resistance. These fea-
tures make nanoemulsion a suitable candidate for both wound
treatment (10) and surface decontamination.

Cetylpyridinium chloride (CPC) is a quaternary ammonium
salt which has been utilized as an antimicrobial and disinfectant in
many commercially available mouthwashes, toothpastes, loz-
enges, throat sprays, breath sprays, and nasal sprays. Quaternary
ammonium compounds are active against bacteria through mul-
tiple mechanisms (11), with activity being maintained when the
compound is incorporated into nanoemulsion formulations.

In this study, we investigated the antibacterial activity of vari-
ous forms of nanoemulsions containing CPC by testing their
MICs and minimal bactericidal concentrations (MBCs) on several
strains of A. baumannii. We analyzed the kinetics of killing of the
planktonic form of A. baumannii with and without the combina-
tion of ethanol and NaCl to determine any synergistic effects. Both
ethanol and hypertonic solution of NaCl have membrane-desta-
bilizing effects (12, 13), and their membrane-destabilizing effects
have never been examined in conjunction with the membrane-
destabilizing effect of nanoemulsion. The effectiveness of our lead
nanoemulsion (N5) in dispersing A. baumannii biofilms was ob-
served via scanning electron microscopy and quantitated by test-
ing viability of remaining bacteria on biofilms. The stability of N5
under “field-like” environmental conditions was evaluated, in-
cluding thermal shock (TS), high temperature/high relative hu-
midity (HH), high temperature/low relative humidity (HL), and
low temperature/low relative humidity (LL), based on current
field guidelines.
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MATERIALS AND METHODS
Bacterial strains and growth conditions. A. baumannii strains (ATCC
BAA-1605, ATCC 17961, ATCC 19606, and ATCC 19003) were procured
from the ATCC (Manassas, VA). ATCC BAA-1605 is a multidrug-resis-
tant strain isolated from the sputum of military personnel returning from
Afghanistan in 2006 (14). ATCC 17961, ATCC 19606, and ATCC 19003
were isolated from blood, urine, and cerebrospinal fluid of patients, re-
spectively. Nutrient broth (NB) (BD, Franklin Lakes, NJ) was used for
bacterial culture. Bacterial stocks have been maintained at �80°C in NB
with 30% (vol/vol) glycerol. Aliquots of stock culture were inoculated into
fresh NB and cultured at 37°C overnight. Bacterial cultures with an optical
density (OD) of 0.2 to 0.4 at 490 nm were used for all studies. Nutrient
agar (NA) (BD, Franklin Lakes, NJ) was used for enumerating CFU, by
standard assay procedures. Autoclaved Ringer’s solution (7.2 g NaCl, 0.17
g CaCl2, and 0.37 g KCl in 1 liter of distilled water) adjusted to pH 7.3 to
7.4 was used for the dilution of bacteria.

Nanoemulsion preparation. Five oil-in-water nanoemulsions were
prepared as previously reported by Baker et al. (15). Briefly, nanoemul-
sion 1 (N1) contained 2% (vol/vol) Triton X-100, 2% (vol/vol) tributyl
phosphate, and 16% (vol/vol) soybean oil; nanoemulsion 2 (N2) con-
tained 3% (vol/vol) Tween 60, 3% (vol/vol) soy sterol, 30% (vol/vol)
soybean oil, and 0.35% (wt/vol) CPC; nanoemulsion 3 (N3) contained
15% (vol/vol) Tween 80, 3% (vol/vol) ethyl oleate, and 6% (vol/vol) oc-
tanol; nanoemulsion 4 (N4) contained 8% (vol/vol) Triton X-100, 8%
(vol/vol) tributyl phosphate, 64% (vol/vol) soybean oil, and 50 �mol/liter
EDTA; nanoemulsion 5 (N5) contained 10% (vol/vol) Triton X-100, 25%
(vol/vol) soybean oil, and 1% (wt/vol) CPC. The solutions were emulsi-
fied using a Microfluidizer processor (M-110L; Microfluidics, Newton,
MA). Two passes of emulsification at 20,000 lb/in2 were conducted at
room temperature. The droplet size distribution analysis was carried out
using a dynamic light scattering method (90Plus particle size analyzer;
Brookhaven Instruments Co., Worcestershire, United Kingdom).

Determination of MIC and MBC. To evaluate the antimicrobial ac-
tivities of nanoemulsions against A. baumannii, the MIC and MBC were
determined. Nanoemulsions were serially diluted with sterile NB in a
96-well plate, and each well, containing 180 �l of diluted nanoemulsion in
NB, was inoculated with 20 �l of standardized bacterial culture with an
OD of 0.2 to 0.4 at 490 nm. The cell density in the wells was 2 � 107/ml.
Plates were incubated at 37°C overnight, and the MIC was determined as
the highest dilution showing no bacterial growth. To determine the MBC,
100 �l of culture broth from wells containing no growth was plated onto
NA and incubated at 37°C overnight. Because of the low number of sur-
viving cells, no additional dilution was needed. The highest dilution that
resulted in 99.9% reduction in the bacterial cell number was recorded as
the MBC. The negative control was sterile deionized water in place of
nanoemulsion, and 0.1% sodium hypochlorite was used as the positive
control. Due to the different compositions of nanoemulsions, the MIC
and MBC were expressed as the dilution of nanoemulsions.

Kinetics of killing. Overnight bacterial cultures (200 �l) were added
to 1.8 ml of NB with 1:500, 1:1,000, 1:1,333, 1:2,000, or 1:2,677 dilutions of
N5. At 1, 15, 30, and 60 min after mixing of bacterial culture and diluted
N5, aliquots of samples were collected and diluted accordingly in Ringer’s
solution at room temperature for viability testing. Measured volumes
(100 �l) were spread onto NA using a disposable spreader and incubated
at 37°C overnight for colony formation. Overnight colonies were counted,
and average counts were determined from at least three independent ex-
periments for each set of conditions.

Effect of ethanol and NaCl. Overnight bacterial cultures (200 �l) were
added to 1.8 ml of NB with 0, 10%, 20%, 30%, 50%, or 70% of ethanol
mixed with 1:1,333, 1:2,000, 1:4,000, or 1:8,000 dilutions of N5. The cell
density in the wells was 2 � 107/ml. At 60 min postmixing, the viability of
cells was measured by CFU/ml determination. Similarly, overnight bac-
terial cultures (200 �l) were added to 1.8 ml of NB with 0, 2, 3, or 4 M NaCl
mixed with 1:1,333, 1:2,000, 1:4,000, or 1:8,000 dilutions of N5. At 60 min
postmixing, the viability of cells was measured by CFU determination.

Log killing (LK) was calculated as log10(CFU/ml of untreated control
sample) � log10(CFU/ml of treated sample).

Effect of nanoemulsion on biofilms of A. baumannii. Overnight bac-
terial cultures were inoculated into 100 �l of fresh NB in flat-bottom
96-well cell culture plates (Costar 3599; Corning Inc. Corning, NY) and
incubated for 72 h at 37°C. Every 24 h, the medium was removed and an
equal volume of fresh medium was added. The negative control was an
equal volume of NB without bacterial inoculation, and NB with 0.1%
sodium hypochlorite was used as the positive killing control. After re-
moval of the supernatant media, the biofilms were treated with 200 �l of
N5 (1:400, 1:1,000, and 1:2,000 dilutions) for 1 h at 37°C. After that, the
mixture of NB and N5 was removed, and the wells were gently washed
twice with sterilized Ringer’s solution. The quantification of remaining
viability in biofilms was conducted using alamarBlue cell proliferation
assay kit (AbDserotec, Kidlington, United Kingdom) as described in the
manufacturer’s manual. NB (120 �l) with 10% alamarBlue was added to
the well. The reduction of alamarBlue in response to the chemical reduc-
tion of growth medium, which is the result of bacterial growth, was mea-
sured by OD at 570 nm and 630 nm after 30 min incubation at 37°C.

Scanning electron microscopy on the biofilm treated with N5.
Acrylic slides were submerged in bacterial culture for 72 h with medium
changes every 12 h. After 72 h of incubation, acrylic slides were gently
washed twice with sterilized distilled water. Biofilms on acrylic slides were
incubated with NB containing N5 alone, N5 without 1% CPC, or 1% CPC
alone for 1 h and then gently washed twice with sterilized distilled water.
Biofilms were fixed on acrylic slides by the method of Araujo et al. (16),
and the fixed biofilms were dehydrated in a graded series of cold ethanol-
water mixtures (50%, 70%, 80%, 90%, 95%, and 100% of ethanol) for 10
min each. An additional 10 min dehydration with 100% ethanol was done
twice. With gentle rocking, biofilms on acrylic slide were treated with 50%
ethanol–50% hexamethyldisilazane (HMDS) (Electron Microscopy Sci-
ences, Hatfield, PA) for 5 min and 100% HMDS for 10 min. After dehy-
dration, biofilms were air dried under the hood. The samples were coated
using a Hummer 6.2 sputter coater (Anatech USA, Hayward, CA) with a
gold-palladium (50%-50%) target. After processing, samples were ob-
served with a Sigma VP40 field emission scanning electron microscope
(Carl Zeiss, Inc., Germany) in high vacuum mode at 2 kV (17).

Effect of environmental exposure on the stability of N5. The stability
of N5 (droplet size, MIC, and MBC) under four environmental condi-
tions, including thermal shock, high humidity/high temperature, high
humidity/low temperature, and low humidity/low temperature, which
simulate field storage conditions, were tested based on the Department of
Defense Test Method Standard for Environmental Engineering Consider-
ations and Laboratory Tests (18), according to Bienek et al. (19). Briefly, for
thermal shock conditions, N5 was placed in the environmental test cham-
ber (model EWPH205-CCA; ESPEC North America, Hudsonville, MI)
for 2 h at 23°C and 35% relative humidity, and then the temperature was
lowered to �40°C over a 1.5-h period with the humidity kept at �50%.
This condition was maintained for 4 h. The environmental conditions
were then changed to 65°C and 35% relative humidity over a 2-h period
and maintained for 4 h. Temperature and relative humidity were adjusted
to 23°C and 35% over a 1-h period, and then a new cycle resumed. A total
of 5 cycles were conducted continuously. For high humidity/high temper-
ature condition, the temperature and relative humidity of the chamber
were adjusted to 65°C and 75% over a 1-h period. N5 was exposed to this
condition for 96 h. At the end of exposure to the high-humidity/high-
temperature condition, the environmental condition of the chamber was
shifted to 23°C and 50% relative humidity over a 1-h period. After an
additional 2 h of incubation, N5 was retrieved from the chamber. For the
high-humidity/low-temperature condition, the chamber was primed to
65°C and �15% relative humidity over a 1-h period. N5 was exposed to
this condition for 96 h. At the end of exposure to the high-humidity/low-
temperature condition, the environmental conditions were restored to
23°C and 50% relative humidity over a 1-h period. After 2 h of incubation,
N5 was retrieved from the chamber. For the low-humidity/low-tempera-
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ture condition, the environmental condition of the chamber was adjusted
to �40°C and �50% relative humidity over a 1-h period. N5 was exposed
to this condition for 96 h. At the end of the exposure period, the temper-
ature and relative humidity of the chamber were adjusted to 23°C and
50% over a 1-h period. After 2 h of incubation, N5 was retrieved from the
chamber.

After the exposure to environmental conditions, the change in the
droplet size distribution, expressed as effective diameter of the droplets,
and their distribution width (Polydispersity) in treated N5 and control
N5, which was stored at room temperature, were measured using a dy-
namic light-scattering method, and their MICs and MBCs were deter-
mined.

Statistical analysis. All experiments were conducted in triplicate, and
each CFU/ml measurement was made from two separate plates. Their
means and standard deviations were calculated from arithmetic CFU/ml.
In case of log killing to examine the efficacy of N5 in conjunction with
ethanol and NaCl, the arithmetic CFU/ml was converted to log10, and
then statistical analysis was conducted. Student’s t test was used to deter-
mine the level of significance (P � 0.05). Student’s t test was conducted on
the data set between 30% ethanol-treated samples and N5-plus-ethanol
(1:4,000 and 30%) samples. The degree of freedom was 4; P values for
strains ATCC BAA-1605 and ATCC 17961 were �0.05, and those of
ATCC 19606 and ATCC 19003 were �0.01. The same method was used
between 4 M NaCl-treated samples and N5-plus-NaCl (1:4,000 and 4 M)
samples. The degree of freedom was 4, and P values for the 4 strains were
�0.001.

RESULTS
Size distribution of nanoemulsion particles. The five nanoemul-
sions prepared by Microfluidizer emulsification were evaluated

based on the particle size distribution using the ZetaPlus particle
sizing software of the 90Plus particle size analyzer. Nanoemulsion
1 (N1) contained particles with an average size of 153 nm, nano-
emulsion 2 (N2) contained two particle sizes with averages of 148
nm and 3,271 nm, nanoemulsion 3 (N3) had three major particle
size peaks at 11 nm, 104 nm, and 3,317 nm, nanoemulsion 4 (N4)
had two major peaks with averages of 299 nm and 3,312 nm, and
nanoemulsion 5 (N5) had a major peak at 170 nm and a minor
peak at 3,316 nm (Fig. 1). All nanoemulsion size evaluations were
repeated after 6 months, with no significant change in particle size
distribution (data not shown.)

Determination of MIC and MBC. The five nanoemulsion
preparations (N1 to N5) were tested for antimicrobial activity on
four strains of A. baumannii obtained from the ATCC (strains
ATCC BAA-1605, ATCC 17961, ATCC 19606, and ATCC 19003).
N1, N2, N3 and N4 did not have significant antibacterial activity as
measured in either MIC and MBC studies (Table 1). N5 showed
exceptional antibacterial activity against all four strains in both the
MIC and MBC assays at high dilution ranges, 1:2,187 for MIC and
1:729 to 1:2,187 for MBC (Table 1). In the case of N5, the 1:729
and 1:2,187 dilutions were equivalent to 13.7 �g/ml and 4.6 �g/ml
of cetylpyridinium chloride. Based on this data set, we selected
only N5 for additional studies.

Kinetics of killing. The kinetics of antimicrobial activity of N5
was evaluated against A. baumannii strains ATCC BAA-1605,
ATCC 17961, ATCC 19606, and ATCC 19003 at dilution ranges of
1:500 to 1:3,333. Representative data from the 1:1,333 dilution are

FIG 1 Distribution of droplet size of nanoemulsions. The five nanoemulsions with different detergents and oils were prepared by two rounds of emulsification
at 20,000 lb/in2 with a Microfluidizer. The size and mass distribution were analyzed using a dynamic light-scattering method.
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shown (Fig. 2). At a 1:1,333 dilution of N5, bacterial colony counts
were reduced �2 logs for strains ATCC BAA-1605 and ATCC
19606 and �3 logs for strains ATCC 17961 and ATCC 19003 at 15
min. By 30 min, all bacterial strains had been reduced by �2 logs.
At dilutions of �1:1,333, the viability of all bacterial strains was
reduced by �2 logs by 30 min (data not shown).

Effects of ethanol and NaCl on N5 antimicrobial activity. The
additive effect of ethanol or NaCl with N5 in killing A. baumannii
was evaluated. Increasing concentrations of ethanol ranging from
0% to 70% were added to dilutions of N5 (1:1,333, 1:2,000,
1:4,000, and 1:8,000). Strains ATCC BAA-1605 and ATCC 17961
showed less susceptibility to the addition of 30% ethanol than
strain ATCC 19606 and ATCC 19003, with log reductions of 1.34
and 1.26, respectively, for ATCC BAA-1605 and ATCC 17961
compared to log reductions of 2.81 and 3.44, respectively, for
strains ATCC 19606 and ATCC 19003 after 1 h of incubation. This
additive effect was further evaluated at a 1:4,000 dilution of N5, in
which the addition of 30% ethanol resulted in a �1- to 3-log
increase in killing effect (CFU/ml) of N5 against all four bacterial
strains tested (Fig. 3). The additive effects of NaCl on N5 were also
evaluated. Strains ATCC BAA-1605 and ATCC 17961 showed less
susceptibility to 4 M NaCl, with 0.55- and 0.70-log reductions,
respectively, compared to the susceptibility of strains ATCC 19606
and ATCC 19003, which were reduced by 1.42 and 1.41 logs, re-
spectively. Similarly to the effects of ethanol, NaCl also showed

significant enhancement of the killing effect of N5, with a �3- to
4-log additional decrease in CFU/ml of all four strains of A. bau-
mannii (Fig. 4).

Biofilm studies. A key component of the lack of efficacy of
standard antibiotics and antimicrobials against A. baumannii is
the presence of biofilms, which serve to protect the bacteria and
prevent penetration of antimicrobial agents (20). In order to eval-
uate the antimicrobial activity of N5 against A. baumannii bio-
films, we measured the metabolic activities of biofilm integrity
posttreatment. The effects of N5 on A. baumannii ATCC BAA-
1605 in biofilms were measured utilizing an alamarBlue cell pro-
liferation assay kit, which measures the reducing power of living
cells. At a 1:1,000 dilution of N5, 80% of metabolic activity of A.
baumannii was lost within 1 h (Fig. 5) of treatment, which in-
creased to �90% loss of metabolic activity when the concentra-
tion was increased to a 1:400 dilution (Fig. 5). We utilized scan-
ning electron microscopy to investigate the effect on morphology
of A. baumannii ATCC BAA-1605 (antibiotic-resistant strain)
biofilms treated with N5, N5 without 1% CPC, or 1% CPC alone.
After 72 h of incubation, A. baumannii generated robust biofilms
with approximately 100% confluence (Fig. 6a). N5 without 1%
CPC appeared to disrupt and disperse the bacterial biofilms, with
a clear reduction in overall bacteria present (Fig. 6b). When 1%
CPC alone was applied on the biofilm, it deformed the superficial
bacteria, but the biofilm structures remained intact (Fig. 6c). Con-
sidering the intact biofilm structures after treatment and the low
metabolic activities of the bacteria deep inside the biofilm, 1%
CPC alone had limited antibacterial activities on the biofilm. N5,
which contains 1% CPC, led to a complete disruption of the bio-
film, leaving only a small amount of damaged bacteria present
(Fig. 6d).

Evaluation of the effect of environmental exposure on stabil-
ity of N5. A. baumannii remains a major problem in troops in-
jured in Iraq and Afghanistan, where environmental conditions
are drastically different from those in a laboratory environment.
In order for a novel antimicrobial therapeutic to be effective, it
must maintain its activity under these extreme conditions. Ele-
vated temperature is known to modify the macroscopic phase
separation behavior of nanoemulsions. In extreme environments,
such as those in which many military units are stationed, the qual-
ity of many diagnostic products exposed to environmental condi-
tions is in question. The effects of environmental factors like tem-
perature and humidity on the stability of N5 were tested. Four sets
of environmental exposure conditions were tested. After incuba-
tion in HH conditions for 96 h, the nanoemulsion particle size of
N5 increased 2.5 times (494.1 nm) compared with the size under
lab conditions (213.9 nm) (23°C and ambient relative humidity).
Following incubation of N5 under HL conditions, the particle size

TABLE 1 Comparative MICs and MBCs of 5 nanoemulsions on Acinetobacter baumannii strainsa

Test strain

MIC MBC

N1 N2 N3 N4 N5 1% CPC N1 N2 N3 N4 N5 1% CPC

BAA-1605 NE 1:81 1:81 NE 1:2,187 1:2,187 NE 1:27 NE NE 1:729 1:729
17961 NE 1:81 1:81 NE 1:2,187 1:2,187 NE 1:27 1:27 NE 1:2,187 1:2,187
19606 NE 1:81 1:81 NE 1:2,187 1:2,187 NE 1:81 1:27 NE 1:2,187 1:2,187
19003 NE 1:243 1:81 NE 1:2,187 1:2,187 NE 1:81 1:27 NE 1:2,187 1:2,187
a Due to the different compositions of nanoemulsions, the MIC and MBC are expressed as the dilution of nanoemulsions. For N5, dilutions of 1:729 and 1:2,187 are equivalent to
13.7 �g/ml and 4.6 �g/ml of cetylpyridinium chloride. NE, no effect.

FIG 2 Effect of N5 on the planktonic form of A. baumannii. The antimicrobial
activity of N5 was evaluated against A. baumannii strains (�, ATCC BAA-
1605; Œ, ATCC 17961; Œ, ATCC 19606; �, ATCC 19003). Overnight bacterial
cultures (200 �l) were added to 1.8 ml of NB with �1:500 to 1:2,677 dilutions
of N5. After �1 to 30 min incubation, CFU/ml of samples were measured by
plating on NA with serial dilution. Kinetics of killing of N5 from the 1:1,333
dilution is shown.
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increased �2 times (441.6 nm). Exposure to TS and LL conditions
had little effect on particle size; sizes were 291.2 nm and 279.7 nm,
respectively. Upon visualization of nanoemulsion following envi-
ronmental exposure studies, phase separation was observed in the
TS-, HH-, and HL-treated samples; however, the antimicrobial
activity of N5, as measured by MIC and MBC assays, was not
affected (Table 2).

DISCUSSION

Recently, skin, soft tissue, and bloodstream infections caused by
multidrug-resistant A. baumannii have increased among service
members from battlefields as well as nosocomial patients in civil-
ian hospitals (21). A. baumannii is resistant to almost all conven-
tional antibiotics by a wide range of mechanisms and can survive
for prolonged periods on the surfaces of instruments in hospital
settings (1). These factors in addition to its ability to form biofilms
and its special cell surface properties (pilus assembly and produc-
tion of Bap surface adhesion protein) have made current medical
approaches ineffective (22, 23). Several new approaches to devel-
opment of antimicrobial therapeutics have been reported, includ-
ing the generation of nitric acid-producing nanoparticles (24),
photodynamic therapy (25), and gallium maltolate treatment
(26). Although the experimental results of these approaches seem
positive, the therapeutic efficacy and the potential secondary ef-
fects of these treatments need further investigation. This lack of
effective and safe treatment options for A. baumannii has led to
the continued development of novel antimicrobial agents.

Antimicrobial nanoemulsions are surfactant-containing oil-
in-water emulsions (particle size, 100 to 800 nm) which are very

effective against many bacteria, enveloped virus, fungi, and spores
(8, 27) at concentrations that are nonirritating to skin or mucous
membranes of animals (28). The antimicrobial activity and mech-
anism of nanoemulsions are believed to function as a result of the
ability of the nanoemulsions to fuse with the outer membranes of
microorganisms, with the electrostatic interaction between the
cationic charge of the nanoparticles and the anionic charge on the
microorganisms (10) ultimately destabilizing the membrane’s
lipid bilayers and its cellular permeability, leading to disruption
(29); hence the broad spectrum activity of these particles.

In this study, we compared the bacteriostatic and bactericidal
characteristics of five nanoemulsion preparations against four A.
baumannii strains isolated from sputum, blood, urine, and cere-
brospinal fluid of patients. Our lead formulation, N5, which con-
tains 10% (vol/vol) Triton X-100, 25% (vol/vol) soybean oil, and
1% (wt/vol) CPC, inhibited A. baumannii, with MICs and MBCs
at dilutions of 1:2,187 and 1:729 to 1:2,187, respectively, depend-
ing on the strains, and reduced the number of CFU/ml over 102 to
106 times within 15 to 60 min at a 1:500 to 1:3,333 dilution.

One way in which antimicrobial activity of nanoemulsion can
be enhanced is with the addition of a cationic halogen-containing
compound such as CPC, which provides a positive surface charge
on the particle of nanoemulsions and ultimately efficiently attracts
the negatively charged bacterial surface (30). Additionally, CPC
can function as a cosurfactant (15), thereby aiding in bacterial cell
membrane destabilization, and has been shown to possess inde-
pendent antimicrobial activity (31). In the case of the planktonic
form of bacteria, our data demonstrate that the killing is due to the
1% CPC present in NS. However, the additional components of

FIG 3 Additive effect of N5 combined with ethanol on A. baumannii viability. Bacterial cultures (2 � 107/ml) were incubated for 1 h in NB with the indicated
concentrations of single agents (N5 and ethanol) or combinations, in which the addition of 30% ethanol resulted in a �1- to 3-log increase in killing effect
(CFU/ml) of N5 against all four bacterial strains tested.
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N5 have a significant effect on disruption of the A. baumannii
biofilm, thus enhancing killing over that achieved with 1% CPC
alone.

Additionally, we evaluated the additive effects of ethanol and a

hypertonic solution of NaCl on A. baumannii killing, both of
which demonstrated enhanced killing versus N5 alone.

Bacteria within a biofilm show susceptibilities to antibiotics
and to the host immune response different from those of their

FIG 4 Additive effect of N5 combined with NaCl on A. baumannii viability. Bacterial cultures (2 � 107/ml) were incubated for 1 h in NB with the indicated
concentrations of single agents (N5 and NaCl) or combinations, in which the addition of 4 M NaCl resulted in a �3- to 4-log increase in killing effect (CFU/ml)
of N5 against all four bacterial strains tested.

FIG 5 Effect of N5 on the metabolic activity of A. baumannii ATCC BAA-1605 biofilms. The biofilms formed in flat-bottom 96-well cell culture plates after 72
h of incubation at 37°C were incubated with 200 �l of N5 (1:400, 1:1,000, and 1:2,000 dilutions) and 1% CPC alone (1:2,000 dilution) for 1 h at 37°C, and the
remaining metabolic activity in biofilms was measured using an alamarBlue cell proliferation assay kit. The negative control was an equal volume of NB without
N5, and the positive killing control was an equal volume of NB with 0.1% sodium hypochlorite.
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planktonic form (32). Their resistance against most therapeutic
approaches comes from multiple mechanisms, including an exo-
polysaccharide matrix, which functions as a barrier against pene-
tration of antimicrobial agents (20). Therefore, for an antimicro-
bial agent to be effective against bacteria such as A. baumannii, it is

important for the compound to possess properties which lead to
the dispersion and/or disruption of biofilm structures, leading to
access to bacteria, such as that seen when bacteria are in the drug-
sensitive planktonic form (33). To this end, we evaluated the ef-
fects of N5 on the metabolic activity of A. baumannii in biofilms
via scanning electron microscopy and observed extensive disper-
sion and disruption of the biofilm structure compared to un-
treated controls. These data were similar to results reported for
nanoemulsion effects on Streptococcus mutans (34).

This anoemulsion potentially represents a suitable alternative
to standard antibiotic and antimicrobial compounds for the treat-
ment against antibiotic-resistant bacteria and those which form
impenetrable biofilms (35). Our nanoemulsion, N5, which con-
tains 1% CPC and has a mean diameter of 213.9 nm, has effective
antimicrobial activity against several A. baumannii strains evalu-
ated at high dilutions and may be an ideal candidate for the topical
treatment of A. baumannii infections and/or instrument/surface
decontamination. N5 can effectively reduce the metabolic activi-
ties of A. baumannii in biofilms at high dilutions and showed
consistent antimicrobial activity after exposure to extreme envi-
ronmental conditions, proving its suitability for field utilization.

FIG 6 Scanning electron microscopy (magnification, �15,000) of multidrug-resistant A. baumannii strain ATCC BAA-1605 biofilms formed on acrylic slides.
All cells were cultured in NB at 37°C for 72 h. a, control; b, N5 without 1% CPC; c, 1% CPC alone; d, N5, including 1% CPC. Biofilm slides were incubated for
1 h in NB containing each agent.

TABLE 2 Effect of environmental exposure on MIC, MBC and particle
size of N5

Environmental
conditionsa

Effective
diam (nm) Polydispersityb MICc MBCc

TS 291 0.142 1:2,187 1:729
HH 494 0.005 1:2,187 1:729
HL 442 0.029 1:2,187 1:729
LL 280 0.238 1:2,187 1:729
Lab 213 0.136 1:2,187 1:729
a TS, thermal shock; HH, high humidity/high temperature; HL, high humidity/low
temperature; LL, low humidity/low temperature.
b Polydispersity is a measure of the distribution width of the droplets provided by the
manufacturer of the size analyzer. The dilution of each step was 1:3, and the final
dilution was 1:531,441.
c MIC and MBC were tested on A. baumannii BAA-1605.
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Additional studies are necessary and ongoing to improve the an-
timicrobial activity of N5 by introducing additional antimicrobial
agents, such as antimicrobial nanoparticles, chelating agents, and
peptides.
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