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Executive Summary 
During the course of this project we made significant progress in four focus areas toward 
advancing the state-of-the-art in learning control theory of robust and adaptive non-
equilibrium control of highly nonlinear, higher-order, reconfigurable systems: 
 

1. Extend Approximate Dynamic Programming (ADP) techniques to control of 
nonlinear, multiple time scale, non-affine systems in an Adaptive Control 
framework. 

2. Develop solution techniques for Markov Decision Problems (MDP) that scale to 
continuous state and control spaces with constraints. 

3. Extend MDP techniques to solve multi-agent co-ordination and control problems 
in a decentralized fashion. 

4. Develop solution techniques that scale to continuous state-space Partially 
Observable Markov Decision Problems (POMDP) and their multi-agent 
generalizations. 

 
Progress Reporting 
Our work is presented as journal and conference papers, with an introduction to each 
paper and the actual paper included below.  The work conducted by John Valasek and his 
students is presented first, followed by the work conducted by Suman Chakravorty and 
his students.   
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TECHNICAL SUMMARIES – JOHN VALASEK 
 
 
2011: 

1. Siddarth, Anshu and John Valasek. 2011. Kinetic State Tracking for a Class of 
Singularly Perturbed Systems. Journal of Guidance, Control, and Dynamics, 
Vol. 34, No.3, pp. 734-749. 
 
The benefit of singular perturbation theory, specifically the Tikhonov theorem in 
flight control is at the level of modeling where it is used as a model reduction 
technique. This paper considers a class of nonlinear flight control problems that 
do not satisfy the underlying conditions of the Tikhonov theorem. Using insights 
from geometric singular perturbation theory and concept of center manifolds, this 
paper formulates a modified composite control law scheme that retains the 
benefits of the Tickhonov theorem for this general class of nonlinear problems. 
The main contribution of the developed result is that it is independent of the time 
scale separation between the translational and rotational dynamics. 
 

2. Siddarth, Anshu and Valasek, John. 2011. Global Tracking Control Structures 
for Nonlinear Singularly Perturbed Aircraft Systems, in Advances in 
Aerospace Guidance, Navigation & Control, Florian Holzapfel and Stephan Theil, 
Eds, Springer Berlin Heidelberg, DOI: 10.1007/978-3-642-19817-5 19, pp 235-
246. 
 
This paper is concerned with guaranteeing asymptotic tracking of both slow and 
fast dynamics of a nonlinear system – applications of which provides departure 
resistance capability for unmanned aerial vehicles. The synthesized controller 
takes advantage of singular perturbation theory and feedback linearization results 
to establish global exponential stability. The performance is demonstrated for a 
nonlinear, coupled, six degree-of-freedom F/A-18.  
 

3. Siddarth, Anshu and Valasek, John. 2011. Output Tracking of Non-Minimum 
Phase Systems. AIAA-2011-6487, Proceedings of the 2011 AIAA Guidance, 
Navigation, and Control Conference, Portland, Oregon, 9 August 2011. 
 
The main challenge in synthesizing a controller for a tail-controlled vehicle is to 
achieve maximum performance it is capable of, without exciting the unstable 
internal dynamics. This paper revisits the problem and synthesizes a globally 
stable full-state feedback controller for desired output tracking. No modification 
to the output/or placement of a virtual inertial measurement unit is placed. The 
underlying approach is to induce a time scale separation between the output 
dynamics and the unstable internal dynamics. The main contributions of the 
synthesis are analytic conditions under which the time scale separation can be 
induced, and stability and robustness of the controller guaranteed.   
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2012: 
4. Narang-Siddarth, Anshu and Valasek, John. 2012. Tracking Control Design for 

Non-Standard Nonlinear Singularly Perturbed Systems. WeA06.6, 
Proceedings of the 2012 American Control Conference, Montreal, Canada, 27 
June 2012. 
 
In this paper novel state-feedback control laws are developed for a general class 
of two time scale continuous time systems which are nonlinear in both slow and 
fast states. No assumption concerning the type of non-linearity of the system is 
made and the technique is applicable to both standard and non-standard forms of 
singularly perturbed systems. Non-standard forms of singularly perturbed systems 
violate fundamental conditions for Tikchonov theorem – hindering use of model 
reduction for control synthesis. Asymptotic stabilization of the proposed ‘indirect 
manifold construction approach’ is proven using Lyapunov methods. Results 
show that the proposed technique applies both to standard and non-standard forms 
and guarantees asymptotic stabilization with quantifiable robustness bound for the 
singular perturbation parameter. 
 

5. Valasek, John, Kirkpatrick, Kenton, and May, James, "Intelligent Motion Video 
Guidance for Unmanned Air System Ground Target Surveillance," AIAA 
2012-2587, Proceedings of the 2012 AIAA Infotech@Aerospace Conference, 
Garden Grove, CA 21 June 2012.   

 
This paper develops an algorithm for surveillance of ground targets by UAS with 
fixed pan and tilt cameras, in the presence of winds. The specific Reinforcement 
Learning algorithm used is Q-learning, and the objective of the approach is to 
bring any target located in an image captured by a camera into the center of the 
image using the learned control policy. The learning agent determines offline 
(initially) how to control the UAS and camera to get a target from any point in the 
image to the center and hold it there. A feature of this approach is that the 
learning agent will continue to learn and refine and update the previously offline 
learned control policy, during actual operation. 
 

6. Dunn, Caroline, Kirkpatrick, Kenton, and Valasek, John, "Unmanned Air 
System Search and Localization Guidance Using Reinforcement Learning," 
AIAA 2012-2589, Proceedings of the 2012 AIAA Infotech@Aerospace 
Conference, Garden Grove, CA 21 June 2012.   

 
This paper investigates aircraft flight path guidance for search and localization of 
Regions of Interest, consisting of atmospheric phenomena. The problem is posed 
as an offline agent learning problem, of localizing atmospheric thermal locations 
and then guiding an Unmanned Air Vehicle to soar from one to another. Q- 
learning is used as the learning algorithm. The computational navigation solution 
used here is a basic grid algorithm that assigns thermal locations and intensities, 
with the representation being specified states, actions, goals, and rewards that are 
used to accomplish the agent learning. 
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7. Narang-Siddarth, Anshu and Valasek, John. 2012. Tracking Control for a Non-
Minimum Phase Autonomous Helicopter. AIAA 2012-4453, Proceedings of the 
2012 AIAA Guidance, Navigation & Control Conference. Minneapolis, MN, 13 
August 2012. 

This paper presents an application of authors’ prior work on control of singularly 
perturbed systems (2012, American Control Conference) to an autonomous 
helicopter to mitigate non-minimum phase behavior. Fundamentally, this behavior 
is the technical term for the helicopter’s inherent nature to induce instability when 
commanded to hover over a specific point in space. This research identifies that 
non-minimum phase behavior is actually related to non-standard singularly 
perturbed systems, and stable control is only possible if the helicopter exhibits 
standard singularly perturbed behavior. This key inference allows implementation 
of the ‘indirect manifold construction approach’ control scheme, which 
commands desired control action to perform the required transformation. The 
novel aspect of this implementation is that it provides a mechanism for feedback 
gain selection in nonlinear settings. 
 

8. Valasek, John, Akella, Maruthi R., Siddarth, Anshu, and Rollins, Elizabeth. 2012. 
Adaptive Dynamic Inversion Control of Linear Plants with Control Position 
Constraints. IEEE Transactions on Control Systems Technology , Vol.20, No.4, 
pp 918-933. 
 
This paper is concerned with designing control actions for a vehicle to follow a 
prescribed guidance solution under design constraints. To fully take advantage of 
the design constraints, the proposed switching control action gives priority to 
safety over guidance when the vehicle is close to instability. This switching 
action, however, has been known to induce instability when implemented 
incorrectly. To avoid this the paper introduces two novel concepts: ‘domain of 
control authority’ and ‘direction consistent control mechanism’ that together 
identify boundary of control actions that always guarantee safety and required 
tracking and always restrict the commanded control action within this boundary. 
Controller performance is demonstrated with numerical examples of a two 
degree-of-freedom dynamic model and an F-16XL aircraft model. 
 

2013:  
9. Kirkpatrick, Kenton, and Valasek, John, "Approximation of Agent Dynamics 

Using Reinforcement Learning," AIAA 2013-0875, Proceedings of the 51st 
AIAA Aerospace Sciences Meeting Including the New Horizons Forum and 
Aerospace Exposition, Grapevine, TX, 9 January 2013. 

In this paper, Reinforcement Learning-based algorithms are developed for 
learning agents' time dependent dynamics while also learning to control them. 
Three algorithms are introduced. Sampled-Data Q-learning is an algorithm that 
learns the optimal sample time for controlling an agent without a prior model. 
First-Order Dynamics Learning is an algorithm that determines the proper time 
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constants for agents known to have first-order dynamics, while Second-Order 
Dynamics Learning is an algorithm for learning natural frequencies and damping 
ratios of second-order systems. 

 
10. Narang-Siddarth, Anshu and Valasek, John. 2013. A Constructive Stabilization 

Approach for Open-Loop Unstable Non-Affine Systems. Proceedings of the 
2013 American Control Conference, Washington D.C, 19 June 2013. 
 
This paper pursues to find a constructive feedback control strategy to address the 
inherent nonlinearities and complexities of underlying physical systems that form 
the basis of today’s heterogeneous applications (for example: flapping-wing 
systems). Dynamics of such systems are nonlinear in the control input, and are 
more commonly referred as control-nonaffine systems in the literature. This 
special structure however violates collinearity; a key property essential to employ 
nonlinear control techniques such as feedback linearization, backstepping and 
Lyapunov-based redesign methods. The main contribution of this article is that it 
formulates a generalization of the famous Kalman-Yakubovich-Popov lemma for 
non-affine systems under mild restrictions. This new result helps to determine 
whether or not an input-output description of a nonlinear system is passive. It is 
expected that this generalization will play a vital role in developing adaptive 
control laws for nonlinear systems based on Lyapunov’s direct method analogous 
to its linear counterpart. 
 

11. Narang-Siddarth, Anshu and Valasek, John. 2013. Necessary Conditions for 
Feedback Passivation of Nonaffine-in-Control Systems. Proceedings of the 
2013 SIAM Conference on Control & Its Applications. 
 
This research explores a universal stabilization formula for an unstable non-affine 
system by developing a novel composite control law structure. The intuitive idea 
behind this control form is to introduce stiffness and damping into the 
system. The major contribution comes in identifying principles that converts an 
open-loop unstable system into stable in the Lyapunov sense closed-loop system 
through static-feedback alone. Most importantly, conditions under which a 
nonlinear system be rendered passive through static state-feedback without 
making any assumptions about the nature of the control influence are developed 
in this paper.   
 

12. Rollins, Elizabeth, Valasek, John, Muse, Jonathan, and Bolender, Michael, 
"Nonlinear Adaptive Dynamic Inversion Applied to a Generic Hypersonic 
Vehicle," AIAA 2012-5234, Proceedings of the 2013 AIAA Guidance, 
Navigation, and Control Conference, Boston, MA, 22 August 2013. 
 
Previous work on control design for hypersonic vehicles often uses linearized or 
simplified nonlinear dynamical models of the vehicle, and very little work has 
been done on recovering from unstart events. Using a generic hypersonic vehicle 
as a control design and simulation model, this paper develops a nonlinear adaptive 
dynamic inversion control architecture with a control allocation scheme to track 
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realistic flight path angle trajectories. A robustness analysis is performed on the 
initial control architecture design, which shows that the control architecture is 
able to handle time delays, perturbations in stability derivatives, and reduced 
control surface effectiveness. The control architecture then is evaluated for its 
ability to handle inlet unstart. 

 
13. Henrickson, James, Kirkpatrick, Kenton, and Valasek, John, "Rapid 

Characterization of Shape Memory Alloy Material Parameters Using 
Computational Intelligence Methods," SMASIS2013-3016, Proceedings of the 
15th ASME 2013 Conference on Smart Materials, Adaptive Structures and 
Intelligent Systems, Snowbird, UT, 16 September 2013.   
 
Shape memory alloys are capable of delivering advantageous solutions to a wide 
range of engineering-based problems. Implementation of these solutions, 
however, is often complicated by the hysteretic, non-linear, thermo-mechanical 
behavior of the material. Although existing shape memory alloy constitutive 
models are largely accurate in describing this unique behavior, they require prior 
characterization of the material parameters. Consequently, before thorough 
modeling and simulation can occur for a shape memory alloy-based project, one 
must first go through the process of identifying several material parameters 
unique to shape memory alloys. Current characterization procedures necessitate 
extensive experimentation, data collection, and data processing. As a result, these 
methods simultaneously create a high barrier of entry for engineers new to active 
materials and impede the advanced study of shape memory alloy material 
parameter evolution. This paper develops a novel method in which computational 
intelligence methods are used to rapidly identify shape memory alloy material 
parameters. Specifically, an artificial neural network is trained to identify 
transformation temperatures and stress influence coefficients of given shape 
memory alloy specimens using strain-temperature coordinates as inputs. After 
generating training data through the use of a constitutive model, the resulting 
trained artificial neural network was used to identify parameters for a number of 
randomly generated theoretical shape memory alloys. Results show that the 
artificial neural network was able to rapidly identify both transformation 
temperatures and stress influence coefficients with satisfactory accuracy. The 
generation of training data was then repeated using Taguchi methods. Further 
results show that the artificial neural network trained with the Taguchi-based 
training data yielded improved characterization accuracy while using less training 
data. 

 
2014:  
 

14. Woodbury, Timothy, Dunn, Caroline, and Valasek, John, "Autonomous Soaring 
Using Reinforcement Learning for Trajectory Generation," AIAA-2014-
0990, Proceedings of the AIAA Science and Technology Forum and Exposition 
2014: 52nd Aerospace Sciences Meeting, National Harbor, MD, 15 January 2014. 
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This paper develops an approach for planar lateral/directional guidance of a linear 
dynamic gliding aircraft to a known thermal location. Reinforcement learning is 
utilized to generate reference bank angle commands for directing the aircraft to 
close proximity of the updraft, and from there the aircraft follows a circling 
trajectory centered on the thermal to gain energy. A Lyapunov-based feedback 
control law is used to generate bank angle commands when circling the thermal. 
By using reinforcement learning the problem of online trajectory generation is 
reduced to a simple search in a static state-action value table. This approach has 
the advantage of low computational burden/overhead in practice. Furthermore, the 
need for a precise aircraft model for learning and simulation is reduced. Monte 
Carlo results presented in the paper demonstrate that the reinforcement learning 
guidance agent can consistently navigate the aircraft to the thermal. Reliable 
navigation is achieved after a relatively small number of learning episodes. An 
analysis of typical energy gains circling a thermal of constant shape and size is 
also presented. 
 

15. Siddarth, Anshu, Peter, Florian, Holzapfel, Florian, and Valasek, John, 
"Autopilot for a Nonlinear Non-Minimum Phase Tail-Controlled Missile 
Using Time Scale Separation," AIAA-2014-1293, Proceedings of the AIAA 
Science and Technology Forum and Exposition 2014: 52nd Aerospace Sciences 
Meeting, National Harbor, MD, 16 January 2014. 

 
Acceleration control of highly agile, aerodynamically-controlled missiles is a 
well-known non-minimum phase control problem. This problem is revisited here 
for a planar tail-controlled generic missile, and a globally stable nonlinear 
autopilot command structure is synthesized to maximize performance. For the 
first time the non-minimum phase characteristics of the vehicle are addressed by 
making no modification to the output definition by inducing an inherent time 
scale separation in the closed-loop dynamics. Unlike previous time scale control 
techniques, results presented here are based on theoretical advancements made in 
control of nonlinear singularly perturbed systems. Conditions under which the 
induced time scale separation can be employed for a stable autopilot design are 
also discussed. The state feedback controller proposed is real-time implementable, 
independent of operating condition and desired output trajectory. Simulation 
results show that the approach is able to accomplish perfect tracking while 
keeping all closed-loop signals bounded. 

 



Kinetic State Tracking for a Class of Singularly Perturbed Systems

Anshu Siddarth and John Valasek

Texas A&M University, College Station, Texas 77843-3141

DOI: 10.2514/1.52127

The trajectory-following control problem for a general class of nonlinear multi-input/multi-output two time-scale

system is revisited. While most earlier works used singular perturbation theory and assumed that an isolated real

root exists for the nonlinear set of algebraic equations that constitute the slow subsystem, here, two time-scale systems

are analyzed in the context of integral manifolds. It is shown that the singularly perturbed system has a center

manifold and, for small values of the slow state, an approximate solution of the nonlinear set of transcendental

equations can be computed. Geometric singular perturbation theory is used as the model-reduction technique, and

modified composite control design is used to formulate the stabilizing control laws for slow state tracking. The control

laws are independent of the scalar perturbation parameter and an upper bound for it, and the closed-loop error

signals are determined such that uniform boundedness of the closed-loop system is guaranteed. Additionally,

asymptotic stabilization is shown for the nonlinear regulation problem. The methodology is demonstrated through

numerical simulation of a nonlinear generic two-degree-of-freedom kinetic model and a nonlinear, coupled, six-

degree-of-freedommodel of theF/A-18AHornet.Results demonstrate that themethodologypermits close tracking of

a reference trajectory while maintaining all control signals within specified bounds.

Nomenclature

A, Af = positive gain matrices
b = wingspan, ft
c = mean aerodynamic chord, ft
CD = drag coefficient
CL = lift coefficient
CY = side force coefficient
Cl, Cm, Cn = roll, pitch, and yaw moment coefficients
D = domain of subscripted variable

g = gravity acceleration, ft=s2

Ix, Iy, Iz = principal axis inertias for aircraft, slug ft2

M = Mach number
m = mass, slug
m = number of slow variables
�M�� = nonlinear map
M� = invariant manifold of full-order system
M0 = invariant manifold of reduced-order subsystems
n = number of fast variables
O� � = order symbol
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in correspondence with the CCC.
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p = number of control variables
p, q, r = body roll, pitch, and yaw rates, deg =s
r = degree of smoothness
S = reference area, ft2

t = slow time scale
Tm = maximum thrust, lb
t0 = initial time
t� = some finite time; greater than t0
u = control vector
V�t; ~x� = Lyapunov function for closed-loop reduced slow

subsystem
vs = speed of sound, ft=s
w = vector �x; ��T
W�t; ~z� = Lyapunov function for closed-loop reduced fast

subsystem
x, z = state variables of full-order system
~x = tracking error
~z = error between fast variable and exact manifold
� = angle of attack, deg
� = sideslip angle, deg
�w, �z = perturbation quantities
�e, �a, �r = elevator, aileron, and rudder control inputs, deg
� = scalar perturbation parameter
�����s � = upper bound for scalar perturbation parameter

(for stabilization problem)
� = throttle input
� = pitch attitude angle, deg
�, 	 = wind-axes orientation angles, deg

�t; ~x; ~z� = Lyapunov function for complete system
� = density of air, slug=ft3

� = fast time scale
��:� = approximation of exact manifold
� = roll attitude angle, deg
��:� = approximation to exact manifold
 = heading angle, deg
_ = derivative with respect to slow time scale
0 = derivative with respect to fast time scale
k:k = Euclidean norm

Subscripts

b = bound on variable
r = reference

Superscripts

S = stable
U = unstable

I. Introduction

M ATHEMATICAL modeling of many physical systems
requires high-order dynamic equations. The presence of

parameters such as spring constant, mass, andmoments of inertia are
the cause of stiffness and increased order of these equations. It is
difficult to arrive at exact analytical solutions of these nonlinear
governing equations with known, and sometimes unknown, variable
coefficients, so an approximate solution is often computed. Singular
perturbation theory is a scheme used to simplify systems that
inherently possess both fast and slow dynamics. Such systems are
characterized by a small parameter � multiplying the highest
derivative. Suppression of this small parameter reduces the order of
the system, and thus the label of singularly perturbed. Singular
perturbation theory dates back to the 1904 work of Prandtl [1] on
fluid boundary layers; subsequently, applications of perturbation
methods were explored for control design [2–4].

The main contribution of perturbation methods is at the level of
modeling, where it has been used as a model-reduction technique as
well as a means of removing the numerical stiffness in the original
system. In particular, the method of matched asymptotic expansions
reduces the study of the full-order system of equations to the study of

two other degenerate models. The first model captures the dominant
phenomena, and the neglected phenomena is handled in the second.
For the full-order system of the form

_x� f�x; z; �� �_z� l�x; z; �� (1)

the lower-order models are developed to be the following:
Reduced slow subsystem,

_x� f�x; z; �� 0� l�x; z; �� (2)

Reduced fast subsystem,

x 0 � 0 z0 � l�x; z; �� (3)

where � represents the scalar perturbation parameter, and 0 represents
the derivative with respect to the fast time scale � � �t � t0�=�. It has
been shown that the behavior of the complete system of Eqs. (1) is
constrained within the O��� bound of the reduced slow subsystem,
provided the dynamics of the reduced fast subsystem are stabilizing
[5]. One problem evident with the reduced slow subsystem is the
solution of the transcendental or algebraic set of equations for the fast
states z. It is known that there may be many solutions satisfying this
set of equations. The standard singular perturbation model assumes
that, in the domain of interest, these solutions be isolated real roots.

Tracking properties of standard singularly perturbed systemswere
first studied by Grujic [6] in 1982. This work laid the foundations of
tracking theory in a Lyapunov sense. Later, in 1988, this work was
extended for nonlinear time-varying singularly perturbed systems
[7]. However, it is assumed that separate controls are available for
both the reduced slow and the reduced fast subsystems, and the
algebraic set of equations have a trivial solution.Christofides et al. [8]
developed robust controller designs for systems with a stabilizable
fast subsystem, and input/output linearizable slow subsystems with
input-to-state stable inverse dynamics. This work considered a
general class of nonlinear time-varying singularly perturbed systems
that have dynamics linear in the fast states. Another approach to
tracking was presented byHeck [9] in 1991. He addressed the design
of sliding-mode controllers for a class of linear time-invariant
systemswhere tracking of slow variables is desired. For both reduced
subsystems, a sliding-mode controller is designed, and a composite
of these controls is then implemented on the full-order system. The
concept of composite control, or designing separate controllers, for
each of the subsystems and then implementing their cumulative to the
full higher-order system was initiated by Suzuki andMiura [10], and
since then, this concept has been extensively used by researchers for
robust stabilization of systems with time-scale properties [11–13].

In the aircraft literature, the rotational equations of motion
constitute the fast subsystem. These equations are highly coupled
and nonlinear; thus, there exist multiple solutions for the set of
nonlinear algebraic equations. Tracking of slow variables for these
systems is achieved by making two key assumptions. First, the
control surface deflections do not affect the slow states. Second, the
fast variables are the actuators for the slow subsystem. Pioneering
work in this area was published by Menon et al. [14] in 1987.
Reference [14] designed a flight-test trajectory control system using
dynamic inversion. The output variables to be tracked were total
velocity, angle of attack, sideslip, and altitude. Once the desired
angular rates were calculated, the dynamic inversion was applied to
the fast subsystem to compute the aerodynamic control surface
deflections. This work was extended to overactuated systems by
Snell et al. [15]. More recently, the same concept has been employed
to design longitudinal windshear flight-control laws [16] and for
control of generic reentry vehicles [17].

Although all of the systems studied fall under the category of
Eqs. (1), different design methodologies have been developed for
varied physical systems, and several different control techniques
have been employed. The control laws developed for a general form
of physical systems assume the existence of a unique solution of the
transcendental equation. For general dynamical system models, the
existence of isolated roots for the fast states is not guaranteed.
Although aircraft literature addresses this problem by employing
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assumptions about the plant model, there is no general methodology
in the literature to date to design tracking control structures for
singularly perturbed systems that are nonlinear, both in the slow and
the fast states. The open-loop study of these systems has been the
focus of the geometric singular perturbation theory [18]. This theory
has been employed in the past for transforming dynamical systems
into singular perturbation form [Eq. (1)] [19,20] and to develop
reduced-order models [21].Work by Sharkey andO’Reilly [22] used
this approach to design stabilizing control laws for a special of class
of singularly perturbed systems wherein the control appears only in
the fast dynamics. The global nature of the preceding stabilization
results was proved by Chen [23] later on in 1998.

In this paper, the use of geometricmethods is extended to a general
class of time-varying singularly perturbed systems that are nonlinear
in both the slow and the fast states. The problem of control for this
general class of singularly perturbed systems is addressed for the first
time in a systematic manner. The paper makes two major contri-
butions. First, this work is not restricted to systems that have a unique
solution for the nonlinear algebraic set of equations of the slow
subsystem. The presence of multiple roots is accounted for by
proving that a center manifold exists for the slow subsystem. This
allows for the incorporation of results from the centermanifold theory
that are helpful in obtaining approximate roots of the transcendental
equations. Tracking control laws are designed for both the slow and
the fast subsystems to track the desired reference and computed
approximation, respectively, using a composite controlmethodology.
Second, the composite control law is not a function of the scalar
perturbation parameter, nor does it require knowledge of it. This is an
important consideration for systems such as aircraft, where quan-
tifying this parameter canbedifficult. Theproposedcontrol scheme is
able to guarantee asymptotic stabilization of states for a general class
of nonlinear regulation problems and uniform bounded stability for
the trajectory-following problem. Using Lyapunov theory, a
conservative upper bound �� is derived for the singular perturbation
parameter for which these results hold. From the stability analysis, it
is shown that this approach applies to all classes of singularly
perturbed systems, with tracking properties of standard singular
perturbation models being a special case. The approach and meth-
odology is demonstrated with simulation examples for a nonlinear
generic two-degree-of-freedom kinetic model and a nonlinear,
coupled six-degree-of-freedom F/A-18A Hornet aircraft.

The paper is organized as follows. Section II describes the class of
systems considered and formulates the control problem. Section III
presents the necessary concepts of geometric singular perturbation
theory and motivates this work. Section IV makes an important
observation about the existence of a center manifold for the
singularly perturbed system and details the procedure to compute this
manifold. Section V develops the reduced-order models and for-
mulates the tracking control laws. The proof of stability and main
results are also presented in this section. Numerical simulations are
presented in Sec. VI, and conclusions are discussed in Sec. VII.

II. Problem Formulation

The dynamic system considered is the nonlinear affine in the
control singularly perturbed system, mathematically expressed as

_x� f�x; z� � g�x; z�u (4)

�_z� l�x; z� � k�x; z�u (5)

where x 2 Rm is the set of slow variables of the system, z 2 Rn is the
vector of the fast variables, and u 2 Rp is the set of the control
variable. The singular perturbation parameter satisfies 0< �	 1
and � 2 R�. The vector fields f�:�, g�:�, l�:�, and k�:� are such that
the closed-loop system is twice continuously differentiable with
respect to their arguments. The control objective is to control the slow
state to asymptotically track a specified twice continuously
differentiable time-varying bounded trajectory, or x�t� ! xr�t� as
t!1.

Remark 1: The functionsg�x; z� andk�x; z� represent the control-
influence terms, while all other terms such as inertial coupling and
gravitational forces are all contained in f�x; z� and l�x; z�.

Remark 2: For a rigid body, x are the translational velocities while
z represents the angular velocities. The rotational dynamics for a
rigid body contain the nonlinear inertial coupling terms. The function
l�x; z� captures this nonlinearity in the fast states.

III. Background: Geometric Singular
Perturbation Theory

Singular perturbation theory is a tool used to obtain the reduced-
order approximations of the full-order equations of motion, which
are difficult to analyze. The theory is valid so long as the parameter �
remains sufficiently small and the time-scale behavior is preserved.
Themethod ofmatched asymptotic expansions [24] and its variation,
the method of composite expansions [24], have been the foremost
methods employed to develop these reduced-order models. The
alternative geometric approach describes the motion of the full-order
system using the concept of invariant manifolds. Both approaches
produce the exact same reduced-order models but with different
assumptions about the system. Asymptotic methods assume that the
dynamical system possesses isolated roots, while the geometric
approach is more general and takes into consideration multiple
nonisolated roots of nonlinear systems.

To introduce the necessary concepts of geometric singular
perturbation theory for an open-loop dynamical system, consider the
nonlinear autonomous system:

_x� f�x; z� (6)

�_z� l�x; z� (7)

Note that the following results also apply to nonautonomous
systems. Equations (6) and (7) can be rewritten in the fast time scale
� � �t� t0�=� as

x 0 � �f�x; z� (8)

z 0 � l�x; z� (9)

The independent variables t and � are referred to as the slow and
the fast time scales, respectively, and Eqs. (6–9) (referred to as the
slow and the fast systems, respectively) are equivalent whenever
� ≠ 0. First, the system is studied for �� 0. The fast system reduces
to n dimensions with variables x as constant parameters, producing
the reduced fast subsystem,

x 0 � 0 (10)

z 0 � l�x; z� (11)

On the other hand, the order of the slow system reduces to m
dimensions and results in a set of differential-algebraic equations,
producing the reduced slow subsystem,

_x� f�x; z� (12)

0 � l�x; z� (13)

The reduced slow system appears to be a locally flattened vector
space of the complete slow system. Thus, the set of points �x; z� 2
Rm 
 Rn is expected to have a Cr smoothmanifoldM0 of dimension
m inside the zero set of function l�:�, provided the functions f�:� and
l�:� are assumed to be Cr.
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Assumption 1: The functions f�x; z� and l�x; z� are sufficiently
smooth so that Cr with r � 1.

The requirement to be continuous and at least once differentiable
assures smoothness of the manifoldM0. The flow on this manifold
evolves as

_x� f�x;h0�x�� (14)

where h0�x� is the solution of the algebraic part [Eq. (13)] that
defines the manifold,

M 0: z� h0�x�; x 2 Rm; z 2 Rn (15)

When viewed from the perspective of the reduced fast subsystem,
themanifoldM0 is the set offixed points �x;h0�x��; therefore,M0 is
trivially invariant. If every fixed point �x;h0�x�� of the reduced fast
subsystem is assumed to be hyperbolic, then starting from arbitrary
initial conditions, the flow will settle down exponentially fast onto
the manifold, after which the flow evolves according to Eq. (14).
Equivalently, the flow normal to the manifold is faster than that
tangential to it. Such a manifold is said to be normally hyperbolic.
Furthermore, a normally hyperbolic invariant manifold has local, Cr

smooth stable, and unstable manifolds: WS
loc�M0� and WU

loc�M0�.
These manifolds are unions over all (x) inM0 of the local stable and
unstable manifolds of the reduced fast subsystem’s hyperbolic fixed
points �x;h0�x��.

To show these concepts, consider the following example. Let

_x 1 ��x1 _x2 ��x2 �_z��z (16)

so that the reduced slow subsystem is

_x 1 ��x1 _x2 ��x2 � z� 0 (17)

and the reduced fast subsystem is

x1 � 0 x2 � 0 z0 � �z (18)

The solution of the algebraic equation (17) is z� 0, which is also
the fixed point of Eq. (18). The invariant manifold is given by
M0: z� 0, which is the complete x1-x2 plane. The origin is the
stable hyperbolic equilibrium of the reduced slow subsystem, so any
trajectory starting on the manifold approaches the origin in forward
time, as seen in Fig. 1. Studying the reduced fast subsystem suggests
that, for any point with nonzero initial condition z�0�, the flow
approaches normal to the manifold. Intuitively, one may conclude
that, for initial conditions not on the manifold, the reduced fast
subsystem describes the transition to the manifold, after which the
system evolves according to the reduced slow subsystem (seen in
Fig. 2). Furthermore, since all points �x1; x2; z� approach the
manifold at an exponential rate forward in time, the complete space is
the stable manifold WS�M0�.

For the full-order system, similar inferences can be made. The
presence of � in Eq. (7) indicates that the fast variables grow relatively
faster than the other states of the system. If their open-loop system is
stabilizing, these states quickly settle down to their equilibrium. The
other variables continue to evolve in timewith the fast variables fixed
by an equilibrium hypersurface. Mathematically, 9 t�: t� > t0, after
which the solutionsx�t; �� and z�t; �� lie on a distinctm dimensional-
invariant manifold M�:

M �: z� h�x; ��; x 2 Rm; z 2 Rn (19)

For the system of Eqs. (16), the invariant manifold continues to be
the x1-x2 plane. In addition, the family of lines parallel to the z axes
still describe the flow normal to the manifold. Consider Fig. 3 to
study this behavior. To generate this figure, � was chosen to be 0.05.
For a fixed initial condition, the flow evolves in two parts: one
component along the manifold M�, which is governed by the
reduced slow subsystem, and the other component in the normal
direction, for which the flow is governed by the reduced fast
subsystem. Points that are already on the manifold are seen to evolve
similar to theflow sketched in Fig. 1. Thus, the reduced-ordermodels

provide good insight into the behavior of the full-order system. It is
apparent that if the reduced fast subsystem were unstable, then an
initial condition not on the manifold would move farther away in
time. For the example considered, the manifolds M0 and M� were
obtained to be identically equal, but this is not generally the casewith
nonlinear systems.

The geometric constructs discussed previously are formal
statements of Fenichel’s persistence theory [18]. First, the following
assumptions about the slow system are made:

Assumption 2: There exists a set M0 that is contained in
f�x; z�: l�x; z� � 0g, such that M0 is a compact boundaryless
manifold.

Assumption 3:M0 is normally hyperbolic relative to the reduced
fast subsystem and, in particular, it is required that for all points
z 2M0, there are k (respectively, l) eigenvalues of Dzl�0; z� with
positive (respectively, negative) real parts that are bounded away
from zero, where k� l� n.

The following theorem from Fenichel [18] is for compact
boundaryless manifolds. Let the slow system satisfy Assumptions 1,
2, and 3. If � > 0 is sufficiently small, then there exists amanifoldM�

that is Cr�1 smooth locally invariant under the fast system and Cr�1

O��� close toM0. In addition, there exist perturbed local stable and

Fig. 1 Reduced slow subsystem.

Fig. 2 The reduced slow and the fast subsystems.

Fig. 3 Flow of system of equations (16) when � ≠ 0.
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unstable manifolds ofM�, and they are Cr O��� close, for all r <1,
to their unperturbed counterparts.

IV. Center Manifold and Computation

Fenichel’s theorem [18] is a powerful tool to study the behavior of
stiff dynamical systems. It asserts the presence of an invariant
manifold M� that is O��� close to M0, but it does not provide the
procedure to compute the manifold. SinceM� is invariant for some
t � t�, the solutions follow the curve specified in Eq. (19).
Differentiating this expression with respect to t,

_z� @h
@x

_x (20)

and multiplying Eq. (20) with � and substituting for _x and _z from
Eqs. (6) and (7) results in

�
@h

@x
f�x;h�x; ��� � l�x;h�x; ��� (21)

Equation (21) is called the manifold condition. Note that
substituting �� 0 in the manifold condition returns Eq. (13), which
is satisfied by the manifold M0. To employ Fenichel’s results [18],
the manifold condition needs to be solved. Exact computation is
impossible, since solving this condition is equivalent to solving the
complete nonlinear system. One approximate approach is to
substitute a perturbation expansion forh�x; �� � h0�x� � �h1�x� �
O��2� into Eq. (21) and then solve order by order for h�x; ��. If the
domain of interest is known, then the implicit function theorem may
be employed. It is usually the inverse problem that is encountered,
which is to find h�x; �� as a smooth function of its arguments. In this
paper, the approach proposed in [25] is used, and the following
discusses its computation procedure.

The computation procedure proposed in [25] has been laid out for
dynamical systemswith center manifolds. For completeness, the first
step is to check whether the manifold M� is the center manifold of
the singularly perturbed system. To study this behavior, rewrite the
fast system using the technique called suspension [26] as

x 0 � �f�x; z� (22)

�0 � 0 (23)

z 0 � l�x; z� (24)

Assume that the origin is the fixed point of the preceding system
that is f�0; 0� � 0 and l�0; 0� � 0. Then, the perturbed system
obtained by linearizing these equations about the origin ��� 0;x�
0;h�0; 0� � 0� is written in compact form as

�w0 � Fw� F1z �z0 � Lz� L1w (25)

where w� �x; ��T , �w, and �z denote the perturbation quantities,
and F, F1, L, and L1 are constant matrices of appropriate size. If all
eigenvalues of F have zero real parts while all eigenvalues of L have
negative real parts, then the manifold M� is precisely the center
manifold, and it spans the generalized eigenvectors associated with
eigenvalueswith zero real parts. Thismanifold is defined for all small
values of the slow state x and the perturbation parameter �. The
requirement on eigenvalues ofF supports the existence of time scales
in the system, for if the eigenvalues were nonzero, then all states
would be fast variables, and the system is not singularly perturbed.
This suggests that the eigenvalue restriction on F is always satisfied
by systems with the multiple time-scale property. The other
requirement of negative eigenvalues of L is to ensure that the
trajectories not on the manifold approach it in forward time.

From the preceding analysis, h�x; �� is known to be the center
manifold. If the origin is the fixed point of the linearized system, then
the theorem from [25] asserts that one can approximateh�x; �� to any

degree of accuracy. For functions �: Rm 
 R! Rn, which are Cr�1

(r defined as in Assumption 1) in the neighborhood of the origin,
define

�M���x; �� � � @�
@x

f�x; ��x; ��� � l�x; ��x; ��� (26)

Note that, by Eq. (21), �Mh��x; �� � 0.
The following is the theorem from [25]. Let �: Rm 
 R! Rn

satisfy ��0; 0� � 0 and j�M���x; ��j �O�C�x; ��� for jxj ! 0 and
�! 0, whereC�:� is a polynomial of degree greater than one. Then,

jh�x; �� � ��x; ��j �O�C�x; ���

This theorem implies that an approximate function ��x; �� can be
determined for small values of x and �. The condition ��0; 0� � 0 is
to ensure that the origin remains the fixed point. To demonstrate the
procedure, consider the example from [25]:

_x� xz� ax3 � bz2x �_z��z� cx2 � dx2z (27)

Linearizing this system about the origin,

�x0 � 0 ��0 � 0 �z0 � �1 (28)

It is seen that the system possesses a center manifold z� h�x; ��.
To approximate h, define

�M���x; �� � � @�
@x
�x��x; �� � ax3 � b�2�x; ��x� � ��x; �� � cx2

� dx2��x; �� (29)

Hence, if ��x; �� � cx2, then �M���x; �� �O�jx4j � j�x4j�, and
from the preceding theorem, h�x; �� � cx2 �O�jx4j � j�x4j�. Since
the fast subsystem is stabilizing, geometric singular perturbation
theory says that stability of the complete system can be analyzed by
studying the flow on the manifold [Eq. (14)]:

_x� �a� c�x3 � bcx5 �O�jx5j � j�x5j� (30)

V. Control Formulation and Stability Analysis

The central idea is the following. If the reduced fast subsystem is
stabilizing about the manifold M0, the complete system dynamics
remain O��� close to the reduced slow subsystem. This fact is
employed to develop a stable closed-loop system. It is proposed that
two separate stabilizing controllers be designed for each of the
subsystems and their composite be fed to the complete system. It is
shown that, in fact, this composite control uniformly stabilizes the
complete system. This approach has been shown in the literature to
guarantee asymptotic stability for singularly perturbed systems with
unique manifolds M0 [10]. In the following subsections, control
laws for a general class of nonlinear singularly perturbed systems are
formulated, and closed-loop system stability is analyzed.

A. Control Law Development

The objective is to augment the two time-scale system with state
feedback controllers such that the system follows a specified
continuous twice differentiable bounded trajectory xr�t�. The first
step is to transform the system [Eqs. (4) and (5)] into a non-
autonomous stabilization problem. Define the error signal as
~x�t� � x�t� � xr�t�. Then,

_~x� f� ~x� xr; z� � g� ~x� xr; z�u � _xr (31)

�_z� l� ~x� xr; z� � k� ~x� xr; z�u (32)

The objective is to seek the control vector of the form u�
us � uf, where
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u s � �s� ~x;xr; _xr� (33)

and

u f � �f� ~x; z;xr; _xr� (34)

Substituting the controls into Eqs. (31) and (32) produces

_~x� f� ~x� xr; z� � g� ~x� xr; z���s� ~x;xr; _xr�
� �f� ~x; z;xr; _xr�� � _xr (35)

�_z� l� ~x� xr; z� � k� ~x� xr; z���s� ~x;xr; _xr� � �f� ~x; z;xr; _xr��
(36)

Assume that the right-hand side of Eqs. (35) and (36) is C2; that is,
the vector fields satisfy Assumption 1 with r� 2. From Fenichel’s
theorem [18], it can be concluded that there exists a manifold

M �: z� h� ~x; �;xr; _xr� (37)

that satisfies the manifold condition,

�
@h

@t
� � @h

@ ~x
_~x� l� ~x� xr;h� ~x; �;xr; _xr�� � k� ~x

� xr;h� ~x; �;xr; _xr���s� ~x;xr; _xr� � k� ~x
� xr;h� ~x; �;xr; _xr���f� ~x;h� ~x; �;xr; _xr�;xr; _xr� (38)

Note that the manifold is time dependent, since the system under
consideration is nonautonomous due to the time varying xr�t�.
Define the error between the fast states and the manifold M� as
~z� z � h� ~x; �;xr; _xr�.
The transformed system with the origin as the equilibrium is

expressed as

_~x� f� ~x� xr; ~z� h� ~x; �;xr; _xr�� � g� ~x� xr; ~z

� h� ~x; �;xr; _xr���s� ~x;xr; _xr� � g� ~x� xr; ~z

� h� ~x; �;xr; _xr���f � ~x; ~z� h� ~x; �;xr; _xr�;xr; _xr� � _xr (39)

�_~z� l� ~x� xr; ~z� h� ~x; �;xr; _xr�� � k� ~x� xr; ~z

� h� ~x; �;xr; _xr���s� ~x;xr; _xr� � k� ~x� xr; ~z

� h� ~x; �;xr; _xr���f � ~x; ~z� h� ~x; �;xr; _xr�;xr; _xr�

� � @h
@t
� � @h

@ ~x
_~x (40)

Note that the error ~z� 0when the manifold condition is satisfied.
It is known that the exact manifold h� ~x; �;xr; _xr� is impossible to
compute. Let �� ~x;xr; _xr;�s� be an approximate manifold obtained
using the procedure presented in Sec. IV. The approximate manifold
is chosen to contain terms independent of �, similar to the example
considered at the end of Sec. IV. Define

�M��� ~x; �;xr; _xr;�s;�f� � �
@�

@t
� � @�

@ ~x
_~x

� l� ~x� xr; �� ~x;xr; _xr;�s��
� k� ~x� xr; �� ~x; xr; _xr;�s���s� ~x;xr; _xr�
� k� ~x� xr; �� ~x;xr; _xr;�s���f� ~x; �� ~x;xr; _xr;�s�;xr; _xr� (41)

and let �M���t; ~x; �� �O�C� ~x; �;xr; _xr��, which depends on the
choice of controls�s and�f. Furthermore, the following is assumed:

Assumption A: The choice of controls �s and �f leads to
O�C� ~x; �� 0;xr; _xr�� � 0.

With the preceding choice of�� ~x;xr; _xr;�s�, the exactmanifold is
given as

h � ~x; �;xr; _xr� � �� ~x;xr; _xr;�s� �O�C� ~x; �;xr; _xr��

Substituting the approximate expression for the manifold into
Eqs. (39) and (40),

_~x� ff ~x� xr; ~z� �� ~x;xr; _xr;�s� �O�C� ~x; �;xr; _xr��g � gf ~x
� xr; ~z� �� ~x;xr; _xr;�s� �O�C� ~x; �;xr; _xr��g�s� ~x; xr; _xr�
� gf ~x� xr; ~z� �� ~x;xr; _xr;�s�
�O�C� ~x; �;xr; _xr��g�f� ~x; ~z;xr; _xr;�s� � _xr (42)

�_~z� lf ~x�xr; ~z��� ~x;xr; _xr;�s��O�C� ~x; �;xr; _xr��g�kf ~x
�xr; ~z��� ~x;xr; _xr;�s��O�C� ~x; �;xr; _xr�g��s� ~x;xr; _xr�
�kf ~x�xr; ~z��� ~x;xr; _xr;�s�
�O�C� ~x; �;xr; _xr��g�f� ~x; ~z;xr; _xr;�s�

� �@f��O�C� ~x; �;xr; _xr��g
@t

� �@f��O�C� ~x; �;xr; _xr��g
@ ~x

_~x (43)

Note that �f is a function of �s due to the choice of
�� ~x; xr; _xr;�s�. The reduced slow and fast subsystems for the
system of Eqs. (42) and (43) are obtained by substituting �� 0,
resulting in the reduced slow subsystem,

_~x� f� ~x� xr; ~z� �� ~x; xr; _xr;�s�� � g� ~x� xr; ~z

� �� ~x;xr; _xr;�s���s� ~x;xr; _xr� � g� ~x� xr; ~z

� �� ~x;xr; _xr;�s���f� ~x; ~z;xr; _xr;�s� � _xr (44)

0� l� ~x� xr; ~z� �� ~x;xr; _xr;�s�� � k� ~x� xr; ~z

� �� ~x;xr; _xr;�s���s� ~x;xr; _xr� � k� ~x� xr; ~z

� �� ~x;xr; _xr;�s���f� ~x; ~z;xr; _xr;�s� (45)

and the reduced fast subsystem,

~x 0 � 0 (46)

~z0 � l� ~x� xr; ~z� �� ~x;xr; _xr;�s�� � k� ~x� xr; ~z

� �� ~x;xr; _xr;�s���s� ~x;xr; _xr� � k� ~x� xr; ~z

� �� ~x;xr; _xr;�s���f� ~x; ~z;xr; _xr;�s� (47)

In general, the composite control approach first computes the
control �s required to maintain reduced slow subsystem stability by
assuming that the fast states lie upon the manifold and �f � 0. In the
next step, the control �f is designed to satisfy two conditions:
guarantee uniform convergence of the fast states onto the manifold
and remain inactive when the fast state remains on the manifold. The
second condition is implemented to avoid affecting the conclusions
drawn about the reduced slow subsystem stability. In the proposed
control scheme, the second condition is avoided by designing �f
ahead of �s. Thus, design �f� ~x; ~z;xr; _xr;�s� as a function of �s,
such that Eq. (47) is transformed into the closed-loop reduced fast
subsystem,

~z 0 � �Lf� ~x; ~z;xr; _xr� �Kf�~z� (48)

such that�Lf� ~x; 0;xr; _xr� �Kf�0� � 0. With this choice of�f and
assumptions about vector fields Lf and Kf, ~z� 0 becomes the
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unique root of Eq. (45). Therefore, the reduced slow subsystem
reduces to

_~x� f� ~x� xr; �� ~x;xr; _xr;�s��
� g� ~x� xr; �� ~x; xr; _xr;�s���s� ~x;xr; _xr�
� g� ~x� xr; �� ~x; xr; _xr;�s���f� ~x; 0;xr; _xr;�s� � _xr (49)

The only unknown in Eq. (49) is �s; therefore, it may be designed to
transform the reduced slow subsystem into the closed-loop reduced
slow subsystem,

_~x��Fs� ~x;xr; _xr� �Gs� ~x� (50)

and exact forms of �f� ~x; ~z;xr; _xr�, �� ~x;xr; _xr�, and correspond-
ingly C� ~x; �;xr; _xr�, can be determined through Eqs. (48) and (41),
respectively.

Remark 3: In the reduced subsystems obtained, ~z� z�
�� ~x;xr; _xr� by Assumption A. Thus, at the implementation level,
the control �f is a function of known quantities.

The complete closed-loop system is obtained by rewriting
Eqs. (42) and (43) as

_~x� f� ~x� xr; �� ~x;xr; _xr;�s�� � g� ~x
� xr; �� ~x;xr; _xr;�s���s� ~x;xr; _xr� � g� ~x
� xr; �� ~x;xr; _xr;�s���f� ~x; 0;xr; _xr;�s� � _xr � f� ~x
� xr; ~z� �� ~x;xr; _xr;�s�� � f� ~x� xr; �� ~x;xr; _xr;�s��
� fg� ~x� xr; ~z� �� ~x;xr; _xr;�s�� � g� ~x
� xr; �� ~x;xr; _xr;�s��g�s� ~x;xr; _xr� � g� ~x� xr; ~z

� �� ~x; xr; _xr;�s���f� ~x; ~z;xr; _xr;�s� � g� ~x
� xr; �� ~x;xr; _xr;�s���f� ~x; 0;xr; _xr;�s� � ff ~x� xr; ~z

� �� ~x; xr; _xr;�s� �O�C� ~x; �;xr; _xr��g � f� ~x� xr; ~z

� �� ~x; xr; _xr;�s�� � �gf ~x� xr; ~z� �� ~x;xr; _xr;�s�
�O�C� ~x; �;xr; _xr��g � g� ~x� xr; ~z

� �� ~x; xr; _xr;�s����s� ~x;xr; _xr� � �gf ~x� xr; ~z

� �� ~x; xr; _xr;�s� �O�C� ~x; �;xr; _xr��g � g� ~x� xr; ~z

� �� ~x; xr; _xr;�s����f� ~x; ~z;xr; _xr;�s� (51)

�_~z� l� ~x�xr; ~z��� ~x;xr; _xr;�s���k� ~x�xr; ~z

��� ~x;xr; _xr;�s���s� ~x;xr; _xr��k� ~x�xr; ~z

��� ~x;xr; _xr;�s���f� ~x; ~z;xr; _xr;�s�� lf ~x�xr; ~z

��� ~x;xr; _xr;�s��O�C� ~x; �;xr; _xr��g� l� ~x�xr; ~z

��� ~x;xr; _xr;�s��� �kf ~x�xr; ~z��� ~x;xr; _xr;�s�
�O�C� ~x; �;xr; _xr��g�k� ~x�xr; ~z

��� ~x;xr; _xr;�s����s� ~x;xr; _xr�� �kf ~x�xr; ~z

��� ~x;xr; _xr;�s��O�C� ~x; �;xr; _xr��g�k� ~x�xr; ~z

��� ~x;xr; _xr;�s����f� ~x; ~z;xr; _xr;�s�

� �@f��O�C� ~x; �;xr; _xr��g
@t

� �@f��O�C� ~x; �;xr; _xr��g
@ ~x

_~x (52)

Using the closed-loop reduced subsystems of Eqs. (48) and (50),
Eqs. (51) and (52) become the closed-loop complete system,

_~x��Fs� ~x;xr; _xr� �Gs� ~x� � f� ~x� xr; ~z� �� ~x;xr; _xr;�s��
� f� ~x� xr; �� ~x;xr; _xr;�s�� � fg� ~x� xr; ~z

� �� ~x;xr; _xr;�s�� � g� ~x� xr; �� ~x;xr; _xr;�s��g�s� ~x; xr; _xr�
� g� ~x� xr; ~z� �� ~x;xr; _xr;�s���f� ~x; ~z;xr; _xr;�s� � g� ~x
� xr; �� ~x;xr; _xr;�s���f� ~x; 0; xr; _xr;�s� � ff ~x� xr; ~z

� �� ~x;xr; _xr;�s� �O�C� ~x; �;xr; _xr��g � f� ~x� xr; ~z

� �� ~x;xr; _xr;�s�� � �gf ~x� xr; ~z� �� ~x;xr; _xr;�s�
�O�C� ~x; �;xr; _xr��g � g� ~x� xr; ~z

� �� ~x;xr; _xr;�s����s� ~x;xr; _xr� � �gf ~x� xr; ~z

� �� ~x;xr; _xr;�s� �O�C� ~x; �;xr; _xr��g � g� ~x� xr; ~z

� �� ~x;xr; _xr;�s����f� ~x; ~z;xr; _xr;�s� (53)

�_~z��Lf� ~x; ~z;xr; _xr��Kf�~z�� lf ~x�xr; ~z��� ~x;xr; _xr;�s�
�O�C� ~x; �;xr; _xr��g� l� ~x�xr; ~z��� ~x;xr; _xr;�s��
� �kf ~x�xr; ~z��� ~x;xr; _xr;�s��O�C� ~x; �;xr; _xr��g
�k� ~x�xr; ~z��� ~x;xr; _xr;�s����s� ~x;xr; _xr�� �kf ~x
�xr; ~z��� ~x;xr; _xr;�s��O�C� ~x; �;xr; _xr��g�k� ~x
�xr; ~z��� ~x;xr; _xr;�s����f� ~x; ~z;xr; _xr;�s�

� �@f��O�C� ~x; �;xr; _xr��g
@t

� �@f��O�C� ~x; �;xr; _xr��g
@ ~x

_~x (54)

Remark 4: If �� ~x;xr; _xr� is the unique manifold for the complete
system, then the terms ofO�C� ~x; �;xr; _xr�� are identically zero, and
the closed-loop complete system in Eqs. (53) and (54) takes the form
as in [27,28], which has been proven to be closed-loop stable.

B. Stability Analysis

1. Tracking Problem

The following theorem summarizes the main result of the paper.
Theorem 1: Suppose the controls us and uf are designed

according to Eqs. (48) and (50) and Assumptions A–I hold. Then for
all initial conditions, � ~x; ~z� 2 Dx 
Dz, the composite control u�
us � uf uniformly stabilizes the nonlinear singularly perturbed
system in Eqs. (4) and (5) for all � < ��, where �� is given by the
inequality equation (68), and the error signals ~x�t� and ~z�t� are
uniformly bounded by Eqs. (69) and (70), respectively.

Proof: Closed-loop system stability is analyzed using the
composite Lyapunov function approach [29]. It is required to prove
that the closed-loop systembehavior remains close to the closed-loop
reduced slow subsystem. Suppose that there are Lyapunov functions
V�t; ~x� � 1

2
~xT ~x and W�t; ~z� � 1

2
~zT ~z for the closed-loop reduced-

order models (50) and (48), respectively, satisfying the following
eight assumptions:

B) V�t; ~x� is positive definite and decrescent; that is,

c1k ~xk2 � V�t; ~x� � c2k ~xk2; ~x 2 Dx 
 Rm (55)

C)

@V

@ ~x
��Fs� ~x;xr; _xr��Gs� ~x�� ���1k ~xk2�b1k ~xk; �1>0;

b1 � 0

(56)
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D) There exists a constant �1 > 0, such that

@V

@ ~x
ff� ~x� xr; ~z� �� ~x;xr; _xr;�s�� � f� ~x� xr; �� ~x;xr; _xr;�s��g

� @V
@ ~x
fg� ~x� xr; ~z� �� ~x;xr; _xr;�s�� � g� ~x

� xr; �� ~x;xr; _xr;�s��g�s� ~x;xr; _xr� �
@V

@ ~x
fg� ~x� xr; ~z

� �� ~x; xr; _xr;�s���f� ~x; ~z;xr; _xr;�s� � g� ~x
� xr; �� ~x;xr; _xr;�s���f� ~x; 0;xr; _xr;�s�g � �1k ~xkk~zk (57)

E) There exist constants �2 > 0, �3 > 0, and �4 � 0, such that

@V

@ ~x
�ff ~x� xr; ~z� �� ~x;xr; _xr;�s� �O�C� ~x; �;xr; _xr��g � f� ~x

� xr; ~z� �� ~x;xr; _xr;�s����
@V

@ ~x
�gf ~x� xr; ~z

� �� ~x; xr; _xr;�s� �O�C� ~x; �;xr; _xr��g � g� ~x� xr; ~z

� �� ~x; xr; _xr;�s����s� ~x;xr; _xr� �
@V

@ ~x
�gf ~x� xr; ~z

� �� ~x; xr; _xr;�s� �O�C� ~x; �;xr; _xr��g � g� ~x� xr; ~z

� �� ~x; xr; _xr;�s����f� ~x; ~z;xr; _xr;�s� � ��2k ~xk2

� ��3k ~xkk~zk � ��4k ~xk (58)

F) W�t; ~z� is positive definite and decrescent scalar function
satisfying,

c3k~zk2 � W�t; ~z� � c4k~zk2; ~z 2 Dz 
 Rn (59)

G)

@W

@~z
��Lf� ~x; ~z; xr; _xr� �Kf�~z�� � ��2k~zk2; �2 > 0 (60)

H) There exist scalars �5 > 0, �6 > 0, and �7 � 0, such that

@W

@~z
�1f ~x� xr; ~z� �� ~x;xr; _xr;�s� �O�C� ~x; �;xr; _xr��g � l� ~x

� xr; ~z� �� ~x;xr; _xr;�s����
@W

@~z
�kf ~x� xr; ~z

� �� ~x; xr; _xr;�s� �O�C� ~x; �;xr; _xr��g � k� ~x� xr; ~z

� �� ~x; xr; _xr;�s����s� ~x;xr; _xr� �
@W

@~z
�kf ~x� xr; ~z

� �� ~x; xr; _xr;�s� �O�C� ~x; �;xr; _xr��g � k� ~x� xr; ~z

� �� ~x; xr; _xr;�s����f� ~x; ~z;xr; _xr;�s� � ��5k~zk2

� ��6k ~xkk~zk � ��7k~zk (61)

I) There exist constants �8 � 0 and �9 > 0, such that

� @W
@~z

�
�
@f��O�C� ~x; �;xr; _xr��g

@t

� � @f��O�C� ~x; �;xr; _xr��g
@ ~x

_~x

�
� ��8k~zk � ��9k ~xkk~zk (62)

Remark 5: Assumptions B, C, F, and G are conditions for
asymptotic stability of closed-loop reduced-order models. The
constant b1 in Assumption C depends upon the bounds of the
specified trajectory xr�t� and its derivative _xr. If the control �s is
designed to maintain asymptotic stability of the closed-loop slow
subsystem, then b1 � 0. Additionally, Assumptions D, E, H, and I
are interconnection conditions obtained by assuming thevectorfields
are locally Lipschitz. The constants �4, �7, and �8 appear due to the
time-varying nature of the manifold and depend upon the bounds of
xr�t� and its derivative _xr. The constant �8 also depends upon the

derivative �xr, which is known to be bounded by the choice of the
reference trajectory. Consider the Lyapunov function candidate,


�t; ~x; ~z� � V�t; ~x� �W�t; ~z� (63)

for the closed-loop system of Eqs. (53) and (54). From the properties
of V and W, it follows that 
�t; ~x; ~z� is positive definite and
decrescent. The derivative of 
 along the trajectories of Eqs. (53) and
(54) is given by

_
� @V
@ ~x

_~x� 1

�

@W

@~z
~z0 (64)

Substituting Assumptions B–I into Eq. (64),

_
 � ��1k ~xk2 � b1k ~xk � �1k ~xkk~zk � ��2k ~xk2 � ��3k ~xkk~zk
� ��4k ~xk

� �2
�
k~zk2 � �5k~zk2 � �6k ~xkk~zk � �7k~zk � �8k~zk

� �9k ~xkk~zk (65)

Collecting like terms

_
 � ���1 � ��2�k ~xk2 � �b1 � ��4�k ~xk � ��1 � ��3 � �6

� �9�k ~xkk~zk

�
�
�2
�
� �5

�
k~zk2 � ���7 � �8�k~zk (66)

Rearrange Eq. (66) to get

_
�
k ~xk
k~zk

" #
T ��1� d���1 � ��2� 1

2
��1� ��3��6��9�

1
2
��1� ��3��6��9� ��1� d�

�
�2
�
� �5

�
2
64

3
75



k ~xk
k~zk

" #
�k ~xkfd��1 � ��2�k ~xk� ���4 � b1�g

� k~zk
�
d

�
�2
�
� �5

�
k~zk� ��7��8�

�
; 0<d< 1 (67)

The matrix becomes negative definite when

�1 � d�2��1 � ��2�
�
�2
�
� �5

�
<
1

4
��1 � ��3 � �6 � �9�2 (68)

Thus, there exists an upper bound �� and upper bounds on the errors
~xb and ~zb,

~x b �
��4 � b1
d��1 � ��2�

(69)

~z b �
�7 � �8

d��2
�
� �5�

(70)

for which

_
 � 0 (71)

From the Lyapunov theorem, it can then be concluded that the
closed-loop signals ~x and ~z are uniformly bounded for all initial
conditions � ~x; ~z� 2 Dx 
Dz. Consequently, the control vector u�
us � uf is bounded. Furthermore, since the trajectory xr�t� is
bounded, the manifold h� ~x; ~z;xr; _xr� and the closed-loop signals
x�t� and z�t� are bounded. □

2. Special Case: Regulation Problem

The following theorem summarizes the main result for the
stabilization problem.
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Theorem 2: Suppose the controls us and uf are designed
according to Eqs. (48–50), and Assumptions A–I hold with ~x� x
and ~z� z. Then, for all initial conditions �x; z� 2 Dx 
Dz, the
composite control u� us � uf asymptotically stabilizes the
nonlinear singularly perturbed systems in Eqs. (4) and (5) for all
� < ��s , where �

�
s is given by the inequality equation (68) with d� 0.

Proof: Note that, in this case, the manifold h�x; �� is not time
varying, and ~x� x and ~z� z. Since this problem is autonomous, the
decrescent conditions on the Lyapunov functions V and W can be
relaxed. The constants �4, �7, and �8 in Assumptions E, H, and I are
all equal to zero, and the constant b1 � 0, since xr � 0 and _xr � 0.
With these modifications, Eq. (67) is modified as

_
�
kxk
kzk

" #
T ���1 � ��2� 1

2
��1� ��3��6��9�

1
2
��1� ��3��6��9� �

�
�2
�
� �5

�
2
64

3
75



kxk
kzk

" #
(72)

Therefore, there exists an ��s such that

_
 < 0 (73)

where ��s satisfies the inequality equation (68) with d� 0. □

Remark 6: Theorems 1 and 2 depend upon the approximation of
the invariant manifold, leading to local results. If it were possible to
obtain the expression of the exact manifold, these results would be
valid globally.

Remark 7: Fenichel’s theorem [18] implies that the behavior of the
complete nonlinear system remains close to the reduced slow
subsystem if the reduced fast subsystem is stable. Theorems 1 and 2
state the same result for the closed-loop singularly perturbed system.

VI. Numerical Examples

A. Purpose and Scope

The preceding theoretical developments are demonstrated with
simulation. The first example is a generic planar nonlinear system.
This planar example enables the study of the geometric constructs,
which are generally difficult to visualize in higher-dimension
problems. A step-by-step procedure of controller development is
detailed for the system to track a desired slow kinetic state. A
comparison between the manifold approximation and the attained
actual fast state is made. The closed-loop results are studied for a
sinusoidal time-varying trajectory and the regulator problem. The
second example develops control laws for a nonlinear F/A-18A
Hornet model. The objective of this example is to test the
performance of the controller for a highly nonlinear, two time-scale
system. It is required to perform a turning maneuver while
maintaining zero sideslip and tracking a specified angle-of-attack
profile.

B. Generic Two-Degree-of-Freedom Nonlinear Kinetic Model

The fast dynamics are modified to include an arbitrarily chosen
quadratic nonlinearity in the fast state, and a pseudocontrol termwith
unit effectiveness is introduced. For this example, x 2 R and z 2 R
represent the slow and the fast states, respectively. The control u 2 R
is developed to track a desired smooth trajectory xr�t�:

_x��x� �x� 0:5�z� u (74)

�_z� x � �x� 1�z� z2 � u (75)

The value �� 0:2 is retained in the modified model [26].

1. Controller Design

Define the errors ~x� x � xr and ~z� z � h� ~x; �; xr; _xr�, and
transform Eqs. (74) and (75) into error coordinates equivalent to
Eqs. (39) and (40):

_~x��� ~x� xr� � � ~x� xr � 0:5��~z� h� ~x; �; xr; _xr��
� _xr � �s � �f (76)

�_~z� � ~x� xr� � � ~x� xr � 1��~z� h� ~x; �; xr; _xr��
� �~z� h� ~x; �; xr; _xr��2 � �s � �f (77)

Rearrange Eqs. (76) and (77), dropping arguments of h:

_~x�� ~x� ~xh�:� � 0:5h�:� � xr � xrh�:� � � ~x� xr � 0:5�~z � _xr

� �s � �f (78)

�_~z��� ~x� xr � 1�~z� ~z2 � 2~zh�:� � ~x� xr � � ~x� xr � 1�h�:�

� h�:�2 � �s� �f � �
@h

@t
� � @h

@ ~x
_~x (79)

Comparing with Eqs. (39) and (40),

f�:� � � ~x� ~xh�:� � 0:5h�:� � xr � xrh�:� � � ~x� xr � 0:5�~z
g�:� � 1

l�:� � �� ~x� xr � 1�~z� ~z2 � 2~zh�:� � ~x� xr � � ~x� xr � 1�h�:�
� h�:�2

k�:� � 1 (80)

Let �� ~x; xr; _xr;�s� be the approximate manifold. Define the
manifold condition:

�M��� ~x; xr; _xr;�s;�f� � �
@�

@t
� � @�

@ ~x
_~x � ~x � xr � � ~x� xr���:�

� ��:� � ��:�2 � �s � �f (81)

Select

�� ~x; xr; _xr;�s� � ~x� xr � �s (82)

so that

�M��� ~x; xr; _xr;�s� � �
@�

@t
� � @�

@ ~x
_~x� � ~x� xr�� ~x� xr � �s�

� ��:�2 � �f (83)

and

O �C� ~x; �; xr; _xr�� � �M��� ~x; xr; _xr;�s�

To design the control �f, develop the reduced fast subsystem
equivalent to Eqs. (46) and (47):

~x0 � 0

~z0 � �� ~x� xr � 1�~z� ~z2 � 2~z��:� � ~x� xr � � ~x� xr � 1���:�
� ��:�2 � �s � �f (84)

Design

�f ��Af ~z� 2~z��:� � � ~x� xr � 1���:� � ~x� xr � �2 � �s (85)

where Af is a feedback gain. Then, the closed-loop reduced fast
subsystem becomes

~z 0 � �� ~x� xr � 1� Af�~z� ~z2 (86)

Comparing with Eq. (48),
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L f�:� � � ~x� xr � 1� Af�~z Kf�:� � ~z2 (87)

The next step is to determine the control �s. Develop the reduced-
order slow subsystem equivalent to Eqs. (44) and (45):

_~x�� ~x� ~x��:� � 0:5��:� � xr � xr��:� � � ~x� xr � 0:5�~z � _xr

� �s � �f (88)

0��� ~x� xr � 1�~z� ~z2 � 2~z��:� � ~x� xr � � ~x� xr � 1���:�
� ��:�2 � �s � �f (89)

Substituting for �f from Eq. (85) in Eqs. (88) and (89),

_~x��2~x� ~x��:� � 0:5��:� � 2xr � xr��:� � � ~x� xr � 0:5�~z
� _xr � ��:�2 � 2~z��:� � � ~x� xr � 1���:� � Af ~z (90)

0��� ~x� xr � 1� Af�~z� ~z2 (91)

Since ~z� 0 is the root of the algebraic solution, the reduced slow
subsystem is obtained as

_~x��2~x� ~x��:� � 0:5��:� � 2xr � xr��:� � _xr � ��:�2

� � ~x� xr � 1���:� (92)

Substituting the expression for ��:� from Eq. (82) in Eq. (92),

_~x��2~x � 2xr � _xr � �2~x� 1:5� 2xr�� ~x� xr � �s�
� � ~x� xr � �s�2 (93)

Design �s as

�s �� ~x � xr � _xr � A ~x (94)

whereA is the feedback gain. Thus, the resulting closed-loop reduced
slow subsystem is

_~x���2 � 2_xr � 2Axr � 1:5A � 2A _xr� ~x� ��A2 � 2A� ~x2

� ��2xr � 0:5_xr � 2xr _xr � _x2r� (95)

where A is the feedback gain. Comparing Eq. (95) with Eq. (50),

Fs�:� � �2 � 2_xr � 2Axr � 1:5A � 2A _xr� ~x � ��2xr � 0:5_xr

� 2xr _xr � _x2r�
Gs�:� � ��A2 � 2A� ~x2 (96)

Note that this control only guarantees bounded tracking for the
slow subsystem. To implement the control laws, substitute for �s
from Eq. (94) into Eq. (82):

�� _xr � A ~x (97)

and use Eqs. (85) and (97):

�f � ��A2 � A� ~x2 � ~x� _xr � 2A _xr � Axr� � 2A ~x ~z� ~z�2 _xr � Af�
� _x2r � xr _xr (98)

Recall that these controllers are designed using the reduced-
order subsystems ~z� z� ��:�, where ��:� is given by Eq. (97).
Then, the control laws �s and �f can be expressed in original
coordinates as

�s ��x� _xr � A�x � xr� (99)

�f���A2 �A��x� xr�2��x� xr�� _xr� 2A _xr �Axr�
� 2A�x� xr��z� ��:�� � �z� ��:���2 _xr�Af� � _x2r � xr _xr (100)

Using the manifold condition equation (83),

�M��� ~x; xr; _xr;�s� � �
@�

@t
� � @�

@ ~x
f�Fs� ~x; xr; _xr� �Gs� ~x�g (101)

Thus, by the choice of controls �s and �f , O�C���
0; ~x; xr; _xr�� � 0.

2. Results and Discussion

Case 1A: Controller performance for tracking a continuously time-
varying sine wave of 0:2 sin�0:2t� is presented in Fig. 4. The
feedback gains chosen are A� 3 and Af � 1. The domains of the
errors are Dx � ��0:3 0:3 � and Dz � ��1:5 1:5 �. Several
constants in Assumptions B–I are computed as �1 � 1, b1 � 0:26,
�1 � 1:4, �2 � 30, �3 � 0, �4 � 0:686, �2 � 1, �5 � 1:96,
�6 � 250, �7 � 0:5096, �8 � 3:778, and �9 � 250. These values
and a choice of d� 0:3 results in �� � 2000� 1. From the
simulation results, it is seen that the system response is bounded for
all time. Additionally, for simulations with �� 0:2, the bounds

Fig. 4 Case 1A: kinetic slow state compared with specified sine-wave reference, and fast state compared with manifold approximation and computed

control.
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~xb � 0:0818 and ~zb � 4:701, and the control is bounded for all time.
The initial overshoot may be avoided by adding actuator dynamics
and adjusting the feedback gains. Note that the fast state response
remains close to its approximation ��t; x�.

Case 1B: This case simulates the regulator problem with xr � 0
and _xr�t� � 0. The control laws are the same as derived in Eqs. (99)
and (100). The constants b1 � 0, �4 � 0, �7 � 0, and �8 � 0, while
the other constants have the same values as in Case 1A. With the
choice of d� 0, ��s � 1000� 1. The results are presented in Fig. 5,
which shows that the system asymptotically settles down to the
origin.

C. Lateral/Directional Maneuver for F/A-18A Hornet Aircraft

The complete nonlinear dynamic model in the stability axes is
represented by the nine states �M;�; �; p; q; r; �; �;  � and four
controls ��; �e; �a; �r�. For this example, �M;�; �; �; �;  �T comprise
the slow states, and the angular rates �p; q; r�T comprise the fast
states. The aerodynamic database for the symmetric F/A-18AHornet
(seen in Fig. 6) is used [30]. The aerodynamic coefficients are given
as analytical functions of the sideslip angle, angle of attack, angular
rates, and the control surface deflections. Considering the number of
controls available, only three of the six slow states can be controlled.
Throttle is maintained constant at �� 0:523 and is not used as a
control. This is a result of using dynamic inversion [31]. The control
objective is to perform a 45 deg turn at or near zero sideslip angle
while tracking a specified angle-of-attack profile. Pitch attitude angle
� and bank angle � are left uncontrolled.

1. Controller Design

The control laws are developed according to the theory developed
in the previous sections. For brevity, only the equations required for

incorporating the control law in the simulation are presented here.
Since the aircraft equations of motion are highly coupled, the first
step is to transform them into slow and fast sets. Let x� ��; �;  �T
represent the subset of the slow states and u� ��e; �a; �r�T represent
the control variables,

_x� f1�x;M; �; �� � f2�x; �; ��z|�����������������������{z�����������������������}
f�:�

� g�x;M�u (102)

�_z� l�z� � l�x;M� � l�x;M�z321|�������������������������{z�������������������������}
l�:�

� k�x;M�u (103)

The parameter � is introduced on the left-hand side of Eq. (103) to
indicate the time-scale difference between body-axis angular rates
and the other states [14]. In the translational equations of motion,
functions such as gravitational forces and aerodynamic forces due to
angle of attack and sideslip angle are collectively represented as
f1�x;M; �; ��. Terms in the translational equations of motion due to
the cross products between the angular rates and the slow states are
labeled f2�x; �; ��z. The remaining terms in the slow state equations
are the control effectiveness terms labeled g�x;M�. The nonlinearity
in the fast dynamics due to the cross product between the angular
rates is represented by l�z�1. The aerodynamic moment terms that
depend solely upon the slow state are denoted as l�x;M�2, and the
aerodynamic moment terms that depend linearly on the angular rates
are denoted as l�x�3. The term k�x;M� is the control effectiveness
term in the angular rate dynamics. The exact form of these functions
is derived in the Appendix. Define the errors ~x� x � xr and ~z�
z � h� ~x; �;xr; _xr;M� and transform Eqs. (102) and (103) into error
coordinates equivalent to Eqs. (39) and (40):

Fig. 5 Case 1B: kinetic slow state, fast state compared with manifold approximation and computed control (regulator problem).

Fig. 6 F/A-18A Hornet external physical characteristics.
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_~x� f1� ~x� xr;M; �; �� � f2� ~x� xr; �; ���~z� h�:��|�������������������������������������������{z�������������������������������������������}
f�:�

� g� ~x� x;M���s � �f� � _xr (104)

�_~z� l�~z� h�:�� � l� ~x� xr;M� � l� ~x� xr;M��~z� h�:��321|����������������������������������������������������{z����������������������������������������������������}
l�:�

� k� ~x� xr;M���s � �f� � �
@h

@t
� � @h

@ ~x
_~x � � @h

@M
_M (105)

Note that, for an aircraft example, the manifold will also be a
function of Mach number. Let �� ~x;xr; _xr;�s;M� be the approx-
imate manifold. Then, Eq. (38) expresses the manifold condition. In
this case, select

�� ~x;xr; _xr;�s� � �l� ~x� xr;M��l� ~x� xr;M�
� k� ~x� xr;M��s�23 � 1 (106)

such that

�M��� ~x;xr; _xr;�s� � �
@�

@t
� � @�

@ ~x
_~x� � @�

@M
_M � l���:��

� k� ~x� xr;M��f1 (107)

To design �f, develop the reduced fast subsystem,

~x 0 � 0 (108)

~z0 � l�~z���:�� � l� ~x� xr;M� � l� ~x� xr;M��~z���:��
� k� ~x� xr;M���s � �f�321 (109)

Using dynamic inversion and Eq. (106), design

� f � k�1�x� xr;M�f�Af ~z � l�~z���:�� � l� ~x� xr;M�~zg31
(110)

whereAf is the chosen feedback gain. Then, the closed-loop reduced
subsystem becomes

~z 0 � �Af ~z (111)

Comparing with Eq. (48),

L f�:� � Af ~z (112)

Kf�:� � 0 (113)

Similarly, develop the reduced-order slow subsystem,

_~x� f1� ~x� xr;M; �; �� � f2� ~x� xr; �; ��l� ~x� xr;M�l� ~x
� xr;M� � g� ~x� xr;M�k�1� ~x� xr;M�l��� � _xr

� ��f2� ~x� xr; �; ��l� ~x� xr;M��1k� ~x� xr;M�
� g� ~x� xr;M���s3123 � 1 (114)

Then, the control law for the reduced slow subsystem is computed
as

�s � B�1f�A ~x� _xrg �B�1f�f1� ~x� xr;M; �; ��
� f2� ~x� xr; �; ��l� ~x� xr;M�l� ~x� xr;M�g23 � 1 (115)

where

B� ��f2� ~x� xr; �; ��l� ~x� xr;M��1k� ~x� xr;M�
� g� ~x� xr;M��3

A is the feedback gain, and the resulting closed-loop system is

_~x��A ~x � g� ~x� xr;M�k�1� ~x� xr;M�l���:��1 (116)

where ��:� is obtained from Eq. (106). Note by the choice of �f ,
Eq. (107) becomes

�M��� ~x;xr; _xr;�s� � �
@�

@t
� � @�

@ ~x
_~x� � @�

@M
_M (117)

and thus O�C��� 0; ~x;xr; _xr�� � 0. Furthermore, since the aero-
dynamic moments are a function of the angular rates, matrix l� ~x�
xr;M�3 is full rank. The control effectiveness terms k� ~x� xr;M�
represent the aerodynamic moment coefficients due to control
effector deflections, which are nonzero.

Remark 8: The aircraft example assumes that the Mach number,
pitch attitude angle, and bank angle are input stabilizable. Although
the angular rates are bounded by the reference trajectory, the Euler
angles remain bounded through the exact kinematic relationships.
Additionally, since the angle of attack is being tracked and thrust
remains constant, the Mach number remains bounded.

2. Results and Discussion

Case 2: The specified maneuver is a 45 deg turn at or near zero
sideslip anglewhile simultaneously tracking a step input in the angle of

Fig. 7 Case 2: F/A-18A Mach number, angle of attack, and sideslip angle responses; 0:3=20k.

SIDDARTH AND VALASEK 745



Fig. 9 Case 2: F/A-18A angular rate responses; 0:3=20k.

Fig. 8 Case 2: F/A-18A kinematic angle responses; 0:3=20k.

Fig. 10 Case 2: F/A-18A control responses; 0:3=20k.
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attack. Theflight condition isMach 0.3 at 20,000 ft altitude (0:3=20k).
The trim and initial conditions are ��1� � 2 deg, p�0� � 4 deg =s,
q�0� � �2 deg =s, and r�0� � 2 deg =s. The feedback gainmatrices
are

A�
1 0 0

0 1 0

0 0 1

2
4

3
5; Af �

5 0 0

0 5 0

0 0 5

2
4

3
5 (118)

Theorem 1 guarantees the existence of the bound ��, but the
nonlinearity of this example restricts its analytical computation. Note
also that, for an aircraft, the parameter � is normally only introduced
in the modeling stage to take advantage of the presence of different
time scales in the system. In reality, this parameter is a function of the
flight condition and is difficult to quantify. Thus, it is advantageous to
derive and implement controllers that do not require knowledge of
this parameter.

Figures 7–10 evaluate control law performance for the specified
maneuver. After initial transients settle out, the angle of attack,
sideslip angle, and heading angle states closely track the reference.
The angle-of-attack error is within�0:2 deg, and the sideslip angle
tracking error is within �0:2 deg throughout the maneuver. The
heading angle ismaintainedwithin�0:25 deg. Close tracking of the
slow states implies that the fast states are successfully being driven
onto the approximate manifold, as is seen in Fig. 9. The angular rates
are smooth, and errors are within �2 deg =s. The control surface
deflections are within bounds and generate the desired nonzero
angular rates. The uncontrolled states M,�, and � are well behaved
and remain bounded throughout the maneuver.

VII. Conclusions

Acontrol formulation for tracking the slow states of a general class
of nonlinear singularly perturbed systemswas developed based upon
the study of its geometric constructs. For a given set of nonlinear
algebraic equations, an approximate analytical form of the system
manifoldwas computed. Control laws for each of the subsystems and
boundedness of closed-loop signals was demonstrated with a
composite Lyapunov function approach, and asymptotic stabiliza-
tionwas shown for the general class of nonlinear singularly perturbed
systems. Controller performance was demonstrated through numer-
ical simulation for two nonlinear examples.

Based upon the results presented in the paper, tracking error for
the nonlinear planar example was demonstrated to remain within
j0:08j at all times, as predicted by the analytically computed bound.
It was also shown that, for all values of �, the controller maintains
bounded stability and the asymptotic convergence of the errors to
origin for the regulator problem. Nonlinear simulations of an F/A-
18A Hornet demonstrate that the controller is capable of closely
tracking heading, sideslip angle, and angle of attack. The angular
rates were within bounds and seen to track the desired manifold
approximations well. Even though the Mach number, bank angle,
and pitch attitude angle were not controlled, their magnitudes
remained bounded as expected. The aircraft example demonstrates
the advantage of developing controllers independent of the scalar
perturbation parameter �.

Appendix

The nonlinear mathematical model of the aircraft is represented by
the following dynamic and kinematic equations:

_M� 1

mvs

�
Tm� cos� cos� �

1

2
CD��; q; �e��v2sM2S �mg sin 	

�
(A1)

_�� q � 1

cos�
f�p cos�� r sin�� sin�g

� 1

cos�

�
1

mvsM

�
Tm� sin��

1

2
CL��; q; �e��v2sM2S

�mg cos� cos 	

��
(A2)

_�� 1

mvsM

�
�Tm� cos� sin��

1

2
CY��; p; r; �e; �a; �r��v2sM2S

�mg sin� cos 	

�
� �p sin� � r cos �� (A3)

_p�
Iy � Iz
Ix

qr� 1

2Ix
�v2sM

2SbCl��; p; r; �e; �a; �r� (A4)

_q� Iz � Ix
Iy

pr� 1

2Iy
�v2sM

2ScCm��; q; �e� (A5)

_r�
Ix � Iy
Iz

pq� 1

2Iz
�v2sM

2SbCn��; p; r; �e; �a; �r� (A6)

_�� p� q sin� tan �� r cos� tan � (A7)

_�� q cos�� r sin� (A8)

_ � �q sin�� r cos�� sec � (A9)

Wind-axes orientation angles � and 	 are defined as follows:

sin 	 � cos� cos� sin � � sin� sin� cos �

� sin� cos� cos� cos � (A10)

sin� cos 	 � sin � cos � sin�� sin� cos � cos�

� sin� sin� cos� cos � (A11)

cos� cos 	 � sin � sin�� cos� cos� cos � (A12)

To write the equations in the form of Eqs. (102) and (103),

f 1�x;M; �; ��

�
� 1
mvsM cos�

�
1
2
CL����v2sM2S �mg cos� cos 	

�
1

mvsM

�
1
2
CY����v2sM2S�mg sin� cos 	

�
0

2
66664

3
77775 (A13)

f 2�x; �; �� �
� cos� tan� 1 � sin� tan�

sin� 0 � cos�
0 sec � sin� cos� sec �

2
4

3
5
(A14)

SIDDARTH AND VALASEK 747



g �x;M�

�
� 1

2cos�
��vsM�2SCL�e 0 0

0 1
2mvsM

CY�a �v
2
sM

2S 1
2mvsM

CY�r �v
2
sM

2S
0 0 0

2
4

3
5

(A15)

l �z� �

Iy�Iz
Ix
qr

Iz�Ix
Iy
pr

Ix�Iy
Iz
pq

2
664

3
7751 (A16)

l �x;M� �

1
2Ix
�v2sM

2SbCl���
1
2Iy
�v2sM

2ScCm���
1
2Iz
�v2sM

2SbCn���

2
64

3
752 (A17)

l �x;M�

�

1
2Ix
�v2sM

2SbClp 0 1
2Ix
�v2sM

2SbClr
0 1

2Iy
�v2sM

2ScCmq 0
1
2Iz
�v2sM

2SbCnp 0 1
2Iz
�v2sM

2SbCnr

2
64

3
753
(A18)

k �x;M�

�
0 1

2Ix
�v2sM

2SbCl�a
1
2Ix
�v2sM

2SbCl�a
1
2Iy
�v2sM

2ScCm�e 0 0

0 1
2Iz
�v2sM

2SbCn�a
1
2Iz
�v2sM

2SbCn�r

2
64

3
75

(A19)
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Global Tracking Control Structures for
Nonlinear Singularly Perturbed Aircraft
Systems

Anshu Siddarth and John Valasek

Abstract The problem of simultaneous tracking of both fast and slow states for a
general class of nonlinear singularly perturbed systems is addressed. A motivating
example is an aircraft tracking a prescribed fast moving target, while simultane-
ously regulating speed and/or one or more kinematic angles. Previous results in the
literature have focused on tracking outputs that are a function of the slow states
alone. Moreover, global asymptotic tracking has been demonstrated only for a class
of nonlinear systems that possess a unique real root for the fast states. For a more
general class of nonlinear systems only local tracking results have been proven.
In this paper, control laws that accomplish global tracking of both fast and slow
states is developed using geometric singular perturbation methods. Global exponen-
tial stability is proven using the composite Lyapunov function approach and an up-
per bound necessary condition for the scalar perturbation parameter is derived. Con-
troller performance is demonstrated through simulation of a combined longitudinal
lateral/directional maneuver for a nonlinear, coupled, six degree-of-freedom model
of the F/A-18A Hornet. Results presented in the paper show that the controller ac-
complishes global asymptotic tracking even though the desired reference trajectory
requires the aircraft to switch between linear and nonlinear regimes. Asymptotic
tracking while keeping all the closed-loop signals bounded and well behaved is also
demonstrated. Additionally the controller is independent of the scalar perturbation
parameter nor does it require knowledge of it.

1 Introduction

This paper addresses systems that possess both slow and fast dynamics. This mul-
tiple time-scale behaviour is either a system characteristic (for example, aircraft
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and flexible beam structures) or arises due to implementation of a fast controller
(for example, systems with fast actuators and/or fast sensors). The control objective
is to develop a stable tracker for these two time-scale systems that would regulate
both slow and fast states simultaneously. The singular perturbation approach[13] has
been the foremost technique employed in the literature to examine the behaviour of
these two time-scale systems. In this approach, the system dynamics are approxi-
mated by two lower-order subsystems. The slow subsystem captures the dominant
phenomena assuming that the fast variables evolve infinitely many times faster, and
have settled down onto a manifold. The fast subsystem addresses the neglected phe-
nomena, and assumes that the slow variables remain constant. It has been shown that
the complete system behaviour can be approximated by the dynamics of the slow
subsystem provided the fast subsystem is uniformly asymptotically stable about the
manifold [6, 10]. These results of singular perturbation methods have made it the
most favourable model-reduction technique in the control literature[14].

The design of nonlinear tracking control laws for the slow variables using sin-
gular perturbation methods has received a lot of attention in the past. The typical
methodology is to design two separate controllers for each of the two subsystems,
and then apply their composite or sum to the full-order system. A tracking control
law is designed for the slow subsystem whereas a stabilizing controller is designed
for the fast subsystem. This is done to restrict the fast variables onto a manifold.
Global asymptotic tracking of the composite control structure is guaranteed only if
the manifold is unique. This manifold is the set of fixed points of the fast dynamics
expressed as a smooth function of the slow variables and the control inputs; hence
it is not always unique. To enforce the uniqueness condition, previous studies in the
literature have:

1. Assumed that the system has a unique manifold[4, 8]
2. Considered nonlinear systems that have a unique manifold. This is satisfied by

two time-scale systems that are nonlinear in the slow states and linear in the fast
states[11]

For a general class of nonlinear systems such as aircraft, approximate approaches
that guarantee local stability have been proposed. One approach is to consider the
fast variables as control inputs for the slow subsystem. Reference[12] used this
approach to design nonlinear flight test trajectories for velocity, angle-of-attack,
sideslip angle and altitude by using the fast angular rates as the control variables.
This control was augmented with an outer-loop controller that determines the con-
trol surface deflections needed to ensure that the angular rates track the output of
the inner-loop. More recently the same concept has been employed for the control
of generic reentry vehicles[7]. Another approach proposed in Reference[16] consid-
ered the general class of nonlinear singularly perturbed systems and computed local
approximations of the manifold that helped conclude local stability for the complete
system.

All of the approaches discussed above demonstrate slow state tracking either lo-
cally or globally by restricting the fast states, and, they address the output tracking
problem for two time-scale systems with fast actuators. But for systems whose dy-
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namics inherently possess different time-scales, both the slow and the fast states
constitute the output vector. For example, during air combat maneuvering an air-
craft is typically required to track a fast moving target while regulating speed (slow
variable) and/or one or more kinematic and aerodynamic angles. In this case the fast
states cannot be restricted to simply stabilize onto a manifold. The reduced-order
approach therefore appears to be inadequate for a general class of output track-
ing problem. Reference[1] formulated optimal control laws to accomplish fast state
tracking using invariant measures for systems with oscillatory fast dynamics.

In this paper, state feedback control laws are developed for a general class of non-
linear singularly perturbed systems to accomplish slow and fast state tracking simul-
taneously. The paper makes two major contributions. First, the approach developed
here employs the reduced-order technique without imposing any assumptions about
the fast manifold. This is done by extending the previous work of the authors[16] so
as to not require computation of the manifold. Second, global exponential tracking
is proved using the composite Lyapunov approach[10]. From the stability analysis
it is shown that this approach applies to all classes of singularly perturbed systems,
with the global exponential stabilization results of a class of singularly perturbed
systems being a special case[3]. Additionally, the technique is independent of the
scalar perturbation parameter and an upper bound on this parameter is derived as a
necessary condition for stability results to hold. These results are demonstrated by
simulation for a nonlinear, coupled, six degree-of-freedom model of the F/A-18A
Hornet.

The paper is organized as follows. Section 2 mathematically formulates the con-
trol problem and briefly reviews the necessary concepts for model reduction from
geometric singular perturbation theory. Control laws and the main results of the pa-
per are detailed in Section 3. Section 4 presents simulation results, and conclusions
are presented in Section 5.

2 Problem Formulation and Model Reduction

The following nonlinear singularly perturbed model represents the class of two time-
scale dynamical systems addressed in this paper

ẋ = f(x,z)+g(x,z)u (1)

ε ż = l(x,z)+k(x,z)u (2)

y =

[

x
z

]

(3)

wherex ∈ R
m is the vector of slow variables,z ∈ R

n is the vector of fast variables,
u ∈ R

p is the input vector andy ∈ R
m+n is the output vector.ε ∈ R

+ is the singu-
lar perturbation parameter that satisfies 0< ε << 1. The vector fieldsf(.),g(.), l(.)
andk(.) are assumed to be sufficiently smooth andp ≥ (m+n). The control objec-
tive is to drive the output so as to track sufficiently smooth, bounded, time-varying
trajectories, such thatx(t)→ xr(t) andz(t)→ zr(t) ast → ∞.
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2.1 Reduced-order Modeling

The singularly perturbed model considered in Eqs.1,2 is expressed in theslow time
scale t. In this time-scale the slow states evolve at an ordinary rate whereas the fast
states move at a rate ofO

(

1
ε
)

. This system can be equivalently expressed in thefast
time-scale τ such that the fast states evolve at an ordinary rate and the slow variables
move slowly at a rate ofO(ε)

x′ = ε [f(x,z)+g(x,z)u] (4)

z′ = l(x,z)+k(x,z)u (5)

where′ represents a derivative with respect toτ = t−t0
ε andt0 is the initial time. Ge-

ometric singular perturbation theory[6] examines the behaviour of these singularly
perturbed systems by studying the geometric constructs of reduced-order models
obtained by substitutingε = 0 in Eqs.1,2 and Eqs.4,5. This results in theReduced
Slow Subsystem

ẋ = f(x,z)+g(x,z)u (6)

0 = l(x,z)+k(x,z)u (7)

and theReduced Fast Subsystem

x′ = 0 (8)

z′ = l(x,z)+k(x,z)u (9)

The reduced slow subsystem is a locally flattened space of the complete system
(Eqs.1,2). Since the vector fields were assumed to be sufficiently smooth there ex-
ists a smooth diffeomorphism that maps the complete system onto this locally flat-
tened space. The set of points(x,z,u) ∈R

m ×R
n ×R

p is a smooth manifoldM0 of
dimensionm+ p that satisfies the algebraic Eq.7:

M0 : z = Z0(x,u) (10)

This set of points is identically the fixed points of the reduced fast subsystem (Eq.9).
Thus the manifoldM0 is invariant. The flow on this manifold is described by the
differential equation

ẋ = f(x,Z0(x,u))+g(x,Z0(x,u))u (11)

Fenichel[6] proved that the dynamics of a singularly perturbed system of the form
represented in Eqs.1,2 is constrained withinO(ε) of Eq.11 if the reduced fast sub-
system is stable aboutM0. If the dynamics of Eq.11 are locally asymptotically
stable about the manifold, then it can be concluded that the complete system is
also locally asymptotically stable. Global asymptotic stability conclusions about the
complete system can only be made if the manifold is unique, which is a result from
differential topology and center manifold theory [6].



Global Tracking Control Structures for Nonlinear Singularly Perturbed Aircraft Systems 5

3 Control Formulation and Stability Analysis

The central idea in the development is the following. If the manifold is unique and
an asymptotically stable fixed point of the reduced fast subsystem, the complete
system follows the dynamics of the reduced slow subsystem globally. Therefore, for
a tracking problem addressed in this paper it is desired that this manifold lie exactly
on the desired fast state reference for all time.This condition can be enforced if the
nonlinear algebraic set of equations is augmented with a controller that enforces
the reference to be the unique manifold. Additionally, this controller should also be
capable of simultaneously driving the slow states to their specified reference. These
ideas are mathematically formulated and analyzed in the following subsections.

3.1 Control Law Development

The objective is to augment the two time-scale system with controllers such that
the system follows smooth, bounded, time-varying trajectories[xr(t),zr(t)]T . The
first step is to transform the problem into a non-autonomous stabilization control
problem. Define the tracking error signals as

e(t) = x(t)−xr(t) (12)

ξ (t) = z(t)− zr(t) (13)

Substituting Eqs.1,2, the tracking error dynamics are expressed as

ė = f(x,z)+g(x,z)u− ẋr , F(e,ξ ,xr,zr, ẋr)+G(e,ξ ,xr,zr)u (14)

εξ̇ = l(x,z)+k(x,z)u− ε żr , L(e,ξ ,xr,zr,ε żr)+K(e,ξ ,xr,zr)u (15)

The control law is formulated using the reduced-order models for the complete sta-
bilization problem, which is obtained using the procedure developed in Section 2.
Reduced Slow Subsystem

ė = F(e,ξ ,xr,zr, ẋr)+G(e,ξ ,xr,zr)u0 (16)

0 = L(e,ξ ,xr,zr,0)+K(e,ξ ,xr,zr)u0 (17)

Reduced Fast Subsystem

e′ = 0 (18)

ξ ′ = L(e,ξ ,xr,zr,z′r)+K(e,ξ ,xr,zr)(u0+u f ) (19)

It is known that the fast tracking errorξ will settle onto the manifold that is a func-
tion of the errore and control inputu, which may not necessarily be the origin.
To steer both errors to the origin, the control input must be designed such that the
origin becomes the unique manifold of the reduced slow system (Eqs.16,17). There-
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fore, the slow controlleru0 is designed to take the form
[

G(e,ξ ,xr,zr)
K(e,ξ ,xr,zr)

]

u0 =−

[

F(e,ξ ,xr,zr, ẋr)
L(e,ξ ,xr,zr,0)

]

+

[

Aee
Aξ ξ

]

(20)

whereAe andAξ specify the desired closed-loop characteristics. With this choice of
slow control, the reduced fast subsystem becomes

e′ = 0 (21)

ξ ′ = L(e,ξ ,xr,zr,z′r)−L(e,ξ ,xr,zr,0)+Aξ ξ +K(e,ξ ,xr,zr)u f (22)

To stabilize the fast subsystem, the fast controlu f is designed as

[

G(e,ξ ,xr,zr)
K(e,ξ ,xr,zr)

]

u f =

[

0
L(e,ξ ,xr,zr,0)−L(e,ξ ,xr,zr,z′r)

]

(23)

Thus, the composite controlu = u0+u f satisfies

[

G(e,ξ ,xr,zr)
K(e,ξ ,xr,zr)

]

u =−

[

F(e,ξ ,xr,zr, ẋr)
L(e,ξ ,xr,zr,z′r)

]

+

[

Aee
Aξ ξ

]

(24)

assuming that the rank of

[

G(.)
K(.)

]

≥ (m+n).

The complete closed-loop and reduced slow subsystem for this control law are given
as

ė = Aee (25)

εξ̇ = Aξ ξ . (26)

and

ė = Aee (27)

0 = Aξ ξ . (28)

respectively. Observe that with the proposed control law the nonlinear algebraic set
of equations (Eq.17) have been transformed to a linear set of equations (Eq.28).
With the proper choice ofAξ , it is guaranteed thatξ = 0 is the unique manifold for
both the complete and the reduced slow subsystems. Furthermore, this manifold is
exponentially stable as can be deduced from the reduced fast subsystem

e′ = 0 (29)

ξ ′ = Aξ ξ (30)
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Remark 1 The control law proposed in Eq.24 is independent of the perturbation
parameterε. Furthermore it is a function ofz′r that implies that the
reference trajectory chosen for the fast states must be faster when com-
pared to the reference of the slow states. Additionally, as for all singular
perturbation techniques to work the closed-loop eigenvaluesAe andAξ
must be chosen so as to maintain the time-scale separation.

3.2 Stability Analysis

Complete system stability is analyzed using the composite Lyapunov function
approach[10]. Suppose that there exist positive definite Lyapunov functionsV (t,e)=
eT e and W (t,ξ ) = ξ T ξ for the reduced subsystems, with continuous first-order
derivatives satisfying the following properties:

1. V (t,0) = 0 andγ1||e||2 ≤V (t,e)≤ γ2||e||2 ∀t ∈ R
+,e ∈ R

m,γ1 = γ2 = 1,
2. (∇eV (t,e))T Aee ≤−α1eT e, α1 = 2|λmin(Ae)|,
3. W (t,0) = 0 andγ3||ξ ||2 ≤W (t,ξ )≤ γ4||ξ ||2 ∀t ∈ R

+,ξ ∈ R
n,γ3 = γ4 = 1,

4. (∇ξW (t,ξ ))T Aξ ξ ≤−α2ξ T ξ , α2 = 2|λmin(Aξ )|.

Next, consider the composite Lyapunov functionν(t,e,ξ ) : R+×R
m ×R

n → R
+

defined by the weighted sum ofV (t,e) andW (t,ξ ) for the complete closed-loop
system

ν(t,e,ξ ) = (1−d)V (t,e)+dW (t,ξ ), 0< d < 1 (31)

The derivative ofν(t,e,ξ ) along the closed-loop trajectories Eqs.25,26 is given by

ν̇ = (1−d)(∇eV )T ė+d(∇ξW )T ξ̇ (32)

ν̇ = (1−d)(∇eV )T Aee+
d
ε
(∇ξW )T Aξ ξ (33)

ν̇ ≤ −(1−d)α1eT e−
d
ε

α2ξ T ξ (34)

ν̇ ≤ −

[

e
ξ

]T [
(1−d)α1 0

0 d
ε α2

][

e
ξ

]

(35)

Following the approach proposed in Reference[3], add and subtract 2αν(t,e,ξ ) to
Eq.35 to get

ν̇ ≤−

[

e
ξ

]T [
(1−d)α1 0

0 d
ε α2

][

e
ξ

]

+2α(1−d)V +2αdW −2αν (36)

whereα > 0. Substitute in Eq.36 for the Lyapunov functionsV (t,e) andW (t,ξ ) to
get



8 Anshu Siddarth and John Valasek

ν̇ ≤−

[

e
ξ

]T [
(1−d)α1−2α(1−d) 0

0 d
ε α2−2αd

][

e
ξ

]

−2αν (37)

If ε satisfies
ε < ε∗ =

α2

2α
(38)

and providedα1 > 2α, then from the definitions ofα2, α, andd it can be concluded
that the matrix in Eq.37 is positive definite. Then the derivative of the Lyapunov
function is lower-bounded by

ν̇ ≤−2αν (39)

Since the composite Lyapunov function lies within the following bounds

(1−d)γ1||e||2+dγ3||ξ ||2 ≤ ν(t,e,ξ )≤ (1−d)γ2||e||2+dγ4||ξ ||2 (40)

or,

γ11

∣

∣

∣

∣

∣

∣

∣

∣

[

e
ξ

]∣

∣

∣

∣

∣

∣

∣

∣

2

≤ ν(t,e,ξ )≤ γ22

∣

∣

∣

∣

∣

∣

∣

∣

[

e
ξ

]∣

∣

∣

∣

∣

∣

∣

∣

2

(41)

whereγ11=min((1−d)γ1,dγ3) andγ22=min((1−d)γ2,dγ4), the derivative of the
Lyapunov function can be expressed as

ν̇ ≤−2αγ11

∣

∣

∣

∣

∣

∣

∣

∣

[

e
ξ

]∣

∣

∣

∣

∣

∣

∣

∣

2

(42)

From the definition of the constantsγ11, γ22, andα, and invoking Lyapunov’s Di-
rect Method[9],uniform exponential stability in the large of (e = 0,ξ = 0) can be
concluded. Furthermore, since the reference trajectoryxr(t) andzr(t) is bounded, it
is concluded that the statesx(t)→ xr(t) andz(t)→ zr(t) ast → ∞. Since the matrix
[

G(.)
K(.)

]

is restricted to be full rank, examining the expression foru in Eq.24 it is

concluded thatu ∈ L∞.

Remark 2 Recall that for the special case of state regulation the system dynamics
in Eqs.14,15 become autonomous. In such a case, the result of global
exponential stability is obtained with less-restrictive conditions on the
Lyapunov functionsV (e), W (ξ ), and consequentlyν(e,ξ ). Similar
conclusions were made in Reference[3] for the stabilization problem
of a special class of singularly perturbed systems where the control
affects only the fast states. Note that for the special class of systems
considered in Reference[3], the non-diagonal elements of the matrix in
Eq.37 are nonzero, and the bound on the parameterε is slightly differ-
ent.
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Remark 3 From Eq.37, a conservative upper bound forα is α <
α1
2 , and conse-

quentlyε∗ ≈ α2
α1

. Therefore, qualitatively this upper bound is indirectly
dependent upon the choice of the closed-loop eigenvalues.

4 Numerical Simulation

The purpose of the example is to demonstrate the methodology and controller per-
formance for an under-actuated, nonlinear, singularly perturbed system. The system
studied is a nonlinear, coupled, six degree-of-freedom F/A-18A Hornet aircraft[5].
The combined longitudinal-lateral/directional maneuver requires tracking of the fast
variables, in this case body-axis pitch and roll rates, while maintaining zero sideslip
angle. Closed-loop characteristics such as stability, accuracy, speed of response and
robustness are qualitatively analyzed. The maneuver consists of an aggressive verti-
cal climb with a pitch rate of 25 deg/sec, followed by a roll at a rate of 50 deg/sec,
while maintaining zero sideslip angle. The Mach number and angle-of-attack are
assumed to be input-to-state stable. The initial conditions are a Mach number of
0.4 at 15,000 feet, an angle-of-attack of 10 deg, and elevon angle of−11.85 deg.
All other states are zero. The F/A-18A Hornet model is expressed in stability axes.
Since it is difficult to cast the nonlinear aircraft model into the singular perturbation
form of Eq.1-2 , the perturbation parameterε is introduced in front of those state
variables that have the fastest dynamics. This is done so that the results obtained for
ε = 0 will closely approximate the complete system behaviour (withε = 1). This is
called the forced perturbation technique, and is commonly used in the aircraft liter-
ature [2, 12]. Motivated by experience and previous results, the six slow states are
Mach numberM, angle-of-attackα, sideslip angleβ and the three kinematic states:
bank angleφ , pitch-attitude angleθ , and heading angleψ. The three body-axis an-
gular rates(p,q,r) constitute the fast states. The control variables for this model are
elevonδe, aileronδa, and rudderδr and are assumed to have sufficiently fast enough
actuator dynamics. The convention used is that a positive deflection generates a neg-
ative moment. The throttleη is maintained constant at 80%, because slow engine
dynamics require introduction of an additional time-scale in the analysis; this is a
consideration which is beyond the scope of this paper. The aerodynamic stability
and control derivatives are represented as nonlinear analytical functions of aerody-
namic angles and control surface deflections. Quaternions are used to represent the
kinematic relationships from which the Euler angles are extracted. The details of
these relationships are discussed in Reference[15].

Results and Discussion

Simulation results in Figures 1-6 show that all controlled states closely track their
references. At two seconds the aircraft is commanded to perform a vertical climb,
and after eight seconds the pitch rate command changes direction and Mach num-
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ber drops. The lateral/directional states and controls are identically zero until the
roll command is introduced at time equals 15 seconds. Observe that all of the states
asymptotically track the reference. Figure 2 shows that the elevon deflection re-
mains within specified limits[5] throughout the vertical climb, and the commanded
roll produces a sideslip angle which is negated by application of the rudder. The
aileron and the rudder deflections remain within bounds while the aircraft rolls and
comes back to level flight. The maximum pitch-attitude angle is 81 deg, maximum
bank angle is 81 deg (Figure 4), and the maximum sideslip error is±4deg. The
quaternions and the complete trajectory are shown in Figures 5 and 6 respectively.
From Figure 6, note that after completing the combined climb and roll maneuver,
the aircraft is commanded to remain at zero sideslip angle, roll rate, and pitch rate.
It then enters a steady dive with all other aircraft states bounded. The controller re-
sponse is judged to be essentially independent of the reference trajectory designed.
The robustness properties of the controller are quantified by the upper boundε∗. For
this example, the design variables ared = 0.5,α1 = 10,α = 2, andα2 = 15, so the
upper bound becomesε∗ = 7.5. Therefore for allε < ε∗ global asymptotic tracking
is guaranteed and in this caseε = 1.

0 5 10 15 20 25 30
−50

0

50

p 
(d

eg
/s

ec
)

Time(sec)

0 5 10 15 20 25 30
−20

0
20

q 
(d

eg
/s

ec
)

Time(sec)

 

 
system response
reference

0 5 10 15 20 25 30

0
10
20

r 
(d

eg
/s

ec
)

Time(sec)

Fig. 1 Body-Axis Angular Rates

0 5 10 15 20 25 30
−20
−10

0
10
20

δ a(d
eg

)

Time(sec)

0 5 10 15 20 25 30
−20

−10

0

δ e(d
eg

)

Time(sec)

0 5 10 15 20 25 30
−30
−15

0
15
30

δ r(d
eg

)

Time(sec)

Fig. 2 Control Surface Deflections

0 5 10 15 20 25 30
0

0.2

0.4

M
ac

h

Time(sec)

0 5 10 15 20 25 30
−30

−15

0

20

40

α 
(d

eg
)

Time(sec)

Fig. 3 Mach Number and Angle-of-Attack

0 10 20 30
−5

0

5

β 
(d

eg
)

Time(sec)

 

 
system response
reference

0 10 20 30
0

20

40

60

80

φ 
(d

eg
)

Time(sec)

0 10 20 30

−30

0
25
50

90

θ 
(d

eg
)

Time(sec)
0 10 20 30

0

10

20

ψ
 (

de
g)

Time(sec)

Fig. 4 Sideslip Angle and Kinematic Angles



Global Tracking Control Structures for Nonlinear Singularly Perturbed Aircraft Systems 11

0 10 20 30
40

50

60

q
0 (

de
g)

Time(sec)
0 10 20 30

0

20

40

q
1 (

de
g)

Time(sec)

0 10 20 30
−20

0

20

40

q
2 (

de
g)

Time(sec)
0 10 20 30

0

5

10

15

q
3 (

de
g)

Time(sec)

Fig. 5 Quaternion Parameters Fig. 6 Three-Dimensional Trajectory

5 Conclusions

A control law for global asymptotic tracking of both the slow and the fast states for a
general class of nonlinear singularly perturbed systems was developed. A composite
control approach was adopted to satisfy two objectives. First, it enforces the speci-
fied reference for the fast states to be ‘the unique manifold’ of the fast dynamics for
all time. Second, it ensures that the slow states are tracked simultaneously as desired.
Stability of the closed-loop signals was analyzed using the composite Lyapunov ap-
proach, and controller performance was demonstrated through numerical simulation
of a nonlinear, coupled, six degree-of-freedom model of an F/A-18A Hornet. The
control laws were implemented without making any assumptions about the nonlin-
earity of the six degree-of-freedom aircraft model. Based on the results presented
in the paper, the following conclusions are drawn. First, both positive and nega-
tive angular rate commands were seen to be perfectly tracked by the controller and
consistent tracking was guaranteed independent of the desired reference trajectory.
Second, throughout the maneuver the controller demonstrated global asymptotic
tracking even though the desired reference trajectory requires the aircraft to switch
between linear and nonlinear regimes. This robust performance of the controller was
shown to hold for allε < ε∗ = 7.5. Third, all closed-loop signals were bounded and
the control surface deflections computed were smooth and within specified limits.
Fourth, this technique does not require the knowledge of the perturbation parameter
ε. This is an important consideration for systems such as aircraft, where quantifying
this parameter can be difficult.
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This paper develops a general control algorithm for the exact output tracking of non-
linear systems with non-minimum phase dynamics. The control technique is causal and
does not require preview or knowledge of the desired reference beforehand. Additionally,
the control is independent of the operating condition and the desired reference. The main
idea of the paper is to convert the output tracking problem into a slow state tracking
problem for singularly perturbed systems. Previous work on singularly perturbed systems
have shown asymptotic tracking of slow states only for a class of nonlinear systems that
are linear in the fast states. However, this paper develops a control technique that does
not have this restriction and is applicable to a general class of nonlinear singularly per-
turbed systems. The procedure is to compute the desired internal state trajectory and the
control scheme that stabilizes the nonlinear system online, thereby guaranteeing asymp-
totic output tracking. Performance of this approach is demonstrated in simulation for two
benchmark problems: the beam-ball example that is slightly non-minimum phase and fails
to have a well-de�ned relative degree, and the Conventional Take-o� and Landing (CTOL)
non-minimum phase aircraft. Results presented in the paper show that the approach is
able to accomplish perfect tracking while stabilizing the closed-loop system, while keeping
all closed-loop signals bounded.

Nomenclature

n order of the nonlinear system
p number of control variables and number of outputs
r relative-degree of the output
t slow time
u control vector
x state vector
y output vector

Greek
(�; �) normal coordinates of the system
� singular perturbation parameter
�(t) desired output dynamics
� fast time

Subscripts
d reference trajectory
0 reference quantity

Symbols
_ time derivative with respect to slow time
0 time derivate with respect to fast time
O() order symbol
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I. Introduction

Output tracking control structures have received considerable attention in the literature. Nonlinear
control techniques such as Feedback Linearization and Sliding Mode Control are able to guarantee closed-

loop stability and precise output tracking, but only for a speci�c class of nonlinear systems that are minimum
phase.1 Additionally, these control approaches require that the output have a well-de�ned relative degree.
But there are a number of important 
ight control problems such as acceleration control of tail-controlled
missiles,2 control of planar Vertical Take-o� and Landing (V/STOL) aircraft,3 and Conventional Take-o�
and Landing (CTOL) aircraft4 that are characterized by unstable zero dynamics, thereby not satisfying the
conditions cited above. These restrictions and the need to develop stabilizing trackers have paved the way
for control algorithms that are applicable to a more general class of nonlinear systems.

The technique presented by Benvenuti et.al5 modi�ed the output of a corresponding linear system so that
it does not contain right half-plane zeros. A similar technique was employed by Hedrick and Gopalswamy6

to track pilot g commands while satisfying 
ying quality speci�cations. These approaches were able to
guarantee ‘local’ tracking that is speci�c to the desired 
ight condition and reference trajectory. Another
approximate approach proposed by Doyle et.al7 takes a su�cient number of derivatives of the output such
that the control and its higher-order derivatives appear in the equation. The paper proposed to modify the
sign of some of the control derivatives in order to render the modi�ed output dynamics minimum phase. It
was shown that these modi�ed output dynamics closely approximate the actual dynamics of the system. In
contrast to the former, Shklnikov and Shtessel8 modi�ed the sliding surface to ensure that the right half-plane
zero is canceled out. The system was required to be in normal form with bounded nonlinearities, and the
technique was demonstrated for an F-16 aircraft.9 Considering the local nature of these works, Zhu et.al10

proposed a controller which separates the internal dynamics into linear and nonlinear parts. The linear part
is stabilized by linear state feedback, whereas the nonlinear part is stabilized only if the system strays away
from the trajectory. In an e�ort to control the V/STOL slightly non-minimum phase aircraft, Hauser et.al3

neglected some terms that are the cause of this unstable behaviour, and proved that a stable controller can
be designed using this approximate technique.

Another class of the literature takes advantage of the multiple time-scale behaviour of air vehicles. Lee
and Ha2 designed an autopilot for a Skid-To-Turn (STT) missile by splitting the dynamics into slow and
fast components. The slow subsystem was composed of the zero dynamics and was indirectly controlled by
the controllable fast subsystem. A similar approach was proposed by Lee and Ha11 wherein the normal form
of a nonlinear I/O feedback linearizable system was transformed to a two time-scale system by a change of
coordinates. But in this case the fast subsystem constituted the zero dynamics, and a modi�ed composite
control scheme was employed to stabilize the complete system.

In addition to the approximate schemes described above, low gain feedback approaches have been pro-
posed in the literature for nonlinear systems with the upper triangular form.12,13,14 The exact output track-
ing approach proposed by Devasia et.al15 employed a combination of feed-forward and feedback control.
The feed-forward control was found using inversion, given a desired output trajectory and its higher-order
derivatives. This inversion is non-causal and requires the in�nite time preview of the complete output tra-
jectory. It is computed o�ine, and the inversion computes the desired input-state trajectory that would
lead to asymptotic output tracking. The linear feedback control is employed to locally stabilize the internal
dynamics. This approach was extended to require a �nite time preview of the output and was applied to the
benchmark VTOL landing example.16

Summarizing these previous results, internal-state feedback is necessary to stabilize a non-minimum phase
system. Moreover, exact output tracking is achieved when the desired internal state trajectory is tracked.
Motivated by this fact, this paper develops an exact output tracking control technique for non-minimum
systems using singular perturbation methods. The paper makes three major contributions. First, the output
dynamics are not required to have a well-de�ned relative degree with respect to the input. The idea is to
take a su�cient number of derivatives of the output and cast the system in a singularly perturbed form. This
procedure forces the internal states of the system to behave as the fast variables. It also allows the internal
states to be used as ‘pseudo-control variables’ for output tracking. A sequential procedure is developed
to compute the internal states that ensure asymptotic output tracking and the controller is designed to
force the internal states to follow the computed trajectory. The second contribution is a full-state feedback
controller that is designed online, and is independent of any particular operating condition and desired
output trajectory. Third, the controller so designed is causal and does not require any knowledge or preview
of the output trajectory beforehand.
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The paper is organized as follows. Section II describes the class of systems considered and formulates the
control problem. Section III develops the nonlinear control design and analyses stability of the closed-loop
system. In Section IV the methodology is illustrated with application to two benchmark problems: the
beam-ball example that is slightly non-minimum phase and does not have a well-de�ned relative degree, and
the classic CTOL aircraft non-minimum phase problem. Conclusions are presented in Section V.

II. Problem Statement

The dynamical system considered is the nonlinear a�ne in control dynamical system expressed as

_x(t) = f(x(t)) + g(x(t))u(t) (1)

y(t) = h(x(t)) (2)

where x(t) 2 Rn is the vector of state variables, y(t) 2 Rp is the output vector, and u(t) 2 Rp is the vector
of control variables. The vector �elds f(:), g(:), and h(:) are su�ciently smooth. The control objective is to
ensure that the output asymptotically tracks a su�ciently smooth, time-varying, bounded trajectory, such
that y(t) ! yd(t) as t ! 1. It is assumed that the nonlinear system considered satis�es the following
assumptions:

Assumption 1: The system described by Eqs.1-2 is non-minimum phase.

Assumption 2: The output of the nonlinear dynamical system considered does not have a well-de�ned
relative degree with respect to the control variables.

Assumption 3: The output dynamics are di�erentially 
at or the number of control inputs available is
equal to the number of output variables to be controlled.

Assumption 4: The desired output trajectory yd and its higher-order derivatives are bounded.

Henceforth the time-dependency notation is dropped for convenience.

III. Tracking Control Development

The system dynamics Eqs.1-2 are expanded and written in the form

_x = f(x) + g(x)u (3a)

y1 = h1(x)

y2 = h2(x)

...

yp = hp(x) (3b)

Let the relative degree of the outputs (y1; y2; : : : ; yp) be (r1; r2; : : : ; rp) respectively, and let r = r1+r2+: : :+
rp. Note that in this context the relative-degree is de�ned as the number of derivatives of the output required
such that the control appears linearly. The control in
uence may be singular. The system is cast into normal
form using the procedure shown in Reference 1. De�ne �ij = yj�1i for i = 1; : : : ; p and j = 1; : : : ; ri and
denote

�(t) = (y1; y
(1)
1 ; : : : ; yr11 ; y2; : : : ; y

r2
2 ; : : : ; y

rp
p )T

= (�11 ; �
1
2 ; : : : ; �

1
r1 ; �

2
1 ; : : : ; �

2
r2 ; : : : ; �

p
rp)T (4)
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Let � 2 Rn�r denote the set of internal states such that (�; �) form a new set of coordinates for the nth order
system Eqs.3. In these new coordinates the system dynamics become

_�i1 = �i2
...

_�iri�1 = �iri (5a)

_�iri = fyi(�; �) + gyi(�; �)u

_� = f�(�; �) + g�(�; �)u (5b)

for i = 1; : : : ; p. It has been shown in Reference.11 that the normal form of Eqs.5 can be cast in the
singularly perturbed form. This procedure shows that the internal dynamics constitute the fast subsystem.
The singular perturbation parameter � is introduced in the system of Eqs. 5 to emphasize that the internal
states evolve faster than the other states.

_�i1 = �i2
...

_�iri�1 = �iri (6a)

_�iri = fyi(�; �) + gyi(�; �)u

� _� = f�(�; �) + g�(�; �)u (6b)

It is desired that the slow states �(t) follow the desired output trajectory while the fast states � remain
bounded for all time. This problem has been studied in the literature as a control problem of asymptotic
tracking of the slow states for a special class of systems in which the fast dynamics are linear in the fast
states.17 In the present work a control algorithm that leads to global asymptotic tracking is developed and
demonstrated.

A. Control Design

In geometric singular perturbation theory,18 the behaviour of singularly perturbed systems is determined
using geometric constructs of the reduced-order models, which are obtained by substituting � = 0 in Eqs.6.
This results in two subsystems

Reduced Slow Subsystem:

_�i1 = �i2
...

_�iri�1 = �iri (7a)

_�iri = fyi(�; �) + gyi(�; �)u

0 = f�(�; �) + g�(�; �)u (7b)

Reduced Fast Subsystem:

�0
i
1 = 0

...

�0
i
ri�1 = 0 (8a)

�0
i
ri = 0

�0 = f�(�; �) + g�(�; �)u (8b)

where 0 represents derivatives with respect to the fast time scale: � = t
� . The dynamics of the resulting

reduced slow subsystem is restricted to r dimensions and constrained to lie upon anM0: n� r dimensional
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smooth surface de�ned by the nonlinear algebraic set of equations Eq.7b. This surface is identically the �xed
points of the reduced fast subsystem Eq.8b. If the the reduced fast subsystem of Eqs.8 is stable about this
smooth surface, then conclusions about the stability of the complete system Eqs.6 can be made by studying
the reduced slow system Eqs.7.

Note that the smooth surface cannot be analytically computed, and in addition there maybe several
such surfaces that satisfy the algebraic set of equations. In order to obtain the unique surface that the fast
variables must be stable about it is assumed that the fast states are the pseudo control variables for the
reduced slow subsystem. The control variables may then be computed by ensuring that the fast states follow
the computed surface. For convenience rewrite the complete system Eqs.6 in compact form

�r = fy(�; �) + gy(�; �)u (9a)

� _� = f�(�; �) + g�(�; �)u (9b)

with the reduced slow subsystem written as

�r = fy(�; �) + gy(�; �)u (10a)

0 = f�(�; �) + g�(�; �)u (10b)

Let (yd;y
1
d; : : : ;y

r
d)
T denote the vector of the desired output trajectory and its r order derivatives. To

ensure that yd is an asymptotically stable equilibrium of the reduced slow system, de�ne a positive-de�nite
and decrescent Lyapunov function that satis�es the following:

Condition 1. V (t; � � yd) : [0;1) � Dy ! R is continuously di�erentiable and Dy 2 Rr contains the
origin, such that 0 <  1(jj�� ydjj) � V (t; �� yd) �  2(jj�� ydjj) for some class K functions  1(:) and  2(:).

Design a manifold � = �d(�;yd;u) such that the closed-loop reduced slow system Eq.10a satis�es

Condition 2.
@V

@t
+
@V

@�
[fy(�; �d) + gy(�; �d)u] � ��1 

2
3(� � yd); �1 > 0

where  3(:) is a continuous positive-de�nite scalar function that satis�es  3(0) = 0.

Conditions 1-2 complete the design of the controller for the reduced slow subsystem. Note that the
manifold M0 : �d computed above is a function of the control u, which is unknown. It is known that
the complete system will have the properties of the reduced slow subsystem if the fast state asymptotically
stabilizes about the fast state trajectory �d. This condition is enforced by designing the control u. De�ne
the error e� = � � �d and rewrite Eq.9b as

e�
0 = f�(�; �) + g�(�; �)u (11)

De�ne a positive-de�nite and decrescent Lyapunov function that satis�es

Condition 4. W (t; � � yd; e�) : [0;1) � Dy � D� ! R is continuously di�erentiable and D� � Rn�r
contains the origin, such that

0 < �1(jje�jj) �W (t; � � yd; e�) � �2(jje�jj)

for some class K functions �1(:) and �2(:).

and design u such that the closed-loop reduced fast system Eq. 11 satis�es

Condition 5.
@W

@e�
[f�(�; �) + g�(�; �)u] � ��3�

2
3(e�); �3 > 0

where �3(:) is a continuous positive-de�nite scalar function that satis�es �3(0) = 0.
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B. Stability Analysis

The following theorem summarizes the main result of the paper.

Theorem 1: Suppose the control u is designed according to the Conditions 1� 6 and the nonlinear system
Eqs.1-2 satis�es Assumptions 1-4. Then for all initial conditions (� � yd; e�) 2 Dy�D� the control uniformly
asymptotically stabilizes the non-minimum phase system and equivalently drives the output y(t) ! yd(t)
for all positive constants � < ��, where �� satis�es the inequality Eq.17.

Proof. The closed-loop complete system in the error coordinates (e = � � yd) is given as

er = F(e; e� + �d;yd;u) (12a)

� _e� = G(e; e� + �d;yd;u)� � _�d (12b)

Rearrange the closed-loop system to form

er = F(e; �d;yd;u) (13a)

+ [F(e; e� + �d;yd;u)� F(e; �d;yd;u)]

� _e� = G(e; e� + �d;yd; �u)� � _�d (13b)

Next, closed-loop system stability of the states is analyzed using the composite Lyapunov function ap-
proach.19 Consider a Lyapunov function candidate for the complete closed-loop system

�(t; e; e�) = V (t; e) +W (t; e; e�) (14)

From the properties of V and W it follows that �(t; e; e�) is positive-de�nite and decrescent. The derivative
of � along the trajectories of Eq.13 is given by

_� =
@V

@t
+
@V

@e
er

+
@W

@t
+
@W

@e
er +

1

�

@W

@e�
e�
0 (15)

Suppose that Lyapunov functions V and W also satisfy both conditions

Condition 5.

@V

@e
[F(e; e� + �d;yd;u)� F(e; �d;yd;u)] � �1 3(e)�3(e�);�1 � 0

Condition 6.

@W

@t
+

�
@W

@e
� @W

@e�

@�d
@e

�
er � 
1�23(e�) + �2 3(e)�3(e�); 
1 � 0; �2 � 0

Using Conditions 1-6 Eq.15 now becomes

_� = ��1 3(e)2 + �1 3(e)�3(e�)� �2

�
�3(e�)2 + 
1�

2
3(e�) + �2 3(e)�3(e�) (16)

Rearrange (16) to get

_� � �	TK	 (17)

where 	 =

"
 3

�3

#
and

K =

"
�1 � 1

2
[�1 + �2]

� 1
2

[�1 + �2] �2
�
� 
1

#

and K is positive-de�nite for � < ��. By de�nition of the continuous scalar functions  3 and �3 it follows
that _� is negative de�nite. Using the composite Lyapunov approach20 it is concluded that y(t) ! yd(t)
asymptotically. Since the desired trajectory is assumed to be smooth and bounded with bounded �rst-order
derivatives, the control commands u remain bounded for all time.
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IV. Numerical Examples

A. Purpose and Scope

The preceding theoretical developments are demonstrated with simulation for two benchmark problems. The
�rst example is the beam-ball example which fails to have a well-de�ned relative degree. The objective is to
ensure that the ball remains in contact with the beam and tracks any trajectory from a class of admissible
trajectories. A step-by-step procedure of controller development is detailed for the system and the closed-loop
results are studied for a time-varying trajectory. The second example develops control laws for a nonlinear
CTOL aircraft problem. The objective of this example is to test the performance of the controller for a
nonlinear, non-minimum phase benchmark problem.

B. Low-Order Nonlinear System Tracking: The Beam-Ball Example

The setup consists of a beam that can only rotate in a vertical plane by applying a torque at the center of
the beam, and a ball that is free to roll along the beam. It is desired that the ball always remains in contact
with the beam and that the rolling occurs without slipping. The goal is to track any trajectory from a class
of admissible trajectories. The dynamical system is taken from Reference 3:26664

_x1

_x2
_x3
_x4

37775 =

26664
x2

B(x1x
2
4 �Gsinx3)

x4
0

37775+

26664
0

0

0

1

37775u (18)

y = x1 (19)

where x = (x1; x2; x3; x4)T � (r; _r; �; _�), y = x1 where r is the distance of the ball from the center of the
beam, and � is the roll angle of the beam. The constants M and Jb are the mass and moment of inertia of
the ball, J is the moment of inertia of the beam, R is the radius of the ball, G is the acceleration due to
gravity, and B is de�ned as M=(Jb=R

2 +M). The torque of the system is related to the control u by

� = (Mr2 + J + Jb)u+ 2Mr _r _� +MGr cos � (20)

The system output is required to track a desired trajectory yd(t) asymptotically.

1. Control Design

Following the procedure detailed in Section III the system Eq.18 is cast in the normal form

y = x1 (21a)

_y = x2 (21b)

�y = B(x1x
2
4 �Gsinx3) (21c)

...
y = B(x24x2 �Gx4cosx3 + 2x1x4u) (21d)

_x4 = u (21e)

Eqs.21 are clearly non-minimum phase since a feedback linearizable control cannot stabilize the internal
state x4. Additionally, if the angular velocity of the beam is zero and/or the ball is at the center of the
beam, the control in
uence in Eq.21d is zero.

The system is nondimensionalized to determine whether or not it exhibits multiple time-scale behaviour.
Let (t0; x10; x20; x30; x40; u0) indicate the reference quantities for time and states of the system Eqs.18. Then
the non-dimensional quantities can be represented as the ratio of the actual quantities over their respective
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reference; for example t̂ = t
t0

, etc. Thus, the non-dimensionalized equations are given as

_̂x1 =
x20t0
x10

x̂2 (22a)

_̂x2 =
t0
x20

(Bx10x
2
40x̂1x̂

2
4 �BGsin(x30x̂3)) (22b)

_̂x3 =
t0x40
x30

x̂4 (22c)

_̂x4 =
t0
x40

u0û (22d)

Note that the reference quantities (t0; x10; x20; u0) are all of O(1), whereas (x30; x40) are of O(0:1) or even less
as they represent angular quantities in radians. So it can be seen that the evolution of the states (x̂1; x̂2; x̂3)
is of O(1) whereas the evolution of the state x4 is of O(1=0:1) which is much faster. Therefore it is concluded
that the state x4 evolves at a much faster rate when compared to the other states of the system.

As a result of the above analysis, a desired internal state trajectory x4d is computed such that the output
asymptotically tracks the desired trajectory. The reduced slow system for this example is given by the
following equations

y = x1 (23a)

_y = x2 (23b)

�y = B(x1x
2
4 �Gsinx3) (23c)

...
y = B(x24x2 �Gx4cosx3 + 2x1x4u) (23d)

0 = u (23e)

which simpli�es to

y = x1 (24a)

_y = x2 (24b)

�y = B(x1x
2
4d �Gsinx3) (24c)

...
y = B(x24dx2 �Gx4dcosx3) (24d)

Let the desired output dynamics �� =
...
y d + �2�yd + �1 _yd + �0yd � �2�y � �1 _y � �0y where �i are positive

constants. Note that this choice of �� ensures that the output exponentially converges to the desired trajectory.
Rearranging �� using Eqs.24b-24d gives

� = B(�2x1 + x2)x24d �BGx4dcosx3 (25)

where � = y
(3)
d + �2�yd + �1 _yd + �0yd + �2BGsinx3 � �1x2 � �0y, which is quadratic in the internal state

x4d. Using the procedure proposed in Reference. 21 the desired internal state is computed as

x4d =
BGcosx3 �

p
(BG cosx3)2 + 4B(�2x1 + x2)�

2B(�2x1 + x2)
(26)

In order to enforce the condition that the internal state follows the desired x4d, the control variable u is
designed such that the fast subsystem

x04 = u (27)

is asymptotically stable about x4d. Since the control appears linearly, proportional control is chosen

u = ��(x4 � x4d)
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2. Results and Discussion

The desired trajectory is yd(t) = A cos(�t5 ) with A = 1; 2. The constants are chosen as �2 = 6; �1 =
12; �0 = 8; � = 8. Note that these constants are chosen such that the time-scale behaviour is preserved in
the closed-loop system. The control torque tau is assumed to have a time constant of 0:05s and position
limits of �1. Figures 1-5 present the simulation results. The position output and the tracking error is shown
in Figures 1-2. Notice that after the transient settles out perfect position tracking is achieved. This perfect
output tracking indicates that the internal states are bounded and follow their desired values closely, as seen
in Figures 3-4. The error between the desired internal state x4d and the actual system response for both
the cases is within �0:001. The control input required to accomplish the exact output tracking is shown in
Figure 5. Notice that the torque computed is bounded and within constrained limits. The peaks around the
�rst few seconds are due to the arbitrarily chosen initial conditions, and not the equilibrium solution for the
system.

Figure 1. Position of Ball, Beam-Ball Example Figure 2. Tracking Error, Beam-Ball Example

Figure 3. Roll Angle,Beam-Ball Example Figure 4. Internal State, Beam-Ball Example

C. Nonlinear Aircraft Tracking

The purpose of this example is to test the performance of the proposed controller for the longitudinal axis
Conventional Take-o� and Landing (CTOL) Aircraft, which is a Douglas DC-8.4 The aircraft model has
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Figure 5. Torque, Beam-Ball Example

three degrees-of-freedom: horizontal and vertical position (x; z), and pitch attitude angle �. The objective is
to control the translational kinematics while stabilizing the unstable rotational dynamics. The two available
controls are thrust u1, and pitching moment u2. The aircraft model is described by the following �rst-order
di�erential equations:

_x = u (28a)

_u =
cos � (u1 �D cos�+ L sin�)� sin � (�Fy +D sin�+ L cos�)

m
(28b)

_z = w (28c)

_w =
sin � (u1 �D cos�+ L sin�) + cos � (�Fy +D sin�+ L cos�)

m
� g (28d)

_� = q (28e)

_q =
u2
J

(28f)

where u,w are the forward and vertical velocities, q is the pitch rate and � = ��tan�1 wu is the angle-of-attack.
The aerodynamic forces and physical constants are chosen22 and given as m = 85000kg, J = 4 � 106kgm2,
g = 9:81ms�2, L = aL(u2 + w2)(1 + c�), D = aD(u2 + w2)(1 + b(1 + c�)2) with Fy = 0:3mg

J u2, aL = 30m
g ,

aD = 2m
g , b = 0:01, and c = 6. The system of Eqs.28 is given in the desired compact normal form. The

non-minimum phase characteristic is due to the pitching moment inducing a parasitic downward force onto
the system.

1. Controller Design

The �rst step in the control design is to write Eqs.28 in singularly perturbed form. To determine whether the
rotation � can be employed as a control, a time-scale analysis similar to the beam-ball example is carried out.
Let the reference quantities be denoted as (t0; x0; z0; u0; w0; �0; q0), (u10; u20), and (D0 = L0 = u10 = Fy0).
The non-dimensionalized equations are given as

_̂x =

�
t0u0
x0

�
û (29a)

_̂u =

�
L0t0
mu0

��
cos(�)(û1 � D̂ cos(�) + L̂ sin(�))� sin(�)(�F̂y + D̂ sin(�) + L̂ cos(�))

�
(29b)
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_̂z =

�
t0w0

z0

�
ŵ (30a)

_̂w =

�
t0L0

mw0

��
sin(�)(û1 � D̂ cos(�) + L̂ sin(�)) + cos(�)(�F̂y + D̂ sin(�) + L̂ cos(�))

�
� t0
w0
g (30b)

_̂
� =

�
t0
q0
�0

�
q̂ (30c)

_̂q =

�
t0u20
Jq0

�
û2 (30d)

Let
h
L0t0
mu0

i
=
h
t0L0

mw0

i
= 1. This is a valid assumption as

h
mu0

t0

i
also has units of force. Similarly,

h
t0u0

x0

i
=h

t0w0

z0

i
= 1. Next, since the angular quantities are small,

h
t0
q0
�0

i
= 1 and

h
t0u20

Jq0

i
= 1

� is a very large

quantity. Thus, it can be concluded that the rotational dynamics evolve faster and the pitch rate evolves
faster than the translational velocities, where (x; y; u; w; �) evolve at a rate of O(1). This conclusion permits
the assumption of pitch attitude angle as the ‘pseudo-control’. Thus pitch rate is the control input for the
desired pitch attitude angle.

Let eu = u � ud and ew = w � wd denote the errors between the actual and the desired output and
rewrite the system of Eqs.28 as

_x = u (31a)

_eu =
cos � (u1 �D cos�+ L sin�)� sin � (�Fy +D sin�+ L cos�)

m
� _ud (31b)

_z = w (31c)

_ew =
sin � (u1 �D cos�+ L sin�) + cos � (�Fy +D sin�+ L cos�)

m
� g � _wd (31d)

_� = q (31e)

� _q =
u2
J

(31f)

where � is introduced to signify the time di�erence. Let �d and qd indicate the desired internal states. Thus,
the resulting reduced slow subsystem becomes

_x = u (32a)

_eu =
cos � (u1 �D cos�+ L sin�)� sin � (�Fy +D sin�+ L cos�)

m
� _ud (32b)

_z = w (32c)

_ew =
sin � (u1 �D cos�+ L sin�) + cos � (�Fy +D sin�+ L cos�)

m
� g � _wd (32d)

_� = qd (32e)

0 =
u2
J

(32f)

that further simpli�es to

_x = u (33a)

_eu =
cos �d (u1 �D cos�+ L sin�)� sin �d (D sin�+ L cos�)

m
� _ud (33b)

_z = w (33c)

_ew =
sin �d (u1 �D cos�+ L sin�) + cos �d (D sin�+ L cos�)

m
� g � _wd (33d)

_� = qd (33e)
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Using trigonometric identities and rearranging

_x = u (34a)

_z = w (34b)

_eu =
u1 cos �d �D cos(�d � �)� L sin(� � �)

m
� _ud (34c)

_ew =
u1 sin �d �D sin(�d � �) + L cos(�d � �)

m
� g � _wd (34d)

_� = qd (34e)

In order to force the errors to asymptotically approach the origin, design the desired �d and thrust u1 such
that

� �1eu =
u1 cos �d �D cos(�d � �)� L sin(� � �)

m
� _ud (35)

��2ew =
u1 sin �d �D sin(�d � �) + L cos(�d � �)

m
� g � _wd (36)

Notice that Eqs.35-36 are independent of qd and hence it can be computed as

qd = ��3(� � �d) (37)

This procedure completes the design of the controller for the slow subsystem. The fast subsystem controller
now needs to be designed such that the fast state q follows qd asymptotically. This can be achieved by
computing the required moment as

u2 = ��4J(q � qd) (38)

In the equations above � denotes the desired closed-loop characteristics.

2. Results and Discussion

The control objective is to perform a climbing maneuver that tracks a constant velocity.22 The forward
velocity is commanded to be constant at 145ms�1 and the vertical velocity is chosen as wd = 125�

60 sin(�t60 ).
The closed-loop characteristics are chosen such that the time-scale properties are preserved: �1 = 4, �2 = 4,
�3 = 4 and �4 = 6. The actuators are assumed to have �rst-order dynamics with a 0:05s time constant.
The nonlinear equations Eqs.35-36 were solved using the constrained optimizer fsolve in MATLAB with
arbitrarily chosen initial conditions of (100; 0:05) for thrust and �d respectively. The small angle assumption
was made for angle-of-attack to ease the computational burden. The results are presented in Figures 6-12.
Figures 6-7 compare the forward and vertical velocities to their respective desired references. Close tracking
is demonstrated with an error of 0:002ms�1 in forward velocity and �0:049ms�1 in vertical velocity. The
control commands are presented in Figures 8-9. Thrust is seen to settle down to its equilibrium value of
3:694 � 108N while the moment varies accordingly to provide su�cient upward force. As expected the
directions of the vertical velocity and the applied moment are opposite: positive moment induces a negative
downward force and reduces the vertical velocity to its desired value. Therefore, for the �rst 60 seconds the
moment is negative, after which it changes sign. Perfect output tracking indicates that the internal aircraft
states are stable. This behaviour is seen in Figure 10-11. The pitch attitude angle (Figure 11) is bounded
and behaves as expected. A climb produces an increase in pitch attitude angle, and a descent produces
a negative value. The pitch rate behaviour seen in Figure 10 agrees with the commanded trajectory. In
comparison with results published in Reference 22, this exact internal state trajectory was obtained using the
o�ine technique proposed by Devasia et.al.15 The complete two-dimensional trajectory is shown in Figure
12.

V. Conclusions

A control formulation for output tracking of a general class of nonlinear non-minimum phase systems
was developed. The desired internal-state reference and feedback control to stabilize the unstable internal
dynamics were posed as an asymptotic slow tracking problem for singularly perturbed systems. Controller
performance was demonstrated through numerical simulation for two benchmark nonlinear examples.
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Figure 6. Forward Velocity, Aircraft Example Figure 7. Vertical Velocity, Aircraft Example

Figure 8. Applied Thrust, Aircraft Example
Figure 9. Applied Moment (after transient), Aircraft
Example

Figure 10. Pitch Rate, Aircraft Example Figure 11. Pitch Attitude, Aircraft Example
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Figure 12. Two-Dimensional Trajectory, Aircraft Example

Based on the results presented in the paper, the following conclusions are drawn. The tracking error for
the beam-ball example was demonstrated to remain within j0:03j at all times, and perfect output tracking
was demonstrated. This perfect output tracking was a result of perfect internal state tracking that was
achieved by the nonlinear feedback law. This same behaviour was also seen for the aircraft example, where
the tracking error was within j0:002j for the forward velocity and j0:049j for the vertical velocity. For both
of these benchmark problems, the controller demonstrated asymptotic tracking irrespective of the desired
reference trajectory. The controller was causal and did not require any preview of the desired reference.
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Tracking Control Design for Non-Standard Nonlinear Singularly
Perturbed Systems

Anshu Siddarth and John Valasek

Abstract— Tracking control laws for a general class of nonlin-
ear singularly perturbed systems are developed. No assumptions
concerning the nonlinearity of the system is made. The effect
of the different speeds of controllers and nonlinear actuator
dynamics is studied and asymptotic stabilization is shown
using Lyapunov methods. Design procedure and performance
of the proposed technique is evaluated against composite
control method. Results indicate that the proposed technique
applies both to standard and non-standard forms of singularly
perturbed systems.

I. INTRODUCTION

Analysis and control of singularly perturbed systems has
received considerable attention in literature [1]. The common
approach is to design two separate controllers for each of the
two lower-order subsystems and then apply their composite
or sum to the full-order system. The composite control
technique[2] guarantees asymptotic stability for standard
singularly perturbed systems or for systems wherein the
algebraic problem has a unique root for the fast variables in
the region of interest. In literature this assumption is satisfied
by either assuming that a unique root for the fast states exists
[3] or assuming that the system dynamics is nonlinear only
in the slow states [4]. However, this root is a set of fixed
points of the fast dynamics expressed as a smooth function
of the slow variables and the control inputs, and hence is
not always unique nor guaranteed to exist. Consequently
one is required to choose an isolated manifold in order to
design a stabilizing control structure for the slow subsystem.
This not only requires substantial system knowledge but
also restricts the results to a local domain. Furthermore,
analytical determination of this manifold is restricted by
the nonlinearity of the system. In such cases, it has been
shown that only ultimate boundedness of the signals maybe
concluded [5].

This paper proposes an alternate approach for control
design of non-standard forms of singularly perturbed sys-
tems. The proposed approach avoids analytical computation
of the manifold by considering it as an additional control
variable. This idea is motivated by singularly perturbed sys-
tems such as aircraft wherein the fast states appear linearly
in the slow dynamics. Reference [6] successfully designed
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nonlinear flight trajectories using angular rates as control
variables, although, the effect of control variables on the slow
variables was neglected. More recently ultimate uniformly
bounded results were concluded [7] using similar ideas while
assuming that the set of nonlinear algebraic equations can be
solved for the control variables and the fast controller was
designed using gain-scheduling.

This paper makes three major contributions. First, the ap-
proach developed here employs the reduced-order technique
without imposing any assumptions about the solutions of the
transcendental equations or the effect of the control variables.
By computing the slow manifold upon which the fast states
must be restricted for asymptotic tracking and ensuring that
this manifold is the equilibrium of the system uniformly,
control objective is accomplished. Second, controllers with
different speeds are addressed in comparison to composite
control technique that requires all control variables to be
sufficiently fast. Third, the control laws are computed using
Lyapunov-based designs that are able to capture the nonlinear
behaviour that is lost in the linearization of the system.
Owing to this, the global or local nature of results are
relaxed from the complexities of analytic construction of
the manifold and are entirely a consequence of the choice
of underlying controllers for the reduced-order models.
Additionally, the control laws developed in this paper are
independent of the singular perturbation parameter and an
upper bound for the scalar perturbation parameter is derived
as a sufficiency condition for asymptotic stability.

The paper is organized as follows. Section II mathemat-
ically formulates the control problem and briefly reviews
the necessary concepts from geometric singular perturbation
theory. Control laws and the main results of the paper are
detailed in Section III. Section IV studies several numerical
examples and qualitatively analyses the performance and
design procedure of the proposed technique. Conclusions are
discussed in Section V.

II. PROBLEM DESCRIPTION AND MODEL
REDUCTION

A. System Description

The class of nonlinear singularly perturbed dynamical
systems addressed in this paper are

ẋ = f(x, z, δ); x ∈ Rm, δ ∈ Rp (1a)
δ̇1 = fδ1(δ1,u1); δ1 ∈ Rl,u1 ∈ Rl (1b)
εż = g(x, z, δ, ε); z ∈ Rn (1c)
εδ̇2 = fδ2(δ2,u2); δ2 ∈ Rp−l,u2 ∈ Rp−l (1d)
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where x is the vector of slow variables, z is the vector of fast
variables, δ = [δ1, δ2]T is the vector of actuator commands
input to the system, u = [u1,u2]T ∈ Rp is the input vector
that is to be computed and ε ∈ R is the singular perturbation
parameter that satisfies 0 < ε << 1 and is unknown. All the
vector fields are assumed to be sufficiently smooth and p ≥
m. The control objective is to drive the slow state so as to
track sufficiently smooth, bounded, time-varying trajectories
or, x(t)→ xr(t) as t→∞.

The controls have been separated into vectors δ1 and δ2
to consider the different speeds of the control variables, with
δ1 representing the actuators with slow dynamics and δ2
representing actuators with relatively fast actuator dynamics.
The vector fields fδ1(.) and fδ2(.) represent their actuator
dynamics respectively. The model given in (1) represents the
special case of two time-scale dynamical systems. The design
procedure developed here also applies to multiple time-scale
systems of the following form

ẋ = f(x, z, δ)

ε1δ̇1 = fδ1(δ1,u1)

ε2ż = g(x, z, δ, ε2)

ε3δ̇2 = fδ2(δ2,u2)

where ε1, ε2 and ε3 are singular perturbation parameters of
different orders that satisfy ε3 < ε2 < ε1.

B. Reduced-Order Models

The system considered in (1) is labeled the Slow System
and the independent variable t is called the slow time-scale.
This system is equivalently written as

x′ = εf(x, z, δ) (2a)
δ1
′ = εfδ1(δ1,u1) (2b)

z′ = g(x, z, δ, ε) (2c)
δ2
′ = fδ2(δ2,u2) (2d)

where ′ represents derivative with respect to τ = t−t0
ε

and t0 is the initial time. Equation (2) are labeled the
Fast System and the independent variable τ is called the
fast time-scale. Geometric singular perturbation theory[8]
examines the behaviour of these singularly perturbed systems
by studying the geometric constructs of the reduced-order
models which are obtained by substituting ε = 0 in (1) and
(2). This results in:
Reduced Slow Subsystem:

ẋ = f(x, z, δ) (3a)
δ̇1 = fδ1(δ1,u1) (3b)
0 = g(x, z, δ, 0) (3c)
0 = fδ2(δ2,u2) (3d)

Reduced Fast Subsystem:

x′ = 0; δ1
′ = 0 (4a)

z′ = g(x, z, δ, 0) (4b)
δ2
′ = fδ2(δ2,u2) (4c)

The dynamics of the resulting reduced slow subsystem are
restricted to m + l dimensions, constrained to lie upon an
n+p− l dimensional smooth manifold defined by the set of
points (x, z, δ) ∈ Rm × Rn × Rp that satisfy the algebraic
equations (3c),(3d):

M0 : z = z(x, δ1, δ2); δ2 = δ2(u2) (5)

This set of points is identically the fixed points of the reduced
fast subsystem (4b)-(4c). Thus the manifoldM0 is invariant
[9]. Furthermore, the flow on this manifold is described by
the differential equations

ẋ = f(x, z(x, δ1, δ2), δ1, δ2(u2)) (6a)
δ̇1 = fδ1(δ1,u1) (6b)

if the reduced fast subsystem is stable about the manifold
M0. If the dynamics of (6) are locally asymptotically
stable about the manifold, then it can be concluded that the
complete system (1) is also locally asymptotically stable [9].

III. CONTROL FORMULATION AND STABILITY
ANALYSIS

Stability properties of the slow system depend upon the
identification of the manifold M0. In general, the nonlinear
set of algebraic equations (3c),(3d) possess multiple roots
and the manifold M0 may take any of these values; hence
it is not unique. One approach to ensure uniqueness is to
consider the fast state as another control variable. These ideas
are mathematically formulated and analyzed in this section.

A. Control Design

The first step is to transform the problem into a non-
autonomous stabilization control problem. Define the track-
ing error signal as e(t) = x(t)−xr(t) and express the slow
system as

ė = F(e, z,xr, ẋr, δ) (7a)
δ̇1 = fδ1(δ1,u1) (7b)
εż = G(e, z,xr, δ, ε) (7c)
εδ̇2 = fδ2(δ2,u2) (7d)

where F(e, z,xr, ẋr, δ) = f(e + xr, z, δ) − ẋr and
G(e, z,xr, δ) = g(e+xr, z, δ, ε) are Lipschitz on a domain
of the state-space. Using the procedure described in Section
II, the reduced slow subsystem for set of equations in (7) is
obtained as

ė = F(e, z,xr, ẋr, δ) (8a)
δ̇1 = fδ1(δ1,u1) (8b)
0 = G(e, z,xr, δ, 0) (8c)
0 = fδ2(δ2,u2) (8d)

In order to ensure e = 0 is an asymptotically stable
equilibrium of the reduced slow system (8) define a positive-
definite and decrescent Lyapunov function that satisfies
Condition 1. V (t, e) : [0,∞) × Dx → R is continuously
differentiable and Dx ⊂ Rm contains the origin, such that

0 < ψ1(||e||) ≤ V (t, e) ≤ ψ2(||e||)
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for some class K functions ψ1(.) and ψ2(.).

Let δ2r represent the manifold of the equation (8d) that is
defined shortly. Design a manifold z = zr(e,xr, ẋr, δ2r) and
control δ1 = δ1r(e,xr, ẋr, δ2r) such that the slow state error
system (8a) satisfies
Condition 2.
∂V

∂t
+
∂V

∂e
F(e, zr,xr, ẋr, δ1r, δ2r) ≤ −α1ψ

2
3(e), α1 > 0

where ψ3(.) is a continuous positive-definite scalar function
that satisfies ψ3(0) = 0.

The next step is to design control u1 that ensures the
actuator state asymptotically approaches δ1r. Define the error
in actuator state as eδ1 := δ1 − δ1r and rewrite the reduced
slow error subsystem (8a),(8b) as

ė = F(e, zr,xr, ẋr, δ1r, δ2r)+ (9a)
F(e, zr,xr, ẋr, δ1, δ2r)− F(e, zr,xr, ẋr, δ1r, δ2r)

ėδ1 = fδ1(δ1,u1)− δ̇1r (9b)

where δ̇1r, the derivative of the manifold is given as

δ̇1r =
∂δ1r
∂e

ė +
∂δ1r
∂xr

ẋr +
∂δ1r
∂ẋr

ẍr +
∂δ1r
∂δ2r

δ̇2r (10)

=
∂δ1r
∂e

F(e, zr,xr, ẋr, δ1, δ2r) +
∂δ1r
∂xr

ẋr +
∂δ1r
∂ẋr

ẍr

using (9a) and the fact that δ2r is a fixed point of the reduced
slow subsystem as it satisfies equation (8d). Conditions
1− 2 ensure that the slow error is asymptotically stabilized
by the slow actuator variable δ1r. In order to ensure the
system remains asymptotically stable when eδ1 6= 0, define
a combined positive-definite decrescent Lyapunov function
for equations (9a),(9b) such that Vs(t, e, eδ1) : [0,∞) ×
Dx×Dδ1 → R is continuously differentiable and Dδ1 ⊂ Rl
contains the origin

Vs(t, e, eδ1) = V (t, e) +
1

2
eδ1

Teδ1 (11)

and design u1 such that the closed-loop reduced slow system
(9) satisfies
Condition 3.
∂Vs
∂t

+
∂Vs
∂e

ė+
∂Vs
∂eδ1

ėδ1 ≤ −α1ψ
2
3(e)−α2ψ

2
4(eδ1), α2 > 0

where ψ4(.) is a continuous positive-definite scalar function
that satisfies ψ4(0) = 0.

Conditions 1 − 3 complete the design of control for
the reduced slow subsystem. Notice that the manifold
zr(e,xr, ẋr, δ2r) computed in the above control design is
a function of the manifold δ2r which is unknown. From
the discussion detailed in Section II, it is known that this
manifold is a fixed point of the reduced fast subsystem,

e′ = 0; δ1
′ = 0 (12a)

z′ = G(e, z,xr, δ, 0) (12b)
δ2
′ = fδ2(δ2,u2) (12c)

The complete system will have the properties of the reduced
slow subsystem if the fast state asymptotically stabilizes
about zr. This condition is enforced by designing the mani-
fold δ2r. Define the error in the fast state vector ez := z−zr
and rewrite (12b) as

ez
′ = G(e, ez,xr, δ1, δ2r, 0) (13)

while noting that zr
′ = εżr = 0 for the reduced fast sub-

system. Define a positive-definite and decrescent Lyapunov
function that satisfies
Condition 4. W (t, e, eδ1 , ez) : [0,∞)×Dx×Dδ1×Dz → R
is continuously differentiable and Dz ⊂ Rn contains the
origin, such that

0 < φ1(||ez||) ≤W (t, e, eδ1 , ez) ≤ φ2(||ez||)

for some class K functions φ1(.) and φ2(.).
and design δ2r such that the closed-loop reduced fast system
(13) satisfies
Condition 5.

∂W

∂ez
G(e, ez,xr, δ1, δ2r, 0) ≤ −α3φ

2
3(ez), α3 > 0

where φ3(.) is a continuous positive-definite scalar function
that satisfies φ3(0) = 0.

Thus, the last step in the design procedure is to enforce
that the fast actuators asymptotically stabilize about δ2r and
the closed-loop reduced fast subsystem is uniformly stable.
Define the error in the fast actuator states eδ2 := δ2 − δ2r
and rewrite the closed-loop reduced fast subsystem in the
error coordinates

ez
′ = G(e, ez,xr, δ1, δ2r, 0)+ (14a)
G(e, ez,xr, δ1, δ2, 0)−G(e, ez,xr, δ1, δ2r, 0)

eδ2
′ = fδ2(δ2,u2)− δ2r′ (14b)

using the fact that the slow variables remain constant in the
fast time scale and

δ2r
′ =

∂δ2r
∂ez

ez
′ (15)

Define a positive-definite decrescent combined Lyapunov
function Wf (t, e, eδ1 , ez, eδ2) : [0,∞)×Dx ×Dδ1 ×Dz ×
Dδ2 → R for the reduced fast subsystem (14) that is
continuously differentiable and Dδ2 ⊂ Rp−l contains the
origin

Wf (t, e, eδ1 , ez, eδ2) = W (t, e, eδ1 , ez) +
1

2
eδ2

Teδ2 (16)

Design u2 such that the closed-loop reduced fast system (14)
satisfies
Condition 6.

∂Wf

∂ez
ez
′ +

∂Wf

∂eδ2
eδ2
′ ≤ −α3φ

2
3(ez)− α4φ

2
4(eδ2), α4 > 0
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B. Stability Analysis

The following theorem summarizes the main result of the
paper.

Theorem 1. Suppose the control u of the system (1) is
designed according to the Conditions 1 − 14. Then for all
initial conditions, (e, eδ1 , ez, eδ2) ∈ Dx×Dδ1 ×Dz×Dδ2 ,
the control uniformly asymptotically stabilizes the nonlinear
singularly perturbed system (1) and equivalently drives the
slow state x(t)→ xr(t) for all ε < ε∗, that is defined by the
inequality given in (24).

Proof: The closed-loop complete system in the error
coordinates is given as

ė = F(e, ez + zr,xr, ẋr, eδ1 + δ1r, eδ2 + δ2r) (17a)
ėδ1 = fδ1(eδ1 + δ1r,u1)− δ̇1rC (17b)
εėz = G(e, ez + zr,xr, eδ1 + δ1r, eδ2 + δ2r, ε)

− εżr (17c)
εėδ2 = fδ2(eδ2 + δ2r,u2)− εδ̇2rC (17d)

where the subscript ‘C’ is added to note the difference
between (17b)-(17d) and (10) and (15). These expressions
for the complete system are noted as

δ̇1rC =
∂δ1r
∂t

+
∂δ1r
∂e

ė +

∂δ1r
∂xr

ẋr +
∂δ1r
∂ẋr

ẍr +
∂δ1r
∂ez

ėz (18)

δ̇2rC =
∂δ2r
∂t

+
∂δ2r
∂e

ė +
∂δ2r
∂xr

ẋr +
∂δ2r
∂ẋr

ẍr +

∂δ2r
∂eδ1

ėδ1 +
∂δ2r
∂ez

ėz (19)

Closed-loop system stability of the system states is analyzed
using the composite Lyapunov function approach[10]. Con-
sider a Lyapunov function candidate

ν(t, e, eδ1 , ez, eδ2) = Vs(t, e, eδ1) +Wf (t, e, eδ1 , ez, eδ2)
(20)

for the complete closed-loop system. From the properties of
Vs and Wf it follows that ν(t, e, eδ1 , ez, eδ2) is positive-
definite and decrescent. The derivative of ν along the trajec-
tories of (17) is given by

ν̇ =
∂Vs
∂t

+
∂Vs
∂e

ė +
∂Vs
∂eδ1

ėδ1 +
∂Wf

∂t
+
∂Wf

∂e
ė

+
∂Wf

∂eδ1
ėδ1 +

1

ε

∂Wf

∂ez
ez
′ +

1

ε

∂Wf

∂eδ2
eδ2
′ (21)

Note that the vector fields in (17a) and (17c) can also be
expressed as

F(e, ez + zr,xr, ẋr, eδ1 + δ1r, eδ2 + δ2r) =

F(e, zr,xr, ẋr, δ1r, δ2r) + F(e, zr,xr, ẋr, eδ1 + δ1r, δ2r)

− F(e, zr,xr, ẋr, δ1r, δ2r)− F(e, zr,xr, ẋr, eδ1 + δ1r, δ2r)

+ F(e, zr,xr, ẋr, eδ1 + δ1r, eδ2 + δ2r) (22)
+ F(e, ez + zr,xr, ẋr, eδ1 + δ1r, eδ2 + δ2r)

− F(e, zr,xr, ẋr, eδ1 + δ1r, eδ2 + δ2r)

G(e, ez + zr,xr, eδ1 + δ1r, eδ2 + δ2r, ε) =

G(e, ez + zr,xr, eδ1 + δ1r, δ2r, 0)

+ G(e, ez + zr,xr, eδ1 + δ1r, eδ2 + δ2r, 0)

−G(e, ez + zr,xr, eδ1 + δ1r, δ2r, 0)

+ G(e, ez + zr,xr, eδ1 + δ1r, eδ2 + δ2r, ε)

−G(e, ez + zr,xr, eδ1 + δ1r, eδ2 + δ2r, 0) (23)

Suppose that Lyapunov functions Vs and Wf also satisfy the
following conditions with βi ≥ 0 and γi ≥ 0
Condition 7.
∂Vs
∂e

F(e, zr,xr, ẋr, eδ1 + δ1r, eδ2 + δ2r)−
∂Vs
∂e

F(e, zr,xr, ẋr, eδ1 + δ1r, δ2r) ≤ β1ψ3(e)φ4(eδ2)

Condition 8.
∂Vs
∂e

F(e, ez + zr,xr, ẋr, eδ1 + δ1r, eδ2 + δ2r)−
∂Vs
∂e

F(e, zr,xr, ẋr, eδ1 + δ1r, eδ2 + δ2r) ≤ β2ψ3(e)φ3(ez)

Condition 9.
∂Vs
∂eδ1

∂δ1r
∂ez

ėz ≤ β3ψ3(e)ψ4(eδ1) + β4ψ4(eδ1)φ3(ez)

+ γ1ψ
2
4(eδ1)

Condition 10.
∂Wf

∂ez
G(e, ez + zr,xr, ẋr, eδ1 + δ1r, eδ2 + δ2r, ε)−

∂Wf

∂ez
G(e, ez + zr,xr, ẋr, eδ1 + δ1r, eδ2 + δ2r,0)

≤ εγ2φ23(ez) + εβ5ψ3(e)φ3(ez) + εβ6ψ4(eδ1)φ3(ez)

+ εβ7φ3(ez)φ4(eδ2)

Condition 11.
∂Wf

∂t
+

[
∂Wf

∂e
− ∂Wf

∂ez

∂zr
∂e

]
ė−

[
∂Wf

∂eδ1
+
∂Wf

∂ez

∂zr
∂eδ1

]
ėδ1

− ∂Wf

∂ez

∂zr
∂xr

ẋr −
∂Wf

∂ez

∂zr
∂ẋr

ẍr ≤ γ3φ23(ez) + β8ψ3(e)φ3(ez)

+ β9ψ4(eδ1)φ3(ez)

Condition 12.
∂Wf

∂eδ2

[
∂δ2r
∂t

+
∂δ2r
∂e

ė +
∂δ2r
∂xr

ẋr +
∂δ2r
∂ẋr

ẍr +
∂δ2r
∂eδ1

ėδ1

]
≤

γ4φ
2
4(eδ2) + β10ψ3(e)φ4(eδ2) + β11ψ4(eδ1)φ4(eδ2)

Condition 13.
∂Wf

∂eδ2

∂δ2r
∂ez

G(e, ez + zr,xr, ẋr, eδ1 + δ1r, eδ2 + δ2r, ε)

− ∂Wf

∂eδ2

∂δ2r
∂ez

G(e, ez + zr,xr, ẋr, eδ1 + δ1r, eδ2 + δ2r,0)

≤ εγ5φ24(eδ2) + εβ12ψ3(e)φ4(eδ2) + εβ13ψ4(eδ1)φ4(eδ2)

+ εβ14φ3(ez)φ4(eδ2)

Condition 14.
∂Wf

∂eδ2

∂δ2r
∂ez

[εżr] ≤ εβ15ψ3(e)φ4(eδ2) + εβ16ψ4(eδ1)φ4(eδ2)
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Conditions 9 − 14 enforce restrictions upon the difference
between the complete system and the reduced subsystems.
Use Conditions 1− 14 into (21) and rearrange to get,

ν̇ ≤ −ΨTKΨ (24)

where Ψ =


ψ3

ψ4

φ3
φ4

 and matrix K given in (24) is

positive-definite for ε < ε∗. By definition of the continuous
scalar functions ψ3,ψ4, φ3 and φ4, it follows that ν̇ is
negative definite. By Lyapunov theorem it is concluded
that (e, δ1, z, δ2) = (0, δ1r, zr(0,xr, ẋr), δ2r) is uniformly
asymptotic stable equilibrium of the closed-loop system (17).
Further, from definition of the tracking error, it is concluded
that x(t) → xr(t) asymptotically. Since the desired trajec-
tory is assumed to be smooth and bounded with bounded
first-order derivatives all the other signals remain bounded
for all time.

IV. NUMERICAL EXAMPLES

A. Purpose and Scope

The purpose of this section is to illustrate the preced-
ing theoretical developments and demonstrate the controller
performance for both standard and non-standard forms of
singularly perturbed systems. The first example is taken from
Reference [2] and the purpose is to see how the proposed
approach compares with composite control technique for
standard singularly perturbed systems. The objective of the
second example is to analyze the performance and robustness
characteristics of the controller for non-standard forms of
singularly perturbed systems.

Example 1: Standard Singularly Perturbed Model

The following example is taken from Reference [2]. The
objective is to design a regulator to stabilize both the slow
and the fast state in the domain Dx ∈ [−1, 1] and Dz =
[−1/2, 1/2].

ẋ = xz3; εż = z + u (25)

The reduced-order models for the system under study are
Reduced Slow Subsystem

ẋ = xz3; 0 = z + u (26)

Reduced Fast Subsystem

x′ = 0; z′ = z + u (27)

Notice that the algebraic equation in the reduced slow
subsystem has an isolated root for the fast state; thus the
system given is in standard form.

The controller is designed using the same Lyapunov
functions and closed-loop characteristics as in [2]. Using
V (x) = 1

6x
6 as Lyapunov function for the slow subsystem,

the desired manifold zr = −x 4
3 satisfies Condition 2 with

α1 = 1 and ψ3(x) = |x|5. The control is designed as
u = −3z − 2x

4
3 to satisfy Condition 5 with Lyapunov

function W = 1
2 (z − zr)2, α3 = 2 and φ3(x, z) = |z − zr|.

The closed-loop system with ez = z − zr becomes

ẋ = x(ez + zr)
3 (28a)

εėz = −2ez +
4

3
εx

4
3 (ez + zr)

3 (28b)

The inequality in (24) is satisfied for all ε < 0.4246.
Notice that the control law designed is exactly same as

that obtained using composite control. However, the upper-
bound is conservative when compared to the upper-bound
obtained using composite control (0.4286). This variation
appears because the coefficients of the composite Lyapunov
function were chosen as unity in (20) instead of optimal
values as in composite control.

Example 2: Non-Standard Singularly Perturbed Model

Consider the following unstable linear system

ẋ = z − u; εż = x+ u (29)

The objective is to stabilize the system about x = 0 and
z = 0. Notice that the algebraic equation obtained by setting
ε = 0 has infinitely many solutions and composite control
cannot be applied.

Control Design: With V (x) = 1
2x

2 as Lyapunov function
for the reduced slow subsystem, manifold zr = u − α1x
satisfies Condition 2 for ψ3(x) = |x|. Lyapunov function for
the fast subsystem is W (x, z) = 1

2 (z − zr)2. Condition 5 is
satisfied with control u = −x− α2(z − zr) and φ3(x, z) =
|z − zr|. The applied control in original system coordinates
is given as

u =
−1− α1α2

1− α2
x− α2

1− α2
z. (30)

Substituting (30) in (29) and with a change of coordinates
gives the closed-loop system

ẋ = −α1x+
1

1− α2
ez (31a)

εėz = − α2

1− α2
ez + ε

[
1 + α1

1− α2
ez − α1(1 + α1)x

]
(31b)

where ez = z−zr. The constants satisfying Conditions 7-14
are β2 = 1

1−α2
, β5 = −α1(1 + α1) and γ2 = 1+α1

1−α2
, rest all

being zeros.
Results and Discussion: The closed-loop gains chosen

are α1 = 0.5 and α2 = 0.5. With these values, global
asymptotic stabilization is satisfied for all ε < 0.2645. Table.I
documents the closed-loop eigenvalues for different values
of ε. The closed-loop system loses its time-scale property
for ε > 0.2645 but remains stable with complex conjugate
eigenvalues indicating that the upper bound ε∗ satisfying
condition (24) is conservative. The system becomes unstable
for all ε > 0.4.

The system given in (29) is the linearized model of the
nonlinear non-standard form [11]

ẋ = tan z − u; εż = x+ u (32)

Notice that the fast state appears nonlinearly in the slow
dynamics and hence determining a manifold zr to meet the
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K =


α1 −β3

2 − 1
2 [β2 + β5 + β6 + β8] − 1

2 [β1 − β10 − β12 − β15]

−β3

2 α2 − γ1 − 1
2 [β4 + β7 + β9] 1

2 [β11 + β13 + β16]

− 1
2 [β2 + β5 + β6 + β8] − 1

2 [β4 + β7 + β9] α3

ε − γ2 − γ3
β14

2

− 1
2 [β1 − β10 − β12 − β15] 1

2 [β11 + β13 + β16] β14

2
α4

ε + γ4 + γ5

 (24)

TABLE I
EXAMPLE 2: CLOSED-LOOP EIGENVALUES

ε Eigenvalues λ
0.05 λ1 = −0.5914, λ2 = −16.9086
0.1 λ1 = −0.7396, λ2 = −6.7604

0.2645 λ1,2 = −0.6404± 1.167j
0.35 λ1,2 = −0.1786± 1.1818j
0.4 λ1,2 = 0.000± 1.1180j

0.405 λ1,2 = 0.0154± 1.1110j

Fig. 1. Example 2: Nonlinear System (32) Closed-loop Response (ε = 0.1)

control objective is difficult. Instead, use the controller (30)
that was developed for the linear counterpart. The resulting
closed-loop system with α1 = α2 = 0.5 is

ẋ = 2.5x+ tan z + z; εż = −1.5x− z (33)

The controller converts the non-standard form into standard
form which uniquely restricts the system onto the desired
manifold, which in this case is zr = −1.5x. It is clear
that due to the nonlinear nature of the problem the domain
of attraction is now restricted to a subspace of the two-
dimensional Euclidean space. Using the previously outlined
procedure, constants satisfying Conditions 7−14 are β2 = 2
and γ2 = 3 with all others being zero in the domain Dx ∈
[0,−1) and Dz ∈ [−1, 2]. The upper-bound on singular
perturbation parameter is computed as ε∗ = 0.2. Simulation
study in this case indicates that stability is maintained for all
ε < 0.4 and the nonlinear system is asymptotically stabilized
in the domain Dx ∈ [−2, 2] and Dz ∈ [−1.5, 2]. Simulation
results for the case of ε = 0.1 are shown in Fig.1. Notice
that non-zero control is applied until the fast state falls onto
the desired manifold.

V. CONCLUSIONS
In this paper, design procedure for tracking the slow states

and stabilization of a general class of nonlinear singularly
perturbed systems was developed. Based on the stability
proof and simulation results presented in the paper, the
following conclusions are drawn. First, the control laws
computed for standard singularly perturbed systems using
composite control[2] are seen to be a special case of the
proposed technique. It was also shown that the upper-
bound is conservative with comparison to composite control
technique as fixed unity gains were used in the formulation
of the composite Lyapunov function. These gains can be
chosen optimally as done in composite control technique to
provide a less conservative upper-bound. Second, simulations
for non-standard singularly perturbed systems shows that for
all values of ε < ε∗ asymptotic convergence is guaranteed
and all closed-loop signals remain bounded. The domain
of convergence of the proposed technique was seen to be
dependent upon the underlying controllers developed for the
reduced-order systems. It is possible to guarantee global
results by identifying controllers that satisfy Conditions
1− 14 for the complete space spanned by the system states.
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Intelligent Motion Video Guidance for Unmanned Air

System Ground Target Surveillance

John Valasek�, Kenton Kirkpatricky, and James Mayz

Advances in unmanned 
ight have led to the development of Unmanned Air Systems
that are capable of carrying state-of-the-art video capturing systems for the intended pur-
pose of surveillance and tracking. These vehicles have the capability to 
y through a target
area with a mounted camera and allow humans to operate both the UAS and the camera
to attempt to survey any objects that are deemed targets. These systems have worked well
when controlled by humans, but having them operate autonomously to reduce operator
workload and manpower is even more challenging when the camera is �xed to the airframe
instead of being mounted on a gimbal, so that the aircraft must be steered in order to steer
the camera. The presence of winds must also be accounted for. This paper develops an
algorithm for surveillance of ground targets by UAS with �xed pan and tilt cameras, in the
presence of winds. This paper develops an algorithm for surveillance of ground targets by
UAS. The speci�c RL algorithm used is Q-learning, and the objective of the approach is
to bring any target located in an image captured by a camera into the center of the image
using the learned control policy. The learning agent determines o�ine (initially) how to
control the UAS and camera to get a target from any point in the image to the center and
hold it there. A feature of this approach is that the learning agent will continue to learn
and re�ne and update the previously o�ine learned control policy, during actual operation.
Results presented in the paper demonstrate that the approach has merit for autonomous
surveillance of ground targets.

I. Introduction

One way to introduce the concept of autonomy to the Unmanned Air System (UAS) motion video tracking
problem is to determine a control policy that is capable of controlling the UAS autonomously along a certain
trajectory, while having the camera controlled by a human. Another way is to do the opposite, and have the
UAS 
own manually while the camera gimbals to capture and track identi�ed targets. Both of these methods
have been explored before and have merit, but having both the UAS and the camera operated autonomously
could provide greater 
ight and tracking e�ciency. Having a system that is capable of controlling a UAS
and camera system to keep a selected target visible in the camera screen would free the human supervisor
to focus on selecting viable targets and analyzing the images received.

The biggest challenge stems from the need to determine an optimal control policy for keeping the target
in the middle of the image, using a �xed pan and tilt camera in the presence of winds. Conventional
control techniques require determining an appropriate cost function and then �nding the weights that make
the control optimal. Although �nding the optimal control is often straightforward, determining the cost
function that best describes the problem is not straightforward. For this research, Reinforcement Learning
(RL) is utilized for the determination of the optimal control policy that will both gimbal the camera and
steer the UAS to provide target tracking.

Reinforcement Learning (RL) is a subset of machine learning techniques that have been implemented in
similar control policy learning scenarios with success. It does not require the declaration of a cost function
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because it learns the optimal control policy based on physical interaction with the environment rather than
mathematical approximations of the problem. RL algorithms break the problem down into a set of states
and actions for attempting to reach a goal, and receive rewards from the environment for meeting those
goals. Given a particular state of the system, feasible actions are chosen, and the governing control policy is
updated based on what kind of reward was given for the results of the action. Over time, the learning agent
is able to converge to the optimal control policy for achieving the desired goal from each state.

The speci�c RL algorithm to be used is Q-learning1 modi�ed with an Adaptive Action Grid (AAG).
The AAG method was developed by Lampton and Valasek2,3 as a means to provide greater accuracy in
reaching the goal state (i.e., the target), while also decreasing the size (dimensions) of the state-space to be
considered. This dramatically decreases the total number of states in the system, so that the learning time
becomes more feasible and the storage requirements more tractable. Consider a typical optical or infrared
(IR) image which contains background features plus a target located in a Region of Interest (ROI). It is
assumed here that a human operator would identify the ROI and the target in the image, although the
algorithm could conceivably identify the ROI and target by itself, based upon ROI and target characteristics
supplied by the human operator. The AAG software agent then discretizes the entire state-space (i.e. image)
with course grid spacing, followed by a �ner discretization of just the ROI, which is the area of the image in
the immediate vicinity of the target. By not discretizing the entire state-space with a �ne resolution, there
are fewer state-action pairs to both learn and store in memory. However, more precision is needed to reach
the goal (target), so multiple levels of �ner discretization are used in the ROI as the learning agent gets
closer to the goal.

This paper develops an algorithm for surveillance of ground targets by UAS. The speci�c RL algorithm
used is Q-learning, and the objective of the approach is to bring any target located in an image captured by
a camera into the center of the image using the learned control policy described above. The learning agent
will determine o�ine (initially) how to control the UAS and camera to get a target from any point in the
image to the center and hold it there. A feature of this approach is that the learning agent will continue to
learn and re�ne and update the previously o�ine learned control policy during actual operation.

II. Algorithm Development

Reinforcement Learning is a process of learning through interaction in which a program uses previous
knowledge of the results of its actions in each situation to make an informed decision when it later returns to
the same situation. It is a method that has been used for many diverse problems ranging from board games
to behavior-based robotics. The purpose of the learning agent used in RL is to maximize the long-term
cumulative reward, not just the immediate reward.5 In this work the goal is to remain in the image, with a
preference for being far from the edges. The reward structure must be set up to e�ect this desire. The agent
uses the knowledge gained by reward maximization to update a control policy that is a function of the states
and actions. This control policy is essentially a large matrix that is composed of every possible state for the
rows, and every possible action for the columns. The three most commonly used classes of RL algorithms are
Dynamic Programming, Monte Carlo, and Temporal Di�erence.5 The majority of Dynamic Programming
methods require an environmental model, making the use of them impractical in problems with complex
models. Monte Carlo only allows learning to occur at the end of each episode, causing problems that have
long episodes to have a slow learning rate. Temporal Di�erence methods have the advantage of being able
to learn at every time step without requiring the input of an environmental model. The most commonly
used method of Temporal Di�erence is known as Q-learning, with the most common variation being Watkins
Q-learning.6 Q-learning is an on-policy form of Temporal Di�erence that utilizes an action-value function
update rule based on the equation:5

Q(st; at) Q(st; at) + �[rt+1 + 
max
a

Q(st+1; at+1)�Q(st; at)] (1)

where st is the current state, at is the current action, st+1 is the next state, at+1 is the next action, Q is
the action-value function (used in the control policy), and the k subscript signi�es the current policy. The
parameter � is a parameter that is used to \penalize" the RL algorithm when it repeats itself within each
episode. The parameter 
 is the future policy discount factor. � and 
 are design parameters that are kept
constant for this work. To utilize RL for this problem the proper representation of the environment as the
parameters of the Watkins Q-learning algorithm must be made. States, goals, rewards, and actions must
be designed. The states of the RL agent, s, are de�ned for this problem to be those states of the system
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that either give information regarding the target’s position or those of the UAS that can be controlled for
tracking. This yields a state-space consisting of 3 variables: target x-position in the image, target y-position
in the image, and UAS bank angle.

s =
h
X Y �

iT

(2)

The goal for an RL agent is de�ned using the reward structure. The overall goal is to have the target
remain in the image frame once commanded, so a proper set of reward requirements must be constructed.
Since leaving the image frame is considered the worst result, it retains the worst reward. In this case, a
value of r = �20 is given for a target leaving the image frame. It is also desired to remain away from the
edges of the image, so a reward of r = �5 is given for hitting the image boundary, while a positive reward
of r = +20 is awarded for reaching the center of the image. This encourages the RL agent to move the UAS
such that the target stays as far from any edge of the image frame as is possible. All other possible states
yield a neutral reward of r = 0. Since the goal is generally de�ned for the RL agent as the state that yields
the highest reward, the goal is de�ned as all states where the target image position is at the center.

g =
h
0 0 �

iT

(3)

The agent for this problem is limited in its control of the states because the target global position is
independent of any action the UAS takes. The only part of the environment that the UAS can control is
itself. Based on the assumptions for this problem, the only way the UAS can control the position of the
target in the image frame is to change its bank angle. Therefore, the action-space for this problem is de�ned
to be increments in the UAS bank angle, where for this problem �� = 2 degrees.

a =
h
�2 0 2

iT

(4)

This formulation of the RL problem is therefore

s =
h
Xi Yi �

iT

(5)

a =
h
��� 0�� +��

iT

(6)

g =
h
Xic Yic �

iT

(7)

III. Simulation Results

III.A. Disturbance Free

All learning takes place o�ine, and after a su�cient number of learning episodes have been completed the
control policy performance and robustness is evaluated via Monte Carlo simulation. Test cases consisting of
a �xed target tracking scenario and a moving target tracking scenario are presented. For each case, target
position in the image frame and time histories of the UAS states are displayed. Monte Carlo simulations are
presented for a chosen timespan of 100 seconds. This represents the typical amount of time for the controller
to position the aircraft in a stable tracking con�guration. The RL agent was allowed to run for 1,000,000
episodes, with Monte Carlo snapshots taken at a few places beginning at 500,000 episodes. The Monte Carlo
randomization places the initial position of the target in one of the four quadrants of the image frame, and at
a random position within each quadrant. The controller must then steer the UAS so that ideally, the target
is driven to the center of the image frame. One representative case is provided for each of the four quadrants.
Images positions are given in pixels and aircraft bank angles are given in degrees. Aircraft inertial positions
are in meters.

The results are taken from one single test case of the Monte Carlo runs, in which the target initial
conditions place it in the image frame in quadrant 1. Figure 1 shows a 3-dimensional view of the aircraft
moving in inertial airspace tracking the target. As can be seen in Figure 1, the aircraft approaches a circular
orbit to track the stationary target on the ground. In Figure 2, the position of the target at each timestep
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is displayed. The target begins in quadrant 1 of the image and moves toward the goal of the center of the
image. However, it is unable to remain there given the aircraft’s current state and it is lost from the center.
As the aircraft banks left, the target moves up in the image frame, while a right bank moves the target
down. The forward motion of the aircraft causes di�culty in tracking the target in the x-direction, and this
is re
ected in the target almost being lost o� the left side of the image. The reinforcement that the agent
has received leads it to settle in a state of keeping the target in quadrant 2. Time histories of the target
position in the image frame, aircraft bank angle, and commanded change in aircraft bank angle are shown
in Figure 3. It is seen that the controller keeps the target in the image frame throughout the simulation
timespan.

Figure 1. Simulation 3-D View: Stationary Target

Figure 2. Image Time History: Stationary Target
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Figure 3. State Time History: Stationary Target

With a successful orbit of a moving target learned, the RL agent was then presented the task of learning
to follow a target that moves. This target moves in a straight line at 60 mph, the same speed as the cruise of
the aircraft. Under this condition, the aircraft attempts to follow alongside the target as it travels forward.
In Figure 4, it can be seen that the aircraft begins following alongside the target well, and begins to deviate
away from it as time moves forward. This is due to the stationary camera requiring tracking to be handled by
banking the aircraft. It can be seen in Figure 5 that the target is maintained in the image frame throughout
the duration of this simulation. Like the stationary case, the target passes the prescribed goal of centering
in the image and settles in quadrant 2. The time histories shown in Figure 6 reveal that to maintain this
tracking requires frequent bank angle commands, unlike the stationary case.

Figure 4. Simulation 3-D View: Moving Target
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Figure 5. Image Time History: Moving Target

Figure 6. State Time History: Moving Target

III.B. Wind

Accounting for wind in this problem has been done using a variety of methods,7,8 and accounting for wind
disturbances using the present method requires altering the learning process in the state-space to handle
the additional state information. Wind can be handled by the learning agent, but it requires knowledge
of the wind speed and direction. This modi�cation can be done by adding two new states to the learning
state-space. This modi�ed state-space is shown in Equation 8, where vw and  w are the wind speed and
wind heading angle, respectively.
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s =
h
X Y � vw  w

iT

(8)

With wind added to the simulation, new learning was experienced with random wind speeds and directions
initialized at the beginning of each episode. After 1,000,000 learning episodes, Monte Carlo results were
used with the learned Q-matrix. The following �gures show an example from these Monte Carlo results for
a stationary target with wind disturbances. The wind vector for this particular simulation is 13 mph at a
heading angle of 45 degrees. As can be seen in Figure 7, the aircraft approaches the circular orbit as from
before, but due to the wind disturbance it is not nearly as smooth of a circular orbit as in Figure 1. Figure 8
shows that throughout the duration of the simulation, the target does remain in the image. By comparing
Figure 9 to Figure 3, it can be seen that many more bank angle commands are required to maintain tracking
when there is wind, as is expected.

Figure 7. Simulation 3-D View: Stationary Target with Wind

IV. Conclusions and Future Work

Based on the results presented in this paper, it is concluded that:

1. Algorithm learning convergence for the static target case with �xed camera is rapid, due to the low
number of state-action pairs. The number of learning episodes required to converge to a \good"
solution varies with the particular case/scenario being learned, but all results have shown a clear point
of diminishing returns about which running additional learning scenarios provides only a marginal
improvement in performance.

2. For all of the stationary target cases evaluated, the RL controller keeps the target in the image frame
throughout the simulation timespan. Although the target does not stay in the reinforcement learning
positive goal area (the origin), the broader tracking goal of keeping the target in the image frame itself
for a useful period of time is generally met.

3. Camera installation and orientation, and the initial position of the target relative to the initial position
of the aircraft have a strong in
uence on the results. In each example, the controller attempts to drive
the target into the second quadrant. This is due to the geometry of the scenario and the location of the
camera in the aircraft. Having the target in the second quadrant allows the aircraft to turn ahead of
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Figure 8. Image Time History: Stationary Target with Wind

Figure 9. State Time History: Stationary Target with Wind

the target, in order to keep it in the image frame in the future. Consequently, if the camera is oriented
to point out the right side of the aircraft, the aircraft is steered to keep the target in the �rst quadrant.

4. Preliminary results for the case of a moving target show that this method has promise for learning to
track a moving target, and merits further investigation.

5. Preliminary results for wind results shows that using wind measurements in the state-space is a promis-
ing method for accounting for wind in the learning process, and merits further investigation alongside
the moving target scenarios.
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This research will be expanded in future work in several ways. One expansion that is to be explored
is the use of a gimbaled camera rather than a �xed-base camera mounted on the UAS. This will allow for
greater ease of tracking, but will require a reimagining of the Reinforcement Learning problem. Another
extension that will be explored is the introduction of more action choices by varying the UAS altitude and/or
cruise speed. This will allow for learning to follow a moving target that is traveling at various speeds and
along a variety of trajectories, but will greatly increase the learning state-action pairs. For each expansion
explored, the inclusion of wind considerations as done in this paper will allow for accurate appraisal of the
UAS ability to track ground targets in actuality. With learned control policies for each research scenario,
the �nal research to be conducted in this line will be to evaluate each policy through 
ight testing on an
actual UAS.
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Unmanned Air System Search and Localization

Guidance Using Reinforcement Learning

Caroline Dunn�, John Valaseky, and Kenton Kirkpatrickz

Texas A&M University, College Station, Texas 77843-3141

Requirments for current and future Unmanned Air Vehicles with longer 
ight en-
durances have led to a need for an autonomous soaring capability. This paper investigates
aircraft 
ight path guidance for search and localization of Regions of Interest, consisting
of atmospheric phenomena. The problem is posed as an o�ine agent learning problem,
of localizing atmospheric thermal locations and then guiding an Unmanned Air Vehicle to
soar from one to another. Q- learning is used as the learning algorithm. The computational
navigation solution used here is a basic grid algorithm that assigns thermal locations and
intensities, with the representation being speci�ed states, actions, goals, and rewards that
are used to accomplish the agent learning. The approach is validated with a simulation of a
powered Unmanned Air Vehicle. Results presented in the paper show that the autonomous
agent can learn how to navigate to a thermal quickly and e�ciently by controlling bank
angle, while simultaneously monitoring its inertial position and heading angle.

I. Introduction

In this paper, search and localization guidance will initially be applied to a powered UAV but will be
eventually used for autonomous soaring of UAVs, a task that can theoretically permit them to stay

airborne for many hours or even several days at a time. Thermal updrafts and their intensities can be
located and tracked to allow a glider UAV with a nominal endurance of two hours to soar through the air
for a maximum of 14 hours. Motion in a �xed-dimension spiral path can be used to explore the atmosphere
for thermals, while the aircraft simultaneously keeps track of the updraft’s target position.1 An aircraft
can easily make use of a thermal gust’s energy to permit higher wing loadings and smaller battery size,
which consequently facilitates larger payload and increased cruise speed. Search and localization guidance
using thermal updrafts can additionally be accomplished by centering a vehicle about a thermal, or using
inter-thermal gusts. Reward signals can be cast in terms of net lift, while the states are a thermal locator’s
estimate of thermal size and strength.2 An optimum trajectory generation algorithm that promotes greater
autonomy of an aircraft can improve 
ight range and endurance promoted by a thermal gust.3

Thermal updrafts’ locations and intensities can be mapped using on-board sensors. Speci�cally, infrared
cameras can be used to locate thermals, and real time trajectories for dynamic soaring applications can be
produced.4 Furthermore, memory components can map available energy based on previous sensor readings
and a history of learning.5 Other research presents maintaining a wind map based on data collected during

ight, as well as using currently available maps to generate energy-gain paths. A path generator can then
plan paths based on energy e�ciency and �eld exploration.6

Once thermal updrafts are located, the amount of vertical velocity and the drifting motion of the center
of the thermal can be considered.7 Thermal centering controllers can be used to represent the thermal’s
location and size. Maximum climb rate can be achieved at the center of the updraft; bank angle can be
changed based on the climb rate to move the aircraft’s circular path to coincide with the center of the
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updraft.8 A UAV can track a moving, non-prede�ned target, such as a thermal, by changing its turn rate
and speed. Tracking a moving thermal can be improved by examining wind disturbance rejection controls.9

This paper develops a learning agent for guiding a powered UAV from one thermal location to another
by considering the control of the UAV to be a Reinforcement Learning problem. This is done as a precursor
to autonomous soaring using unpowered UAVs. To initiate the Reinforcement Learning process, one simply
needs to de�ne a set of states and actions that are used in a speci�c type of Reinforcement Learning
algorithm, known as Q-learning. The Q-learning algorithm involves updating a Q-matrix that contains the
states, actions, and the value of a certain state-action pair. The states for this problem consist of bank angle,
heading angle, and position in the global coordinate system. Upon de�ning a goal, without supervision the
agent determines the thermals’ intensities and ranks them in order of highest intensity and smallest distance
from the aircraft. If there is only one thermal, that updraft becomes the goal. The aircraft then tracks the
thermal and navigates to it using the most e�cient route. Rewards are based on the global position of the
aircraft and thermals.

II. Q-Learning

Reinforcement Learning is a machine learning technique that uses reinforcing rewards from the environ-
ment to improve a policy that determines the best states of a system or the best actions to take given the
current state of the system. The most widely used Reinforcement Learning technique is known as Watkins’
Q-learning. Q-learning is a temporal-di�erence method that uses the current estimate of the action-value
function to determine how to maximize rewards from the environment in an o�-policy manner. It is called
o�-policy because the policy being used for decision making during an episode is not necessarily the same
policy that is being updated with rewards.

While the policy being updated is typically a greedy policy utilizing the action-value function, the policy
used during an episode for choosing actions can be exploratory. An agent is given a speci�c goal, and through
interaction with its environment it will either explore to discover better actions for the future, or exploit the
knowledge it has already acquired to guarantee an increase in positive reward.10 An �-greedy policy uses a
probability, �, to determine whether an action will be exploration or exploitation.

A learned action-value function, Q, is often referred to as the Q-matrix. The Q-matrix contains nearly all
possible combinations of state-action pairs once learning is complete. Therefore, the more states or the more
actions that are available to an agent, the bigger the Q-matrix becomes. In Q-learning, the �nal Q-matrix
will be optimal if every state-action pair is visited in�nitely many times. Since this is not possible, learning
is typically ended once the performance is deemed \good enough". As the Q-matrix becomes large, more
learning episodes are required for the agent to appropriately experience every state-action pair. Along with
speci�c state-action pairs are corresponding values in the Q-matrix based on the amount and magnitude of
rewards given. The values contribute to the policy function. A higher value listed in the Q-matrix for a
state-action pair signi�es a high bene�t of existing in that state and taking that action. However, in order
to update or add values to the Q-matrix, an agent needs to explore. If an agent explores, it acts without
knowing if it will receive a positive, negative, or zero reward. However, without exploring, an agent could
likely never learn the most e�cient route to a goal. A balance between exploring and exploiting knowledge
is required in the Reinforcement Learning process. It is for this reason that an �-greedy policy is used. The
speci�c update rule that is used for evolving the Q-matrix is shown in Equation 1.

Qk+1(s; a) Qk(s; a) + �[rk+1 + 
max
a0

Qk(s0; a0)�Qk(s; a)] (1)

In Equation 1, � is the learning rate, 
 is the discount factor, k indicates the current timestep, r is the
reward, s is the state, a is the action, s0 is the next state, and a0 is the next action. Both � and 
 are always
between 0 and 1. The learning rate establishes the importance of new information compared to previously
obtained information. If the value of � is 0, the agent only considers the old information and does not learn
anything new; if the value is 1, the agent simply considers the new information without regard to previously
gained information. Furthermore, 
 measures the importance of knowing the value of future rewards when
choosing an action. If 
 is near 0, then the agent will primarily consider immediate rewards, while a value
approximately equal to 1 will cause the agent to focus mainly on future rewards. This update rule is used
in Watkins’ Q-learning as shown in the full algorithm below.
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Watkins’ Q-learning Algorithm:10

InitializeQ(s; a) arbitrarily

Repeat (for each episode) :

Initialize s

Repeat (for each step of episode) :

Choose a from susing policy derived fromQ(e:g:; ��greedy)

Take action a; observe r; s0
Q(s; a)  Q(s; a) + �[r + 
maxa0Q(s0; a0)�Q(s; a)]

s  s0;
until s is terminal

III. Representations

For the search and localization guidance task involving the use of Regions of Interest consisting of thermal
updrafts, close consideration to states, actions, goals, rewards, and other parameters is important. This
particular experiment involves a mathematical simulation model of a UAV moving in two dimensions. States
are chosen to be bank angle, heading angle, and X and Y position in the global coordinate system. The
three actions that are available to the vehicle include a �ve degree increase or decrease in bank angle, or no
change in bank angle.

For this simulation, the starting state includes arbitrary values of bank angle, heading angle, and X and
Y global positions. The available actions are presented in increments of �ve degrees change in bank angle
to permit a continuous and smooth incremental learning process. Four states are included in the method
because this is a minimum amount of states needed for this agent to still adequately learn how to reach
a goal. If more states were used, there would consequently be more state-action pair combinations. This
would require more learning episodes to be completed to allow the agent more opportunities to sample all
possible state-action combinations. It is therefore important to keep the amount of states and actions to a
minimum.

The goals for this experiment are based on the thermal updrafts. Speci�cally, they are the magnitudes
of the velocity in the center of the thermal. The values of the velocity are assumed to be known prior
to the learning. An agent will notice if it has reached a goal if the X and Y coordinates of the state in
which it is currently located is within a certain pre-de�ned range of the X and Y global positions of the
center of the thermal. Rewards are subsequently based on the position of the aircraft. A reward of +20
is given if the agent reaches a goal, and a negative reward of the same magnitude is rendered if the agent
reaches the boundary of the grid. Any other action that does not immediately place the agent in the goal
range or a position on the boundary receives a reward of zero. Magnitudes of the rewards are somewhat
subjective. A reward with a very large magnitude can lead to values with large magnitudes in the Q-matrix.
However, these values will still principally be proportional to values in the Q-matrix calculated based on
rewards of smaller magnitudes. Rewards of less than unity would obviously cause values in the Q-matrix to
be unnecessarily minuscule. The magnitude of the rewards has no major e�ect on the learning process.

IV. Air Vehicle Modeling

The UAV model in the simulations is Pegasus. It has a wingspan of 144 in, and its fuselage is 75 in long
and about 15 in wide. Its average cruise speed is in the range of 30-50 m=s. A model of Pegasus is shown
in Figure 1. The equations of motion used in the simulation are for constant altitude turning 
ight.
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Figure 1: Photograph of Pegasus UAV

V. Agent Learning

Learning begins with a declaration of a state that the user chooses or is chosen randomly by the computer.
An action matrix is declared, and includes as inputs the values that can be added to the bank angle. Variables
representing the size of the action matrix, and the number of states are also created for easy reference
throughout the program. The Q-matrix is formed at this time as an empty matrix that can be expanded as
values are added to it. It has the same amount of columns as there are actions. In this instance, it begins as
three cells because there are three actions available for the agent. Inside each of these three cells is another
matrix with number of columns equal to the amount of states plus one additional column to contain the
values of the corresponding state-action pair. Because the agent is allowed to explore at the very beginning
of the learning process, it chooses any of the three actions available at random. A new function, nextstate is
called. Its inputs include the state in which the agent existed prior to its move, the action that it chose to
take, the action matrix, time step, cruise speed, gravitational constant, and the number of states.

Since the bank angle, heading angle, and X and Y position that comprise the new state will exist to
in�nite decimal places, their values are rounded to the closest four decimal places at the end of the nextstate
function.

Next, another function is called to determine the reward that the agent deserves after a certain move.
As previously mentioned, the agent will receive a positive reward for reaching the goal range, a negative
reward for reaching a boundary point, or a reward of zero for any other move that does not immediately
lead the agent to the goal. In order to prevent the agent from more easily maximizing its total reward by
changing its bank and heading angle as opposed to its position, the reward function only gives rewards based
on X and Y position. The Q-matrix is updated in a proceeding function. The reward value is placed in a
cell of the Q-matrix based on the action taken and the state that the agent was in before the action. The
agent’s current state now becomes the new starting state and a new cycle begins. When the agent reaches
the prede�ned goal, the episode ends and a new episode initiates.

At this point, an agent can either take actions randomly or greedily. A greedy action involves an agent
choosing an action that it already knows will lead to a high reward. Before any action is chosen, however,
the egreedy function is called. It takes as inputs the current state, the Q-matrix, the number of actions, and
the current value of �. The function outputs the action-value of the current state and selected action, as well
as the best action that the agent should take if it is going to exploit its knowledge. Otherwise, the egreedy
function will choose a random action for the agent to take.

As new states are being determined based on the chosen action, the heading angle, bank angle, and X
and Y position values will not be whole numbers. Instead of rounding the X and Y coordinates and heading
angle immediately in the learning process, these values remain continuous during the process of calculating
the X and Y coordinates and bank and heading angle for the next state. However, at the time that the values
in the Q-matrix need to be updated, the X and Y coordinates and heading angle are rounded according to
the discretization matrix. This allows exact states in the Q-matrix to be found and updated. Heading and
bank angle values are rounded to the closest number evenly divisible by �ve. On the other hand, X and
Y coordinate position values are rounded to numbers evenly divisible by 50. This rounding is important
because an agent is required to move from one grid point to another. The grid is separated in increments
of 50 m in both the abscissa and ordinate axis. At this point, the k-nearest neighbor algorithm is used to
transfer the agent to the closest point on the grid. The next state is then calculated using the actual values of
X and Y coordinates and heading angle. Importantly, the bank angle is kept as a value divisible by 5 during
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the learning process and the Q-matrix update process. Consequently, the agent behaves more realistically;
the X and Y coordinates and heading angle are rounded only in the process of updating the Q-matrix and
determining the next best action.

An important step in this process is saving the Q-matrix at various time increments. This enables
additional learning for the agent that can ensure a more precise Q-matrix. In this example, the Q-matrix
is saved every 200 episodes. Furthermore, the code allows the user to begin the Q-learning process and
terminate it whenever is necessary. Later, the user can choose to continue the learning where it previously
left o� and upload the already partially learned Q-matrix. Consequently, the previously learned Q-matrix
can be improved. As each new simulation is completed, �les named according to the current date are saved
with the values of all parameters and of course the Q-matrix. This organizes each process and expedites
retrieval of previous �les when needed.

The Monte Carlo method is �nally used to determine the amount of times that the agent reached the
goal. The Monte Carlo process completed here also noted the path of the agent, the action it took at each
state, and the amount of positive and negative rewards given. These values are stored in separate matrices.
Based on this data, one can determine the e�ectiveness of the learning process. Additionally, because the
Q-learning process ends as soon as the agent discovers the goal, it is necessary to end the cycle in the Monte
Carlo episodes once the agent found the goal. In reality, an aircraft does not stop moving once it reaches a
goal. However, to ensure the proper performance of the learning process, it is su�cient to code a break at
the time that the agent reaches the goal.

VI. Simulation

The objective of the simulation described in this paper is to show how Q-learning a�ects the way an agent
navigates through its environment. It is desirable that this learning method be precise and time e�cient.
The mathematical simulation of the UAV was executed using the commercial Matlab software program.

The simulation involves an agent beginning the Q-learning process along the boundary of the grid. Initial
X and Y boundary coordinate positions are random, but the large magnitude of episodes required promotes
initial experience at every boundary point. The agent starts at every grid point on the boundary including
the corners of the grid. Furthermore, initial heading and bank angle of the aircraft is properly de�ned for
this simulation. Speci�cally, if the agent begins at a boundary point that is along the X axis, its initial state
consists a 0 degree heading angle. If the agent begins along the Y axis, its initial heading angle is 90 degrees.
For every starting boundary condition, the agent begins with a 0 degree bank angle and a heading angle
that allows the agent to be pointing directly to the center of the grid. Consequently, an agent starting at
a corner grid point possesses a 45, -45, 135, or -135 degree heading angle depending on the location of the
corner. These values are determined based on the parameter constraints chosen by the user.

When the action taken to a�ect the bank angle is known, the subsequent state can be determined using
Equations 2, 3, 4, and 5 relating aircraft dynamics:

_ =
�g

u
(2)

� = (timestep) _ (3)

dx = (timestep)u cos(� ) (4)

dy = (timestep)u sin(� ); (5)

where  is the heading angle, � is the bank angle, g is the gravitational constant, and u is the vehicle’s
cruise speed. These equations are used because only constant cruise speed and constant radius turns are
considered. The agent is assumed to move at a constant cruise speed of 35 m=s, the time step is established
as 2 s, and the acceleration of gravity used is 9.8 m=s2.

Before the Q-learning process begins, a thermal location and intensity are randomly generated using a
script that involves running a check case of a NASA DFRC updraft model. It is displayed on a grid that is
a 1000 m square in the X and Y coordinate system. It should be noted that these dimensions can be altered
to allow for a greater learning space. However, for initial learning, it is signi�cant to begin the process on
a grid this size. The global position of the maximum intensity in the center of the updraft is known and
presented in the updraft model, and the velocity at this coordinate is stored as the goal for the learning
process. The user declares a range of velocities that acts as an invisible radius around the thermal. The
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agent will attempt to at least reach the thermal somewhere in its range to receive a positive reward. In
this case, the maximum of the range is 4 m=s and the minimum is slightly greater than 0 m=s. Speci�cally,
the minimum range value will always be 95 percent of the maximum intensity velocity. This ensures that
positive reward values are not given to the agent when it is in an area with a zero velocity thermal gust.

The program is initially set to run about 150,000 episodes. Within each episode, the agent is allowed
500 cycles, or opportunities, to take an action. The parameters are simply a basic starting point to observe
the learning process. Not all cycles will always be used within each episode however. If the agent reaches
a boundary point, for example, the cycle will end and a new episode will begin. Other constants are also
initialized before the learning occurs. The learning rate is set to 0.1 and the discount factor takes a value of
0.7. The value of �, the parameter utilized in the �-greedy method that promotes random action, is initially
unity. This means that the agent will begin the process solely exploring and choosing actions at random.
After every 5 percent of episodes are completed, � will decrease by 0.05 to ensure exploitation. However,
this value is not permitted to reach a number less than 0.05 because it is not necessary to completely ignore
the exploring process.

Certain constraints are required for several parameters. For the two-dimensional learning process de-
scribed in this paper, both X and Y coordinates are restricted between 0 and 1000 m to prevent the aircraft
to enter negative coordinate positions outside of the grid. The heading angle is permitted to exist between
-180 and 180 degrees, while bank angle is required to be between -45 and 45 degrees. These values can
potentially be altered, but they are reasonable and e�ective for this speci�c simulation.

VII. Numerical Examples

The �rst simulation completed 150,000 episodes. One thermal was placed at the coordinates (732.0689,
702.2730) which rounds to the grid point (750, 700). One trajectory chosen by the agent is shown below
in Figure 2. The agent began learning at the grid point (0,350) with a heading angle of 90 degrees and
a bank angle of 0 degrees. Figure 3 shows the agent’s time history. The top two graphs present time
versus coordinate position. The dotted red line represents the respective coordinate of the thermal and the
dotted black lines above and below represent the range of the thermal. The bottom two graphs present the
relationship between time and change in bank and heading angles for this speci�c trajectory.

Figure 2: Trajectory of the UAV Figure 3: Time History of the Simulation

The next simulation completed approximately 130,000 episodes. Three thermals were placed at the
coordinates (181.0450, 815.9635), (384.2516, 269.0323), and (595.0047, 193.0734) which round respectively
to the grid points (200, 800), (400, 250), and (600, 200). Each thermal had a di�erent range of intensity.
This simulation involved requiring the agent to travel to the closest most intense thermal. In the learning
process, reward-shaping was created based on updraft velocity. When the locations and intensities of the
three updrafts were known, the distance from the starting point of the agent to the center of each thermal was
calculated using a simple distance formula. For this simulation, velocity was given twice as much signi�cance
as distance. Therefore, if the agent traveled to the thermal of highest velocity, it would receive a reward
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twice as great as traveling to the thermal with the shortest distance from the agent’s initial state. In the
code, these metrics relating the rewards based on velocity and distance are represented as variables and can
be altered if necessary. A single trajectory of this simulation is shown in Figure 4. The agent began learning
at the grid point (1000, 950) with a heading angle of -90 degrees and a bank angle of 0 degrees. Through
learning, the agent appropriately chose to travel to the thermal at the location (181.0450,815.9635). Figure
5 shows the agent’s time history for this speci�c trajectory.

Figure 4: Trajectory of the UAV Figure 5: Time History of the Simulation

VIII. Conclusions and Future Work

Results presented in the paper demonstrate the potential for Reinforcement Learning, speci�cally Q-
learning, to guide an Unmanned Air System to a speci�ed Region of Interest from a speci�ed starting state.
There are several conclusions that can be drawn from these results:

1. The Q-learning technique is e�ective at navigating a UAV to �xed thermal locations. In the �rst
simulation, the agent reached the goal about 85 percent of the time; in the second simulation, the
agent reached the goal approximately 99 percent of the time.

2. As more learning episodes are completed, the navigation ability of the UAV improves. In the �rst
simulation, for example, 100,000 episodes were completed and a Monte Carlo test showed that the
agent reached the goal 81 percent of the time. After 50,000 more episodes were completed based on
learning previously obtained, the �rst simulation generated success 84 percent of the time. This relation
shows that the success for the �rst simulation increased about 3 percent after completing 50,000 more
learning episodes.

3. Adding additional thermals increases the computational complexity linearly. When comparing the two
simulations, the second simulation with three goals was approximately three times more computation-
ally expensive than the �rst simulation.

4. Adding additional thermals to the navigation area increases the probability that the UAV will �nd a
thermal updraft.

Future work will extend the approach to the autonomous soaring problem. This will be done by making
the learning more precise by re�ning the grid spacing using the Adaptive Action Grid Technique.11 Ad-
ditionally, an agent will learn how to maneuver in a three dimensional space. This will involve changes in
altitude and will require an update and expansion of the state and action matrices. Eventually, this machine
learning process will be e�cient and applicable to the autonomous soaring of a real sailplane.
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Tracking Control for a Non-Minimum Phase

Autonomous Helicopter

Anshu Siddarth� and John Valaseky

Texas A & M University, College Station, TX 77843-3141.

This paper develops a general control algorithm for precision output tracking of nonlin-
ear non-minimum phase dynamics of an autonomous three degree-of-freedom unmanned
helicopter. Previous approaches in 
ight control literature have shown approximate track-
ing by neglecting the coupling between the forces and moments generated by the control
e�ectors. However, it is shown that this coupling is signi�cant in the model under study
and cannot be neglected. In this paper the coupling is retained and natural time-scale de-
composition of the vehicle model is employed for accomplishing asymptotic tracking. The
design procedure determines the desired internal state trajectory and the control scheme
to stabilize the helicopter in hover. Stability is analyzed using Lyapunov methods and
results show that the approach is able to accomplish perfect tracking while stabilizing the
closed-loop system and keeping all closed-loop signals bounded.

Nomenclature

f ;g;h su�ciently smooth vector �elds
s intermediate variables of the system
u control input vector of the system
x slow variables of the system
z fast variables of the system
a1s longitudinal tilt of the tip path plane of the main rotor with respect to the shaft, rad
Fx body force in the forward direction, N
Fz body force in the vertical direction, N
g acceleration due to gravity, m/sec2

hM distance between c.g and main rotor positive in the upward direction, m
Iy moment of inertia about pitch-axis, kgm2

lM distance between the c.g and main rotor along forward direction, m
M pitching moment acting on the helicopter, Nm
m mass of the vehicle, kg
q body pitch-rate, rad/sec
QT tail rotor torque, Nm
t slow time-scale, seconds
TM thrust of the main rotor, N
TT thrust of the tail rotor, N
u body forward velocity, m/sec
w body vertical velocity, m/sec(positive down)
X;Y; Z North-East-Down helicopter frame
Xf ; Zf body forces positive along north and down respectively
Xapp; Zapp approximate body forces acting along north and down respectively
x inertial position, positive pointing north, m
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z inertial position, positive down, m

Subscripts

� trim quantity
0 reference quantity
a derivative with respect to angle a1s
d desired manifold
r reference trajectory

Symbols

�; �1; �; �1;K�;Kq feedback gains
�; �1 small quantity, singular perturbation parameter

 sum of longitudinal tilt and desired pitch-attitude manifold a1s + �d
� fast time-scale t�t0

� , seconds
� body pitch-attitude angle, rad
O() order symbol
�i i > 1, Lipschitz constants

Superscripts

� derivative with respect to intermediate time-scale t�t0
�1

^ dimensionless quantity
~ error between the system state and desired trajectory

I. Introduction

Several important 
ight control problems are characterized by unstable internal dynamics consequently
resulting in performance limitations.1 Some common studies include acceleration control of tail-controlled

missiles,2 control of planar Vertical Take-o� and Landing (VTOL) aircraft3 and Conventional Take-o� and
Landing (CTOL) aircraft.4 This paper examines the internal dynamics and synthesizes a stabilizing controller
for a three degree-of-freedom longitudinal dynamics of an autonomous helicopter.

Hover control of a helicopter is one of the most challenging non-minimum phase control problems. To
qualitatively analyze this behaviour consider the helicopter shown in Figure 1. The motion of the helicopter
is described in North-East-Down frame shown as (X;Y; Z) in the �gure. Assume that the helicopter model is
allowed to pitch only about the Y axis. TM and TT are the thrusts generated by the main and the tail rotor
respectively that keep the vehicle aloft. The angle a1s is the longitudinal tilt the tip path plane makes with
respect to the shaft of the main rotor. Side view of Figure 1 shows that non-zero tilt induces a component of
the main rotor thrust along the horizontal X axis and consequently the helicopter propels forward. Hence,
in order to remain in hover the main rotor thrust and the angle a1s need to be controlled. However, changing
this angle has another consequence. The forward component of the thrust that it creates induces a clockwise
pitching moment about the center of gravity of the vehicle causing the nose to drop. In order to remain
level, the angle a1s needs to be corrected. But doing so alters the forces acting on the helicopter and the
vehicle departs from hover. For the helicopter under study, it will be shown in Section II that desired TM
and a1s required to maintain hover lead to unstable oscillatory pitching motion.

Previous studies for hover control assume that the dynamical behaviour of a helicopter is similar to that
of a VTOL aircraft as both these vehicles have direct control over the aerodynamic lift. Hence several studies
employ the control developments proposed for VTOL aircraft.3 Formulation in [3] assumes that the force
contribution from the longitudinal tilt angle a1s is negligible. Such a simpli�cation removes the coupling
between the forces and the pitching moment and makes the resultant dynamical model; approximately
input-output linearizable. Reference [5] used feedback linearization for stabilizing the resulting approximate
model in order to guarantee bounded transient errors. More recently back-stepping has been used for
control of small autonomous helicopters.6,7, 8 Other control techniques based upon the approximate model
include dynamic-inversion9 and neural-network based adaptation.10 In order to mitigate the limitations
due to under-actuation some techniques take advantage of the inherent multiple time-scale behaviour of
helicopters. Reference [11] compared linear and nonlinear control designs for the approximate model using
the fast rotational dynamics as virtual control variables. A similar approach was proposed in [12] wherein
Lyapunov based methods were used to guarantee stability of a radio/control helicopter model using the
approximate dynamics.
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As a consequence of neglecting the coupling between the forces and the moments, application of afore-
mentioned methods is limited in operating regime and to reference commands that do not require to be
precisely followed. Exact output tracking was demonstrated by retaining the coupling terms in [13] through
stable-inversion of a linear helicopter model. This inversion computed the desired input-state trajectory that
along with feedforward and feedback control led to asymptotic output tracking. Approach in [13] emphasized
that internal-state feedback is necessary to stabilize a non-minimum phase system. However, the method
required an in�nite time preview and knowledge of the complete output trajectory beforehand.

From the above discussion it is understood that helicopter control design poses three major challenges.
First, the coupling between forces and moments generated due to rotor is signi�cant and must not be ignored
during control design.14 But retaining this coupling makes the system non-minimum phase and di�cult
to stabilize. Second, a non-minimum phase system cannot be asymptotically stabilized in real-time with
available control techniques and control design requires substantial o�ine processing. Third, current real-
time implementable approaches that are independent of the reference trajectory are limited in performance
and operating regime.

This paper presents a control design procedure that addresses the above technical challenges and validates
the general nonlinear control procedure developed by the authors in [15], [16] for a three-dimensional
longitudinal model of an autonomous helicopter. The paper makes three major contributions. First, the
control design takes advantage of the natural time-scale separation and unlike the techniques discussed in
[11], [12] the coupling between the forces and the moments of the helicopter model is retained. It is shown
that this coupling allows design of a sequential procedure for computing the desired internal states that ensure
asymptotic output tracking. Second, the full-state feedback controller designed is real-time implementable
and is independent of any particular operating condition and desired output trajectory. Third, the controller
designed is causal and does not require any knowledge or preview of the output trajectory beforehand.

The paper is organized as follows. Section II describes the helicopter model under study and examines
analytically the non-minimum phase properties of the vehicle. The nonlinear control design and stability
of the closed-loop system is analyzed in Section III. Simulation validation for hover control is discussed in
Section IV. Finally, conclusions are presented in Section V.

Figure 1. Coordinate frame and forces acting on a helicopter
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II. Model Description & Open-Loop Analysis

In this section the governing equations of the helicopter model are presented. Then, the exact input-
output linearization of the model is carried out and it is shown that the system has oscillatory internal
dynamics. The e�ect of neglecting the coupling between the forces and moments is also discussed. Finally,
a time-scale analysis of the model under study is carried out and essential concepts of singular perturbation
theory recalled.

A. Vehicle Description

The helicopter model is written with respect to earth-�xed inertial coordinates. The forces and the moments
act in the body frame (see Figure 1). The origin of the body �xed frame is the center of gravity of the platform
and it is assumed that this moves with the motion of the fuselage. Reference is made to the nomenclature
for the meaning of the symbols. The three degree-of-freedom equations of motion of a symmetric helicopter
model in hover (assuming the lateral/directional components are in equilibrium) are as follows"

_x

_z

#
=

"
cos � sin �

� sin � cos �

#"
u

w

#
(1a)"

m _u

m _w

#
=

"
�qw + Fx
qu+ Fz

#
+

"
cos � � sin �

sin � cos �

#"
0

mg

#
(1b)

_� = q (1c)

Iy _q = M (1d)

From a rigorous standpoint, the above set should be augmented with dynamic equations of longitudinal

apping. However, it is assumed that the time-constant for the 
apping of conventional rotor blades corre-
sponds to one-quarter of a rotor revolution[17][pp 558-559]. This justi�es the use of rigid-body equations for
describing the motion.

Table 1. Helicopter Model Parameters

Parameter Value

m 4:9kg

Iy 0:271256kgm2

hM 0:2943m

lM �0:015m

QT 0:0110Nm

Ma 25:23Nm=rad

The body forces (Fx; Fz) and pitching moment M are generated by the main rotor and controlled by
TM , main rotor thrust and a1s longitudinal tilt of the tip path plane of the main rotor with respect to the
shaft. The aerodynamic model given below is taken from [5].

Fx = �TM sin a1s (2a)

Fz = �TM cos a1s (2b)

M = Maa1s � FxhM + FzlM �QT (2c)

with the system parameters given in Table 1.

B. Exact & Approximate Input-Output Linearization

The non-minimum phase properties of the model under consideration are analyzed by studying the input-
output relationship. The desired outputs for the control design are the inertial coordinates of the vehicle,
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namely (x; z) pointing north and down respectively. Control inputs available are the main rotor thrust TM
and longitudinal tilt a1s. Taking second derivative of each output,"

�x

�z

#
=

1

m

"
cos � sin �

� sin � cos �

#"
Fx
Fz

#
+

"
0

g

#
(3)

it is found that the relative degree of each output is two. This implies that the rotational dynamics given in
(1c),(1d) constitute the internal dynamics of the system.

In order to analyze the internal stability of the system, the zero dynamics of the system needs to be
examined. Toward this end, the control vector (TM ; a1s) that constraints the outputs and its derivatives
on the origin is computed. From (3) and the aerodynamic relations given in (2) the following solution is
determined. "

TM
a1s

#
=

"
mg

��

#
(4)

Using the moment relation given in (2c) and the constrained control solution (4) the zero dynamics are
characterized by the following equations

_� = q (5a)

_q =
1

Iy
[�Ma� �mg(hM sin � � lM cos �)�QT ] (5b)

The stability of the above system is analyzed by linearizing about the trim values �� = 0:018rad and
q� = 0rad=sec. "

� _�

� _q

#
=

"
0 1

1
Iy

(�Ma �mghM cos �� +mglM sin ��) 0

#"
��

�q

#
(6)

The linearized eigenvalues are �12:0439j and no conclusions about the stability of the system can be drawn.
Rewrite the internal dynamics (5a) and (5b) as

�� =
1

Iy
(�Ma� �mg(hM sin � � lM cos �)�QT ) (7)

to notice that the pitch-attitude dynamics does not contain any damping terms. In order to analyze its
stability consider the quadratic positive-de�nite Lyapunov function V� = 1

2
Ma

Iy
�2 + 1

2q
2. The rate of change

of the Lyapunov function along the trajectories of (5) is

_V� =
Ma

Iy
� _� + q _q (8a)

= �mg
Iy
hMq sin � +

mg

Iy
lMq cos � � 1

Iy
QT q (8b)

= �
�
QT
Iy

+
mg

Iy
h(�)

�
q (8c)

Note the function h(�) = hM sin �� lM cos � is monotonically increasing on the set � 2 [��=2; �=2]. This ob-
servation along with the parameters given in Table 1 conclude that _V� < 0 on the set f� 2 [�0:0509; �=2]

T
q 2

[0;1)g
S
f� 2 [�pi=2;�0:0509]

T
q 2 (�1; 0]g. On this set (��; q�) is the only equilibrium point and hence

from the Poincar�e-Bendixson18 criterion it is concluded that a family of periodic orbits exist. This conclusion
is con�rmed in simulation and the results are presented in Figure 2. In fact the conclusions drawn from the
Poincar�e-Bendixson criterion are conservative since the simulation shows that a continuum of periodic orbits
exist for the complete state-space. Thus the control inputs that stabilize the inertial position of the helicopter
excite the periodic behaviour in pitch and exact input-output linearization is not a desirable control solution
for the longitudinal model under study.

Notice the non-minimum phase behaviour is due to the nonlinear coupling between forces and pitching
moment denoted by h(�) in (8). This coupling comes through longitudinal tilt solution determined in (4)

5 of 18

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 J

oh
n 

V
al

as
ek

 o
n 

Fe
br

ua
ry

 1
0,

 2
01

3 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

01
2-

44
53

 



(a) Time Response (b) Phase Portrait

Figure 2. Simulation illustrating the oscillatory response of the pitching motion

that produces the required translational forces. This dependence is explicitly seen by expanding the force
terms on the right-hand side of (3).

Xf = �TM sin(� + a1s)

Zf = �TM cos(� + a1s) +mg (9)

In the above equations Xf and Zf represent the forces in the inertial plane acting along the north and
down directions respectively. Approximate input-output linearization of the output dynamics is possible by
neglecting the dependence of the longitudinal tilt on the forces. The approximate forces thus obtained are

Xapp = �TM sin �

Zapp = �TM cos � +mg: (10)

The exact and approximate forces acting on the helicopter under study is shown in Figure 3 for hover
simulated in Section IV. Initially the helicopter is 
ying at an arbitrary 
ight condition and the forces are
non-zero. Notice after two seconds the vehicle enters steady state and the exact horizontal and vertical forces
become identically zero. However, the approximate horizontal force remains non-zero. The error between
the exact and the approximate forces is shown in Figure 4. The error is over 100% in the horizontal forces
while negligible in the vertical forces. This conclusion is consistent with the fact that rotor blade tilt induces
a horizontal component of force in the helicopter and is not negligible. As mentioned in the introduction
some studies use the approximate form given in (10) for control design. However, this large error limits
these methods to guarantee only local bounded tracking. In this paper, the coupling terms are retained and
asymptotic tracking is guaranteed.

C. Time-Scale Analysis of the Helicopter Model

In this section, an important observation regarding inherent time-scale characteristics of the model under
consideration is made. This is done by studying the rate of change of the non-dimensional system equations.
Toward this end, de�ne a set of reference parameters (t0; x0; z0; u0 = w0 = V0; �0; q0;m0; Fx0; Fz0;M0; g0; Iy0)
and denote the respective dimension-less quantities as

t̂ = t=t0 x̂ = x=x0 ẑ = z=z0 û = u=u0

ŵ = w=w0 �̂ = �=�0 q̂ = q=q0 (11)
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(a) Horizontal force (b) Vertical force

Figure 3. Exact and approximate forces acting on the helicopter model in hover

Figure 4. Error between exact and approximate force
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The original dimensional equations given in (1) are transformed into non-dimensional form using de�nitions
given in (11).

dx̂

dt̂
=

�
t0V0
x0

�
fû cos � + ŵ sin �g

dẑ

dt̂
=

�
t0V0
z0

�
f�û sin � + ŵ cos �g

dû

dt̂
= �

�
t0q0
m0

�
q̂ŵ

m̂
+

�
t0Fx0
m0V0

�
F̂x
m̂
�
�
t0g0
V0

�
ĝ sin � (12)

dŵ

dt̂
=

�
t0q0
m0

�
q̂û

m̂
+

�
t0Fz0
m0V0

�
F̂z
m̂

+

�
t0g0
V0

�
ĝ cos �

d�̂

dt̂
=

�
t0q0
�0

�
q̂

dq̂

dt̂
=

�
t0M0

q0Iy0

�
M̂

Îy

Without loss of generality assign
h
t0V0

x0

i
=
h
t0V0

z0

i
= 1 and

h
q0Iy0

t0M0

i
= � where � << 1. This leads to

dx̂

dt̂
= fû cos � + ŵ sin �g

dẑ

dt̂
= f�û sin � + ŵ cos �g

dû

dt̂
= �

�
�t20M0

m0Iy0

�
q̂ŵ

m̂
+

�
t0g0
V0

�(
F̂x
m̂
� ĝ sin �

)
(13)

dŵ

dt̂
=

�
�t20M0

m0Iy0

�
q̂û

m̂
+

�
t0g0
V0

�(
F̂z
m̂

+ ĝ cos �

)
d�̂

dt̂
=

�
�t20M0

Iy0�0

�
q̂

�
dq̂

dt̂
=
M̂

Îy

where Fx0 = Fz0 = m0g0 has been used. Notice that for any reasonable value of the mass of the vehicleh
�t20M0

m0Iy0

i
= �. Then m0 =

h
t20M0

Iy0

i
and

h
�t20M0

Iy0�0

i
=
h
�m0

�0

i
is an O(1=�1) quantity as the ratio of pitch-angle and

mass of the vehicle is very small and �1 > �. Finally, assuming that the vehicle is in hover
h
t0g0
V0

i
= 1 the

non-dimensional form is obtained

dx̂

dt̂
= fû cos � + ŵ sin �g

dẑ

dt̂
= f�û sin � + ŵ cos �g

dû

dt̂
= �� q̂ŵ

m̂
+

(
F̂x
m̂
� ĝ sin �

)
dŵ

dt̂
= �

q̂û

m̂
+

(
F̂z
m̂

+ ĝ cos �

)
(14)

�1
d�̂

dt̂
= q̂

�
dq̂

dt̂
=
M̂

Îy
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Notice the above equations indicate that the rotational dynamics evolves faster than the translational coun-
terpart. Such class of dynamical systems are called singularly perturbed and their analysis is carried out
using singular perturbation theory. The above equations can be cast in the following compact form

_x = f(x; s; z;u; �1; �) (15a)

�1 _s = h(x; s; z;u; �1; �) (15b)

� _z = g(x; s; z;u; �1; �) (15c)

where x = [x; z; u; w]T are the slow variables, s = [�]T is the intermediate variable, z = [q]T is the fast
variable and u = [TM ; a1s]

T is the control input to the system. The singular perturbation parameters �
and �1 characterize the di�erent time scales in the system and satisfy 0 < � < �1 << 1. For presenting the
concepts of singular perturbation theory, consider the two-time scale counterpart of (15)

_x = f(x; z;u; �) (16a)

� _z = g(x; z;u; �) (16b)

The system considered in (16) is labeled the Slow System and the independent variable t is called the
slow time-scale. This system is equivalently written as the Fast System

x0 = �f(x; z;u; �) (17a)

z0 = g(x; z;u; �) (17b)

where 0 represents derivative with respect to fast time-scale, � = t�t0
� and t0 is the initial time. Note that in

the slow system the slow states evolve at an ordinary rate whereas the fast states move at a rate of O
�
1
�

�
. In

the fast system the fast states evolve at an ordinary rate and the slow variables move slowly at a rate of O(�).
Geometric singular perturbation theory19 examines the behaviour of these singularly perturbed systems by
studying the geometric constructs of the reduced-order models which are obtained by substituting � = 0 in
(16) and (17). This results in reduced slow subsystem

_x = f(x; z;u; 0) (18a)

0 = g(x; z;u; 0) (18b)

and reduced fast subsystem

x0 = 0 (19a)

z0 = g(x; z;u; 0) (19b)

The dynamics of the resulting reduced slow subsystem are constrained to lie upon an six dimensional smooth
manifold de�ned by the set of points (x;u) 2 R4 � R2 that satisfy the algebraic equations (18b):

M0 : zd = zd(x;u) (20)

This set of points is identically the �xed points of the reduced fast subsystem (19b). Furthermore, the 
ow
on this manifold is described by the di�erential equations

_x = f(x; zd(x;u);u) (21)

if the reduced fast subsystem is stable about the manifold M0. If the dynamics of (21) are locally asymp-
totically stable about the manifold, then it can be concluded that the complete system (16) is also locally
asymptotically stable.20

III. Control Formulation and Stability Analysis

Singular perturbation theory concludes that the stability properties of the vehicle depend upon the
identi�cation of the manifoldM0 for the internal states (�; q). In general time-scale control approaches[21][pp
315-320] solve the nonlinear set of algebraic equations (18b) for the manifold �rst and then design a stabilizing
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controller for the reduced system given in (21). Note however that for the helicopter model the moment
equation (1d) is nonlinear and may possess multiple roots for the pitch-attitude angle. For a problem wherein
the operating region is known apriori then one of these roots may be chosen. But this process soon becomes
cumbersome and requires substantial vehicle knowledge. Additionally, this procedure restricts the results to
local operating regimes. The authors have studied this problem for general singularly perturbed systems in
[15,22]. In this paper an alternate approach is proposed that ensures uniqueness and the global nature of the
results by considering the fast states as additional control variables. This allows computation of an unique
reference for the internal states and maintains complete system stability. These ideas are mathematically
formulated and analyzed in this section.

A. Control Synthesis

Using the procedure described in Section II.C, the reduced slow subsystem for (1) is obtained as"
_x

_z

#
=

"
cos �d sin �d
� sin �d cos �d

#"
u

w

#
(22a)"

m _u

m _w

#
=

"
�qdw + Fx
qdu+ Fz

#
+

"
cos �d � sin �d
sin �d cos �d

#"
0

mg

#
(22b)

where �d and qd are manifolds to be determined. Take additional derivatives of the position coordinates to
rewrite (22) as "

�x

�z

#
=

1

m

"
cos �d sin �d

� sin �d cos �d

#"
Fx

Fz

#
+

"
0

g

#
(23)

Equation (23) shows that the pitch-attitude angle along with the control variables e�ect the position dynam-
ics. Thus, employ the pitch-attitude angle and the main rotor thrust TM to accomplish the control objective.
Toward this end, rewrite (23) as

m�x = �TM sin(a1s(�d; qd) + �d) (24a)

m�z = �TM cos(a1s(�d; qd) + �d) +mg (24b)

Note in forming the reduced slow subsystem the fast variables have been assumed to be on the desired
manifolds (�d; qd). Hence, the longitudinal tilt used in the design of slow control variables is a function of
these desired manifolds. Further, de�ne the tracking errors ~x := x � xr and ~z := z � zr. Let the desired
dynamics be speci�ed as

m�x = m(�xr � � _~x� �~x) (25a)

m�z = m(�zr � �1
_~z � �1~z) (25b)

Combining (24) and (25), the following relations are obtained

TM = m

q
(�xr � � _~x� �~x)2 + (�zr � �1

_~z � �1~z � g)2 (26)

�d = arctan
(�xr � � _~x� �~x)

(�zr � �1
_~z � �1~z � g)

� a1s(�d; qd) (27)

Remark 1. The choice of using main rotor thrust, TM over the longitudinal tilt for stabilization of the
reduced slow subsystem was made considering their actuation time constants. It is well understood that
thrust generation takes longer than rotation of an actuator surface or in this case the rotor blade. While
previous work of authors in References [22], [23] assumed in�nitely fast actuators, this paper helps in assigning
control tasks according to actuator bandwidth.

Equations (26) and (27) complete the design for the slow variables of the system. Notice however that
the manifold qd is unknown at this point. Toward this end, formulate the intermediate subsystem as

10 of 18

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 J

oh
n 

V
al

as
ek

 o
n 

Fe
br

ua
ry

 1
0,

 2
01

3 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

01
2-

44
53

 



Reduced Intermediate Subsystem

�x = 0 (28a)

�� = qd (28b)

M = 0 (28c)

where � is derivative with respect to t�t0
�1

. The manifold qd must be designed to ensure the pitch-attitude
follows �d. This can be satis�ed by the following relation obtained using dynamic inversion

qd = �K�(� � �d) (29)

where K� is the feedback gain.
The desired manifolds given in (27) and (29) depend on the longitudinal tilt a1s which is unknown. From

the discussion detailed in Section II.C, it is known (29) is a �xed point of the Reduced Fast Subsystem

x0 = 0 (30a)

�0 = 0 (30b)

q0 =
M

Iy
(30c)

Thus, it is required that the following relation holds for all time

M = �IyKq(q � qd) (31)

where Kq is the feedback gain. Rearrange (31) using the de�nitions in (2c),(27) and(29) to get

TMhM sin(a1s)� TM lM cos(a1s) +Maa1s = QT � IyKq(q � qd) (32)

The nonlinear equation in (32) is solved for the control a1s using the small-angle assumption

a1s =

�
QT + TM lM
TMhM +Ma

�
�
�

IyKq

TMhM +Ma

�
~q (33)

where ~q := q � qd. For completeness substitute (33) back in (27) and (29) to compute the desired internal
states

�d = arctan
(�xr � � _~x� �~x)

(�zr � � _~z � �1~z � g)
�
�
QT + TM lM
TMhM +Ma

�
(34a)

qd = �K�� +K� arctan
(�xr � � _~x� �~x)

(�zr � � _~z � �1~z � g)
�K�

�
QT + TM lM
TMhM +Ma

�
(34b)

This completes the control design procedure.

B. Stability Analysis

The following theorem summarizes the main result of the paper.

Theorem 1. Suppose the controls TM and a1s of the system (1) are designed according to the feedback
relations given in (26) and (33). Then for initial conditions in the operating region j~�j < 15deg, ja1sj � 25deg
and 0 < TM � 69:48 the control uniformly asymptotically stabilizes the non-minimum phase helicopter model
(1) and equivalently drives the states x(t) ! xr(t) and z(t) ! zr(t) keeping all other states and control
inputs bounded.
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Proof. The closed-loop system system in error coordinates is given as

_~x = ~x1

_~x1 =
1

m
Fx cos(~� + �d) +

1

m
Fz sin(~� + �d)� _x1r

_~z = ~z1

_~z1 = � 1

m
Fx sin(~� + �d) +

1

m
Fz cos(~� + �d) + g � _z1r (35)

_~� = qd + ~q � _�d

_~q =
Md + (M �Md)

Iy
� _qd

where ~� := � � �d, ~q := q � qd and Md = Maa1s + TMhMa1s � TM lM � QT is the moment obtained after
making the small-angle approximation in arriving at (33). The closed-loop system is equivalently written as

_~x = ~x1

_~x1 =
1

m
Fx cos �d +

1

m
Fz sin �d � _x1r

+
1

m
Fx

h
cos(~� + �d)� cos �d

i
+

1

m
Fz

h
sin(~� + �d)� cos �d

i
_~z = ~z1

_~z1 = � 1

m
Fx sin �d +

1

m
Fz cos �d + g � _z1r (36)

� 1

m
Fx

h
sin(~� + �d)� sin �d

i
+

1

m
Fz

h
cos(~� + �d)� cos �d

i
_~� = qd + ~q � _�d

_~q =
Md + (M �Md)

Iy
� _qd

Using the relations in (25), (29) and (31) rearrange (36) to get

_~x = ~x1

_~x1 = ��~x1 � �~x+
1

m
cos �d[Fx � Fx(a1s(�d; qd))] +

1

m
sin �d[Fz � Fz(a1s(�d; qd))]

+
1

m
Fx

h
cos(~� + �d)� cos �d

i
+

1

m
Fz

h
sin(~� + �d)� cos �d

i
_~z = ~z1

_~z1 = ��1~z1 � �1~z � 1

m
sin �d[Fx � Fx(a1s(�d; qd))] +

1

m
cos �d[Fz � Fz(a1s(�d; qd))] (37)

� 1

m
Fx

h
sin(~� + �d)� sin �d

i
+

1

m
Fz

h
cos(~� + �d)� cos �d

i
_~� = �K�

~� + ~q � _�d

_~q = �Kq~q +
M �Md

Iy
� _qd

Closed-loop system stability of the system states is analyzed using the Lyapunov function approach.
Consider a positive-de�nite and decrescent Lyapunov function candidate

V (~x; ~x1; ~z; ~z1; ~�; ~q) =
1

2

h
�~x2 + ~x21 + �1~z2 + ~z21 + ~�2 + ~q2

i
(38)
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for the complete closed-loop system. The derivative of V along the trajectories of (37) is given by

_V =� �~x21 +
1

m
cos �d[Fx � Fx(a1s(�d; qd))]~x1 +

1

m
sin �d[Fz � Fz(a1s(�d; qd))]~x1

+
1

m
Fx

h
cos(~� + �d)� cos �d

i
~x1 +

1

m
Fz

h
sin(~� + �d)� cos �d

i
~x1 (39)

� �1~z21 �
1

m
sin �d[Fx � Fx(a1s(�d; qd))]~z1 +

1

m
cos �d[Fz � Fz(a1s(�d; qd))]~z1

� 1

m
Fx

h
sin(~� + �d)� sin �d

i
~z1 +

1

m
Fz

h
cos(~� + �d)� cos �d

i
~z1

�K�
~�2 + ~�~q � ~� _�d �Kq~q2 +

M �Md

Iy
~q � ~q _qd

Using the Lipschitz behaviour of the vector �elds on the domain de�ned in Theorem 1 the following conditions
hold

j sin(~� + �d)� sin �dj � 0:35j~�j (40)

jFx � Fx(a1s(�d; qd))j � jTM j
���� IyKq

TMhM +Ma

���� j~qj (41)

j cos(~� + �d)� cos �dj � 0 (42)

jFz � Fz(a1s(�d; qd))j � 0 (43)

Note conditions given in (42) and (43) give bounds on the magnitude of the error between the exact and
approximate vertical force. This bound remains close to zero for large changes in ~� and this condition was
numerically veri�ed for the model under study in Section II. Resulting derivative of the Lyapunov function
given in (39) using conditions (40) through (43) becomes

_V �� �~x21 +
1

m
jTM j

���� IyKq

TMhM +Ma

���� j~x1jj~qj+ 0:35
1

m
jTM jj~x1jj~�j

� �1~z21 + 0:35jTM j
���� IyKq

TMhM +Ma

���� j~z1jj~qj+ 0:35
1

m
jTM jja1sjj~z1jj~�j (44)

�K�
~�2 + ~�~q � ~� _�d �Kq~q2 +

M �Md

Iy
~q � ~q _qd:

The time derivative of the manifolds �d and qd is determined next. Toward this end, rearrange (27) as

tan 
 =
Xdes(t)

Zdes(t)
(45)

where 
 = �d + a1s(�d; qd), Xdes = �xr � �~x1 � �~x and Zdes = �zr � �1~z1 � �~z � g have been de�ned for
convenience. Di�erentiate (45) to get

_
 =
cos 


TM=m
_Xdes �

sin 


TM=m
_Zdes (46)

using the fact TM=m =
p

(X2
des + Z2

des) and de�nition of the angle 
. The time rate of change of the
longitudinal tilt a1s(�d; qd) is determined by di�erentiating (33) along the inertial position trajectories.

_a1s =
d

dt

�
TM lM +QT
TMhM +Ma

�
=

�
lMMa � hMQT
(TMhM +Ma)2

�
_TM (47)

where _TM = m sin 
 _Xdes+m cos 
 _Zdes. Combine (46) and (47), to determine the derivative of the manifolds

_�d = m

�
cos 


TM
� aT sin 


�
_Xdes +m

�
� sin 


TM
� aT cos 


�
_Zdes (48)

_qd = �K�
_~�
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where aT = LMMa�hMQT

(TMhM+Ma)2
and the various derivatives are a function of closed-loop system dynamics. Using

properties (40) through (43) and (37)

j _Xdesj � ��j~xj+ (�2 � �)j~x1j+
1

m
jTM j

���� �IyKq

TMhM +Ma

���� j~qj+ 0:35
�

m
jTM jj~�j (49)

j _Zdesj � �1�1j~zj+ (�2
1 � �1)j~z1j+

0:35

m
jTM j

���� �1IyKq

TMhM +Ma

���� j~qj+ 0:35
�1

m
jTM jj~�j:

Combine (48), (49) and (44) to get

_V �� �~x21 +
1

m
jTM j

���� IyKq

TMhM +Ma

���� j~x1jj~qj+ 0:35
1

m
jTM jj~x1jj~�j

� �1~z21 + 0:35jTM j
���� IyKq

TMhM +Ma

���� j~z1jj~qj+ 0:35
1

m
jTM jja1sjj~z1jj~�j (50)

�K�
~�2 + j~�jj~qj+ (j~�j+K�j~qj)j _�dj �Kq~q2 + (K� �K2

� )j~�jj~qj

By de�nition aT is a small quantity and jcos
j = j sin 
j � 1, de�ne � = m
jTM j which is again a small quantity.

Substitute for time rate of change of the manifold �d into (50) to get

_V �� �~x21 +
1

m
jTM j

���� IyKq

TMhM +Ma

���� j~x1jj~qj+ 0:35
1

m
jTM jj~x1jj~�j

� �1~z21 + 0:35jTM j
���� IyKq

TMhM +Ma

���� j~z1jj~qj+ 0:35
1

m
jTM jja1sjj~z1jj~�j (51)

�K�
~�2 + j~�jj~qj �Kq~q2 + (K� �K2

� )j~�jj~qj

+ �(j~�j+K�j~qj)

"
��j~xj+ (�2 � �)j~x1j+ �1�1j~zj+ (�2

1 � �1)j~z1j

� 1

m
jTM j

���� IyKq

TMhM +Ma

���� (�+ 0:35�1)j~qj � 0:35(�+ �1)
1

m
jTM jj~�j

#
Rearrange (51) to get

_V � �	TK	 (52)

where 	 = [~x; ~x1; ~z; ~z1; ~�; ~q]T and matrix K is given below

K =

2666666664

0 0 0 0 �1 �2

0 �� 0 0 �3 �4

0 0 0 0 �5 �6

0 0 0 ��1 �7 �8

�1 �3 �5 �7 �K� � 0:35(�+ �1) jTM j
m �9

�2 �4 �6 �8 �9 �Kq � jTM j
m �K�(�+ 0:35�1)

��� IyKq

TMhM+Ma

���

3777777775
(53)

where �1 = ���
2 , �2 = K��1, �3 = 0:35jTM j

2m + 0:5�(�2 � �), �4 = 1
2m jTM j

��� IyKq

TMhM+Ma

���+ 0:5�K�(�
2 � �),

�5 = ��1�1

2 , �6 = K��5, �7 = 0:1527jTM j
2m + 0:5�(�2

1 � �1), �8 = 0:35
2m jTM j

��� IyKq

TMhM+Ma

���+ 0:5�K�(�
2
1 � �1),

�9 = 0:5(K� �K2
� + 1)� � jTM j

2m

��� IyKq

TMhM+Ma

��� (� + 0:35�1)� 0:35�K�(� + �1) 1
2m jTM j are constants function

of the feedback gains. Hence, the matrix K is negative semi-de�nite by appropriate choice of the feedback
gains. Note the semi-de�niteness property is due to the small values of constants �1; �2; �5 and �6. Since
_V � 0 and V > 0, all terms in V 2 L1 that is f~x; ~x1; ~z; ~z1; ~�; ~qg 2 L1. Furthermore, since the reference
trajectory states are bounded, all terms in expressions for TM and a1s in (26) and (33) respectively are
bounded. Hence the right hand side of the closed-loop system in (37) is bounded and thus _	 2 L1. Thus
using Barbalat’s lemma24 it is concluded that signals of vector 	! 0 as t!1 and the result in Theorem 1
follows. This completes the stability analysis.
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IV. Simulation Study: Hover Control

The purpose of this section is to illustrate the preceding theoretical developments and demonstrate the
controller performance for an autonomous helicopter model. The reference trajectory and all its derivatives
are set to zero to illustrate the stabilizing performance of the controller for the open-loop non-minimum
phase system (discussed in Section II.B). The feedback gains were chosen to preserve the time-scale nature
of the helicopter model � = �1 = 2,� = �1 = 1, K� = 3 and Kq = 10. The various constants for matrix
K are �1 = �5 = 0:082, �2 = �6 = 0:245, �3 = 2:26, �4 = 0:755, �7 = 1:06, �8 = 0:5 and �9 = �4:68.
The corresponding eigenvalues of the matrix K are �1;2 = 0:00, �3 = �1:65, �4 = �1:99, �5 = �8:62 and
�6 = �22:39 and Theorem 1 guarantees asymptotic stability. The initial conditions chosen were x(0) = �2m,
z(0) = 2m, u(0) = w(0) = 0m=sec, �(0) = 15deg and q(0) = 30deg=sec.

Figure 5 and Figure 6 present the closed-loop response of the helicopter. The controller demonstrated
asymptotic tracking irrespective of the desired reference trajectory in the domain (x; z; u; w; �; q) 2 [�50; 50]m�
[�15; 50]m� [�30; 20]m=sec� [�5; 20]m=sec� (��=2; �=2)rad� [��; �]rad=sec. Notice that the large initial
condition errors die out within the �rst 6seconds. The forward velocity is increased in order to correct
the error in forward position. Close output tracking is a result of precision desired manifold following by
the internal states. The pitch-attitude angle settles down to the trim value of 0:018rad(1:03deg) that is
automatically computed by the manifold (34a). The time-scale behaviour of the system states is apparent
in the time histories. Notice that the pitch-rate starts to follow the desired manifold within 2seconds fol-
lowed by the response of the pitch-attitude angle closely tracking the desired manifold within 4seconds. The
transient errors of the slowest and also the outputs of the problem under study die out in 6seconds. The
control inputs are shown in Figure 7. The control inputs settle down to the trim values TM = 48:02N and
a1s = �0:018rad(�1:03deg) once the system errors have stabilized about the origin. The two-dimensional
trajectory of the helicopter is shown in Figure 8. Initially the helicopter corrects the large error in the pitch-
attitude angle. This is done by reducing the requirements on pitch-rate and in turn the longitudinal tilt.
After this correction, the vehicle starts climbing to the desired hover position. From then on, the helicopter
remains in hover.

(a) Position Time Histories (b) Velocity Time Histories

Figure 5. Closed-Loop Output Response of the Helicopter

V. Conclusions

A control formulation for output tracking of an autonomous nonlinear non-minimum phase helicopter
was developed. The desired internal-state reference and feedback control to stabilize the unstable inter-
nal dynamics were computed using the inherent time-scales of the system. Controller performance was
demonstrated through numerical simulation for the helicopter in hover.

Based on the results presented in the paper, the following conclusions are drawn. The �nal output tracking
error for the positions remained within j0:0010j. This perfect output tracking was a result of perfect internal
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http://arc.aiaa.org/action/showImage?doi=10.2514/6.2012-4453&iName=master.img-006.jpg&w=228&h=178
http://arc.aiaa.org/action/showImage?doi=10.2514/6.2012-4453&iName=master.img-007.jpg&w=227&h=178


(a) Pitch-Attitude Angle Time History (b) Pitch-Rate Time History

Figure 6. Closed-Loop Internal Dynamics of the Helicopter

(a) Main Rotor Thrust Time History (b) Longitudinal Tilt Angle Time History

Figure 7. Control Inputs to the Helicopter
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Figure 8. Closed-loop Trajectory of the Helicopter

state tracking that was achieved by the nonlinear feedback law. The results of Theorem 1 are restricted
in operating regime due to the small angle approximation made in (33). Unlike previous approaches this
limitation is not due to simpli�cations made to the dynamical model and can be improved by use of non-
a�ne control methods. In fact the conclusions regarding operating region of the controller from Theorem 1
are conservative. As shown in the simulation section, the controller demonstrates stable performance for a
large operating region. Additionally, the controller is causal and does not require any prior information or
preview of the desired reference.
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Adaptive Dynamic Inversion Control of Linear Plants
With Control Position Constraints
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Abstract—For a class of linear time-invariant systems with
uncertain parameters, this paper proposes and develops a notion
of the Domain of Control Authority to achieve stable adaptation
in the presence of control position limits. The Domain of Control
Authority defines the subspace in which the plant state can be
driven in any arbitrary direction by bounded control. No re-
strictions are placed on the stability of the open-loop system. To
address the problem of containing the state within the Domain of
Control Authority, a switching control strategy with a direction
consistent control constraint mechanism is developed for an
unstable plant. This restricts the resultant direction of the rate of
change of the state to be the same as the direction of the desired
reference state. Stability proofs are provided, and controller
performance is demonstrated with numerical examples of a two
degree-of-freedom dynamic model and an F-16XL aircraft model.

Index Terms—Adaptive control, control saturation constraints,
direction consistent control constraint mechanism, dynamic inver-
sion, linear systems.

I. INTRODUCTION

A CTUATOR saturation is a major consideration for all
practical control systems, and many strategies to over-

come its effects have been studied. For example, Hu and Lin
have done seminal work in analyzing the controllability and sta-
bilization of unstable, linear time-invariant systems with input
saturation [1]–[3]. They explicitly identified the null control-
lable region of the state-space for linear systems with saturated
linear feedback. However, their work does not address systems
with uncertain parameters. Traditionally, adaptive control
assumes full control authority and lacks a theoretical basis for
control in the presence of actuator saturation limits. Saturation
is a problem for adaptive systems since continued adaptation in
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the presence of saturation may lead to instability. In the past,
much effort has been expended for adaptive control design
in the presence of input saturation constraints [4]. Karason
and Annaswamy presented the concept of modifying the error
proportional to the control deficiency [5]. They laid out a
rigorous mathematical proof of the boundedness of signals
for a model reference framework and identified a set of initial
conditions of the plant and the controller for which a stable
controller could be realized. Akella, Junkins, and Robinett de-
vised a methodology to impose actuator saturation constraints
on the adaptive control law analogous to Pontryagin’s principle
for optimal control in order to make the error energy rate as
negative as possible with admissible controls [6]. They iden-
tified a boundary layer term, which is the difference between
the calculated control and the applied control, and imposed
conditions on the adaptive update laws to bound the boundary
layer thickness. More recently, Johnson and Calise applied
the concept of “pseudo-control hedging” to adaptive control,
which is a fixed gain adjustment to the reference model that is
proportional to the control deficiency [7]. Lavretsky and Hov-
akimyan have proposed a new design approach called “positive

-modification” that guarantees that the control never incurs
saturation [8]. In [9] the “ adaptive controller” is extended
to include control constraints for linear plants with known
control influence. Hong and Yao [10] synthesized a robust con-
troller specifically for precision control of linear motor drive
systems using backstepping, while addressing the different
physical uncertainties. Kahveci and Ioannou [11] extended
the anti-windup compensator design for stable systems with
actuator position and rate limits, and a similar problem was
addressed in Leonessa et al. [12] by modifying the reference to
maintain system stability and control within bounds.

Dynamic Inversion is an approach which has been widely
used in recent years for the control of nonlinear systems, es-
pecially in the field of aerospace engineering [13]–[16]. A fun-
damental assumption in this approach is that the inherent plant
dynamics are modeled accurately, and therefore can be canceled
exactly by the feedback functions. In practice, this assumption
is not realistic; the dynamic inversion controller requires some
level of robustness to suppress undesired behavior due to plant
uncertainties. To overcome this robustness problem, an adap-
tive model of the plant dynamics sometimes is used to facilitate
the inversion, which is then updated in real-time based on the
response of the system. This gives rise to an entire class of con-
trollers which may be referred to as adaptive dynamic inversion
controllers [17].

This paper investigates problems introduced in adaptive dy-
namic inversion control schemes due to bounds on the control

1063-6536/$26.00 © 2011 IEEE
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and develops a three component control scheme to overcome
them. The contributions of this paper are the identification of
the domain of attraction considering the control position limit
and the development of a switching control strategy to contain
the plant within this domain. Another novel idea is that of a di-
rection consistent control constraint mechanism in the presence
of control saturation. This is achieved in part by preserving the
control input direction. While the idea of preserving the control
input direction using control allocation is not entirely new [18],
it is restricted to preserving the direction of the control vector
only. This paper formalizes and extends a concept by Tandale
and Valasek in [19] that not only preserves the direction of the
control, but also attempts to preserve the direction of the re-
sultant rate of change of the state to be the same as that of the
desired rate. Additionally, a modified adaptation mechanism is
implemented to prevent incorrect adaptation arising from tra-
jectory errors due to control saturation. Here the mathematical
development of the control scheme and the adaptation mecha-
nisms is presented, along with proofs for the convergence of the
tracking error and the stability of the overall control scheme.

This paper is organized as follows. Section II describes the
class of plants that are considered. Section III defines the con-
cept of the Domain of Control Authority (DCA) for plants with
bounded control. The switching control strategy and the direc-
tion consistent control constraint mechanism are explained in
Section IV. The development of the control law and the modi-
fied update law to prevent the incorrect update of parameters due
to saturation is presented in Section VI. Section VII presents
simulation results for a two-dimensional planar plant and an
F-16XL aircraft model. Finally, conclusions are presented in
Section VIII.

II. SYSTEM DYNAMICS

Consider linear time-invariant continuous dynamic systems
of the form

(1)

where is the state vector, is the ma-
trix of unknown plant parameters, is the vector of
applied controls driving the system, and is the un-
known control effectiveness matrix. For this work, the number
of controls equals the number of states so that the control effec-
tiveness matrix is square and non-singular to permit dynamic
inversion. Each control is symmetrically bounded between
the values . The plant matrices and are not
known exactly. The nominal values of the plant matrices and

are specified, with a percentage uncertainty for each element
of the plant matrix given as

(2)

(3)

where and .
The reference trajectory is specified in terms of , which is

chosen such that it is uniformly continuous, bounded, and dif-
ferentiable with first order continuous, bounded derivatives .
The control objective is to track any feasible reference trajec-
tory that can be followed within the control limits. For trajec-

tories that are not feasible with respect to the control limits, the
objective is to track the reference trajectory as closely as pos-
sible, while maintaining stability and ensuring that all signals re-
main bounded. Further, it is assumed that the entire state vector
is measurable and that no observer is necessary to estimate the
states.

III. DOMAIN OF CONTROL AUTHORITY (DCA)

One of the most fundamental issues associated with the con-
trol of a system is controllability. While unconstrained control-
lability [20] has been well understood for several decades, the
understanding of constrained controllability is incomplete [4].
The following discussion considers how bounds on controls af-
fect controllability. While a linear scalar plant is used to eluci-
date the concepts, the discussion extends to multiple-input-mul-
tiple-output (MIMO) plants in which the number of controls
equals the number of states. Consider

(4)

where , and , are unknown scalars with
and such that the inherent dynamics are

stable. The applied control is bounded symmetrically as
, where is a known control limit.

There are two types of constraints that may be imposed on
the plant state-space because of the bounds on the control.

1) Control Authority Constraint: If the plant is open-loop
stable, the only diverging tendency that can propagate the
system away from the equilibrium point is provided by
the control. This diverging tendency can be infinite for a
system which is controllable and has unbounded control. If
the control is bounded, there will be a boundary in the state-
space beyond which the converging tendency of the plant
is greater than the diverging tendency due to the bounded
control.

2) Tracking Constraint: Consider the plant model from (4).
Since the control is bounded within , the rate
of change of the state at any point of time is bounded by

if
if

(5)

where is the plant state at that instant of time. Any ref-
erence trajectory that the plant can successfully track must
satisfy the rate bounds listed in (5).

The controllability test for linear systems ensures that the
control can affect every state, but does not consider the effect
of bounds on the control. To have complete authority over the
plant, the bounded control must be able to overcome the inherent
plant dynamics and prescribe the desired dynamics.

A. Case 1: Stable Plant

Considering the plant model of (4), the inherent plant dy-
namics are given by the term . The control authority is lim-
ited by the bounds on the control to values of , so there
exists boundaries in the plant state-space beyond which the in-
herent plant dynamics will dominate the control effort, and the
plant will not be controllable. These boundaries will be reached
when an extremal control is necessary to cancel the inherent
plant dynamics. In the interior region the control has the ability
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Fig. 1. Phase plot showing the domain for a traceable trajectory for an open-
loop stable plant and for a neutrally stable plant. (a) Phase plot for an open-loop
stable plant. (b) Phase plot for a neutrally stable plant.

to nullify the inherent plant dynamics without reaching its ex-
tremal values. This interior region is called the DCA. Referring
to Fig. 1(a), the boundaries in terms of the plant state are

(6)

(7)

(8)

Equation (8) gives the vertical bound, and (5) gives the bounds
on the rate of change of the state. Outside of the DCA boundary

and the plant moves toward the origin. If the initial state
is within the DCA, then the control cannot drive the state out-
side the DCA. If the initial state is outside the DCA, the in-
herent plant dynamics will drive the state into the DCA. Thus
the bounded control does not lead to instability for an open-loop
stable plant, but only to a limited operational envelope for the
plant.

B. Case 2: Neutrally Stable Plant

The derivative of the state is affected only by the control

(9)

The plant state is not bounded and can take any value on
, but the rate of change of the state is limited due to

the control bound. The rate limits for a traceable trajectory [see
Fig. 1(b)] are

(10)

C. Case 3: Unstable Plant:

For current state the unforced response drives the
plant away from the state . If the plant reaches a state
where the destabilizing tendency becomes greater than the max-
imum restoring contribution that the control can provide, then
the state continues to diverge, such that if

. These points determine the boundary of the DCA.
If the state crosses these points, stability of the system cannot
be recovered.

IV. SWITCHING CONTROL STRATEGY

Consider a plant that is required to track an arbitrary reference
trajectory using a dynamic inversion controller. The bounded
control must cancel the inherent plant dynamics yet retain suf-
ficient control effort to prescribe a rate of change of the state in
any arbitrary direction of the state-space. If an extremal value of
control is necessary to cancel the inherent plant dynamics, then
there is at least one direction in which the plant state cannot
be driven. Therefore, the DCA consists of the set of the system
equilibrium states. Depending on the system stability, some of
these plant states can be driven in any arbitrary direction by
a bounded control. The boundary of the DCA is defined by
the states in which at least one control must take on its ex-
tremal value in order to cancel the inherent plant dynamics. Out-
side the DCA open-loop stable plants can never cross the DCA
boundary and remain bounded. Unstable plants diverge since
the inherent diverging tendency dominates the maximum pos-
sible converging tendency that the control can provide.

The solution strategy proposed here is to identify the DCA
and to develop a control law to prevent the plant state from
crossing the DCA boundary. The control required to perform
the tracking objective may be applied when the state is not near
the DCA boundary. Once the state nears the DCA boundary,
the control can be switched to a stabilizing control that cancels
the plant dynamics and provides a restoring tendency toward
the origin. It should be noted that whenever the state is within
the DCA, the magnitude of the rate of change of the state is
restricted because of the bounded control, but the direction of
the rate of change of the state is not limited. The Sections IV-A
and IV-B discuss methods to identify the DCA boundary and
the concept of stabilizing control.

A. Enforcing the Switching Control Law Without Explicit
Identification of the DCA Boundary

The DCA is defined by the states where at least one control
must equal its extremal value in order to cancel the inherent
plant dynamics. At the boundary of the DCA, (1) becomes

(11)

The entire DCA boundary can be evaluated by substituting all
possible values that the vector can take such that
for at least one , where and indicates the th
control input.

Consider a 2-D state-space for simplicity of analysis. The
DCA for this 2-D state-space defines a rectangular parallelo-
gram whose vertices are obtained from (11) when both compo-
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nents of the control vector are equal to any one of the four pos-
sible permutations of the extremal values . The
edges of the parallelogram correspond to cases when only one
component of the control vector is equal to an extremal value.
The other component of the control vector can equal any value
within the control bounds. Consequently, the DCA boundary
can be calculated and stored. As the state approaches the DCA
boundary, the control can be switched from a tracking control
to a stabilizing control. This idea easily extends to -dimen-
sions, where the DCA is an -dimensional parallelepiped. How-
ever, this approach requires explicit identification and storage of
the DCA boundary, which can be computationally intensive for
higher dimensional plants.

An alternate approach for determining the switching con-
trol law is to use a scalar measure that keeps track of how
close the operating point is to the DCA boundary, instead of
defining the DCA boundary explicitly. This approach can be
implemented by identifying the control component necessary
to cancel the inherent plant dynamics, , which can be ob-
tained by solving the following equation at run-time:

(12)

The applied control can be switched from tracking to stability
as approaches , which occurs when at least one
component of is equal to . Since (12) is simple to
solve can be solved at every time step, this approach eliminates
the need for prior explicit identification of the DCA.

B. Direction Consistent Control Constraint Mechanism

For a multi-input plant the bounded control not only restricts
the magnitude of the applied control, but also changes the di-
rection of the system. Fig. 2 illustrates this concept. Consider
a scenario with two controls and . Assume that the con-
trol calculated by the control algorithm to track a desired refer-
ence is greater than the control bounds shown by the box. If
each control is saturated to its respective maximum, the control
applied to the plant, , has a significantly different direction
compared to . When this control is applied to the plant the
resulting rate of change of state also has a different direction
than the desired direction. Here we develop a control strategy
that implements , direction consistent shown in Fig. 2 that is
within the position limits, which not only maintains the same
direction as , but also attempts to preserve the direction of
the resultant rate of change of the state so that the direction of
the resultant rate of change of the state is the same as that of the
desired rate.

Consider Fig. 3 in which the plant is of the form
and the desired control required to track the reference trajectory,

, is calculated. If is outside the control bounds,
the saturated version of the control is applied. In Fig. 3(a),
each component of is saturated to its respective max-
imum value. Consequently, has a different direction com-
pared to , and the resultant direction of is different
from . In Fig. 3(b), the saturation is enforced in such a
way that the direction of is the same as that of .

Fig. 2. Direction consistent control constraint mechanism.

However, the preservation of the control direction does not en-
sure that the resultant direction of is the same as that of

.
The control is calculated in two parts. The control necessary

to cancel the inherent plant dynamics is calculated first, and then
the control which produces a rate of change of the state in the
desired direction is calculated. Referring to Fig. 3(c), the first
component of the calculated control is equal to , and the
second part is equal to . The first part of the calculated
control will be within the control position limits since the plant
state is restricted within the DCA. The second part of the con-
trol is subjected to direction consistent control saturation, which
preserves the direction of the control vector. Therefore, the satu-
rated version of the second part of the control equals , which
also ensures that the direction of the resultant rate of change of
the state is the same as the desired rate.

V. TRACKING CONTROL LAW

The plant model is of the form given by (1)

(13)

where and are known constant matrices of compatible di-
mensions and the following assumptions hold.

Assumption A1: is non-singular.
Assumption A2: The initial condition is such that

satisfies for all .
From this condition, due to continuity, there always exists a

scalar such that also satisfies
for all .

Assumption A3: We assume here that is chosen such
that holds.

The tracking error is defined as

(14)

Differentiating the tracking error with respect to time, and sub-
stituting (13) into (14),

(15)

Adding and subtracting to (15), the equation for the error
dynamics becomes

(16)
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Fig. 3. Rate of change of the state due to various control saturation strategies.
(a) Each component saturated to maximum. (b) Direction consistent control pre-
serving the direction of the control vector. (c) Direction consistent control pre-
serving the direction of the resultant rate of change of the state.

If

(17)

we have . The parameter thus governs the closed-
loop dynamic system behaviour and needs to be chosen appro-
priately such that assumptions A2 and A3 are satisfied. We now
state the following definitions:

(18)

and

(19)

Note that (18), referred in this work as the tracking control, has
two components. The first term cancels the
inherent plant dynamics. The second term pre-
scribes the desired dynamics necessary to track the reference
trajectory. The first component is used as a measure of how close
the state is to the DCA boundary and will be referred to as the
stability control defined by (19).

Further, define for each th control input

(20)

where . Then, the maximum of this ratio of
stability control to the bound on each th actuator is defined as

(21)

The quantity is used as a measure of how close the current
state is to the DCA boundary. Given the definition of by
virtue of (A3), we are ensured of . It should be noted
that a value of indicates that the state is at the DCA
boundary.

For a point which is inside the DCA, but approaching the
boundary, the magnitude of keeps increasing from 0 and
reaches 1 on the boundary. To avoid saturation, choose scalar
parameters , , , and all close to 1, satisfying

that decide the switch
between tracking and stability control. Whenever, ,
the tracking control is close to being subjected to saturation. In
this case, the concept of direction consistent control mechanism
is implemented and the saturated version of the tracking control
law is employed, given by the following equation:

(22)
The direction consistent control saturation function main-
tains the direction of the resultant control to be the same as the
direction of the desired control in spite of control saturation. The
saturation function is defined in Section V-A.

A. Saturation Function Definitions

For any , we adopt a hard saturation

(23)

for all or alternately, a “soft” saturation of the
form

(24)

for all , where is any positive scalar param-
eter. Qualitatively, implies that the “soft” saturation
approaches the “hard” saturation definition stated earlier. If each
of the controls is allowed to saturate independently to the max-
imum allowed value, the applied control is

for all (25)

where is the saturation function. If direction consistency is
to be maintained, the proportion to which each control is
saturated is calculated by

for all (26)
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The minimum saturation proportion is identified

(27)

and all controls are saturated with the same proportion. Note,
by construction for all and accordingly, also
holds. As a result, the direction of the applied control vector is
the same as the calculated control vector . Therefore

(28)

B. Complete Control Law

Continuing with the discussion of , whenever its value
is greater than the stability control is employed. The other
design parameters and are used in order to produce smooth
transitions between controls; from and , and from
to . This transition can be accomplished by a linear or higher-
order interpolation as takes values from to and to

. Finally, the applied control is defined as

if and

else,
if
if
if
if

(29)

where

(30)

(31)

have been introduced for smooth transitions between controls.
The function is a third-order interpolation scheme defined as

(32)

Next, it is shown that selecting such that
ensures that . This can be proved as follows.
Let for some and let and

, then the applied control . Then for ,
and

. If
the control smoothly switches to . The control continues to

switch from there on depending on the value of parameter .
Suppose there exists a finite time such that
and , . Then,

. This would yield

(33)

Using the definition of we have for all time

(34)

(35)

which is a contradiction. Thus, for all time .
Finally, note that the closed-loop tracking error system is given
by

(36)

where is a bounded signal of time whose explicit characteri-
zation is

if and
if
if
if
if

(37)

or

if and (38)

if where (39)

if (40)

if where (41)

if (42)

Due to boundedness for , we have ensuring bounded-
ness for all closed-loop signals.

VI. ADAPTIVE CASE

Before proceeding to the control law for the case of uncertain
parameters, the following assumption is made.

Assumption B1: Both and are non-singular. Further,
suppose there exists a symmetric matrix that is either posi-
tive or negative definite such that , or

(43)

Assume also that the function is known and defined such
that when is positive definite, and
when is negative definite. Additionally define matrix ,

(44)

and let and be the maximum

and minimum eigenvalues of , respectively.
Define , , , and

, where is the specified closed-loop eigenvalue as
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defined in earlier section. Thus , and through
the application of the matrix-inversion lemma

(45)

(46)

where . Now, given and the
fact that the uncertainty satisfies from
(3), we denote

(47)

Thus, we have

(48)

wherein the values of and can be precom-
puted as well-posed optimization problems represented via (47).
Then the feasible set of values for may be defined as

such that (49)

Similarly, for , we can obtain

(50)

where .
For any given , , and and for uncertainties and

subject to (2) and (3) we can again predetermine

(51)

such that

(52)

As before, the feasible set of values for can be defined as

(53)
Further, define column vector complements of the matrices
and

(54)

(55)

with each row of defined as

for all (56)

Assumption B2: We denote , where the hat
over the variable denotes its estimated value. From (56),

and for any given

(57)

(58)

(59)

with . Assume that for any ,
for all . For some

selected such that , select the scalar such that

(60)

with (61)

and (62)

for all . Note that this assumption is more con-
servative than non-adaptive case.

Following the control law formulation laid out in the previous
section, but this time written in terms of and

(63)

For systems with unknown and matrices, the control law is
defined as

if and

else,
if
if
if
if

(64)

where

(65)

(66)

(67)

and are given in (30) and (31) and and are estimated
values of and . It is important to point that in this case the
definition of is revised to

(68)

(69)

where . Substituting for the control law de-
fined in (64), the closed-loop error dynamics reduce to

(70)

where

(71)
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that is

if and (72)

if where (73)

if (74)

if where (75)

if (76)

or

for all (77)

In terms of column vector complements defined in (56)–(57),
rewrite the closed-loop error dynamics as

(78)

with terms and defined such that

(79)

(80)

A. Adaptive Laws

To satisfy the given bounds on parameters and avoid param-
eter drift, the projection scheme from [21] is adopted

(81)

(82)

where is defined as

if
if
if .

(83)

The adaptive laws selected to be

if

else (84)

and if at some , , , reset
such that .

(85)

for any , and the adaptive gain is chosen to satisfy

(86)

B. Stability Analysis

To prove stability of the control laws in (64) and the adap-
tive laws specified in (84)–(85), choose the following Lyapunov
function candidate:

(87)

Details of the proof that this Lyapunov function is non-negative
are presented in [21]. Now take the time derivative of (87), and
noting that the true parameters are constant

(88)

For the case substitute for from (44) and the adaptive
laws from (84)–(85)

(89)

Using completion of squares

(90)

where . Note from (77) is a function of
that is bounded due to the projection scheme adopted, reference
trajectory and its derivative that are bounded by choice
and the parameter that is a positive scalar quantity chosen by
the designer. By virtue of these signals, it is guaranteed that
is bounded for all time and its supremum exists. Furthermore

(91)

Since and , we have
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(92)

or

(93)

Thus

(94)

or

(95)

Finally, it can be concluded that

(96)

for some positive constant . This ensures that the Lyapunov
function is uniformly bounded for the case .

For the case , there is an additional term in (89)

(97)

Now

(98)

Define and .
Then

(99)

or

(100)

Let , and replicate steps (91)–(94), to get

(101)

Similar to (96), it can be concluded that

(102)

for some other finite positive constant . Therefore, from the
uniform boundedness theorem, one concludes that ,

and , which results in the boundedness of all
closed-loop signals.

C. Control Saturation Analysis

The next issue to be analyzed is whether the control signal
stays within saturation limits for all time. Suppose that at some
time , such that, .
In this case

(103)

from the definition of in (68).
For time , suppose that , then the state evolves

according to

(104)

Consider the Lyapunov function candidate

(105)

Notice that the form of (105) is similar to (87), and it can be
verified that is positive definite. Next, take the derivative of

along the trajectory in (104) to get

(106)

Substituting the adaptive law for in (84)

(107)

(108)
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Thus, one can conclude for . Further

(109)

But

(110)

Combining (109) and (110)

(111)

From (103)

(112)
Finally, from the definition of

(113)

From (112), (62), and the choices of in (86) and in (60)

(114)

(115)

Thus, every th component of the control signal stays inside the
bounds

(116)

for all such that . Therefore, it is guar-
anteed that on enforcing the control saturation condition for the
adaptive case, the control signal stays within the specified limits.

VII. NUMERICAL EXAMPLES

A. Purpose and Scope

Validation of the theoretical developments presented above
is demonstrated in this section through simulation. The exam-
ples demonstrate the direction consistent mechanism for two
unstable systems. The first example is a generic second-order
plant. The tracking results are studied for two sinusoidal tra-
jectories of different magnitudes. The purpose of this example
is to simulate the response of the closed-loop system for two
cases; one with tracking control within bounds and the other
with tracking control outside control limits. Whenever the
tracking control is within bounds, it is expected that the system
demonstrates perfect tracking. Direction consistency is demon-
strated for reference trajectories that require more control effort
than that available.

The next simulation develops and evaluates control laws for
a lateral/directional linear model representative of the F-16XL
aircraft. This example demonstrates that the control laws devel-
oped earlier are also applicable to systems of the form

(117)

This example presents the necessary equations for imple-
menting control for kinematic tracking. The motive of this
example is to compare the response of the system with and
without the switching control law. It is demonstrated that
without implementation of the switching control law the
system goes unstable, while with the switching mechanism
the plant state remains within bounds and consistent with the
reference.

B. Second-Order Unstable Plant With Unknown Parameters

This example demonstrates the concept of a direction consis-
tent constraint mechanism for an unstable second-order plant.
The control objective is to restrict the states of the system to
follow specified sinusoidal trajectories that are out-of-phase.
The nominal plant used in the simulation is specified as

(118)

(119)

The true plant matrices are randomly generated with an uncer-
tainty of 5% in each element of and for the simulation. The
control vector is symmetrically bounded between .

1) Case 1(a): The peak-to-peak amplitudes of reference for
both the states is chosen to be 2. The frequency of oscillation
for the specified reference is 1 rad/s and the two references are
out-of-phase. is chosen as 0.2. The other design variables are

, , , , and ,
with the adaptive gains chosen to be , , and

. The initial conditions of the system state is chosen
as . Figs. 4 and 5 present results for this
case. The plant state in this case perfectly follows the refer-
ence and always remains less than unity. Moreover, since
the tracking control computed using dynamic-inversion always
remains within bounds, the applied control smoothly follows
it. Further, the adaptive parameters are seen to remain within
pre-computed bounds. Since the input is not sufficiently rich,
the adaptive parameters shown in Fig. 5 do not converge to true
values.

2) Case 1(b): In this case the peak amplitudes of the refer-
ence is increased to observe direction consistency. The ampli-
tudes are chosen as and with same
frequency of oscillations as in the previous case. Figs. 6 and
7 present the results. The plant state remains bounded and di-
rection consistent with the desired reference when switching
control is implemented. With the switching control law and
direction consistent mechanism the applied control smoothly
switches from tracking control to the saturated control and is
direction consistent with the desired tracking control, without
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Fig. 4. Case 1(a) plant and control time histories. (a) Case 1(a): Plant State. (b)
Case 1(a): Applied Control.

any control chattering as seen in Fig. 6(b). Also observe that
since remains within bounds, the ratio always remains
less than 1.

Fig. 7 show the update of the adaptive parameters and .
The parameter projection successfully restricts the adaptive pa-
rameters within the parameter bounds. The adaptive parameters
do not show any definite trend in the update. The important thing
is to note that parameter convergence to a constant was demon-
strated even in presence of errors due to control saturation.

C. F-16XL Aircraft

The objective is to command an aggressive maneuver which
will saturate the controls. Using the F-16XL (see Fig. 8), the
commanded maneuver is a bank angle doublet of 60 deg while
simultaneously turning through a heading angle of 20 deg.

Fig. 5. Case 1(a): adaptive parameter time histories. (a) Case 1(a): Adaptive
Parameter . (b) Case 1(a): Adaptive Parameter .

The control effectors used here are aileron and differen-
tial elevon . While rudder is available as a control effector,
it is not used here for the manueuver which constists primarily
of rolling. The F-16XL linear model is displayed in the Ap-
pendix. All states and controls are perturbations from the steady,
level, 1-g trimmed flight states given in Table I. The open-loop
eigenvalues are , , and

.
1) Controller Synthesis: A reduced-order linear model is

used to develop the controller. For the strictly lateral/directional
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Fig. 6. Case 1(b) state and control time histories. (a) Case 1(b): Plant State. (b)
Case 1(b): Computed Control.

maneuver performed here, the longitudinal dynamics are ne-
glected. The model is cast into a structured form as a kinematic
part and a dynamic part using only the roll rate and yaw rate
states. However, the full model is used for simulation.

Kinematic part

(120)

(121)

Dynamic part

(122)

where is the bank angle, is the heading angle, and and
are the roll and yaw rates, respectively. The control effectors are
limited to maximum position limits of 25 deg. Uncertainty in
the aircraft dynamical model is addressed by randomly intro-
ducing errors into the stability and control derivatives during
numerical simulation. The reference trajectory is specified in

Fig. 7. Case 1(b) adaptive parameter time histories. (a) Case 1(b): Adaptive
Parameter . (b) Case 1(b): Adaptive Parameter .

Fig. 8. F-16XL external physical characteristics.

TABLE I
TRIM STATE

terms of , , , , , and . The control law and the
update laws for the adaptive parameters are developed in ac-
cordance with the theory developed in the earlier sections. For
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Fig. 9. Case 2(a) Roll rate and Bank Angle for F-16XL.

brevity only the equations required for incorporating the control
law in the simulation are presented here. The tracking errors are
defined as

(123)

(124)

To track the kinematic angles, the closed-loop dynamics are
specified as

(125)

The design parameters are , , , , , , , , and .
The tracking and saturated control are

(126)

(127)

where

(128)

The adaptive laws for the elements of and are given by
(84)–(85) with

(129)

and

(130)

(131)

2) Results and Discussion: Case 2(a) No Switching Control
Law For this case, once the control saturates maximum con-
trol is applied until the tracking control falls back into limits.
Figs. 9–11 show that for the first 10 s the tracking control stays
within bounds and the state is bounded. After 10 s, the tracking
control required is large and the plant state diverges away from

Fig. 10. Case 2(a) Yaw rate, heading angle, and sideslip angle for F-16XL.

Fig. 11. Case 2(a) Aileron and Differntial Elevon for F-16XL.

the reference. Notice that without the switching control law the
system becomes unstable.

Case 2(b) Switching Control Law In this case the switching
control law is implemented. The design constants are chosen
as which gives the value of , ,

, , , , , ,
and . Figs. 12–16 present the simulation results. At 2
s the aircraft is commanded to roll at 112 deg/s to an angle of

60 deg and simultaneously turning to a heading of 20 deg at
a yaw rate of 4.2 deg/s. Notice that the tracking control required
to perform the maneuver is beyond the position limits specified,
so the saturated control is applied since . This
is greater than the specified . The effect of applying this con-
trol is that the aircraft performs the roll at a reduced rate of 80
deg/s. At 2.7 s the tracking control lies within limits and the
applied control stays there afterwards. The bank and heading
angles settle down to their respective desired values at 10 s.

After 10 s the reference trajectory changes direction yet the
system responds accordingly and starts to track closely. The air-
craft is commanded to bank 60 deg at the rate of 110 deg/s, while
simultaneously turning to 3.5 deg at a yaw rate of 5.4 deg/s.
Since the tracking control is outside position limits, the satu-
rated control is applied. As before the roll is performed at a re-
duced rate of 67.5 deg/s. The bank and heading angles settle to
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Fig. 12. Case 2(b) Roll rate and bank angle of F-16XL.

Fig. 13. Case 2(b) Yaw rate, heading, and sidelslip for F-16XL.

Fig. 14. Case 2(b) Aileron and differential elevon for F-16XL.

their respective values at 20 s, after which the aircraft is com-
manded to return to wings level, i.e., a 0 deg bank. This is com-
manded at a rate of 55 deg/s and the tracking control is applied
within position limits. It is important to note that during this
30 s time span consistency with the reference is preserved, and
control chattering is avoided. Even though sideslip angle is
not directly controlled, it remains within bounds and well be-
haved throughout the manuever. This is because the system is
linear and minimum-phase so the internal dynamics are stable.
Further, throughout the maneuver is maintained less than

Fig. 15. Case 2(b) for F-16XL.

Fig. 16. Case 2(b) Adaptive parameters for F-16XL.

Fig. 17. Case 2(b) Adaptive parameter for F-16XL.

1. The adaptive parameters do not converge to their true values
within the duration of the maneuver, because the reference tra-
jectory is not persistently exciting. However, this is immaterial
as asymptotic trajectory tracking can be achieved irrespective
of parameter convergence.
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VIII. CONCLUSION

Based on the stability proofs and the simulation results
presented in the paper, if the control is unsaturated the tracking
error asymptotically goes to zero, and all signals in the control
scheme are bounded. If the control is saturated, the plant state
can only be guaranteed to be bounded and direction consistent
with the desired reference. The switching control strategy
successfully restricts the state within the DCA. The transition
between the tracking control and the stability control is smooth,
and the applied control does not show any chattering. The in-
stability protection switching control law can be implemented
without prior explicit identification and bookkeeping of the
DCA boundary. The control laws developed in this paper
are applicable for unstable controllable linear time-invariant
square non-singular systems with uncertainty within of
the known nominal model.

APPENDIX

The F-16XL aircraft lateral/directional model

(132)

All angular quantities are in radians.
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Approximation of Agent Dynamics

Using Reinforcement Learning

Kenton Kirkpatrick� and John Valaseky

Texas A&M University, College Station, Texas 77843-3141

Reinforcement Learning for control of dynamical systems is popular due to the ability
to learn control policies without requiring a model of the system being controlled. It
can be di�cult to learn ideal control policies because it is common to abstract out or
ignore completely the dynamics of the agents in the system. In this paper, Reinforcement
Learning-based algorithms are developed for learning agents’ time dependent dynamics
while also learning to control them. Three algorithms are introduced. Sampled-Data
Q-learning is an algorithm that learns the optimal sample time for controlling an agent
without a prior model. First-Order Dynamics Learning is an algorithm that determines the
proper time constants for agents known to have �rst-order dynamics, while Second-Order
Dynamics Learning is an algorithm for learning natural frequencies and damping ratios
of second-order systems. The algorithms are demonstrated with numerical simulation.
Results presented in this paper show that the algorithms are able to determine information
about the system dynamics without resorting to traditional system identi�cation.

I. Introduction

In recent years, Reinforcement Learning (RL) has been an extensively investigated area of research in
the �eld of Machine Learning. It has been a popular tool for solving problems such as dynamical system
control, gain scheduling, maze navigation, and game playing. There has been wide success in many of
the applications, but researchers have often encountered problems when casting the control of dynamical
systems as an RL problem. The state-to-action mapping provided by RL techniques makes the use for
control problems attractive, and this is especially the case with Q-learning due to its proven convergence to
optimality. RL methods like Q-learning are appealing because they can achieve this mapping experimentally
without the need of a model. Although this is indeed the case, implementing these in practice has proven
to be very di�cult.

Studying the problems associated with this implementation reveals that often the failure to implement RL
methods in dynamical systems are not caused but the basic approach of methods like Q-learning. Typically,
the problem is either a failure in properly representing the problem or inaccurate function approximation.
When choosing to implement the popular Watkins’ Q-learning in a dynamical system scenario, it is necessary
to realize that the algorithm does not explicitly account for time. Time dependency is often either overlooked
or handled outside of the learning process, but accounting for time in the selection of actions (or control) is
needed. For instance, when handling sampled-data systems, small changes to sample time can cause drastic
changes to the stability of the control policy determined.

One research area that has recently received a lot of attention has been the control of cooperative multi-
agent systems through the use of Q-learning-based algorithms. Learning to control multiple agents for the
purpose of cooperatively achieving a speci�ed goal is an appealing research topic with high complexity. Some
research in this area has involved comparing the e�ects using Q-learning-based methods to determine joint
action selection between di�erent agents to the learning of agent actions independently.1 Other research has
investigated stochastic game extensions to this and treated the system as non-cooperative by having agents
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consider only themselves with no knowledge of the existence of other agents.2 Systems of agents that need to
coordinate their actions without knowledge of each other’s actions has been determined to be an important
area of research for the general application to systems of agents that do not have the ability to communicate
with one another.3,4 Even so, other research has been conducted involving the improvement of Q-learning
approaches for determining joint actions through the use of Bayesian inference to estimate strategies.5

In most of the research scenarios discussed above, multiple agents are simulated in games that have
no dependence on time. Time-dependent agent dynamics cause a fundamental change to the system, and
considering the control of time dependencies in multi-agent systems has received little attention. This may
be due to the fact that it is di�cult to learn control policies for a single time-dependent agent using RL
approaches. To address this, a topic of research that needs to be investigated is the learning of an optimal
sample time for a sampled-data system. Controlling real continuous systems generally requires computer-
based control, so sampling of the continuous system is necessary. Without considering the sample time used,
problems arise in attempting to use a policy derived in simulation on an actual hardware experiment. For
this scenario, if a model of the dynamics exists it is trivial to determine the best sample time by classical
methods. However, here we consider the case where a model is not available and RL is being utilized for
its model-free approach. This requires some way to determine the optimal sample time without the use of a
model.

One more area of investigation that is needed for the learning of multi-agent system control policies is
to learn some approximation of the dynamics. The learning process does not explicitly account for agent
time dynamics, so that information is essentially abstracted out of learning. Since the main bene�t of
RL approaches like Q-learning is to learn a control policy without the need of a model, the bene�ts of
determining a model have been overlooked. It can be very useful for some knowledge of the dynamics to
inform the decisions made by the agents, and this is especially true in heterogeneous multi-agent systems.
A full model may not be necessary, but some approximation of the individual agent dynamics can be very
bene�cial for determining global behavior rules.

In this paper, RL-based control approaches are extended to systems with unknown time dynamics.
The scope of this paper is limited to the cases of simulated examples where the simulations have time
dynamics but the RL agent learning to control the system has no access to that information. The systems
considered are all sampled-data systems, and they will exhibit �rst- or second-order dynamics depending
upon the algorithm being investigated. Three algorithms are introduced. One is capable of determining
the optimal sample time for these sampled-data systems using RL-based algorithms while simultaneously
learning the control policy, and it is named Sampled-Data Q-learning (SDQL). The second is an RL-based
algorithm capable of learning some approximation of agent dynamics for a �rst-order system, and it is called
First-Order Dynamics Learning (FODL). The �nal algorithm is similar to the FODL algorithm and is for
second-order systems, called Second-Order Dynamics Learning (SODL). The end result of this research is
the ability to learn an optimal sample time for agents, an approximation of agents’ time dynamics, and
individual agent control policies. This collective result allows for the control of heterogeneous multi-agent
systems by means of hierarchical commands provided by a high-level agent with all of the knowledge learned
by these algorithms.

This paper is organized as follows. In Section II, the basics of Reinforcement Learning are discussed,
with an emphasis on Q-learning. Section III introduces the Sampled-Data Q-learning algorithm and in-
cludes simulation results to demonstrate it. The First- and Second-Order Dynamics Learning algorithms are
introduced in Section IV with accompanying results, and conclusions and open challenges are discussed in
Section V.

II. Q-learning

There are multiple classes of algorithms that fall within the de�nition of Reinforcement Learning. Cur-
rently, the RL algorithms that are most used in research are Temporal-Di�erence (TD) methods. TD methods
are actually a conceptual combination from two other classes of algorithms known as Dynamic Programming
(DP) and Monte Carlo.6 Like Monte Carlo, TD methods use experience through interaction with the system
to update the quality of the value function without the need of a model. Like DP, TD methods do not
have to wait until the end to improve the value function, but rather update it along the way. This improves
convergence time and also makes TD methods usable in online learning. In this section, the TD algorithm
known as Q-learning will be discussed, along with the limitations that lead to the development of extended
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Q-learning-based algorithms for the use of learning in dynamical sampled-data systems.
Of the various formulations of RL algorithms, Watkins’ Q-learning has been the most accepted and

utilized algorithm for its proven convergence to the optimal action-value function.6 Q-learning is a TD
method that learns the optimal action-value function in an o�-policy manner.7 This means that the policy
used during a learning episode is not necessarily the same as the one that is updated at each timestep. A
similar implementation that uses on-policy learning is known as Sarsa, and is often used in the same learning
situations as Q-learning.8,9 The Q-learning algorithm is based upon an action-value update rule that uses a
greedy policy to determine a predicted value for the state-action pair at the next (future) timestep.10,11 The
actual action selection may not be done using a greedy policy, and in fact it is typically better for optimality
to include some degree of exploration in the policy.12 The rule used for updating the action-value function
is as follows.

Q(s; a) Q(s; a) + �[r + 
max
a0

Q(s0; a0)�Q(s; a)] (1)

In Equation 1, Q is the action-value function, s is the state at the current timestep, a is the action
selected for the current timestep using the agent’s policy (e.g., "-greedy), � is the step-size parameter, r is
the reward received from the system, s0 is the future state (due to taking action a), a0 is the action that
would be taken using a greedy policy when in state s0, and 
 is the weight for the future value. The selection
of 
 a�ects convergence time, and it is always within the range (0,1). The value of 
 can either be kept
constant throughout learning, or it can be chosen to vary episodically so that later learning episodes value
the future prediction di�erently than early episodes. The value of � is always in the interval (0,1), and can
either be held constant or varied by some user-de�ned function. In some cases, � is designed to decrease
within an episode according to how often the agent revisits the same state, essentially punishing the agent
for repeating itself unnecessarily.

The update rule of Equation 1 is the backbone of the famous Watkins’ Q-learning algorithm. It is an
o�-policy TD algorithm with a user-determined policy for selecting actions at each timestep, but uses a
fully-greedy policy with the action-value function when updating the action-value function. Rather than
utilizing past information to perform this update, this algorithm uses the predicted future state-action pair
chosen greedily. The Watkins’ Q-learning algorithm is displayed in Algorithm 1.

Algorithm 1 Q-learning6

� Initialize Q(s,a) arbitrarily

� Repeat for each episode:

{ Initialize s

{ Repeat for each timestep:

� Choose a from s using policy derived from Q(s,a) (e.g., "-Greedy)
� Take action a, observe r, s0

� Q(s,a)  Q(s,a) + � [ r + 
 maxa0 Q(s0,a0) - Q(s,a) ]
� s  s0

{ Until s is terminal

The policy for action selection has a drastic e�ect on the convergence of the Q-learning algorithm.
Some balance of exploration and exploitation is needed to properly learn the full state-space and guarantee
convergence to the optimal policy. An "-greedy policy uses a user-de�ned probability, ", that determines
whether to choose actions randomly or according to the action-value function each time a new action must
be taken. This speeds up the convergence time by reinforcing paths that have already been designated either
good or bad while still allowing for new paths to be explored for optimality.13 In the early episodes the
agent is required to explore due to lack of knowledge, regardless of the value assigned to ". This "-greedy
policy is used as the action selection method for Q-learning in this paper.

3 of 13

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 J

oh
n 

V
al

as
ek

 o
n 

Fe
br

ua
ry

 1
0,

 2
01

3 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

01
3-

87
5 



III. Sampled-Data Q-learning

When Algorithm 1 is used in dynamical systems, the problem of handling time-dependencies arises.
Because it is much faster (and safer) to perform the learning in a computer simulation rather than online
with a hardware system, researchers often turn to using dynamics models. The issue of ensuring an accurate
model is obvious, but it is often overlooked that using the �nal control policy on a hardware model results
in a sampled-data system. The control policy is handled using a discrete computer, but the policy is learned
assuming continuous dynamics. In some cases, the user realizes this and assumes a sampled-data system in
the simulated learning, but the Q-learning algorithm will converge to a policy that assumes the same sample
time will always be used and that the chosen sample time is best. Here, an attempt to overcome this issue
is addressed by wrapping the sample time into the learning process.

A. Sampled-Data Q-learning Algorithm

Incorporating the sample time, denoted T , into the learning process requires determining the value of in-
dividual sample times without adversely a�ecting the stability of the system during an episode. It would
therefore be wise to not allow a sample time to change during a single episode. However, to determine
optimal action-value functions for a range of sample times requires incorporating it into the state-space. It is
therefore necessary to append the state-space with T while not allowing it to be a�ected by the action-space.

This gives rise to the question of how a particular sample time is to be selected when it cannot be
a�ected by the action-space. It is necessary that a value be associated with each possible selection of T ,
but T must be held constant throughout an episode. It is therefore proposed that a state-value function for
T be determined using Monte Carlo-based learning.6 The value function can be updated according to an
every-visit Monte Carlo method, shown in Equation 2.

VT (T ) VT (T ) + �(R� VT (T )) (2)

This update rule will be the basis for Sampled-Data Q-learning. At the beginning of each episode, the
sample time value-function, VT , can be used to select T for the episode according to a user-de�ned policy.
The sample time is appended to the system state vector, s, so that the normal Q-learning update rule will
determine separate control policies according to di�erent values of T . When the reward for a given timestep
is determined, it is used to update both Q, and the total rewards for the episode are updated. At the end
of the episode, VT is updated by using the average return, R. This causes VT to be updated such that
episodes which experience more positive rewards than negative rewards result in the value associated with
that particular T increasing. Likewise, when an episode experiences more negative rewards than positive,
the total value for T after the episode ends will have decreased. Using this new sampled-data value function
and update rule, the Sampled-Data Q-learning algorithm becomes as shown in Algorithm 2.

B. SDQL Results

For the system described above, a single agent was simulated as a robot that translates forward with a
constant speed and rotates the heading angle  to change direction. The rotational dynamics are described
as a �rst-order di�erential equation with time constant � . The environment the robot is allowed to traverse
is a 20m by 20m square with the origin at the center. The governing equations of motion are shown in
Equations 3-5, where the subscript c denotes the commanded value.

_x = V cos (3)
_y = V sin (4)
_ = ( c �  )��1 (5)

At each timestep, the learner evaluates the current state and chooses the appropriate action based on
an "-greedy policy in a Q-learning scheme. The possible actions are rotate clockwise (�� ), no rotation
(� = 0), and rotate counterclockwise(+� ). At each T , the robot is required to take a new action, which
corresponds to a new commanded next state. The commanded next action occurs in intervals of 45 degrees.
The action-space is shown in Equation 6.
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Algorithm 2 Sampled-Data Q-learning (SDQL)

� Initialize Q(~s,a) arbitrarily

� Initialize VT (T ) arbitrarily

� Repeat for each episode:

{ Choose T using policy derived from VT (T ) (e.g., "-Greedy)

{ Initialize R = 0

{ Initialize s, initialize ~s by appending T to s

{ Repeat for each sample timestep, T :

� Choose a from ~s using policy derived from Q(~s,a) (e.g., "-Greedy)
� Take action a, observe r, ~s0

� Q(~s,a)  Q(~s,a) + � [ r + 
 maxa0 Q(~s0,a0) - Q(~s,a) ]
� ~s  ~s0

{ Until ~s is terminal

{ R = average(r)

{ VT (T )  VT (T ) + � [ R - VT (T ) ]

a 2 A = [ �45� 0� +45� ] (6)

After simulating this problem using the SDQL algorithm, the result is a determined best sample time
and a control policy based on that sample time. The values for the individual sample times after 10,000
learning episodes are shown in Table 1.

Table 1. SDQL Robot Result

T (sec) VT

0:01 29:1
0:02 29:9
0:03 2:4
0:04 42:9
0:05 51:4
0:06 73:4
0:07 2271:8
0:08 14:7
0:09 29:2
0:10 120:8

The control policy has the ability to control the robot to move from randomly initialized points to the
goal within a tolerance of �1m. The sample time with the maximum value determined by VT of T = 0:07
sec is in this simulation of the resulting Q function. Figures 1-6 demonstrate the ability to control the robot
to the goal using this learned function for the determined sample time.

Figures 1-3 show that the robot is able to guide itself to the goal from an initial point in quadrant 1. The
state time history shown in Figure 2 shows that the robot is able to guide itself there in under 8 seconds of
simulated real-time. The commanded heading angle changes at each T = 0:07 sec are shown in Figure 3.

For further demonstration of the ability to control the robot, an initial condition beginning in quadrant
3 was tested. These results are shown in Figures 4-6. Figure 5 shows that the robot is able to reach the goal
in this case in approximately 15 seconds, and the commanded heading angle history is shown in Figure 6.
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Figure 1. Simulation of Robot - Q1 Initial Condition

Figure 2. State History of Robot - Q1 Initial Condition

IV. System Dynamics Approximation

When using Q-learning to determine a control policy for dynamical systems, the bene�t of not needing to
have a model of the dynamics can lead to neglecting the dynamics completely. Learning a control policy for
these systems is necessary, but often it is desired to also determine some approximation of the dynamics. This
is especially important when dealing with the control of heterogeneous multi-agent systems since coordinating
the agents requires knowing how the individual agents respond di�erently in time to similar action inputs.

A. First-Order Dynamics Learning

The simplest agent dynamics to represent are �rst-order dynamics. In a stable �rst-order system, the
dynamics are described by the di�erential equation shown in Equation 7. Given the command value sc, the
time constant � is needed to fully describe this di�erential equation.

� _s+ s = sc (7)

The solution to this ODE is shown in Equation 8. This solution can be used to determine the next state,
but � is required to do so. This makes learning an approximate time constant all that is needed to determine
the time behavior of the agent. Given the current state, s, the predicted next state, s�, can be approximated
using the current guess of the time constant, � , and the sample time period, T , according to Equation 8.

s� = se�T=� + (1� e�T=� )sc (8)
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Figure 3. Command History of Robot - Q1 Initial Condition

Figure 4. Simulation of Robot - Q3 Initial Condition

Equation 8 can be used to approximate a state transition for a single 1-dimensional state. Learning to
approximate the time constant requires determining a reward that is a function of the current estimate of the
sample time. By estimating the next state using Equation 8 and the current estimate of the time constant,
the reward can be shaped by the error between the measured true next state and the estimated next state.
The reward function used is shown in Equation 9.

r = jjs� � s0jj2 (9)

If more than one state dimension is to be approximated, multiple time constants would be needed. For
instance, if this method were applied to a robot traversing a 2-D space with �rst-order dynamics in forward
translation and rotation, one might want to know the state transition dynamics of both �forward and �rotate
independently as they would most likely have di�erent dynamics. Time constants for each state-action pair
would be determined based on whether the robot were moving forward or rotating. To learn a time constant,
a Monte Carlo learning formulation similar to the SDQL algorithm can be used. Algorithm 3 can shows how
this can be accomplished.14

Algorithm 3 was used for the same example shown in Section III.B. After the 10,000 learning episodes
completed, the FODL algorithm was able to successfully converge to the proper value of the time constant
of � = 0:2 sec. Table 2 shows the V1 values associated with each time constant, � .

Over the course of the 10,000 learning episodes, the value associated with � evolved as shown in Figure 7.
As can be seen, the value associated with � = 0:2 became the maximum value early in the learning process.
As learning episodes continue, the value function reinforces this as the best estimate of the time constant.
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Figure 5. State History of Robot - Q3 Initial Condition

Figure 6. Command History of Robot - Q3 Initial Condition

B. Second-Order Dynamics Learning

In general, real world systems are more prone to exhibit second-order behavior rather than �rst-order.
Second-order systems are the simplest systems that exhibit overshoot and oscillations, so higher-order systems
can be approximated using second-order models.15 It is therefore necessary to learn approximate models
of second-order systems to approximate any systems that are higher than �rst-order. The second-order
dynamics can be described by Equation 10.

d2s

dt2
+ 2�!n

ds

dt
+ !2

ns = !2
nsc (10)

To approximate a second-order system requires determining 2 parameters: natural frequency and damping
ratio. The learning framework used to determine these parameters is the same as for the �rst-order case, but
the value function and the state approximation equations are di�erent. The value function, here called V2, is
a function of the frequency and damping ratio. The state prediction equation is the solution to Equation 10
after a time period of T . This solution is dependent on the current approximation of damping ratio. For the
case of � = 0, the solution is as shown in Equation 11.

s� = sc +
_s
!n

sin(!nT ) + (s� sc) cos(!nT ) (11)

For the case of 0 < � < 1, the solution is as shown in Equation 12.
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Algorithm 3 First-Order Dynamics Learning (FODL)

� Determine T and Q(s,a) for system (e.g., Sampled-Data Q-learning)

� Initialize V1(s,a,�) arbitrarily

� Repeat for each episode:

{ Initialize s, append T to s

{ Repeat for each timestep:

� Choose a from s using greedy policy derived with Q(s,a)
� Choose � using policy derived from V1(s,a,�) (e.g., "-Greedy)
� Predict next state, s�, with s,a, and � using �rst-order approximations
� Take action a, observe actual next state, s0

� Observe r shaped from observed s0 and predicted s�

� V1(s,a,�)  V1(s,a,�) + � [ r - V1(s,a,�) ]
� s  s0

{ Until s is terminal

Figure 7. Time Constant Value History

s� = sc +
�p

1� �2
e��!nT

�
s� sc +

_s
�!n

�
sin(!nT

p
1� �2) (12)

+e��!nT (s� sc) cos(!nT
p

1� �2)

For the case of � = 1, the solution is as shown in Equation 13.

s� = sc + (s� sc)e�!nT + ( _s+ !ns� !nsc)Te�!nT (13)

And for the case of � > 1, the solution is as shown in Equation 14.

9 of 13

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 J

oh
n 

V
al

as
ek

 o
n 

Fe
br

ua
ry

 1
0,

 2
01

3 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

01
3-

87
5 

http://arc.aiaa.org/action/showImage?doi=10.2514/6.2013-875&iName=master.img-006.jpg&w=233&h=185


Table 2. FODL Robot Value Function

�(sec) V1

0:1 �1:79� 104

0:2 �0:65� 104

0:3 �1:12� 104

0:4 �1:44� 104

0:5 �1:49� 104

0:6 �1:68� 104

0:7 �1:75� 104

0:8 �1:86� 104

0:9 �1:94� 104

1:0 �2:03� 104

1:1 �2:05� 104

1:2 �2:03� 104

1:3 �2:07� 104

1:4 �2:26� 104

1:5 �2:22� 104

1:6 �2:14� 104

1:7 �2:11� 104

1:8 �2:27� 104

1:9 �2:19� 104

2:0 �2:19� 104

s� = sc +
�

_s+ (2�!n � z1)s� scz2
z2 � z1

�
e�z1T (14)

�
�

_s+ (2�!n + z2)s� scz1
z2 � z1

�
e�z2T

where

z1 = !n(� �
p
�2 � 1)

z2 = !n(� +
p
�2 � 1)

To learn the second-order parameters, the FODL algorithm can be adjusted for learning the natural
frequency and damping ratio rather than the time constant. This alternate version of dynamics learning,
called Second-Order Dynamics Learning, is shown in Algorithm 4.

To demonstrate the SODL algorithm, the robot example from before was altered to have second-order
dynamics in the heading angle equation of motion. For this example, the natural frequency of the robot
heading angle was set to !n = 6 rad/sec and the damping ratio is � = 0:8. After 10,000 episodes of learning
using Algorithm 4, the value of V2 determined a maximum value associated with the correct frequency and
damping ratio. Table 3 shows the �nal values, and they are plotted in Figure 8.

The way that the V2 function is formulated implies that the value determined is for the combination of
the variables ! and � rather than designating values for each separately. This is done because it is both of
these variables together that determines the behavior of a system, and not either one separately. However,
if one were to want to see how they are valued individually then the average values can be determined. If
the value function entries for each instance of a particular ! are averaged together, an estimate of the value
for that frequency is determined. Likewise, the same can be done for the damping ratio. Figures 9-10 show
how the average values for the individual parameters evolve over time.
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Algorithm 4 Second-Order Dynamics Learning (SODL)

� Determine T and Q(s,a) for system (e.g., Sampled-Data Q-learning)

� Initialize V2(s,a,!n,�) arbitrarily

� Repeat for each episode:

{ Initialize s, append T to s

{ Repeat for each timestep:

� Choose a from s using greedy policy derived with Q(s,a)
� Choose !n and � using policy derived from V2(s,a,!n,�) (e.g., "-Greedy)
� Predict next state s� with s, a, !n, and � using �-dependent solution
� Take action a, observe actual next state s0

� Observe r shaped from observed s0 and predicted s�

� V2(s,a,!n,�)  V2(s,a,!n,�) + � [ r - V2(s,a,!n,�) ]
� s  s0

{ Until s is terminal

Table 3. V2 after 10,000 Episodes

! = 2 ! = 4 ! = 6 ! = 8 ! = 10
� = 0:4 �3220 �3107 �2412 �2671 �5130
� = 0:8 �3450 �2610 �1466 �2606 �4110
� = 1:2 �3283 �2883 �2393 �2323 �4092
� = 1:6 �3008 �2855 �3180 �2940 �3155
� = 2:0 �3240 �3602 �2795 �2576 �3484

V. Conclusions and Open Challenges

The work presented in this paper has shown that Reinforcement Learning-based techniques can be
adapted to not only learn control policies for agents, but also learn an approximation of the agents’ dy-
namics. Several conclusions can be drawn from these results. The Sampled-Data Q-learning algorithm is
capable of determining longer sample times that still allow for successful control of the agent. The First-Order
Dynamics Learning algorithm is capable of determining the time constants that best model the dynamics
of the states for an individual agent with �rst-order dynamics. The Second-Order Dynamics Learning algo-
rithm is capable of determining the best combination of natural frequency and damping ratio to model the
second-order dynamics of the states for an agent.

There are a number of challenges for future research e�orts. First, after learning the dynamics of agents it
can be shown that in a hierarchical multiagent system the supervisory agents can use the dynamics informa-
tion to determine commands to lower-level agents. Adaptation of these algorithms to stochastic systems is
also possible. Another open problem is determining a means to either demonstrate the Second-Order Dynam-
ics Learning algorithm’s capability to approximate higher-order systems, or investigate alternate algorithms
for approximating higher-order dynamics.

Acknowledgment

This work was sponsored (in part) by the Air Force O�ce of Scienti�c Research, USAF, under grant/contract
number FA9550-08-1-0038. The technical monitor is Dr. Fariba Fahroo. The views and conclusions con-
tained herein are those of the authors and should not be interpreted as necessarily representing the o�cial
policies or endorsements, either expressed or implied, of the Air Force O�ce of Scienti�c Research or the
U.S. Government.

11 of 13

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 J

oh
n 

V
al

as
ek

 o
n 

Fe
br

ua
ry

 1
0,

 2
01

3 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

01
3-

87
5 



Figure 8. V2 after 10,000 Episodes

Figure 9. Natural Frequency Value History
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A Constructive Stabilization Approach for Open-Loop Unstable
Non-Affine Systems*

Anshu Narang-Siddarth1 and John Valasek2

Abstract— This paper focuses on the stabilization of non-
affine-in-control systems that are open-loop unstable. The main
result of the paper is a general method for constructing
feedback stabilization of all non-affine systems. The synthesis
procedure is based on concepts of feedback passivation, and is
extended for non-affine systems by deriving sufficient conditions
for passivity. The developments and essential ideas of the
proposed technique are validated via simulation.

I. INTRODUCTION
Consider the core problem of developing stabilizing con-

trollers for non-affine systems of the form

Σ : ẋ = f(x,u) (1)

where x ∈ Rn is the state, u ∈ Rm is the control input, and
f : Rn × Rm → Rn is a sufficiently smooth vector field.
Assume that

(A1) The unforced dynamics of Σ in (1), namely ẋ =
f(x,0) , f0(x) is unstable.

In general the function f(x,u) is not monotonic in the con-
trol and ∂f

∂u may be singular at the origin. Thus Σ cannot be
stabilized using either dynamic-inversion [1] or the modeling
error compensation technique [2]. Furthermore, non-affine
systems of the form given in (1) cannot be stabilized using a
fixed-gain static compensator. To see this behaviour consider
the system

ẋ = x− 2u3. (2)

It is open-loop unstable and satisfies Assumption (A1).
Suppose the control takes the form u = K(t)x in (2). Then
the resulting closed-loop dynamics become ẋ = x− 2K3x3

that has the following equilibrium solutions:

x∗ =
{

0 for all K
± 1√

2K3 for K > 0. (3)

The bifurcation map (Fig. 1) illustrates that the origin re-
mains unstable except for K =∞. Furthermore, the system
has three equilibrium solutions for positive values of the
feedback gain that converge to the origin as K → ∞. This
behaviour indicates that only an infinite control effort can
stabilize the origin.

*This work was supported in part by the U.S. Air Force Office of Sci-
entific Research under contract FA9550-08-1-0038 with technical monitor
Dr. Fariba Fahroo.

1A. Siddarth is a Post-Doctoral Research Associate in the Ve-
hicle Systems & Control Laboratory, Aerospace Engineering Depart-
ment, Texas A&M University, College Station, TX 77843-3141, USA
anshun1@tamu.edu

2J. Valasek is Professor and Director, Vehicle Systems & Control Labo-
ratory, Aerospace Engineering Department, Texas A&M University, College
Station, TX 77843-3141, USA valasek@tamu.edu

Fig. 1. Stable (solid lines) and unstable (broken line) equilibrium solutions
of (2) with u = Kx

An alternative solution to regulate (2) is to switch feedback
gains in accordance with the current state. As an example,
suppose the feedback gain for (2) was initialized to K(t =
0) = 1.5. Then from (3) the state would stabilize to either
xsteady = −0.384 or xsteady = 0.384 depending on its
initial condition. Next, if the feedback gain is switched to
K(t > tsteady) = 2 the state would stabilize at xsteady =
±0.25. Hence, increasing the gain successively the origin can
be stabilized through a finite control input. The fundamental
problem with this switching scheme is that analytic deter-
mination of the switching curves for general systems of the
form (1) requires substantial system knowledge and offline
processing. Additionally, the switching conditions and the
number of control switches depend on the initial condition
and the control form, leading to a system specific design [3],
[4].

In this paper the construction of an analytic state-feedback
control law is pursued. The major contribution of the paper is
a theoretical result which shows that under mild conditions
a control law of the form u(x) = α(x) + ν(x) globally
stabilizes a large class of non-affine systems. The function
α(x) converts an open-loop unstable system into a stable
system in the Lyapunov sense, and ν(x) is constructed to
bring about the necessary energy dissipation for globally
stabilizing the origin. The design procedure presented here
is based on the ideas of feedback passivation introduced
in [5] for control-affine systems. The general concept is
to use state-feedback to render the system passive and
then employ well-established results for stabilizing passive
systems. Toward this end, the fundamental question to be
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answered is when is a general nonlinear system passive?
The well-known Kalman-Yacubovitch-Popov lemma [6] and
its nonlinear counterparts derived by Hill and Moylan [7]
answer this question for linear and affine-in-control systems
respectively. Sufficient conditions for passivity of non-affine
systems and their relationship with the existing necessary
conditions [8] are derived for the first time in this paper,
in Section II. The main result for stabilization of general
multiple-input systems posed as sufficiency conditions is
derived in Section III. The theoretical results are verified
with simulation examples in Section IV. Closing remarks
are discussed in Section V.

II. PASSIVE SYSTEMS

In this section the sufficiency conditions under which
a nonlinear system can be considered passive are derived.
Consider

Σ1 :
ẋ = f(x,u)
y = h(x,u) (4)

with state-space X = Rn, set of input values U = Rm, and
set of output values Y = Rm. The set U of admissible inputs
consists of all U -valued piece-wise continuous functions
defined on R. The functions f(.) and h(.) are continuously
differentiable maps defined on the open subset O ⊂ Rn.
It is assumed that these vector fields are smooth mappings,
with at least one equilibrium. Without loss of generality the
origin is chosen as the equilibrium of Σ1, that is, f(0,0) = 0
and h(0,0) = 0. In order to derive conditions for Σ1 to be
passive two important definitions are reviewed and presented
below.

Definition II.1. The system Σ1 is said to be passive if there
exists a positive semi-definite storage function V (x) that
satisfies V (0) = 0 and for any u ∈ U and initial condition
x0 ∈ X

V (x)− V (x0) ≤
∫ t

0

yT (s)u(s)ds. (5)

If the storage function is Cr times continuously differentiable
with r ≥ 1 then (5) is equivalent to

V̇ ≤ yTu. (6)

Definition II.1 is the mathematical analog of stating that
the amount of energy stored in a passive system is less than
or equal to the energy being input. For convenience define
the vector fields

f0(x) , f(x,0) ∈ Rn (7a)

h0(x) , h(x,0) ∈ Rm (7b)

where f0(x) represents the open-loop dynamics of Σ1 while
h0(x) is the output of Σ1 at zero-input. Using (7) and the fact
that the vector fields in Σ1 are smooth, (4) is equivalently
represented as

ẋ = f0(x) + g(x,u)u (8a)
h(x,u) = h0(x) + j(x,u)u (8b)

where the following identities have been used:

f(x,u)− f0(x) =

(∫ 1

0

∂f(x, γ)

∂γ

∣∣∣∣
γ=θu

dθ

)
u(x) , g(x,u)u (9)

h(x,u)− h0(x) =

(∫ 1

0

∂h(x, γ)

∂γ

∣∣∣∣
γ=θu

dθ

)
u(x) , j(x,u)u.

(10)

The vector fields g(x,u) and j(x,u) defined above capture
the effect of the control input on the motion of the dynamical
system states and the output. Notice that for control-affine
systems these vector fields will be independent of the control
input vector. Using smoothness of the vector g(x,u), (8a)
can be further decomposed as

ẋ = f0(x) + g0(x)u +
m∑
i=1

ui [Ri(x,u)u] (11)

with Ri(x,u) : Rn × Rm → Rn×m, being a smooth map
for 1 ≤ i ≤ m and

g0
i (x) = gi(x,0) =

∂f
∂ui

(x,0) ∈ Rn; 1 ≤ i ≤ m (12a)

g0(x) =
∂f
∂u

(x,0) =
[
g0

1(x), . . . ,g0
m(x)

]
∈ Rn×m (12b)

The vector field g0
i (x) defines the influence of the input ui

on the system about the origin and is collected for all inputs
under the vector g0(x).

The next definition gives the necessary conditions for
an input/output nonlinear system Σ1 to be passive. In the
following and the rest of the paper, the expression

Lf0V =
〈
∂V

∂x
, f0(x)

〉
(13)

represents the Lie derivative of the Cr(r ≥ 1) functional
V : Rn → R along the vector field f0(x). Additionally, the
standard notation adkf

0
g0
i

is used for Lie bracket.

Definition II.2. [8]. Let Ω1 , {x ∈ Rn : Lf0V (x) = 0}.
Necessary conditions for Σ1 to be passive with a C2 positive
semi-definite storage function V are
(i) Lf0V (x) ≤ 0,

(ii) Lg0V (x) = hT0 (x) ∀x ∈ Ω1,
(iii)

∑n
i=1

∂2fi

∂u2 (x,0). ∂V∂xi
≤ jT (x,0) + j(x,0) ∀x ∈ Ω1,

where fi(x,u) is the ith component of the vector function
f(x,u).

For a positive-definite storage function property (i) is
analogous to Lyapunov’s condition V̇ ≤ 0 for bounded
stability. The other conditions in Definition II.2 follow di-
rectly from Definition II.1 by noticing that the difference
∂V
∂x f(x,u) − hT (x,u)u attains its maximum at u = 0 on
the set Ω1.

The following theorem completes Definition II.2 by pre-
senting the sufficiency conditions required for a system Σ1

to be passive.

Theorem 1. Let V be a C1 positive semi-definite function. A
system Σ1 is passive if there exists some functions q : Rn →
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Rk, W : Rn → Rk×m and H : Rn × Rm → Rk×m, for
some integer k such that
(i) Lf0V (x) = − 1

2q
T (x)q(x),

(ii) Lg0V (x) = hT0 (x)− qT (x)W (x),
(iii) 1

2 [W (x) +H(x,u)]T [W (x) +H(x,u)]
= 1

2

[
j(x,u)T + j(x,u)

]
− LR(x,u)V,

(iv) WT (x)H(x,u) +HT (x,u)W (x) is positive-definite.
In the conditions above

LR(x,u)V =
[
LR1(x,u)V, · · · ,LRm(x,u)V

]T ∈ Rm×m

Proof. The proof follows the developments given in [9].
Assuming functions q(x), W (x), and H(x,u) exist, then
along the solutions of Σ1

V̇ ≤V̇ +
1
2

[W (x)u + q(x)]T [W (x)u + q(x)]

+
1
2
uT
[
WT (x)H(x,u) +HT (x,u)W (x)

]
u

+
1
2
uTHT (x,u)H(x,u)u (14)

through property (iv) of Theorem 1. Rearrange (14) to get

V̇ ≤Lf0V + Lg0V u + uTLR(x,u)V u +
1
2
qT (x)q(x)

+
1
2
[
qT (x)W (x)u + uTWT (x)q(x)

]
(15)

+
1
2

[W (x) +H(x,u)]T [W (x) +H(x,u)] .

Using properties (i) through (iii) given in Theorem 1, (15)
becomes

V̇ ≤ hT0 (x)u +
1
2
uT
[
j(x,u)T + j(x,u)

]
u

≤ yTu. (16)

Thus, comparing (16) with (6) it is concluded that Σ1 is
passive and V (x) is the storage function. This completes the
proof.

Remark 1. Notice on the set Ω1 defined in Definition II.2
that properties (i) through (iii) of Theorem 1 become exactly
the necessary conditions for passivity. Thus, Theorem 1 plays
the role of the generalized KYP lemma for non-affine systems
on the set Ω1.

For an affine Σ1, Theorem 1 becomes exactly the nonlinear
version of the KYP lemma derived by Hill and Moylan [7].
This result is summarized in the following corollary.

Corollary 1. Let V be a C1 positive semi-definite function.
A system

ẋ = f0(x) + g0(x)u
y = h0(x) + j(x)u

is passive if and only if
(i) Lf0V = − 1

2q
T (x)q(x),

(ii) Lg0V = hT0 (x)− qT (x)W (x),
(iii) 1

2W
T (x)W (x) = 1

2

[
j(x)T + j(x)

]
.

III. CONTROL SYNTHESIS FOR STABILIZATION

This section addresses control design for general non-
affine systems. Suppose the control is decomposed as

u(x) = α(x) + ν(x) (17)

and the first component α(x) is used to ensure the non-affine
system under consideration is passive through input ν(x) for
some dummy output y(x). Then asymptotic stabilization is
guaranteed through pure output feedback under zero-state
detectability conditions [6]. The construction and proof that
the choice of control in (17) asymptotically stabilizes a non-
affine system is the focus of this section.

A. Control Synthesis for Multi-Input Non-Affine Systems

This result is an algorithm for stabilizing non-affine sys-
tems of the form

Σ : ẋ = f(x,u); x(0) = x0 (1)

with state-space X = Rn and set of input values U = Rm.
The set U of admissible inputs consists of all U -valued piece-
wise continuous functions defined on R. The vector field
f(.) is a continuously differentiable map defined on the open
subset O ⊂ Rn. Without loss of generality, the origin is
chosen as the equilibrium of Σ. The control algorithm is
detailed in the following four steps.

Step 1: Define vector fields for the system under study:

f
0
(x) = f(x,α(x)) ∈ Rn (18)

g(x,ν(x)) =
∫ 1

0

∂f (x,α(x) + γ)
∂γ

∣∣∣∣
γ=θν

dθ ∈ Rn×m

g0
i

= g
i
(x,0) ∈ Rn.

Under the influence of the control in (17) and the definitions
above, Σ becomes

ẋ = f
0
(x) + g(x,ν(x))ν(x). (19)

Notice that the vector field f
0
(x) is the closed-loop dynamics

with control input α(x), unlike f0(x) defined in (7a).
Further, f

0
(x) is independent of ν(x) in (19). This allows

separate construction of α(x) independent of ν(x) and is
exploited in the following step.

Step 2: Construct α(x) to ensure f
0
(x) is stable in the

Lyapunov sense. This step ensures the energy of the system
remains bounded. Note that during construction of α(x) the
control function ν(x) = 0 identically.

Step 3: Define a dummy output h(x,ν(x)) ∈ Rm for the
system in (19) to ensure that it becomes passive through
the input ν(x), or equivalently, satisfies Definition II.1 or
Theorem 1 with a positive-definite storage function.

Step 4: Finally, construct the control function ν(x) to
satisfy

ν(x) = −h(x,ν(x)). (20)

From previous work on stabilization of passive systems [8]
it is known that if the dynamics (19) along with the output
definition in Step 3 is zero-state detectable, then the control
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given in (20) globally asymptotically stabilizes the system.
Zero-state detectability states that if the output is identically
zero, then the state vector approaches the origin in time.
The detectability properties of Σ can be verified through
accessibility type conditions summarized below.

Definition III.1. [8] Suppose the system Σ is passive with
Cr(r ≥ 1) storage function V , which is positive definite and
proper. Then, Σ is zero-state detectable if Ω∩S = {0} where
the distribution

D = span
{
adkf

0
g0
i

: 0 ≤ k ≤ n− 1, 1 ≤ i ≤ m
}

and two sets Ω and S, associated with D be defined as

Ω =
{
x ∈ N ⊆ Rn : Lkf

0
V (x) = 0, k = 1, . . . , r

}
, (21)

S =
{
x ∈ N ⊆ Rn : Lkf

0
LτV (x) = 0,∀τ ∈ D, k = 0, 1, . . . , r − 1

}
(22)

The following proposition proves that Σ described in (1)
and equivalently in (19) is asymptotically stabilized by the
proposed control algorithm.

Proposition 1. Suppose V is a C2 positive-definite Lyapunov
function and the functions α(x) and ν(x) satisfy Steps 1-4
with output h(x,ν(x)) = [LgV ]T . If Ω ∩ S = {0} then the
control u(x) = α(x) + ν(x) asymptotically stabilizes the
system Σ.

Proof. Asymptotic stabilization is shown using LaSalle’s
invariant principle and Lyapunov’s direct method. The rate
of change of the Lyapunov function about the trajectories of
Σ given in (19) is

V̇ =Lf
0
V + LgV ν(x). (23)

Then, through construction of α(x)

V̇ ≤ LgV ν(x). (24)

By Definition II.1 and Theorem 1 (24) is passive with the

output y =
(
LgV

)T
. With Ω

⋂
S = {0}, this passive sys-

tem is zero-state detectable and Σ is asymptotically stabilized
by input ν(x) = −LgV . This completes the proof.

Proposition 1 is a powerful result that guarantees asymp-
totic stabilization for all non-affine nonlinear systems. This
method of control synthesis is general and relies upon
separate construction of stiffness and damping functions
α(x) and ν(x) respectively. The construction of ν(x) has
received considerable attention in the literature under the
label ‘passivity-based control’. The requirements of zero-
state detectability is a consequence of employing pure output
feedback for passive systems [8], [10], [11] which can be
relaxed by use of other methods for control of open-loop
stable systems.

IV. NUMERICAL EXAMPLE: ONE-DIMENSIONAL
NON-AFFINE UNSTABLE DYNAMICS

The purpose of this section is to verify the theoretical de-
velopments through an open-loop unstable non-affine system.
The example considered is a polynomial system of degree

three given in (2). The control law for this example was
developed through analytic root solving techniques in [12].
Here an alternate control law formulation is presented to
globally stabilize the origin.

1) Controller Design: The feedback control of the form
(17) is constructed in four steps.

Step 1: The vector fields corresponding to definitions (18)
for the system given in (2) are:

f
0
(x) = x− 2α3(x) (25a)

g (x, ν(x)) = −6α2(x)− 6α(x)ν(x)− 2ν2(x) (25b)

g0(x) = −6α2(x). (25c)

Step 2: The following choice for function α(x) ensures
Lyapunov stability of f

0
(x):

α(x) =


1
3√2
x if |x| ≥ 1;

− 1
3√2

if −1 < x < 0;
0 if x = 0 ;
1
3√2

if 0 < x < 1.

(26)

Using α(x) defined above the dynamics f
0
(x) become

f
0
(x) =


x− x3 if |x| ≥ 1;
x+ 1 if −1 < x < 0;
0 if x = 0 ;
x− 1 if 0 < x < 1.

(27)

Note that f
0
(x) described in (27) has three stable fixed

points: x = −1, x = 0, and x = 1. Thus the dynamics
of the system (2) are rendered stable for all time.

Steps 3 & 4: These steps construct the control input ν(x)
that enforces stability of the origin. Control laws for such
a class of system have been addressed by passivity-based
methods. Following the formulation given in [10] control
input ν(x) is constructed as

ν(x) = −
γ(x)Lg0V (x)

1 + |Lg0V (x)|2
(28)

where γ(x) = β
1+x2(1+4+36α2(x))2 , and Lg0V (x) is the Lie

derivative of V (x) along [0; g0(x)]. The design parameter
0 < β < 1 bounds the control input.

Proposition 1 guarantees that the control input α(x) +
ν(x) asymptotically stabilizes an open-loop unstable stable
system if Ω

⋂
S = {0}. A routine calculation shows that

Lf
0
V (x) = 0 for Ω = {−1, 0, 1}. Additionally,

0 = Lg0V (x) = −6xα2(x) (29)

0 = L[f
0
,g0]V (x) (30)

is satisfied for x = 0 so Ω
⋂
S = {0} for all x ∈ R. Hence it

can be concluded that the control form α(x)+ν(x) globally
asymptotically stabilizes the origin. Reference [12] designed
u = 3

√
x as the control law for the prescribed system using

inversion, which only locally regulates the system (2).
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Fig. 2. System response of (2) for u = 0 and u = α(x)

Fig. 3. Closed-loop system response of (2) and control effort

2) Results and Discussion: The proposed control law
given in (26) and (28) was validated in simulation with
the design parameter β set to 0.9. The initial condition was
chosen as x(0) = 1. The behaviour of the open-loop system
and the system with control input u = α(x) is presented in
Fig. 2. As expected the open-loop behaviour is unstable and
the system with u = α(x) stays at x = 1 for all time.
The closed-loop response is shown in Fig. 3. The initial
magnitude of the control input ν(x) is small (specifically
ν(x) = 0.00029) but greater than zero to ensure the state of
the system becomes less than 1. It is difficult to see but in
the figure at time t = 2seconds the state is x(2) = 0.993.
The control is dominated by α(x) since the dynamics f

0
(x)

inherently push the system toward the origin. By construction
in (28) the magnitude of ν(x) increases when the state nears
the origin so as to asymptotically regulate the dynamics. This
is consistent with earlier conclusions that high-gain feedback
is required to stabilize the origin. Thereafter the control is
turned off and the system stays at the origin for all future
time. Note that the discontinuous nature of the control is an
artifact of the choice of α(x).

V. CONCLUSIONS

In this paper a design procedure for analytic construction
of control laws for unstable non-affine systems was proposed,
and sufficiency conditions for passivity were derived. This

work also extended well-established control law design pro-
cedures for stable non-affine-in-control systems to unstable
non-affine systems, without requiring the control influence
to be non-singular throughout the domain of interest.

The proposed control laws are real-time implementable
and unlike some switching schemes proposed in literature,
do not require immense offline processing. The algorithm is
general and can stabilize systems of the form ẋ = x− 2xu4

by appropriate design of α(x). Owing to the energy-based
concept that is utilized for construction of the control,
the results obtained are consistent with the physics of the
problem and do not violate system constraints. Numerical
examples illustrate that the nature of the control function
α(x) is continuous but not differentiable. It is interesting
to note that [13][Corollary 5.8.8] proved that any nonlinear
system whose linear counterparts are unstable cannot be
locally C1 stabilizable. Importantly, the control laws derived
here arrive at this well-known result without making any
prior assumptions about the nature of the vector fields.
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Necessary Conditions for Feedback Passivation of Nonaffine-in-Control Systems∗

Anshu Narang-Siddarth† John Valasek‡

Abstract

It is well understood that an open-loop Lyapunov stable

nonaffine-in-control nonlinear system can be asymptotically

stabilized through feedback. But stabilizing an open-loop

unstable nonaffine system remains an open research ques-

tion. This paper derives the necessary conditions required

to render a general open-loop unstable nonlinear system pas-

sive through static feedback. It is shown that this is possible

only if the system under consideration has relative degree

one and is weakly minimum phase through an appropriate

output definition. Unlike feedback passivation for affine-in-

control nonlinear systems this result is not sufficient. The

developments and the essential ideas of the paper are verified

for a continuously stirred tank reactor.

1 Introduction.

This paper revisits the problem of stabilizing systems of
the following form:

(1.1) Σ : ẋ = f(x,u)

where x ∈ Rn is the state, u ∈ Rm is the control input
and f : Rn×Rm → Rn is sufficiently smooth. Through-
out the paper it is assumed that a control Lyapunov
function for (1.1) exists which sufficiently ensures that
the dynamical model given in Σ is asymptotically con-
trollable [1]. Balakrishnan [2] proved that any such con-
trollable nonlinear system could be transformed into the
following affine form

(1.2) ẋ = f(x,u) ≡ f1(x) + f2(x)u,

which inspired many of the of nonlinear control tech-
niques that we know today such as feedback lineariza-
tion, gain-scheduling, sliding-mode control, backstep-
ping and more recently forwarding. However, it is dif-
ficult to find a change of coordinates that leads to the
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Office of Scientific Research under contract FA9550-08-1-0038

with technical monitor Dr. Fariba Fahroo.
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responding Author)
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linear form given in (1.2). Moreover if such a trans-
formation exists, the resultant set of coordinates may
be abstract mathematical quantities and/or lead to dis-
continuous vector fields that are not desirable from a
control standpoint.

Artstein [3] proved that a stabilizable control for
continuous time-invariant nonaffine systems of the form
(1.1) exists if and only if the Lyapunov function V (x)
satisfies

inf
u
∇V (x)f(x,u) < 0.(1.3)

The intuitive idea behind (1.3) is that there exists
some sort of ‘energy’ measure of the states that dimin-
ishes along suitably chosen paths and the control in-
put must be chosen to force the system to approach
a minimal-energy configuration. This condition is a
special case of the Hamilton-Jacobi-Bellman equation
[4][Ch.6, Sec.6.3] with time-invariant objective function.
It is well-known that this partial differential equation
may not always have a solution. Moreover, if a solution
exists it may not be unique. This was discussed in Art-
stein’s work and he suggested that nonaffine systems in
general cannot be stabilized with continuous feedback.
Motivated by Artstein’s conclusions, Jayawardhana [5]
used pulse-width modulated control signals to stabilize
non-interacting mechanical systems.

The fact that discontinuous control cannot be em-
ployed for most physical systems has motivated several
researchers to explore other feedback solution methods
for nonaffine systems. Moulay [6] augmented convexity
requirement on the argument of (1.3) to provide suffi-
ciency conditions for the existence of stabilizing continu-
ous controls and developed constructive control laws for
a class of single-input second and third order polynomial
systems. Lin [7],[8] explored passivity-based methods
for smooth open-loop Lyapunov stable nonaffine sys-
tems. The central idea of the passivity-based approach
is to take advantage of the smoothness of the nonlin-
ear vector field and represent it as a linear combination
of affine and nonaffine parts. Upon doing so the con-
troller is designed by assuming that the affine part dom-
inates the closed-loop system stability, and the higher-
order terms are always upper-bounded for all admissible
states and control inputs.

The control design methods discussed so far pro-



vide constructive forms for the control variable. But
in order to consider higher-order unstable systems sev-
eral approximation and numerical methods have been
explored. The intuitive idea has been to indirectly sta-
bilize the system by varying the control derivative. In
order to do so the nonaffine problem given in (1.1) is
augmented with the control input dynamics such that
the resulting dynamics

ẋ = f(x,u)(1.4a)

τ u̇ = ν(1.4b)

become affine in the input vector ν. The time-constant
τ is appropriately chosen such that the control input
dynamics evolve faster than the dynamical system un-
der consideration. Hovakimyan [9] designed the new
input vector using dynamic inversion motivated by the
observation that for a single-state single-input system
the following input vector

ν = − sgn

(
∂f

∂u

)
(f(x, u) + ax) ; a > 0,

∂f

∂u
> 0

(1.5)

globally asymptotically stabilizes the system. But
(1.5) assumes non-singular control influence which is
quite restrictive and not satisfied in general. Similar
assumptions were also made in [10], [11] and [12].

Motivated by Sontag’s universal formula for affine
systems [13] one is lead to the natural question: As-
suming that a control Lyapunov function exists for the
dynamic system given in (1.1). Can a constructive con-
trol law design procedure be formulated to asymptoti-
cally stabilize an unstable nonaffine system? In [14] the
authors pursued this research problem and presented
a control design procedure based on feedback passiva-
tion introduced in [15] for control-affine systems. The
general concept was to use state-feedback to render the
system passive and then employ well-established results
for stabilizing passive systems. Reference [14] devel-
oped sufficiency conditions for passivity and presented
a novel method for construction of control laws without
making any assumptions about the nature of the con-
trol influence. In this paper, the important conditions
under which the dynamical model given in (1.1) can be
rendered passive through state-feedback are derived.

The paper is organized as follows. Section 2
presents the necessary mathematical preliminaries and
conditions under which (1.1) can be rendered passive
are derived in Section 3. A continuously stirred tank
reactor example is studied in Section 4 and conclusions
are presented in Section 5.

2 Preliminaries

Consider the following nonlinear dynamical system:

(2.6) Σ1 :
ẋ = f(x,u)
y = h(x,u)

with state-space X = Rn, set of input values U =
Rm and set of output values Y = Rm. The set U
of admissible inputs consists of all U -valued piecewise
continuous functions defined on R. The functions f(.)
and h(.) are continuously differentiable maps defined
on the open subset O ⊂ Rn. It is assumed that these
vector fields are smooth mappings with at least one
equilibrium. Without loss of generality, the origin is
chosen as the equilibrium of Σ1, that is f(0,0) = 0 and
h(0,0) = 0.

Definition 2.1. A system Σ1 is said to be passive
if there exists a storage function V (x) that satisfies
V (0) = 0 and for any u ∈ U , ∀t ≥ 0 and initial
condition x0 ∈ X

V (x(t))− V (x0) ≤
∫ t

0

yT (s)u(s)ds.(2.7)

If the storage function is Cr times continuously differen-
tiable with r ≥ 1 then differentiating both sides of (2.7)
gives

V̇ ≤ yTu.(2.8)

Definition 2.1 is the mathematical analog of stating
that the amount of energy stored in a passive system
is less than or equal to the energy being input. The
next definition gives the necessary conditions for an
input/output nonlinear system Σ1 to be passive. For
convenience, define the following vector fields

f0(x) , f(x,0) ∈ Rn,(2.9a)

h0(x) , h(x,0) ∈ Rm.(2.9b)

In the above definitions f0(x) represents the open-loop
dynamics of the dynamical system Σ1 while h0(x) is
the output of Σ1 at zero-input. Using these introduced
notations and the fact that the vector fields in Σ1 are
smooth, the nonlinear dynamical system is equivalently
represented as

ẋ = f0(x) + g(x,u)u(2.10a)

h(x,u) = h0(x) + j(x,u)u,(2.10b)

where the following identities have been used:

f(x,u)− f0(x) =

(∫ 1

0

∂f(x, γ)

∂γ

∣∣∣∣
γ=θu

dθ

)
u(x) , g(x,u)u

(2.11)

h(x,u)− h0(x) =

(∫ 1

0

∂h(x, γ)

∂γ

∣∣∣∣
γ=θu

dθ

)
u(x) , j(x,u)u.

(2.12)



Hence the vector fields g(x,u) and j(x,u) capture the
effect of the control input on the motion of the dynam-
ical system states and the output. Recall, for control-
affine systems these vector fields are independent of the
control input vector. Using smoothness of the vector
g(x,u), (2.10a) can be further decomposed as

ẋ = f0(x) + g0(x)u +
m∑
i=1

ui [Ri(x,u)u](2.13)

with Ri(x,u) : Rn×Rm → Rn×m, being a smooth map
for 1 ≤ i ≤ m and

g0
i (x) = gi(x,0) =

∂f

∂ui
(x,0) ∈ Rn; 1 ≤ i ≤ m

(2.14)

g0(x) =
∂f

∂u
(x,0) =

[
g0
1(x), . . . ,g0

m(x)
]
∈ Rn×m

(2.15)

The vector field g0
i (x) defines the influence of input ui

on the system about the origin and is collected for all
inputs under the vector g0(x).

For convenience let V : Rn → R be a Cr(r ≥ 1)
storage function and the expression

Lf0V =

〈
∂V

∂x
, f0(x)

〉
(2.16)

represent the Lie derivative of the functional V along
the vector field f0(x).

Definition 2.2. [7]. Let Ω1 ,
{x ∈ Rn : Lf0V (x) = 0}. Necessary conditions for
Σ1 to be passive with a C2 storage function V are

(i) Lf0V (x) ≤ 0,

(ii) Lg0
V (x) = hT

0 (x) ∀x ∈ Ω1,

(iii)
∑n

i=1
∂2fi
∂u2 (x,0). ∂V∂xi

≤ 2jT (x,0) ∀x ∈ Ω1,

where fi(x,u) is the ith component of the vector func-
tion f(x,u).

If the storage function was positive-definite property (i)
would be analogous to Lyapunov’s condition V̇ ≤ 0
for bounded stability. The other conditions in Defi-
nition 2.2 follow directly from Definition 2.1 by notic-
ing that the difference ∂V

∂x f(x,u)−hT (x,u)u attains its
maximum at u = 0 on the set Ω1.

3 Feedback Equivalence to a Passive
System/Feedback Passivation

In this section the conditions under which the following
system

(3.17) Σ2 :
ẋ = f(x,u)
y = h(x)

is feedback equivalent to a passive system with positive
definite storage function V (x) are derived. These condi-
tions are developed to exploit the following interesting
stabilizing property of passive systems. Assume that Σ2

is passive and zero-state observable. This means that
if the output h(x) = 0 is zero, then the state is iden-
tically zero. With this property the following theorem
states that a passive system is globally stabilized purely
by output feedback.

Theorem 3.1. [16][theorem 14.4] If Σ2 is

(i) passive with a radially unbounded positive definite
storage function and

(ii) zero-state observable

then the origin x = 0 can be globally stabilized by
u = −φ(y), where φ is any locally Lipschitz function
such that φ(0) = 0 and yTφ(y) > 0 for all y 6= 0.

The control in Theorem 3.1 has been formulated to
ensure the passivity condition in Definition 2.1 holds
globally. Then the zero-state observable property helps
conclude that the origin is the largest invariant set and
hence the global equilibrium of the closed-loop system.
In order to use this powerful result for control design,
conditions under which systems can be made passive
need to be studied. The first result toward this end,
studies the relative degree of a passive system. Relative
degree of a system is the number of times the output
must be differentiated for the input to appear explicitly.
The following definition expresses this condition using
Lie derivatives.

Definition 3.1. The system Σ2 is said to have a rela-
tive degree (r1, r2, . . . , rm) at a point (x0,u0) if:

(i) ∂
∂u

[
Lk
f hi(x)

]
= 0 for all 1 ≤ i ≤ m, x in the

neighbourhood of x0 and all u in the neighbourhood
of u0 and all k < ri,

(ii) ∂
∂u [Lri

f hi(x)]
∣∣
(x0,u0)

6= 0.

Note the relative degree of a nonlinear system is a
local concept defined about the point (x0,u0) and also
depends on the domain of control. This dependence is
a result of the non-affinity of the system. Next a lemma
is derived that will help determine the relative degree
of Σ2.

Lemma 3.1. The origin belongs to the set Ω1 given in
Definition 2.2.

Proof. Consider the open-loop system Σ2. The neces-
sary condition for passivity with positive definite storage
function is

Lf0V (x) ≤ 0.



This indicates that the system is stable in the Lyapunov
sense. By Lasalle’s theorem [17] it is known that
the state of this open-loop system will enter the set
{x ∈ Rn : Lf0V (x) = 0}. This is exactly the set Ω1

in Definition 2.2. This result also can be shown by
Barbalat’s lemma [18].

Further, the set Ω1 contains the invariant sets of
the system. Since origin is the fixed-point of the system
Σ1, it is concluded that it belongs to the set Ω1. This
completes the proof. �

The next theorem analyzes the relative degree of
the passive system Σ2.

Theorem 3.2. Suppose Σ2 is passive with a C2 storage
function V which is positive definite. If g0(0) and ∂h

∂x (0)
have full rank, then Σ2 has relative degree (1, 1, . . . , 1)
at (x = 0,u = 0).

Proof. The relative degree of Σ2 is one if
[
∂ẏ
∂u

]
(0,0) is

non-singular, or

∂ẏ

∂u
(0,0) =

{
∂h

∂x
g0(x) +

∂

∂u

[
∂h

∂x

[
m∑
i=1

uiRi(x,u)

]
u

]}
(0,0)

=
∂h

∂x
g0(0)

(3.18)

= Lg0
h(0)

is m×m and non-singular. Hence conditions for which
(3.18) holds true need to be determined. This is carried
out in the following two steps.

First, since Σ2 is passive it satisfies the necessary
conditions given in Definition 2.2. Further, property
(ii) in Definition 2.2 is defined only for set Ω1. From
Lemma 3.1 it is known that origin belongs to the set Ω1

and hence

∂

∂x

[
gT
0 (x)

∂V

∂x

]
g0(x) =

∂h

∂x
g0(x)(3.19)

is satisfied at x = 0. Differentiating and using the fact
that ∂V

∂x (0) = 0 in (3.19)

gT
0 (0)

∂2V

∂x2
(0)g0(0) =

∂h

∂x
g0(0).(3.20)

The rest of the proof proceeds similar to Proposi-

tion 2.44 given in [19]. The Hessian ∂2V
∂x2 (0) is symmet-

ric positive definite by properties of the storage function
and can be factored as RTR with some matrix R. Then,

gT
0 (0)RTR(0)g0(0) =

∂h

∂x
g0(0).(3.21)

Since ∂h
∂x (0) = gT

0 (0)RTR(0) is assumed to be full
rank, Rg0(0) has full rank. Hence it is concluded that
∂h
∂xg0(0) is m × m and full rank. This completes the
proof. �

Remark 3.1. For an affine system, the conditions of
Definition 2.2 are satisfied for all control inputs. Since
the relative degree for an affine system does not depend
on input, Theorem 3.2 consequently reduces to Proposi-
tion 2.44 [19].

The next result examines the nature of the zero
dynamics of Σ2.

Theorem 3.3. Suppose Σ2 is passive with a C2 storage
function V which is positive definite. If g0(0) and ∂h

∂x (0)
have full rank, then zero dynamics of Σ2 locally exist
about (x = 0,u = 0) and is weakly minimum phase.

Proof. From Theorem 3.2, Σ2 has a well-defined relative
degree and local zero dynamics exist. Let the set
Ω2 = {x ∈ Rn : h(x) = 0} define the points on the zero-
output manifold. By definition of Σ2 this set contains
the origin. By Lemma 3.1 origin is also contained in
the set Ω1. Thus, in order to study the local nature
of the zero dynamics about the origin, only those state
trajectories that fall in the intersection set Ω2

⋂
Ω1 need

to be considered. On these set of points properties (i)
through (ii) of Definition 2.2 hold. Hence,

V̇ = Lf(x,u)V

= Lf0V + Lg0
V u + uTLR(x,u)V u(3.22)

= uTLR(x,u)V u.

By Definition 2.1, for passive systems V̇ ≤ yTu. Fur-
thermore, this condition becomes V̇ ≤ 0 on the set
Ω2

⋂
Ω1. This inference along with condition (3.22) im-

plies that the origin is Lyapunov stable and hence zero
dynamics is weakly minimum phase. This completes the
proof.�

Theorems 3.2 and 3.3 together give the necessary
conditions for feedback equivalence to a passive system.
This result is summarized by the following theorem.

Theorem 3.4. Suppose g0(0) and ∂h
∂x (0) have full

rank. The necessary conditions for transforming Σ2 into
a passive system with C2 positive definite storage func-
tion V using static state-feedback compensation are:

(i) Σ2 has relative degree {1, 1, . . . , 1} and

(ii) is weakly minimum phase



Proof. From Theorem 3.2 and Theorem 3.3 it is known
that the resulting system will have relative degree
(1, 1, . . .) with weakly minimum phase zero dynam-
ics. Further, it is well understood that relative de-
gree and zero dynamics are invariant under static feed-
back [20][Lemma 2.4]. Hence the conditions in the proof
follow. �

Theorem 3.4 extends the powerful feedback equiva-
lence approach to general nonlinear systems. It provides
necessary conditions for a system to be made passive by
feedback under mild restrictions. The equivalent theo-
rem for affine systems derived in [15] shows that Theo-
rem 3.4 is also sufficient for feedback passivity. But the
topological and nonlinear nature of nonaffine systems
hinders this result to be sufficient.

4 Application to Continuously Stirred Tank
Reactor

The purpose of this section is to show how conditions
given by Theorem 3.4 can be applied to test whether or
not a system can be rendered passive through static-
feedback. The nonaffine system under consideration
is a constant volume reactor and the objective is to
stabilize the system about its equilibrium by adjusting
the coolant flow rate. The system [21] is represented as

ẋ1 = 1− x1 − a0x1 exp(−104/x2)(4.23a)

ẋ2 = 350− x2 + a1x1 exp(−104/x2)(4.23b)

+ a3u(1− exp(−a2/u))(350− x2)

and where 0 < x1 < 1 is the concentration of the tank
in mol/l, x2 > 350 is the temperature of the tank in
◦K and u ≥ 0 is the coolant flow rate in mol/min.
The system parameters [21] are given in Table 1. The
control influence in (4.23) is nonlinear in the control and
not monotonic in any variable. This trend is presented
in Fig. 1. Owing to this nonlinear behaviour previous
studies have used neural-network based control designs
to stabilize the concentration of the reactor [21], [22].

4.1 Test for Feedback Passivation The first step
is to cast the system into form of Σ2. However,

Table 1: Continuously stirred tank reactor model pa-
rameters

Parameter Value
a0 7.2× 1010min−1

a1 1.44× 1013

a2 6.987× 102

a3 0.01

Figure 1: Control influence of the continuously stirred
tank reactor

the origin is not the equilibrium of the system given
in (4.23). The equilibrium solutions are obtained by
solving the following transcendental equations:

0 = 1− x1∗ − a0x1∗ exp(−104/x2∗)(4.24a)

0 = 350− x2∗ + a1x1∗ exp(−104/x2∗) .(4.24b)

Rewrite the concentration as x1∗ = 1/(1 +

a0 exp(−104/x2∗)) and solve for roots of

0 = 350− x2∗ + exp(−104/x2∗)[350a0 + a1 − a0x2∗].

(4.25)

The algebraic equation given in (4.25) has a unique root
x2∗ = 549.01257025◦K. Using (4.24) the unique root for
concentration is x1∗ = 0.001128849277mol/l. Define
the states e1 = x1 − x1∗ and e2 = x2 − x2∗ to shift
the equilibrium to origin. Routine calculation gives the
following system:

ė1 = c− e1 − a0(x1∗ + e1) exp(−104/(x2∗+e2))(4.26a)

ė2 = d− e2 + a1(e1 + x1∗) exp(−104/(x2∗+e2))

+ a3u(1− exp(−a2/u))(350− x2∗ − e2)(4.26b)

y = e2(4.26c)

where c = a0x1∗ exp(−104/x2∗) and d =
−a1x1∗ exp(−104/x2∗) and a dummy output has
been defined. Thus comparing (4.26) with Σ2 gives the
following vector field definitions

f0(e) =

[
c− e1 − a0(x1∗ + e1) exp(−104/(x2∗+e2))

d− e2 + a1(e1 + x1∗) exp(−104/(x2∗+e2))

]
,

(4.27)

g0(e) =

[
0
a3(350− x2∗ − e2)

]
,(4.28)



and

h0(e) = e2.(4.29)

In the second step necessary conditions given in
Theorem 3.4 are verified. Notice with the output
defined by (4.29) property (i) is satisfied. Furthermore,
g0(0) = [0, a3(350 − x2∗)]T and ∂h0

∂e (0) = [0, 1] have
full rank. Finally, to verify that the (4.26) is weakly
minimum phase set the output y = e2 = 0 and its
derivative ė2 = 0. This leaves the following internal
dynamics

ė1 = a0x1∗ exp(−104/x2∗)−e1 − a0(x1∗ + e1) exp(−104/x2∗)

(4.30)

which equivalently becomes a linear homogeneous dif-
ferential equation

ė1 = −e1 − a0e1 exp(−104/x2∗) .(4.31)

From Table 1 and properties of exponential function,
it can be concluded that the internal dynamics given
in (4.31) are exponentially stable and the continuously
stirred tank reactor given in (4.23) can be rendered
passive through feedback.

5 Conclusions

In this paper necessary conditions for analytical con-
struction of control for unstable nonaffine systems were
derived. This work extended the applicability of the
well-established feedback passivation control law design
procedures to unstable nonaffine systems. Furthermore,
the results presented do not require the control influence
to be non-singular throughout the domain of interest.
These conditions along with results given in [8] can be
employed for asymptotic stabilization of a general non-
affine system with static compensation unlike some of
the switching schemes [23] that require immense off-line
processing.
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Flight control of hypersonic vehicles is challenging because of the wide range of oper-

ating conditions encountered and certain aspects unique to high speed flight. A particular

safety concern in hypersonic flight is the risk of an inlet unstart, which not only produces

a significant decrease in thrust but also results in a change to the aerodynamics and thus

can lead to the loss of the vehicle. Previous work on control design for hypersonic vehicles

often uses linearized or simplified nonlinear dynamical models of the vehicle, and very little

work has been done on recovering from unstart events. Using a generic hypersonic vehicle

as a control design and simulation model, this paper develops a nonlinear adaptive dynamic

inversion control architecture with a control allocation scheme to track realistic flight path

angle trajectories. A robustness analysis is performed on the initial control architecture de-

sign, which shows that the control architecture is able to handle time delays, perturbations

in stability derivatives, and reduced control surface effectiveness. The control architecture

then is evaluated for its ability to handle inlet unstart. Simulation results presented in the

paper demonstrate that the approach achieves desired tracking performance while being

robust to the particular uncertainties and inlet unstart conditions studied.

I. Introduction

The design of control architectures for hypersonic vehicles is a current area of research in the field of
controls. One particular safety concern in hypersonic flight is the risk of an inlet unstart, which can lead to a
decrease in thrust and the possible loss of the vehicle. There are three main reasons that cause a hypersonic
airbreathing engine to unstart: (1) a flow to the inlet that is slower than the required Mach number for
the engine to operate, (2) an altered flow that no longer passes through the throat of the engine because
of reasons such as exceeding the limits on angle-of-attack (α) and sideslip angle (β), and (3) an increase
in the back pressure in the engine that causes the shock wave to move ahead of the throat [1]. A control
architecture for a hypersonic vehicle must be capable of maintaining the aircraft on a controlled trajectory
in the event of an inlet unstart.

Many of the previous control designs for hypersonic vehicles have involved the use of linearized models
of the aircraft instead of the full nonlinear equations of motion [2], [3], [4], [5]. Annaswamy, et.al. created
adaptive controllers for hypersonic vehicles; however, the controllers are designed based on linearized models
of the aircraft dynamics and require gain-scheduling for their implementation [2],[3]. Groves, et.al. imple-
mented control designs based on linear models of a hypersonic vehicle for setpoint and regulator tracking [4].
Bolender, et.al. designed adaptive control laws for an experimental hypersonic vehicle based on a linearized
model of the longitudinal dynamics of the vehicle [5].

In terms of work with nonlinear models for control design, Johnson, et.al. applied a neural network-based
adaptive control architecture to a model of the X-33 vehicle for the generation of ascent and abort trajectories
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as well as the control of the aircraft [6]. Fiorentini, et.al. [7] and Parker, et.al. [8] both used simplified
nonlinear models of a hypersonic vehicle in their control design that exhibited good tracking performance
but a slow response. While Parker, et.al. designed an approximate feedback linearization controller, the
controller in that paper is not adaptive; however, a case study of their approximate feedback linearization
controller showed that the controller was robust to mild plant parameter variations in the moment of inertia
Iyy, the vehicle length, and the mass of the vehicle [9].

This paper presents a design of a nonlinear adaptive dynamic inversion controller for a Generic Hypersonic
Vehicle (GHV). Because the dynamic equations for the GHV are inherently nonlinear and the aerodynamic
and control derivatives for the aircraft have significant uncertainty associated with them, a nonlinear adaptive
dynamic inversion control architecture was selected as the preferred control architecture. The design of the
control architecture for the GHV involved the nonlinear equations of motion for the vehicle. When the
reference trajectories were generated for the simulation, the adaptive dynamic inversion control architecture
was altered to use altitude rate ḣ instead of α, but the control architecture still used the nonlinear equation
for ḣ in its design.

The paper is organized as follows. Section II provides a brief overview of the GHV and the proposed
control architecture. Section III contains the derivations of the general adaptive dynamic inversion equations
that are used in the control architecture. Sections IV and V show how the nonlinear dynamic equations
for the GHV are transformed into the form given in Section III for the control architecture. Representative
simulation results and a robustness analysis of the nonlinear adaptive dynamic inversion control architecture
are given in Section VI. Section VII describes the development of equations to allow realistic trajectories to
be generated for the GHV simulation, and the simulation results for these realistic trajectories are shown in
Section VIII. Finally, the conclusion and future extensions of this work are given in Section IX.

II. Control Structure for the GHV

The Generic Hypersonic Vehicle (GHV), as shown in Figure 1, is an academic hypersonic aircraft vehicle
model created at the Air Force Research Laboratory as a platform for studying control laws. The GHV plant
simulation is implemented using a Simulink model that contains the nonlinear, 6-DOF equations of motion
for an inelastic hypersonic vehicle. The aerodynamic and thrust forces and moments acting on the vehicle
are modeled using look-up tables; the tables for the aerodynamic forces and moments were generated based
on computational fluid dynamics data using shock-expansion methods with a viscous correction.

Using two elevons and two ruddervators, it is desired to control angle-of-attack (α), sideslip angle (β),
and aerodynamic bank angle (µ). It was decided to command the aerodynamic bank angle (µ) instead of
the bank attitude angle (φ) in order to ensure that the dynamic inversion is singular only at β = ±90 deg.
Figure 2 shows a diagram of the GHV system with the adaptive dynamic inversion controllers. To simplify
the process of designing a nonlinear adaptive dynamic inversion control architecture, it is assumed that the
aircraft states can be divided into two timescale categories, which are the fast states, which consist of the
angular rates p, q, and r as noted in [10], and the slow states, which consist of the angles α, β, and µ. An
adaptive dynamic inversion controller first must translate α, β, and µ commands into commands for the
body axis rates p, q, and r, which then are passed into another adaptive dynamic inversion controller that
determines the corresponding control surface deflections to achieve the desired p, q, and r commands.

The following three sections will describe the equations found in the inversion blocks in Figure 2. See
Reference [11] for a description of the equations that are contained in the GHV simulation. For the equations
derived in Sections IV and V, the flat, nonrotating earth assumption [12, p. 43] is made. It is acceptable
to make this assumption in this case because while the vehicle is flying fast enough for the round rotating
Earth effects to be significant, the time scale of the controlled dynamics are sufficiently fast to neglect them.

III. General Adaptive Dynamic Inversion Equations

This section contains the derivation of the control laws for two cases of the adaptive nonlinear dynamic
inversion controller. The first case involves dynamic equations containing the same number of controls and
controlled variables, and the second case deals with dynamic equations with a greater number of controls
than controlled variables. It should be noted in both cases, the general nonlinear equation of the system is
assumed to be affine in the control, which is reasonable for small deflection angles.

2

D
ow

nl
oa

de
d 

by
 J

oh
n 

V
al

as
ek

 o
n 

O
ct

ob
er

 1
5,

 2
01

3 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

01
3-

52
34

 

 Copyright © 2013 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved. 



Figure 1. The Generic Hypersonic Vehicle (GHV).

Figure 2. Diagram of the nonlinear adaptive dynamic inversion control architecture for the GHV.
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A. Case with Equal Number of Controls and Controlled Variables

Consider a general nonlinear equation of a system in the form

ẋ = f(x) + g(x)u (1)

where x ∈ R
n is the state, u ∈ R

n is the control, and f(x) : R
n 7→ R

n and g(x) : R
n 7→ R

n are locally
Lipschitz continuous. It is assumed that g(x) is nonsingular for all x ∈ R

n. Suppose that the desired
reference dynamics for the system are given by

ẋm = Axm +Br (2)

where xm ∈ R
n is the model state, r ∈ R

n is a bounded reference signal, A ∈ R
n×n is Hurwitz, and

B ∈ R
n×n. The equation for the error between the reference model and the actual system is

e = xm − x. (3)

Taking the time derivative of equation (3) results in

ė = ẋm − ẋ = ẋm − f(x) − g(x)u. (4)

If the control u is chosen to be
u = [g(x)]−1[ẋm − f̂(x) +Ke− ν] (5)

where f̂(x) : R
n 7→ R

n is a model of the plant dynamics, K ∈ R
n×n such that K = KT > 0 are the gains on

the tracking errors, and ν ∈ R
n is a pseudo-control signal, then substituting equation (5) into equation (4)

produces the error dynamics
ė = −f(x) + f̂(x) −Ke+ ν. (6)

Defining the error between the model and the actual system as ∆ = f̂(x) − f(x), equation (6) becomes

ė = −Ke+ ∆ + ν. (7)

In this paper, it is assumed that ∆ can be represented in the form ∆ = WTβ(x; d), where W ∈ R
p×n is a set

of unknown weights, and β ∈ R
p×1 is a set of known basis functions composed of the states x and a vector d

of bounded continuous exogenous inputs. Using this representation for ∆, ν is chosen to be ν = −ŴTβ(x; d),

where Ŵ ∈ R
p×n is an estimate of the weights. With these definitions, equation (7) can be written as

ė = −Ke− W̃Tβ(x; d) (8)

where W̃ = Ŵ −W is the weight estimation error.
The stability of the closed loop system under these assumptions can be established using a candidate

Lyapunov function of the form
V = eT e+ tr(W̃T ΓW

−1W̃ ) (9)

where ΓW ∈ R
p×p with ΓW = ΓW

T > 0. In order to determine the adaptation law for the parameters in W
and to prove that the error between the states of the actual system and the reference model will converge,
first, the derivative of equation (9) along the system trajectories is taken, which gives the result

V̇ = 2eT ė+ 2tr(W̃T ΓW
−1 ˙̂
W

T

). (10)

Substituting equation (8) into equation (10) produces

V̇ = −2eTKe− 2eT W̃Tβ(x; d) + 2tr(W̃T ΓW
−1 ˙̂
W

T

). (11)

Applying the trace identity that aT b = tr(baT ), equation (11) is determined to be

V̇ = −2eTKe+ 2tr(W̃T (ΓW
−1 ˙̂
W

T

− β(x; d)eT )). (12)
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Then, by choosing
˙̂
W as

˙̂
W = ΓWProj(Ŵ , β(x; d)eT ) (13)

where Proj represents the projection operator, which is used to maintain specified bounds on the weights
[13], V̇ can be upper bounded as

V̇ ≤ −2eTKe ≤ 0 (14)

which implies that e is bounded. Because r is bounded by definition above, xm is bounded. Since e and xm

are bounded, x is bounded. Consequently, β(x; d) is bounded as well. In order to use Barbalat’s lemma [14]
to complete the proof, the second derivative of equation (9) along the system trajectories is taken, which
gives the result

V̈ = −4eTKė. (15)

Substituting equation (8) into equation (15) produces

V̈ = −4eTK(−Ke− W̃Tβ(x; d)). (16)

Because e, W̃ , and β(x; d) are bounded as proved above, V̈ is bounded, and therefore V̇ is uniformly
continuous.

Because V is lower bounded, V̇ is negative semi-definite, and V̇ is uniformly continuous, by Barbalat’s
lemma V̇ → 0 as t→ ∞, and thus e→ 0 as t→ ∞ as desired.

B. Case with a Greater Number of Controls Than Controlled Variables

Specifically for the GHV, the form of the general adaptive dynamic inversion controller in the previous
subsection applies to the α, β, and µ inversion component, in which the number of inputs to the system (α,
β, µ) is equal to the number of outputs (p, q, r). However, in the p, q, r inversion component, the number of
inputs to the system (p, q, r) is not the same as the number of outputs (δf,r, δf,l, δt,r, δt,l). The fact that the
number of outputs is greater than the number of inputs requires a control allocation scheme to be integrated
into the inversion control law. To frame the problem in general terms, consider the given nonlinear equation
of a system in the form

ẋ = f(x) + g(x)Λu (17)

where x ∈ R
n is the state, u ∈ R

m is the control, f(x) : R
n 7→ R

n and g(x) : R
n 7→ R

n×m are locally
Lipschitz continuous, and Λ ∈ R

m×m is a constant unknown positive definite matrix. It is assumed that
g(x) is full rank for all x ∈ R

n. Suppose that the desired dynamics of the closed loop system are given by

ẋm = Axm +Br (18)

where xm ∈ R
n is the model state, r ∈ R

m is the bounded reference signal, A ∈ R
n×n is Hurwitz, and

B ∈ R
n×m.

The derivation of the control law and the adaptive laws, including one for the unknown control effective-
ness matrix Λ, proceeds similarly to the derivation in Subsection A. The equation for the error between the
reference model and the actual system is

e = xm − x. (19)

Taking the time derivative of equation (19) results in

ė = ẋm − ẋ = ẋm − f(x) − g(x)Λu. (20)

The desired final form for ė is
ė = −Ke− W̃Tβ(x; d) + g(x)Λ̃u (21)

which is the same as the final form for ė in Subsection A, except for the final term g(x)Λ̃u. With the

appropriate choice of adaptive law for Λ̂, the choice of the above final form for ė will allow the stability
of the system to be proven. In order to derive this desired form of ė, first the term g(x)Λ̂u is added and

subtracted from equation (20), where Λ̂ ∈ R
m×m is an estimate of the control effectiveness matrix, and the

error equation becomes
ė = ẋm − f(x) − g(x)Λu+ g(x)Λ̂u− g(x)Λ̂u. (22)
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Let Λ̃ = Λ̂ − Λ, which is the estimation error of the control effectiveness matrix. Then, equation (22)
simplifies to

ė = ẋm − f(x) − g(x)Λ̂u+ g(x)Λ̃u. (23)

Because of the fact that the number of controls is greater than the number of controlled variables in
this case, there sometimes are infinite choices for u at any instant in time. In order to determine a specific
control law for the system, a constrained optimization problem is solved in which the cost function J = uTQu,
where Q ∈ R

m×m with Q = QT > 0, will be minimized, subject to the constraint g(x)Λ̂u = ℓ, which must
be satisfied at all times. The cost function is chosen to be J = uTQu so that the control effort will be
minimized, which consequently can be used to reduce the amount of trim drag during flight. it is assumed
by this formulation of the problem that the control surfaces do not have position limits, and as a result,
sufficient control power will always exist. By choosing the term ℓ in the constraint equation to be

ℓ = ẋm − f̂(x) +Ke− ν (24)

where f̂(x) : R
n 7→ R

n is an estimate of the plant dynamics, K ∈ R
n×n with K = KT > 0 contains the

gains on the errors, and ν ∈ R
n is a pseudo-control signal, the constraint g(x)Λ̂u = ℓ will ensure that when

the derived control law for this second case is substituted into the equation for ė, and the equation for the
error dynamics is simplified, the first two terms of equation (21) will appear in the resulting equation for ė as
desired. For simplicity in the control law derivation, equation (24) will not be substituted into the constraint
equation at the present time.

To derive the control law, first the constraint must be included in the cost function to form the augmented
cost function

J̄ = uTQu+ λT (g(x)Λ̂u− ℓ) (25)

where λ ∈ R
n is a Lagrange multiplier. The necessary conditions for minimizing J̄ are given by

∂J̄

∂λ
= g(x)Λ̂u− ℓ = 0 (26)

∂J̄

∂u
= 2Qu+ Λ̂T gT (x)λ = 0. (27)

Rearranging terms in equation (27) results in

u = −
1

2
Q−1Λ̂T gT (x)λ. (28)

Substituting equation (28) into equation (26) and solving for λ produces the equation

λ = −2(g(x)Λ̂Q−1Λ̂T gT (x))−1ℓ. (29)

Finally, substituting equation (29) back into equation (28) results in the control law

u = Q−1Λ̂T gT (x)(g(x)Λ̂Q−1Λ̂T gT (x))−1ℓ. (30)

In order for the control law given in equation (30) to be continuous, Q and g(x)Λ̂Q−1Λ̂T gT (x) must be

invertible. The projection bounds that will be applied in the adaptive law for Λ must ensure that Λ̂ remains
invertible. It should be noted that for the case where the number of controls equals the number of controlled
variables, the control solution is unique, and the control law in equation (30) simplifies to

u = [g(x)]−1[ẋm − f̂(x) +Ke− ν] (31)

which is the control law that was chosen in Subsection A.
Continuing with the derivation of ė, let ∆ = f̂(x)− f(x). Substituting equation (30), equation (24), and

into equation (23) produces the equation

ė = −Ke+ ∆ + ν + g(x)Λ̃u. (32)

Again, assume that ∆ can be represented in the form ∆ = WTβ(x; d), where W ∈ R
p×n is a set of

unknown weights, and β ∈ R
p×1 is a set of known basis functions composed of the states x and a vector d
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of bounded continuous exogenous inputs. Also, the representation for ν is chosen to be ν = −ŴTβ(x; d),

where Ŵ ∈ R
p×n. Then, equation (32) can be written as

ė = −Ke− W̃Tβ(x; d) + g(x)Λ̃u (33)

where W̃ = Ŵ −W , which is the weight estimation error.
As in Subsection A, a Lyapunov analysis needs to be performed in order to determine the adaptive laws

for Λ̂ and Ŵ and to prove that the error between the states of the actual system and the reference model
will converge. Given the candidate Lyapunov function

V = eT e+ tr(W̃T ΓW
−1W̃ ) + tr(Λ̃ΓΛ

−1Λ̃) (34)

where ΓW ∈ R
p×p with ΓW = ΓW

T > 0, and ΓΛ ∈ R
m×m with ΓΛ = ΓΛ

T > 0, the derivative of equation
(34) along the system trajectories is taken, which results in the equation

V̇ = 2eT ė+ 2tr(W̃T ΓW
−1 ˙̂
W

T

) + 2tr(Λ̃ΓΛ
−1 ˙̂

Λ
T

). (35)

Substituting equation (33) into equation (35) produces

V̇ = −2eTKe− 2eT W̃Tβ(x; d) + 2eT g(x)Λ̃ + 2tr(W̃T ΓW
−1 ˙̂
W

T

) + 2tr(Λ̃ΓΛ
−1 ˙̂

Λ
T

) (36)

and by applying the trace identity that aT b = tr(baT ) to equation (36), the equation for V̇ becomes

V̇ = −2eTKe+ 2tr(W̃T (ΓW
−1 ˙̂
W

T

− β(x; d)eT )) + 2tr(Λ̃(ΓΛ
−1 ˙̂

Λ
T

+ ueT g(x))). (37)

Let the equation for
˙̂
W in this case be the same as equation (13), and let

˙̂
Λ be

˙̂
Λ = ΓΛProj(Λ̂,−ue

Tg(x)). (38)

In this case, the final equation for V̇ is is upper bounded by

V̇ ≤ −2eTKe ≤ 0 (39)

which implies that e is bounded. Since r is bounded by definition above and e is bounded, xm is bounded,
and thus x is bounded. Consequently, g(x) and β(x; d) are bounded as well. In order to use Barbalat’s
lemma to complete the proof, the second derivative of equation (34) along the system trajectories is taken,
which gives the result

V̈ = −4eTKė. (40)

Substituting equation (33) into equation (40) produces

V̈ = −4eTK(−Ke− W̃Tβ(x; d) + g(x)Λ̃u). (41)

It should be noted that u is bounded because all of the the signals found in u, which is given by equations
(30) and (24) are bounded. Thus, because e, W̃ , β(x; d), g(x), Λ̃, and u are bounded as proved above, V̈ is
bounded, and therefore V̇ is uniformly continuous.

Finally, Barbalat’s lemma can be applied. Because V is lower bounded, V̇ is negative semi-definite, and
V̇ is uniformly continuous, by Barbalat’s lemma V̇ → 0 as t→ ∞, and thus e→ 0 as t→ ∞ as desired.

IV. P, Q, R Inversion Controller

The first designed controller was the inversion controller for the angular body rates of the GHV since
these variables are linked directly to the control surface deflections, which control the vehicle. The reference
inputs to the controller are the commanded angular body rates pc, qc and rc, and the output states of the
controller are the control surface deflections δf,r, δf,l, δt,r, and δt,l. Therefore, in this case, equation (17)
represents the current system. In order for the adaptive dynamic inversion controller to be designed for the
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angular body rates, f(x) and g(x) must be determined from the general nonlinear equations for ṗ, q̇, and ṙ,
which in vector-matrix form, are

[J ]
dωB,I

dt

∣∣∣∣
B

+ ωB,I × JωB,I = Maero +MT (42)

where

[J ] =



Jx 0 −Jxz

0 Jy 0

−Jxz 0 Jz


 (43)

and

ωB,I =



p

q

r


 . (44)

Substituting these equations into equation (42) and simplifying produces the result



Jx 0 −Jxz

0 Jy 0

−Jxz 0 Jz






ṗ

q̇

ṙ


 +




−Jxzpq + (Jz − Jy)qr

(Jx − Jz)pr + Jxz(p
2 − r2)

Jxzqr + (Jy − Jx)pq


 = Maero +MT . (45)

Therefore, the nonlinear equations for the angular body accelerations can be written as



ṗ

q̇

ṙ


 =



Jx 0 −Jxz

0 Jy 0

−Jxz 0 Jz




−1 
−




−Jxzpq + (Jz − Jy)qr

(Jx − Jz)pr + Jxz(p
2 − r2)

Jxzqr + (Jy − Jx)pq


 +Maero +MT


 . (46)

After having determined the nonlinear equations for the angular body accelerations, the next step is to
write those equations in the form of equation (17). In order to accomplish this task, the terms related to the
control surfaces, which will form g(x), must be extracted from equation (46). The control surfaces terms are
included in the aerodynamic moment terms MA, which are modeled as

Maero =



LA

MA

NA


 =



q̄SbCℓ

q̄Sc̄Cm

q̄SbCn


 (47)

where

Cℓ = Cℓ,baseline + ∆Cℓ,surfaces +
b

2VT

(
Cℓp

p
)

Cm = Cm,baseline + ∆Cm,surfaces +
c̄

2VT

(
Cmq

q + Cmα̇
α̇
)

Cn = Cn,baseline + ∆Cn,surfaces +
b

2VT
(Cnr

r)

(48)

and
∆Ci,surfaces = ∆Ci,δf,r

(M,α, β, δf,r) + ∆Ci,δf,l
(M,α, β, δf,l)

+ ∆Ci,δt,r
(M,α, β, δt,r) + ∆Ci,δt,l

(M,α, β, δt,l)
(49)

for i = ℓ, m, n.
As seen in equation (48), the moment coefficients are comprised of three parts. The baseline term is

the moment coefficient for the base airframe, while the second and third terms adjust for the effects on
the moment coefficients due to the control surfaces and damping, respectively. In equation (48), the first
and third terms do not depend on the control surfaces; therefore, those two terms belong to the f(x) term
in equation (17). In order to determine g(x), the second term in each equation in equation (48) must be
examined to determine what portion of the term is control-dependent and thus belongs in g(x). For this
particular control design for the GHV, it is assumed that a linear approximation with respect to the control
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surface deflection δ can be made for each of the terms in equation (49). The linear approximation can be
expressed as

∆Ci,δs
(M,α, β, δs) = Ci,δs

(M,α, β, [δs = 0]) +
∂Ci,δs

∂δs

∣∣∣∣
M,α,β constant

∆δs

for i = N,Y,A, ℓ,m, n

and δs = δf,r, δf,l, δt,r, δt,l.

(50)

In this paper, it is assumed that all interactions between each control surface are negligible, which at
high Mach numbers is approximately true. Deflections of the right and left control surfaces will generate
summative forces and moments in the XZ-plane of symmetry of the aircraft, whereas in the other planes,
the deflections will generate canceling forces and moments. In equation form, for both the flaps and the tail
control surfaces, the relationships between right and left elevon deflections are expressed as

CN,δf,r
= CN,δf,l

−CY,δf,r
= CY,δf,l

CA,δf,r
= CA,δf,l

−Cℓ,δf,r
= Cℓ,δf,l

Cm,δf,r
= Cm,δf,l

−Cn,δf,r
= Cn,δf,l

(51)

and the relationships between right and left rudder deflections are expressed similarly as

CN,δt,r
= CN,δt,l

−CY,δt,r
= CY,δt,l

CA,δt,r
= CA,δt,l

−Cℓ,δt,r
= Cℓ,δt,l

Cm,δt,r
= Cm,δt,l

−Cn,δt,r
= Cn,δt,l

.

(52)

Consequently, in equation (50), the term where δs = 0 can be written for the combined effect of both the
right and left control surfaces collectively as

Ci,δf
(M,α, β, [δf,r = 0, δf,l = 0]) =





2Ci,δf,r
(M,α, β, [δf,r = 0]) for i = N,A,m

0 for i = Y, ℓ, n
(53)

Ci,δt
(M,α, β, [δt,r = 0, δt,l = 0]) =





2Ci,δt,r
(M,α, β, [δt,r = 0]) for i = N,A,m

0 for i = Y, ℓ, n.
(54)

Given equations (50), (53), and (54), equation (49) can be rewritten for i = ℓ,m, n as

∆Cℓ =
∂Cℓ,δf,r

∂δf,r

∣∣∣∣
M,α,β constant

∆δf,r +
∂Cℓ,δf,l

∂δf,l

∣∣∣∣
M,α,β constant

∆δf,l

+
∂Cℓ,δt,r

∂δt,r

∣∣∣∣
M,α,β constant

∆δt,r +
∂Cℓ,δt,l

∂δt,l

∣∣∣∣
M,α,β constant

∆δt,l

(55)

∆Cm = 2Cm,δf,r
(M,α, β, [δf,r = 0]) + 2Cm,δt,r

(M,α, β, [δt,r = 0])

+
∂Cm,δf,r

∂δf,r

∣∣∣∣
M,α,β constant

∆δf,r +
∂Cm,δf,l

∂δf,l

∣∣∣∣
M,α,β constant

∆δf,l

+
∂Cm,δt,r

∂δt,r

∣∣∣∣
M,α,β constant

∆δt,r +
∂Cm,δt,l

∂δt,l

∣∣∣∣
M,α,β constant

∆δt,l

(56)

∆Cn =
∂Cn,δf,r

∂δf,r

∣∣∣∣
M,α,β constant

∆δf,r +
∂Cn,δf,l

∂δf,l

∣∣∣∣
M,α,β constant

∆δf,l

+
∂Cn,δt,r

∂δt,r

∣∣∣∣
M,α,β constant

∆δt,r +
∂Cn,δt,l

∂δt,l

∣∣∣∣
M,α,β constant

∆δt,l.

(57)

Since the first two terms of equation (56) are for fixed values of δs, they constitute bias terms and therefore

belong in the f(x) portion of equation (17). As a result, only the terms represented by
∂Ci,δs

∂δs

∣∣∣∣
M,α,β constant

in equations (55), (56), and (57) belong in the g(x) term in equation (17).
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To complete the analysis of the terms in equation (46), the effect of the center of gravity shift must be
accounted for in the nonlinear equations for the angular body accelerations. The shift of a set of moments
from a given reference point to the center of gravity is given by the equation

Mcg = Maero − rcg/aero × Faero (58)

and in this particular simulation, rcg/aero is defined to be
[
xcg 0 0

]T

. In the simulation, Faero is calculated

similarly to Maero in equation (47) above, which means that Faero has the form

Faero =



XA

YA

ZA


 =



−q̄SCA

q̄SCY

−q̄SCN


 . (59)

Therefore, given equation (59) and the definition of rcg/aero, equation (58) can be written as

Mcg = Maero −



xcg

0

0


 ×



−q̄SCA

q̄SCY

−q̄SCN


 (60)

Mcg = Maero −




0

−q̄SCNxcg

−q̄SCY xcg


 (61)

where Maero is defined in equation (47). It should be noted that the terms CN and CY in equation (61) can
be written like the moment coefficients in equations (55), (56), and (57) as

∆CN = 2CN,δf,r
(M,α, β, [δf,r = 0]) + 2CN,δt,r

(M,α, β, [δt,r = 0])

+
∂CN,δf,r

∂δf,r

∣∣∣∣
M,α,β constant

∆δf,r +
∂CN,δf,l

∂δf,l

∣∣∣∣
M,α,β constant

∆δf,l

+
∂CN,δt,r

∂δt,r

∣∣∣∣
M,α,β constant

∆δt,r +
∂CN,δt,l

∂δt,l

∣∣∣∣
M,α,β constant

∆δt,l

(62)

∆CY =
∂CY,δf,r

∂δf,r

∣∣∣∣
M,α,β constant

∆δf,r +
∂CY,δf,l

∂δf,l

∣∣∣∣
M,α,β constant

∆δf,l

+
∂CY,δt,r

∂δt,r

∣∣∣∣
M,α,β constant

∆δt,r +
∂CY,δt,l

∂δt,l

∣∣∣∣
M,α,β constant

∆δt,l

(63)

Similarly to the moment coefficients as shown above, since the first two terms of equation (62) are for fixed
values of δs, they constitute bias terms and therefore belong in the f(x) portion of equation (17). As a result,

only the terms represented by
∂Ci,δs

∂δs

∣∣∣∣
M,α,β constant

in equations (62) and (63) belong in the g(x) term in

equation (17).
Having examined all of the terms in the nonlinear equations for the angular body accelerations, equation

(46) can be written in the final form of equation (17) as



ṗ

q̇

ṙ


 =



Jx 0 −Jxz

0 Jy 0

−Jxz 0 Jz




−1


−




−Jxzpq + (Jz − Jy)qr

(Jx − Jz)pr + Jxz(p
2 − r2)

Jxzqr + (Jy − Jx)pq


 +MT + q̄SG+ q̄SH




δf,r

δf,l

δt,r

δt,l





 (64)
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where

G =




b

(
Cℓ,baseline + b

2VT
(Cℓp

p)

)

c̄

(
Cm,baseline +

c̄

2VT
(Cmq

q + Cmα̇
α̇) + 2Cm,δf,r

(δf,r = 0) + 2Cm,δt,r
(δt,r = 0)

)

− 2CN,δf,r
(δf,r = 0)xcg − 2CN,δt,r

(δt,r = 0)xcg

b

(
Cr,baseline + b

2VT
(Cnr

r)

)




(65)

and

H =




b ∂Cℓ

∂δf,r
b ∂Cℓ

∂δf,l
b ∂Cℓ

∂δt,r
b ∂Cℓ

∂δt,l(
c̄ ∂Cm

∂δf,r
− xcg

∂CN

∂δf,r

) (
c̄ ∂Cm

∂δf,l
− xcg

∂CN

∂δf,l

) (
c̄ ∂Cm

∂δt,r
− xcg

∂CN

∂δt,r

) (
c̄∂Cm

∂δt,l
− xcg

∂CN

∂δt,l

)
(
b ∂Cn

∂δf,r
− xcg

∂CY

∂δf,r

) (
b ∂Cn

∂δf,l
− xcg

∂CY

∂δf,l

) (
b ∂Cn

∂δt,r
− xcg

∂CY

∂δt,r

) (
b ∂Cn

∂δt,l
− xcg

∂CY

∂δt,l

)


 . (66)

It should be noted that the partial derivatives in equation (64) are taken with respect to a constant value
of M , α, and β from the current flight condition and that the control surface bias terms, where δs = 0, are
evaluated at a constant value of M , α and β from the current flight condition as well.

Given equation (64), which is now in the form of equation (17), the adaptive dynamic inversion controller
can be constructed using equations (13), (24), (30), and (38).

V. α, β, µ Inversion Controller

As with the p, q, r inversion controller, equations for α̇, β̇, and µ̇ must be determined in order for the
adaptive dynamic inversion controller to be constructed. It should be noted that for this section, Sx will
represent sin(x), Cx will represent cos(x), and Tx will represent tan(x), where x is an angle. The derivations
for α̇ and β̇ are based on the derivations for those terms on pages 110-112 in Reference [15]. The starting
point of the derivations is the basic force equations in the stability axes under the flat Earth assumption,
which are

bv̇rel = (1/m)FA,T + g − ωb/e × vrel. (67)

Taking the time derivative of the relative velocity in the wind axes instead of in the body axes and converting
the right hand side of equation (67) to the wind axes produces the result

mV̇T = FTCα+αT
Cβ −D −mgSγ (68)

mβ̇VT = −FTCα+αT
Sβ − C +mg(CαSβSθ + CβSφCθ − SαSβCφCθ) −mVT (pSα − rCα) (69)

mα̇VTCβ = −FTSα+αT
− L+mg(SαSθ + CαCφCθ) +mVT (−pSβCα + qCβ − rSβSα) (70)

where D, L, and C represent drag, lift, and cross-wind force, respectively, in the wind axes.
In order to simplify equations (69) and (70) and to express them in terms of µ, which is one of the

commanded states, the gravity terms in those equations are transformed using relationships given by the
following direction cosine matrices from Chapter 4 of Reference [12] as

TW,H(µ, γ, χ) = T T
B,W (0,−α, β)TB,H(φ, θ, ψ) (71)

where W represents the wind axes, B represents the body axes, and H represents the local horizon axes.
Each direction cosine matrix has the general form

T2,1(θx, θy, θz) =




Cθy
Cθz

Cθy
Sθz

−Sθy

Sθx
Sθy

Cθz
− Cθx

Sθz
Sθx

Sθy
Sθz

+ Cθx
Cθz

Sθx
Cθy

Cθx
Sθy

Cθz
+ Sθx

Sθz
Cθx

Sθy
Sθz

− Sθx
Cθz

Cθx
Cθy


 . (72)

as shown on page 9 of Reference [16]. By examining the elements of the matrices in equation (71), the
following relationships involving µ and γ were determined to be

TW,H(2, 3) = SµCγ = CαSβSθ + CβSφCθ − SαSβCφCθ (73)
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TW,H(3, 3) = CµCγ = SαSθ + CαCφCθ (74)

which can be substituted into equations (69) and (70) in the gravity terms.
Additionally, the thrust force FT terms are converted into the wind frame and expressed in terms of the

vector
[
FTx

FTy
FTz

]T

, which is given in the body frame. The transformation of the FT terms results in



FTCα+αT

Cβ

−FTCα+αT
Sβ

−FTSα+αT


 =



CαCβ Sβ SαCβ

−CαSβ Cβ −SαSβ

−Sα 0 Cα






FTx

FTy

FTz




=



FTx

CαCβ + FTy
Sβ + FTz

SαCβ

−FTx
CαSβ + FTy

Cβ − FTz
SαSβ

−FTx
Sα + FTz

Cα


 .

(75)

Finally, the forces D, C, and L must be written in terms of the corresponding forces in the stability axes,
which can be calculated directly from information in the model, as



D

C

L


 =



Cβ Sβ 0

−Sβ Cβ 0

0 0 1






Ds

Ys

Ls




=



DsCβ + YsSβ

−DsSβ + YsCβ

Ls


 .

(76)

It is assumed that the Ds terms are absorbed into the thrust terms in equation (75).
Substituting equations (73), (74), (75), and (76) into equations (69) and (70) gives the final equations

for β̇ and α̇ to be

β̇ =
1

mVT

(
(Ys + FTy

)Cβ +mgSµCγ − FTx
CαSβ − FTz

SαSβ

)
+ (pSα − rCα) (77)

α̇ =
1

mVTCβ
(−Ls +mgCµCγ − FTx

Sα + FTz
Cα) + (−pCαTβ + q − rSαTβ). (78)

Now, the equation for µ̇ can be derived since the derivation involves the results given in equations (77)
and (78). Starting from equation (57) on page 56 of Reference [12], where, for this document β = −σ
in Reference [12], the relationship between the angular body accelerations and the local horizon angular
accelerations are expressed as



p− β̇Sα

q − α̇

r + β̇Cα


 =



CαCβ −CαSβ −Sα

Sβ Cβ 0

SαCβ −SαSβ Cα






1 0 −Sγ

0 Cµ SµCγ

0 −Sµ CµCγ






µ̇

γ̇

χ̇


 . (79)

Taking the inverse of equation (79), the equation for µ̇ is determined to be

µ̇ = (p− β̇Sα) (CαCβ − TγCαSβSµ − TγSαCµ) + (q − α̇) (Sβ + TγCβSµ)

+ (r + β̇Cα) (SαCβ + TγCαCµ − TγSαSβSµ) .
(80)

Substituting equations (77) and (78) into equation (80) and simplifying gives the final equation for µ̇, which
is

µ̇ =
1

mVT

(
Ls(Tβ + TγSµ) + (Ys + FTy

)TγCµCβ −mgCγCµTβ + (FTx
Sα − FTz

Cα)(TγSµ + Tβ)

− (FTx
Cα + FTz

Sα)TγCµSβ

)
+ pCα sec(β) + rSα sec(β).

(81)
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Finally, equations (77), (78), and (81) are combined together in vector-matrix equation form as



β̇

α̇

µ̇


 =




1

mVT

(
(Ys + FTy

)Cβ +mgSµCγ − FTx
CαSβ − FTz

SαSβ

)

1

mVTCβ
(−Ls +mgCµCγ − FTx

Sα + FTz
Cα)

1

mVT

(
Ls(Tβ + TγSµ) + (Ys + FTy

)TγCµCβ −mgCγCµTβ

+ (FTx
Sα − FTz

Cα)(TγSµ + Tβ) − (FTx
Cα + FTz

Sα)TγCµSβ

)




+




Sα 0 −Cα

−TβCα 1 −TβSα

sec(β)Cα 0 sec(β)Sα






p

q

r




(82)

where p, q, and r are the desired angular body rates. It should be noted that it is assumed that the forces due
to control surface deflections are negligible, and therefore, the force terms in equation (82) are approximated
from look-up tables for the force and moment coefficients at points where the control surface deflections are
equal to 0. Also, it is assumed that for the desired angular body rates that the inner loop p, q, r controller
is perfect, which means that the desired angular rates equal the commanded angular rates.

Given equation (82), which is now in the form of equation (1), the adaptive dynamic inversion controller
can be constructed using equations (5) and (13).

VI. Robustness Analysis

Based on the control and adaptive laws derived in the previous sections, a simulation of the entire GHV
system with the nonlinear adaptive nonlinear dynamic inversion control architecture was created in Simulink.
In order to make the simulation more realistic, second-order actuator dynamics with damping ratio ζ = 0.7
and natural frequency ωn = 25 Hz are included in the current simulation, and position and rate limits are
placed on the control surfaces of 30 deg and 100 deg/s, respectively. Additionally, a time delay of 0.03 s is
included in the simulation; however, it should be noted that the simulation can tolerate time delays of up to
0.04 s without the responses becoming significantly oscillatory. Commands to α, β, and µ are given as ramp
signals from 0 degrees to a commanded angle in fixed time. For the α, β, µ inversion controller, the basis

function β(x; d) is chosen to be β(x; d) =
[
c α β µ M

]T

, where c is a constant bias term. For the p, q,

r inversion controller, the basis function β(x; d) is chosen to be β(x; d) =
[
c p q r α β M

]T

, where

c is a constant bias term.
The total velocity of the vehicle is controlled using a PID controller, which is not depicted in Figure 2.

The input to the controller is the commanded total velocity of the GHV, and the output of the controller
is the equivalence ratio. The equivalence ratio is the fifth control, and along with the four control surfaces,
completes the the control complement for the vehicle. Additionally, a saturation limiter has been added
after the velocity PID controller to constrain the equivalence ratio to be between 0 and 1.

In the derivation of the adaptive dynamic controllers in Section III, a reference model was described. The
difference between this reference model and the actual system dynamics constitutes the tracking error of the
system. In order to determine the reference states of the system, the reference signal r must be defined. For
the α, β, µ inversion controller, the reference signal consists of the commanded values of α, β, and µ. For
the p, q, r inversion controller, the reference signal consists of the commanded angular body rates from the
α, β, µ inversion controller. Both of the reference models have the general form



ẋ1

ẋ2

ẋ3


 =



ξ1 0 0

0 ξ2 0

0 0 ξ3






x1

x2

x3


 +



η1 0 0

0 η2 0

0 0 η3






r1

r2

r3


 (83)

where ξ1, ξ2, ξ3, η1, η2, and η3 are scalars that define the desired time constants of each control channel.
The open-loop poles of the linearized dynamics at the flight condition of Mach 6 at 80,000 ft for both the

longitudinal and lateral-directional states are shown in Figure 3. It should be noted from the eigenvalues
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Figure 3. Open-loop poles for the linearized longitudinal and lateral/directional dynamics.

Table 1. Eigenvalues for the linearized longitudinal dynamics.

Eigenvalue Damping Ratio Natural Frequency (rad/s)

-2.14 1.00 2.14

−2.79 × 10−3 1.00 2.79 × 10−3

1.25 × 10−3 ± 0.111j -0.0113 0.111

1.96 -1.00 1.96

Table 2. Eigenvalues for the linearized lateral/directional dynamics.

Eigenvalue Damping Ratio Natural Frequency (rad/s)

-6.10 1.00 6.10

2.22 × 10−16 -1.00 2.22 × 10−16

0.088 -1.00 0.088

5.96 -1.00 5.96
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listed in Tables 1 and 2 that both the longitudinal and lateral-directional states have several eigenvalues in
the right-half plane, which indicates that the GHV is an unstable vehicle. A nonlinear adaptive dynamic
inversion controller will be able to suppress the unstable dynamics and replace them with desired dynamics
for the aircraft.

Figures 4 and 5 show representative simulation results with the nonlinear adaptive dynamic inversion
control architecture for the commands α = ±2 deg, β = 0 deg, and µ = 70 deg. The responses are well-
behaved, and the control architecture is able to achieve the desired tracking performance without excessive
control effort.
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Figure 4. State responses for the commands α = ±2 deg, β = 0 deg, and µ = 70 deg.

A robustness analysis was performed via simulation on the designed adaptive nonlinear dynamic inversion
control architecture from the previous section in order to determine the maximum tolerable uncertainties
in selected parameters for the control architecture. Uncertainties in the plant examined in the analysis
include the additive uncertainties ∆Cmα

, ∆Cnβ
, and ∆Cm and multiplicative gains D on the control surface

deflections, given in terms of equations as

Cm = Cmbaseline
+ ∆Cmα

α (84)

Cn = Cnbaseline
+ ∆Cnβ

β (85)

Cm = Cmbaseline
+ ∆Cm (86)

Cδ = DCδo
. (87)

The criteria for determining the bounds on the uncertainties is that the states must not demonstrate oscil-
latory behavior.

Tables 3 and 4 provide the maximum and minimum values of the additive uncertainties ∆Cmα
and ∆Cnβ

for various α, β, and µ commands. It should be noted that an examination of the maximum and minimum
baseline values of Cmα

and Cnβ
show that these values are on the order of 10−4, which is typical of a

high-speed vehicle. The maximum and minimum values for ∆Cmα
and ∆Cnβ

in Tables 3 and 4 are on the
order of 10−4 − 10−3, and therefore, the control architecture is able to withstand considerable uncertainties
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Figure 5. Control and adaptive weight responses for the commands α = ±2 deg, β = 0 deg, and µ = 70 deg.

in Cmα
and Cnβ

and maintain stable tracking flight. Similar results for the additive uncertainty ∆Cm can
be found in Table 5.

Table 6 contains the minimum allowable multiplicative gains D on the control surface deflections for
various α, β, and µ commands. These gains represent a loss of control effectiveness for one or more of the
control surfaces on the GHV. For all cases, the vehicle is able to tolerate low values of control effectiveness,
which shows that the control architecture is robust to loss of control effectiveness.

Table 3. Additive uncertainty ∆Cmα over a 30 s period with 0.03 s time delay.

α (deg) β (deg) µ (deg) max ∆Cmα
min ∆Cmα

(deg−1) (deg−1)

5 0 0 0.0005 -0.0013

5 1 20 0.0003 -0.0011

It should be noted that following this preliminary analysis of the nonlinear adaptive dynamic inversion
control architecture, pseudo-control hedging ([17],[18]) was added to the simulation in order to protect
the nonlinear adaptive dynamic inversion control architecture during periods of control surface saturation.
However, for most of the cases simulated for the GHV for this paper, control surface saturation was not
encountered.

VII. Reference Trajectory Generation

While the tracking of α, β, and µ was achieved as demonstrated in Section VI, it was desired that the
GHV have the ability to track a realistic trajectory instead of selected commands. In order to control flight
path angle γ as opposed to α, a nonzero setpoint (NZSP) controller ([19], [20]) was designed to generate
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Table 4. Additive uncertainty ∆Cnβ
over a 30 s period with 0.03 s time delay.

α (deg) β (deg) µ (deg) max ∆Cnβ
min ∆Cnβ

(deg−1) (deg−1)

0 1 0 0.007 -0.003

5 0 20 0.01 -0.004

5 1 20 0.006 -0.003

Table 5. Additive uncertainty ∆Cm over a 30 s period with 0.03 s time delay.

α (deg) β (deg) µ (deg) max ∆Cm min ∆Cm

5 0 0 0.0005 -0.003

5 1 20 0.0005 -0.002

Table 6. Multiplicative gains D on control surface deflection terms over a 30 s period with 0.03 s time delay.

α (deg) β (deg) µ (deg) Dδf,r
Dδf,l

Dδt,r
Dδt,l

5 0 0 1 0.14 1 1

5 0 0 1 1 1 0.01

5 0 0 0.15 0.15 1 1

5 0 0 1 1 0.15 0.15

5 0 20 1 0.31 1 1

5 0 20 1 1 1 0.01

5 0 20 0.21 0.21 1 1

5 0 20 1 1 0.30 0.30

5 1 20 1 0.42 1 1

5 1 20 1 1 1 0.05

5 1 20 0.38 0.38 1 1

5 1 20 1 1 0.38 0.38
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trajectories for the GHV to follow. The NZSP controller requires a linear model, so the nonlinear GHV plant
model was linearized about a flight condition specified by the Mach number and altitude. Assuming that the
vehicle remains wings-level during its flight of the trajectory, only the longitudinal dynamics model will be

required for the trajectory generation. For the NZSP controller, the longitudinal states are
[
u θ q α

]T

,

and the controls are
[
δT δe

]T

where δT represents the equivalence ratio control, and δe represents the

elevator control, expressed in terms of the GHV controls as δe = (δf,r + δf,l) /2. The outputs ym to be
commanded by the NZSP controller are velocity u and flight path angle γ, which can be expressed in
matrix-vector form as

ym =

[
u

γ

]
=

[
1 0 0 0

0 −1 0 1

]



u

θ

q

α


 +

[
0 0

0 0

] [
δT

δe

]
. (88)

By fitting a polynomial to the trajectory generated for γ, and finding the derivative of that polynomial,
the reference model for γ is completely defined for the GHV simulation. In order to implement the γ, β, µ
inversion controller, the dynamic equation for γ̇ must be derived and written in the form of equation (1) as

γ̇ = f(s) + g(s)



p

q

r


 (89)

where s represents the states in the GHV simulation. The equation for γ̇ is derived using the same process
that was applied to find µ̇ in Section V. Starting from equation (79), and taking its inverse, the equation
for γ̇ is determined to be

γ̇ = D(p− β̇Sα) + E(q − α̇) + F (r + β̇Cα) (90)

where
D = CαSβCµ − SαSµ (91)

E = CβCµ (92)

F =
Cα

2SβCµ
2
− CαSα

(
Sβ

2 + 1
)
CµSµ +

(
Sα

2Sµ
2
− 1

)
Sβ

CαSβSµ + SαCµ
. (93)

Consider the equations for β̇ and α̇ in equations (77) and (78), respectively to have the following form

β̇ = fβ + (pSα − rCα) (94)

α̇ = fα + (−pCαTβ + q − rSαTβ) (95)

where fβ and fα represent the terms in β̇ and α̇, respectively, that do not depend explicitly on the angular
rates p, q, and r. Substituting equations (94) and (95) into equation (90) and simplifying the expression
gives the resulting equation for γ̇ that

γ̇ = −DfβSα − Efα + FfβCα

+ p
(
D −DSα

2 + ECαTβ + FCαSα

)

+ q (0)

+ r
(
DCαSα + ESαTβ + F − FCα

2
)
.

(96)

Note that there is no dependence on q in the equation for γ̇. Consequently, when the dynamic equations for
β, γ, and µ are expressed in the form 


β̇

γ̇

µ̇


 = f(s) + g(s)



p

q

r


 (97)
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where s represents the states of the GHV, the resulting expression for g(s) is

g(s) =




Sα 0 −Cα(
D −DSα

2 + ECαTβ + FCαSα

)
0

(
DCαSα + ESαTβ + F − FCα

2
)

sec(β)Cα 0 sec(β)Sα


 . (98)

As can be seen in equation (98), g(s) is not invertible, which causes a problem with the computation of p, q,
and r in the new γ, β, µ inversion block. If g(s) cannot be inverted, then the commands for p, q, and r cannot
be determined for the inversion controller. Therefore, substituting the equation for γ̇ for the equation for α̇
in the α, β, µ inversion controller in order to track a trajectory for γ is not possible for the GHV simulation,
and another method of including the γ trajectory in the GHV simulation had to be determined.

In order to allow for the GHV simulation to track a flight path angle trajectory, a method from Reference
[21] was applied in which the equation for ḧ, where h represents the altitude of the aircraft, is written in the
form

ḧ = fh(s) + gh(s)



p

q

r


 . (99)

Given the equation for ḣ
ḣ = V (CβCαSθ − SβSφCθ − CβSαCφCθ) , (100)

where V is the total velocity of the vehicle, the equation for ḧ is determined to be

ḧ =
[
b0V̇ + b1β̇ + b2α̇

]
+

[
a0 a1 a2

]


p

q

r


 (101)

where
a0 = b4

a1 = b3Cφ + b4SφTθ

a2 = b4CφTθ − b3Sφ

and
b0 = CβCαSθ − SβSφCθ − CβSαCφCθ

b1 = V (−SβCαSθ − CβSφCθ + SβSαCφCθ)

b2 = V (−CβSαSθ − CβCαCφCθ)

b3 = V (CβCαCθ + SβSφSθ + CβSαCφSθ)

b4 = V (−SβCφCθ + CβSαSφCθ) .

Because ḧ has a nonzero coefficient for q, which means that the term g(s) in equation (97) is invertible,
the equation for ḧ can replace the equation for α̇ in equation (82) for the α, β, µ inversion controller. The
original reference trajectory that is generated for γ using the NZSP controller can be converted to ḣ using
the relation from aircraft kinematics that ḣ = V Sγ . Once a polynomial is fitted to the new trajectory for

ḣ, and the derivative of that polynomial is determined, the reference model is defined for ḣ. The ḣ, β, µ
inversion controller replaces the original α, β, µ inversion controller in the GHV simulation, and now desired
trajectories for γ can be tracked.

VIII. Simulation Results

The GHV simulation with the ḣ, β, µ inversion controller was implemented in Simulink. A trajectory
for γ was generated at the flight condition of Mach 6 at 80,000 ft. Figures 6, 7, and 8 present representative
simulation results for the flight path angle trajectory shown in Figure 6. It should be noted that in this
particular simulation, a command of β = −4o also is given to the GHV. The nonlinear adaptive dynamic
inversion control architecture achieves the desired tracking performance for the generated flight path angle
trajectory and sideslip angle.
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A simplified inlet unstart model was added to test the ability of the nonlinear adaptive dynamic inversion
control architecture to handle tracking a trajectory during an inlet unstart. For the simulation, an inlet
unstart is triggered at a specified time, and the loss of thrust and changes to aerodynamic parameters
following the unstart are modeled as instantaneous changes. The coefficient of the axial force (CA) is
increased slightly, and the coefficient of the normal force (CN ) is decreased slightly. Additive variations in
Cmα

and Cnβ
are included in the plant through the equations

Cm = Cmbaseline
+ ∆Cmα

α (102)

Cn = Cnbaseline
+ ∆Cnβ

β. (103)

Through a robustness analysis, it was determined that the maximum destabilizing additive variations in Cmα

and Cnβ
that the nonlinear adaptive dynamic inversion control architecture could tolerate were ∆Cmα

=
0.001 deg−1 and ∆Cnβ

= −0.001 deg−1.
Figures 9, 10, and 11 show the results for the GHV simulation during flight path angle tracking with an

inlet unstart that occurs at time t = 10 seconds. It should be noted in Figure 11 that while the equivalence
ratio is commanded to its maximum value following the inlet unstart, thrust is not being generated by the
vehicle after time t = 10 seconds. While tracking performance is somewhat degraded, the aircraft is still
able to nominally track the specified flight path angle trajectory.

0 10 20 30 40 50 60
−1

0

1

2

3

4

5

6

time (s)

an
gl

e 
(d

eg
)

Flight Path Angle

 

 

γ
γ
p

Figure 6. Flight path angle response compared with the generated flight path angle trajectory. The subscript
p represents the flight path angle computed from the polynomial fit of ḣ.

IX. Conclusions

Because the dynamic equations for the GHV are inherently nonlinear and the aerodynamic and control
derivatives for the aircraft have significant uncertainty associated with them, a nonlinear adaptive dynamic
inversion control architecture was selected as the preferred control architecture to stabilize and control the
aircraft. Based on the simulation results and the robustness analysis, it can be seen that the objective of
designing a control architecture that is robust in order to achieve desired tracking performance was achieved
for the GHV. The control architecture is robust to decreases in control surface effectiveness, changes in
system parameters, and time delays of 0.04 s or less. The responses for tracking generated flight-path angle
trajectories are well behaved, and the necessary control effort for tracking is not excessive. Additionally, the
control architecture is able to tolerate an inlet unstart and maintain nominal tracking of a specified flight
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Figure 7. State responses for the generated flight path angle trajectory.
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Figure 8. Control and adaptive weight responses for the generated flight path angle trajectory.
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Figure 9. Flight path angle response compared with the generated flight path angle trajectory during an inlet
unstart. The subscript p represents the flight path angle computed from the polynomial fit of ḣ.
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Figure 10. State responses for the generated flight path angle trajectory during an inlet unstart.
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Figure 11. Control and adaptive weight responses for the generated flight path angle trajectory during an
inlet unstart.

path angle trajectory. Therefore, it can be concluded that this approach of nonlinear adaptive dynamic
inversion control works well as a control architecture for the GHV.
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Autonomous soaring is a concept in which the endurance of unmanned aircraft can be
increased by exploiting wind updrafts. Recent research has explored traditional feedback
control methods for autonomous navigation of vehicles to thermal updrafts. This paper
develops an approach for planar lateral/directional guidance of a linear dynamic gliding
aircraft to a known thermal location. Reinforcement learning is utilized to generate refer-
ence bank angle commands for directing the aircraft to close proximity of the updraft, and
from there the aircraft follows a circling trajectory centered on the thermal to gain energy.
A Lyapunov-based feedback control law is used to generate bank angle commands when
circling the thermal. By using reinforcement learning the problem of online trajectory gen-
eration is reduced to a simple search in a static state-action value table. This approach has
the advantage of low computational burden/overhead in practice. Furthermore, the need
for a precise aircraft model for learning and simulation is reduced. Monte Carlo results
presented in the paper demonstrate that the reinforcement learning guidance agent can
consistently navigate the aircraft to the thermal. Reliable navigation is achieved after a
relatively small number of learning episodes. An analysis of typical energy gains circling
a thermal of constant shape and size is also presented. These results indicate that the
approach is a suitable candidate for autonomous soaring.

Nomenclature

β aircraft sideslip angle
p aircraft roll rate
r aircraft yaw rate
φ aircraft bank angle, defined as positive when rolling right
ψ aircraft heading angle, defined as positive when east of north
δa aileron deflection angle
δr rudder deflection angle
xk value of the discrete-time variable x at time t = T (k − 1), where T is the sample period
α step-size parameter for reinforcement learning
γ discount-rate parameter in reinforcement learning
Q∗ optimal state-action value function
Q learned, approximate state-action value function
s learning state
a available actions, given the learning state s
ε frequency with which exploratory actions are taken under ε–greedy policy
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I. Introduction

Wind velocity gradients in the atmosphere enable long-duration missions of gliding aircraft. By flying
near wind updrafts, gliders can gain altitude with a minimal expenditure of energy. This process is referred
to as “static soaring.” Thermals are one source of updrafts and are caused by uneven heating of the earth’s
surface, leading to localized regions of heated air that rise.1 Static soaring is the process by which a gliding
vehicle gains altitude (and ultimately energy) by flying through or circling an updraft. Thermals are the most
common updraft source for manned gliders and have been exploited since the early 20th century to extend
the range and endurance of gliding flight.2 Glider pilots may identify thermals by noticing the formation of
cumulus clouds, the composition of the local terrain, or birds circling the updraft. Within the last fifteen
years,3 thermal soaring has attracted attention as means of extending the mission duration of unmanned
air systems (UAS). Miniaturized sensors enable small UAS to accomplish tasks that previously would have
required a manned-scale vehicle. However, small UAS lack the range and endurance of larger vehicles due to
the relatively low energy-to-weight ratio of batteries and motors at this scale.4 Thermal updrafts represent
a way for small UAS to extend their flight time, and by exploiting updrafts a battery-powered electric UAS
can theoretically achieve endurance comparable to that of a solar-powered aircraft while supporting a higher
wing loading and smaller battery size. Compared to a solar-powered aircraft, the soaring UAS has greater
flexibility to carry larger payloads or to satisfy performance constraints.3

Most of the flight test results in literature have performed some variation on monitoring the aircraft’s
total energy to infer the presence of thermals from local air currents.5,6, 4 Some research has considered
remote detection of the thermal from the UAS using visual or infrared (IR) imaging. Akhtar7 conducted
field trials with an IR camera, and demonstrated that the camera could detect “hot spots” on the ground as
well as clouds, both of which correlate with the presence of updrafts. Another work describes calibration of a
thermal infrared camera for remote sensing onboard a UAS.8 Although thermal soaring was not considered,
a similar architecture might be used for remote detection and exploitation of updrafts.

A variety of approaches have been investigated to achieve autonomous soaring. Ref. 4 implemented an
asymptotically stable thermal centering control and validated the work in flight test. Ref. 9 simultaneously
explored and exploited an unknown wind field using a Gaussian Process model for mapping. A receding
horizon framework for optimizing energy gain based on local knowledge of the wind field was implemented
in Ref. 10. This study considered both thermal soaring and dynamic soaring in which energy is absorbed
from local wind gusts. Allen and Lin5 used a guidance and control algorithm in which the aircraft estimated
the location of a thermal based on energy measurements and an assumed thermal profile. Flight test results
were presented and showed an average energy gain of 173 m per thermal over seventeen flights. In one case
the effective endurance was extended from two to fourteen hours.11 Edwards6 presents flight test results in
which an autonomous glider traveled 48 km over 1.5 hrs from an initial altitude of 140 m. In this approach
the local updraft speed was estimated and a grid of nodes was evaluated to determine the most likely center
of a parameterized thermal.

This paper develops a novel concept for autonomous navigation using reinforcement learning (RL) to
generate bank angle commands that navigate an unmanned glider to a thermal updraft at a known location.
This approach is distinct from previous works, which generally localize thermals using the energy rate of
change with some form of feedback control for guidance and navigation. The RL algorithm used is Q-learning,
in which an approximation to the optimal state-action value mapping is learned and stored. This control
scheme has three primary advantages. First, by allowing low-level feedback controllers determine the required
control deflections, the reinforcement learning agent can be trained in a theoretically model-agnostic fashion,
so long as the vehicle can match the commanded bank angle sufficiently quickly. This fact should also make
the RL guidance law robust to some plant uncertainties, reducing the need for very accurate modelling in
simulation. Second, by utilizing RL to generate bank angle commands, the problem of generating reference
trajectories to the updraft is essentially reduced to a table lookup problem. This arrangement allows for a
computationally simple control scheme consisting of the RL lookup for navigation with generic state feedback
command and hold controllers to determine control deflections. A small UAS platform is assumed to have
limited onboard capacity to carry sensors and computing equipment, and reducing the navigational overhead
frees up computing power for other tasks. Furthermore, the navigation component can be easily integrated
with existing autopilot hardware and software. Third, the use of Q-learning gives a designer flexibility to
tailor and optimize performance by shaping rewards appropriately.

The paper is organized as follows. The RL algorithm and its application to the aircraft guidance problem
are considered. This is followed by modelling and simulation of the vehicle. Results of a preliminary
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implementation using RL for lateral/directional control with conventional longitudinal control are then
presented, and conclusions and plans for extending this implementation are given.

II. Control Policy

II.A. Q-learning

Reinforcement learning describes a general class of algorithms that attempt to learn state-action mappings
to maximize a reward signal. With Q-learning, a decision agent seeks to learn the optimal action-value
function, Q∗(at, st), which is the value of taking action at from the state st. The algorithm learns Q, an
approximation to Q∗. For learning, an ε–greedy policy is used. Under this policy, the decision agent takes
randomly selected actions with frequency ε, and takes the action with the highest value with frequency 1− ε.
The value of ε is varied from 1.0 initially, to encourage learning, to a minimum of 0.05 over the course of
learning. The decision agent receives rewards based on the states visited. From any given initial state,
the goal of the learning agent is to maximize the total reward received until a terminal condition is met.12

Q-learning has several features that make it advantageous for the autonomous soaring problem. Q-learning
is guaranteed to converge to Q∗, although it requires a theoretically infinite number of learning episodes.
The convergence to Q∗ is also policy-independent. Lastly, learning can be model-free, in that the planning
agent does not require an explicit model of the system.

The Q-learning algorithm is straightforward. In the update equation for Q(s, a), α is a step-size parameter
and γ is a discount-rate parameter that influences the extent to which received rewards influence the learned
value of subsequent states. Primed quantities represent first future value.

1. Q(s, a) is initialized arbitrarily

2. For each episode in the learning:

(a) Initialize at state s

(b) For each step in the episode:

i. Choose action a from s via policy

ii. Observe the next state, s′

iii. Q(s, a)← Q(s, a) + α[r + γmaxa′Q(s′, a′)−Q(s, a)]

iv. s← s′

(c) Break when s is a terminal state

II.B. Q-learning for autonomous soaring

Previous work13 has demonstrated the use of Q-learning for navigation of a powered vehicle. In the current
work, a linear dynamic sailplane model is implemented and the performance of RL for lateral/direction
guidance is evaluated. Two primary assumptions are made in developing the RL controller. First, the glider
possesses feedback controllers sufficient to match bank angle commands; second, the location of the thermal
center is known a priori by the vehicle. The first assumption can be readily achieved by even hobby-grade
equipment.14 The second assumption is somewhat more limiting. Remote detection using an IR camera
or other sensor is the assumed modus operandi. The use of RL is restricted to guidance of the UAS to
the proximity of the thermal; from this point a feedback-based circling controller is used to evaluate the
altitude gain at the thermal. Longitudinal-axis control is effected by a state feedback regulator about a
steady-state. The RL guidance control is discrete and is wrapped around a continuous-time Proportional-
Integral-Derivative (PID) controller for bank angle command and hold. The only requirement of the PID
controller is that it consistently match the commanded bank angle faster than the update rate of the RL
guidance algorithm, without destabilizing the system or driving other states to unacceptably large values.
The RL guidance algorithm can be summarized as follows:

For each episode:

1. Initialize the state: r, the range to the thermal, λ, azimuth to the thermal relative to aircraft heading,
φ, current bank angle

2. Loop over 500 discrete steps, or until a break condition is met:
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(a) Choose action from available commanded changes in bank: ∆ =
[
0 −∆φ ∆φ

]
.

(b) Simulate the system with commanded bank angle φ+∆ for TQ seconds, using the continuous-time
bank angle and elevator controls.

(c) Observe the next state. If r > R1, where R1 is the maximum allowed range to the thermal, receive
a penalty reward rb and break. If r < R2, where R2 is the effective radius of the updraft, receive
a goal reward rg and break the loop. Else, receive no reward, and continue.

Once learning is conducted with one vehicle model, the Q-learning update rate TQ can be tailored to
provide guidance for any vehicle, regardless of its forward speed. This could eliminate the need for re-
learning the Q-matrix whenever the plant model changes. In practice, the low-level bank angle controller
also influences performance so it may be difficult to select the appropriate value of TQ for any glider. It
is anticipated that the Q-matrix from one vehicle can be used to “seed” an initial Q-matrix for a different
vehicle, reducing the overall learning time.

III. Aircraft Modelling and Simulation

III.A. Aircraft model

Figure 1. Schweizer SGS 1-36 sailplane in
flight. Source: “Schweizer 1-36 Photo Collec-
tion,” Dryden Flight Research Center, Accessed
2013/06/04, http://www.dfrc.nasa.gov/Gallery/Photo/
Schweizer-1-36/HTML/ECN-26847.html

The dynamical aircraft model is based on a Schweizer SGS
1-36 sailplane (Fig. 1). The SGS 1-36 is a manned, single-
seat advanced trainer.15 Ref. 1 gives coefficients for a linear
model of an SGS 1-36 modified for flight at high angles of
attack, using values derived from flight test data in Ref. 15.
The continuous-time linear model and steady-state values
used in simulation are given in Appendix A. The SGS 1-36
is not an ideal match for the intended application of this RL
controller, as it is substantially heavier and faster than what
would be considered a “small” unmanned glider. However,
it is assumed that a manned glider is more representative
of the intended system dynamics than a powered unmanned
vehicle model, relatively few gliding vehicle models are avail-
able in the literature, and using a large vehicle allows future
evaluation of how well the Q-learning will scale to a smaller
glider.

III.B. Q-learning settings

For the purposes of learning, the maximum allowed range to the thermal is R1 = 1200 m. If the aircraft
flies too far away, the learning agent receives a penalty and the episode terminates. A goal reward is given if
the aircraft flies within the effective updraft radius, which is approximately 460 m. The goal and boundary
rewards are +20 and −20 respectively. The maximum bank angle is ±30◦, and if the RL agent attempts
to command a bank angle outside that range, another action is selected and the simulation continues. A
timestep of TQ = 5 sec is used for the navigation problem, and the RL agent commands changes in bank
angle of ∆φ = 5◦.

III.C. Low-level control laws

The bank angle control law is a simple continuous-time PID aileron control law given by Eq. (1). In
this equation, φr is the reference bank angle generated from the RL agent, and is treated as piecewise
constant between RL updates. The gains used in simulation are Kp = 5.5,Ki = 0.1,Kd = 7.0 and the
maximum commanded aileron deflection allowed is 25◦. The gains are selected so that the vehicle can match
a 5◦commanded change in bank to with 0.01◦in five seconds, without exceeding an aileron deflection of 5◦.
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δa =


δpid = −Kp(φ− φr)−Ki

∫ t
0
(φ(t)− φr)dt−Kdφ̇ −δmax < δpid < δmax

−δmax δpid < −δmax
δmax δpid > δmax

(1)

The elevator control law is a simple Linear Quadratic Regulator (LQR) state feedback control law given
in Eq. (2), where u is the perturbed body 1-axis speed, α is the perturbed angle-of-attack, q is the body
2-axis (pitch) angular rate, and θ is the perturbed pitch attitude angle. The LQR weighting matrices were
selected to closely regulate u and α and tuned to produce well-damped convergence to the steady-state in
the presence of the external updraft during circling flight.

δe =
[
0.1416 1.925 −0.4718 −1.479

]
u

α

q

θ

 (2)

III.D. Thermal model

The thermal updraft model is taken from Ref. 11. In the following equations, w∗ and zi are convective-layer
scale parameters. Updraft velocity is calculated using Eq. (3), in which z is the height-above-ground altitude
of the aircraft. Note that in the convention used in Eq. (3) z is defined as positive up.

wT = w∗
(
z

zi

) 1
3

(1− 1.1
z

zi
) (3)

Updraft diameter D increases exponentially with increasing altitude:

D = 0.203

(
z

zi

) 1
3

(1− 0.25
z

zi
)zi (4)

Note that in 11, conservation of mass is used outside the updraft to calculate a downdraft velocity. For
the purposes of simulation downdraft velocity in this study is assumed negligibly small. This updraft model
produces a radially symmetric thermal. The updraft parameters used are: w∗ = 2.56 m

s and zi = 660 m,
and the updraft diameter is scaled so that the updraft radius at a 300 m altitude is approximately 460 m.
The updraft is applied as a disturbing input on the aircraft u, α, and β channels. The question of whether
the energy gained from circling a thermal is worth the energy cost of flying to it is not considered here.
Consequently, when thermal circling effectiveness is examined, an updraft of constant size and strength is
used in all simulations. Since evaluation of the circling controller is not the primary objective, the updraft
size is effectively arbitrary. Two factors are considered in sizing:

1. The updraft radius is chosen to be wide enough that the SGS 1-36 model can perform steady level
turns at a bank angle of 30◦or less at an altitude of 300 m.

2. the updraft height zi is chosen so that most simulations using the circling feedback control law will
experience a net loss in energy if circling continues for 1000 seconds or less.

The purpose of the circling feedback control law is to establish a reasonable performance baseline against
which an RL-based circling controller can be evaluated. For numerical convenience, a relatively weak thermal
is selected so that the total time the aircraft can circle before it begins losing energy can be compared using
relatively short simulation times.
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III.E. Thermal circling control law

Figure 2. Coordinate system used for circling
control law. Values are positive as shown.

A feedback control law is used to create baseline circling results
against which a later RL-based controller can be evaluated.
The objective of this controller is only to provide a baseline of
reasonably good performance, with no consideration of opti-
mizing any performance metric. Since the baseline controller
need not be implemented in experiment, real-time computa-
tional tractability is largely ignored. A Lyapunov-based feed-
back control law is designed that guarantees convergence to a
reference trajectory under the assumption of constant speed
level turns. This approximation is found to yield acceptable
performance.

The coordinate system referenced for the circling control is
shown in Fig. 2. An inertial north-east-down reference frame
is used. The variable to be controlled is η, the angle between
the aircraft X-Y plane velocity vector V and the normal to
the X-Y plane position vector êγ . η can be written in terms of the position vector r and velocity vector as
in Eq. (7):

r = rêr (5)

dr

dt
= V = ṙêr + rγ̇êγ (6)

tan η =
ṙ

rγ̇
(7)

Defining the error coordinate eη = η− ηref in terms of η and a reference angle ηref , a stabilizing control
law can be developed beginning with the Lyapunov function V = 1

2e
2
η. Its time rate and a stabilizing

controller are given by Eqs. (8) and (9).

V̇ = eη

(
rr̈γ̇ − ṙ2γ̇ − rṙγ̈
ṙ2 + (rγ̇)2

− η̇ref
)

(8)

−KLeη =
rr̈γ̇ − ṙ2γ̇ − rṙγ̈
ṙ2 + (rγ̇)2

− η̇ref (9)

The second derivative of the X-Y position vector is:

d2r

dt2
= (r̈ − rγ̇2)êr + (2ṙγ̇ + rγ̈)êγ (10)

Under the assumption of steady, level, 1 g turns the aircraft acceleration vector is −g tanφêr. Under
this assumption the second derivatives of r and γ are given by Eqs. (11) and (12). Under the further
assumption that the magnitude of the velocity V is approximately the steady-state forward speed U1, the
continuous-time control law used to generate reference bank angles is given by Eq. (13):

r̈ = rγ̇2 − g tanφ (11)

γ̈ =
−2ṙγ̇

r
(12)

g tanφ = rγ̇2 − U2
1 (η̇ref −KLeη)− ṙ2γ̇

rγ̇
(13)

Reference trajectories are generated by computing polynomial fits for r(γ) that connect an initial point
r0, γ0 to a final point on the desired circular trajectory at γ0 + π. Continuity of r and its first derivative at
the initial state are enforced along the reference, and the target state is r = Rd, ṙ = 0. Starting from the
controller used in Ref. 11, the target radius is eventually selected to be Rd = 0.6R2, with R2 being the local
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updraft outer radius. New trajectories are computed every half-orbit of the updraft and the aircraft is found
to converge to a circular trajectory within one or two orbits typically. The feedback gain KL = 0.25 gives
acceptable results.

III.F. Simulation framework

Fig. 3 shows the coordinate system used for learning and its relation to the dynamical system coordinates
used. Inertial position is given by a north-east-down reference frame centered at the thermal at ground level.
A standard body-fixed reference frame is attached to the aircraft with the 1-axis out the nose, the 2-axis
along the right wing, and the 3-axis down. The body frame is related to the inertial frame via the standard
3/2/1 Euler angle rotation sequence through ψ/θ/φ.

The variables r and γ are polar coordinates for the X-Y plane position vector of the vehicle. Note that
r is the length of the projected position vector and is always positive. λ is the angle between the X-Y plane
projection of the aircraft body 1-axis and the vector from the aircraft to the thermal; λ is positive when the
thermal is out the right wing. λ is related to heading angle ψ and γ by Eq. (14):

π + γ − λ = ψ (14)

Figure 3. Coordinate system used for RL state.

For learning the Q-matrix in the navigation problem, the glider is initialized with uniformly distributed
random states 500 m ≤ r ≤ 700 m, −135◦ ≤ λ ≤ 135◦ and zero bank angle. The inertial state is always
initialized at Z = −300 m and at arbitrary X,Y, ψ coordinates that satisfy the relative placement specified
by λ. All other aircraft perturbed states are assumed zero.

IV. Numerical Results

The RL navigation agent is trained on 100,000 episodes using an ε-greedy policy. 100,000 episodes was
found to be a sufficient number to achieve acceptable performance. The RL agent was evaluated in 1,000
Monte Carlo simulations, each of which terminates when the aircraft either flies within the updraft radius R2

or outside the boundary R1, or after 500 discrete timesteps. Subsequently, the circling control law is evaluated
in 1,000 simulations, each starting at the final state of an RL evaluation episode. Results are presented in
two sections. The first section displays performance of the RL navigation agent with representative episodes
and analyzes the Monte Carlo results. In the second section the baseline circling performance is considered.

IV.A. RL navigation Monte Carlo results

For Monte Carlo simulations, the set of initial conditions is expanded to 250 m ≤ r ≤ 700 m, −15◦ ≤ φ ≤ 15◦

with −135◦ ≤ λ ≤ 135◦ as before. A graphical summary of the success and failure cases as a function of
initial conditions is shown in Fig. 5. In 1,000 simulations the RL agent correctly navigates to the thermal in
962 of the cases. The cases in which the agent failed mostly correspond to nonzero initial bank angles at or
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near extrema of range and azimuth. The aircraft presumably visited these states infrequently if at all during
learning, so failure is predicated on whether the initial conditions naturally drive the aircraft towards or
away from states the RL agent has learned. Since the navigation agent is successful in a high percentage of
cases, it is reasonable to expect that with additional learning the agent could consistently reach the thermal
from this expanded set of initial conditions. It is important to note that when the agent is evaluated on 1,000
episodes using the same initial conditions used for learning in Sec. III.F, the agent succeeds in all cases.

Figure 4. Altitude loss in reaching the thermal with RL
navigation.

The altitude lost in navigating to the thermal in
Monte Carlo simulations is shown in Fig. 4. This is
used as a performance metric. Note that the cases
in which the UAS did not reach the thermal are not
shown. The distribution exhibits two distinct modes
for altitude loss of less than 100 m. There are also
26 flights with distinctly greater altitude loss than
the others. The latter group demonstrate inefficient
flight paths in which the vehicle typically rotates
through a full 2π rotation in heading before reaching the thermal. This behavior could be caused by the use
of new initial conditions in Monte Carlo, or could simply have occurred because the RL reward structure does
not give any preference to short paths. The bimodality of the remainder of the distribution is unexpected,
since the initial conditions were chosen uniformly. The bimodal distribution is presumed to be either an
effect of not using a time-optimal reward structure or a natural consequence of the dynamics of the problem.

Plots of ground tracks and bank angle histories for three simulations are shown in Fig. 6. The initial
conditions shown were selected arbitrarily from the set of Monte Carlo initial conditions, for the purpose of
showing typical histories only.

(a) Initial range versus azimuth. (b) Initial bank angle versus range.

Figure 5. Summary results of Monte Carlo success/failure versus initialization conditions.

IV.B. Baseline circling results

The thermal circling baseline results are generated by evaluating 1,000 simulations. Each simulation starts
at the final state of a Monte Carlo navigation episodes, using the fixed thermal described in Sec. III.D. The
thermal is deliberately weak for this scale of vehicle for numerical convenience in future comparison with an
RL circling controller. The circling implementation does not stop circling at peak altitude; for simplicity,
state histories are simulated for 1,000 seconds and the aircraft continues circling until either the time runs
out or the aircraft hits the ground. Results are evaluated in two figures. First, the time-of-flight before
the current kinetic and potential energy normalized by mass is less than its initial value is computed. A
histogram of time-of-flight is shown in Fig. 7(a). Note that in 51 cases, the aircraft energy was still increasing
after 1000 seconds. The remainder of the cases are significantly right skewed, having a median of 118.2 and
mean of 151.3 sec.
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(a) Case 1 (b) Case 2 (c) Case 3

Figure 6. Representative X-Y position and bank angle histories showing RL commands. Initial position is indicated
by an open circle and final position is indicated by a circled dot.

(a) Histogram of circling time-of-flight for which altitude
remains greater than altitude when circling started.

(b) Scatterplot of peak altitude versus initial altitude for
circling.

Figure 7. Thermal circling results.

Second, peak altitude is plotted as a function of initial altitude in Fig. 7(b). For a majority of cases,
the relationship appears to be roughly linear. However, there are approximately 140 cases that exhibit
very different behavior. These cases are scattered roughly uniformly between initial altitudes of 210 and 290
meters and have peak altitudes bounded above by about 650 meters and bounded below by the approximately
linear behavior of the other data. While this second set does appear to contain the 51 cases in which energy
had not yet peaked, there are still 90 cases for which the cause of differing behavior has not been explained.
Additional analysis did not determine any trend between initial conditions and peak altitude gain which
might be explain the very different results for these 90 cases. Despite this somewhat unexpected behavior,
the circling controller provides a baseline against which future RL-based circling can be evaluated. The
mean difference in initial and maximum altitude is 50.1 m with a standard deviation of 69.9 m.

V. Conclusions

This paper presents the development and initial simulation results for reinforcement learning-based navi-
gation of a gliding vehicle to reach a remotely detected thermal updraft. This approach has the advantage of
low computational overhead in practice. It is model-agnostic if certain conditions are met so learning should
be transferable between different vehicles. By using Q-learning, a significant flexibility to tailor performance
via reward shaping is introduced. Numerical simulation is performed using a simulated Schweizer SGS 1-36
glider dynamic model with a constant updraft. Monte Carlo results show that the RL guidance agent navi-
gates to the updraft in 100% of cases when initialized at the same states used to initialize learning. When
the set of initial conditions is expanded to include initial bank angles and ranges not used in learning, the
navigation agent succeeds in 96.2% of Monte Carlo cases. This performance is achieved after a relatively

9 of 11

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 T

E
X

A
S 

A
 &

 M
 U

N
IV

E
R

SI
T

Y
 o

n 
Fe

br
ua

ry
 1

6,
 2

01
4 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
01

4-
09

90
 



small number of learning episodes (100,000). A baseline analysis of altitude and flight time gains from cir-
cling the thermal is performed using a Lyapunov-based circling law. This control law establishes a baseline
mean altitude gain of 50.1 m.

For future work, four primary areas for further study have been identified. First, it is of interest to
compare the RL guidance agent against a time-optimal agent as a metric of navigation efficiency. It may be
appropriate to weight the learning rewards so as to give a greater reward for reaching the updraft quickly,
as there is currently no mechanism to ensure that the agent selects a direct route. Second, the issue of
disturbance tolerance in the trajectory generation should be considered. The commanded bank angle is
essentially open-loop for the duration of the reinforcement learning timestep; it may be necessary to either
reduce the timestep or implement a system to detect if tracking the reference angle is causing other aircraft
states to diverge. Third, the ability of an RL guidance agent to fly close to an updraft and gain energy
should be examined. A future work is planned that will encompass RL guidance for thermal circling as well
as longitudinal-axis control for 3D flying with non-constant updrafts. Fourth and finally, the extensibility of
this approach should be evaluated by extending the Q-matrix learned on the SGS 1-36 to a new plant.
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A. Dynamic Model

The lateral-directional continuous-time dynamic model derived from Refs. 1 and 15 is:
β̇

ṗ

ṙ

φ̇

 =


−0.1854 0.04069 0.9719 −0.2984

9.732 −19.49 2.585 −0.2655

−2.024 0.6734 −0.6171 0.1212

0 1 0 0



β

p

r

φ

+


0.02569 0.09295

−14.77 −1.278

0.7632 1.799

0 0


[
δa
δr

]
(15)

The longitudinal axis continuous-time dynamic model from the same sources is:
u̇

α̇

q̇

θ̇

 =


−0.02451 5.938 0.4913 −11.17

−0.01475 −2.187 0.7916 0.01964

−0.05919 −14.6 1.305 −0.1116

0 0 1 0



u

α

q

θ

+


−0.1833

−0.1432

−0.9847

0

 δe (16)

The steady-state speeds and attitude, estimated from the flight test results in Ref. 15, are listed below.
Unlisted values are zero in the steady-state.

• Body-axis forward speed: U1 = 34.4063 m
s

• Pitch-axis Euler angle (positive nose up): θ1 = −1.8873◦

• Angle of attack (positive nose up): 0.1766◦

• Body-axis vertical speed (positive down): W1 = 0.1061 m
s
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Acceleration control of highly agile, aerodynamically-controlled missiles is a well-known
non-minimum phase control problem. This problem is revisited here for a planar tail-
controlled generic missile, and a globally stable nonlinear autopilot command structure is
synthesized to maximize performance. For the first time the non-minimum phase charac-
teristics of the vehicle are addressed by making no modification to the output definition by
inducing an inherent time scale separation in the closed-loop dynamics. Unlike, previous
time scale control techniques, results presented here are based on theoretical advancements
made in control of nonlinear singularly perturbed systems. Conditions under which the
induced time scale separation can be employed for a stable autopilot design are also dis-
cussed. The state feedback controller proposed is real-time implementable, independent
of operating condition and desired output trajectory. Simulation results presented in the
paper show that the approach is able to accomplish perfect tracking while keeping all
closed-loop signals bounded.

Nomenclature

(aGA)B forward and normal linear aerodynamic accelerations [(aGA,X)B , (a
G
A,Z)B ]

(FGX )B horizontal force acting about the c.g of the missile represented in the body frame
(FGZ )B vertical force acting about the c.g of the missile represented in the body frame
(MG

Y )B pitching-moment about the c.g of the missile represented in the body frame
q̄ dynamic pressure
Cm pitch-moment coefficient
Cx horizontal force coefficient
Cz vertical force coefficient
G center of gravity of the generic missile
g acceleration due to gravity
h altitude of the missile, = -(zG)I
IY B moment of inertia of the missile about the yB axis
Ki feedback gains, positive quantities
lref reference length
M Mach number
m mass of the generic missile model
q0B
K body pitch rate of the missile relative to the North-East-Down frame
Sref reference surface area
uGK forward velocity in the body frame
vGK lateral velocity in the body frame
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V GK total velocity of the missile
wGK vertical velocity in the body frame
x0, y0, z0 triad representing the North-East-Down frame
xB , yB , zB triad representing the body-frame, B

Subscripts

, α derivative with respect to angle-of-attack
, δ derivative with respect to pitch-control deflection
, A aerodynamic component
, G gravitational component
, q derivative with respect to pitch rate
0 reference quantity
r reference trajectory

Symbols

αGK angle-of-attack of the missile
βGK side-slip of the missile
δM pitch control deflection
θ pitch-attitude angle of the missile
O(.) Order symbol

I. Introduction

The main challenge in designing a controller for an aerodynamically controlled missile is to achieve
maximum performance it is capable of, without exciting the unstable internal dynamics. To qualitatively
understand this non-minimum phase behaviour consider the control problem of accelerating the missile
(Figure 1) upward. Typically a tail-controlled missile (i.e control surface aft of the center of gravity, G) is
statically stable with Cmα < 0, Czδ < 0 and Cmδ < 0. This means that a negative unit-step pitch deflection
command initially induces a downward force on the missile causing the missile to accelerate downward. This
downward force also induces a counter-clockwise pitching-moment about the center of gravity that tries to
push the nose-up. But due to the inherent tendency of the missile to oppose any such change in angle-
of-attack the missile continues to accelerate downward until an overall positive pitching moment about the
center of gravity develops. Eventually the trim angle-of-attack and consequently the lift acting on the vehicle
increase which together create an upward force about the fuselage; and thus the missile accelerates upward
as desired.

Figure 1. Generic tail-controlled missile with body fixed-frame B and North-East-Down Frame 0

The above described non-minimum phase behaviour is a characteristic of several important flight control
problems such as control of Vertical Take-off and Landing (VTOL) aircraft, and Conventional Take-off and
Landing (CTOL) aircraft. This behaviour is modeled in the open-loop input-output transfer function as a
zero in the right half s-plane. An autopilot design based on cancellation (more commonly known as feedback
linearization) for such class of dynamical systems gives an unstable closed-loop as one of the closed-loop
poles migrates into the right half-plane.1 Researchers in the past have mitigated this undesirable behaviour
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by slightly modifying the output definition,2.3 These approaches guarantee ‘local’ tracking specific to the
desired operating condition and reference command as a result of the modification. Other methods4 proposed
modify the sign of some of the control derivatives in the differential equation description of the input-output
relationship to render the modified output dynamics minimum phase.

The common control technique used for missiles is the gain-scheduled linear controller,5,6,7.8 However,
dynamics of a missile significantly change during flight and the nonlinearities of the system must be explicitly
taken into account during design of the controller for improved maneuverability and stealth. The common
nonlinear technique is to employ approximate input-output linearization9,10 wherein the coupling between
the pitching moment and the aerodynamic pitch-deflection surface that causes the non-minimum phase
behaviour is ignored during autopilot design. This approximation render the input-output relationship
minimum phase but is limited in performance and domain of operation.

This paper revisits the acceleration control problem for a planar aerodynamically-controlled generic
missile and the main result is a globally stable nonlinear autopilot design that makes no modification to
the output definition and induces a time scale separation in the closed-loop. Unlike previous time scale ap-
proaches11,12,13 and stable-inversion14 results presented here are based on theoretical advancements in control
of nonlinear time scale systems;15 successful applications of which have been demonstrated on non-minimum
phase nap-of-the-earth maneuver for CTOL aircraft16 and hover control of an autonomous helicopter.17 The
state feedback controller designed here is real-time implementable and independent of any particular oper-
ating conditions and desired output trajectory. It is causal and does not require any knowledge or preview
of the output trajectory beforehand. This is an important contribution as the proposed nonlinear autopilot
can be integrated with an on-board guidance module for real-time operation.

The paper is organized as follows. Section II describes the medium-fidelity generic missile model used for
simulation that includes realistic actuators and sensors, and Section III formulates the control problem. The
main ideas of the paper and derivation of the autopilot are presented in Section IV. The evaluation of the
developed approach in simulation is presented in Section V. Finally, conclusions are presented in Section VI.

II. Simulation Model of the Missile

This section describes the governing equations for a generic missile depicted in Figure 1 along with details
of the actuator and sensor subsystems.

A. Rigid-Body Equations of Motion

The dynamics of the three degree-of-freedom generic missile under study are modeled by the following four
first-order differential equations18

u̇GK =
1

m

(
FGX
)
B
− wGKq0B

K , (1a)

ẇGK =
1

m

(
FGZ
)
B

+ uGKq
0B
K , (1b)

θ̇ = q0B
K , (1c)

q̇0B
K =

1

IY B

(
MG
Y

)
B
, (1d)

written in the body-frame about the center of gravity, G using Newton’s laws of motion19 under the
assumption of flat, non-rotating earth and balanced lateral/directional motion with Euler angles φ and ψ,
roll-rate p, and yaw rate r stabilized about the origin. The reader is referred to the nomenclature for
definition of the various symbols in (1).

An equivalent representation for the equations given in (1) can be obtained by noting that the translational
velocities (uGK , w

G
K) along with the aerodynamic angle αGK and the absolute velocity V GK satisfy the following
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relationships:

V GK =

√(
uGK
)2

+
(
wGK
)2
, (2a)

αGK = arctan

(
wGK
uGK

)
. (2b)

(2c)

Relations given in (2) can be further re-arranged as

uGK = V GK cosαGK , (3a)

wGK = V GK sinαGK , (3b)

to give expressions for the translational velocities in terms of the angle-of-attack and the total velocity.
Using these relations in (1) gives the following equivalent dynamical model representation of the generic
missile:

V̇ GK =
1

m

[
cosαGK

(
FGX
)
B

+ sinαGK
(
FGZ
)
B

]
, (4a)

α̇GK = q0B
K +

1

V GK

[
1

m

{
cosαGK

(
FGZ
)
B
− sinαGK

(
FGX
)
B

}]
, (4b)

θ̇ = q0B
K , (4c)

q̇0B
K =

1

IY B

(
MG
Y

)
B
. (4d)

This representation is used in simulation to validate the performance of the autopilot.
The forces

(
FGX
)
B

,
(
FGZ
)
B

and the moment
(
MG
Y

)
B

in (4) consist of contributions from gravitational,

aerodynamic, and propulsive components. Specifically, the aerodynamic forces (FGA )B and the pitching
moment (MG

A )B with respect to the center of gravity are calculated via the following equations:18[
(FGA,X)B

(FGA,Z)B

]
= q̄Sref

[
Cx
Cz

]
, (5)

(MG
A )B = q̄Sref lrefCm, (6)

where lref and Sref denote the reference length and the reference area, respectively and[
Cx
Cz

]
=

[
Cx,0(αGK , β

G
K ,M) + Cx,Alt(α

G
K , (z

G)I ,M) + Cx,q(α
G
K , β

G
K ,M)q0B

K + Cx,δM (αGK , β
G
K ,M)δM

Cz,0(αGK , β
G
K ,M) + Cz,q(α

G
K , β

G
K ,M)q0B

K + Cz,δM (αGK , β
G
K ,M)δM

]
,

(7)

Cm =
[
Cm,0(αGK , β

G
K ,M) + Cm,q(α

G
K , β

G
K ,M)q0B

K + Cm,δM (αGK , β
G
K ,M)δM

]
. (8)

The aerodynamic coefficients defined above are nonlinear but smooth functions depending on the angle-of-
attack αGK , side slip angle βGK and Mach number, M . The flight envelope covers the Mach M = 0.9, . . . , 4.4
and altitude region h = 0, . . . , 11km.

B. Modeling of the Actuator and Sensor Subsystem

The missile is controlled via its fin attached at the tail of the missile’s body denoted here in the paper as
δM . The fin is modeled as a second-order linear system (described by damping and a natural frequency)
with deflection δ(limit), deflection rate δ̇(limit) and deflection acceleration δ̈(limit) limits. The fin deflection is
assumed to be measurable.

The Inertial Measurement Unit (IMU), located at the missile’s c.g., is modeled as a first order element
outputting the angular rate q0B

K and the linear accelerations resulting from the aerodynamic forces (5):

(aGA)B =
1

m
(FGA )B . (9)
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C. Parametric and Estimation Uncertainties

In addition to the outputs obtained from the sensors, the non-measurable states (e.g. aerodynamic angles,
Mach number, etc.), the parameters and the aerodynamic data (and their derivative with respect to angle-
of-attack) necessary for control design purposes are estimated. The uncertainties associated with these
estimates are assumed to time-independent throughout the flight envelope and Table 1 provides an overview
of the considered uncertainties.

Table 1. Overview of considered uncertainties

Variable Uncertainty Range Units

IY B ±5% [−]

m ±1% [−]

xcg ±50 [mm]

Cx,0, Cz,0 ±10% [−]

Cm,0 ±20% [−]

Cx,δM , Cz,δM , Cm,δM ±20% [−]

Cm,q ±20% [−]

αGK ±2.5 [deg]

M ±10% [−]

q̄ ±5% [−]

III. Problem Description

The objective of this study is to force the missile to track a desired aerodynamic normal acceleration
command denoted as yr asymptotically. The normal acceleration output is defined as

y =
q̄Sref
m

[
Cz,0(αGK , β

G
K ,M) + Cz,q(α

G
K , β

G
K ,M)q0B

K + Cz,δM (αGK , β
G
K ,M)δM

]
. (10)

The control problem consists of generating a pitch control deflection δM that produces the desired normal
acceleration while ensuring complete closed-loop stability. Throughout this study the total velocity V GK is
assumed to be maintained constant through application of appropriate reaction jets. The autopilot is turned
on when the missile is flying at the steady-state horizontal flight condition at h = 5km, αGK = 0deg and
δM = 0deg. Additionally, the dynamics of the pitch-attitude angle is ignored in the autopilot design as it
is related to the pitch rate q0B

K through an exact kinematic relation (see (4)). Consequently the autopilot
design for acceleration command tracking function is accomplished through study of the following reduced
dynamical model:

α̇GK = q0B
K +

1

V GK

[
1

m

{
cosαGK

(
FGZ
)
B
− sinαGK

(
FGX
)
B

}]
, (11a)

q̇0B
K =

1

IY B

(
MG
Y

)
B
, (11b)

with output defined in (10).
For convenience in design and analysis the following compact equations for (11) and the output (10) will

be used throughout the paper:

α̇GK = c0 + c1q
0B
K + c2δM , (12)
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where

c0 =
g

V GK
cos(θ − αGK) +

q̄Sref
mV GK

[
b0 cosαGK − a0 sinαGK

]
c1 = 1 +

q̄Sref
mV GK

[
b1 cosαGK − a1 sinαGK

]
c2 =

q̄Sref
mV GK

[
b2 cosαGK − a2 sinαGK

]

q̇0B
K = c3 + c4q

0B
K + c5δM , (13)

where

c3 =
q̄Sref lref
IY B

d0

c4 =
q̄Sref lref
IY B

d1

c5 =
q̄Sref lref
IY B

d2

and

y = c6 + c7q
0B
K + c8δM , (14)

where

c6 =
q̄Sref
m

b0

c7 =
q̄Sref
m

b1

c8 =
q̄Sref
m

b2

and ai, bi, di are short-hand definitions for the aerodynamic coefficients defined in the Table 2. This table
also gives the order these coefficients take over the range of angle-of-attack and Mach number.

Table 2. Short-hand definitions for aerodynamic coefficients used in control design

Definition Aerodynamic Coefficient Order

a0 Cx,0(αGK , β
G
K ,M) + Cx,Alt(α

G
K , (z

G)I ,M) O(0.1)

a1 Cx,q(α
G
K , β

G
K ,M) identically 0

a2 Cx,δM (αGK , β
G
K ,M) O(0.1)

b0 Cz,0(αGK , β
G
K ,M) O(10)

b1 Cz,q(α
G
K , β

G
K ,M) O(10)

b2 Cz,δM (αGK , β
G
K ,M) O(0.01)

d0 Cm,0(αGK , β
G
K ,M) O(10)

d1 Cm,q(α
G
K , β

G
K ,M) O(100)

d2 Cm,δM (αGK , β
G
K ,M) O(0.1)

IV. Autopilot Design

This section details the design procedure of a nonlinear autopilot for the output (14) using the reduced
model (12), (13). From the discussion (see Section I) of the non-minimum phase behaviour of a generic mis-
sile it is apparent that the pitching motion plays an integral part in ensuring the desired normal acceleration
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command is followed. This important role of the angular moment is not accounted in autopilot designs based
on exact input-output feedback linearization; hence resulting in undesirable closed-loop missile behaviour. A
stable missile autopilot design must ensure that the control deflection being commanded generates commen-
surable pitch rate through change in aerodynamic pitching moment that will essentially produce the desired
normal acceleration. This requirement is posed in this paper in the form of a sequential two-part control
problem.

Problem 1: First, given the desired normal acceleration command, determine the sufficient pitch rate
required to change the angle-of-attack of the missile appropriately.

Problem 2: Second, using the knowledge of the computed pitch rate, determine the control deflection
required to generate the appropriate pitching moment.

Note here that an autopilot designed by solving the above problems can also handle time-varying com-
mands. There is no need for gain scheduling or separate design for different command set-points. These
computations can be made in real-time and hence for the same vehicle there is no need for any mission-
dependent tuning of feedback gains. Some readers may recognize that the two-part problem posed above
is standard in flight control literature for aerial vehicles. But it is important to point out that success of
the past studies relied upon the presence of the inherent time scale separation between the angular moment
and the translational states. The main contribution of this paper is formulation of design criteria
that guarantee such an autopilot design can be implemented for vehicles that either do not
possess a time scale separation or those whose time scale separation changes widely over the
flight operation envelope. In this paper these conditions are developed by identifying criteria that ensure
the autopilot design formulated by solving Problem 1 and Problem 2 stabilize the overall missile dynamics.
Essential ground work on developing these conditions comes from study of non-standard singularly perturbed
systems done by the first author. In this paper the aim is to develop and identify the practical implications
of these conditions on the performance and the robustness of a missile autopilot. For more details on the
general conditions the reader is referred to 15,17. In the following, subsection A details the design procedure
of the autopilot and subsection B develops and analyzes the important design criteria.

A. Control Formulation

In this section control law for the pitch control deflection δM (αGK , q
0B
K ) is developed by sequentially addressing

Problem 1 and Problem 2. Toward this end, the discussion for solving each of these problems is detailed:

1. Solution to Problem 1

The objective here is to determine the sufficient pitch rate required to follow a desired acceleration command.
Let us denote this sufficient pitch rate command as q0 since it is different from the dynamic state q0B

K . Thus,
mathematically the objective is to find q0(t) such that the output defined in (14) satisfies y(t) → yr(t) as
time t→∞. In this step we assume that the pitch deflection command is such that the dynamic pitch rate
q0B
K (t) is identically equal to q0(t) (this assumption will be satisfied upon solving Problem 2, and the effect

of initial error will be analyzed in subsection B). Under this assumption, the output (14) can be rearranged
as

y = c6 + c7q
0 + c8δM (αGK , q

0). (15)

From a mathematical standpoint we find that the sufficient pitch rate q0 can be determined by straightforward
algebraic manipulation of (15). But this computation is not useful for control as it does not accommodate
for desired time-domain specifications. Hence, we take an additional derivative of (15) to get

ẏ = ċ6 + ċ7q
0 + ċ8δM (αGK , q

0) + c8δ̇M (αGK , q
0), (16)

by noting that the q0 acts as a equilibrium for the dynamic pitch rate in this step. From Table 2 we know
that the nonlinearities ci are time-varying due to changes in angle-of-attack (Mach number is assumed to
be constant in our study, see first paragraph under section III, and side slip is maintained at zero). This

means that ċ6 = ∂c6
∂αGK

α̇GK , ċ7 = ∂c7
∂αGK

α̇GK , and ċ8 = ∂c8
∂αGK

α̇GK . Furthermore we find that c8 =
q̄Sref
m b2 is
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comparatively smaller than c6 and c7 due to small contribution from the aerodynamic coefficient b2. Using
these approximations (16) becomes

ẏ =
∂c6
∂αGK

α̇GK +
∂c7
∂αGK

α̇GKq
0. (17)

Analyzing the aerodynamic data from reference 19 we find that ∂c6
∂αGK

is atleast two times greater in magnitude

than ∂c7
∂αGK

. We make use of this fact to further reduce (17) to

ẏ =
∂c6
∂αGK

α̇GK . (18)

Upon expanding out the angle-of-attack dynamics using (12) and the definitions c9 , q̄Sref
m and c10 ,

c9
V GK

a2 sinαGK above we get

ẏ =
∂c6
∂αGK

[
c0 + c1q

0 +

(
b2c9
V GK

cosαGK − c10

)
δM (αGK , q

0)

]
. (19)

Equation (19) gives the explicit input-output relationship between the output y and the input q0. Thus,
ignoring the small contribution from b2 and computing q0 such that

∂c6
∂αGK

[
c0 + c1q

0 − c10δM (αGK , q
0)
]

= ν̄ (20)

we find that the closed-loop output dynamics satisfies

ẏ = ν̄. (21)

The term ν̄ acts as a virtual control input in (21). This input can be designed using any linear control
technique to assign desired time-domain specifications to the output. In this paper, we formulate ν̄ as a
dynamic controller of the form

ν̄ = Kvx (22)

where

ẋ = −Kp(Kvx− ẏr)−KI(y − yr),

Ki are positive gains, and Kp and KI act as proportional and integral gains respectively that can be varied
to achieve desired output performance. However, the control designer must be wary of the fact that these
gains also influence the nonlinear closed-loop stability of the missile and must be selected by ensuring the
criterion derived later in subsection B is also met.

2. Solution to Problem 2

With the desired pitch rate computed using (20), the objective here is to develop a control law for the
pitch deflection δM (αGK , q

0B
K ) to ensure the dynamic state q0B

K stabilizes about q0. This can be achieved by
noting that the pitch rate dynamics is related to the control deflection δM via equation (13). Using feedback
linearization then, the control law

δM = −Kq(q
0B
K − q0) + c3 + c4q

0B
K

c5
(23)

will ensure the closed-loop dynamics of the pitch rate becomes

q̇0B
K = −Kq(q

0B
K − q0), (24)

such that it is uniformly asymptotically stable about the q0. The constant Kq introduced in (23) above is
another positive feedback gain selected by the designer to specify desired time-response properties.
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The final step in the control design process is to ensure the control law is specified in terms of quantities
that can be either estimated or computed in real-time. For this, rearrange the quantity (20) using the

expression δM (αGK , q
0) = − c3+c4q

0

c5
to get the following algebraic expression

∂c6
∂αGK

[
c0 + c1q

0 + c10

(
c3 + c4q

0

c5

)]
= ν̄ (25)

to compute q0 as a function of the angle-of-attack in real-time. Hence, (25) together with (22) and (23)
describe the autopilot control law.

B. Closed-Loop Analysis

The purpose of this section is to develop criterion under which the control law designed in (23) will asymp-
totically stabilize the dynamics of the missile, and ensure the output follows the desired command. As
mentioned earlier in the paper, this condition must be met when selecting the feedback gains. This analysis
is carried out using the Lyapunov’s direct method and is detailed in the following five steps.

The first step involves developing the closed-loop dynamics. For this let us rearrange (12) and (14) by
expanding c2 and c8 to get

α̇GK = c0 + c1q
0B
K +

[
ε
c9
V GK

cosαGK − c10

]
δM , (26)

y = c6 + c7q
0B
K + εc9δM , (27)

using the definitions of c9 and c10 used in (20) and ε , b2. As we will see later this rearrangement will assist
us in studying the effect of ignoring b2 dependent terms during control design on the closed-loop stability.
Next substitute the control law (23) into (26) and (13), and replace the output y in (22) with (27) to get
the following closed-loop:

α̇GK =
Kvx
∂c6
∂αGK

+ c1
(
q0B
K − q0

)
+Kq

c10

c5
(q0B
K − q0) + ε

c9
V GK

cosαGKδM , (28a)

q̇0B
K = −Kq(q

0B
K − q0), (28b)

ẋ = −Kp(Kvx− ẏr)−KI

(
c6 + c7q

0B
K + εc9δM − yr

)
. (28c)

The closed-loop system obtained in (28) is time-varying and has a trim corresponding to different output
commands yr. Since our aim here is to assess stability corresponding to all possible trims, let us translate
the trim of the closed-loop system to the origin. For this we develop the general equilibrium equations that
are always satisfied in the following second step.

Let us denote (α∗, q∗, x∗) as the trim point. Setting the time derivative of the states αGK , q0B
K and x to

zero in (28) we get the following three equilibrium equations:

q∗ = q0(α∗), (29)

Kvx
∗

∂c6
∂αGK
|α∗

+ ε
c9
V GK

cosα∗δM (α∗, q∗) = 0, (30)

−Kp(Kvx
∗ − ẏr)−KI (c6 + c7q

∗ + εc9δM (α∗, q∗)− yr) = 0 (31)

where equations (29) through (31) are written about α∗. Notice that trim point for the dynamic pitch rate
q∗ is exactly equal to q0 computed about α∗, as desired. Further since (31) is satisfied only if the individual
components are zero we get

Kvx
∗ = ẏr, (32)

∂c6
∂αGK

|α∗ε(α∗)
c9
V GK

cosα∗δM (α∗, q∗) = −ẏr, (33)

c6(α∗) + c7(α∗)q∗ + ε(α∗)c9δM (α∗, q∗) = yr, (34)

that define three equations in three unknowns.
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The third step in the analysis is to repose the closed-loop system (28) such that the origin becomes the
unique equilibrium. This is done by using the equilibrium conditions (32) through (34) in (28)

α̇GK =

[
Kvx
∂c6
∂αGK

− Kvx
∗

∂c6
∂αGK
|α∗

]
+

[
c1 +Kq

c10

c5

] (
q0B
K − q∗

)
+

[
ε
c9
V GK

cosαGKδM − ε(α∗)
c9
V GK

cosα∗δM (α∗, q∗)

]

+

[
c1 +Kq

c10

c5

] (
q∗ − q0(αGK)

)
, (35a)

q̇0B
K = −Kq(q

0B
K − q∗)−Kq(q

∗ − q0(αGK)), (35b)

ẋ = −KpKv(x− x∗)−KI

[
{c6 − c6(α∗)}+

{
c7q

0B
K − c7(α∗)q∗

}
+ {εc9δM − ε(α∗)c9δM (α∗, q∗)}

]
. (35c)

In the fourth step select a Lyapunov function candidate V = 1
2 (x− x∗)2 + 1

2 (αGK − α∗)2 + 1
2 (q0B

K − q∗)2

to study the closed-loop system (35). Taking derivative of this Lyapunov function candidate we get

V̇ = (1/c9)(x− x∗)ẋ+ (αGK − α∗)α̇GK + (q0B
K − q∗)q̇0B

K . (36)

Evaluating (36) along (35)

V̇ =−KvKp(1/c9)(x− x∗)2 −Kq(q
0B
K − q∗)2 −Kq(q

∗ − q0(αGK))(q0B
K − q∗)

− (1/c9)KI

[
{c6 − c6(α∗)}+

{
c7q

0B
K − c7(α∗)q∗

}
+ {εc9δM − ε(α∗)c9δM (α∗, q∗)}

]
(x− x∗)

+

[
Kvx
∂c6
∂αGK

− Kvx
∗

∂c6
∂αGK
|α∗

]
(αGK − α∗) +

[
c1 +Kq

c10

c5

]
(αGK − α∗)

(
q0B
K − q∗

)
+

[
ε
c9
V GK

cosαGKδM − ε(α∗)
c9
V GK

cosα∗δM (α∗, q∗) +

{
c1 +Kq

c10

c5

}(
q∗ − q0(αGK)

)]
(αGK − α∗). (37)

Note that the difference terms in (37) are a function of the design constants and the aerodynamic
coefficients. These terms capture the deviations occurring in the dynamics of the missile due to initial
condition errors, and approximations made during control design. This means that the feedback gains must
be selected in a way that ensures the derivative of the Lyapunov function candidate is negative definite
for a range of parametric uncertainties and reference commands. One way of selecting these gains is by
performing Monte Carlo simulations over the range of uncertainties. Instead, in this paper we take the
approach of deriving sufficient condition for selecting feedback gains that will ensure stability over a block
of uncertainties. This is done in this fifth step by verifying whether the individual difference terms are
upper-bounded by some inequality:

1. By the quadratic nature of the term K2
vKp(x− x∗)2 we know that

(1/c9)KvKp(x− x∗)2 = (1/c9)KvKp|(x− x∗)|2.

2. Similarly

Kq(q
0B
K − q∗)2 = Kq|(q0B

K − q∗)|2.

3. Next consider the difference terms appearing due to ẋ dynamics. Using the definitions of c6, and c7
from (14) see that

KI

[
{c6 − c6(α∗)}+

{
c7q

0B
K − c7(α∗)q∗

}
+ {εc9δM − ε(α∗)c9δM (α∗, q∗)}

]
(x− x∗)

= KIc9
[
{b0 − b0(α∗)}+

{
b1q

0B
K − b1(α∗)q∗

}
+ {εδM − ε(α∗)δM (α∗, q∗)}

]
(x− x∗).

From aerodynamic data we find that the coefficient b0(αGK) = sb0(αGK − α∗) is approximately linear in
the angle-of-attack with slope sb0 = −|sb0|. Additionally since the coefficient b2 is comparatively small
we assume that ε(αGK) = ε(α∗) = −|ε|. Then the above difference term becomes

KIc9
[
{b0 − b0(α∗)}+

{
b1q

0B
K − b1(α∗)q∗

}
+ {εδM − ε(α∗)δM (α∗, q∗)}

]
(x− x∗)

≤ KIc9
[{
sb0(αGK − α∗)

}
+
{
b1q

0B
K − b1(α∗)q∗

}
+ ε {δM − δM (α∗, q∗)}

]
(x− x∗).
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Using the control law from (23) the above inequality can be further rearranged to

KIc9
[{
sb0(αGK − α∗)

}
+
{
b1q

0B
K − b1(α∗)q∗

}
+ ε {δM − δM (α∗, q∗)}

]
(x− x∗)

≤ KIc9

[{
sb0(αGK − α∗)

}
+
{
b1q

0B
K − b1(α∗)q∗

}
+

ε

c5

{
−Kq(q

0B
K − q∗)

}]
(x− x∗)

≤ −KIc9|sb0||(αGK − α∗)||(x− x∗)| −KIKqc9

∣∣∣∣ εc5
∣∣∣∣ |(q0B

K − q∗)||(x− x∗)|

+KIc9|b1q0B
K − b1(α∗)q∗||(x− x∗)|

since c5 = −|c5| due to the nature of aerodynamic coefficient d2. Using the triangle inequality |b1q0B
K −

b1(α∗)q∗| ≤ |b1(αGK)
{
q0B
K − q∗

}
| + |b1(αGK) − b1(α∗)||q∗| and the fact from the aerodynamic data

|b1(αGK)− b1(α∗)| ≤ −β|αGK − α∗| where β > 0 for all angle-of-attack and Mach number values, then

KI

[
{c6 − c6(α∗)}+

{
c7q

0B
K − c7(α∗)q∗

}
+ {εc9δM − ε(α∗)c9δM (α∗, q∗)}

]
(x− x∗)

≤ −KIc9|sb0||(αGK − α∗)||(x− x∗)| −KIKqc9

∣∣∣∣ εc5
∣∣∣∣ |(q0B

K − q∗)||(x− x∗)|

+KIc9|b1(αGK)
{
q0B
K − q∗

}
||(x− x∗)| −KIc9β|q∗||αGK − α∗||(x− x∗)|.

4. The error due to arbitrary initial condition of the integrator state x is expressed as[
Kvx
∂c6
∂αGK

− Kvx
∗

∂c6
∂αGK
|α∗

]
(αGK − α∗) ≤ −

∣∣∣∣ Kv

c9sb0

∣∣∣∣ |(x− x∗)||(αGK − α∗)|
by using the definition of the aerodynamic coefficient c6 and linear dependence of b0.

5. This next term appears due to coupling between the translational and rotational motion components:[
c1 +Kq

c10

c5

]
(αGK − α∗)

(
q0B
K − q∗

)
≤ −|c1||(αGK − α∗)||

(
q0B
K − q∗

)
| −Kq

∣∣∣∣c10

c5

∣∣∣∣ |(αGK − α∗)|| (q0B
K − q∗

)
|

since c1 and c5 are always negative.

6. The effect of ignoring the small quantity ε in the autopilot design is captured by the following difference
term:[
ε
c9
V GK

cosαGKδM − ε(α∗)
c9
V GK

cosα∗δM (α∗, q∗)

]
(αGK − α∗)

≤ ε c9
V GK

[
−Kq

c5
cosαGK(q0B

K − q∗) + δM (α∗, q∗)
{

cosαGK − cosα∗
}]

(αGK − α∗)

≤
∣∣∣∣ε c9V GK Kq

c5
cosαGK

∣∣∣∣ |q0B
K − q∗||(αGK − α∗)| −

∣∣∣∣ε c9V GK δM (α∗, q∗)

∣∣∣∣ |(αGK − α∗)|2
where we have used the control law (23) and the assumption that the ε variation with angle-of-attack
is negligible.

7. Finally the difference in the pitch rate trim point q∗ and the input q0 is a function of the difference
angle-of-attack and its trim point from (25). That is

q∗ − q0(αGK) =
1

c1(α∗) + c10
c4(α∗)
c5(α∗)

[
Kvx

∗

∂c6
∂αGK
|α∗

]
− 1

c1(αGK) + c10
c4(αGK)

c5(αGK)

[
Kvx
∂c6
∂αGK

]

− 1

c1(α∗) + c10
c4(α∗)
c5(α∗)

{
c0(α∗) + c10(α∗)

c3(α∗)

c5(α∗)

}
+

1

c1(αGK) + c10
c4(αGK)

c5(αGK)

{
c0(αGK) + c10(αGK)

c3(αGK)

c5(αGK)

}
.
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Using properties 4 and 5 given above,

1

c1(α∗) + c10
c4(α∗)
c5(α∗)

[
Kvx

∗

∂c6
∂αGK
|α∗

]
− 1

c1(αGK) + c10
c4(αGK)

c5(αGK)

[
Kvx
∂c6
∂αGK

]
≤ 1∣∣∣c1 + c10

c4
c5

∣∣∣
∣∣∣∣ Kv

c9sb0

∣∣∣∣ |(x− x∗)|,
1

c1(α∗) + c10
c4(α∗)
c5(α∗)

{
c0(αGK)− c0(α∗)

}
≤ 1∣∣∣c1 + c10

c4
c5

∣∣∣
∣∣∣c9
V

∣∣∣ {−|a0||αGK − α∗| − |sb0||αGK − α∗|+ |b0||αGK − α∗|
}
,

and

1

c1(α∗) + c10
c4(α∗)
c5(α∗)

{
c10(αGK)

c3(αGK)

c5(αGK)
− c10(α∗)

c3(α∗)

c5(α∗)

}
≤ 1∣∣∣c1 + c10

c4
c5

∣∣∣
∣∣∣∣c10c9mlref

c5IY B

∣∣∣∣ {|sd0||αGK − α∗|
}

hold using the definition of c3 and the fact that d0 = −|sd0|(αGK − α∗). Then we have that

q∗ − q0(αGK) ≤ 1∣∣∣c1 + c10
c4
c5

∣∣∣
[∣∣∣∣ Kv

c9sb0

∣∣∣∣ |(x− x∗)|+ (∣∣∣c9V ∣∣∣ {−|a0| − |sb0|+ |b0|}+

∣∣∣∣c10c9mlrefsd0

c5IY B

∣∣∣∣) |αGK − α∗|]

Substituting the above computed inequalities into (37) we get

V̇ = −(1/c9)KvKp|(x− x∗)|2 −Kq(q
0B
K − q∗)2

+

KI |sb0|+KIβ|q∗| −
Kv

c9|sb0|
−
{
|c1|+

∣∣∣∣Kqc10

c5

∣∣∣∣} 1∣∣∣c1 + c10
c4
c5

∣∣∣
∣∣∣∣ Kv

c9sb0

∣∣∣∣
 |αGK − α∗||x− x∗|

−|c1| −Kq|
c10

c5
|+
∣∣∣∣ε Kq

V GK

c9
c5

cosαGK

∣∣∣∣− Kq∣∣∣c1 + c10
c4
c5

∣∣∣
(∣∣∣c9
V

∣∣∣ {−|a0| − |sb0|+ |b0|}+

∣∣∣∣c10c9mlrefsd0

c5IY B

∣∣∣∣)
 |αGK − α∗||q0B

K − q∗|

KIKq|
ε

c5
| −KI |b1(αGK)| − Kq∣∣∣c1 + c10

c4
c5

∣∣∣
∣∣∣∣ Kv

c9sb0

∣∣∣∣
 |x− x∗||q0B

K − q∗|

−

∣∣∣∣ε c9V GK δM (α∗, q∗)

∣∣∣∣+

{
|c1|+

∣∣∣∣Kqc10

c5

∣∣∣∣} 1∣∣∣c1 + c10
c4
c5

∣∣∣
(∣∣∣c9
V

∣∣∣ {−|a0| − |sb0|+ |b0|}+

∣∣∣∣c10c9mlrefsd0

c5IY B

∣∣∣∣)
 |(αGK − α∗)|2,

(38)

which can be rearranged to

V̇ ≤ [(x− x∗) (αGK − α∗) (q0B
K − q∗)]K[(x− x∗) (αGK − α∗) (q0B

K − q∗)]T (39)

with matrix K defined as

K =

 −KvKp(1/c9) µ1 µ2

µ1 −µα µ3

µ2 µ3 −Kq

 (40)

with µi defined in Table 3. Then from Lyapunov’s method it is clear that the missile will have stable closed-
loop dynamics if the matrix K is negative-definite. Furthermore, if the matrix K is negative definite, the
states (x, αGK , q

0B
K ) will asymptotically approach their trim points defined in (32) through (34), which will in

turn mean that the output will asymptotically approach the desired reference command yr.
The above analysis indicates that the feedback gains must be chosen to ensure the matrix

K is negative-definite for a range of parametric uncertainties. This is a sufficiency condition and
can be met by following the two steps. First, to ensure negative definiteness for a range of uncertainties the
designer must use the least upper bound values for the aerodynamic coefficients and the flight conditions in
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Table 3. Definition of elements of K

Parameter Definition

µα

[∣∣∣ε c9V GK δM (α∗, q∗)
∣∣∣+
{
|c1|+

∣∣∣Kqc10c5

∣∣∣} 1∣∣∣c1+c10
c4
c5

∣∣∣
(∣∣ c9

V

∣∣ {−|a0| − |sb0|+ |b0|}+
∣∣∣ c10c9mlrefsd0c5IYB

∣∣∣)]
µ1

1
2

[
KI |sb0|+KIβ|q∗| − Kv

c9|sb0| −
{
|c1|+

∣∣∣Kqc10c5

∣∣∣} 1∣∣∣c1+c10
c4
c5

∣∣∣
∣∣∣ Kvc9sb0

∣∣∣]
µ2

1
2

[
KIKq| εc5 | −KI |b1(αGK)| − Kq∣∣∣c1+c10

c4
c5

∣∣∣
∣∣∣ Kvc9sb0

∣∣∣]
µ3

1
2

[
−|c1| −Kq| c10c5 |+

∣∣∣εKqV GK c9
c5

cosαGK

∣∣∣− Kq∣∣∣c1+c10
c4
c5

∣∣∣
(∣∣ c9

V

∣∣ {−|a0| − |sb0|+ |b0|}+
∣∣∣ c10c9mlrefsd0c5IYB

∣∣∣)]

µi. This will ensure that gains computed in the next step will guarantee stability for a block of parametric
values. At the end of the first step the matrix K will become purely a function of the feedback gains, selection
of which requires some iteration. In the second step the designer must make an initial guess for Kv, Kp and
KI . This can be done by noticing that the output response transfer function is

y(s)

yr(s)
=

Kv[Kps+KI ]

s2 +KvKps+KvKI
(41)

at the end of Problem 1. This means that appropriate selection of Kv, Kp and KI will help in assigning
desired time-domain characteristics to the output. On the other hand feedback gain Kq assigns speed of
response to the pitch rate dynamics and must be chosen to be of higher order than Kv, Kp and KI . Using
these values as the initial guess into matrix K the designer must iterate a few more times to get desired
negative definiteness. These iterations may be required for two reasons: one for ensuring the stability of
the nonlinear closed-loop system and the other to ensure the closed-loop has desired properties. This is an
important feature about the construction of matrix K. Notice that due to choice of the Lyapunov function,
the eigenvalues of matrix K directly correspond to the response of the states of the closed-loop system and
can be modified as desired.

Finally, before leaving this section let us expand further on the choice of the feedback gain Kq. Looking
back at the closed-loop (35) notice that if Kq is chosen to assign a small time constant to the angular rate
dynamics, then after some finite time t∗ which is greater than initial time the dynamics (35) will reduce to:

q0B
K (t > t∗) = q0(αGK), (42a)

α̇GK =

[
Kvx
∂c6
∂αGK

− Kvx
∗

∂c6
∂αGK
|α∗

]
+

[
ε
c9
V GK

cosαGKδM (αGK , q
0)− ε(α∗) c9

V GK
cosα∗δM (α∗, q∗)

]
, (42b)

ẋ = −KpKv(x− x∗)−KI

[
{c6 − c6(α∗)}+

{
c7q

0 − c7(α∗)q∗
}

+
{
εc9δM (αGK , q

0)− ε(α∗)c9δM (α∗, q∗)
}]
.

(42c)

Use the definition of the output y from (27), and equilibrium relation (34), to further reduce (42)

q0B
K (t > t∗) = q0(αGK), (43a)

α̇GK =

[
Kvx
∂c6
∂αGK

− Kvx
∗

∂c6
∂αGK
|α∗

]
+

[
ε
c9
V GK

cosαGKδM (αGK , q
0)− ε(α∗) c9

V GK
cosα∗δM (α∗, q∗)

]
, (43b)

ẋ = −Kp(Kvx− ẏr)−KI

[
y(αGK , q

0)− yr
]
, (43c)

or

q0B
K (t > t∗) = q0(αGK), (44a)

ẍ = −Kp(Kvẋ− ÿr)−KI

[
∂y

∂αGK

[
Kvx
∂c6
∂αGK

− Kvx
∗

∂c6
∂αGK
|α∗

]
− ẏr

]
(44b)

−KI
∂y

∂αGK

[
ε
c9
V GK

cosαGKδM (αGK , q
0)− ε(α∗) c9

V GK
cosα∗δM (α∗, q∗)

]
.
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Notice (44b) is composed of three terms. The first two terms appear due to arbitrary initial conditions,
and from design of virtual input ν̄ (22) these terms will die out in time. The third term captures the effect
of ignoring b2 in the control design, and acts as an external disturbance. Due to the integral action of the
virtual input ν̄ qualitatively we may say that the effect of this disturbance on the steady state response of
the output will be zero. However, notice this conclusion was based on the assumption that the pitch rate
dynamics settles down faster than the other states. This means that essentially the choice of feedback
gains must be made such that a time-scale separation is induced in the closed-loop system.
Furthermore, (44) also suggests that this induced time scale separation does not depend on whether or not
the missile has inherently time scale separated dynamics.

V. Case Study

The purpose of this section is to demonstrate the controller performance in simulation for a generic
missile model presented in (4), and illustrate how matrix K can be employed in selection of feedback gains.
The operating point V GK = 600m/sec and h = 5km is chosen as initial condition for the simulation. The
control command consists of step inputs applied to the acceleration channel with an amplitude of 10g. This
step input command is passed through a reference model to create a ramp-like reference trajectory for the
autopilot to follow. With the chosen maneuver, the overall acceleration commanded to the missile is close
to the maximum trimmable acceleration at the considered envelope point.

A. Feedback gain selection

The feedback gains are selected by carrying out the two steps listed in analysis section above:

1. In order to ensure stability for the range of values given in Table 1 the least-upper bounds (or greatest
lower bounds for denominators) for the aerodynamic data terms are determined. These are tabulated
in Table 4 for the missile model under study.

2. At the end of the first step, matrix K depends purely on the feedback gains. In this second step these
gains need to be varied to ensure the matrix attains negative definiteness properties. This will require
iterations and one may begin by noting that Kv acts as a multiplying factor in (41) and can be fixed
to one initially. Furthermore, if there are no uncertainties in the system then integral action can be
temporarily turned off and thus, KI = 0. Then only Kp and Kq need to be varied to ensure the
matrix K is stable. But due to integral action of the state x we find that this matrix is only negative
semi-definite for the missile. That is V̇ ≤ 0. Then since the Lyapunov function candidate is lower
bounded we have that the error states (x−x∗), (αGK −α∗) and (q0B

K − q∗) are bounded. Using this fact
and the Barbalat’s lemma20 one can show that V̇ → 0 as t → ∞, and hence the errors (x− x∗) → 0,
(αGK −α∗)→ 0 and (q0B

K − q∗)→ 0. This proves that the errors converge to zero and the output tracks
the reference command asymptotically. For the simulation results presented next Ky = 8, KI = 2
and Kq = 10 were selected. With these values the eigenvalues of the matrix K were computed as
λ1 = −0.22, λ2 = −0.16 and λ3 = 0.

B. Simulation results

Figure 2 presents the closed-loop results for the generic missile being commanded to acceleration of 10g.
Figure 2 indicates that the autopilot demonstrated asymptotic tracking irrespective of the commanded
acceleration. The commanded control deflection is consistent with the dynamics of the vehicle described in
Section I. Between 5−10seconds negative pitch-deflection commands are generated to induce a positive change
in angle-of-attack and accelerate the missile upward as desired. This negative control deflection command
is corrected at 10seconds when the commanded acceleration is brought back to 0g. Similar behaviour is
seen between 15− 20 seconds with positive control deflection command inducing a negative angle-of-attack
decelerating the missile to −10g. At 20seconds the pitch-deflection command starts to go back to 0deg and
around 22.5 seconds the missile stabilizes about origin.

The inherent tendency of the missile to resist change is evident each time the acceleration command is
altered. Initially between 0 − 2.5 seconds the transient changes in the normal acceleration are corrected
through small control deflections. Furthermore at 5seconds, even though a negative deflection is generated,
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Table 4. Values used in computation of µi(given in appropriate units)

Parameter Value

|ε| 0.0027

|c9| 49.9043

β 9.5077

|sb0| 33.07

|sd0| 74.28

|b0| 43.75

|a0| 0.2512

c5 0.176

|c1| 0.2428

|c10| 0.0696

|q ∗ | π

|δM (α∗, q∗)| 45(180/π)

the missile starts to accelerate in the wrong direction until sufficient change in angle-of-attack is created.
Similar behaviour is seen at 10, 15,and 20 seconds respectively. Despite this non-minimum phase behaviour
the autopilot maintained asymptotic tracking throughout the simulation.

VI. Conclusions

In this paper synthesis of a nonlinear autopilot was presented for a generic aerodynamically controlled
missile. The non-minimum phase characteristics of the missile were addressed by inducing a time scale
separation in the closed-loop to ensure the rotational dynamics remain stable at all times. The designed
autopilot exhibits almost linear time-invariant closed-loop dynamics as a result of which the designed missile
control system successfully fulfilled the demanding maneuver. Based on the results presented in the paper,
the following three conclusions are drawn. First, the final output tracking rise-time of the step response is
1.5seconds and the settling time is around 4seconds. This close output tracking was a result of computing
the desired pitch rate in real-time. Second, the autopilot is independent of the commanded reference and
globally applicable. Third, unlike other exact output tracking approaches for non-minimum phase systems,
the autopilot is causal and does not require any prior information or preview of the desired reference.
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TECHNICAL SUMMARIES – SUMAN CHAKRAVORTY 
 

In this project, we have developed sampling based feedback planning techniques for the 
solution of Markov Decision Problems (MDP) and Partially Observed MDPs (POMDP).  
The primary application of interest has been the feedback motion planning for unmanned 
robotic vehicles, both ground and air based. The techniques have been implemented on 
real hardware and shown to be robust and real time implementable. We have also 
extended these techniques to the case of multi-vehicle systems. The following papers 
have resulted form this work. Attached to this document are also four papers that best 
summarize the contributions in this work. 
 
1. Agha-mohammadi, Suman Chakravorty, Nancy Amato, “FIRM: Sampling-based 
Feedback Motion Planning Under Motion Uncertainty and Imperfect Measurements“, 
International Journal of Robotics Research, 33(2):268-304, February 2014 
 
2. Agha-mohammadi, Saurav Agarwal, Aditya Mahadevan, Suman Chakravorty, Daniel 
Tomkins, Jory Denny, Nancy Amato, “Robust Online Belief Space Planning in Changing 
Environments: Application to Physical Mobile Robots,” In Proc. IEEE Int. Conf. Robot. 
Autom. (ICRA), Hong Kong, China, May 2014 
 
3. Agha-mohammadi, Saurav Agarwal, Suman Chakravorty, ” Periodic-node Sampling-
Based Framework for Stochastic Motion Control of Small Aerial Vehicles,” The ASME 
Journal of Dynamic Systems, Measurement and Control, Special Issue on Stochastic 
Models, Control and Algorithms in Robotics [to appear] 
 
4. Agha-mohammadi, Suman Chakravorty, Nancy Amato, “Sampling-based Stochastic 
Control with Constraints: A Unified Approach in State and Information-state Spaces”, in 
American Control Conference (ACC), invited paper, Stochastic Models, Control and 
Algorithms in Robotics session, Washington, DC, June 2013 
 
5. Aghamohammadi, S. Chakravorty and N. M. Amato, “Sampling-based Nonholonomic 
Motion Planning in Belief Space via Dynamic Feedback Linearization-based FIRM”, 
Proc. 2012 IEEE/ RSJ Int. Conf. on Robotics and Intelligent Systems (IROS), Vilamoura, 
Algarve, Portugal 
 
6. S. Kumar and S. Chakravorty, “Multi-Agent Generalized Probabilistic Roadmaps”, 
Proc. 2012 IEEE/ RSJ Int. Conf. on on Rob. Intell. Syst. (IROS), Vilamoura, Algarve, 
Portugal  
 
7. Aghamohammadi, S. Chakravorty and N. M. Amato, “Probabilistic Completeness of 
Feedback Aware Information Roadmaps”, Proc. 2012 IEEE Int. Conf. on Robotics and 
Automation (ICRA), Minneapolis, MN 
 
8. Aghamohammadi, S. Chakravorty and N. M. Amato “Feedback Aware Information 
Roadmaps”, Proc. 2011 IEEE/ RSJ Int. Conf. on Robotic and Intelligent Systems (IROS), 
San Francisco, CA 
 



 2 

The papers attached are 1, 2, 3 and 6 which encapsulate the key contributions of this 
work. A brief description of these papers is given below.   
 
Paper 1. In this paper we present feedback-based information roadmap (FIRM), a 
multiquery approach for planning under uncertainty which is a belief-space variant of 
probabilistic roadmap methods. The crucial feature of FIRM is that the costs associated 
with the edges are independent of each other, and in this sense it is the first method that 
generates a graph in belief space that preserves the optimal substructure property. From a 
practical point of view, FIRM is a robust and reliable planning framework. It is robust 
since the solution is a feedback and there is no need for expensive replanning. It is 
reliable because accurate collision probabilities can be computed along the edges. In 
addition, FIRM is a scalable framework, where the complexity of planning with FIRM is 
a constant multiplier of the complexity of planning with PRM. In this paper, FIRM is 
introduced as an abstract framework. As a concrete instantiation of FIRM, we adopt 
stationary linear quadratic Gaussian (SLQG) controllers as belief stabilizers and 
introduce the so-called SLQG-FIRM. In SLQG-FIRM we focus on kinematic systems 
and then extend to dynamical systems by sampling in the equilibrium space. We 
investigate the performance of SLQG-FIRM in different scenarios. 
 
Paper 2. Motion planning in belief space (under motion and sensing uncertainty) is a 
challenging problem due to the computational intractability of its exact solution. The 
Feedback-based Information RoadMap (FIRM) framework made an important theoretical 
step toward enabling roadmap-based planning in belief space and provided a 
computationally tractable version of belief space planning. However, there are still 
challenges in applying belief space planners to physical systems, such as the discrepancy 
between computational models and real physical models. In this paper, we propose a 
dynamic replanning scheme in belief space to address such challenges. Moreover, we 
present techniques to cope with changes in the environment (e.g., changes in the obstacle 
map), as well as unforeseen large deviations in the robot’s location (e.g., the kidnapped 
robot problem). We then utilize these techniques to implement the first online replanning 
scheme in belief space on a physical mobile robot that is robust to changes in the 
environment and large disturbances. This method demonstrates that belief space planning 
is a practical tool for robot motion planning. 
 
Paper 3. This paper presents a strategy for stochastic control of small aerial vehicles 
under uncertainty using graph-based methods. In planning with graph-based methods, 
such as the Probabilistic Roadmap Method (PRM) in state space or the Information 
RoadMaps (IRM) in information-state (belief) space, the local planners (along the edges) 
are responsible to drive the state/belief to the final node of the edge. However, for aerial 
vehicles with minimum velocity constraints, driving the system belief to a sampled belief 
is a challenge. In this paper, we propose a novel method based on periodic controllers, in 
which instead of stabilizing the belief to a predefined probability distribution, the belief is 
stabilized to an orbit (periodic path) of probability distributions.  Choosing nodes along 
these orbits, the node reachability in belief space is achieved and we can form a graph in 
belief space that can handle higher-order-dynamics or non-stoppable systems (whose 
velocity cannot be zero), such as fixed wing aircraft. The proposed method takes 
obstacles into account and provides a query-independent graph, since its edge costs are 
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independent of each other. Thus, it satisfies the principle of optimality. Therefore, 
dynamic programming can be utilized to compute the best feedback on the graph. We 
demonstrate the method’s performance on a unicycle robot and a six degrees of freedom 
small aerial vehicle. 
 
Paper 6. In this paper, the generalized motion planning algorithm (Generalized PRM : 
GRPM [1, 2, 3]) is extended to a class of multi-agent motion planning problem in 
presence of process uncertainty and stochastic maps. The proposed algorithm is a 
hierarchical approach towards constructing a passive coordination strategy which utilizes 
an existing multiple traveling salesman problem (MTSP) solution methodology in 
conjunction with the GPRM framework to solve the multi-agent motion planning 
problem. The proposed algorithm is generalized to tackle multi-agent problems involving 
heterogeneous agents. The algorithm is used to solve multiagent motion planning 
problems involving 2-dimensional and 3-dimensional agents in stochastic maps with 
uncertainty in the motion model. Results indicate that the algorithm successfully solves 
the problem under uncertainty, and generates a solution having high probability of 
success. It also demonstrates that the algorithm is scalable in terms of number of start and 
goal locations, the number of agents and their dynamics.   
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Abstract
In this paper we present feedback-based information roadmap (FIRM), a multi-query approach for planning under
uncertainty which is a belief-space variant of probabilistic roadmap methods. The crucial feature of FIRM is that the
costs associated with the edges are independent of each other, and in this sense it is the first method that generates
a graph in belief space that preserves the optimal substructure property. From a practical point of view, FIRM is a
robust and reliable planning framework. It is robust since the solution is a feedback and there is no need for expensive
replanning. It is reliable because accurate collision probabilities can be computed along the edges. In addition, FIRM is
a scalable framework, where the complexity of planning with FIRM is a constant multiplier of the complexity of planning
with PRM. In this paper, FIRM is introduced as an abstract framework. As a concrete instantiation of FIRM, we adopt
stationary linear quadratic Gaussian (SLQG) controllers as belief stabilizers and introduce the so-called SLQG-FIRM. In
SLQG-FIRM we focus on kinematic systems and then extend to dynamical systems by sampling in the equilibrium space.
We investigate the performance of SLQG-FIRM in different scenarios.

Keywords
Planning, control, uncertainty, information, belief space

1. Introduction
Decision-making under uncertainty is a crucial ability for
most robotic systems. In the presence of uncertainty in a
robot’s motion and uncertainty in its sensory readings, the
true robot state is not available for decision-making pur-
poses. In such cases, a state estimation module can provide
a probability distribution over all possible states, referred to
as information state or belief. Therefore, decision-making
under motion and sensing uncertainties needs to be per-
formed in the information space (belief space). In its most
general form, this decision-making can be formulated as
a partially observable Markov decision process (POMDP)
problem (Astrom, 1965; Smallwood and Sondik, 1973;
Kaelbling et al., 1998). However, only a very small class of
problems formulated using POMDP can be solved exactly
due to its computational complexity (Papadimitriou and
Tsitsiklis, 1987; Madani et al., 1999). In particular, plan-
ning (i.e. solving POMDPs) over continuous state, control,
and observation spaces is a big challenge.

On the other hand, in the absence of uncertainty,
sampling-based path-planning algorithms including graph-
based methods such as probabilistic roadmap methods
(PRMs) (Kavraki et al., 1996) and their variants (see
e.g. Amato et al., 1998), and tree-based methods such as

rapidly-exploring randomized trees (RRTs) (Lavalle and
Kuffner, 2001), expansive space trees (Hsu, 2000) and their
variants (e.g. Karaman and Frazzoli, 2011) have shown
great success in solving robot motion planning problems.
Nevertheless, direct transformation of the roadmap-based
methods to planning under uncertainty (in belief space) is a
challenge for two main reasons. The first issue is ensuring
that the roadmap nodes are reachable. The second challenge
is that the incurred costs on different edges of the roadmap
depend on each other, which violates a basic assumption in
roadmap-based methods that each roadmap edge represent
an independent planning problem.

In this paper, we generalize the PRM framework to
obtain the feedback-based information roadmap (FIRM)
framework that takes into account both motion and sensing
uncertainties. FIRM is constructed as a roadmap (graph)

1Department of Computer Science and Engineering, Texas A&M
University, USA
2Department of Aerospace Engineering, Texas A&M University, USA

Corresponding author:
Ali-akbar Agha-mohammadi, Department of Computer Science
and Engineering, Texas A&M University, College Station, TX 77840,
USA.
Email: aliagha@tamu.edu

 at Texas A&M University - Medical Sciences Library on November 16, 2013ijr.sagepub.comDownloaded from 

http://ijr.sagepub.com/
http://ijr.sagepub.com/


2 The International Journal of Robotics Research 0(0)

Fig. 1. (a) A simple PRM in state space. (b) Assuming Gaussian belief space, belief snapshots along different paths starting from v0 and
ending at v11 are shown. As can be seen, the obtained belief depends on the path traveled by the robot. For example, P11( 0, 1, 3, 6, 9, 10)
denotes the estimation covariance at node v11, when the robot has traversed a path through nodes ( 0, 1, 3, 6, 9, 10) prior to node 11. (c)
Corresponding belief paths in the belief space. Belief at each node depends on the initial belief, actions taken (edges), and obtained
observations (random). Therefore, the generated structure in the belief space is not a graph but a random tree. (d) Unique beliefs
assigned to each PRM node. Using stabilizers, regardless of the action and observation history, the belief at each node stops at these
predefined beliefs. (e) The FIRM corresponding to the given PRM; bi

c denotes graph nodes in the belief space and µij denotes local
planners (graph edges).

in the belief space, where graph nodes are beliefs (rig-
orously speaking, small subsets of the belief space) and
edges are local controllers in belief space. FIRM is an
abstract generic framework that relies on the existence of
an appropriate belief node sampler and connector (local
controller). We also construct a stationary linear quadratic
Gaussian controller-based (SLQG-based) instantiation of
this generic framework, called SLQG-FIRM, where we pro-
vide a specific node sampler and connector. In SLQG-
FIRM we first focus on the kinematic systems and then
extend it to dynamical systems by restricting sampling
space to the equilibrium space. SLQG-FIRM is the first
method that generalizes the PRM to the belief space such
that the incurred costs on different edges of the roadmap
are independent of each other, while providing a straightfor-
ward approach to sample reachable belief nodes. This prop-
erty is a direct consequence of utilizing feedback controllers
in the construction of FIRM. Based on this property, the
FIRM framework breaks the curse of history in POMDPs

(Pineau et al., 2003), and provides the optimal feedback
policy over the roadmap instead of returning a single
nominal path.

Figure 1 illustrates the problem of edge dependence in
the direct transformation of PRM to stochastic domains. It
also shows the approach of FIRM in generating a graph in
belief space with independent edges. Figure 1(a) depicts
a simple PRM in the state space with twelve nodes V =
{v0, . . . , v11}. Figure 1(b) shows the belief evolution on the
underlying PRM. Assuming the belief is Gaussian in this
example, we represent a point in belief space using a mean
x̂+ and a covariance P, in other words, a belief b is charac-
terized by the pair b ≡ ( x̂+, P). In Figure 1(b), mean values
are shown by small filled circles, and covariance matrices
are shown by their corresponding 3σ ellipses centered at
the mean. We drive the system from v0 toward the node v11.
The initial belief at node v0 is b0 ≡ ( x̂+

0 , P0). The belief
propagation from left to right starting from b0 is shown in
Figure 1(b).
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Although there exists a single edge e(10,11) between nodes
v10 and v11 in PRM (see Figure 1(a)), the belief evolu-
tion along e(10,11) is not unique (see Figures 1(b)–(c)) since
it depends on (i) the initial belief, (ii) obtained observa-
tions (observation history), and (iii) the path taken (action
history) that has led to v10. Figure 1(c) shows the cor-
responding belief propagation in the belief space, where
each rectangle encodes a mean and covariance. As seen in
Figure 1(c), the belief paths do not form a graph; rather,
they form a random tree in belief space. Hence, in practice,
where observations are random, not only does the number
of possible beliefs grow exponentially, but the belief also
evolves randomly.

Therefore, to predict edge costs, full knowledge of the
belief at the start of the edge is required. This in turn
requires full knowledge of the history of observations and
actions leading up to the start of the edge.

Even if future observations were assumed to be deter-
ministic for the purpose of planning, the generated structure
would still be a tree that grows exponentially in the size of
the underlying PRM graph.

In FIRM, we use local feedback planners to drive the
belief process toward the predefined unique beliefs asso-
ciated with PRM nodes (see Figure 1(d)). As a result, the
evolution of belief after a FIRM node is reached is indepen-
dent of the evolution of belief before that node is reached.
This breaks the curse of history, allowing us to construct
a PRM-like roadmap in the belief space with independent
edge costs. Therefore, in contrast to the main body of the lit-
erature in motion planning under uncertainty, FIRM can be
re-used for future queries and does not need to reconstruct
the roadmap every time a new query is submitted.

From an algorithmic perspective, this edge independence
is an example of the optimal substructure property. A prob-
lem has an optimal substructure only if the optimal solu-
tion can be obtained from a combination of optimal solu-
tions to its subproblems (Cormen et al., 2001). To solve
a problem using dynamic programming (DP) or its suc-
cessive approximation schemes, such as Dijkstra’s algo-
rithm, the optimal substructure assumption has to hold
(Sniedovich, 2006), that is, the cost of any subpath has
to be independent of what precedes it and what succeeds
it. As mentioned, the direct transformation of sampling-
based methods to belief space breaks this assumption, while
FIRM preserves it. Furthermore, edge independence allows
the challenging task of computing collision probabilities
to be done offline, for each edge separately, without per-
forming costly computations repeatedly and without any
simplifying assumption.

The current paper draws on earlier work published in
conference papers (Agha-mohammadi et al., 2011, 2012b,
2013b). Compared with Agha-mohammadi et al. (2011),
in this paper, we construct the FIRM framework more
rigorously by detailing the procedure of transforming
the POMDP problem to the belief semi-Markov decision
process (SMDP) problem, and then to the FIRM Markov

decision process (FIRM MDP) problem, where the policy
on the graph and overall hybrid policy generated by FIRM
are distinguished clearly. Also, in this paper we provide a
clearer distinction between the abstract FIRM framework
and its instantiations, and we provide more rigorous expla-
nation and proofs on SLQG-FIRM. Further, we append
the proofs of the probabilistic completeness of FIRM to
this paper, which completes the work in Agha-mohammadi
et al. (2012b). We also present new unpublished results on
the performance of SLQG-FIRM in more difficult environ-
ments, and demonstrate its real-time planning capabilities.
Further, we provide a complexity analysis of the method
and compare it to state-of-the-art methods.

The outline is as follows. In the next section, we review
the most relevant related work. Section 3 provides an
overview of the method and its contributions. In Section
4 we describe the general problem of feedback motion-
planning under uncertainty, present notation, and formu-
late the POMDP problem. In Section 5, we present the
SLQG-based instantiation of the abstract FIRM framework
by providing concrete belief samplers and connectors (local
planners). In Section 6, assuming the existence of belief
samplers and connectors, we introduce the abstract FIRM
framework and detail the process of transforming POMDP
to a FIRM MDP. In Section 7, aiming at evaluating the qual-
ity of the FIRM solution, we extend the concepts of success
and probabilistic completeness to the stochastic setting and
prove the probabilistic completeness of the FIRM frame-
work. Experimental results are presented in Section 8. In
Section 9, we discuss limitations of the framework, future
work, and open issues. Section 10 concludes the paper.

2. Related work
In this section we review the related work and place our
work into context. First, we review the related work on plan-
ning algorithms under uncertainty, and then we consider the
work concerning probabilistic completeness.

2.1. Planning algorithms

Uncertainty in robotic systems usually stems from three
sources: (i) motion uncertainty, which results from the
noise that affects system dynamics; (ii) sensing uncer-
tainty, caused by noisy sensory measurements, which is also
referred to as imperfect state information; and (iii) uncer-
tainty in the environment map, such as uncertain obstacle
locations or uncertain locations of features (information
sources) in the environment.

Methods such as those in Missiuro and Roy (2006),
Guibas et al. (2008), and Nakhaei and Lamiraux (2008)
deal with map uncertainty. However, we do not scruti-
nize these methods, since we assume there is no uncer-
tainty in the environment map. Methods such as those in
Alterovitz et al. (2007), Melchior and Simmons (2007),
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and Chakravorty and Kumar (2009, 2011) exploit sampling-
based motion-planning ideas to deal with motion uncer-
tainty. However, methods that are most related to FIRM
consider both motion and sensing uncertainties in planning,
where the ultimate goal is to solve a POMDP problem,
in other words, to find the best policy that generates opti-
mal actions as a function of belief. However, due to the
intractability of the POMDP solution, the practical results
using these methods are usually limited to problems with
small sets of discrete states (Kaelbling et al., 1998). Point-
based POMDP solvers such as those in Porta et al. (2006),
Kurniawati et al. (2008), Bai et al. (2010), and Ong et al.
(2010) have increased the size of problems that can be
solved by POMDPs. However, they do not handle continu-
ous state, control, and observation spaces. For the Gaussian
belief case, Van den Berg et al. (2011, 2012) handle con-
tinuous spaces locally around a given trajectory in belief
space. Platt et al. (2011) generalize the local approaches to
non-Gaussian beliefs.

In continuous state, control, and observation space, the
main body of methods does not follow the POMDP frame-
work due to its extreme complexity. Instead, these methods
return a nominal path as the solution of the planning prob-
lem, which is fixed regardless of the process and sensor
noise in the execution phase. Censi et al. (2008) propose
a planning algorithm based on graph search and constraint
propagation on a grid-based representation of the space.
Platt et al. (2010) plan in continuous space by finding the
best nominal path using nonlinear optimization methods.
In the linear quadratic Gaussian motion planning (LQG-
MP) method (Van den Berg et al., 2010), among the finite
number of RRT paths, the best path is found by simulat-
ing the performance of LQG on all RRT paths. Bry and
Roy (2011) propose a tree-based approach, in which the
underlying nominal trajectory is optimized using RRT*.
Vitus and Tomlin (2011) also propose an approach to opti-
mize the underlying trajectory by formulating the problem
as a chance-constrained optimal control problem. In Van
den Berg et al. (2011), the authors also extend the LQG-
MP to roadmaps. Prentice and Roy (2009) and Huynh and
Roy (2009) also utilize roadmap-based methods based on
the PRM approach, where the best path is found through
a breadth-first search on the belief roadmap (BRM). How-
ever, in all these roadmap-based methods, the optimal sub-
structure assumption is violated, in other words, the costs
of different edges on the graph depend on each other. The
point-based POMDP planner in Kurniawati et al. (2012)
takes into account motion, observation, and map uncer-
tainties, and advances the previous point-based methods
by introducing guided cluster sampling. It starts with a
roadmap in the configuration space, and grows a single-
query tree in the belief space, rooted in the initial belief.
Since these methods return a nominal path instead of a
feedback policy, the path needs to be recomputed (in other
words, replanning has to be performed) in the case of large

deviations or when starting from a new point. However,
unless the planning domain is small (e.g. in Platt et al.,
2010), replanning using these methods is computationally
very expensive. The reason for this is that the constructed
planning tree depends on the starting belief, and therefore
all computations needed to construct the tree (including
predicting future costs) have to be reproduced from the
new starting belief. BRM ameliorates this expensive com-
putation using covariance factorization techniques, but it
still does not satisfy the optimal substructure assumption.
Thus, for a new query from a new initial point, BRM needs
to perform the search algorithm again. In the presence of
obstacles, recomputing the collision probabilities is also
needed, which makes replanning even more expensive. In
other words, these methods are single-query, in the sense
that the edge costs are computed for a given query.

Since these methods are single-query, online replanning
can be done only if the planning domain is small (e.g. in
Platt et al., 2010) or if the planning horizon is short, such as
receding-horizon-control-based (RHC-based) approaches
(e.g. Chakravorty and Erwin, 2011). The method proposed
in Toit and Burdick (2010) is an RHC-based method, where
the nominal path is updated dynamically over an N-step
horizon. The PUMA framework proposed in He et al.
(2011) is also an RHC-based framework, where instead
of a single action, a sequence of actions (macro-action) is
selected at every decision stage. However, these methods
entail repeatedly solving open loop optimal control prob-
lems at every time step, which is computationally very
expensive as the previous computations cannot be reused
for the queries from the new initial point. In FIRM, how-
ever, a feedback policy (that is, a mapping from belief space
to actions) is computed offline. Thus in replanning from a
new initial point, the computations need not be reproduced.
Thus for a fixed goal, the algorithm is robust to changes
in the start point of the query. It is also robust to changes
in the goal point, because graph feedback can be computed
(see Equation (32)) online, which results in a multi-query
roadmap in the belief space.

In the methods that account for sensing uncertainty,
the state has to be estimated based on measurements.
To handle unknown future measurements in the planning
stage, the methods in Censi et al. (2008), Huynh and Roy
(2009), Prentice and Roy (2009), Platt et al. (2010), and
Toit and Burdick (2010) consider the maximum likelihood
(ML) observation sequence to predict the estimation perfor-
mance. In contrast, FIRM takes all possible future observa-
tions into account in the planning stage. The methods in
Van den Berg et al. (2010, 2011) also consider all possible
future observations.

In the presence of obstacles, due to the dependency of
collision events on each other in different time steps, it is
a burdensome task to include the collision probabilities in
planning. Thus, the methods in Censi et al. (2008), Van
den Berg et al. (2010, 2011), and Toit and Burdick (2010)
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design some safety measures to account for obstacles in
planning. A problem with some of these collision prob-
ability measures is that they are built on the assumption
that the collision probabilities at different stages along the
path are independent of each other, which is not true in
general and may lead to very conservative plans (see Fig-
ure 2). As a result, different methods (e.g. Patil et al., 2012)
aim at providing more accurate and faster ways of com-
puting collision probabilities. In FIRM, however, collision
probabilities can be computed and seamlessly incorporated
into the planning stage without making any simplifying
assumptions.

2.2. Probabilistic completeness

Due to the success of sampling-based methods in many
practical planning problems, researchers have investigated
the theoretical basis for this success. However, almost
all of these investigations have been performed for algo-
rithms that are designed for planning in the absence
of uncertainty. The literature in this direction falls into
two categories: path-isolation-based methods and space-
covering-based methods.

Path-isolation-based analysis: In this approach, one path
is chosen, and it is tiled with some sets such as ε-balls
(Kavraki et al., 1998) or sets with arbitrary shapes but
strictly positive measures (Ladd and Kavraki, 2004). Then
the success probability is analyzed by investigating the
probability of sampling in each of the sets that tile the
given path in the obstacle-free space. The methods in
Švestka and Overmars (1997), Kavraki et al. (1998), Bohlin
(2002), and Ladd and Kavraki (2004) are among those
that perform path-isolation-based analysis of the planning
algorithm.

Space-covering-based analysis: In space-covering-based
analysis, an adequate number of sampled points needed to
find a successful path is expressed in terms of a parame-
ter ε, which is a property of the environment. A space is
ε-good if every point in the state space can be connected
to at least an ε fraction of the space using local planners.
The methods in Kavraki et al. (1995) and Hsu (2000) are
among these.

These methods were developed for the situation where
the desired result from the planning algorithm is a path.
However, in the presence of uncertainty, the concept of ‘suc-
cessful path’ is no longer meaningful, because on a given
path, different policies may result in different success prob-
abilities, where some are interpreted as successful and some
are not. Thus, since the planning algorithm returns a policy
instead of a path, success has to be defined for a policy. This
paper extends these concepts to probabilistic spaces, that
is, to sampling-based methods concerning planning under
uncertainty. In Section 7, we define and formulate the con-
cepts of successful policy and probabilistic completeness
under uncertainty (PCUU).

3. Method overview and contributions
The highlights and contributions of this paper can be
divided into theoretical and practical parts. The theoretical
highlights can be summarized as follows:

• Abstract frameworks: We introduce the abstract infor-
mation roadmap (IRM) framework as a graph in the
belief space, where the graph nodes are beliefs (rigor-
ously speaking, small subsets of the belief space) and
edges are local controllers. The abstract FIRM frame-
work is defined as an IRM where local controllers are
feedback controllers. These abstract frameworks rely on
the existence of an appropriate belief node sampler and
connector (local controller) and are general enough to
capture any form of belief. Discussing the concept of
belief reachability under feedback controllers, we detail
the reduction of a POMDP to a tractable MDP on the
FIRM graph, referred to as the FIRM MDP.

• SLQG-FIRM : To instantiate a FIRM, we need con-
crete belief samplers and connectors. A concrete exam-
ple of these components based on SLQG controllers is
given in Section 5. Basically, it is shown that under an
SLQG controller the belief can be driven into the ε-
neighborhood of the sampled Gaussian beliefs in finite
time, and thus node reachability is achieved. In this
fashion, SLQG-FIRM addresses the hard task of sam-
pling in reachable belief space that is required in belief-
space planning (Spaan and Vlassis, 2005; Pineau et al.,
2006; Kurniawati et al., 2010). The focus of SLQG-
FIRM is on kinematic systems. However, we also extend
it to dynamical systems by restricting the nodes to the
equilibrium space.

• Graph (multi-query roadmap) in belief space: FIRM is
the first framework that generates a graph in the belief
space with independent edges. In other words, it is a
multi-query roadmap, which distinguishes it from other
methods in the belief space.

• Breaking the curse of history: A fundamental contri-
bution of FIRM is that the optimal action at a given
node does not depend on the traversed nodes, actions,
and observations prior to this node, in other words, it
is independent of the history of the information pro-
cess (see Figure 1). This is a direct consequence of
inducing reachable belief nodes using feedback con-
trollers, which breaks the curse of history in POMDPs.
In addition, the sampling-based nature of the method,
borrowed from PRM, allows us to ameliorate the curse
of dimensionality.

• Probabilistic completeness: Finally, we generalize the
conventional concept of ‘probabilistic completeness’
(which is defined for motion-planning methods in
deterministic environments) to the concept of PCUU
(which is defined for the planners in the presence of
uncertainty). According to this definition, we prove
that FIRM is a probabilistically complete algorithm.
Moreover, we perform an analysis on the absorption
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(a) (b)

Fig. 2. The dependence of collision events on each other at different time steps. xk is the robot state and F is the obstacle set (rectangles).
P( xk ∈ F) is the collision probability at the k-th time step. Drawn ellipses are 3σ ellipses of Gaussian distributions obtained by Kalman
filtering. Also, the samples in Monte Carlo simulation are shown by small circles. The dark ones have collided with obstacles and do not
get propagated, and the light ones are the safe samples. Although the overall collision probability in (a) is much more than the collision
probability in (b), simplified safety measures based on the ellipse–obstacle intersection area lead to the same safety measure in (a) and
(b), and are unable to capture this dependency.

probability of the local planners in the belief space,
which provides useful general tools that can be used in
analyzing planning methods under uncertainty.

More importantly, FIRM offers a set of practical con-
tributions, which we believe provides an important step
toward utilizing POMDPs as a practical tool for robot
motion planning under uncertainty. The main practical
highlights can be summarized as follows:

• Efficient planning: The construction of FIRM is offline
and thus online planning (and replanning) is feasible
and almost instantaneous.

• Robustness: The optimal feedback policy, instead of a
nominal path, is computed offline. It is obtained by solv-
ing the DP problem associated with the FIRM MDP on
the belief graph. As a result, no replanning is needed
even in the case of large deviations (or just local real-
time replanning is sufficient), and the feedback over the
belief space can take care of deviations. Therefore, the
method is robust to large deviations. It is also less sensi-
tive to linearization errors, since if the system goes out
of the linearization region of a controller, it falls into
the valid linearization region of some other controller
(assuming a sufficient number of FIRM nodes) that can
take the belief and drive it to the goal.

• Reliability (incorporating obstacles in planning): In the
FIRM framework, collision probabilities can be com-
puted, which leads to more accurate plans, as opposed
to simplified collision measures that may lead to con-
servative plans (see Figure 2). The obstacles add a fail-
ure node to the FIRM graph into which the robot can
be absorbed. Further, due to the offline construction of
FIRM, the heavy computational burden of estimating
collision probabilities can be done offline.

• Scalability: Belief-space planners usually have an expo-
nential planning complexity either in the number of
nodes (if they are sampling-based methods) or in the

Fig. 3. Block diagram corresponding to the problem of planning
under motion and sensing uncertainty.

size of grid (if they rely on discretizing the environ-
ment). However, the complexity of the FIRM construc-
tion is a constant multiplier of the complexity of the
PRM construction. Moreover, the complexity of plan-
ning (or replanning) with FIRM is a constant, which is
independent of the size of the underlying graph.

4. Problem formulation
The main sources of uncertainty in motion planning are the
lack of exact knowledge of the robot’s motion model, the
robot’s sensing model, and the environment model, which
are referred to as motion uncertainty, sensing uncertainty,
and map uncertainty, respectively. In this paper, we focus
on motion and sensing uncertainty, but some of the con-
cepts are extensible to problems with map uncertainty. The
MDP problem and the POMDP problem are the most gen-
eral formulations, respectively, for planning problems under
motion uncertainty and for planning problems under both
motion and sensing uncertainty.

While in the deterministic setting, we seek an optimal
path as the solution of the motion-planning problem, in the
stochastic setting, we seek an optimal feedback (mapping)
π as the solution of the motion-planning problem. In the
case of an MDP, π is a mapping from the state space to the
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control space, while in the case of POMDP, π is a mapping
from the belief space to the control space (see Figure 3). In
the rest of paper, we focus on POMDPs.

4.1. Preliminaries and notation

As mentioned, the POMDP formulation is the most gen-
eral formulation for the planning problem under pro-
cess (motion) uncertainty and imperfect state information
(sensing uncertainty). POMDPs are introduced in Astrom
(1965), Smallwood and Sondik (1973), and Kaelbling et al.
(1998). In the following, we first explain different elements
of the POMDP problem, and then present a form of the
POMDP formulation which is known as the belief MDP
problem (Thrun et al., 2005; Bertsekas, 2007).

State, control, and observation: Let xk ∈ X, uk ∈ U,
and zk ∈ Z denote the system state, control, and observa-
tion at time step k, respectively, where X ⊆ Rdx , U ⊆ Rdu ,
and Z ⊆ Rdz are the state, control, and observation spaces.
Scalars dx, du, and dz are the state, control, and observation
dimensions and Rd denotes the d-dimensional Euclidean
space.

Basically, system state x encodes all information needed
for decision-making at a specific time instant. It is worth
noting that the state space in our problem is continu-
ous. Control space U, which contains all possible control
inputs (or actions), can also be continuous, and u0:k :=
{u0, u1, . . . , uk} denotes the control history up to step k.
Similarly, the observation space Z that contains all possible
observations (sensor measurements) can also be continu-
ous, and z0:k := {z0, z1, . . . , zk} is the observation history up
to step k.

State evolution model: The process model (or the motion
model) xk+1 = f ( xk , uk , wk) describes how the system state
evolves as a function of the applied control uk and the pro-
cess (motion) noise wk , which is distributed according to the
(known) probability density function (pdf) p( wk|xk , uk). An
equivalent representation of this evolution model is through
the transition pdf p( x′|x, u) : X × U × X → R≥0, which
encodes the probability density of the transition from state
x to state x′ under the control u.

Observation (sensor) model: Although xk is sufficient
information to make the decision (generate control uk), in
partially observable systems, the system state is unknown
and the only available data for decision-making is the
imperfect measurements of the state made by the sensors.
The observation model zk = h( xk , vk) encodes the relation
between system state xk and its measurements zk , where vk

is the observation noise at time step k, which is distributed
according to the (known) pdf p( vk|xk). An equivalent repre-
sentation of this observation model is through the likelihood
pdf p( z|x) : X× Z→ R≥0.

Information state (belief): In partially observable envi-
ronments, the available data for decision-making in time
step k is the history of observations we have made, z0:k , and
the history of actions we have taken, u0:k−1. Let us denote

this data history by Hk = {z0:k , u0:k−1}. This data history
can be compressed to a conditional probability distribution
over all possible states, that is, bk = p( xk|z0:k ; u0:k−1). The
pdf bk : X × Zk × Uk−1 → R≥0 is called the information
state or belief at the kth step. B denotes the belief space of
the problem, containing all possible beliefs b ∈ B.

Belief evolution model (filter model): In recursive state
estimation techniques, belief can be computed recursively.
The belief evolution model (or belief dynamics) introduced
by this recursion is shown by function τ : B × U × Z →
B, which computes the next belief based on the last action
and current observation bk+1 = τ ( bk , uk , zk+1). This belief
evolution model can be derived using Bayes’ rule and the
law of total probability (Thrun et al., 2005; Bertsekas, 2007)
as follows:

bk+1 = p( zk+1|Hk , uk)−1p( zk+1|xk+1)∫

X
p( xk+1|xk , uk) bkdxk =: τ ( bk , uk , zk+1) (1)

An equivalent representation of the belief evolution model
is through the transition pdf p( b′|b, u) : B× U× B→ R≥0

that encodes the probability density of the transition from
belief b to belief b′ under the control u.

Policy: In a partially observable system, the planner π

(also called the policy or feedback controller) has to be a
function that returns an action uk given the available data
Hk . However, it can be shown that the compression of data
Hk to belief bk preserves all the information needed for
decision-making (Kumar and Varaiya, 1986). Therefore, a
policy π (·) has to be a function that returns an action uk

given the belief bk , in other words, π (·) : B→ U:

uk = π ( bk) , ∀bk ∈ B (2)

The space of all possible π (·) is denoted by %.
Cost-to-go: To choose an optimal policy, we need to have

a cost function, which is a task-dependent quantity. But let
us in general denote the one-step cost of taking action u at
belief b by c( b, u) : B×U→ R≥0. Then, we can define the
cost-to-go function Jπ (·) : B→ R≥0 from a belief b0 under
the policy π as

Jπ ( b0) :=
∞∑

k=0

E[c( bk , π ( bk)) ]

s.t. bk+1 = τ ( bk , π ( bk) , zk+1) , zk ∼ p( zk|xk) (3)

where E[·] is the expectation operator. Consider a goal
region Bgoal ⊂ B such that, for all u, we have c( b ∈
Bgoal, u) = 0; in other words, the goal region is cost-
absorbing. Then, the above cost-to-go would be finite for
a policy that can drive the state to the goal region in finite
time.

4.2. POMDP problem

Given the motion model f , observation model h, and cost-
to-go Jπ , the POMDP problem seeks the best policy that
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minimizes the cost-to-go function from every belief in the
belief space. Formally, if we denote the optimal cost-to-go
function by J (·), we can define optimal policy π (·) : B →
U, which is the solution of POMDP as follows:

J (·) := min
%

Jπ (·) (4)

π = arg min
%

Jπ (·) (5)

This formulation of the POMDP problem is also known
as the belief-MDP problem (Thrun et al., 2005; Bertsekas,
2007), because it is an MDP over the belief space.

Dynamic programming: It is well known that the optimal
cost-to-go is obtained by solving the following stationary
DP equation on the belief space B (Thrun et al., 2005; Bert-
sekas, 2007). Subsequently, the solution of the POMDP (i.e.
π ) can be computed as a function that returns the argument
of this minimization, that is, returns the optimal action at
every belief:

J ( b)= min
u

{c( b, u) +
∫

B
p( b′|b, u) J ( b′) db′}, ∀b ∈ B (6a)

π ( b) = arg min
u

{c( b, u) +
∫

B
p( b′|b, u) J ( b′) db′}, ∀b ∈ B

(6b)

However, it is well known that this DP equation is exceed-
ingly difficult to solve since it is defined over the entire
belief space and suffers from the curse of history (Pineau
et al., 2003) and the curse of dimensionality.

Constrained POMDP problems: The presence of con-
straints makes this problem even more difficult. We denote
the constraint set (or the failure set) in the state and control
space by F ⊂ X × U, which needs to be avoided by the
system, in other words, ( xk , uk) /∈ F, for all k.

4.3. Problem description

We aim at constructing a sampling-based solution to the
belief MDP problem. The main goals of this paper are as
follows.

SLQG-based FIRM : First, we construct a roadmap in
belief space utilizing SLQG controllers as belief stabilizers.
We perform this construction for a certain class of systems,
and show that the belief reachability condition is guaran-
teed. In designing SLQG-FIRM, we first focus on kinematic
systems (satisfying x = f ( x, 0, 0)). Then, using the notion
of equilibrium space and restricting the sampling to this
space, we apply the method to dynamical systems as well.

General FIRM framework: After studying the concrete
SLQG-FIRM example, we consider the more general case,
where, for a general system, assuming that there exists a
controller under which belief reachability is guaranteed, we
(i) construct a graph in the belief space encoding the fail-
ure probabilities on its edges, (ii) reduce the intractable
belief MDP in Equation (4) into a tractable MDP prob-
lem on this graph, and (iii) compute a feedback solution on
this graph.

5. SLQG-FIRM
In this section, we discuss a particular instance of the FIRM
framework in which belief reachability is accomplished by
SLQG controllers. In Section 6, we propose the general
FIRM framework.

We start this section by restricting our attention to the
class of systems that SLQG-FIRM can handle. Then, we
present a brief review of LQG controllers and address how
we can define nodes in the belief space to satisfy reachabil-
ity using SLQG controllers. Next we explain the procedure
of constructing local controllers (i.e. FIRM edges) and the
SLQG-based FIRM graph. Finally, we compute transition
probabilities and costs associated with each graph edge and
compute the graph feedback.

5.1. Preliminaries on SLQG

In this section, we assume the noise is Gaussian, and
we start by defining the notation needed in dealing with
Gaussian beliefs.

Gaussian belief space: We denote the random estima-
tion vector by x+, whose distribution is bk = p( x+

k ) =
p( xk|z0:k , u0:k−1), and denote the mean and covariance of
x+ by x̂+ = E[x+] and P = E[( x+ − x̂+) ( x+ − x̂+)T ],
respectively. Denoting the Gaussian belief space by GB,
every function b(·)∈ GB can be characterized by a mean-
covariance pair ( x̂+, P). Abusing the notation, we also show
this pair by b ≡ ( x̂+, P)∈ Rn × Sn

+, where the mean vec-
tor belongs to the n-dimensional Euclidean space Rn and
the covariance matrix belongs to the space of all positive
semi-definite n× n matrices Sn

+.
LQG controllers: An LQG controller is composed of

a Kalman filter (KF) as the state estimator and a linear
quadratic regulator (LQR) controller (see Figure 3). Thus,
the belief dynamic bk+1 = τ ( bk , uk , zk+1) is known and
comes from the Kalman filtering equations, and the con-
troller uk = µ( bk) that acts on the belief comes from the
LQR equations. Considering a quadratic cost for state error
and control error, LQG is an optimal controller for linear
systems with Gaussian noise (Bertsekas, 2007). However,
it is also often used for stabilization of nonlinear systems
around a given trajectory or around a given point.

Stationary and time-varying LQG: Time-varying LQG is
designed to track a given trajectory, in which at every time
step a different feedback policy is utilized. SLQG is a time-
invariant policy, in which LQG is designed around a given
point, say v, to steer the state of the system to v (Bertsekas,
2007). In Appendices B and C we review these controllers
in detail.

Equilibrium space: Let us denote a configuration of a
robotic system (Lozano-Perez, 1983) by q. Kinematic mod-
els are specified in terms of the configuration variable q,
while dynamical models are specified by the state x =
( q, q̇), where q̇ denotes the corresponding velocities. In
SLQG-FIRM, we sample the underlying PRM nodes (sta-
bilizer parameters) from the configuration space. Thus, for
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dynamical systems, we impose the condition q̇ = 0 on the
samples, in other words, we sample from the equilibrium
space of the system, which is denoted by X in this paper.

Remark 1. FIRM can be generalized to cases that do not
need to sample in equilibrium space. For example, in sys-
tems such as fixed-wing aircraft, the system cannot reach
the zero velocity q̇ = 0. In such cases, SLQG is not a
suitable choice and one needs to design more appropri-
ate controllers, such as periodic controllers as detailed in
Agha-mohammadi et al. (2012c, 2013a). In such a case,
we sample periodic maneuvers as FIRM nodes. In other
words, we go from periodic trajectory to periodic trajec-
tory instead of going from point to point (Agha-mohammadi
et al., 2012c, 2013a).

5.2. Belief stabilizers

In SLQG-FIRM nodes, we use SLQG controllers as belief
stabilizers, that is, as a tool to reach (stabilize to) a prede-
fined belief (FIRM node). To explain how SLQG works as
a belief stabilizer, consider a fixed point v ∈ X in the state
space and consider the following linear (linearized) system
about v:

xk+1= Axk + Buk + Gwk , wk ∼ N ( 0, Q) (7a)

zk= Hxk + vk , vk ∼ N ( 0, R) (7b)

SLQG controller: The goal of the SLQG controller
designed about v is to keep the state as close as possible
to the desired point v and also keep the energy consumed at
a reasonable level. More rigorously, SLQG minimizes the
following quadratic cost:

J = E
{

∑

k≥0

( xk − v)T Wx( xk − v) +uT
k Wuuk

}

(8)

where Wx and Wu are positive-definite weight matrices that
are defined by the user. In Appendix C, the SLQG controller
minimizing the above cost is discussed in detail. However,
in brief, the belief propagation and control generation is
carried out as follows:

bk+1 ≡
[

x̂+
k+1

P+
k+1

]
=

[
Âx+

k + Buk + Kk+1( zk+1 −H( Âx+
k + Buk) )

( I −Kk+1H) ( AP+
k AT + GQGT)

]

≡ τ ( bk , uk , zk+1) (9)

where Kk is called the Kalman gain at the kth time step and
is computed as follows:

Kk+1 = ( AP+
k AT + GQGT) HT( H( AP+

k AT

+ GQGT) HT + MRMT)−1 (10)

The control signal is generated using a stationary feedback
gain Ls:

uk =−Ls( x̂+
k −v) = : µ( bk) , Ls = (BT

s SsBs+Wu)−1 BT
sSsAs

(11)

where Ss is the solution of the following discrete algebraic
Riccati equation (DARE):

Ss = Wx + AT
s SsAs − AT

s SsBs( BT
s SsBs + Wu)−1 BT

s SsAs

(12)

Controllable and observable pairs: Consider an n ×
n matrix A. A pair of matrices ( A, B) is called a
controllable pair if the controllability matrix C =
[B, AB, A2B, . . . , An−1B] has rank n (Bertsekas, 2007). A
pair of matrices ( A, H) is called observable if the pair
( AT, HT) is controllable (Bertsekas, 2007).

Controllable and observable systems: Let us also define
the matrices Q̌ and W̌x such that GQGT = Q̌Q̌T, Wx =
W̌T

x W̌x. We next consider a class of linear systems and
quadratic cost weights that satisfy the following property.

Property 1. Pairs ( A, B) and ( A, Q̌) are controllable pairs,
and pairs ( A, H) and ( A, W̌) are observable pairs.

In the following, we present three lemmas, through which
we can construct reachable SLQG-FIRM nodes for the sys-
tems that satisfy Property 1. However, approaches such
as periodic LQG (PLQG)-based FIRM (Agha-mohammadi
et al., 2012c) or dynamic feedback linearization (DFL)-
based FIRM (Agha-mohammadi et al., 2012a) extend this
class of systems by excluding the controllability part in
Property 1, and thus consider a broader class of systems.

Lemma 1. Consider the SLQG controller designed to drive
the state of the system in Equation (7) to a point v ∈ X.
Given that Property 1 is satisfied, in the absence of a stop-
ping region, the belief bk under SLQG controller converges
to a unique stationary belief bs, in distribution (i.d.). In
other words, the distribution over belief converges to a
unique distribution. That is,

bk
i.d.→ bs ∼ N ( bc, C) (13)

Note that bk is a random belief that converges to another
random belief bs. In the Gaussian setting, the distribution
over the random belief bs is N ( bc, C), where bc = E[bs] ≡
( v, Ps). The stationary estimation covariance matrix Ps

is characterized in Lemma 2, and the covariance C is
characterized in Appendix C.

Proof. In Appendix C, we review the SLQG and prove
Lemma 1.

Lemma 2. Given Property 1, the following DARE has
a unique symmetric positive-definite solution (Bertsekas,
2007), denoted by P−s :

P−s = GQGT + A( P−s − P−s HT( HP−s HT + R)−1 HP−s ) AT

(14)

Moreover, the stationary covariance matrix Ps introduced
in Lemma 1 is computed as:

Ps = P−s − P−s HT( HP−s HT + R)−1 HP−s (15)
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Proof. See Appendix C or Bertsekas (2007).

Now we state the main result, through which we can
construct reachable FIRM nodes under SLQG-based belief
stabilizers:

Lemma 3. Consider the SLQG controller designed to drive
the state of the system in Equation (7) to a point v ∈ X.
Suppose matrix H is full rank and Property 1 is satisfied.
Then, any set B ⊂ B whose interior contains bc ≡ ( v, Ps)
is reachable under the designed SLQG controller start-
ing from any Gaussian distribution. Moreover, the estima-
tion covariance Pk converges to the unique deterministic
stationary covariance Ps.

Proof. See Appendix D.

Therefore, based on Lemma 3, SLQG can accomplish the
belief reachability for appropriately chosen region B. In the
next subsection we explicitly characterize region B.

5.3. Designing SLQG-FIRM nodes

Underlying PRM: As mentioned, to construct a FIRM we
first construct an underlying PRM (Kavraki et al., 1996). In
the SLQG-FIRM, nodes of the underlying PRM, denoted
by {vj}N

j=1, are sampled from the obstacle-free space. Con-
sidering linear systems or nonlinear systems that are locally
well approximated by linearization, we linearize the system
about every PRM node. Let us denote the linear (linearized)
system about vj as follows:

xk+1= Ajxk + Bjuk + Gjwk , wk ∼ N ( 0, Qj) (16a)

zk= Hjxk + vk , vk ∼ N ( 0, Rj) (16b)

where wk and vk are motion and measurement noise, respec-
tively, drawn from zero-mean Gaussian distributions with
covariances Qj and Rj.

FIRM nodes: To design the jth FIRM node Bj, we first
design the SLQG controller µ

j
s (see Equations (9) and (11))

corresponding to the system in Equation (16). The con-
troller µ

j
s is called the jth node controller or the jth belief

stabilizer. Given Property 1, based on Lemma 1, the limit-
ing random belief bj

s ≡ ( x̂+j

s , Pj
s) exists, and x̂+j

s and Pj
s are

the stationary estimation mean and covariance, respectively.
Note that under SLQG, x̂+j

s is a random variable and Pj
s is

a deterministic matrix. Moreover, in Lemma 1, it is shown
that bj

c = E[bj
s] ≡( vj, Pj

s), where Pj
s is shown to be unique

and computed in Lemma 2.
Thus, we can characterize the jth node center:

bj
c ≡ ( vj, Pj

s) (17)

As a result, considering Bj as a ball with an arbitrary radius
ε > 0 centered at bj

c, the pair ( Bj, µj
s) is a proper pair, based

on Lemma 3; in other words, Bj is reachable under µ
j
s. Thus,

one can define the jth FIRM node as Bj = {b : ‖b−bj
c‖b <

δ}, where ‖ · ‖b denotes a suitable norm in belief space and

δ defines the FIRM node size. A typical example of such
a FIRM node in Gaussian belief space can be defined by
considering mean and covariance separately:

Bj = {b ≡ ( x, P) : ‖x− vj‖ < δ1, ‖P− Pj
s‖m < δ2} (18)

where δ1 and δ2 are suitably small thresholds that determine
the size of FIRM node Bj. Moreover, ‖·‖ is a suitable vector
norm and ‖ ·‖m is a suitable matrix norm. We denote the set
of all SLQG-FIRM nodes as V = {Bi}.

5.4. Designing SLQG-FIRM edges

A FIRM edge is actually a local planner (local feedback
controller). In SLQG-based FIRM, the local controller rep-
resenting the ( i, j)th edge is denoted by µij. The role of µij

is to drive the belief from the node Bi to the node Bj. Based
on Lemma 3, for a linear system, if we choose µij = µ

j
s,

as was done in Agha-mohammadi et al. (2011), the node Bj

is reachable under µij. However, to better cope with nonlin-
earities, we construct the local controller µij by preceding
the node controller with a time-varying LQG controller µ

ij
k ,

which is called an edge controller here. Time-varying LQG
controllers are described in detail in Appendix B.

PRM edge: To design edge controllers, first the
underlying PRM edges, denoted by E = {eij}, have to be
constructed. For kinematics-based models there are many
different methods in the PRM literature to construct such
edges. For dynamical models, there are fewer choices. A
few examples are in Van den Berg and Overmars (2007)
and Agha-mohammadi et al. (2012c).

Edge controllers: An edge controller µ
ij
k in SLQG-FIRM

is built by linearizing the system along the ( i, j)th PRM
edge eij and designing a time-varying LQG controller to
track it (see Appendix B). The edge controller has two
major roles. First, it tries to track the PRM edge and thus
exploits the available information on the PRM edges, such
as some clearance from the obstacles. Second, in the case
where the neighboring PRM nodes are not close to each
other, it takes the belief into the valid linearization region
of the jth belief stabilizer, where it hands the system over
to the belief stabilizer, and the belief stabilizer in turn takes
the system to the jth FIRM node.

Local controllers: Thus, overall, the ( i, j)th local con-
troller µij is the concatenation of the ( i, j)th edge controller
µ

ij
k and jth node controller (belief stabilizer) µ

j
s. We denote

the set of all SLQG-FIRM edges by M = {µij} and the set
of all SLQG-FIRM edges originating from Bi by M( i).

SLQG-FIRM : Formally, we define SLQG-FIRM as a
graph with the set of nodes V = {Bi} and the set of edges
(or local controllers) M = {µij}. The set of controllers
originating from Bi is denoted by M( i)⊂M.

5.5. Transition probabilities and edge costs

To find a feedback on a FIRM graph, we need to com-
pute the cost associated with the graph edges. Moreover, we

 at Texas A&M University - Medical Sciences Library on November 16, 2013ijr.sagepub.comDownloaded from 

http://ijr.sagepub.com/
http://ijr.sagepub.com/


Agha-mohammadi et al. 11

include the constraint set F into the planning with FIRM
by computing the probability of violating the constraint
( x, u) /∈ F along the graph edges. Let us denote the cost
of taking controller µij at node Bi by Cg( Bi, µij). Super-
script g refers to the ‘global’ (or ‘graph-level’) quantities, as
these quantities are used to find the global policy (or policy
on the graph). Similarly, let Pg( Bj|Bi, µij) and Pg( F|Bi, µij)
denote the probabilities of the transition to Bj and F under
µij, respectively. These quantities are rigorously defined in
Section 6 and their connection with the original POMDP
is established. However, in this subsection, we just give an
example of how such costs and transition probabilities can
be computed.

Transition probabilities: Computing transition proba-
bilities Pg( ·|Bi, µij) in general can be computationally
expensive. Here, we utilize particle-based methods to
approximate the distributions and thus compute the colli-
sion probabilities. Basically, we can approximate the failure
and reachability probabilities based on the number of par-
ticles that violate the constraints (hit the set F) and based
on the number of particles that can reach the target node
(hit the set Bj). The method is described in more detail with
the experiments in Section 8.1.4. The dependency of col-
lision events on each other in different time steps, which
is ignored in most collision probability computation meth-
ods in the POMDP literature, can be taken into account
rigorously in particle-based methods. Owing to the offline
construction of FIRM, the high computational burden of
particle-based approaches can be tolerated. However, any
other method for computing transition probabilities can also
be adopted, such as that in Patil et al. (2012).

Edge costs: The FIRM edge costs in general and their
derivation based on the one-step costs of the original
POMDP problem are defined are Section 6. However,
roughly speaking, we can define the cost Cg( Bi, µij) as the
sum of all one-step costs along the edge until the system
reaches the target node Bj or hits the failure set F. Depend-
ing on the application, one can define a variety of cost
functions. Here, we form a cost function based on a linear
combination of the estimation accuracy and edge traverse
time. This cost function aims to find paths for which the
estimator (and hence the controller) can perform well, and
also to find faster paths. An indicator of estimation error is
the trace of estimation covariance. Thus, we define %ij =
E[

∑T
k=1 tr( Pij

k ) ] along the edge. In SLQG, the covariance
matrix evolves deterministically and thus the expectation
operator can be omitted. However, if the filter of choice in
the edge controller is the extended Kalman filter (EKF), the
covariance matrix evolution is also stochastic, and this mea-
sure can take into account its stochasticity. Let us denote the
mean stopping time under controller µij as T̂ ij. Then, the
total edge cost is considered as a linear combination of esti-
mation accuracy and expected stopping time, with suitable
coefficients α1 and α2:

Cg( Bi, µij) = α1%
ij + α2T̂ ij (19)

5.6. Graph feedback on SLQG-FIRM

Graph policy: Graph policy πg : V→ M is a function that
returns an edge (local controller) for any given node of the
graph. We denote the space of all graph policies by (g. To
choose the best graph policy in (g we define the optimal
graph cost-to-go Jg from every graph node.

Graph cost-to-go: The cost-to-go from a given node
Bi is equal to the cost of the next taken controller, that
is, Cg( Bi, πg( Bi)), plus the expected cost-to-go from the
next node or from the failure set. In other words, the DP
equations for this graph are

Jg( Bi) = min
M(i)

Cg( Bi, µij) +Jg( F) Pg( F|Bi, µij)

+ Jg( Bj) Pg( Bj|Bi, µij) (20a)

πg( Bi) = arg min
M(i)

Cg( Bi, µij) +Jg( F) Pg( F|Bi, µij)

+ Jg( Bj) Pg( Bj|Bi, µij) (20b)

in which J ( F) is a suitably high user-defined cost-to-go for
hitting the obstacles. The cost-to-go from goal node Bgoal is
defined to be zero, in other words, Jg( Bgoal) = 0.

Solving SLQG-FIRM DP: The DP in equation (20) is a
tractable DP as it is defined on a finite number of graph
nodes. Computing the transition costs and probabilities
offline, this DP can be solved online using standard tech-
niques, such as value/policy iteration methods, for any sub-
mitted query. As a result, FIRM is indeed a multi-query
roadmap in belief space. Moreover, if the goal node is fixed
and only the starting point of the query changes, then this
DP can be solved offline and πg can be stored as a look-up
table.

Offline construction of SLQG-FIRM : Algorithm 1 details
the construction of SLQG-FIRM with a given goal node.

5.7. Planning with SLQG-FIRM (query phase)

Given that the FIRM graph is computed offline, the
online phase of planning (and replanning) on the roadmap
becomes very efficient, and thus feasible in real time. In
this section, we assume that the goal node is fixed and we
just input the start point as the query. However, as discussed
in the previous subsection, one can easily submit queries
with different goal locations by solving the DP online. If
the initial belief b0 of the submitted query does not belong
to any Bi, we create a singleton set B0 = {b0} as the ini-
tial FIRM node. To connect B0 to the FIRM graph, we
go back into the state space, where the underlying PRM is
constructed. There, we add a new PRM node to the graph
v0, which is the expected value of the robot state, in other
words, v0 = E[x0]. Then, we connect v0 to the underlying
PRM graph based on the connecting function of the adopted
PRM. We denote the set of newly added edges originating
from v0 by E( 0). Then, corresponding to each edge in E( 0),
we design a local controller and call the set of them M( 0).
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Algorithm 1: Offline construction of SLQG-FIRM

1 input : Free space map, Xfree

2 output : FIRM graph G
3 Sample PRM nodes V = {vj}N

j=1 and construct its edges
E = {eij};

4 forall the PRM nodes vj ∈ V do
5 Design the node controller (SLQG) µ

j
s about the

node vi using Equation (11);
6 Compute associated bj

c using Equation (17);
7 Construct FIRM node Bj using Equation (18);

8 Construct V = {Bi};
9 forall the PRM edges eij ∈ E do

10 Design the edge controller (time-varying LQG) µ
ij
k

along the edge eij (detailed in Appendix B);
11 Construct the local controller µij by concatenating

edge controller µ
ij
k and node controller µ

j
s;

12 Set b0 = bi
c;

13 Generate sample belief paths b0:T and ground truth
paths x0:T induced by controller µij invoked at Bi;

14 Compute the transition probabilities Pg( F|Bi, µij)
and Pg( Bj|Bi, µij) and transition cost Cg( Bi, µij);

15 Construct M = {µij};
16 Compute the cost-to-go Jg and feedback πg over the

FIRM nodes by solving the DP in Equation (20);
17 G = (V, M, Jg, πg);
18 return G;

Finally, we choose the best initial controller among the local
controllers in M( 0) using

µ∗0(·) = arg min
µ∈M(0)

{Cg( B0, µ)

+ Pg( B( µ) |B0, µ) Jg( B( µ)) +Pg( F|B0, µ) Jg( F) }
(21)

where B( µ) is the target node of the controller µ. Under the
controller µ∗0, belief evolves and enters one of FIRM nodes,
if no collision occurs. From this FIRM node, a combination
of the global graph policy πg and the local edge policies
{µij} can take the belief to the goal node, as explained
below.

Merging global and local feedbacks: After computing a
global graph feedback πg and local edge feedbacks {µij},
we can construct a full feedback π . Actually, at every time
instance, π is equal to one of the local feedbacks, which
is chosen by the global feedback in the last visited node. In
other words, given the current FIRM node, we use policy πg

defined on FIRM nodes to find µ∗ and pick µ∗ to move the
robot into B( µ∗). This process is continued until the system
reaches the goal region or hits the failure set. Algorithm 2
illustrates this procedure.

Kidnapped robot problem: In robotics, the kidnapped
robot problem commonly refers to a situation where an
autonomous robot in operation is carried to an arbitrary

Algorithm 2: Online phase algorithm (planning or
replanning with SLQG-FIRM)

1 input : Initial belief b0, FIRM graph G
2 if ∃Bi ∈ V such that b0 ∈ Bi then
3 compute µij = πg( Bi);
4 else
5 Compute v0 = E[x0] based on b0, and connect v0

to the PRM. Let E( 0) denote the set of outgoing
edges from v0;

6 Set B0 = {b0}; design local controllers associated
with edges in E( 0). Call the set of these local
controllers M( 0);

7 forall the µ ∈M( 0) do
8 Generate sample belief paths b0:T and ground

truth paths x0:T induced by controller µ

invoked at b0;
9 Compute the transition probabilities

Pg( F|B0, µ) and Pg( B( µ) |B0, µ) and
transition costs Cg( B0, µ);

10 Set i = 0 and choose the best initial local controller
µij within the set M( 0) using Equation (21);

11 while Bi $= Bgoal do

12

Set Bj as the target node of µij;

13

while bk /∈ Bj and ‘no collision’ do

14

Apply the control uk = µij( bk) to the system;

15

Get the measurement zk+1 from sensors;

16

if Collision happens then return Collision;

17

Update belief as bk+1 = τ ( bk , µij( bk) , zk+1);

18
Set Bi = Bj, then compute µij = πg( Bi);

location (Choset et al., 2005). Consider a kidnapped robot
problem in a known environment. Just after the robot is kid-
napped it would be risky to apply any control, because the
robot may be close to an obstacle. Thus, in such a sce-
nario, we first initialize the system belief with a Gaussian
with large covariance and go into an ‘information gather-
ing’ mode, where we do not apply any control signal and
only gather measurements until the covariance shrinks to a
reasonable covariance or it remains unchanged for a sig-
nificant amount of time (i.e. when there is no additional
information to reduce the uncertainty). Afterwards, we con-
nect the resulting belief to the FIRM nodes and continue
applying the FIRM policy to move the robot toward the goal
region. A more efficient approach of handling this prob-
lem is detailed in Agha-mohammadi et al. (2013c) using
innovation signals.

6. General FIRM framework
The goal of this section is to construct a general FIRM
framework, assuming that there exists a mechanism to guar-
antee belief reachability. As a result, if for a certain class of
systems one comes up with a controller that can accomplish
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belief reachability, a graph in belief space directly follows
according to this general framework.

To construct the general FIRM, we start by defining ele-
ments and assumptions needed in the FIRM construction.
Accordingly, we transform the original intractable POMDP
problem into an SMDP problem in belief space, inspired
by sampling-based methods. Then, we construct an arbitrar-
ily good approximation to the solution of this belief SMDP
over finite subsets of belief space (FIRM nodes). Doing so,
we end up with a tractable MDP, the so-called FIRM MDP.
We discuss this derivation first for the obstacle-free case and
then we add the obstacles to the planning framework. We
characterize the quality of the solution obtained by FIRM
via its success probability and provide a generic algorithm
for planning with FIRM.

6.1. Feedback controllers and reachability

Belief transition probability: As discussed in Section 4,
in partially observable environments the available data for
decision-making at time step k can be compressed as the
information state or belief bk . As discussed, using dynamic
estimation schemes, belief can be propagated as bk+1 =
τ ( bk , uk , zk+1) (see Equation (1)), which can be presented as
a one-step transition pdf p( bk+1|bk , uk) or a one-step tran-
sition probability P( B|bk , uk) =

∫
B p( bk+1|bk , uk), where

B ⊂ B.
Feedback controllers and induced transition probabil-

ity: In partially observable environments, at each stage, the
decision-making process is performed based on the belief
at that stage. Therefore, a controller is a mapping from
the belief space to the control space, in other words, µ(·) :
B → U. Accordingly, a controller µ induces a Markov
chain with the one-step transition probability P1( B|b, µ) :=
P( B|b, µ( b) ) over the belief space.

Hitting time: Let T ( D|b, µ)∈ [0,∞] denote the hitting
time on the set D ⊂ B under the controller µ starting from
belief b. Formally it is defined as

T ( D|b, µ) := min{k ≥ 0, bk ∈ D|b0 = b, µ} (22)

Stopping region: We call region B ⊂ B a stopping region
of the controller µ if we force the controller to stop execut-
ing as the belief reaches the region B; in other words, for all
b ∈ B, we impose P1( B|b, µ) = 1.

n-step transition probability: We define the n-step transi-
tion probability as the probability of landing in the stopping
region B in at most n steps:

Pn( B|b, µ) := Pr( T ( B|b, µ)≤ n) (23)

Stationary transition probability: Consider the controller
µ that starts executing from belief b and stops execut-
ing when the belief enters region B. Thus, we can define
P( B|b, µ) as the transition probability from b to B induced
by µ, when the controller stops executing; in other words,

P( B|b, µ) would be the probability of landing in the stop-
ping region B in a finite amount of time:

P( B|b, µ) := Pr( T ( B|b, µ) <∞) (24)

Reachability and accessibility: The stopping region B
is called reachable under a controller µ starting from b if
P( B|b, µ) = 1. The stopping region B is called accessible
under a controller µ from b, if P( B|b, µ) > 0.

αT-reachability: The stopping region B is called
αT-reachable under a controller µ starting from b if
PT ( B|b, µ) = Pr( T ( B|b, µ)≤ T) > α, in other words, if
the controller can drive the system into B in fewer than T
steps with a probability greater than α.

Reachability basin: The reachability basin B̆ associated
with the pair ( µ, B) is the set of all beliefs from which
B is reachable under µ in the absence of constraints. The
reachability (and αT-reachability) basins are thus defined
respectively as follows:

B̆ = {b ∈ B : P( B|b, µ) = 1} (25)

B̆( α, T) = {b ∈ B : PT ( B|b, µ) > α} (26)

Clearly, B ⊂ B̆, and in practical cases, B is much smaller
than B̆.

6.2. FIRM graph

In this section, we assume that there are no constraints (i.e.
F = ∅), and we reduce planning over the entire belief space
to planning over a representative graph constructed within
the belief space. Doing so, we can reduce the MDP prob-
lem in (4) over the continuous space into a tractable MDP
problem defined over the graph nodes.

Stabilizer sampling: The first step in the construction
of the proposed framework is to sample a set of stabiliz-
ers {µj}, where each stabilizer µ(·) is a mapping from the
belief space to the control space. Typically, every stabilizer
is characterized by a dv-vector of parameters v ∈ Rdv ; in
other words, we can denote the jth stabilizer more rigor-
ously as µj( ·; vj) : B → U. As a result, we can sample the
parameters V = {vj} and then construct a stabilizer corre-
sponding to each parameter. One can view the set V as a set
of underlying PRM nodes in the parameter space.

Sampling FIRM nodes: FIRM nodes {Bj} are disjoint sets
in the belief space, where the jth node has to be chosen such
that it is reachable under the j-stabilizer; in other words,
P( Bj|b, µj) = 1, with a sufficiently large B̆. We discuss the
size of B̆ further below. Note that, for practical purposes, the
reachability condition can be replaced by αT-reachability if
needed.

Connecting samples: Consider a set of N samples
{( µi, Bi) }N

i=1, where the reachability basin of the ith sam-
ple is denoted by B̆i. Now, consider {Bi}N

i=1 as the nodes of
a graph. The node Bi is connected to the node Bj if, starting
from any b ∈ Bi, we can reach Bj using µj. In other words
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Bi is connected to the node Bj if Bi ⊂ B̆j. Again, the reach-
ability condition can be replaced by the αT-reachability
condition.

Checking connection condition: For simple systems (lin-
ear with Gaussian noise) and some controllers (such as
SLQG), the connection condition can be checked analyti-
cally. However, in general, checking this connection con-
dition analytically may be very difficult. In such cases,
the Markov chain induced by the controller can be sim-
ulated numerically (e.g. using particle-based methods).
Accordingly, we can approximate the reachability (or αT-
reachability) probability and check if the condition is true
or not. Since this process is done offline, the computational
burden can be tolerated. However, as we will see further
below, in many cases designing suitable edge controllers
in practice increases the reachability probability such that
practically one can assume the reachability is satisfied, and
so there is no need to propagate the probability distribution.

Stopping region: By definition, the graph node B associ-
ated with the controller µ acts as the stopping region of the
controller. However, if the process under the stabilizer hits
another graph node before its corresponding graph node,
we can stop the controller and pick the best controller from
this intermediate node. Therefore, we can extend the stop-
ping region for all controllers to the union of all nodes
) := ∪N

l=1Bl. As a result, we will not necessarily have
P( Bi|b, µi) = 1 since the process may hit some other node
before Bi. However, we will have P( )|b, µi) = 1 for all i in
the absence of constraints.

Local controllers (simplified connecting strategy): To
ease the connection step, and to have more distant nodes,
we can precede each stabilizer by a time-varying controller
(referred to as the edge controller). To illustrate this idea,
consider two nodes Bi and Bj, where Bi ! B̆j; that is, Bi

cannot be connected to Bj through µj. In this case, we can
connect the underlying state nodes vi and vj in the state
space by a finite trajectory eij (say of length ι) and then
design a time-varying controller µ

ij
k , for k = 0, 1, . . . , ι, to

track this finite trajectory. Therefore, if the node Bi is in the
basin of reachability of the pair ( µ

ij
k , B̆j), then obviously Bi

would be in the basin of reachability of the pair ( µij, Bj),
where the controller µij = {µij

0:ι, µ
j}. We call µij the ( i, j)th

local controller, as it connects the node Bi to the node Bj.
Graph: Formally, we define the constructed graph with

the set of nodes V = {Bi}N
i=1 and the set of edges (or local

controllers) M = {µij}. The set of controllers available at
Bi is denoted by M( i) (i.e. the set of edges starting from
Bi). Similar to PRM, in which the path (final solution) is
constructed as a concatenation of edges on the roadmap, in
FIRM, the policy is constructed by the concatenation of the
local policies. However, it is worth noting that with this con-
struction we still perform planning in a continuous space
and do not discretize the control space.

Local controllers versus macro-actions: By the term
‘macro-action’ we mean a sequence of controls (actions)
(He et al., 2010, 2011). In other words, a macro-action is a
sequence of open-loop policies. It is important to note that a

local controller is not a macro-action, but rather a sequence
of policies (macro-policy), each of which is a mapping
from belief space to the continuous control space. Using
macro-actions results in an open-loop policy, which cannot
compensate for the belief-state deviation from the planned
path. However, under local controllers (macro-policies), the
effect of noise can be compensated for, due to the feedback
nature of the controllers, and thus, the belief can be steered
towards a stopping region.

6.3. Belief SMDP

In this section, we reduce planning over the entire belief
space into planning over a subset of belief space, which is
actually the union of FIRM graph nodes; that is, ) = ∪jBj.

SMDP transition costs: First, we generalize the concept
of one-step cost c( b, u) : B × U → R≥0 to the one-step
SMDP cost Cs( b, µ) : B×M→ R≥0, which represents the
cost of invoking the local controller µ(·) at belief state b; in
other words,

Cs( b, µ) :=
T∑

t=0

c( bt, µ( bt) |b0 = b) (27)

where T := T ( )|b, µ).
Belief SMDP: According to the above definitions, the

original POMDP, formulated using DP in Equation (6), can
be reduced to an SMDP (Sutton et al., 1999) in the belief
space, referred to as a belief SMDP:

Js( b) = min
µ∈M(i)

Cs( b, µ) +
∫

)

p( b′|b, µ) Js( b′) db′, ∀b ∈ Bi, ∀i

(28)

The integration over the entire belief space in Equation
(6) is reduced to integration over the sampled nodes (that
is, )) in Equation (28), as µ stops executing.

6.4. FIRM MDP

Graph transitions: The DP in (28), though computationally
more tractable than the original POMDP, is defined on the
continuous neighborhoods Bi and thus is still formidable
to solve. However, for sufficiently small Bi and sufficiently
smooth cost functions, the cost-to-go of all beliefs in Bi are
approximately equal. Thus, we can define the graph-level
transition cost and probabilities Cg : V × M → R and
Pg : V × V × M → [0, 1] on the FIRM graph, in other
words, over the finite space V, such that Pg( Bj|Bi, µ) is the
transition probability from Bi to Bj under the local planner
µ. Similarly, Cg( Bi, µ) denotes the cost of invoking local
planner µ at the FIRM node Bi. Accordingly, Jg : V → R
is the cost-to-go function over the FIRM nodes. These
roadmap-level quantities are defined using the following
‘piecewise constant approximation’, which is an arbitrar-
ily good approximation for smooth enough functions and
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sufficiently small Bi:

∀b ∈ Bi,∀i






Jg( Bi) := Js( bi
c)≈ Js( b)

Cg( Bi, µ) := Cs( bi
c, µ)≈ Cs( b, µ)

Pg( ·|Bi, µ) := P( ·|bi
c, µ)≈ P( ·|b, µ)

(29)

where bi
c is a representative point in Bi. For example, if Bi

is a ball, the typical value for bi
c is the center of Bi. This

approximation essentially states that any belief in the region
Bi is represented by bi

c for the purpose of decision-making.
Obstacle-free FIRM MDP: Given the approximation in

Equation (29), the DP equation in (28) becomes

Jg( Bi) = Js( bi
c) = min

µ∈M(i)
Cs( bi

c, µ) +
∫

)

p( b′|bi
c, µ) Js( b′) db′

= min
µ∈M(i)

Cs( bi
c, µ) +

∑

j

∫

Bj
p( b′|bi

c, µ) Js( b′) db′

≈ min
µ∈M(i)

Cg( Bi, µ) +
∑

j

∫

Bj
p( b′|bi

c, µ) Jg( Bj) db′

= min
µ∈M(i)

Cg( Bi, µ) +
∑

j

J g( Bj) P( Bj|bi
c, µ)

= min
µ∈M(i)

Cg( Bi, µ) +
∑

j

J g( Bj) Pg( Bj|Bi, µ) , ∀i

(30)

Accordingly, we can get the graph feedback πg : V → M
through the following DP:

Jg( Bi) = min
µ∈M(i)

Cg( Bi, µ) +
∑

j

Pg( Bj|Bi, µ) Jg( Bj) , ∀i

(31a)

πg( Bi) = arg min
µ∈M(i)

Cg( Bi, µ) +
∑

j

Pg( Bj|Bi, µ) Jg( Bj) , ∀i

(31b)

Thus, the original POMDP over the entire belief space
becomes a finite N-state MDP in Equation (31) defined on
the finite set of FIRM nodes V = {Bi}N

i=1. We call the MDP
in Equation (31) the FIRM MDP in the absence of obsta-
cles. It is worth noting that Jg(·) : V→ R is the cost-to-go
function over the FIRM nodes, which assigns a cost-to-go
for every FIRM node Bi, and the mapping πg(·) : V → M
is a mapping over the FIRM graph from FIRM nodes into
the set of local controllers that returns the optimal local
controller that has to be taken at any FIRM node. Given
Cg( B, µ) for all ( B, µ) pairs, the DP in Equation (31) can
be solved offline using standard techniques such as the
value/policy iteration to yield a feedback policy πg over
FIRM nodes {Bi}.

6.5. Incorporating obstacles into FIRM MDP

In the presence of obstacles (i.e. state or control con-
straints), we may not assume that the local controller µij(·)

can drive any b ∈ Bi into Bj with probability one. Instead,
we have to specify the failure probabilities that the robot
collides with an obstacle (hits the failure set F).

Let us generalize the transition probabilities by defining
P( F|b, µ) as the probability of hitting failure set F before
hitting stopping region ) under µ starting from b. Simi-
larly, we generalize Pg such that Pg( F|Bi, µ) := P( F|bi

c, µ).
Finally, we generalize the cost-to-go function by adding F
to its input set, that is, Jg : {V, F}→ R≥0, such that Jg( F)
is a user-defined suitably high cost for hitting obstacles.
Note that the cost-to-go from the goal node is zero, that
is, Jg( Bgoal) = 0. Therefore, we can modify Equation (31)
to incorporate constraints by repeating the procedure in the
previous subsection to get the FIRM MDP in the presence
of obstacles:

Jg( Bi) = min
µ∈M(i)

Cg( Bi, µ) +Jg( F) Pg( F|Bi, µ)

+
∑

j

J g( Bj) Pg( Bj|Bi, µ) (32a)

πg( Bi) = arg min
µ∈M(i)

Cg( Bi, µ) +Jg( F) Pg( F|Bi, µ)

+
∑

j

J g( Bj) Pg( Bj|Bi, µ) (32b)

All that is required to solve the above DP equation is the
values of the costs Cg( Bi, µ) and the transition probability
functions Pg( ·|Bi, µ). Thus, the main difference from the
obstacle-free case is the addition of a ‘failure’ state to the
FIRM MDP along with associated probabilities of failure
from various nodes Bi.

6.6. Overall policy π

The overall feedback π : B→ U is generated by combining
the global policy πg on the graph and local policies {µij}.
Suppose at the kth time step the active local controller is
shown by µ∗k . It remains unchanged (µ∗k+1 = µ∗k ) and keeps
generating control signals based on the belief bk at each
time step, until the belief reaches the corresponding stop-
ping region, ). Once the belief enters the stopping region
) = ∪jBj, it is in a graph node, say B∗k ∈ V. Accordingly,
the global policy πg chooses the next local controller, that
is, µ∗k+1 = πg( B∗k ). Thus, this hybrid policy is stated as
follows:

uk =π ( bk)=
{

µ∗k ( bk) , µ∗k = πg( B∗k−1) , if bk ∈ B∗k−1

µ∗k ( bk) , µ∗k = µ∗k−1, if bk /∈ )

(33)

Initial controller: Given the initial belief b0, if b0 is in one
of the graph nodes, then we just choose the best local con-
troller using πg. However, if b0 does not belong to any of
the graph nodes, we first make a singleton set B0 = {b0}
and connect it to the graph nodes based on the connect
methods discussed in Section 6.2. Denoting the outgoing
edges (local controllers) from B0 by M( 0), we compute
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the transition cost Cg( B0, µ), the transition probabilities
Pg( Bj|B0, µ) for all j, and failure probability P( F|B0, µ) for
invoking local controllers µ ∈M( 0) at B0. Then, we choose
the best initial controller µ∗0 as

µ∗0 =






arg min
µ∈M(0)

{Cg( B0, µ) +Pg( F|B0, µ) Jg( F)

+
∑

j
Pg( Bj|B0, µ) Jg( Bj) }, if b0 /∈ !

πg( Br) , if ∃r, s.t. b0 ∈ Br

(34)

It is worth noting that computing µ∗0 is the only part of the
computation that depends on the initial belief b0 and that
has to be performed online; in other words, if a large devia-
tion occurs, µ∗0 is the only part that needs to be reproduced
for the new initial point. After µ∗0 drives the system to a
graph node, from there on the optimal policy is already
known. Computing µ∗0 is feasible in real time as M( 0)
contains a limited number of edges.

6.7. Success probability

We would also like to quantify the quality of the solution
π in the presence of obstacles. To this end, we require the
probability of success of the policy πg at the higher-level
Markov chain on FIRM nodes given by Equation (32b).
Without loss of generality let us assume that the first node
B1 is the goal node Bgoal. The DP in Equation (32) has
N + 1 states {F, Bgoal, B2, . . . , BN } that can be decomposed
into three disjoint classes: the failure class {F}, the goal
class {Bgoal}, and the transient class {B2, B3, . . . , BN+1}. The
goal and failure classes are absorbing recurrent classes of
this Markov chain. As a result, the transition probability
matrix of this higher-level N + 1 state Markov chain can
be decomposed as follows (Norris, 1997):

P =




Pf 0 0
0 Pgoal 0
Rf Rgoal Q



 (35)

where Pgoal = Pg( B1|B1, ·) = 1 and Pf = Pg( F|F, ·) = 1,
since goal and failure classes are the absorbing recur-
rent classes; in other words, the system stops once
it reaches the goal or it fails. Q is a matrix that
represents the transition probabilities between transient
nodes in the transient class, whose ( i, j)th element is
Q[i, j] = Pg( Bi+1|Bj+1, πg( Bj+1) ). Vectors Rgoal and
Rf are ( N − 1)×1 vectors that represent the probabil-
ity of transient nodes V \ Bgoal getting absorbed into the
goal and failure node, respectively; that is, Rgoal[j] =
Pg( B1|Bj+1, πg( Bj+1) ) andRf [j] = Pg( F|Bj+1, πg( Bj+1) ).
Then, it can be shown that the success probability from any
desired node Bi ∈ V \ Bgoal is as follows (Norris, 1997):

P( success|Bi, πg) := P( Bgoal|Bi, πg)

= #T
i−1( I −Q)−1 Rgoal, ∀i ≥ 2 (36)

where #i is a column vector with all elements equal to zero
except the ith element, which is set to one. Note that the vec-
tor P s = ( I − Q)−1 Rgoal includes the success probability
from every graph node.

In the next section, we will discuss the success prob-
ability in more detail in the context of probabilis-
tic completeness. However, according to the computed
P( success|Bi, πg), one can compute the success probability
from any given initial belief b0 as

P( success|b0, π ) =
∑

j

P( Bj|b0, µ∗0) P( success|Bj, πg)

(37)

where µ∗0 is given by Equation (34). Then, this suc-
cess probability is compared with a minimum accept-
able success probability, denoted by pmin. If the condition
P( success|b0, π ) > pmin is not satisfied, then the number of
nodes in the graph has to be increased until the condition
is satisfied. If, from the initial point b0, a successful policy
in the class of admissible policies exists, then this proce-
dure will eventually find a successful policy by increasing
the number of nodes, due to the probabilistic completeness
of the method, which is discussed in Section 7.1.

6.8. Generic FIRM algorithms

The generic algorithms for the offline construction of FIRM
and online planning with FIRM are presented in Algorithms
3 and 4, respectively. Concrete instantiations of these algo-
rithms for SLQG-FIRM are given in Algorithms 1 and 2,
respectively.

Algorithm 3: Generic construction of the FIRM graph
(offline)

1 Sample a set of stabilizer parameters V = {vi} and
construct stabilizers M = {µi} accordingly;

2 Sample a set of belief nodes V = {Bi} such that they
satisfy the reachability condition;

3 Connect the belief nodes using local controllers µij;
4 For each Bi and µ ∈M( i), compute the transition cost

Cg( Bi, µ) and transition probabilities Pg( Bj|Bi, µ) and
Pg( F|Bi, µ) associated with invoking µ at Bi;

5 Solve the graph DP in Equation (32) to compute
feedback πg over graph nodes, and compute π

accordingly;

Single-query versus multi-query: As mentioned earlier,
most approaches for planning in belief space in continu-
ous state, action, and observation spaces result in query-
dependent plans. However, one of the contributions of
FIRM is that its construction does not depend on the query.
In Algorithms 3 and 4, it is assumed that the goal is fixed
for all queries; in this case in the planning phase we are only
robust to changes in the starting point of the query. How-
ever, to make the algorithms also robust to changes in the
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Algorithm 4: Generic planning (or replanning) on
FIRM (online)

1 Given an initial belief b0, invoke the controller µ0(·) in
Equation (34) to take the robot into someFIRM node B;

2 while B /= Bgoal do
3 Given the system is in FIRM node B, invoke the

global feedback policy πg to choose the local
feedback policy µ(·) = πg( B);

4 Let the local controller µ(·) execute until the robot
is absorbed into a FIRM node B′ or until it hits the
failure set;

5 if Collision happens then return Collision;
6 Update current node B← B′;

goal belief, one can just move the last line of Algorithm 3 to
the first line of Algorithm 4. Note that the computationally
expensive part of Algorithm 3 is the computation of edge
costs, which is independent of the start and goal locations
of the submitted query.

6.9. Discussion

In summary, in FIRM we aim to transform the original
POMDP problem into a belief SMDP problem and solve
it on a subset of belief space. Given the smoothness of the
cost function and transition probabilities, the solution of the
FIRM MDP is arbitrarily close to the solution of the belief
SMDP over FIRM nodes. The important characteristic of
FIRM is that it is solved offline and thus performing the
online phase of planning (or replanning) is computationally
feasible in real time. To exploit the generic FIRM frame-
work, one has to find ( B, µ) pairs, where B is reachable (or
αT-reachable) under µ, as FIRM nodes and edges. Also,
transition costs and probabilities need to be computed.
Finally, the corresponding FIRM MDP needs to be solved,
which provides a global feedback policy on the graph that
can be used in planning, as detailed in Algorithm 4. SLQG-
FIRM, presented in Section 5, is an instance of FIRM, in
which the design of local controllers µij and FIRM nodes
Bi is based on the properties of SLQG controllers.

7. Probabilistic completeness under
uncertainty

In this section, we extend the concept of probabilistic com-
pleteness of planning algorithms for deterministic systems
to the concept of probabilistic completeness of planning
algorithms under uncertainty, based on Agha-mohammadi
et al. (2012b). Accordingly, in the next subsection, we
discuss the probabilistic completeness of the FIRM-based
algorithms. We start by reviewing the definition of success
and probabilistic completeness in the deterministic case,
and then we extend these definitions to the stochastic case.

Success in the deterministic case: In the deterministic
case, such as conventional PRM, the outcome of the plan-
ning algorithm is a path. Thus, success is defined for paths:

for a given initial and goal point, a successful path is a
path connecting the start point to the goal point which lies
entirely in the obstacle-free space.

Probabilistic completeness in the deterministic case:
In the absence of uncertainty, a sampling-based motion-
planning algorithm is probabilistically complete if by
increasing the number of samples, the probability of finding
a successful path, if one exists, asymptotically approaches
one.

A difference between the deterministic and the proba-
bilistic case: In the presence of uncertainty, success cannot
be defined for a path and has to be defined for a pol-
icy. Indeed, on a given path, different policies may result
in different success probabilities. Moreover, under uncer-
tainty, one can only assign a probability to reaching the
goal. Thus, to define success for a policy we consider a
threshold pmin ∈ [0, 1] and decide about success or failure
accordingly.

Successful policy: In the presence of uncertainty, the
solution of the planning algorithm is a function, called
a closed-loop policy or feedback. Therefore, success is
defined for policies: for a given initial belief b0 and goal
region Bgoal, a successful policy is a policy under which the
probability of reaching the goal from the given initial point
is greater than some predefined threshold pmin. In other
words, π is successful for a given b0 if P( success|b0, π ) :=
P( Bgoal|b0, π ) > pmin.

Policy in sampling-based methods: In sampling-based
methods, a policy is parametrized by a set of samples. These
samples can be in the state or belief space, based on the
algorithm. Let us denote these samples in a generic space
by {γ1, γ2, . . . , γN }. Thus, we can highlight the dependency
of the sampling-based policy on the samples by the notation
π ( ·; {γ1, γ2, . . . , γN }). The number of samples is denoted
by N .

Strong probabilistic completeness under uncertainty
(SPCUU): Suppose there exists a successful policy π̌ . Then
a sampling-based motion-planning algorithm is SPCUU if
increasing the number of samples without bound causes
the probability of finding a successful policy to approach
one. In other words, if there exists a successful policy π̌ ,
then we have the following property for the sampling-based
policy π :

lim
N→∞

P( Bgoal|b0, π ) > pmin (38)

where N is the number of samples in the sampling-based
method.

Achieving an algorithm that is SPCUU requires search-
ing in the entire space of policies, which is a computa-
tionally intractable task. Usually in solving POMDPs the
space of admissible policies is restricted to a sufficiently
rich subset of policy space, denoted by (, within which the
method searches for the best policy. Restricting the success-
ful policy to the set (, we define below a weaker notion of
PCUU.
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PCUU : Suppose that there exists a successful policy
π̌ ∈ (. Then, a sampling-based motion-planning algorithm
is PCUU if, when increasing the number of samples with-
out bound, the probability of finding a successful policy
approaches one. In other words, if there exists a success-
ful policy π̌ ∈ (, then for the sampling-based policy π , we
have lim

N→∞
P( Bgoal|b0, π ) > pmin.

As discussed in Section 6, in FIRM, inspired by the
sampling-based PRM framework, this reduction from the
entire function space to the restricted set of policies ( is
performed by sampling feedback local planners and con-
catenating them. Therefore, the structure of local planners
defines the set (. Each local planner µij is parametrized
by its corresponding parameter vj. However, as mentioned
in Section 6.2, we can consider the set V = {vi} as the
set of underlying PRM nodes. Thus, any policy π ∈ (

is parametrized by the set of underlying PRM nodes V =
{vi}N

i=1. We highlight this dependency explicitly through the
notation π ( ·;V). Therefore, the PCUU condition for FIRM
can be written more explicitly as

lim
N→∞

P( Bgoal|b0, π ( ·;V)) > pmin (39)

For a concrete instantiation of FIRM, we can explicitly
characterize the set (. For example, in SLQG-FIRM, (

is the set of all possible policies that can be generated by
concatenating LQG controllers.

7.1. Probabilistic completeness of FIRM

Obviously, FIRM-based methods are not SPCUU algo-
rithms. However, in this section, we show that under mild
practical conditions, FIRM-based methods are PCUU algo-
rithms. We first provide an analysis of the local plan-
ners in belief space, and then state the assumptions more
rigorously.

Notation: The norm ‖·‖ is the supremum norm when it is
applied to functions. The norm ‖·‖op is applied on operators
and it stands for the operator norm (Keener, 2000). It is
worth noting that in this section, by the word ‘continuous’,
we mean ‘Lipschitz continuous’. Finally, we assume that
Xfree is a compact set.

Hyper-state: X = ( x, b)∈ Xh is referred to as hyper-state
(or h-state), which is a state-belief pair. The space of all h-
states is called hyper-state space (h-state space) Xh = X ×
B. Further, pµ(X ′|X ) denotes the one-step transition pdf
induced by the local controller, µ, over the h-state space.
Also, let Pn( S|X , µ) denote the transition probability from
h-state X into the set S ⊂ Xh in at most n steps.

Local planner and extended stopping region: The role of
the ( i, j)th local planner or local controller is to drive the
belief from the region Bi to its stopping region Bj in the
belief space (for ease of notation, we ignore the case where
the controller can stop in any FIRM node, and we restrict
its stopping region to Bj). In the presence of obstacles, we
extend the concept of stopping region to include obstacles

also. The stopping regions {Bj} in the belief space and the
stopping region F in the state space can both be extended
to the h-state space, respectively denoted by {Bj} and F ,
where Bj ⊂ Xh and F ⊂ Xh are defined as

Bj := {( X , b) |X ∈ Xfree, b ∈ Bj} (40)

F := {( X , b) |X ∈ F, b ∈ B} (41)

S j := Bj ∪ F , S j
:= Xh \ S j (42)

where S j and S j
, respectively, denote the entire stopping

region and transient region under the local controller µij.
Absorption probability of local planners: If, under the

dynamics induced by the local planner, the system reaches
the target node Bj, the local planner is considered to be suc-
cessful; if the system hits an obstacle, the local planner is
considered to have failed. The success probability of local
planners (i.e. the absorption probability into FIRM nodes)
is computed by solving the following integral equation that
results from the law of total probability:

P(Bj|X , µij) =
∫

Xh

pµij
(X ′|X ) P(Bj|X ′, µij) dX ′

=
∫

Bj

pµij
(X ′|X ) dX ′

+
∫

S j

pµij
(X ′|X ) P(Bj|X ′, µij) dX ′ (43)

where the second equality in Equation (43) follows from
substituting the following conditions, inherited from FIRM
construction, into the first integral:

P(Bj|X , µij) =
{

1, if X ∈ Bj

0, if X ∈ F
(44)

Henceforth, we drop indices i and j to unclutter expres-
sions. Thus, we can write

P(B|X , µ)=
∫

B

pµ(X ′|X ) dX ′

+
∫

S

pµ(X ′|X ) P(B|X ′, µ) dX ′

= R(X ) +TS [P(B|·, µ) ] (X ) (45)

where the operator TS and the function R(X ) are
defined as

TS [f (·) ] (X ) :=
∫

S

pµ(X ′|X ) f (X ′) dX ′,

R(X ) :=
∫

B

pµ(X ′|X ) dX ′ (46)

The solution of the integral equation in Equation (45)
is expressed in the following as a Liouville–Neumann
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series (Keener, 2000), similar to the solution of the inho-
mogeneous Fredholm equation of second type (Keener,
2000):

P(B|X , µ) =
∞∑

n=1

Tn
S [R(·) ] (X ) (47)

We show that the series in Equation (47) is a convergent
series by resorting to the following assumption, which is a
weaker version of the aforementioned FIRM condition on
the design of nodes and local controllers.

Assumption 1. We assume that there exists some time step
N at which the controller stops with a positive probability.
Mathematically, there exists an N < ∞ and a β > 0 such
that PN (S j|X , µij)≥ β > 0, for all X .

This assumption is almost always true, as it rephrases the
role of the controller in driving the system toward the target
region. For example, if we have Gaussian noise (as is the
case in the SLQG-FIRM), the assumption is true at N = 1
regardless of the utilized controller.

Lemma 4. Given Assumption 1, we have





‖Tn
S‖op ≤ 1, n < N

‖Tn
S‖op ≤ 1− β < 1, n ≥ N

∑∞
n=0 ‖Tn

S‖op ≤ c <∞
(48)

Proof. See Appendix E.

Corollary 1. The series
∑∞

n=0 Tn
S [R] is a convergent series,

and therefore we can define the resolvent operator ( I −
TS )−1 [R] =

∑∞
n=0 Tn

S [R], where ‖( I − TS )−1 ‖op ≤ c <

∞.

Proof. See Appendix F.

According to Corollary 1, the success probability of the
local controller µ can be written, using the defined resolvent
operator, as

P(B|X , µ) = ( I − TS )−1 [R(·) ](X ) (49)

As the first result of this section (Proposition 1), we aim
to show that this absorption probability varies continuously
with respect to changes in parameters of the local planner.
However, we will first state two assumptions.

Assumption 2. We assume the local planning law and
induced transition probabilities are smooth; in other words,
we have assume the following.

• Local control laws are continuous in their parame-
ters, that is, for the ( i, j)th local controller, mapping
µij( ·; vj) : B → U is a continuous function in its
parameter vj.

• The transition pdf on h-state, that is, p(X ′|X , u),
is a continuous function of the control u; in
other words, there exists a c1 < ∞ such that
‖p(X ′|X , u)−p(X ′|X , ǔ) ‖ ≤ c1‖u− ǔ‖.

Finally, we state the following assumption, in which we
emphasize the fact that, as v→ v̌, the transition probability
induced by the local controller µ( ·; v) into the sets B and B̌
also has to converge, which is a reasonable assumption for
a smooth control law.

Assumption 3. Consider the controllers µ( ·; v) and
µ̌( ·; v̌), whose corresponding extended absorption regions
are denoted by B and B̌, respectively. We assume that there
exist real numbers r > 0 and c′ < ∞ such that for
‖v− v̌‖ ≤ r, we have

‖P1(B 3 B̌|X , µ) ‖ ≤ c′‖v− v̌‖ (50)

where 3 is the symmetric difference operator; in other
words, B 3 B̌ = (B \ B̌)∪( B̌ \ B).

Now we state the following proposition on the continuity
of the success probability of local planners.

Proposition 1 (Continuity of absorption probabilities).
Given Assumptions 1, 2, and 3, the absorption probability
P( Bj|b, µij) is continuous in parameter vj for all i, j, and b.

Proof. See Appendix G.

Now we present the main result regarding the probabilis-
tic completeness of FIRM-based methods.

Theorem 1. Given Assumptions 1, 2, and 3, any planning
algorithm under uncertainty that is generated based on the
FIRM framework (i.e. guarantees belief node reachability
and induces a roadmap in the belief space with independent
edge costs) is PCUU.

Proof. See Appendix H.

The basic idea of probabilistic completeness under uncer-
tainty stems from an idea similar to the one in the
path-isolation-based analysis for planners in deterministic
systems. Roughly speaking, in the path isolation argument
for sampling-based planners in the absence of uncertainty,
if there is a successful path and a non-zero neighborhood of
this path, in which every path is successful, we can eventu-
ally find a path in this neighborhood by increasing the num-
ber of samples unboundedly. Similarly, in the presence of
uncertainty, if there is a successful policy, it is parametrized
by some parameters (set of PRM nodes, in FIRM). Thus,
if there exists a non-zero measure neighborhood of these
parameters, within which selected parameters lead to a suc-
cessful policy, we can eventually reach a successful pol-
icy by increasing the number of samples unboundedly and
choosing samples in the target neighborhoods.

8. Experimental results
In this section, we first illustrate theoretical results from the
previous sections on a planar robot in a small 3D planning
domain. Then, we present planning results on a larger 3D
state space. Finally, we report the results of the method on
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a dynamical model of an eight-arm manipulator (sixteen-
degree-of-freedom state space). This section is followed by
a brief comparison with other state-of-the-art methods in
Section 9.

8.1. Planar 3D omnidirectional robot: Illustrat-
ing steps in construction and planning with
SLQG-FIRM

In this subsection, we focus on an omni-directional robot.
Its state is composed of its 2D position in the plane and its
heading angle. The goal in this section is to illustrate the
steps of constructing SLQG-FIRM and planning with it.

8.1.1. Motion model. A three-wheel omnidirectional
mobile robot is used in experiments with the nonlinear
kinematic model given in Kalmár-Nagy et al. (2004). The
state vector is composed of a 2D location and heading
angle x = [1x, 2x, θ ]T in a global world frame. Further,
u = [1u, 2u, 3u]T is the vector of controls, where iu is the
linear velocity of the ith wheel. The motion model for this
robot, in its original continuous form, is (Kalmár-Nagy
et al., 2004)

ẋ = fc( x, u, w) = T( x) u + w (51)

where w is the motion noise, which is drawn from a zero-
mean Gaussian distribution, and

T( x)=




− 2

3 sin( θ ) − 2
3 sin( π

3 − θ ) 2
3 sin( π

3 + θ )
2
3 cos( θ ) − 2

3 cos( π
3 − θ ) − 2

3 cos( π
3 + θ )

1
3r

1
3r

1
3r





(52)

where r is the distance of the wheels from the robot’s center
of mass. The discrete motion model is shown by

xk = f( xk−1, uk−1, wk−1) (53)

where wk ∼ N ( 0, Q) is the motion noise at the kth time
step, which is drawn from a zero-mean Gaussian distribu-
tion with covariance matrix Q. It can be shown that if we
linearize this system, the linearized motion model satisfies
the controllability condition in Property 1.

8.1.2. Observation model. In experiments, the robot is
equipped with exteroceptive sensors that provide range and
bearing measurements from existing landmarks (radio bea-
cons) in the environment. The 2D location of the jth land-
mark is denoted by Lj. Measuring Lj can be modeled as
follows:

jz = jh( x, jv)

= [‖jd‖, atan2( jd2, jd1)− θ ]T + jv, jv ∼ N ( 0, jR)
(54)

where jd = [jd1, jd2]T := [1x, 2x]T − Lj. The vector jv is a
state-dependent observation noise, with covariance

jR = diag( ( ηr‖jd‖+ σ r
b )2 , ( ηθ‖jd‖+ σ θ

b )2 ) (55)

In other words, the uncertainty (standard deviation) of the
sensor reading increases as the robot gets farther from the
landmarks; ηr = ηθ = 0.3 determines this dependence,
and σ r

b = 0.01 m and σ θ
b = 0.5◦ are the bias standard

deviations. A similar model for range sensing is used in
Prentice and Roy (2009). We assume the robot observes all
NL landmarks at all times and their observation noises are
independent. Thus, the total measurement vector is denoted
by z = [1zT, 2zT, . . . , NLzT]T, and, due to the independence
of measurements of different landmarks, the observation
model for all landmarks can be written as

z = h( x) + v, v ∼ N ( 0, R) , R = diag( 1R, . . . , NLR)
(56)

It is straightforward to show that the linearized version
of this observation model satisfies the observability con-
dition in Property 1. Therefore, this entire system model
(motion and sensing models) satisfies Property 1 and thus
the SLQG-FIRM can be used for planning.

8.1.3. Construction of SLQG-FIRM nodes and edges. Fig-
ure 4(a) shows a sample environment, including obsta-
cles, landmarks, and enumerated nodes in ( 1x, 2x, θ ) space.
Nodes are shown by blue triangles, which encode the posi-
tion ( 1x, 2x) and heading angle θ of the robot. Landmarks
are shown by black stars. The corresponding FIRM nodes
are computed and shown in Figure 4(b). All elements in Fig-
ure 4(b) are defined in ( 1x, 2x, θ ) space but only the ( 1x, 2x)
portion of them is shown. Each bj

c ≡ ( vj, Pj
s) is illustrated

by a red dot representing vj, and a green ellipse represent-
ing the 3σ ellipse of covariance Pj

s. Each FIRM node Bj is
a neighborhood around bj

c. In the experiments, we define
the node region using the component-wise version of Equa-
tion (18) to handle the error scale difference in position and
orientation variables:

Bj = {b ≡ ( x, P) | |x− vj| .
< ε, |P− Pj

s|
.
< &} (57)

where |·| and
.
< stand for the absolute value and component-

wise comparison operators, respectively. We also set ε =
[0.07 m, 0.07 m, 1◦]T and & = εεT to quantify Bj. The
projection of Bj onto the space of estimation mean, that is,
Bj

x = {̂x+ : |̂x+ − vj| .
< ε}, is a neighborhood around vj,

which is shown by a cyan rectangle centered at vj. Projec-
tion of Bj onto the space of estimation covariances, that is,
Bj

P = {P : |P − Pj
s|

.
< &}, is a neighborhood around

Pj
s. However, in a 2D plot Bj

P cannot be shown due to
its high dimension. Thus, we partially illustrate it only by
two dashed green ellipses that represent 3σ covariances of
Pj

s−&d and Pj
s +&d , where &d is the matrix &, whose off-

diagonal elements are set to zero. For illustration purposes,
both of these neighborhoods (i.e. Bj

x and Bj
P) are magnified

5x in Figure 4(b).

8.1.4. Transition costs and probabilities. After designing
FIRM nodes and local controllers, the transition costs and
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(a) (b)

Fig. 4. (a) The underlying PRM graph. Gray polygons are the obstacles and black stars represent the landmarks’ locations. (b) FIRM
nodes corresponding to PRM nodes.

probabilities need to be computed. Based on the given task
and needed accuracy, different approaches can be taken.
Here, we use a particle-based approximation of the distri-
bution to compute these quantities, where we use M = 100
particles. In other words, for every ( B, µ) pair, we perform
100 runs. At every run, a sample path of state x, a sample
path of estimation mean x̂+, and a sample path of estimation
covariance P is generated. If the filter of choice in the edge
controller is the linearized Kalman filter (LKF) (Crassidis
and Junkins, 2004; Simon, 2006), the covariance evolution
is deterministic and there is no need to generate 100 differ-
ent sample covariance paths. However, if the filter of choice
in the edge controller is the EKF (Crassidis and Junkins,
2004; Simon, 2006), then we need to generate the sample
covariance paths too, to take into account the stochasticity
of the covariance matrix. Figure 5(a) depicts sample paths
of the true state x and estimation mean x̂+ in green and
dark red, respectively, for M = 100 particles. Note that
when a true state path (green path) collides with an obstacle,
the process stops and failure happens. However, in this fig-
ure, for illustration purposes, we continue the process and
ignore the obstacles to better show the uncertainty tube and
information availability in different parts of the space. As
seen in Figure 5(a), the behavior of the true state on the
edges which have access to more accurate observations is
remarkably close to the planned behavior. In contrast, on the
edges that get less informative observations, the controller
cannot effectively compensate for deviations of the ground
truth from the nominal path, which can lead to collision
with obstacles.

To avoid clutter, Figure 5(b) the depicts sample esti-
mation covariance evolution only for a single particle. In
this figure, we let the process and observation noise be
zero, to keep the centers of the ellipses (i.e. estimation
means) on the planned points. However, note that in gen-
eral the estimation mean is affected by the noise (as is

seen in Figure 5(a)). Indeed, Figure 5(b) can be seen as the
maximum-likelihood estimation uncertainty tube over the
roadmap.

Let us denote the qth sample path for the true state by
x(q)

0:T q , for the estimation mean by x̂+(q)
0:T q , and for the esti-

mation covariance by P(q)
0:T q , where T q is the stopping time

of the qth particle in executing µ at B. Moreover, one can
assign a weight to each particle q based on the probabil-
ity of its occurrence. There are different ways proposed to
compute these weights in the sequential Monte Carlo liter-
ature (Doucet et al., 2001). However, the main condition is
that they have to sum to one, in other words,

∑M
q=1 w(q) = 1.

Here we simply consider w(q) = M−1. Note that if we par-
ticle µij at Bi, all these quantities also need to have an ij
superscript. Having these sample paths, we can compute the
transition costs and probabilities associated with invoking
µij at Bi. For the collision probability, we have

Pg( F|Bi, µij) = E[IF |Bi, µij] ≈
M∑

q=1

w(q)IF( x(q)
0:T q) (58)

Pg( Bj|Bi, µij) = 1− Pg( F|Bi, µij) (59)

where IF is the failure indicator. IF( x(q)
0:T q ) is one if there

exists a time step k ≤ T (q) such that xk ∈ F; otherwise it is
zero. Further, T q, or more rigorously T ij(q)

, is the stopping
time of the qth particle in executing µij at Bi. To compute
T ij(q)

, we only need to check the condition b ∈ Bj at every
time step and find the first time step where belief b enters
the stopping region Bj. Thus, we can compute the mean
stopping time as

T̂ ij = E[T ij] ≈
M∑

q=1

w(q)T ij(q)
(60)
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Fig. 5. Sample paths induced by controllers invoked at different nodes. (a) For M = 100 particles, sample ground truth paths and
sample estimation mean paths are shown in green and dark red, respectively. (b) The most likely path under the optimal policy and the
shortest path are shown in red and yellow respectively. The 3σ ML estimation uncertainty tube is drawn in blue.

To compute the filtering cost defined in Section 5.5, again
we use the particle-based representation of belief,

"ij = E




T ij∑

k=1

tr( Pk) |Bi, µij



 ≈
M∑

q=1

T q∑

k=1

w(q)tr( P(q)
k ) (61)

where P(q)
k is the estimation covariance at the kth time step

of the qth particle. Finally, the cost of taking µij at Bj is as
follows:

Cg( Bi, µij) = α1"
ij + α2T̂ ij

where we used the coefficients α1 = 0.95 and α2 = 0.05.
Table 1 shows these quantities for several ( Bi, µij) pairs in
FIRM corresponding to Figure 5.

8.1.5. Planning and replanning on FIRM. Plugging the
computed transition costs and probabilities into Equation
(32), we can solve the DP and compute the graph policy πg.
This process is performed once offline if the goal location
is fixed. Figure 6(a) shows the policy πg on the constructed
FIRM in this example. Indeed, at every FIRM node Bi, the
policy πg decides which local controller has to be taken,
which in turn aims to take the robot to the next FIRM
node. Thus, the online part of the planning is significantly
efficient and reduces to executing the controller and gener-
ating the control signal, which is almost an instantaneous
computation.

Replanning: An important consequence of this frame-
work is that replanning can be performed using FIRM effi-
ciently. Suppose due to some unmodeled large disturbance,
the robot’s belief deviates significantly from the planned
path; in other words, for some appropriate norm ‖ · ‖ on
belief space we have ‖bk − E[bp

k]‖ > %, where bp
k is the

planned belief at the kth time step, and % is the threshold
for deciding if replanning is needed or not. In such cases,

replanning occurs based on Algorithm 2. In Figure 6(b),
we illustrate a simple replanning process. In this figure it
is assumed that an unmodeled large disturbance affects the
system such that the estimation mean significantly deviates
from the planned path. The deviated mean is shown on the
figure as the ‘restart point’. Thus, based on Algorithm 2,
we connect this point to PRM. In Figure 6(b) the newly
added PRM edges (i.e. E( 0)) are shown by dashed green
lines. Then, for every edge in E( 0), we design a local con-
troller. Call the set of newly constructed local controllers
M( 0). For every µ ∈ M( 0) compute corresponding transi-
tion costs and probabilities. Finally, according to Bellman’s
principle of optimality, we use the precomputed costs-to-
go Jg(·) to decide which controller has to be taken at the
‘restart point’ using Equation (34). Taking this controller,
the belief enters into a FIRM node, and from there again we
can use the precomputed πg to control the robot toward the
goal region.

We show the most likely path under πg in red in
Figure 5(b). The shortest path is also illustrated in Fig-
ure 5(b) in yellow. It can be seen that the ‘most likely path
under the best policy’ detours from the shortest path to a
path along which the filtering uncertainty is smaller and it
is easier for the controller to avoid collisions.

8.2. Larger environment

In this section, we consider the same omnidirectional robot
with the same observation model, and we perform planning
in a larger environment (shown in Figure 7) whose size is
almost 10,000 m2. Every grid square is a 10× 10 area. The
standard deviation of the process noise is assumed to be
1 m for the positional degrees of freedom and 7◦ for the
angular degree of freedom. We start with a five-node FIRM
and at every step we randomly sample five more nodes until
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Table 1. Computed costs for several node-controller pairs in FIRM using 100 particles.

( Bi,µij) pair B1,µ1,4 B4,µ4,8 B8,µ8,10 B10,µ10,11 B11,µ11,12 B1,µ1,3 B3,µ3,6 B6,µ6,12

Pg(Bj|Bi,µij) 97% 95% 99% 77% 79% 87% 55% 79%
%ij 18.5967 11.2393 6.8229 15.1148 26.2942 23.6183 48.8189 43.6207
E[T ij] 238.2 193.0 150.0 209.6 170.8 200.3 242.4 219.2
σ [T ij] 21.8 28.7 15.1 24.5 22.6 22.7 30.1 26.7

Fig. 6. Planning and replanning on FIRM. (a) Policy πg resulted from solving the DP in Equation (31) is shown by red arrows. Indeed,
for every FIRM node, the policy πg tells us which controller has to be taken. (b) In this figure it is assumed that an unmodeled large
disturbance affects the system such that the estimation mean significantly deviates from the planned path. The deviated mean is denoted
by ‘restart point’ in the figure.

we reach 500 nodes. Thus, overall, we construct 100 FIRM
graphs in this environment, for each of which we measure
the construction time (cumulative) and compute the suc-
cess probability. Plots in Figure 8 show these quantities as
a function of the number of nodes for a sample run on an
Intel i5 dual-core 1.7 GHz machine with 4 GB memory.
Further, 50 particles are used for collision-checking, and
every node in the underlying PRM is connected to its three
nearest neighbors.

Basically, FIRM construction is an anytime algorithm in
the sense that one can increase the number of nodes and
stop enlarging the graph when a termination condition is
satisfied such as: (i) achieving a desirable success probabil-
ity or a desirable cost-to-go, (ii) no change being observed
in the success probability or in the cost-to-go for a signifi-
cant time, or (iii) exceeding the maximum time allowed for
offline computation.

Again, as is seen in Figure 7, the highest-likelihood path
under the optimal policy detours from the shortest path
toward the more informative regions in the environment.
As a result, it reduces the collision probability and at the
same time increases the estimation accuracy and controller
efficiency. However, it is important to note that the returned
solution is not a single path, but it is a feedback law over
the entire space. For the video of executing this plan (with
fewer nodes to unclutter the video), see Extension 1.

We also conducted a simulation to illustrate the robust-
ness of the method to large deviations. In this simulation,
the robot is pushed away from the roadmap several times
by some large disturbances, and replanning is performed
online based on Algorithm 2. The video of this simulation
is also available (see Extension 2).

8.3. Eight-arm manipulator

On a given graph, the number of paths between two given
points grows exponentially with the size of graph. Thus,
in the direct propagation of uncertainty on a roadmap, the
number of edge costs and transition probabilities that need
to be computed is exponential in the number of underly-
ing PRM nodes (see Section 9 for a detailed analysis). As
a result, when we deal with high-dimensional state spaces,
where PRM needs to have many edges and nodes, it is not
feasible to use the methods that perform direct uncertainty
propagation. However, using FIRM, we only need to com-
pute the costs and transition probabilities for as many edges
as the underlying PRM has. Thus, we can easily increase
the dimension to the level that PRM can handle, and the
complexity of the algorithm is increased only by a con-
stant factor (involving computation of costs and transition
probabilities of a single edge). In the following experi-
ment, we verify the effectiveness of FIRM in handling
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Fig. 7. (a)–(f) Different snapshots of the roadmap for 50, 75, 105, 275, 425, and 500 nodes, respectively. The most likely paths under
the optimal plan are also shown in blue. Stars show the landmarks. The means and covariances of the FIRM node centers are shown by
small blue triangles and their associated red ellipses, respectively. Also, see Extensions 1 and 2 regarding the video of planning with
FIRM in this environment.

Fig. 8. A sample run showing (a) the success probability of the generated plan versus the number of nodes, as well as (b) the construction
time (offline) for the plan.

high-dimensional systems through a simple example of an
eight-arm manipulator. To the best of our knowledge, this
is the first belief-space planner that can provide a plan over
an entire roadmap for an eight-dimensional system while
incorporating expensive costs in planning, such as com-
puting collision probabilities. This experiment shows that
FIRM can be used as a practical tool in many real-world
problems.

8.3.1. Motion model. We consider an eight-arm manipu-
lator with eight revolute joints in the plane. The state of
the system is described by the angles of joints and their
velocities x = ( θ1, . . . , θ8, θ̇1, . . . , θ̇8)T, and the available
control is considered to be the angular acceleration (or
torque) of joints u = ( α1, α2, . . . , α8). The process noise
w = ( w1, w2, . . . , w8) is modeled as a zero-mean Gaussian
noise on angular accelerations. Therefore, the continuous
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motion model for every link is θ̈i = αi + wi, whose discrete
version for the entire state can be written as

xk+1 = Axk + Buk + Gwk (62)

where

A =
(

I8 I8δt
08 I8

)
, B =

(
08

I8δt

)
, G =

(
08

I8
√

δt

)

(63)

where δt is the time interval between two consecutive time
steps, and In and 0n are the identity matrix and square zero
matrix of dimension n, respectively.

8.3.2. Observation model. We use the light–dark environ-
ment setting as the observation model, which is also used in
Platt et al. (2010, 2011). In the light–dark environment, the
accuracy of sensory readings is encoded by a gray level,
in which the regions that have access to more accurate
sensory readings are lighter than the regions that do not
have access to such informative sensory readings. In this
experiment, we assume that we measure the state of the
system, but this measurement is more accurate as we get
closer to the left wall on which our sensor is mounted. (This
model is adopted from Platt et al. (2010).) Thus, we have
z = h( x) = [z1, . . . , z8]T , where

zi = θi + vi, vi ∼ N ( 0, ( η|xi − l| + σb)2 ) (64)

where xi is the x coordinate of the ith joint location, l is the
location of the vertical wall, η defines the dependency of the
noise standard deviation on the distance from the wall, and
σb is the bias standard deviation. Figure 9 shows an example
of such an environment, in which l = −1.5, η = 0.1, and
σb = 10−4. The full observation model can be written as

zk = h( xk) = Hxk + Mvk (65)

where H = [I8, 08] and M = I8.

8.3.3. Sampling stabilizer parameters. The described sys-
tem is a controllable and observable system, and thus we
adopt the SLQG controller as the stabilizing controller.
Therefore, the parameters of the controller are points in
the equilibrium space, as explained in Section 5. In other
words, to generate sample nodes in the state space, we need
to sample the configuration space ( θ1, . . . , θ8) and append
zero angular velocities to it. To connect these samples in
the state space we design simple trajectories between nodes,
along which we accelerate the joints (angles) with constant
acceleration until they are halfway to the next node, and
after which we decelerate the joints until they reach the next
node.

8.3.4. Construction of the SLQG-FIRM and planning with
it. First, corresponding to sampled nodes in the state space,

we compute corresponding FIRM nodes and then design
local controllers according to Algorithm 1. In a similar pro-
cedure to the one in the previous experiment, we compute
the transition costs and probabilities.

To solve the DP, we need to characterize the goal nodes.
In Figure 9, the goal region for the tip location of the
manipulator is shown by a purple circle. We mark all PRM
samples whose tip locations are within the goal region as
goal nodes. Setting the cost-to-go to zero for all goal nodes,
we solve the DP and compute the optimal feedback on the
graph according to Algorithm 1. Finally, we execute the
plan based on Algorithm 2 and we illustrate the propagation
of the covariance of the manipulator tip in Figure 9 in red.
As can be seen in Figure 9, there are two passages among
the obstacles to reach the goal region. Although the right
passage is closer to the initial configuration of the manip-
ulator, the manipulator detours to a longer path through
the left passage, because there is more accurate sensory
information available in the left passage than the right one.
As is seen in this example, the feedback plan minimizes
the collision probability and picks the safest path, while
being robust to deviations. In other words, if for any reason
the manipulator deviates significantly from the underlying
PRM, the feedback plan connects the deviated belief to the
best neighboring FIRM node in real time, and continues the
pre-computed plan from this node.

9. Comparison and limitations
In this section, we perform a short comparison of SLQG-
FIRM against the two most related methods in the literature:
BRM (Prentice and Roy, 2009) and LQG-MP on roadmaps
(Van den Berg et al., 2011). Both methods are belief-space
planners that exploit roadmap-based ideas. We compare
the methods in terms of the offline construction and online
planning complexity, and also in terms of some other
properties, all listed in Table 2. In the following, we go over
the complexity analysis that leads to the entries in this table.
Afterwards, we discuss limitations of the SLQG-FIRM.

Offline construction complexity: In a general graph, the
number of paths between two given nodes is exponential in
the number of nodes N . For example, if each node in a graph
is connected to k nearest neighbor nodes on the graph, for
a search depth of d edges on the graph, the corresponding
search tree contains kd paths. Notice that each of these paths
has d edges on it. Thus, if we directly (without using belief
stabilizers) propagate the uncertainty on a roadmap for a
depth of d, we have to evaluate the cost on dkd edges. So,
the asymptotic complexity of the overall problem is of the
order O( NkN ). Now, if computing the cost and transition
probabilities associated with each edge under uncertainty is
a constant multiplier O( c) of computing its cost in a deter-
ministic case, the overall complexity of the methods based
on direct belief propagation is O( cNkN ). On the other hand,
in any variant of FIRM, due to the edge independence, only
the cost of O( Nk) edges needs to be constructed as in PRM,
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Table 2. Belief space roadmap-based method comparison (without using a heuristic in search algorithms).

Algorithm Offline
construction
complexity
(no heuristic)

Replanning
(online
planning)
complexity

Future
observations

System
requirement

Valid region
of plan

Collision
probabilities

Generic PRM O( Nk) O( k) ——— Assumes a controller
exists to drive the
system from node to
node

On the graph
only

———

BRM O( cNkN ) O( c N
l kN ) or

O( cNkN )
Maximum
likelihood
observation

Well linearizable
systems

Vicinity of the
nominal path

Not considered

LQG-MP on
roadmaps

O( cNkN ) O( cNkN ) All observations Well linearizable
systems

Vicinity of the
nominal path

Simplified
measures are
used

Generic FIRM O( cNk) O( ck) ——— Assumes a controller
exists to drive the
system from node to
node

Union of con-
vergence regions of
local controllers

———

SLQG-FIRM O( cNk) O( ck) or O( 1) All observations Well linearizable, and
linear controllable and
observable systems

Vicinity of whole
PRM (entire space
for a dense PRM)

Computed

and thus the overall complexity of offline construction of
FIRM is O( cNk).

Online planning (replanning) complexity: If the system
deviates from the valid region of the plan, in direct prop-
agation methods, edge costs need to be recomputed for all
edges. So, in BRM and LQG-MP on roadmaps, the replan-
ning complexity will be of the order O( NkN ). If the cost
of each edge is defined in such a way that it only depends
on the belief at the start and end of the edge (i.e. does not
depend on the belief along the edge), BRM can reduce the
computation complexity to O( c( N/l) kN ) through covari-
ance factorization techniques, where l is assumed to be the
length (number of steps) of each edge. In FIRM, in the
case of replanning (submitting a query with new starting
point), it is only necessary to connect the deviated belief to
k neighboring FIRM nodes. Thus, we only need to compute
the cost for the k new edges. It is worth noting that if the
underlying PRM is dense enough that the valid region of
the local controllers covers the space, edge-cost computa-
tion in the replanning phase reduces to zero, because if the
system deviates out of a valid region of a local planner, it
will fall into the valid region of some other planner.

To reduce the complexity of the search algorithm in BRM
and LQG-MP on roadmaps, it is assumed that the costs
on different edges of the roadmap are independent. This
heuristic can reduce the complexity of the algorithm, but
it may still be significantly high compared to the PRM or
FIRM. Moreover, this heuristic (edge-independent assump-
tion) is not true without having belief stabilizers, and thus
search algorithms relying on such a heuristic may result in
solutions arbitrarily different from the true solution of the
search algorithm. Assuming that no such heuristic is used

in the search algorithm, Table 2 summarizes the complexity
of these algorithms.

The huge reduction in the computational complexity of
the planning algorithm (in particular, in the online phase)
opens many possibilities in utilizing POMDP solvers in
real-world applications. Moreover, due to its sampling-
based nature, it ameliorates the curse of dimensionality just
as PRM does in the deterministic case. In other words, if
the dimension of the system increases, we need a greater
number of nodes N in the underlying PRM to capture the
free space connectivity, in which case we cannot use direct
methods due to their complexity. However, FIRM can tol-
erate the increase in the dimension since its complexity is
only a constant multiplier of the PRM complexity.

9.1. Limitations of the SLQG-FIRM and future
directions

In this section, we discuss limitations of the proposed
method. It is important to distinguish which limitation is
associated with the generic FIRM framework, and which
limitation is associated with the particular presented instan-
tiation of the FIRM, that is, the SLQG-FIRM. In some
cases, we also propose ways to remedy these limitations as
future research directions.

Stabilization time: The FIRM framework introduces the
usage of belief stabilizers. However, the time needed for the
belief stabilization procedure is added to the overall execu-
tion time. If the number of time steps along the nominal
path is l, and the number of time steps needed for stabiliza-
tion is τ , the extra time τ is usually negligible compared
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Fig. 9. A result of executing the FIRM plan for an eight-arm
manipulator in a light–dark (sensing) environment. The manipu-
lator is attached to the origin ( 0, 0) and the purple region is the
goal region for the manipulator tip. To unclutter the figure, we
only show the uncertainty of the manipulator tip (end-effector).
The initial mean and covariance are shown in black, and the evo-
lution of the tip covariance during the plan execution is shown in
red. The final estimation mean and the true configuration of the
manipulator are shown in blue and green, respectively. Obstacles
are shown in brown. The manipulator follows a longer but safer
path to the goal region through the left passage, compared to the
shorter but risky (with high collision probability) path through the
right passage.

to l. However, τ can increase as the sensing uncertainty
increases. In such a situation, one can consider two cases: if
obstacles are close to the robot, it is indeed unsafe to move
with a poor estimate, and it is indeed better to lose some
time to gain more information, and then start moving. On
the other hand, if there is no obstacle close to the robot,
then one can increase the size of the corresponding FIRM
node, and thus decrease the extra stopping time. Moreover,
efficient sampling-based methods, which are aware of avail-
able information at different locations of the environment,
and thus aware of the mean stabilization time, can be used
to efficiently sample the nodes in the locations with lower
mean stabilization times. These issues open up new direc-
tions for future research. However, if an application is very
sensitive to the extra time, FIRM may not be a good choice
for it, and methods such as BRM or LQG-MP can result in
better guarantees on execution time.

Controllability and observability: As mentioned in Sec-
tion 5, SLQG-FIRM works for systems that satisfy Property
1, which basically requires the linearized system about the
PRM nodes to be controllable and observable. Although
this includes a large class of systems, it excludes some

important systems, such as non-holonomic systems that
are not linearly controllable about any point. It is worth
noting that this is not a limitation of the generic FIRM
framework, but a limitation of the SLQG-FIRM. More
recent instantiations of FIRM, such as PLQG-based FIRM
(Agha-mohammadi et al., 2012c) or DFL-based FIRM
(Agha-mohammadi et al., 2012a), aim to relax the control-
lability requirements in Property 1 and thus can include
non-holonomic systems as well. However, relaxing the
observability assumption is still an open problem.

Gaussian beliefs: The reachability argument in the
SLQG-FIRM is restricted to Gaussian beliefs. In other
words, we cannot guarantee reachability to some pre-
defined non-Gaussian beliefs with SLQG controllers. This
issue is a subject of future research.

Increasing the uncertainty: Although it may rarely hap-
pen in practice, it is possible to have a situation that leads
to an uncertainty growth during the belief-stabilization pro-
cess. However, this issue can be addressed easily. Notice
that FIRM nodes are known a priori. Thus, at the begin-
ning of each stabilization procedure, we can compare the
current belief with the stationary belief of the stabilizer. If
the current belief has more information than the stationary
belief (e.g. if all eigenvalues of the estimation covariance
are strictly less than the corresponding eigenvalues of the
stationary estimation covariance), we replan from the cur-
rent belief based on Algorithm 2. Therefore, uncertainty
will not be increased during the stabilization procedure.

Locally linearizable systems: If a linear representation of
the system of interest cannot be obtained (e.g. if the system
state lives in a discrete set of states), the class of methods
that use the linearized system as a local approximation of
the true system will not work. In this case, another class
of methods can be adopted which can handle these systems
much better, such as those in Smith and Simmons (2005),
Kurniawati et al. (2008), and Kurniawati et al. (2011). Com-
ing up with belief stabilizers that work in discrete state
space settings to design a discrete-state variant of FIRM is
also an area for future research.

Velocity reduction in dynamical systems: To apply
SLQG-FIRM to dynamical systems, the underlying PRM
samples need to be selected from the equilibrium space, in
other words, they need to have zero velocity. As a result a
reduction in the system’s velocity is expected while trying
to reach the FIRM nodes. However, in many applications,
reducing the speed at nodes to gain the robustness, reli-
ability, and scalability offered by FIRM may be a useful
trade-off. Nevertheless, this reduction in speed may not be
desirable for some applications where the system cannot (or
should not) decrease its velocity. For such systems, Agha-
mohammadi et al. (2013a) propose a FIRM variant based
on periodic controllers which does not require a reduction
in the system’s velocity. However, designing more efficient
variants of FIRM that can sample points with non-zero
velocities without introducing periodicity in the system’s
motion is an interesting future research direction.
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10. Conclusion
In this paper, we have proposed the FIRM framework for
solving the motion-planning problem under motion and
sensing uncertainties. This problem is originally a POMDP,
whose solution is computationally intractable. Exploiting
feedback controllers, we reduced it to a tractable FIRM
MDP that can be solved using standard DP techniques.
FIRM utilizes feedback controllers to create reachable node
regions in belief space. An important consequence is that
FIRM preserves the optimal substructure property on the
roadmap and thus overcomes the curse of history in the
original POMDP problem. Finally, by computing the col-
lision probabilities, obstacles are also appropriately taken
into account in planning on FIRM. We showed an instan-
tiation of the abstract FIRM framework using SLQG con-
trollers and illustrated the construction and planning results
on it. By extending the probabilistic completeness con-
cept to planners under uncertainty, we also showed that
FIRM is probabilistically complete under uncertainty. We
believe that FIRM provides an important step toward solv-
ing POMDPs and utilizing them as a practical tool for robot
motion planning under uncertainty.
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Appendices

A. Index to Multimedia Extensions
The multimedia extension page is found at
http://www.ijrr.org

Table of Multimedia Extensions

Extension Type Description

1 Video Executing the FIRM plan in the environment
shown in Figure 7

2 Video Real-time replanning with FIRM, which shows
the robustness of the method to large
disturbances

B. Time-varying LQG controller
The time-varying LQG controller is often used to track a
pre-planned trajectory (also called a nominal, desired, or
open-loop trajectory) in the presence of process and obser-
vation noise. In principal it is designed (and optimal) for
linear systems with Gaussian noise, but it can also be uti-
lized for stabilizing nonlinear systems locally around the
planned trajectory. An LQG controller is composed of a KF
as an estimator and an LQR as a controller. At every time
step k, the KF provides the a posteriori distribution (belief)
bk over the system state, and the LQR generates control uk

based on bk .
In this appendix, we first discuss the system lineariza-

tion and planned nominal trajectory, and then discuss the
KF, LQR, and LQG corresponding to this nominal trajec-
tory. Consider the nonlinear partially observable state-space
equations of the system as follows:

xk+1 = f ( xk , uk , wk) , wk ∼ N ( 0, Qk) (66a)

zk = h( xk , vk) , vk ∼ N ( 0, Rk) (66b)

A planned nominal trajectory for this system is a
sequence of planned states ( xp

k)k≥0 and planned controls
( up

k)k≥0 such that it is consistent with the noiseless dynam-
ics model; in other words, we have

xp
k+1 = f ( xp

k , up
k , 0) (67)

The planned trajectory can be a finite sequence of some
length N . The role of a closed-loop stochastic controller,
during the trajectory tracking, is to compensate for the
robot’s deviations from the planned trajectory and to keep
the robot close to the planned trajectory in the sense of
minimizing the following quadratic cost:

J =

E
[
∑

k≥0

( xk − xp
k)T Wx( xk − xp

k) +( uk − up
k)T Wu( uk − up

k)

]

(68)

where Wx and Wu are positive-definite weight matrices for
the state and control costs, respectively.

Since the state space is not fully observable and is only
partially observable, we do not have access to the perfect
value of the state xk , and thus, we provide the estimate x+

k
of the state xk based on the available observations z0:k from
the beginning up to the current time step. Then, based on the
separation principle (Kumar and Varaiya, 1986; Bertsekas,
2007), it can be shown that in a linear system with Gaus-
sian noise, the above minimization in terms of the error
xk − xp

k is equivalent to performing two separate minimiza-
tions based on the estimation error xk−x̂+

k and the controller
error x̂+

k − xp
k , whose summation is the same as the orig-

inal main error xk − xp
k = ( xk − x̂+

k ) +( x̂+
k − xp

k), where
x̂+

k = E[x+
k ] = E[xk|z0:k]. As a major consequence, the

design of the stochastic controller with a partially observ-
able state space (LQG) reduces to designing a controller
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with a fully observable state (LQR) and designing an esti-
mator (KF), separately. In the following, we first discuss the
linearization of a nonlinear model. Then we discuss how a
KF and an LQR can be designed for this linearized system.
Finally, we combine them to construct a time-varying LQG
controller.

Model linearization: Given a nominal trajectory
( xp

k , up
k)k≥0, we linearize the dynamics and observation

model in Equation (66) as follows:

xk+1 = f ( xp
k , up

k , 0) +Ak( xk − xp
k) +Bk( uk − up

k)

+ Gkwk , wk ∼ N ( 0, Qk) (69a)

zk = h( xp
k , 0) +Hk( xk − xp

k) +Mkvk , vk ∼ N ( 0, Rk)
(69b)

where

Ak = ∂f
∂x

( xp
k , up

k , 0) , Bk = ∂f
∂u

( xp
k , up

k , 0) ,

Gk = ∂f
∂w

( xp
k , up

k , 0) , Hk = ∂h
∂x

( xp
k , 0) ,

Mk = ∂h
∂v

( xp
k , 0) (70)

Now, let us define the following errors:

• LQG error (main error): ek = xk − xp
k

• KF error (estimation error): ẽk = xk − x̂+
k

• LQR error (estimation of LQG error): ê+
k = x̂+

k − xp
k

Note that these errors are linearly dependent: ek = ê+
k +

ẽk . Also, defining δuk = uk − up
k and δzk = zk − zp

k :=
zk − h( xp

k , 0), we can rewrite the above linearized models as
follows:

ek+1 = Akek + Bkδuk + Gkwk (71a)

δzk = Hkek + Mkvk (71b)

KF: In Kalman filtering, we aim to provide an estimate of
the system’s state based on the available partial information
we have obtained up to time k, that is, z0:k . The state esti-
mate is a random vector denoted by x+

k , whose distribution
is the conditional distribution of the state on the obtained
observations so far, which is called belief and is denoted
by bk :

bk = p( x+
k ) = p( xk |z0:k) (72)

x̂+
k = E[xk|z0:k] (73)

Pk = C[xk|z0:k] (74)

where E[·|·] and C[·|·] are the conditional expectation and
conditional covariance operators, respectively. In the Gaus-
sian case, we have bk = N ( x̂+

k , Pk); in other words, the
belief can be characterized only by its mean and covariance,
that is, bk ≡ ( x̂+

k , Pk).
Kalman filtering consists of two steps at every time stage:

a prediction step and an update step. In the prediction step,
the mean and covariance of prior x−k are computed. For the
system in Equation (71), the prediction step is

ê−k+1 = Ak̂e+
k + Bkδuk (75)

P−k+1 = AkP+
k AT

k + GkQkGT
k (76)

In the update step, the mean and covariance of posterior x+
k

are computed. For the system in Equation (71), the update
step is

Kk = P−k HT
k ( HkP

−
k HT

k + MkRkMT
k )−1 (77)

ê+
k+1 = ê−k+1 + Kk+1( δzk+1 − Hk+1̂e−k+1) (78)

P+
k+1 = ( I − Kk+1Hk+1) P−k+1 (79)

Note that

x̂+
k = E[xk|z0:k] = xp

k + ê+
k = xp

k + E[ek|z0:k] (80)

Pk = C[xk|z0:k] = P+
k = C[ek|z0:k] (81)

LQR controller: Once we obtain the belief from the filter,
a controller can generate an optimal control signal accord-
ingly. In other words, we have a time-varying mapping µk

from the belief space into the control space that generates
an optimal control based on the given belief uk = µk( bk) at
every time step k. The LQR controller is of this kind and it
is optimal in the sense of minimizing the following cost:

JLQR =

E
[
∑

k≥0

( x̂+
k − xp

k)T Wx( x̂+
k − xp

k) +( uk − up
k)T Wu( uk − up

k)

]

= E
[
∑

k≥0

( ê+
k )T Wx( ê+

k ) + ( δuk)T Wu( δuk)

]

(82)

The linear control law that minimizes this cost function for
a linear system is of the form

δuk = −Lk̂e+
k (83)

where the time-varying feedback gains Lk can be computed
recursively as follows:

Lk = ( BT
k Sk+1Bk + Wu)−1 BT

k Sk+1Ak (84)

Sk = Wx + AT
k Sk+1Ak − AT

k Sk+1BkLk (85)

If the nominal path is of length N , then SN = Wx

is the initial condition of the above recursion, which is
solved backwards in time. Note that the full control is
uk = up

k + δuk .
LQG controller: Plugging the obtained LQR control law

into the Kalman filtering equations, we obtain the following
error dynamics for the defined errors:
(

ek+1

ẽk+1

)
=

(
Ak − BkLk BkLk

0 Ak − Kk+1Hk+1Ak

)(
ek

ẽk

)

+
(

Gk 0
Gk − Kk+1Hk+1Gk −Kk+1Mk+1

) (
wk

vk+1

)

(86)

or equivalently,
(

ek+1
ê+
k+1

)
=

(
Ak −BkLk

Kk+1Hk+1Ak Ak − BkLk − Kk+1Hk+1Ak

) (
ek
ê+
k

)

+
(

Gk 0
Kk+1Hk+1Gk Kk+1Mk+1

)(
wk

vk+1

)
(87)
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Defining ζk := ( ek , ê+
k )T and qk := ( wk , vk+1)T, we can

rewrite Equation (87) in a more compact form as

ζk+1 = Fkζk + Gkqk , qk ∼ N ( 0, Qk) ,

Qk =
(

Qk 0
0 Rk+1

)
(88)

with appropriate definitions for Fk and Gk .
The above equation, along with the equation on estima-

tion covariance propagation,

Pk+1 = ( I − Kk+1Hk+1) ( AkPkAT
k + GkQkGT

k ) (89)

characterize the evolution of state xk and belief bk ≡
( x̂+

k , Pk) under the time-varying LQG controller.

C. SLQG controller
The SLQG controller is often used to regulate (or stabilize)
the system state to a pre-planned point (also called the set-
point, nominal, or desired point) in the presence of process
and observation noise. In principal it is designed (and opti-
mal) for linear systems with Gaussian noise, but it can also
be utilized for stabilizing nonlinear systems locally around
the planned point. The SLQG controller is composed of a
stationary Kalman filter (SKF) as an estimator and a sta-
tionary linear quadratic regulator (SLQR) as a controller.
At every time step k, the SKF provides the a posteriori dis-
tribution (belief) bk over the system state, and the SLQR
generates control uk based on bk .

In this appendix, we first discuss the system linearization
around the planned point, and then discuss the SKF, SLQR,
and SLQG corresponding to this nominal point. Consider
the nonlinear partially observable state-space equations of
the system as follows:

xk+1 = f ( xk , uk , wk) , wk ∼ N ( 0, Qk) (90a)

zk = h( xk , vk) , vk ∼ N ( 0, Rk) (90b)

and consider a planned state point xp, to whose vicinity
the controller has to drive the system. If the system state
reaches the point xp, it is assumed that the system remains
there with zero control, up = 0, in other words,

xp = f ( xp, 0, 0) (91)

The role of a closed-loop stochastic controller during the
state regulation is to compensate for robot deviations from
the desired point due to noise effects, and to drive the robot
close to the desired point in the sense of minimizing the
following quadratic cost:

J = E
[
∑

k≥0

( xk − xp)T Wx( xk − xp) +( uk)T Wu( uk)

]

(92)

where Wx and Wu are positive-definite weight matrices for
the state and control costs, respectively.

Again, similar to the time-varying case, since we only
have imperfect information about the state xk , we have to
make the estimate x+

k about the state based on the avail-
able observations z0:k . Accordingly, the controller gener-
ates the control signal based on the estimated value of the
state; i.e., belief. Based on the separation principle (Bert-
sekas, 2007), in a linear system with Gaussian noise, min-
imization of the cost in Equation (92) is equivalent to per-
forming two separate minimizations that lead to the sep-
arate design of the SKF and SLQR. In the following, we
first discuss the linearization of a nonlinear model, and then
we discuss how the SKF and the SLQR can be designed
for this linearized system, and finally, we combine them to
construct an SLQG controller.

Model linearization: Given a desired point xp, we lin-
earize the dynamics and observation model in Equation (90)
as follows:

xk+1 = f ( xp, 0, 0) +As( xk − xp) +Bs( uk − 0)

+Gswk , wk ∼ N ( 0, Qs) (93a)

zk = h( xp, 0) +Hs( xk − xp) +Msvk , vk ∼ N ( 0, Rs)

(93b)

where

As = ∂f
∂x

( xp, 0, 0) , Bs = ∂f
∂u

( xp, 0, 0) , Gs = ∂f
∂w

( xp, 0, 0)

Hs = ∂h
∂x

( xp, 0) , Ms = ∂h
∂v

( xp, 0) (94)

Now, let us define the following errors:

• SLQG error (main error): ek = xk − xp

• SKF error (estimation error): ẽk = xk− x̂+
k , where x̂+

k =
E[x+

k ] = E[xk|z0:k]
• SLQR error (estimation of SLQG error): ê+

k = x̂+
k − xp

Note that these errors are linearly dependent: ek = ê+
k + ẽk .

Defining δuk := uk and δzk := zk − zp = zk − h( xp, 0), we
can rewrite the above linearized models as follows:

ek+1 = Asek + Bsδuk + Gswk (95a)

δzk = Hsek + Msvk (95b)

SKF: In SKF, we aim to provide an estimate of the sys-
tem’s state based on the available partial information we
have obtained up to time k, that is, z0:k . The state esti-
mate is a random vector denoted by x+

k , whose distribution
is the conditional distribution of the state on the obtained
observations so far, which is called belief and is denoted by
bk = p( x+

k ) = p( xk|z0:k). In the Gaussian case, the belief
can only be characterized by its mean and covariance, that
is, bk ≡ ( x̂+

k , Pk). Thus, in the Gaussian case, we can write

bk = p( x+
k ) = p( xk |z0:k) = N ( x̂+

k , Pk)⇔ bk ≡ ( x̂+
k , Pk)

(96)

x̂+
k = E[xk|z0:k], Pk = C[xk|z0:k] (97)
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where E[·|·] and C[·|·] are the conditional expectation and
conditional covariance operators, respectively.

SKF consists of two steps at every time stage: a predic-
tion step and an update step. In the prediction step, the mean
and covariance of prior x−k are computed. For the system in
Equation (95) the prediction step is

ê−k+1 = Aŝe
+
k + Bsδuk (98)

P−k+1 = AsP
+
k AT

s + GsQsGT
s (99)

In the update step, the mean and covariance of posterior x+
k

are computed. For the error system in Equation (95), the
update step is

Kk = P−k HT
s ( HsP

−
k HT

s + MsRsMT
s )−1 (100)

ê+
k+1 = ê−k+1 + Kk+1( δzk+1 − Hŝe

−
k+1) (101)

P+
k+1 =( I − Kk+1Hs) P−k+1 (102)

Note that

x̂+
k = xp + ê+

k , Pk = P+
k (103)

In SKF, if ( As, Hs) is an observable pair and ( As, Q̌s) is a
controllable pair, where GsQsGT

s = Q̌sQ̌T
s , then the prior

and posterior covariances P−k and Pk and the filter gain Kk

all converge to their stationary values, denoted by P−s , Ps,
and Ks, respectively (Bertsekas, 2007). P−s can be computed
by solving the following DARE in Equation (104). Having
P−s , the stationary gain Ks and estimation covariance Ps are
computed as follows:

P−s = GsQsGT
s

+ As( P−s − P−s HT
s ( HsP−s HT

s + MsRsMT
s )−1 HsP−s ) AT

s
(104)

Ks = P−s HT
s ( HsP−s HT

s + MsRsMT
s )−1 (105)

Ps = ( I − KsHs) P−s (106)

SLQR controller: In the SLQR we have a stationary map-
ping µs from the belief space to the control space that
generates an optimal control based on the given belief uk =
µs( bk) at every time step k. The SLQR controller is optimal
in the sense of minimizing the following cost:

JSLQR = E
[
∑

k≥0

( x̂+
k − xp)T Wx( x̂+

k − xp) +( uk)T Wu( uk)

]

= E
[
∑

k≥0

( ê+
k )T Wx( ê+

k ) +( δuk)T Wu( δuk)

]

(107)

If ( As, Bs) is a controllable pair and ( As, W̌x) is an observ-

able pair, where W̌x
T
W̌x = Wx, then the stationary linear

control law that minimizes the cost function JSLQR for a
linear system is of the form

δuk = −Lŝe
+
k (108)

where the stationary feedback gain Ls can be computed as
follows:

Ls = ( BT
s SsBs + Wu)−1 BT

s SsAs (109)

Ss = Wx + AT
s SsAs − AT

s SsBsLs (110)

where the second equation is indeed a DARE that can be
efficiently solved for Ss. Plugging Ss into Equation (109),
we get the feedback gain Ls.

SLQG controller: Plugging the obtained control law of
SLQR into the SKF equations, we can get the following
stationary dynamics for the defined errors:

(
ek+1

ẽk+1

)
=

(
As − BsLs BsLs

0 As − KsHsAs

) (
ek

ẽk

)

+
(

Gs 0
Gs − KsHsGs −KsMs

)(
wk

vk+1

)
(111)

or equivalently,
(

ek+1

ê+
k+1

)
=

(
As −BsLs

KsHsAs As − BsLs − KsHsAs

) (
ek

ê+
k

)

+
(

Gs 0
KsHsGs KsMs

) (
wk

vk+1

)
(112)

Defining ζk := ( ek , ê+
k )T and qk := ( wk , vk+1)T, we can

rewrite Equation (112) in a more compact form as

ζk+1 = Fsζk + Gsqk , qk ∼ N ( 0, Qs) , Qs =
(

Qs 0
0 Rs

)

(113)

with appropriate definitions for Fs and Gs.
It can be shown that if Fs is a stable matrix (i.e.

limκ→∞( Fs)κ = 0), ζk converges i.d. to ζs ∼ N ( 0,Ps).
Stationary covariance Ps is the solution of the following
Lyapunov equation:

Ps = FsPsF
T
s + GsQsG

T
s (114)

Note that Ps can be decomposed into four blocks,

Ps =
(
Ps,11 Ps,12

Ps,21 Ps,22

)
(115)

such that Ps,11 = limk→∞C[ek] and Ps,22 =
limk→∞C[̂e+

k ]. Therefore, since x̂+
k = xp + ê+

k , the estima-
tion mean also converges to a stationary random variable,
denoted by x̂+

s :

x̂+
s := lim

k→∞
x̂+

k ∼ N ( xp,Ps,22) (116)

Due to the linear relation ek = ê+
k + ẽk , we can also

conclude limk→∞ C[̃ek] = Ps,11 + Ps,22 − 2Ps,12. It can be
proven that in SLQG, the stability of matrix Fs is a direct
consequence of the controllability of pair ( As, Bs) and the
observability of pair ( As, Hs) (Bertsekas, 1976, 2007).
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Thus, collecting all the conditions, if ( As, Bs) and
( As, Q̌s) are controllable pairs, where GsQsGT

s = Q̌sQ̌T
s ,

and if ( As, Hs) and ( As, W̌x) are observable pairs, where
Wx = W̌T

x W̌x, then the belief bk converges in distribution
to a stationary belief under the SLQG:

bs := lim
k→∞

bk = N ( x̂+
s , P+

s ) (117)

where P+
s is a deterministic quantity and we can character-

ize the distribution over the stationary belief as

bs ≡ ( x̂+
s , P+

s )∼ N
((

xp

P+
s

)
,
(

Ps,22 0
0 0

))
(118)

D. Proof of Lemma 3
Proof. Let us consider the state-space model of the linear
system of interest as follows:

xk+1= Axk + Buk + Gwk , wk ∼ N ( 0, Q) (119a)

zk= Hxk + vk , vk ∼ N ( 0, R) (119b)

Based on Lemma 1, if ( A, B) and ( A, Q̌) are controllable
pairs, where GQGT = Q̌Q̌T, and if ( A, H) and ( A, W̌x) are
observable pairs, where Wx = W̌T

x W̌x, then the estimation
covariance deterministically tends to a stationary covari-
ance Ps. Therefore, for any ε > 0, after a deterministic
finite time, Pk enters the ε-neighborhood of the stationary
covariance, denoted by Ps.

The estimation mean dynamics, however, are stochastic
and are as follows for the system in Equation (119):

x̂+
k+1 = v+( A− BL−Kk+1HA) ( x̂+

k − v)

+ Kk+1HA( xk − v) +Kk+1HGwk + Kk+1vk+1

= v−( A− BL) v+( A− BL−Kk+1HA) x̂+
k

+ Kk+1HAxk + Kk+1HGwk + Kk+1vk+1 (120)

where the Kalman gain Kk is

Kk = P−k HT ( HP−k HT + R)−1 (121)

Since K is full rank (due to the condition on the rank of H),
and since v and w represent Gaussian noise, Equation (120)
induces an irreducible Markov process over the state space
(Meyn and Tweedie, 2009). Thus, if we have a stopping
region for the estimation mean with size ε > 0, the esti-
mation mean process will hit this stopping region in finite
time (Meyn and Tweedie, 2009), with probability one.

Based on the estimation mean dynamics in Equation
(120) and the state dynamics in Appendix C, in the absence
of a stopping region, if the estimation mean process and
state process start from x̂+

0 and x0 respectively, such that
E[̂x+

0 ] = v and E[x0] = v (which indeed is the case in
FIRM due to the usage of edge controllers), ‘the mean of
estimation mean’ remains on v. That is, E[̂x+

k ] = v, for
all k. As a result, if we center the stopping region for the

estimation mean at v, the probability of hitting the stopping
region is maximized and the stopping time is minimized.

Combining the results for estimation covariance and esti-
mation mean, if we define the region B as a set in the
Gaussian belief space with a non-empty interior centered
at ( v, Ps), the belief bk ≡ ( x̂+

k , Pk) enters region B in finite
time with probability one. Thus, the pair ( B, µ) is a proper
pair over GB; in other words, B is reachable under µ starting
from any Gaussian distribution.

E. Proof of Lemma 4
Before proving Lemma 4, we state and prove the following
lemma.

Lemma 5. Consider the bounded function 0 ≤ f (X )≤ 1,
and kernel k(X ′,X )≥ 0. Then, for any set A, we have

‖
∫

A

k(X ′,X ) f (X ′) dX ′‖ ≤ ‖
∫

A

k(X ′,X ) dX ′‖ (122)

Proof. Given the properties of f (·) and k( ·, ·), we have
k(X ′,X ) f (X ′)≤ k(X ′,X ), for all X and X ′. Taking
the integral from both sides with respect to X ′ and then
taking the supremum norm with respect to X , the result
follows.

Now we prove Lemma 4.

Proof. If we denote the domain of operator TS by D, we
know that for all f ∈ D we have 0 ≤ f (X )≤ 1, because
f (X ) is the probability of reaching given set S under some
given controller invoked at point X . Thus, it cannot be
negative or greater than one, and based on Lemma 5, we
have

TS [f ] =
∫

S

pµ(X ′|X ) f (X ′) dX ′

≤
∫

S

pµ(X ′|X ) dX ′ = P1(S|X , µ)≤ 1

(123)

Therefore, based on the definition of operator norm, we
have

‖TS‖op = sup
f (·)

{‖TS [f ]‖ : ∀f ∈ D, ‖f ‖ ≤ 1} ≤ 1 (124)

According to Assumption 1, there exists a finite number N
such that

inf
X

Pn(S|X , µ) = β > 0 ∀n > N (125)

where ‘inf’ and ‘sup’ denote the infimum and supremum,
respectively. Thus, we have

‖Pn(S|X , µ) ‖ = sup
X

( 1− Pn(S|X , µ))

= 1− inf
X

Pn(S|X , µ)

= 1− β < 1 ∀n > N (126)
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Let us denote the nth iterated kernel of TS as
pn(X ′|X , µ). Since this iterated kernel is a pdf, we have
pn(X ′|X , µ)≥ 0, ∀X ,∀X ′,∀n. We can write

‖TN
S [f ] ‖ = ‖

∫

S

pN (X ′|X , µ) f (X ′) dX ′‖

≤ ‖
∫

S

pN (X ′|X , µ) dX ′‖ = ‖PN (S|X , µ) ‖ ≤ α < 1

(127)

where α = 1 − β, and similar to Equation (124), we get
‖TN

S‖op ≤ α < 1. From the operator norm properties, we
have

‖TN+1
S ‖op ≤ ‖TN

S‖op‖TS‖op ≤ α < 1

and similarly for all n ≥ N , we have

‖Tn
S‖op ≤ α < 1 ∀n ≥ N

Now, consider the series:
∑∞

i=1 ‖Tn
S‖op. We can split the

sum into smaller pieces as follows:

∞∑

n=1

‖Tn
S‖op =

N∑

n=1

‖Tn
S‖op +

∞∑

i=1

(i+1)N∑

n=iN+1

‖Tn
S‖op

But because ‖Tn+1
S ‖op ≤ ‖Tn

S‖op for all n ≥ N , we have

(i+1)N∑

n=iN+1

‖Tn
S‖op ≤ N‖TiN

S ‖op

Also, we know

‖TiN
S ‖op ≤ ‖TN

S‖iop ≤ αi

and thus, we have

∞∑

n=1

‖Tn
S‖op =

N∑

n=1

‖Tn
S‖op

︸ ︷︷ ︸
≤N

+
∞∑

i=1

(i+1)N∑

n=iN+1

‖Tn
S‖op

≤ N +
∞∑

i=1

Nαi = N + N
1− α

= c <∞

F. Proof of Corollary 1
Proof. We know ‖R‖ ≤ 1, and thus we can write

‖
∞∑

n=0

Tn
S [R]‖ ≤

∞∑

n=0

‖Tn
S‖op‖R‖ ≤

∞∑

n=0

‖Tn
S‖op ≤ c <∞

Thus, series
∑∞

n=0 Tn
S [R] is a convergent series and we can

define the operator ( I−TS )−1 [R] =
∑∞

n=0 Tn
S [R]. We have

‖( I − TS )−1 ‖op = ‖
∞∑

n=0

Tn
S‖op ≤ c <∞ (128)

G. Proof of Proposition 1
We first state and prove the following lemma on the con-
tinuity of the transition probability in the local controller’s
parameter.

Lemma 6. Given Assumption 2, there exists a c2 <∞ such
that

‖p(X ′|X , µ( b; v) )− p(X ′|X , µ̌( b; v̌) ) ‖ ≤ c2‖v− v̌‖
(129)

Proof. The result directly follows by combining the two
parts of Assumption 2.

Now we are ready to prove Proposition 1.

Proof. To show P(B|X , µ) is continuous in v, we perturb
v to some v̌, such that ‖v − v̌‖ < r. The local controller
associated with node v̌ is referred to as µ̌, whose success-
ful absorption region is denoted by B̌ and whose stopping
region is Š. Similarly, the corresponding transient operator
and recurrent function are referred to as ŤŠ and Ř respec-
tively. Finally, the success probability associated with the
perturbed node v̌ is P( B̌|X , µ̌). To shorten the statements,
we refer to P(B|X , µ) and P( B̌|X , µ̌) respectively as P(X )
and P̌(X ). As a result of node perturbation, the success
probability is perturbed as

P(B|X , µ)−P( B̌|X , µ̌):=P−P̌= R+TS [P]−Ř−ŤŠ [P̌]

= R−Ř+TS [P]−TS [P̌]+TS [P̌]−TŠ [P̌]+TŠ [P̌]−ŤŠ [P̌]

= ( R−Ř) +TS [P − P̌]+( TS−TŠ ) [P̌]+( TŠ−ŤŠ ) [P̌]

where

TŠ [f (·) ] (X ) :=
∫

Š

pµ(X ′|X ) f (X ′) dX ′ (130)

Let us define the operators T.S := ( TS−TŠ ) and .TŠ :=
( TŠ − ŤŠ ). Now, based on Corollary 1, we can write

P− P̌ = ( I − TS )−1
[
R− Ř + T.S [P̌] + .TŠ [P̌]

]

(131)

and thus the following inequality holds on the supremum
norm of the perturbation of the absorption probability:

‖P− P̌‖

≤ ‖( I−TS )−1 ‖op

(
‖R− Ř‖+‖T.S [P̌]‖+‖.TŠ [P̌]‖

)

≤ c
(
‖R− Ř‖+ ‖T.S [P̌]‖+ ‖.TŠ [P̌]‖

)

= c (‖K1(X ) ‖+ ‖K2(X ) ‖+ ‖K3(X ) ‖) (132)

where K1(X ) := R(X )−Ř(X ), K2(X ) := T.S [P̌(·) ](X ),
and K3(X ) := .TŠ [P̌(·) ](X ). In the following we bound
K1, K2, and K3, and thus bound ‖P− P̌‖, accordingly.
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G.1. Bound for K1(X )

The supremum norm of K1(X ) is

‖K1(X ) ‖ = ‖R(X )− Ř(X ) ‖

= ‖
∫

B

pµ(X ′|X ) dX ′ −
∫

B̌

pµ̌(X ′|X ) dX ′‖

= ‖
∫

B∩B̌

[pµ(X ′|X )−pµ̌(X ′|X ) ] dX ′

+
∫

B−B̌

pµ(X ′|X ) dX ′ −
∫

B̌−B

pµ̌(X ′|X ) dX ′‖

≤
∫

B∩B̌

‖pµ(X ′|X )−pµ̌(X ′|X ) ‖ dX ′

+ ‖
∫

B−B̌

pµ(X ′|X ) dX ′ +
∫

B̌−B

pµ̌(X ′|X ) dX ′‖

from (129)
≤

∫

B∩B̌

c2‖v− v̌‖dX ′ + ‖P1(B 3 B̌|X , µ) ‖

+ ‖P1( B̌ 3 B|X , µ̌) ‖
from (50)
≤ c′2‖v− v̌‖+ 2c′‖v− v̌‖ = γ1‖v− v̌‖ (133)

where c′2 < ∞ and γ1 = c′2 + 2c′ < ∞. In the penulti-
mate inequality, we also used the fact that P1( B̌−B|X , µ̌)≤
P1( B̌ 3 B|X , µ̌) and P1(B − B̌|X , µ)≤ P1(B 3 B̌|X , µ)
because B̌ − B ⊆ B̌ 3 B and B − B̌ ⊆ B 3 B̌.

G.2. Bound for K2(X )
We have

‖K2(X ) ‖ = ‖T.S [P̌]‖ = ‖TS [P̌]− TŠ [P̌]‖

= ‖
∫

S

pµ(X ′|X ) P̌(X ′) dX ′ −
∫

Š

pµ(X ′|X ) P̌(X ′) dX ′‖

=‖
∫

S−Š

pµ(X ′|X ) P̌(X ′) dX ′ −
∫

Š−S

pµ(X ′|X ) P̌(X ′) dX ′‖

≤‖
∫

S−Š

pµ(X ′|X ) P̌(X ′) dX ′ +
∫

Š−S

pµ(X ′|X ) P̌(X ′) dX ′‖

=‖
∫

S3Š

pµ(X ′|X ) P̌(X ′) dX ′‖
from (122)
≤ ‖

∫

S3Š

pµ(X ′|X ) dX ′‖

= ‖P1(S 3 Š|X , µ) ‖ ≤ ‖P1(B 3 B̌|X , µ) ‖

= ‖P1(B 3 B̌|X , µ) ‖
from (50)
≤ γ2‖v− v̌‖ (134)

where γ2 = c′ < ∞. The penultimate inequality and
equality follow from the relations S 3 S ′ ⊆ B 3 B′ and
B 3 B′ = B 3 B′, respectively.

G.3. Bound for K3(X )

We have

‖K3(X ) ‖ = ‖.TŠ [P̌]‖ = ‖TŠ [P̌]− ŤŠ [P̌]‖

= ‖
∫

Š

pµ(X ′|X ) P̌(X ′) dX ′ −
∫

Š

pµ̌(X ′|X ) P̌(X ′) dX ′‖

= ‖
∫

Š

(
pµ(X ′|X )−pµ̌(X ′|X )

)
P̌(X ′) dX ′‖

≤
∫

Š

‖pµ(X ′|X )−pµ̌(X ′|X ) ‖‖P̌(X ′) ‖ dX ′

from (129)
≤

∫

Š

c2‖v− v̌‖ dX ′ = γ3‖v− v̌‖ (135)

where γ3 <∞.
Therefore, based on Equations (132)–(135), we can con-

clude that

‖P(B|X , µ)−P( B̌|X , µ̌) ‖ ≤ γ ‖v− v̌‖ (136)

where γ = c( γ1 + γ2 + γ3) < ∞, which completes the
proof that the absorption probability under the controller µ

is continuous in the PRM node v.

H. Proof of Theorem 1
Before starting the proof of Theorem 1, we state the follow-
ing proposition that concludes the continuity of the success
probability of π (overall planner) given the continuity of the
success probability of µij (the individual local planners).

Proposition 2. (Continuity of success probability of π ) The
success probability P( success|b0, π ) is continuous in V if
the absorption probabilities P( Bj|b, µij) are continuous in
vj for all i, j, and b.

Proof. Given that P( Bj|b, µij) is continuous in vj, for all
i, j, we want to show that P( success|π , b0) is continuous
in all vj. First, let us look at the structure of the success
probability:

P( success|b0, π ) = P(B( µ0) |b0, µ0) P( success|B( µ0) , πg)
(137)

where µ0 is computed using Equation (34). The term
P( B( µ0) |b0, µ0) on the right-hand side of Equation (137)
is continuous because the continuity of P( Bj|b, µij) for all
i, j is assumed in this proposition. Thus, we only need to
show the continuity of the second term in Equation (137).
Without loss of generality we can consider Bi = B( µ0).
Then, we need to show that P( success|Bi, πg) is continuous
in vi for all i.

As we saw in Section 6.7, the probability of success from
the ith FIRM node is as follows:

P( success|Bi, πg) = /T
i ( I −Q)−1 Rg (138)
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Moreover, we can consider Bgoal = BN without loss of gen-
erality; then, the ( i, j)th element of matrix Q is Q[i, j] =
P( Bi|Bj, πg( Bj) ), and the jth element of vector Rg is
Rg[j] = P( BN |Bj, πg( Bj) ).

Since we considered Bj as the stopping region of the local
controller µij, we have

P( Bj|Bi, µil) = 0, if l /= j (139)

Therefore, all non-zero elements in the matrices Rg and
Q are of the form P( Bj|Bi, µij). Thus, given the continu-
ity of P( Bj|b, µij), the transition probability P( Bj|Bi, µij)
is continuous and the matrices Rg and Q are continuous.
Therefore, P( success|Bi, πg) and thus P( success|b0, π ) are
continuous in underlying PRM nodes.

Now we are ready to prove Theorem 1.

Proof. Based on the definition of probabilistic complete-
ness under uncertainty, if there exists a successful policy
π̌ , FIRM has to find a successful policy π as the num-
ber of FIRM nodes increases unboundedly. Thus, we start
by assuming that there exists a successful policy π̌ ∈ (

for a given initial belief b0. Since each policy in ( is
parametrized by a PRM graph, there exists a PRM with
nodes V̌ = {v̌i}N

i=1 that parametrizes the policy π̌ . Since
π̌ is a successful policy, we know P( success|b0, π̌ ) > pmin.
Thus, we can define ε∗ = P( success|b0, π̌ )−pmin > 0.

Given Assumptions 1, 2, and 3, and based on
Propositions 1 and 2, we know that P( success|b0, π )
is continuous with respect to the parameters of the
local planners. In other words, for any ε > 0, there
exists a δ > 0 such that if ‖V − V̌‖ < δ, then
|P( success|b0, π ( ·;V))−P( success|b0, π̌ ( ·; V̌)) | < ε. The
notation ‖V − V̌‖ < δ means that ‖vi− v̌i‖ < δ, for all i, or
equivalently, vi ∈ 0̌i, for all i, where 0̌i is a ball with radius
δ, centred at v̌i.

Therefore, for the introduced ε∗, there exists a δ∗ and
corresponding regions {0̌i}N

i=1 such that if we have a PRM
whose nodes (or a subset of whose nodes: a subset of
nodes is sufficient, because the success probability is a non-
decreasing function in terms of the number of nodes) satisfy
the condition v∗i ∈ 0̌i for all i = 1, . . . , N , then the plan-
ner π parametrized by this PRM has a success probability
greater than pmin, that is, P( success|b0, π ( ·;V)) > pmin, and
hence π is successful.

Since δ > 0, the regions 0̌i have non-empty interiors.
Consider a PRM with a sampling algorithm under which
there is a non-zero probability of sampling in 0̌i, such
as uniform sampling. Then, starting with any PRM, if we
increase the number of nodes, a PRM node will eventually
be chosen at every 0̌i with probability one. Therefore the
policy constructed based on these nodes will have a success
probability greater than pmin; in other words, we eventu-
ally get a successful policy if one exists. Thus, FIRM is
probabilistically complete under uncertainty.
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Periodic-node Graph-based Framework for
Stochastic Control of Small Aerial Vehicles

Ali-akbar Agha-mohammadi, Saurav Agarwal, and Suman Chakravorty

Abstract

This paper presents a strategy for stochastic control of small aerial vehicles under uncertainty using graph-based methods.
In planning with graph-based methods, such as the Probabilistic Roadmap Method (PRM) in state space or the Information
RoadMaps (IRM) in information-state (belief) space, the local planners (along the edges) are responsible to drive the state/belief
to the final node of the edge. However, for aerial vehicles with minimum velocity constraints, driving the system belief to a
sampled belief is a challenge. In this paper, we propose a novel method based on periodic controllers, in which instead of
stabilizing the belief to a predefined probability distribution, the belief is stabilized to an orbit (periodic path) of probability
distributions. Choosing nodes along these orbits, the node reachability in belief space is achieved and we can form a graph in
belief space that can handle higher-order-dynamics or non-stoppable systems (whose velocity cannot be zero), such as fixed-
wing aircraft. The proposed method takes obstacles into account and provides a query-independent graph, since its edge costs
are independent of each other. Thus, it satisfies the principle of optimality. Therefore, dynamic programming can be utilized
to compute the best feedback on the graph. We demonstrate the method’s performance on a unicycle robot and a six degrees
of freedom small aerial vehicle.

I. INTRODUCTION

This paper is concerned with the stochastic control problem for two classes of systems: (i) systems with dynamics,
i.e., systems whose state is composed of position and its higher order derivatives such as velocity and acceleration, and (ii)
systems with kinodynamical constraints, in particular, systems, whose velocity cannot fall below a certain threshold (referred
to as non-stoppable systems in this paper). For example, consider a control problem where the system state is composed of
the position and velocity (x, ẋ) of an object. Stabilizing this system to a state (x = a, ẋ = b) where b 6= 0 is not possible
since to stabilize the x part to a, the ẋ must go to zero. As an example for non-stoppable systems, consider a system whose
state only consists of position x, but it has constraints on its velocity ẋ > b > 0. All fixed-wing aircraft fall into this category
as their velocity cannot fall below some threshold to maintain the lift requirement. Thus, stabilizing such systems to a fixed
state is a challenge. This challenge gets even more difficult when this stabilization has to be achieved under uncertainty.
In this paper, we propose a framework that circumvents the need for point stabilization in graph-based (roadmap-based)
methods by means of stabilization to suitably designed periodic maneuvers.

Motion planning under uncertainty (MPUU) is an instance of the problem of sequential decision making under uncertainty.
Considering the uncertainty in an object’s motion, the problem can be framed as a stochastic control with perfect state
information. In the presence of uncertainty in sensory readings, i.e., measurement noise, the state of the system is no longer
available for decision making. In such a situation, a state estimation module can provide a probability distribution (referred
to as information-state or belief) over all possible states of the system, and therefore decision making has to be performed
in belief space. Planning in belief space in its most general form is formulated as a Partially Observable Markov Decision
Process (POMDP) problem [8], [18]. However, in general solving POMDPs in continuous state, control, and observation
spaces, where many robotic problems reside, is a formidable challenge.

Sampling-based motion planning methods have shown great success in dealing with many deterministic motion planning
problems in complex environments and are divided into two main classes: (i) roadmap-based (graph-based) methods such
as the Probabilistic Roadmap Method (PRM) and its variants [6], [19], [20] and (ii) tree-based methods such as methods in
[16], [19], [22]. In deterministic settings, tree-based methods are usually single-query, i.e., their solution is valid for a given
initial point whereas roadmap-based methods are mainly multi-query, i.e., the generated roadmap structure is independent
of the initial point. In this sense, roadmap-based methods are a suitable choice for extension to belief space because the
solution of a POMDP is feedback over the entire belief space and it does not depend on the initial belief. Accordingly,
restricting the attention to a representative graph (roadmap) in the space, the feedback can be defined as a mapping from
its nodes to its edges.

Similar to motion planning in state space, in belief space motion planning, the basic motion tasks can be defined as
point-to-point motion, which deals with driving the belief of the moving object from a given belief to another given belief,
and trajectory following, which deals with following a trajectory in belief space. Depending on the kinematics/dynamics of
the system, these tasks might be very challenging in the state space. However, they often are more challenging in belief space
even for simple kinematics/dynamics. To construct a query-independent roadmap in state/belief space, point-to-point motion
in state/belief space is required. Feedback-based Information RoadMap (FIRM) [3], [5] extends graph-based methods to

A. Agha-mohammadi is with the Laboratory for Information and Decision Systems, Massachusetts Institute of Technology, Cambridge, MA, 02139. S.
Agarwal and S. Chakravorty are with the Dept. of Aerospace Engineering, Texas A&M University, College Station, TX, 77843, USA. Email addresses:
aliagha@mit.edu, sauravag@tamu.edu, schakrav@tamu.edu.



belief space by embedding the point-to-point motion behavior in belief space using belief stabilizers (i.e. stationary feedback
controllers), which was a missing behavior in pioneering works such as [17], [24], [28].

As a result of embedding the point-to-point motion behavior in belief space, FIRM generates a graph in belief space that
is query independent and only needs to be constructed once offline. Establishing a connection between its solution and the
original POMDP [5], it is shown that FIRM is probabilistically complete [4]. In [5] first FIRM is presented as an abstract
framework for graph-based planning in belief space and then Stationary Linear Quadratic Gaussian-FIRM (SLQG-FIRM) is
presented as a concrete instantiation of the abstract FIRM framework. The performance of FIRM has been demonstrated on
physical mobile robots in changing environments [2]. However, SLQG-FIRM is limited to the systems that are stabilizable
to stationary fixed points (with zero velocity) in the state space. This excludes the class of systems we consider in this paper.

The main contributions of this paper are:
• Proposing a graph-based solution for controlling small aerial vehicles in the presence of uncertainty and constraints.

We accomplish this goal by proposing a concrete instantiation of the FIRM framework that can handle non-stoppable
systems (i.e., class of dynamical systems that are not stabilizable to a point with zero-velocity), such as fixed-wing
aircraft.

• Accordingly, transforming the intractable constrained POMDP to a tractable dynamic programming over a graph
corresponding to non-stoppable systems.

• Designing the periodic-node PRM in state space.
• Investigating the cyclostationary behavior of the belief under Periodic Linear Quadratic Gaussian (PLQG) controllers

and designing a belief stabilizer for non-stoppable systems.
This paper is organized as follows. We start by introducing the concept of periodic-node graph in state space, whose nodes
lie on periodic trajectories referred to as orbit. In Section III, we review the problem of stochastic optimal control with
imperfect observations. Section IV constructs the abstract FIRM framework based on the underlying periodic-node graph.
In this section, we show how constraints are incorporated in the construction phase of the planner. Then, in Section V we
analyze the behavior of PLQG controllers as belief stabilizers and accordingly we propose an approach to characterize and
select the reachable regions in belief space under PLQG controllers. As a result we extend the periodic-node PRM from
state space to a corresponding graph in belief space. We provide algorithms for offline construction of this graph and online
(re)planning with this graph. Finally, in Section VI, we demonstrate the performance of the proposed method on a planar
unicycle model with minimum allowable velocity and on a simplified 6DoF aerial vehicle model.

II. PERIODIC-NODE PRM
An implicit assumption in graph-based methods such as PRM [20] is that on every edge there exists a controller to drive

the robot from the start node of the edge to the end node of the edge or to an ✏-neighborhood of the end node, for a
sufficiently small ✏ > 0. For a linearly controllable robot, a linear controller can locally track a PRM edge and drive the
robot to its endpoint node. Obviously, controlling non-stoppable robots on a PRM roadmap is a challenge, since they have
constraints on their controls and cannot reduce their velocity below a specific threshold u

min

, and hence, stabilization is not
feasible for them. This task becomes more challenging if the system is also nonholonomic. In a nonholonomic robot such
as a unicycle, the linearized model at any point is not controllable, and hence, a linear controller cannot stabilize the robot
to the PRM nodes. Consider the discrete unicycle model:
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where A =

@f

@x

(v, up, 0), B =

@f

@u

(v, up, 0), G =

@f

@w

(v, up, 0). Checking the rank of the controllability matrix of the
linearized system, we get: rank([B,AB,A2B]) = 2+ I(V p > 0), where I is the indicator function, which is one if V p > 0

and is zero, otherwise. Therefore, if the nominal control is zero, i.e., up

= (V p,!p

)

T

= (0, 0)T , which is the case when we
stabilize the robot to a PRM node, the resulting linear system is not controllable, since rank([B,AB,A2B]) = 2 < 3. Thus,
a linear controller cannot stabilize the unicycle to a PRM node. Moreover, based on the necessary condition in Brockett’s
paper [12], even a smooth time-invariant nonlinear control law cannot drive the unicycle to a PRM node, and the stabilizing
controller has to be either discontinuous and/or time-varying.

On roadmaps in belief space, the situation is even more complicated, since the controller has to drive the probability
distribution over the state to the ✏-neighborhood of a belief node in belief space. Again, if the linearized system in (2)
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is controllable, using a linear stochastic controller such as the stationary LQG controller, one can drive the robot belief
to the belief node [5]. However, if the system is non-stoppable and/or its linearized model is not controllable, the belief
stabilization, if possible, is much more difficult than state stabilization.

A. Periodic-node PRM
In this paper, we circumvent the problem of stabilization to graph nodes by designing a variant of PRM, referred to as

Periodic-Node PRM (PNPRM). Although there are different ways to address this problem in state space, the critical property
of PNPRM is that it can be extended to belief space to form a graph whose nodes are beliefs that are reachable without a
point-stabilization process. Let us denote the motion model with x

k+1 = f(x
k

, u
k

, w
k

), where state, control, and process
noise at the k-th time step are denoted by x

k

, u
k

, and w
k

, respectively.
Similar to traditional PRM, PNPRM also consists of nodes and edges. However, in PNPRM, the nodes lie on small

T -periodic trajectories (trajectories with period T ) in the state space, referred to as orbits. Each orbit satisfies the control
constraints and non-holonomic constraints of the moving robot. To construct a PNPRM, we first sample a set of orbits in
the state space, and then on each orbit, a number of state nodes are selected. Let us denote the j-th orbit trajectory by
Oj

:= (xp

j

k

, up

j

k

)

k�0, where xp

j

k+1 = f(xp

j

k

, up

j

k

, 0), xp

j

k+T

= xp

j

k

, and up

j

k+T

= up

j

k

. The set of PNPRM nodes that are
chosen on Oj is denoted by V

j

= {vj

1,v
j

2, · · · ,vj

m

} where vj

↵

= xp

j

k↵
for some k

↵

2 {1, · · · , T}. Edges in PNPRM do not
connect nodes to nodes, but they connect orbits to orbits in a way that respects all the control constraints and nonholonomic
constraints. Thus, the (i, j)-th edge denoted by eij connects Oi to Oj .

As a result, a node vi

↵

is connected to the node vj

�

through concatenation of three path segments: i) the first segment is
a part of Oi that connects vi

↵

to the starting point of eij . This part is called pre-edge and is denoted by ei↵j , ii) the second
segment is the edge eij itself that connects Oi to Oj , and iii) the third segment is a part of Oj that connects the ending
point of eij to vj

�

. This part is called post-edge and is denoted by eij� .
One form of constructing orbits is based on circular periodic trajectories, where the edges are the lines that are tangent

to the orbits. Figure 1 shows a simple PNPRM with three orbits Oi, Or, and Oj . On each orbit four nodes are selected
which are drawn (dots) with different colors. Edges eij and erj connect the corresponding orbits.

ije

4
iv

1
iv

2
rv

3
rv

4
rv

1
rv

2
jv

3
jv

4
jv

1
jv

rje

iO rO

jO

2
iv

3
iv

Fig. 1. A simple PNPRM with three orbits, twelve nodes, and two edges.

III. PLANNING IN INFORMATION SPACE

Partially Observable Markov Decision Processes (POMDPs) are the most general formulation for motion planning problems
under motion and sensing uncertainties. Note that in this paper, the environment map is assumed to be known. The solution of
the POMDP problem is an optimal feedback law (mapping) ⇡, which maps the information (belief) space to the control space.
Let us denote the state, control and observation at time step k by x

k

, u
k

, and z
k

, respectively, which belong to spaces X, U,
and Z, respectively. The belief in stochastic setting is defined as the probability distribution function (pdf) of the system state
conditioned on the obtained measurements and applied controls up to the k-th time step, i.e., b

k

:= p(x
k

|z0:k;u0:k�1) and B
denotes the belief space, containing all possible beliefs. Note that z0:k = {z1, z2, · · · , zk} and u0:k�1 = {u1, u2, · · · , uk�1}.
It is well known that the POMDP problem can be posed as a Markov Decision Process (MDP) in belief space [9], [27],
whose solution ⇡ is computed by solving the following Dynamic Programming (DP) equation:

J(b)= min

u

{c(b, u) +
Z

B
p(b0|b, u)J(b0)db0}, 8b 2 B (3a)

⇡(b) = argmin

u

{c(b, u) +
Z

B
p(b0|b, u)J(b0)db0}, 8b 2 B (3b)

where J(·) : B ! R is the optimal cost-to-go function, p(b0|b, u) is the belief transition pdf under control u, and c(b, u) is
the one-step cost of taking control u at belief b.
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IV. FIRM FRAMEWORK BASED ON PNPRM
It is well known that the above DP equation is exceedingly difficult to solve since it is defined over an infinite-dimensional

belief space. In this section, inspired by sampling-based methods, we build a graph in belief space by sampling beliefs from
belief space and connecting them to each other. Hence we reduce the intractable DP in (3) to a tractable DP over this graph.

Graph nodes: Let us denote the nodes and edges of the underlying PNPRM by V = [n

j=1V
j

= [n

j=1{vj

↵

}m
↵=1 and

E = {e
ij

}, respectively. Corresponding to each PNPRM node vi

↵

, we have a unique belief `bj
↵

whose reachability can be
guaranteed utilizing appropriate feedback controllers. A concrete example of designing such a controller and computing `bj

↵

will be provided in Section V. We define the j-th graph node in belief space (or FIRM node) Bj as a neighborhood around
`bj
↵

; i.e., Bj

↵

= {b : kb�`bj
↵

k  ✏}. The set of FIRM nodes that correspond to the i-th orbit is denoted by Vi

= {Bi

↵

}m
↵=1 and

the set of all FIRM nodes is V = [n

i=1Vi. Figure 2 shows an example set of Gaussian `bj
↵

’s corresponding to the PNPRM
nodes in Fig. 1. In Gaussian case each belief b is characterized by its mean x̂+ and covariance P , denoted by b ⌘ (x̂+, P ).
In Fig. 2, the mean part of `bj

↵

’s is assumed to coincide with the underlying PNPRM node and the covariance part is shown
by its 3� ellipse. Also FIRM node Bj

2 (neighborhood of `bj2) is shown.

ije

4
rb

1
rb

rje

iO rO

jO

2
ib

2
jb

4
ib

4
jb

1
jb

3
rb

3
ib

3
jb

2
rb

1
ib

Fig. 2. b̀l↵ ⌘ (vl
↵, P̌

l
k↵

) is the center of belief nodes corresponding to the nodes shown in Fig. 1, where P̌ l
k↵

’s are shown by their 3�-ellipse. As an
example of a FIRM node, the magnified version of Bj

2 , which is a small neighborhood centered at b̀j2, is shown in the dotted box, where the blue shaded
region depicts the covariance neighborhood and green shaded region depicts the mean neighborhood.

Graph edges: Each graph edge in belief space is a local feedback controller µ(·) : B ! U. The role of (i
↵

, j)-th local
controller, denoted by µ↵,ij , is to take the belief from the FIRM node Bi

↵

to a FIRM node on orbit Oj , i.e., to [
�

Bj

�

. Thus, we
define T ↵,ij

:= min{k � 0, b
k

2 [
�

Bj

�

|b0 =

`bj
↵

, µ↵,ij} 2 [0,1] as the stopping time of the controller µ↵,ij . The stopping
time is a random variable that defines the time it takes for the controller to drive the belief from the initial node to the target
orbit. Also, let the P(A|b, µ) be the probability of reaching set A in finite time under the local controller µ starting from belief
b. Therefore, for a local controller µ↵,ij to act as a graph edge, it has to satisfy P([

�

Bj

�

|`bi
↵

, µ↵,ij

) = Pr(T ↵,ij < 1) = 1

in the absence of obstacles. In other words, in a constraint-free environment, the feedback controller µ↵,ij

(·) has to drive
the system’s belief from Bi

↵

into a B 2 Vj in finite time with probability one.
In this section, it is assumed that a set of edges (local controllers) that satisfy the mentioned reachability property is

given. In Section V we show that the above property can be accomplished using periodic LQG controller for the class of
non-stoppable/nonholonomic systems, such as small aerial vehicles. Accordingly, we provide concrete algorithms to construct
local controllers and their corresponding reachable nodes.

Graph in belief space: Formally, we define the constructed graph as G = (V,M) with the set of nodes V = {Bj

↵

}
and the set of edges M = {µ↵,ij}. The set of edges available (i.e., outgoing) at FIRM node Bi

↵

is denoted by M(i,↵) :=
{µ↵,ij 2 M|9e

ij

2 E}. It is worth noting that the planning is still performed over continuous state, control, and observation
spaces and we do not discretize any of those.

Graph transition cost and probabilities: We generalize the one-step transition costs c(b, u) and probabilities to the cost
of taking a controller in a graph node and its corresponding transition probabilities along the graph edges:

Cg

(Bi

↵

, µ↵,ij

) :=

T ↵,ijX

k=0

c(b
k

, µ↵,ij

(b
k

)|b0 =

`bi
↵

) ⇡
T ↵,ijX

k=0

c(b
k

, µ↵,ij

(b
k

)|b0 = b), 8b 2 Bi

↵

(4a)

Pg

(Bj

�

|Si

↵

, µ↵,ij

) := P(Bj

�

|`bi
↵

, µ↵,ij

) ⇡ P(Bj

�

|b, µ↵,ij

), 8b 2 Bi

↵

(4b)

The “piecewise constant approximation” in (4) is an arbitrarily good approximation for sufficiently small Bi

↵

and smooth
cost function and transition probabilities.

Graph policy: Graph policy ⇡g

: V ! M is a function that returns a local controller for any given node of the graph.
We denote the space of all graph policies by ⇧

g .
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Graph cost-to-go: To choose the best graph policy, we define the graph cost-to-go Jg from every graph node. Let B
k

be the k-th FIRM node visited along the plan. Then, we can formally define the cost-to-go from any node B0 2 V as:

Jg

(B0;⇡
g

) =

1X

k=0

E
⇥
Cg

(B
k

,⇡g

(B
k

))

⇤

s.t. B
k+1 ⇠ Pg

(B
k+1|Bk

,⇡g

(B
k

)) (5)

Accordingly, the MDP defined on the graph is as follows:

⇡g

⇤
= argmin

⇧g

1X

k=0

E
⇥
Cg

(B
k

,⇡g

(B
k

))

⇤

s.t. B
k+1 ⇠ Pg

(B
k+1|Bk

,⇡g

(B
k

)) (6)

Obstacle-free graph DP: Since the graph MDP is defined on a finite number of FIRM nodes, we can form a tractable
Dynamic Programming (DP) to find the optimal graph policy:

Jg

(Bi

↵

) = min

µ

↵,ij2M(i,↵)
Cg

(Bi

↵

, µ↵,ij

) +

mX

�=1

Jg

(Bj

�

)Pg

(Bj

�

|Bi

↵

, µ↵,ij

), 8↵, i, j (7a)

⇡g

(Bi

↵

) =arg min

µ

↵,ij2M(i,↵)
Cg

(Bi

↵

, µ↵,ij

) +

mX

�=1

Jg

(Bj

�

)Pg

(Bj

�

|Bi

↵

, µ↵,ij

), 8↵, i, j (7b)

where Jg

(·) := min

⇡

g J(·;⇡g

) is the optimal cost-to-go.
Incorporating obstacles into planning: In the presence of obstacles, we cannot assure that the local controller µ↵,ij

(·)
can drive any b 2 Bi

↵

into [
�

Bj

�

with probability one. Instead, we specify the failure probabilities that the robot collides
with an obstacle. Let us denote the failure set on X by F (i.e., F = X � X

free

). Let P(F |Bi

↵

, µ↵,ij

) := P(F |`bi
↵

, µ↵,ij

)

denote the probability of hitting the failure set under local controller µ↵,ij starting from Bi

↵

. Similarly, we generalize the
cost-to-go function by defining Jg

(F ) as a user-defined suitably high cost for hitting obstacles. Therefore, we can modify
(7) to incorporate obstacles in the state space as follows:

Jg

(Bi

↵

) = min

µ

↵,ij2M(i,↵)
Cg

(Bi

↵

, µ↵,ij

) + Jg

(F )Pg

(F |Bi

↵

, µ↵,ij

)

+

mX

�=1

Jg

(Bj

�

)Pg

(Bj

�

|Bi

↵

, µ↵,ij

), 8↵, i, j (8a)

⇡g

(Bi

↵

) =arg min

µ

↵,ij2M(i,↵)
Cg

(Bi

↵

, µ↵,ij

) + Jg

(F )Pg

(F |Bi

↵

, µ↵,ij

)

+

mX

�=1

Jg

(Bj

�

)Pg

(Bj

�

|Bi

↵

, µ↵,ij

), 8↵, i, j (8b)

Thus, all that is required to solve the above DP equation are the values of the costs Cg

(Bi

↵

, µ↵,ij

) and transition probability
functions Pg

(·|Bi

↵

, µ↵,ij

), which are discussed in Section V.
Overall policy ⇡: The overall feedback ⇡ is generated by combining the policy ⇡g on the graph and the local controllers

µ↵,ijs. However, this combination leads to a non-Markov policy. More rigorously, the resulting policy is a semi-Markov
policy [26]. In other words, the current action depends on the current belief as well as the last visited FIRM node. Thus,
the overall feedback ⇡ : V⇥ B ! U can be written as:

⇡(B, b) = ⇡g

(B)(b) = µ(b). (9)

Initial controller: Now, let us consider the first step of planning where the system has not visited any FIRM node yet.
Given the initial belief is b0, if b0 is in a FIRM node B, then we can just generate the control signal as ⇡(B, b0) based
on Eq. 9. However, if b0 does not belong to any of the FIRM nodes, we consider a singleton FIRM node B0 = {b0} and
connect it to the graph. Let us denote the set of newly added local controllers by M(0). Computing the transition cost
C(b0, µij

), and probabilities P(Bj

�

|b0, µij

), and P(F |b0, µij

), for invoking local controllers µij 2 M(0) at b0, we choose
the best initial controller µ0

⇤ as:

⇡g

(B0) = µ0
⇤=arg min

µ

ij2M(0)
{Cg

(B0, µ
ij

) +

mX

�=1

Pg

(Bj

�

|B0, µ
ij

)Jg

(Bj

�

) + Pg

(F |B0, µ
ij

)Jg

(F )} (10)

Extending ⇡g to take B0 into account, we now can use ⇡(B0, b0) to generate the control signal. It is worth noting that
computing µ0

⇤ is the only part of computation that depends on the initial belief and has to be reproduced for every query with
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a new initial belief. After computing µ0
⇤ we always store the last visited FIRM node and use policy ⇡ (computed offline) in

Eq. 9 to generate control signals in future time steps.

V. PLQG-BASED FIRM CONSTRUCTION

In this section, we construct a concrete instantiation of the graph described in the previous section. We utilize PLQG
controllers to design graph edges and reachable FIRM nodes Bj

�

required in (8). Then we discuss how the transition
probabilities Pg

(·|Bi

↵

, µ↵,ij

), and costs Cg

(Bi

↵

, µ↵,ij

) in (8) are computed. In this instantiation we restrict the belief to
Gaussian distributions and we start by defining notation needed for dealing with Gaussian beliefs.

Gaussian belief space: Let us denote the estimation vector by x+, whose distribution is b
k

= p(x+
k

) = p(x
k

|z0:k). Denote
the mean and covariance of x+ by bx+

= E[x+
] and P = E[(x+ � bx+

)(x+ � bx+
)

T

], respectively. Denoting the Gaussian
belief space by GB, every function b(·) 2 GB, can be characterized by a mean-covariance pair, i.e., b ⌘ (bx+, P ). Abusing
notation, we also show this using “equality relation”, i.e., b = (bx+, P ).

A. Designing PLQG-based Graph Nodes {Bj

↵

}
LQG controllers: A Linear Quadratic Gaussian (LQG) controller is composed of a Kalman filter as the state estimator

and a Linear Quadratic Regulator (LQR) as the separated controller [21]. Thus, the belief dynamics b
k+1 = ⌧(b

k

, u
k

, z
k+1)

come from the Kalman filtering equations, and the controller u
k

= µ(b
k

) that acts on the belief, comes from the LQR
equations. LQG is an optimal controller for linear systems with Gaussian noise [9]. However, it is most often used for
stabilizing nonlinear systems to a given trajectory or to a given point.

Periodic LQG: Periodic LQG (PLQG) is a time-varying LQG that is designed to track a given periodic trajectory [11],
[13]. In Appendix I we review the periodic LQG controller in detail. Here, we only state the belief reachability result under
the PLQG.

System model and quadratic cost: Consider a T -periodic PNPRM orbit O = (xp

k

, up

k

)

k�1 and the set of nodes {v
↵

} on it.
Let us denote the time-varying linear (linearized) system along the orbit O by the tuple ⌥

k

= (A
k

,B
k

,G
k

,Q
k

,H
k

,M
k

,R
k

)

that represents the following state space model, where ⌥

k

= ⌥

k+T

:

x
k+1= A

k

x
k

+B
k

u
k

+G
k

w
k

, w
k

⇠ N (0,Q
k

) (11a)
z
k

= H
k

x
k

+M
k

v
k

, v
k

⇠ N (0,R
k

). (11b)

Consider a PLQG controller that is designed for the system in (11) to track the orbit (xp

k

, up

k

)

k�1 through minimizing the
following quadratic cost:

J = E[
X

k�0

xT

k

W
x

x
k

+ uT

k

W
u

u
k

], (12)

where x
k

= x
k

� xp

k

and u
k

= u
k

� up

k

. Matrices W
x

and W
u

are positive definite weight matrices for state and control
cost, respectively. Let us also define matrices ˇQ

k

and ˇW
x

such that G
k

Q
k

GT

k

=

ˇQ
k

ˇQT

k

, W
x

=

ˇWT

x

ˇW
x

, for all k. Now,
consider the class of systems, and associated PLQG controllers that satisfy the following property.

Property 1: The pairs (A
k

,B
k

) and (A
k

, ˇQ
k

) are controllable pairs [9], and the pairs (A
k

,H
k

) and (A
k

, ˇW
x

) are
observable pairs [9], for all k = 1, · · · , T .

Belief node reachability under PLQG: In the following, we present three lemmas, through which we can construct pairs
of periodic LQG controllers, and reachable nodes in belief space, for non-stoppable/nonholonomic dynamical systems.

Lemma 1: (Cyclostationary behavior of belief under PLQG) Consider the PLQG controller designed for the system in
(11) to track the orbit (xp

k

, up

k

)

k�1. Given Property 1 is satisfied, the belief process b
k

under PLQG converges to a Gaussian
cyclostationary process [10], i.e., the distribution over belief converges to a T -periodic Gaussian distribution, where we
denote the mean and covariance of this process by bc

k

and C

k

, respectively:

b
k

⇠ N (bc
k

, C
k

) = N (bc
k+T

, C
k+T

), (13)

where b
k

⌘ (bx+
k

, P
k

) and bc
k

⌘ (xp

k

, ˇP
k

). The covariance matrices ˇP
k

is characterized in Lemma 2 and covariance C

k

is
characterized in Appendix I (Eq. 68).

Proof: See Appendix I.
Lemma 2: (Convergence of DPRE) Given Property 1, the following Discrete Periodic Riccati Equation (DPRE) has a

unique Symmetric T -Periodic Positive Semi-definite (SPPS) solution [11], denoted by ˇP�
k

:

ˇP�
k+1 = A

k

(

ˇP�
k

� ˇP�
k

HT

k

(H
k

ˇP�
k

HT

k

+M
k

R
k

MT

k

)

�1H
k

ˇP�
k

)AT

k

+G
k

Q
k

GT

k

(14)

Moreover, the covariance matrix ˇP
k

introduced in Lemma 1 is computed as

ˇP
k

=

ˇP�
k

� ˇP�
k

HT

k

(H
k

ˇP�
k

HT

k

+M
k

R
k

MT

k

)

�1H
k

ˇP�
k

(15)
Proof: See [11].
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Now, we state the main result, through which we can construct the proper pairs of periodic LQG controller and reachable
nodes in belief space.

Lemma 3: (Belief node reachability under PLQG) Consider the PLQG controller µ designed for the system in (11)
to track the orbit (xp

k

, up

k

)

k�1. Suppose the matrix H
k

is full rank, and Property 1 is satisfied. Also, consider the sets
B1, B2, · · · , Bm

in belief space, such that interior of B
↵

contains bc
k↵

for some k
↵

2 {1, · · · , T}. Then, under µ, the region
[
↵

B
↵

is reachable in finite time with probability one.
Proof: The intuitive idea behind the proof is: if we define a region centered at the mean value of a Gaussian distribution,

and if we sample from this distribution, in a finite number of samples we will end up with a sample in the given region.
The rigorous proof is detailed in Appendix II.

FIRM nodes: As mentioned, to construct a graph in belief space we first construct its underlying PNPRM, characterized
by the triple {{Oj}, {vj

↵

}, {e
ij

}}. Linearizing the system along the j-th orbit Oj

= (xp

j

k

, up

j

k

)

k�0 results in a time-varying
T -periodic system ⌥

j

k

= (Aj

k

,Bj

k

,Gj

k

,Qj

k

,Hj

k

,Mj

k

,Rj

k

):

x
k+1= Aj

k

x
k

+Bj

k

u
k

+Gj

k

w
k

, w
k

⇠ N (0,Qj

k

) (16a)

z
k

= Hj

k

x
k

+Mj

k

v
k

, v
k

⇠ N (0,Rj

k

), (16b)

where w
k

and v
k

are motion and measurement noises, respectively, drawn from zero-mean Gaussian distributions with
covariances Qj

k

and Rj

k

. Since the system in (16) is T -periodic (i.e.,⌥j

k

= ⌥

j

k+T

), we can design a corresponding PLQG
controller µj

k

. The controller µj

k

is referred to as the j-th node-controller. Since the orbits are designed such that Property
1 is satisfied on them, based on Lemma 1 the belief converges to a Gaussian cyclostationary process. The mean of this
cyclostationary process is denoted by bc

j

k

and is characterized in Lemma 2, where its existence and uniqueness are guaranteed.
Corresponding to the PNPRM node vj

↵

on orbit Oj we choose the belief nodes Bj

↵

as an ✏-neighborhood of `bj
↵

:= bc
j

k↵
⌘

(vj

↵

, ˇP j

k↵
): (See Fig.2.)

Bj

↵

={b ⌘ (x, P ) : kx� vj

↵

k < �1, kP � ˇP j

k↵
km<�2}, (17)

where k · k and k · km denote suitable vector and matrix norms, respectively. The size of FIRM nodes are determined by �1
and �2. Based on Lemma 3, [

↵

Bj

↵

is a reachable region under node-controller µj

k

. Note that �1 and �2 need to be sufficiently
small to satisfy the approximation in (4).

B. PLQG-based Graph Edges {µ↵,ij}
The role of the local controller µ↵,ij is to drive the belief from the node Bi

↵

to [
�

Bj

�

, i.e., to a node Bj

�

on the j-th
orbit. To construct the local controller µ↵,ij , we precede the node-controller µj

k

, with a time-varying LQG controller µ↵,ij

k

,
which is called the edge-controller here.

Edge-controller: Consider a finite trajectory that consists of three segments: i) the pre-edge ei↵j as defined in Section II,
ii) the edge itself eij , and iii) a part of Oj that connects the ending point of eij to xp

j

0 . Edge-controller µi↵j

k

is a time-varying
LQG controller that is designed to track this finite trajectory. The main role of the edge-controller is that it takes the belief
at node B

i

and drives it to the vicinity of a starting point of orbit Oj , where it hands over the system to the node-controller,
and node-controller in turn takes the system to a FIRM node.

Local controllers: Thus, overall, the local controller (or graph edge in belief space) µ↵,ij is the concatenation of the
edge-controller µ↵,ij

k

and the node-controller µj

k

. Note that since reachability is guaranteed by the node-controller (PLQG),
by this construction, the stopping region [

�

Bj

�

is also reachable under the local controller µ↵,ij .

C. Transition Probabilities and Costs
In general, it can be a computationally expensive task to compute the transition probabilities P(·|Bi

↵

, µ↵,ij

) and costs
C(Bi

↵

, µ↵,ij

) associated with invoking local controller µ↵,ij at node Bi

↵

. However, owing to the offline construction of
FIRM, it is not an issue in FIRM. We utilize sequential Monte-Carlo methods [15] to compute the collision and absorption
probabilities. In other words, for each graph edge we simulate the execution of the corresponding local controller for M
times and accordingly approximate the probability of reaching the nodes on the target orbit as well as probability of hitting
the failure set along the way. This process is done offline.

Depending on the application, a suitable transition cost can be defined. In this paper, we consider a measure of estimation
accuracy as the transition cost along the edges. This leads to a planner that favors paths, on which the estimator and
consequently the controller can perform better. A measure of estimation error we use here is the trace of estimation covariance;
i.e., �↵,ij

= E[
PT

k=1 tr(P↵,ij

k

)], where P↵,ij

k

is the estimation covariance at the k-th time step of the execution of local
controller µ↵,ij . The outer expectation operator is useful in dealing with the Extended Kalman Filter (EKF), whose covariance
is stochastic [14], [25]. Moreover, as we are also interested in faster paths, we take into account the corresponding mean
stopping time, i.e., bT ↵,ij

= E[T ↵,ij

], and the total cost of invoking µ↵,ij at Bi

↵

is considered as a linear combination of
the estimation accuracy and expected stopping time, with suitable scalar coefficients ⇠1 and ⇠2.

C(Bi

↵

, µ↵,ij

) = ⇠1�
↵,ij

+ ⇠2 bT ↵,ij . (18)
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D. Construction of PLQG-FIRM and Planning With it
Offline construction of FIRM: The crucial feature of FIRM is that it can be constructed offline and stored, independent

of future queries. Note that based on Algorithms 1 and 2, we still need to know the goal location. However, to be fully
independent of both start and goal location of the query, one can solve the DP in the online phase. Owing to the reduction
from the original POMDP to a dynamic programming on the finite number of graph nodes, we can solve DP in (8) using
standard DP techniques such as value/policy iteration to get the optimal graph policy ⇡g . Algorithm 1 details the offline
construction of the FIRM graph.

Online planning with FIRM: Since the FIRM graph is computed offline, the online phase of planning (and replanning)
on the roadmap becomes very efficient. If the given initial belief b0 belongs to any FIRM node, online compuation reduces
to evaluating the function ⇡ in Eq. 9. Otherwise, the only online compuation would be evaluation of the first local controller
µ0
⇤ based on Eq. 10. In the latter case, to form the new edges required in 10, we first create a singleton set B0 = {b0}.

Then, to connect B0 to FIRM, we compute the expected value of the robot state, i.e. E[x0] using its distribution b0 and
add E[x0] to the underlying PNPRM nodes. The set of newly added edges going from E[x0] to the nodes on PNPRM are
denoted as E(0). We design the local controllers associated with each edge in E(0) and call the set of them as M(0). Then,
we choose µ0

⇤ based on Eq. 10 and follow policy ⇡ in Eq. 9 afterwards. Algorithm 2 illustrates this procedure.
Computational complexity of offline graph construction: Consider an underlying PNPRM with N orbits, m nodes

on each orbit, and degree k; i.e., each orbit in PNPRM is connected to k nearest neighboring orbits. Thus, overall it has
mN nodes and Nk orbit edges. In the offline phase we need to leverage PNPRM orbits and edges to FIRM orbits and
edges in belief space. (i) Extension of PNPRM orbits to belief space consists of a constant computation of solving two
Riccati equations and designing corresponding PLQG controller. Denoting the computational complexity of this process by
c
n

, the computational complexity of extending PNPRM orbits to FIRM orbits is of the order O(c
n

N). (ii) Extension of each
PNPRM edge to belief space consists of evaluating the performance of its corresponding local controller and computing
transition probabilities and costs. Let us denote the cost of this process by c

e

. In a PNPRM with degree k, we have Nk
edges and corresponding to each PNPRM edge, we have m FIRM edges. Thus, the computational complexity of extending
edges to belief space is O(c

e

mNk). So, overall the offline computational complexity is O(c
n

N + c
e

mNk). The complexity
of each iteration in value iteration algorithm is O(|V|2|M|), where |V| = mN nodes and |M| = mNk . However, in practice
the dominating factor is the extension of edges to belief space because the constant multiplier c

e

in general is large. If
the Monte Carlo simulation is chosen to evaluate the edge costs and transition probabilities, c

e

will increase linearly in the
number of particles utilized in the Monte Carlo simulation as well as the number of constraints. It will also depend on how
the constraints are being evaluated.

Computational complexity of online planning with graph: As discussed in Section IV, the only part that needs to be
done online is the computation of first local controller (See Eq. 10). To do so, we need to evaluate k edges only. Thus,
the computational complexity of online planning with FIRM is O(c

e

k). This computation occurs once in the beginning of
planning. The rest of planning is just plugging last visited FIRM node B and current belief b into the planner ⇡ (See Eq.
9) and generating the control signal u

k

.

VI. EXPERIMENTAL RESULTS

In this section we present simulation results for two different types of robots: a planar robot whose motion is described by a
unicycle model and a 6 DoF small aerial vehicle subject to rigid body kinematics. The robots are equipped with exteroceptive
sensors that provide range and bearing measurements from existing radio beacons (landmarks) in the environment.

A. 2D Unicycle Model
Here, we illustrate the results of FIRM construction on a simple PNPRM.
Motion model: As a motion model, we consider the nonholonomic unicycle model which has the following kinematics:

x
k+1=f(x

k

, u
k

, w
k

)=

0

@
x

k

+ (V
k

�t+ n
v

p
�t) cos ✓

k

y

k

+ (V
k

�t+ n
v

p
�t) sin ✓

k

✓
k

+ !
k

�t+ n
!

p
�t

1

A, (19)

where x
k

= (x

k

, y
k

, ✓
k

)

T describes the robot state (2D position and heading angle). The vector u
k

= (V
k

,!
k

)

T is the control
vector consisting of linear velocity V

k

and angular velocity !
k

. The motion noise vector is denoted by w
k

= (n
v

, n
!

)

T ⇠
N (0,Q

k

).
Observation model: The i-th landmark is denoted by Li and the vector from robot to the i-th landmark is denoted by

id = [

id
x

, id
y

]

T

:= Li � p, where p = [x, y]T is the position of the robot. Measuring Li is modeled as follows:
iz =

ih(x, iv) = [kidk, atan2(id
y

, id
x

)� ✓]T +

iv, (20)

where, atan2(·, ·) is the four-quadrant inverse tangent function. Observation noise is drawn from a zero-mean Gaussian
distribution iv ⇠ N (0, iR) where iR = diag((⌘

r

kidk + �r

b

)

2, (⌘
✓

kidk + �✓

b

)

2
). Function “diag” returns a square block-

diagonal matrix by placing its inputs on the main diagonal. The uncertainty (standard deviation) of sensor reading increases
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Algorithm 1: Offline Construction of PLQG-FIRM
1 input : State space X, constraints set F , belief space B
2 output : FIRM graph G

3 Construct a PNPRM with T -periodic orbits O = {Oj

= (xp

j

k

, up

j

k

)

k�0}, nodes V = {vj

↵

}, and edges E = {eij}, where
i, j = 1, · · · , n and ↵ = 1, · · · ,m;

4 foreach PNPRM orbit Oj 2 O do
5 Design the node-controller (periodic LQG) µj

k

along the periodic trajectory;
6 Compute the periodic mean belief trajectory bc

j

k

⌘ (xp

j

k

, ˇP j

k

) using (15);
7 Construct m FIRM nodes Vj

= {Bj

1, · · · , Bj

m

} using (17), where Bj

↵

is centered at bc
j

k↵
;

8 Collect all FIRM nodes V = [n

j=1Vj ;
9 foreach (Bi

↵

, eij) pair do
10 Design the edge-controller µ↵,ij

k

, as discussed in Section V-B;
11 Construct the local controller µ↵,ij

k

by concatenating edge-controller µ↵,ij

k

and node-controller µj

k

;
12 Set the initial belief b0 equal to the center of Bi

↵

, based on the approximation in (4);
13 Generate (in simulation) sample belief paths b0:T and state paths x0:T induced by controller µ↵,ij invoked at Bi

↵

;
14 Compute the transition probabilities Pg

(F |Bi

↵

, µ↵,ij

) and Pg

(Bj

�

|Bi

↵

, µ↵,ij

) for all � and transition cost
Cg

(Bi

↵

, µ↵,ij

) based on the simulated trajectories (see Section V-C);
15 Collect all local controllers M = {µ↵,ij};
16 Compute cost-to-go Jg and feedback ⇡g over the FIRM graph by solving the DP in (8);
17 G = (V,M, Jg,⇡g

);
18 return G;

as the robot gets farther from the landmarks. The parameters ⌘
r

= ⌘
✓

= 0.3 determine this dependency, and �r

b

= 0.01 meter
and �✓

b

= 0.5 degrees are the bias standard deviations. A similar model for range sensing is used in [24]. The robot observes
all N

L

landmarks at all times and their observation noises are independent. Thus, the total measurement vector is denoted
by z = [

1zT , 2zT , · · · ,NLzT ]T and due to the independence of measurements of different landmarks, the observation model
for all landmarks can be written as z = h(x) + v, where v ⇠ N (0,R) and R = diag(1R, · · · ,NLR).

We first show a typical SPPS solution of DPRE on the orbits. Fig. 3(a) shows a simple environment with six radio beacons
(black stars). For illustration purposes, we choose five large circular orbits and every orbit is discretized to 100 steps. Thus
the SPPS solution of the DPRE in (14) on each orbit leads to hundred covariance matrices that are superimposed on the graph
in red. As is seen from Fig. 3(a), the localization uncertainty along the orbit is not homogeneous and varies periodically.
Another important observation from the Fig. 3(a) is obtained by noticing the left top orbit in the Fig. 3(a). As it can be
seen, the localization uncertainty (covariance ellipse) in the left and right hand sides of the landmark are not symmetric
(the right hand side is larger than the left hand side). In other words, two points on an orbit with the same distance from
landmarks (i.e., with the same observation noise) might have different localization uncertainty, which emphasizes the role
of the dynamics model in filtering and its interaction with the observation model. In Fig. 3(b), we illustrate the covariance
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Fig. 3. (a) Five orbits (T = 100) and corresponding periodic estimation covariances as the SPPS solution of DPRE in (14). (b) Sample covariance
convergence on an orbit (T = 20) under PLQG. Red ellipses are the solution of DPRE and green ellipses are the evolution of estimation covariance. The
initial covariance is three times bigger than the SPPS solution of DPRE, i.e., P0 = 3P̌0.
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Algorithm 2: Online Phase Algorithm (Planning with PLQG-based FIRM)
1 input : Initial belief b0, FIRM graph G, Underlying PNPRM graph
2 if 9Bi

↵

2 V such that b0 2 Bi

↵

then
3 Choose the next local controller µ↵,ij

= ⇡g

(Bi

↵

);
4 else
5 Compute v0 = E[x0] based on b0, and connect v0 to the PNPRM orbits. Call the set of newly added edges

E(0) = {e0j};
6 Design local planners associated with edges in E(0); Collect them in set M(0) = {µ0,0j};
7 foreach µ 2 M(0) do
8 Generate (simulate) sample belief and state paths b0:T , x0:T induced by taking µ at b0;
9 Compute transition probabilities P(·|b0, µ) and transition costs C(b0, µ);

10 Set ↵, i = 0; Choose the best initial local planner µ0,0j within the set M(0) using (10);
11 while Bi

↵

6= B
goal

do
12 while (@Bj

�

, s.t., b
k

2 Bj

�

) and “no collision” do
13 Apply the control u

k

= µ↵,ij

k

(b
k

) to the system;
14 Get the measurement z

k+1 from sensors;
15 if Collision happens then return Collision;
16 Update belief as b

k+1 = ⌧(b
k

, µ↵,ij

k

(b
k

), z
k+1);

17 Update the current FIRM node Bi

↵

= Bj

�

;
18 Choose the next local controller µ↵,ij

= ⇡g

(Bi

↵

);

convergence in the periodic belief process. As can be seen in Fig. 3(b), the initial covariance is three times larger than
the limiting covariance, and in less than one period it converges to the SPPS solution of DPRE. The convergence time is
a random quantity, whose mean and variance can be estimated through simulations. However, in practical cases it usually
converges in less than one full period, because the initial covariance is closer to the actual solution (due to the use of
edge-controllers) and also the orbit size is much smaller, when compared to Fig. 3(b).

Figure 4(a) shows a sample PNPRM with 23 orbits and 67 edges. To simplify the explanation of the results, we assume
m = 1, i.e., we choose one node on each orbit. All elements in Fig. 4(a) are defined in (x, y, ✓) space but only the (x, y)
portion is shown here. To construct the FIRM nodes, we first solve the corresponding DPREs on each orbit and design
its corresponding node-controller (PLQG). Then, we pick the node centers `bj

↵

= (vj

↵

, ˇP j

k↵
) and construct the FIRM nodes

based on the component-wise version of (17), to handle the error scale difference in position and orientation variables:

Bj

↵

= {b ⌘ (x, P )| |x� vj

↵

| .

< ✏, |P � ˇP j

k↵
| .

< �}, (21)

where |·| and
.

< stand for the absolute value and component-wise comparison operators, respectively. We set ✏ = [0.8, 0.8, 5�]T

and � = ✏✏T to quantify Bj

↵

’s.
After designing FIRM nodes and local controllers, the transition costs and probabilities are computed in the offline

construction phase. Here, we use sequential weighted Monte-Carlo based algorithms [15] to compute these quantities.
In other words, for every (Bi

↵

, µ↵,ij

) pair, we perform M runs and accordingly approximate the transition probabilities
Pg

(Bj

�

|Bi

↵

, µ↵,ij

), Pg

(F |Bi

↵

, µ↵,ij

), and costs Cg

(Bi

↵

, µ↵,ij

). A similar approach is detailed in [5]. Table I shows these
quantities for several (Bi

↵

, µ↵,ij

) pairs corresponding to Fig. 4(a), where M = 101 and the coefficients in (18) are ⇠1 = 0.98
and ⇠2 = 0.02.

TABLE I
COMPUTED COSTS FOR SEVERAL PAIRS OF NODE-AND-CONTROLLER USING 101 PARTICLES.

(Bi
↵,µ

↵,ij) pair B2
1 ,µ

1,(2,3) B4
1 ,µ

1,(4,5) B6
1 ,µ

1,(6,7) B11
1 ,µ1,(11,12) B2

1 ,µ
1,(2,1) B8

1 ,µ
1,(8,20) B16

1 ,µ1,(16,7)

Pg(F |Bi
↵,µ

↵,ij) 9.9010% 17.8218% 15.8416% 29.7030% 7.9208% 1.9802% 0.9901%
�↵,ij 2.1386 2.2834 1.9181 0.9152 2.1695 1.1857 0.4385

E[T ↵,ij ] 63.6703 82.6747 62.5882 58.2000 51.7033 50.2755 35.4653

Plugging the computed transition costs and probabilities into (8), we can solve the DP problem and compute the policy ⇡g

on the graph. This process is performed only once offline, independent of the starting point of the query. Fig. 4(b) shows the
policy ⇡g on the constructed FIRM in this example. At every FIRM node Bi

↵

, the policy ⇡g decides which local controller
needs to be invoked, which in turn aims to take the robot belief to the next FIRM node. It is worth noting that if we had
more than one node on each orbit, the feedback ⇡g may return different controllers for each of them and for every orbit we
may have more than one outgoing arrow in Fig. 4(b).
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Fig. 4. A sample PNPRM with circular orbits. Number of each orbit is written at its center. Nine landmarks (black stars) and obstacles (gray polygons)
are also shown. The directions of motion on orbits and edges are shown by little triangles with a cross in their heading direction. (a) Orbits 2 and 7
(distinguished in black) are the start and goal orbits, respectively. Shortest path (green) and the most-likely path (red) under the FIRM policy are also
shown. (b) Assuming on each orbit, there exists a single node, the feedback ⇡g is visualized for all FIRM nodes.

As discussed, the online part of planning is very efficient as it only requires executing the controller and generating the
control signal. Moreover, if due to some unmodeled large disturbances, the system deviates significantly from the planned
path, it suffices to bring the system back to the closest FIRM node and from thereon the optimal plan is already known,
i.e., ⇡g drives the robot to the goal region as shown in Fig. 4(b).

We show the most likely path under the ⇡g in red in Fig. 4(a). The shortest path is also illustrated in Fig. 4(a) in green.
It can be seen that the “most likely path under the best policy” detours from the shortest path to a path along which the
filtering uncertainty is smaller, and it is easier for the controller to avoid collisions.

B. 6 DoF Aircraft Model
In this section, we consider a surveillance application for a small fixed wing aerial vehicle. Methods such as [7] have

investigated stochastic optimal control of small aerial vehicles under stochastic wind. In this section, we extend such methods
to belief space where the perfect state of vehicle is not available. We assume that targets to monitor are submitted from the
control station frequently. Each time a new target is submitted, the aircraft has to replan in real-time and go toward the new
goal, while minimizing the collision probability and the costs associated with the task objective.

System state: The system considered in this experiment is a robot with 6 Degrees of Freedom (DoF). The motion is the
rigid body 6 DoF kinematics. The state of the robot x

k

at time k is composed of its 3D position in Cartesian coordinates
p
k

described in the ground (inertial) frame and its orientation q
k

, which is encoded by quaternions.

x
k

= [pT

k

,qT

k

]

T

= [xk, yk, zk, q0k , q1k , q2k , q3k ]
T , (22)

where

p
k

= [xk, yk, zk]
T ,q

k

= [q0k , q1k , q2k , q3k ]
T , (23)

Fig. 5. The aircraft attached body-fixed frame and ground frame
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Remark: Let us denote the control error (the difference between the desired state xp

k

and the mean of estimated state bx+
k

)
by be+

k

. In computing the control error, one can directly subtract the positional part of the state vector. However, the error in
orientation (quaternions) q and q0 is calculated as �q = q⌦ inv(q0

) where ⌦ and inv(·) denote the quaternion multiplication
and inversion operators, respectively. We set �q0 = 0 in calculating the control error. This is valid for small rotations since
a change in the scalar part of the quaternion does not provide information about the direction of the rotation vector. Further,
since we know that for a quaternion q, q20 + q21 + q22 + q23 = 1, by controlling q1, q2, q3 we implicitly control q0.

Motion Model: Let f be the state transition function such that,

x
k+1 = f(x

k

, u
k

, w
k

), (24)

where, the control vector u
k

is composed of the vehicle’s linear velocity V
k

along body x-axis and angular velocities about
the body axes.

u
k

= [V
k

,!r

k

,!p

k

,!y

k

], (25)

in which, !r, !p, and !y are the roll, pitch, and yaw rates, respectively. The motion noise is denoted by w
k

= (n
v

, n
!

r , n
!

p , n
!

y
)

T ⇠
N (0,Q

k

). In our simulations, Q = diag((⌘
V

V + �V

b

)

2, (⌘
!

r!r

+ �!

r

b

)

2, (⌘
!

p!p

+ �!

p

b

)

2
), (⌘

!

y!y

+ �!

y

b

)

2
), where the

parameters are ⌘
V

= ⌘
!

r
= ⌘

!

p
= ⌘

!

y
= 0.005, �V

b

= 0.02 meters, �!

r

b

= �!

p

b

= �!

y

b

= 0.25 degrees. To describe the
kinematics model, we split the motion model into two parts: position and orientation (attitude).

To derive a model that governs the position of the robot (i.e., p
k+1 = f

p

(p
k

,q
k

, u
k

, w
k

)), we first need to transform
velocity V

k

from body to the ground frame. We denote the velocity in the body-fixed frame as bV and in the inertial (ground)
frame as gV . Thus,

gV = R
gb

bV, (26)

where, bV = [V, 0, 0]T and R
gb

is the rotation matrix that transforms the body frame to the ground frame. In terms of the
quaternions, the R

gb

matrix is as follows:

R
gb

(q) =

2

4
q20 + q21 � q22 � q23 2(q1q2 � q0q3) 2(q1q3 + q0q2)
2(q1q2 + q0q3) q20 � q21 + q22 � q23 2(q2q3 � q0q1)
2(q1q3 � q0q2) 2(q2q3 + q0q1) q20 � q21 � q22 + q23

3

5 . (27)

Similarly, we transform the motion noise in velocity to the ground frame,
gn

V

= R
gb

bn
V

, (28)

where bn
V

= [n
V

, 0, 0]T . Therefore, f
p

can be described as:

p
k+1 = f

p

(p
k

,q
k

, u
k

, w
k

) = p
k

+

gV �t+ gn
V

p
�t = p

k

+R
gb

(q)(bV �t+ bn
V

p
�t). (29)

Now, we discuss the model we utilize to govern the orientation of the robot (i.e., q
k+1 = f

q

(q
k

, u
k

, w
k

)). We start by the
quaternion-based attitude kinematics in its continuous-time form that can be written as ˙q = A!, where ! = [!r,!p,!y

]

T

is the angular velocity vector of the robot with respect to the inertial frame expressed in the body frame, and A is given by:

A =

1

2

2

664

�q1 �q2 �q3
q0 �q3 q2
q3 q0 �q1
�q2 q1 q0

3

775 . (30)

Therefore, the discrete version of the quaternion evolution (before sign check) is as follows:

qs

k+1 = fs

q

(q
k

, u
k

, w
k

) = q
k

+

˙q�t+ n
q

, (31)

where,

n
q

= A(n
!

r , n
!

p , n
!

y
)

T

p
�t. (32)

However, to avoid discontinuity in the control error be+
k

, we keep the scalar part of quaternion positive; i.e. the quaternion
at the (k + 1)-th time step is:

q
k+1 =

¯f(qs

k+1) = qs

k+1sign(qs

0k+1
), (33)

where sign(qs

0k+1
) is 1 if qs

0k+1
� 0, and is �1 otherwise. This procedure leads to the smaller angle since q0 = cos(�/2)

where � is the magnitude of rotation, and thus, the smaller angular difference (i.e., |�| < ⇡) always leads to a positive q0.
Note that we are allowed to do this because quaternions are invariant to sign; i.e., q

k+1 and �q
k+1 represent the same

orientation. Thus overall we get q
k+1 = f

q

(q
k

, u
k

, w
k

) =

¯f(fs

q

(q
k

, u
k

, w
k

)).
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Finally, since the quaternions norm is constrained (i.e., kqk = 1), if the result of an approximate calculation such as
linearized Kalman filter is a quaternion q that does not satisfy this constraint, we apply the transformation q0

= kqk�1q =

g(q). Note that function g is applied on the mean value and its first order approximation is applied on the covariance of the
quaternion estimation.

Observation Model: The 3D location of the i-th Landmark is defined as Li

= [Li

x

, Li

y

, Li

z

]. We denote the relative vector
from robot to landmark Li by idg

= [

idg
x

, idg
y

, idg
z

]

T

:= Li � p, where p = [x, y, z]T is the position of the robot in the
ground frame. The relative vector idg needs to be rotated from the ground frame to the body frame by the rotation matrix
R

bg

= RT

gb

. Thus, idb

= R
bg

idg .
The measurement Li can be modeled as follows:

iz = h(x, iv) = [

ir, i↵, i�]T = [kidbk, atan2(idb
y

, idb
x

), atan2(idb
z

, idb
x

)]

T

+

iv, iv ⇠ N (0,Ri

) (34)

where Ri

= diag((⌘
r

kidk + �r

b

)

2, (⌘
↵

kidk + �↵

b

)

2, (⌘
�

kidk + ��

b

)

2
). The parameters are ⌘

r

= 0.01, ⌘
↵

= ⌘
�

= 0.3 and
�r

b

= 0.01 meter and �↵

b

= ��

b

= 0.5 degrees are the bias standard deviations.
PNPRM generation: To generate the underlying PNPRM, we need to sample orbits and connect them to each other.

In this experiment, we consider circular (counter-clockwise) orbits that are parallel to the ground. To sample an orbit, we
sample a random point pc in 3D space as the orbit center, and generate a circular trajectory with a given maximum yaw
rate centered at p

c. More details on this construction can be found in [1]. Finally, we choose three nodes on each orbit
uniformly distributed along the orbit.

The edge connecting node vi

↵

to orbit Oj is composed of two segments: pre-edge ei↵j and orbit-edge eij . The edge eij ,
connects the leaving point on orbit Oi to the entry point on orbit Oj . To construct eij , we use the RRT (Rapidly exploring
Random Tree) approach [22]. However, we inject user information and guide the sampling procedure in RRT to obtain
better and faster results. The details of this implementation can be found in [1]. It is worth noting that in our PNPRM
construction for both 2D and 3D systems, we assume that orbits are counter-clockwise in direction. An alternate approach
with both clockwise and counter-clockwise orbits could also be adopted since our method is not restrictive in that sense. In
this simulations, we limit ourselves to a single orbit direction for reasons of simplicity and clarity.

Planning for 6D aircraft with FIRM: After generating a PNPRM, we leverage the orbits and edges to belief space as
discussed in Section V. Accordingly, we compute the edge costs and solve the DP on the FIRM graph to get a feedback
from graph nodes to graph edges. Fig. 6 depicts a 3-D environment with the constructed PNPRM. The robot is given a task
to visit nodes 2, 3 and 7 in that order starting from node 1. These nodes represent locations where the robot is to perform
intelligence gathering. Fig. 7 shows the feedback ⇡g on the FIRM graph; i.e., it shows the best edge that ⇡g selects at each
node. Shortest path is shown in green whereas the most likely path under the policy is depicted in red. It can be seen that
the path selected through FIRM takes routes which are more informative and thus have less filtering uncertainty. It is worth
noting that the green edges are not a part of feedback; they are just drawn to illustrate the shortest path. Fig. 8 shows the
feedback to go to node 3, resulting from online replanning after the query to node 3 is submitted. Finally, Fig. 9 shows the
feedback to node 7 after the next online replanning. To perform replanning (recomputing the feedback), we do not need to
re-construct the graph or recompute the edge cost. Multiple queries can be executed by simply re-solving the DP on the
FIRM graph with a new goal.
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Fig. 6. The PNPRM in 3D showing the orbits and edges.
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Fig. 7. Feedback ⇡g is shown with orbit 2 as the goal orbit. (a) Starting from orbit 1, the shortest path (green) and the most-likely path (red) are shown
from the top view (b) The shortest path (green) and the most-likely path (red) are shown in the 3D environment.
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Fig. 8. Feedback ⇡g is shown with orbit 3 as the goal orbit. Starting from orbit 2, the most-likely path (red) is shown (a) from the top view and (b) in
the 3D environment.

VII. CONCLUSION

This paper proposes a solution to the problem of stochastic planning for non-stoppable (and possibly nonholonomic)
systems, such as small fixed-wing aerial vehicles. The Periodic-Node PRM (PNPRM) is introduced as a graph in the state
space, whose nodes lie on periodic trajectories, called orbits. Exploiting the properties of periodic LQG controllers on the
orbits, we designed appropriate local controllers to accomplish the task of belief reachability for non-stoppable systems.
Accordingly, by suitably choosing belief nodes along the orbits we constructed a graph in belief space. Planning constraints
can be seamlessly embedded along the edges of this graph. Finally, the framework characterizes the success probability of
reaching the goal point from any given graph node. With estimation uncertainty chosen as the planning cost, simulation
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Fig. 9. Feedback ⇡g is shown with orbit 7 as the goal orbit. Starting from orbit 3, the most-likely path (red) is shown (a) from the top view and (b) in
the 3D environment.

results for two different types of robots were presented. It was demonstrated that the proposed graph-based scheme for
planning under uncertainty tends to find feedback laws that guide the robot toward goal through information-rich regions
(leading to less estimation uncertainty) and regions with less collision probability.
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APPENDIX I
PERIODIC LQG CONTROLLER

Periodic Linear Quadratic Gaussian (PLQG) controller is a time-varying LQG controller that is designed to track a periodic
nominal trajectory in the presence of process and observation noise.

In this section, we first discuss the system linearization and nominal trajectory, and then discuss the KF, LQR and LQG
designed along this trajectory. Consider the nonlinear partially-observable state-space equations of the system as follows:

x
k+1 = f(x

k

, u
k

, w
k

), w
k

⇠ N (0, Q
k

) (35a)
z
k

= h(x
k

, v
k

), v
k

⇠ N (0, R
k

). (35b)

A T -periodic nominal trajectory for the robot is a sequence of planned states (xp

k

)

k�0 and planned controls (up

k

)

k�0, such
that it is consistent with the noiseless dynamics model, i.e., we have:

xp

k+1 = f(xp

k

, up

k

, 0), xp

k+T

= xp

k

, up

k+T

= up

k

. (36)

The role of a closed-loop stochastic controller in tracking a nominal trajectory is to compensate for robot’s deviations (due
to the noise) from the nominal trajectory and to keep the robot close to the nominal trajectory in the sense of minimizing
the following quadratic cost:

J = E

2

4
X

k�0

(x
k

� xp

k

)

TW
x

(x
k

� xp

k

) + (u
k

� up

k

)

TW
u

(u
k

� up

k

)

3

5 (37)

where W
x

and W
u

are positive definite weight matrices for the state and control cost, respectively.
Since the system’s state is only partially observable, at every step of LQG execution, a Kalman filter estimates the system’s

state and an LQR controller generates the optimal control based on this estimation. We first linearize the system along the
nominal trajectory and then describe the KF and LQR designed along this path.

Model linearization: Given a periodic nominal trajectory (xp

k

, up

k

)

k�0, we linearize the dynamics and observation model
in (35), as follows:

x
k+1 = f(xp

k

, up

k

, 0) +A
k

(x
k

� xp

k

) +B
k

(u
k

� up

k

) +G
k

w
k

, w
k

⇠ N (0, Q
k

) (38a)
z
k

= h(xp

k

, 0) +H
k

(x
k

� xp

k

) +M
k

v
k

, v
k

⇠ N (0, R
k

) (38b)

where
(
A

k

=

@f

@x

(xp

k

, up

k

, 0), B
k

=

@f

@u

(xp

k

, up

k

, 0), G
k

=

@f

@w

(xp

k

, up

k

, 0),

H
k

=

@h

@x

(xp

k

, 0), M
k

=

@h

@v

(xp

k

, 0)
(39)

It is worth noting that the linearized system is a periodic one, i.e.,

A
k+T

= A
k

, B
k+T

= B
k

, G
k+T

= G
k

, H
k+T

= H
k

, M
k+T

= M
k

, Q
k+T

= Q
k

, R
k+T

= R
k

. (40)

Error system: Now, let us define the following errors:
• LQG error (main error): e

k

= x
k

� xp

k

• KF error (estimation error): ee
k

= x
k

� bx+
k

• LQR error (mean of estimation of LQG error): be+
k

= bx+
k

� xp

k

Note that these errors are linearly dependent: e
k

= be+
k

+ee
k

. Also, defining �u
k

= u
k

�up

k

and �z
k

= z
k

�zp
k

:= z
k

�h(xp

k

, 0),
we can rewrite above linearized models as follows:

e
k+1 = A

k

e
k

+B
k

�u
k

+G
k

w
k

, w
k

⇠ N (0, Q
k

) (41a)
�z

k

= H
k

e
k

+M
k

v
k

, v
k

⇠ N (0, R
k

) (41b)

which is a periodic linear system due to (40).
Periodic Kalman filter: Periodic Kalman Filter (PKF) is a time-varying Kalman filter, whose underlying linear system

is periodic. In Kalman filtering, we aim to provide an estimate of the system’s state based on the observations we have
obtained and the control signals we have applied up to time k, i.e., z0:k and u0,k�1. The estimated state is a random vector
denoted by x+

k

, whose distribution is the conditional distribution of the state on the obtained data so far, which is referred
to as belief and is denoted by b

k

:

b
k

= p(x+
k

) = p(x
k

|z0:k, u0:k�1) (42)
bx+
k

= E[x
k

|z0:k, u0:k�1] (43)
P
k

= C[x
k

|z0:k, u0:k�1] (44)
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where E[·|·] and C[·|·] are the conditional expectation and conditional covariance operators, respectively. In the Gaussian
case, we have b

k

= N (bx+
k

, P
k

), i.e., the belief can only be characterized by its mean and covariance. Hence, we can show
b
k

as the mean-covariance pair b
k

⌘ (bx+
k

, P
k

). Similar to the conventional Kalman filtering, PKF consists of two steps at
every time stage: the prediction step and the update step. In the prediction step, the mean and covariance of prior x�

k

is
computed. For the system in (41) the prediction step is:

be�
k+1 = A

k

be+
k

+B
k

�u
k

(45)
P�
k+1 = A

k

P+
k

AT

k

+G
k

Q
k

GT

k

(46)

In the update step, the mean and covariance of posterior x+
k

is computed. For the system in (41), the update step is:

K
k

= P�
k

HT

k

(H
k

P�
k

HT

k

+M
k

R
k

MT

k

)

�1 (47)
be+
k+1 = be�

k+1 +K
k+1(�zk+1 �H

k+1be�
k+1) (48)

P+
k+1 = (I �K

k+1Hk+1)P
�
k+1 (49)

Note that

bx+
k

= E[x
k

|z0:k, u0:k�1] = xp

k

+ E[e
k

|z0:k, u0:k�1] = xp

k

+ be+
k

(50)
P
k

= C[x
k

|z0:k, u0:k�1] = C[e
k

|z0:k, u0:k�1] = P+
k

(51)

Lemma 4: (Covariance convergence under PLQG): In Periodic Kalman filtering, if for all k, the pair (A
k

, H
k

) is
detectable and the pair (A

k

, ˇQ
k

) is stabilizable, where G
k

Q
k

GT

k

=

ˇQ
k

ˇQT

k

, then the prior covariance P�
k

, the posterior
covariance P

k

, and the filter gain K
k

all converge to their T -periodic stationary values, denoted by ˇP�
t

, ˇP
t

, and ˇK
t

,
respectively [11]. Matrix ˇP�

t

is the unique Symmetric T -Periodic Positive Semi-definite (SPPS) solution [11] of the following
Discrete Periodic Riccati Equation (DPRE):

ˇP�
k+1 = G

k

Q
k

GT

k

+A
k

(

ˇP�
k

� ˇP�
k

HT

k

(H
k

ˇP�
k

HT

k

+M
k

R
k

MT

k

)

�1H
k

ˇP�
k

)AT

k

(52)

Having ˇP�
k

, the periodic gain ˇK
k

and estimation covariance ˇP
k

are computed as follows:

ˇK
k

=

ˇP�
k

HT

k

(H
k

ˇP�
k

HT

k

+M
k

R
k

MT

k

)

�1, (53)
ˇP
k

= (I � ˇK
k

H
k

)

ˇP�
k

(54)
where

ˇP�
k+T

=

ˇP�
k

, ˇK
k+T

=

ˇK
k

, ˇP
k+T

=

ˇP
k

(55)

Proof: See [11].
Note that if the pair (A

k

, H
k

) is detectable and the pair (A
k

, ˇQ
k

) is stabilizable, then the pair (A
k

, H
k

) is observable and
the pair (A

k

, ˇQ
k

) is controllable, and hence Lemma 2 follows.
Periodic LQR controller: An LQR controller is utilized as the separated controller [21] within the structure of the LQG

controller. Once Kalman filter produces the estimation (belief), the LQR controller generates the optimal control signal
accordingly. In other words, we have a time-varying mapping µ

k

from belief space into the control space that generates an
optimal control based on the given belief u

k

= µ
k

(b
k

) at every time step k. In LQG, the mapping µ
k

is the control law of
the LQR controller, which is optimal in the sense of minimizing the following cost:

J
PLQR

= E

2
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3

5 . (56)

The linear control law that minimizes this cost function for a linear system is:

�u
k

= �L
k

be+
k

, L
k+T

= L
k

(57)

Lemma 5: In Periodic LQR (PLQR), if for all k, the pair (A
k

, B
k

) is stabilizable and the pair (A
k

, ˇW
x

) is detectable,
where W

x

=

ˇWT

x

ˇW
x

, then the time-varying feedback gains L
k

are T -periodic gains, i.e., L
k+T

= L
k

and are computed as
follows:

L
k

= (BT

k

S
k+1Bk

+W
u

)

�1BT

k

S
k+1Ak

, (58)
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where S
k

is the SPPS solution of the following DPRE:

S
k

= W
x

+AT

k

S
k+1Ak

�AT

k

S
k+1Bk

(BT

k

S
k+1Bk

+W
u

)
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k

S
k+1Ak

. (59)
Note that the whole control is u

k

= up

k

+ �u
k

.
Periodic LQG controller: Plugging the obtained control law of PLQR into the PKF equations, we can get the following

error dynamics:
✓
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or equivalently,
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◆
. (61)

Defining ⇣
k

:= (e
k

, be+
k

)

T and q
k

:= (w
k

, v
k+1)

T , we can rewrite (61) in a more compact form as

⇣
k+1 = F

k

⇣
k

�G
k

q
k

, q
k

⇠ N (0, Q
k

), Q
k

=

✓
Q

k

0

0 R
k+1

◆
(62)

with appropriate definitions for F
k

and G
k

. Thus, ⇣
k

is a random variable with a Gaussian distribution, i.e.,

⇣
k

⇠ N (0,P
k

), (63)

or
✓

x
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k

◆
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✓
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k
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◆
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), (64)

where P
k

is the solution of the following Discrete Periodic Lyapunov Equation (DPLE):

P
k+1 = F

k

P
k

F
T

k

�G
k

Q
k

G
T

k

, (65)

which can be decomposed into four blocks

P
k

=

✓ P
k,11 P

k,12

P
k,21 P

k,22

◆
. (66)

Lemma 6: Under the preceding assumptions in Lemmas 4 and 5, the solution of DPLE in (65) converges to a unique
SPPS solution ˇP

k

independent of the initial covariance P0, i.e., ˇP
k+T

=

ˇP
k

.
Proof: See [11].

Therefore, the process in (62) converges to a cyclostationary process [10], i.e., the distribution over ⇣
k

is periodic.
Thus, since bx+

k

⇠ N (xp

k

,P
k,22), the distribution over the estimation mean is also converges to a periodic distribution, i.e.,

bx+
k

⇠ N (xp

k

, ˇP
k,22) = N (xp

k+T

, ˇP
k+T,22). Hence, this analysis leads to the following lemma:

Lemma 7: Under Periodic LQG, belief falls into a Gaussian cyclostationary process, i.e., the distribution over belief
b
k

⌘ (bx+
k

, P
k

) converges to the following periodic Gaussian distribution:

b
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k

) ⇠ N
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◆
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(67)

The degeneracy of the Gaussian distribution over belief in (67) is due to the fact that ˇP
k

is a deterministic process. It
is worth noting that the belief mean converges to the T -periodic belief E[b

k+T

] = E[b
k

] = (xp

k

, ˇP
k

). Hence, the Lemma 1
follows, as it is the same as Lemma 7, where we have:
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k

=

✓
xp

k

ˇP
k

◆
, C

k

=

✓
ˇP
k,22 0

0 0

◆
(68)
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APPENDIX II
PROOF OF LEMMA 3

Proof: Let us consider the state space model of a T -periodic linear system of interest as follows:

x
k+1= A

k

x
k

+B
k

u
k

+G
k

w
k

, w
k

⇠ N (0,Q
k

) (69a)
z
k

= H
k

x
k

+ v
k

, v
k

⇠ N (0,R
k

). (69b)

Based on Lemma 1 and Lemma 2, if (A,B) and (A, Q̌) are controllable pairs, where GQGT

= Q̌Q̌T , and if (A,H) and
(A,W̌

x

) are observable pairs, where W
x

= W̌T

x

W̌
x

, then the estimation covariance deterministically tends to a T -periodic
stationary covariance ˇP

k

. Therefore, for any ✏ > 0, after a deterministic finite time, P
k

enters the ✏-neighborhood of the
periodic stationary covariance, i.e., kP

k

� ˇP
k

k
m

< ✏ for all k large enough, where k · k stands for an appropriate matrix
norm.

The estimation mean dynamics, however, is stochastic and is as follows for the system in Eq. (69):
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L
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k+1vk+1, (70)

where the Kalman gain K
k

is:

K
k

= P�
k

HT

k

(H
k

P�
k

HT

k

+R
k

)

�1. (71)

Since K
k

is full rank (due to the condition on the rank of H
k

) for all k and since v and w are Gaussian noises, (70) induces
an irreducible Markov process over the state space [23]. Thus, if we have a stopping region for the estimation mean with
size ✏ > 0, the estimation mean process will hit this stopping region in finite time [23], with probability one, i.e., for a
finite v 2 X, the condition kbx+

k

� vk < ✏ is satisfied in finite time. However, v can be chosen in a way that maximizes the
absorption probability and minimizes the hitting time.

Based on the estimation mean dynamics in (70) and the state dynamics in Appendix I, if the estimation mean process
and state process start from bx+

0 and x0, respectively, such that E[bx+
0 ] = xp

k

and E[x0] = xp

k

(which indeed is the case in
FIRM due to the usage of edge-controllers), “the mean of estimation mean” remains on xp

k

, i.e., E[bx+
k

] = xp

k

, for all k. As
a result, xp

k

is the optimal choice for the center of stopping region and thus, the condition kbx+
k

� xp

k

k < ✏ is satisfied in
minimum time in the sense of “expected value”.

Combining the results for estimation covariance and estimation mean, if we define the region ˇB
k

as a set in the Gaussian
belief space with a non-empty interior centered at (xp

k↵
, ˇP

k↵), then the belief b
k

⌘ (bx+
k

, P
k

) enters region [
k

ˇB
k

with
minimum finite expected time with probability one. To decrease the number of nodes, one can only look at the subsequence
`b
↵

:= b
k↵ ⌘ (bx+

k↵
, P

k↵) and B
↵

:=

ˇB
k↵ for {k1, k2, · · · , km} ⇢ {1, 2, · · · , T}, then similarly the belief `b

↵

enters region
[
↵

B
↵

in finite time with probability one.
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Robust Online Belief Space Planning in Changing Environments:
Application to Physical Mobile Robots

Ali-akbar Agha-mohammadi, Saurav Agarwal, Aditya Mahadevan,
Suman Chakravorty, Daniel Tomkins, Jory Denny, Nancy M. Amato

Abstract— Motion planning in belief space (under motion and
sensing uncertainty) is a challenging problem due to the compu-
tational intractability of its exact solution. The Feedback-based
Information RoadMap (FIRM) framework made an important
theoretical step toward enabling roadmap-based planning in
belief space and provided a computationally tractable version
of belief space planning. However, there are still challenges in
applying belief space planners to physical systems, such as the
discrepancy between computational models and real physical
models. In this paper, we propose a dynamic replanning scheme
in belief space to address such challenges. Moreover, we present
techniques to cope with changes in the environment (e.g.,
changes in the obstacle map), as well as unforeseen large
deviations in the robot’s location (e.g., the kidnapped robot
problem). We then utilize these techniques to implement the
first online replanning scheme in belief space on a physical
mobile robot that is robust to changes in the environment and
large disturbances. This method demonstrates that belief space
planning is a practical tool for robot motion planning.

I. INTRODUCTION

Sequential decision making under uncertainty is a key
prerequisite for many robotics applications. Consider an
autonomous, low-cost mobile robot that is subject to motion
noise and lacks exact measurements due to sensor noise.
Controlling this robot and planning motions for it is an in-
stance of the Partially-Observable Markov Decision Process
(POMDP) [13], [23] problem, which is a formal framework
for sequential decision making under uncertainty. However,
the POMDP problem is also notorious for its computational
intractability. Methods such as [11], [15], [18], [24], [25]
reduce the computation burden of POMDPs and aim to
solve more challenging and realistic problems. Recently, the
Feedback-based Information RoadMap (FIRM) framework
[3] takes an important theoretical step toward realistic scenar-
ios by significantly reducing the computational complexity
of planning under uncertainty.

Additionally, handling changes in the environment (e.g.,
obstacles), changes in the goal location, and large deviations
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(b)
Fig. 1. (a) A picture of robot (iRobot Create) in the operating environment.
Landmarks can be seen on the walls. (b) Floorplan of the environment, in
which experiments are conducted.

in the robot’s location calls for online planning in uncertain,
partially observable environments. However, when dealing
with real-world physical systems, POMDP-based methods,
including FIRM, encounter another important challenge:
discrepancy between real models with the models used for
computation. Such discrepancies can lead to deviations from
the desired plan. Moreover, changes in the environment and
large disturbances are other important challenges that needs
to be handled. One strategy to address this problem is an
ability to dynamically replan in belief space. In this paper,
we propose a principled rollout-based extension of FIRM
planning to facilitate its application to real-time stochastic
(re)planning problems, and deal with changes in the envi-
ronment and large disturbances in the robot’s state.

In the main body of POMDP literature, in particular
sampling-based methods, the computed solution depends on
the initial belief [4], [7], [9], [14], [21], [28] (sometimes
referred to as single-query solvers). Therefore, in replanning
(planning from a new initial belief) almost all the compu-
tations need to be done again, which prohibits their usage
in cases where real-time dynamic replanning schemes, such
as Receding Horizon Control (RHC), are needed. However,
multi-query methods such as FIRM [2], [3] provide a con-
struction mechanism independent of the initial belief of the
system. As a result, they are suitable methods to be used for
dynamic replanning purposes.

Trajectory optimization-based methods can also be used
for replanning in an RHC scheme. The RHC framework was



originally designed for deterministic systems. The most com-
mon approach is to approximate the stochastic system with a
deterministic one by replacing the uncertain quantities with
their mean (or maximum likelihood) values [5]. Methods
such as [8], [10], [12], [20], [27] fall into this category and
can be used in the RHC setting; they replace future random
observations with their deterministic maximum likelihood
value. However, in this form of RHC, the optimization is
carried out only within a limited horizon. Also, removing
the system’s stochasticity may lead to unreliable plans.

The main contributions of this paper are threefold.
• We propose a principled method for real-time replan-

ning in belief space by extending the idea of the rollout
policy [5] to belief space using FIRM. This method
considers all possible future observations.

• We propose techniques such as a “lazy feedback evalu-
ation” algorithm to react to changes in the environment
as well as large disturbances.

• We implement the proposed belief space planning
scheme on a physical robotic system as an application
of the FIRM framework. We demonstrate the robustness
of the method to changes in the environment, failures
in the sensory system, and large deviations.

These results lay the groundwork for further application of
the theoretical POMDP framework to practical applications,
thus moving toward long-term autonomy in robotic systems.

II. PROBLEM STATEMENT AND TARGET APPLICATION

We aim to design a belief space planner that can han-
dle uncertainties associated with a typical low-cost robot.
Moreover, the planner needs to be able to replan in real-
time so that it can cope with changes in the environment as
well as deviations resulting from model discrepancies, large
disturbances, and sensor failures.

To formally define the problem, we start by defining the
concept of belief and policy. Consider a system whose state,
control, and motion noise are denoted by x

k

, u
k

, and w

k

,
respectively, at the k-th time step. Let us denote the state
evolution model by x

k+1 = f(x

k

, u

k

, w

k

). In a partially
observable environment, the exact value of system state x

k

is not known. However, we can get the measurement (or
observation) vector z

k

at the k-th time step through sensors.
Let us denote the measurement model by z

k

= h(x

k

, v

k

),
where v

k

denotes sensing noise. Therefore, the only available
data for decision making at the k-th time step are the
observations we have received and the controls we have
applied up to that time step, i.e., H

k

= {z0:k, u0:k�1} =

{z0, z1, · · · , zk, u0, · · · , uk�1}. A filtering module can en-
code this data into a probability distribution over all possible
system states b

k

= p(x

k

|H
k

), which is referred to as the
belief or information-state. Therefore, the action u

k

can be
taken based on the belief b

k

using a policy (planner) ⇡
k

, i.e.,
u

k

= ⇡

k

(b

k

). In Bayesian filtering, belief can be computed
recursively based on the last action and current observation,
b

k+1 = ⌧(b

k

, u

k

, z

k+1) [5], [26].
To find the policy ⇡

k

, we need to define the objective of
planning. Although the objective function can be general,

the cost function we will use in our experiments includes
the localization uncertainty, control effort, and elapsed time.

c(b

k

, u

k

) = ⇣

p

tr(P
k

) + ⇣

u

ku
k

k+ ⇣

T

, (1)

where tr(P
k

) is the trace of estimation covariance. The norm
of the control signal ku

k

k denotes the control effort, and ⇣

T

is present in the cost to penalize each time lapse. Coefficients
⇣

p

, ⇣
u

, and ⇣

T

are user-defined task-dependent scalars that
combine these costs to achieve a desirable behaviour. In the
presence of a constraint set F (e.g., obstacles), we assume
that the task fails if the robot violates these constraints (e.g.,
collides with obstacles). Therefore, in case of failure, the
running-sum of costs (cost-to-go), i.e., J(F ) =

P1
t

0 c(b, u)

is set to a suitably high cost-to-go.
Planning under uncertainty is defined as finding a sequence

of policies ⇡0:1(·)={⇡1(·),⇡2(·),⇡3(·), · · · }. Therefore, the
original problem of stochastic control with imperfect state
information is defined as follows:

Problem 1. (POMDP) The problem of stochastic control
with imperfect state information, or the Partially-Observable
Markov Decision Process (POMDP) problem, is defined as
the following optimization over the policy space:

⇡0:1(·) = arg min

⇧0:1

1X
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where, ⇧
k

is the space of all possible policies at time step
k, i.e., ⇡

k

2 ⇧

k

.

In the infinite horizon case, the solution is a stationary
policy ⇡

s

, i.e., ⇡1 = ⇡2 = · · · = ⇡

s

. However, Problem 1 is
written in a more general setting to emphasize the connection
with rollout policy, discussed further below. Solving the
POMDP problem is computationally intractable over con-
tinuous state, action, and observation spaces. However, the
main problem that this paper aims to solve is the following:

Problem 2. (Re-Solving POMDPs in real-time) In case of a
change in the failure set F (e.g. obstacles) or large deviation
in the system’s belief, re-solve Problem 1 in real-time.

This paper aims at solving Problem 2 by exploiting FIRM,
which re-use the computations performed for solving the
POMDP problem a priori and hence can deal with such
changes online.

A. Sample Application Scenario
We exercise the proposed planner in an office-like environ-

ment, where we use a low-cost iRobot Create platform (Fig-
ure 1(a)), on which a Dell Latitude laptop with an on-board
camera is mounted. The robot obtains noisy measurements
(relative range and bearing) from unique landmarks that are
installed in the environment. The desired behaviour for the
planner is to guide the robot to a goal through those regions
of the environment where the robot can better localize itself
and hence better avoid collisions. Most importantly, the



planner needs to be able to replan online so that it can handle
changes in the environment and deviations resulting from
model discrepancies, large disturbances, and sensor failures.
We briefly discuss the environment, robot model, and sensory
system. More detailed descriptions can be found in [1].

Environment: The specific environment for conducting
experiments is the fourth floor of the Bright building at
Texas A&M University. A floorplan is shown in Fig. 1(b).
The hallway (yellow) and the experiment region (blue) are
highlighted. The blue region contains a large cluttered office
(room 407) with several doors.

System model (robot and sensors): We use an iRobot
Create (Fig. 1(a)), whose state x

k

= (x

k

, y

k

, ✓

k

)

T encodes
its 2D position and heading angle at the k-th time step.
The state evolution model x

k+1 = f(x

k

, u

k

, w

k

) is the
unicycle model, where the control command u

k

consists of
the linear and angular velocities u

k

= (V

k

,!

k

)

T . Motion
noise w

k

⇠ N (0,Q
k

) gets added to the control signal (see
[1] for details). For sensing purposes, we use the laptop’s
on-board camera to detect landmarks (with unique black and
white patterns) that are placed at known locations on walls
(Fig. 1(a)). Denoting the j-th landmark position as j

L, the
obtained measurement is the relative range and bearing to
the landmark:
j

z

k

= [kjd
k

k, atan2(jd2k ,
j

d1k)� ✓]

T

+

j

v,

j

v ⇠ N (0, jR),

where jd
k

= [

j

d1k ,
j

d2k ]
T

:= [x

k

, y

k

]

T � L

j

. Experimen-
tally, we have found that the intensity of measurement noise
j

v increases with the distance from the j-th landmark and
the incidence angle. The incidence angle refers to the angle
between the line connecting the camera to a landmark and
a surface normal to the wall on which the landmark is
mounted. Denoting the incident angle by � 2 [�⇡/2,⇡/2],
we model the sensing noise associated with the j-th landmark
as a zero mean Gaussian whose covariance is

jR
k

= diag
�
(⌘

rdkjdk
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r� |�k
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2
,
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In our implementation, we use ⌘

rd = 0.1, ⌘

r� = 0.01,
�

r

b

= 0.05m, ⌘
✓d = 0.001, ⌘

✓� = 0.01, and �

✓

b

= 2.0deg.
The full vector of measurements z is the concatenation of
measurements from visible landmarks.

III. OVERVIEW OF FIRM
In this section, we briefly review the Feedback-based

Information RoadMap (FIRM) framework [2], [3]. However,
the concrete realization of FIRM constructed for conducting
the experiments is detailed in [1]. An Information RoadMap
(IRM) is a “multi-query” graph in belief space constructed
independent of the initial belief space. Therefore, the in-
tractable belief MDP problem can be reduced to a tractable
MDP problem on this graph. Each node in an IRM is a
small region B = {b : kb�`

bk  ✏} around a sampled belief
`

b. We denote the i-th node by B

i and the set of nodes by
V = {Bi}. Each edge in an IRM is a local controller. In
FIRM, each edge (local controller) is a feedback controller
whose goal is to drive the belief into the target node of the

edge. We denote the edge (controller) between nodes i and
j by µ

ij and the set of edges by M = {µij}. A policy ⇡

g

on the graph is a mapping from graph nodes to edges; i.e.,
⇡

g

: V ! M. Denote the set of all possible policies as ⇧

g .
Having such a graph in belief space, we can form the

POMDP on the FIRM graph (so-called FIRM MDP):

⇡

g

= argmin

⇧g
E

1X

n=0

C

g

(B

n

,⇡

g

(B

n

)) (4)

where, B
n

is the n-th visited node, and µ

n

is the edge taken
at B

n

. C

g

(B,µ) :=

PT
k=0 c(bk, µ(bk)) is the generalized

cost of taking local controller µ at node B centered at b0.
We incorporate the failure set in planning by adding a

hypothetical FIRM node B

0
= F to the list of FIRM nodes.

As the FIRM MDP in Eq.(4) is defined over the finite set
of nodes, we can solve it by computing the graph cost-to-go
through solving the following dynamic programming:

J

g

(B

i

)=min

µ

{Cg

(B

i

, µ) +

NX

�=0

Pg

(B

� |Bi

, µ)J

g

(B

�

)} (5)

where Pg

(B

� |Bi

, µ) is the probability of reaching B

� from
B

i under µ. The failure and goal cost-to-go’s (i.e., Jg

(B

0
)

and J

g

(B

goal

)) are set to a suitably high positive value and
zero, respectively. Accordingly, the replanning algorithms,
when start or goal changes, are presented in Algorithms 1
and 2. For a more detailed description of FIRM, see [1].

Algorithm 1: (Re)plan from
1 input : Start belief b0, cost-to-go J

g

(·), nodes V={Bi}
2 output : Next Local Controller µ⇤

3 Find r neighboring nodes N = {Bi}r
i=1 to b0;

4 Set J⇤
(B) = 1;

5 for B 2 N do
6 Construct local planner µ from b0 to B;
7 Compute transition cost C(b0, µ) and probability

P(B|b0, µ);
8 if C(b0, µ) +

NP
�=0

P(B� |b0, µ)Jg

(B

�

) < J

⇤
(B) then

9 J

⇤
(B) = C(b0, µ) +

P
N

�=0 P(B� |b0, µ)Jg

(B

�

);
10 µ

⇤
= µ;

11 return µ

⇤;

Algorithm 2: (Re)plan to
1 input : Goal node B

goal, FIRM Graph G = {V,M}
2 output : FIRM feedback ⇡

g

3 Add B

goal to the graph; update V and M accordingly;
4 Compute the cost-to-go J

g and feedback ⇡

g over the
FIRM nodes by solving the MDP in Eq. (5);

5 return ⇡

g;

IV. DYNAMIC REPLANNING IN BELIEF SPACE

In this section, we first discuss the extension of the
Receding Horizon Control (RHC) and Rollout Policy (ROP)
[5] to belief space. Then we propose an ROP based on FIRM



that can cope with changes in the environment as well as
large deviations.

RHC in belief space: Receding horizon control (often
referred to as rolling-horizon or model-predictive control)
was originally designed for deterministic systems (to cope
with model discrepancy). For stochastic systems, where the
closed-loop (feedback) control law is needed, the best for-
mulation of the RHC scheme is a subject of current research
[8], [16], [22]. In the most common form of RHC [5],
the stochastic system is approximated with a deterministic
system by replacing the uncertain quantities with their typical
values (e.g., maximum likelihood value). In belief space
planning, the quantities that inject randomness into belief
dynamics are unknown future observations. Thus, one can re-
place random observations z

k

with their deterministic maxi-
mum likelihood value z

ml

k

, where z

ml

k

:= argmax

z

p(z

k

|xd

k

)

in which x

d is the nominal deterministic value for the state
that results from replacing the motion noise w by zero;
i.e., x

d

k+1 = f(x

d

k

,⇡

k

(b

d

k

), 0). The deterministic belief b

d

is then used for planning in the receding horizon window.
At every time step, the RHC scheme performs a two-stage
computation. To describe these stages, let us assume we are
at step n and the belief is b

n

. At the first stage, the RHC
scheme for deterministic systems solves an open-loop control
problem (i.e., returns a sequence of actions u0:T ) over a
fixed finite horizon T by solving the following optimization
problem:

u0:T = argmin

U0:T

TX

k=0

c(b

d

k

, u

k

)

s.t. b

d

k+1 = ⌧(b

d

k

, u

k

, z

ml

k+1), b

d

0 = b

n

z

ml

k+1 = argmax

z

p(z|xd

k+1)

x

d

k+1 = f(x

d

k

, u

k

, 0), (6)

In the second stage, it executes only the first action u0

and discards the remaining actions in the sequence u0:T .
However, since the actual observation is noisy and is not
equal to the z

ml, belief b

n+1 will be different than b

d

1.
Subsequently, RHC performs these two computations from
the new belief b

n+1. In other words, RHC computes an
open loop sequence u0:T from this new belief. This process
continues until the belief reaches a desired belief location.
Algorithm 3 recaps this procedure.

Algorithm 3: RHC for Partially-observable stochastic
systems

1 input : Initial belief b
current

2 X, B
goal

⇢ B
2 while b

current

/2 B

goal

do
3 u0:T = Solve the optimization in Eq.(6) starting

from b

d

0 = b

current

;
4 Apply the action u0 to the system;
5 Observe the actual z;
6 Compute the belief b

current

 ⌧(b

current

, u0, z);

State-of-the-art methods such as [27] and [19] utilize this
form of RHC in belief space. This framework is also called

Partially-Closed Loop RHC (PCLRHC) [27] since it partially
exploits some information about the future observations (i.e.,
z

ml) and does not fully ignore them.
Issues with RHC: There are some issues regarding the

presented form of the RHC framework: First, due to the lim-
ited horizon and ignoring the cost-to-go beyond the horizon,
the method may get stuck into pitfalls by choosing actions
that guide the robot toward “favorable” states (with low cost)
in the near future followed by a set of “unfavorable” states
(with a high cost) in the long run. Second, the presented form
of RHC ignores the stochasticity of the system within the
horizon, which may lead to inaccurate approximations of the
cost and unreliable control actions. To overcome these issues,
researchers have proposed variants of RHC and different
frameworks based on the idea of repeated planning [5]. Here,
we discuss such a framework called “rollout policy” [5] and
aim to realize it in belief space using the FIRM framework.

Rollout policy in belief space: A class of methods that
aims to reduce the complexity of the stochastic planning
problem in Eq.2 is the class of Rollout Policies (ROP) [5],
which are more powerful than the described version of RHC
in the following sense: First, they search for a sequence of
policies (instead of open-loop controls) within the horizon,
and do not approximate the system with a deterministic
one. Second, they use a suboptimal policy, called the “base
policy,” to compute a cost-to-go function e

J that approximates
the true cost-to-go beyond the horizon. In other words, at
each step of the rollout policy scheme, the following closed-
loop optimization is solved:

⇡0:T (·) = argmin

⇧0:T

E
"

TX

k=0

c(b

k

,⇡

k

(b

k

)) +

e
J(b

T+1)

#
(7)

s.t. b

k+1 = ⌧(b

k

,⇡

k

(b

k

), z

k

), z

k

⇠ p(z

k

|x
k

)

x

k+1 = f(x

k

,⇡

k

(b

k

), w

k

), w

k

⇠ p(w

k

|x
k

,⇡

k

(b

k

))

Then, only the first control law ⇡0 is used to generate the
control signal u0 and the rest of the policies are discarded.
Similar to RHC, after applying the first control, a new
sequence of policies is computed from the new point. The
rollout algorithm is shown in Algorithm 4.

Algorithm 4: Rollout algorithm in Belief Space:
1 input : Initial belief b

current

2 B, B
goal

⇢ B
2 while b

current

/2 B

goal

do
3 ⇡0:T = Solve optimization in Eq.(7) starting from

b0 = b

current

;
4 Apply the action u0 = ⇡(b0) to the system;
5 Observe the actual z;
6 Compute the belief b

current

 ⌧(b

current

, u0, z);

Although the rollout policy in the belief space efficiently
reduces the computational cost compared to the original
POMDP problem, it is still formidable to solve, since the
optimization is carried out over the policy space. Moreover,
there should be a base policy that provides a reasonable cost-
to-go e

J . We propose a rollout policy in the belief space based
on the FIRM-based cost-to-go.



FIRM-based Rollout Policy: In the FIRM-based rollout
policy, we adopt the FIRM policy as the base policy of the
rollout algorithm. Accordingly, the cost-to-go of the FIRM
policy will be used as the cost-to-go beyond the horizon.
Now, if we have a dense FIRM graph such that FIRM nodes
partition the belief space (i.e., [

i

B

i

= B), then at the end
of the horizon, the belief b

T+1 belongs to a FIRM node
B from which the FIRM cost-to-go is available. However,
in practice, when the FIRM nodes cannot cover the entire
belief space, we need to make sure that a truncated policy
can drive the belief into a FIRM node at the end of horizon.
Nevertheless, since the belief evolution is random, we may
not be able to guarantee that the belief reaches a FIRM node
at the end of a deterministic horizon T . Therefore, instead
of truncating the policy over a fixed time, we truncate the
policy once the belief reaches a pre-specified stopping region
(which happens in a random time denoted by T ) as follows:

⇡0:1(·) = arg min

⇧0:1
E
" TX

k=0
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k

,⇡

k

(b

k

)) +

e
J(bT +1)

#

s.t. b

k+1 = ⌧(b

k

,⇡

k

(b

k

), z
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), z

k

⇠ p(z

k

|x
k

)

x

k+1 = f(x

k

,⇡

k

(b

k

), w

k

), w

k

⇠ p(w

k

|x
k

,⇡

k

(b

k

))

bT +1 2 [jBj

, (8)

where for bT +1 2 B

j we have

e
J(bT +1) = J

g

(B

j

) (9)

The last condition in Eq.8 can be written more rigorously as
P(bT +12[jBj |⇡)=1 for a finite T . Also, as noted in Eq.(9),
it is worth noting that the FIRM-based cost-to-go J

g

(·) plays
the role of the cost-to-go beyond the horizon e

J(·).
Therefore, in solving the FIRM-based rollout policy prob-

lem, we aim to find a sequence of policies that ends up in
a FIRM node and minimizes the cost in Eq.8. To find this
optimal policy, we parametrize the policy space and perform
minimization over the parameter space.

In our implementation, we adopt a variant of the Open-
Loop Feedback Control (OLFC) scheme [5] along with a
Kalman Filter as the belief controller. In this variant of
OLFC, for a given v, we compute an open-loop control
sequence starting from the current estimation mean and
ending at v. Then, we apply a truncated sequence of the
first l controls (l = 5 in our experiments). This process
repeats every l steps until we reach the graph node. More
details can be found in [1]. Therefore, the policy can be
characterized by the next node; i.e., ⇡(·;v). Thus, to solve
the optimization in Eq.7 we search for the FIRM node `

b

j

=

(vj

, P

j

) whose mean, i.e., vj , leads to the best local policy
⇡(·;vj

). Accordingly, we implement the rollout technique in
Algorithm 4.

V. REPLANNING IN CHANGING ENVIRONMENTS AND
PRESENCE OF LARGE DEVIATIONS

In this section, we discuss how we handle changes in
the obstacle map and large deviations in the robot’s belief.
In general, handling these cases in belief space is a big
challenge as they require online updating of the planning

structure in belief space. It is important to note that it is
the graph structure of FIRM that makes such an update and
replanning feasible in real-time. The graph structure of FIRM
allows us to locally change collision probabilities without
affecting the rest of the graph (i.e., properties of different
edges on the graph are independent of each other). It is
important to note that such a property is not present in other
state-of-the-art belief space planners, including SARSOP
[15], BRM (Belief Roadmap Method) [21], or LQG-MP [28].
In those methods, collision probabilities and costs on all
edges (number of possible edges is exponential in the size
of underlying PRM) need to be re-computed.

A. Lazy Feedback Evaluation in Changing Environments
To adapt the proposed framework to handle changing

environments, we rely on lazy evaluation methods. Inspired
by the lazy evaluation methods for PRM frameworks [6],
we propose a variant of the lazy evaluation methods for
evaluating the generated feedback law. The basic idea is that
at every node the robot re-evaluates only the next edge that it
needs to take or a limited set of edges in the vicinity of the
robot. By re-evaluation, we mean it re-computes collision
probabilities along those edges. If there is a significant
change in the local collision probabilities, then the dynamic
programming problem is re-solved and a new feedback tree is
computed. Otherwise, the feedback tree remains unchanged
and the robot keeps following it. This lazy evaluation scheme
can be performed in real-time. The method is outlined in
Algorithm 5.

Algorithm 5: Lazy Feedback Re-Evaluation
1 input : Feedback ⇡

g , current belief b
current

2 output : Updated feedback ⇡

g

3 Update the obstacles map;
4 if there is a change in map then
5 W  Retrieve the sequence of nominal edges

returned by feedback up to horizon l;
6 forall the edges µ 2W do
7 Re-compute the collision probabilities

P
new

(B,µ) from the start node B of edge;
8 if exists µ 2W such that

|P
new

(B,µ)� P(B,µ)| > ↵ then
9 P(B,µ) P

new

(B,µ);
10 ⇡

g  Replan(b
current

);

11 return ⇡

g;

B. Handling Large Disturbances (kidnapped robot problem)
In robotics, the kidnapped robot problem commonly refers

to a situation where an autonomous robot in operation is
carried to an arbitrary location. This problem introduces
different challenges such as (i) how to detect kidnapping,
(ii) how to localize the robot, and (iii) how to control the
robot to recover from this situation and accomplish its goal.
The third part of this problem calls for online replanning in
belief space.



Detecting a kidnapped situation: To detect the kidnapped
situation, we constantly monitor the innovation signal ez

k

=

z

k

�z

�
k

(the difference between actual and predicted observa-
tions). Recall that in our setting the observation at time step
k from the j-th landmark is the relative range and bearing
of the robot to the j-th landmark, i.e., j

z

k

= (

j

r

k

,

j

✓

k

).
The predicted version of this measurement is shown by
j

z

�
k

= (

j

r

�
k

,

j

✓

�
k

). We monitor the following measures of
the innovation signal:

er
k
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(|jr
k
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r

�
k

|), e
✓

k

= max

j

(d

✓

(

j

✓

k

,

j

✓

�
k

)), (10)

where d

✓

(✓, ✓

0
) returns the absolute value of the smallest

angle that maps ✓ onto ✓

0. Passing these signals through a
low-pass filter, we filter out the outliers (temporary failures in
the sensory reading). Denoting the filtered signals by r

k

and
✓

k

, we monitor the conditions r

k

< r

max

and ✓

k

< ✓

max

. If
both of them are satisfied, we follow the FIRM feedback (i.e.,
we are in the Feedback Following Mode (FFM)). However,
violation of either of these conditions means that the robot
is constantly observing high innovations, and thus it is not in
the location that it was supposed to be (i.e., it is kidnapped).
In Section VI, we show the innovation signal for a sample
run on a physical robot. In our implementation, we consider
r

max

= 1 (meters) and ✓

max

= 50 (degrees).
Information Gathering Mode (IGM): Once the robot de-

tects it has been kidnapped, the estimation covariance is
replaced with a large covariance to get an approximately
uniform distribution over the state space. Then, we enter
the Information Gathering Mode (IGM), where we take
small and conservative steps (e.g., turning in place or tak-
ing random actions with small velocities) to obtain more
measurements. Once the robot gets these measurements, the
localization module corrects the estimation value and the
innovation signal reduces. When conditions r

k

< r

max

and
✓

k

< ✓

max

are satisfied again, we exit the information
gathering mode.

Post-IGM replanning: After recovering from being kid-
napped, controlling the robot in belief space remains a
significant challenge because the system can be far from
where it was expected to be. However, using the proposed
method and assuming the FIRM graph has enough nodes
distributed well in the space, the robot needs to go only to
a neighboring node from this new point. Therefore, there is
no need for a costly replanning procedure. Indeed, the only
required computation is to evaluate the cost of edges that
connect the new start point to the neighboring FIRM nodes
based on Algorithm 1.

VI. EXPERIMENTAL RESULTS

In this section, we first discuss the results of PRM and
FIRM-based motion planning and show how belief space
planning can improve the performance. Then, we distinguish
our method from the state-of-the-art by examining and
discussing the robustness properties of the proposed method
to changes in the obstacle map, and to large deviations in
the robot’s location and the goal location. The experiments

are conducted on a low-cost iRobot Create equipped with a
laptop and an integrated monocular web-camera (Fig. 1(a)).

A. Planning with PRM and FIRM
The goal of this section is to compare the performance of

FIRM with deterministic planners such as Medial Axis PRM
(MAPRM) [29]. The solution of the dynamic programming
problem, i.e., ⇡

g , is visualized with a feedback tree (FT).
For each node, FT contains only one outgoing edge (µ =

⇡

g

(B

i

)). FT is rooted at the goal node.
MAPRM-based planning: As one of the best variants of

PRM when it comes to collision avoidance, we construct
an MAPRM [29] in the environment (Fig. 2(a)). As is seen
in Fig. 2(a), the path with maximum obstacle clearance
(and the shortest path) is the one through the front door of
room 407 (see Fig. 1(b)). Therefore, based on the obstacle
clearance, MAPRM leads to the feedback tree shown in
Fig. 2(b) that guides the robot through the front door. To
execute the MAPRM plan we design LQG controllers to
track the computed path. However, due to the lack of enough
information along the solution path, the success rate of this
plan is 27% (27 runs out of 100 Monte Carlo runs were
successful) and the robot frequently collides with obstacles.

FIRM-based planning: In planning with FIRM, the in-
formation distribution in the environment is encoded in the
planning via a framework which leads to a better judgement
of the narrowness of passages in the belief space. Although
in this environment the path through the front door is shorter,
the success probability of traversing through the back door is
more due to the presence of more information sources. Such
knowledge about the environment is reflected in the FIRM
cost-to-go and success probability. As a result, it generates
a policy that suits the application, taking into account the
uncertainty, and available information in the environment.
Solving DP on the FIRM graph gives the feedback shown in
Fig. 2(c), which results in an 88% success probability.

B. Robustness to Changes in the obstacle map
In this section, we investigate the robustness of the

proposed algorithm to changes in obstacles for a physical
system. In our experiments, we consider two types of obsta-
cles. The first set of obstacles (most of the map) are static
obstacles such as walls. The second class of obstacles include
those that discretely change their state such as doors (state
changes between “open” or “closed”) in the environment.
As discussed earlier, handling such changes is a challenge in
state-of-the-art belief space planners since the planner cannot
be updated locally and all computation for constructing the
planner needs to be reproduced, which is not a feasible
operation in real-time. The main focus of the following
experiments is to demonstrate how our method can replan
in real-time when faced with changes in the obstacle map.

We consider the environment shown in Fig. 1(b). The start
and goal locations are shown in Fig. 3(a). We construct a
PRM in the environment ignoring the changing obstacles
(e.g., assuming all doors are open). Leveraging PRM to
construct a FIRM and solving the dynamic programming
problem on it, we get the feedback tree shown in Fig. 3(a)



Starting 
point

goal 
point

Back-door 
is half open

Shortest path

Safest path

(a) (b) (c)

Fig. 2. (a) The environment including obstacles (blue), free space (black), and landmarks (white diamonds) on the walls are shown. An MAPRM graph
approximating the connectivity of free space, starting point, and goal point are shown. (b) The feedback tree generated by solving DP on MAPRM is
shown in yellow. From each node there is only one outgoing edge (in yellow), computed by DP, guiding the robot toward the goal. Arrows in pink coarsely
represent the direction on which the feedback guides the robot. (c) The feedback tree generated by solving DP on FIRM; As is seen, the computed feedback
guides robots through more informative regions that leads to more accurate localization and less collision probabilities.

that guides the robot toward the goal through the back-door
of room 407. However, the challenge is that the door may
be closed when the robot reaches it, and there may be new
obstacles in the environment. The robot needs to replan in
real-time once it encounters such changes in the environment.
For details on the obstacle detection mechanism see [1].

Figure 3(b) shows a snapshot of our run when the robot
detects the door is in a different situation than expected. As
a result, the robot updates the obstacle map as can be seen
in Fig. 3(b), in which the door is closed. Accordingly, the
robot replans in belief space based on Algorithm 5. Figure
3(b) shows the feedback tree resulting from replanning. As
seen, the new feedback guides the robot through the front
door, since it detects the back door is closed. The video of
a long run (see Section VI-D) provides more detail on this
procedure. Moreover, this video shows the robustness of the
method to temporary failures in the perception system (e.g.,
missing landmarks due to blockages, blur, etc.), which is
discussed more in [1].

C. Robustness to large deviations

In this section, we investigate the robustness of the pro-
posed framework in dealing with large deviations in the
robot’s position. As a more general form of this problem,
we consider the kidnapped robot problem as discussed in
the previous section. The need for online replanning in belief
space makes this problem challenging.

Figure 4(a) shows a snapshot of a run that involves two
kidnappings and illustrates the robustness of the planning
algorithm to the kidnapping situation. The start and goal
positions are shown in Fig. 4(a). The feedback tree (shown
in yellow) guides the robot toward the goal through the
front door. However, before reaching the goal point the
robot gets kidnapped in the hallway (cf. Fig. 4(a)) and
placed in an unknown location within room 407 (cf. Fig.
4(a)). The first jump in 4(b) shows this deviation. Once
the robot recovers from being kidnapped (i.e., when both
innovation signals in Fig. 4(b) fall below their corresponding
thresholds), replanning from the new point is performed.
Feedback guides the robot toward the goal point from within
room 407. However, again, before robot reaches the goal
point, it is kidnapped and placed in an unknown location (see
Fig. 4(a)). The second jump in the innovation signals in Fig.
4(b) corresponds to this kidnapping. Again, replanning from

Robot’s view
(Back door is open)

External view

Goal point

Feedback goes 
through the back door

Robot’s location

(a)

Goal point

An obstacle is added to 
the doorway

Robot’s location

Replanning leads to a feedback 
that goes through the front door

Back-door is closed

(b)

Fig. 3. (a) The back door is open at this snapshot. The feedback guides the
robot toward goal through the back door. (b) The back door is closed at this
snapshot. Robot detects the door is closed and updates the obstacle map
(adds door). Accordingly robot replans and computes the new feedback.
The new feedback guides the robot through the front door.
the new point, the robot follows the feedback and reaches
the goal point.
D. A Longer and more complex experiment

We next demonstrate the ability of the system to perform
long-term tasks in a complex scenario that consists of visiting
several goals (each time therobot reaches a goal, a user
submits a new goal). The replanning ability allows the robot
to change the plan online in belief space as the goal location
changes. Moreover, the robot frequently encounters changes
in the obstacle map (open/closed doors and new obstacles
in the environment) as well as missing information sources
and kidnapped robot situations. Thus, the robot frequently
needs to perform a replanning operation in belief space to
deal with such frequent changes. A 25 minute video of this
run is recorded and available in [17] (a shorter version has
been submitted along with the paper) that shows the robot’s
performance in this complex scenario. In this video, the
robot faces three changes in the goal location, three changes
in the door’s state (open/closed), several new obstacles in
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Fig. 4. (a) The set up for the experiment containing two kidnapping. (b) Innovation signals br

k

and b✓
k

during this run. When both of the signals are below
specified thresholds r

max

and ✓
max

(dashed red lines), robot follows the FIRM feedback. Otherwise, the system enters the information gathering mode.

the environment, three kidnapping situations, and numerous
failures of the sensory systems due to missing landmarks,
blur in image, and etc.

VII. CONCLUSION

In this paper, we present an application of the FIRM
motion planning method to a physical robotic system. This
paper proposes a robust method for belief space planning
based on efficient online replanning. Such replanning is a key
ability in handling discrepancies between real world mod-
els and computational models, changes in the environment
and obstacles, large deviations, and changes in information
sources. We implemented this belief space planner on a
physical system and demonstrate the robustness to such
discrepancies that occur in practice. We believe this work
provides an important step toward making POMDP methods
applicable to real world robotic systems.
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Multi-agent Generalized Probablistic RoadMaps : MAGPRM

Sandip Kumar and Suman Chakravorty

Abstract— In this paper, the generalized motion planning
algorithm (Generalized PRM : GRPM [1, 2, 3]) is extended
to a class of multi-agent motion planning problem in presence
of process uncertainty and stochastic maps.

The proposed algorithm is a hierarchical approach towards
constructing a passive coordination strategy which utilizes an
existing multiple traveling salesman problem (MTSP) solution
methodology in conjunction with the GPRM framework to solve
the multi-agent motion planning problem. The proposed algo-
rithm is generalized to tackle multi-agent problems involving
heterogeneous agents. The algorithm is used to solve multi-
agent motion planning problems involving 2-dimensional and
3-dimensional agents in stochastic maps with uncertainty in the
motion model. Results indicate that the algorithm successfully
solves the problem under uncertainty, and generates a solution
having high probability of success. It also demonstrates that
the algorithm is scalable in terms of number of start and goal
locations, the number of agents and their dynamics.

I. INTRODUCTION

The motion planning problem for multiple agents, in envi-
ronments with obstacles is a challenging problem in robotics.
The challenge arises due to searching for a solution in the
joint state and control spaces of the agents. Introduction
of motion model uncertainty increases the complexity even
further. Finding a solution to the coordination problem [4],
and hence, developing coordination strategies for multi-agent
systems in the presence of uncertainties has been a challenge.

The multiple agents motion planning problem in the
presence of uncertainty and coordination strategies has been
addressed previously in the literature. Some of the related
work is mentioned here. In [5], motion primitives are used
to handle multiple agent motion planning problem. In [6],
distributed cooperative strategies for a group of robotic
manipulators was proposed using neural networks. This
work accounted for control input uncertainties. In [7], the
multiagent motion planning problem is setup as a Markov
decision process (MDP) with constraints and uncertainty,
where the coupling between agents only occur in the re-
wards and constraints. The optimal move in the presence
of constraints are computed using optimization algorithms,
however, the dynamics of the agents is not considered. In [8],
a cooperative control technique is proposed which creates
a communication graph. Under certain assumptions, the
dynamics of non-holonomic agents are modeled as kinematic
point robot chains, and the cooperative laws are defined on
this reduced model of multi-agent system (MAS). In [9], the
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author has developed a decentralized multiagent RRT, and a
merit-based token passing coordination strategy. With respect
to team formation strategies, uncertainties were considered
in communications, but not in the motion model. In [10], the
authors developed a non-cooperative approach for collision
detection and avoidance. Genetic algorithm and Monte Carlo
techniques were used to address uncertainties in motion
model. In [11], an online receding horizon motion planner is
developed for solving the decentralized navigation problem
for multiple agents. Artificial potential fields and sliding
mode control techniques are used to handle uncertainties in
the motion model.

Some other work, involving multiple agents coordination
without uncertainty in the system, are worth mentioning
here. In [12], recent work related to the multiple agent
motion coordination problem is summarized. In [13], the
distributed path consensus (DPC) algorithm is extended to
multiple task execution. The DPC was developed to address
multiagent motion planning problem with time parameterized
constraints on the distances between a pair of robots. In
this work, the state space is combined with a task graph,
and optimal trajectories for the agents are searched in this
graph using a heuristic function. In [14], the motion planning
problem for multiple agents was addressed using coordina-
tion graphs and decoupled planning. The agent works on
path following and obstacle avoidance. In [15], the authors
developed a navigation function methodology for decen-
tralized navigation which leads to reduced computational
complexity and increased robustness to agent failures. They
deal with holonomic agents. In [16], the authors were able
to decompose global payoff function for multiple agent
scenario into local terms using a coordination graph. They
used reinforcement learning techniques, known as, sparse
cooperative Q-learning, and used edge-based decomposition
of the actions in the coordination graph. In [17], coordination
between agents is developed using the theory of collective
intelligence through probability collectives.

The work mentioned above solves the coordination prob-
lem for multi-agents, using various different methodologies.
However, a systematic framework to incorporate motion
model uncertainty, non-trivial non-linear dynamics of robots,
and solve for high-dimensional state-space systems, is still
missing in these efforts. In the work presented in this paper,
a systematic hierarchical approach is presented to solve
the multiagent motion planning problem in the presence
of motion model uncertainty, stochastic maps, and with
non-trivial agent dynamics. We solve a multi-agent Markov
decision process (MMDP) by decoupling the problem using
a hierarchical planning structure and multiple MDPs. In this



paper, we propose to solve the coordination problem, be-
tween agents, by developing a passive coordination strategy,
using the Generalized PRM (GPRM) [1, 2], developed by
the authors for the single agent feedback motion planning
problem, in conjunction with a well proven multiple traveling
salesman problem solution methodology [18], for a class of
multiagent systems.

In section II, the framework developed by the authors
to handle single agent motion planning problem under
process uncertainty, with non-linear dynamics, and in high
dimensional configuration space, is briefly presented [2]. In
section III, the actual multi-agent motion planning problem
we intend to solve in this paper, is proposed. In section IV,
the solution methodology is presented. In section V, the
solution of the “Routing Problem” is detailed. In section VI,
results from simulations are presented.

II. MOTION PLANNING FOR A SINGLE AGENT UNDER
PROCESS UNCERTAINTY

The motion planning problem, for a single agent, is to find
a collision free path for a robot in a given obstacle space.
In the presence of stochastic model uncertainty, there is a
need for feedback control, which then can be associated with
a probability that the robot reaches the goal without hitting
the obstacles. Generalized Sampling Based Algorithms [1, 2]
were introduced, by the authors, to address the problem of
feedback motion planning in such constrained work spaces.
The notion of collision avoidance and collision-free paths as
the solution to the motion planning problem, can no longer be
satisfied, and therefore the above criteria need to be replaced
by a solution/ path with a high probability of success. The
motion planning problem is then re-framed as : To solve the
motion planning problem in the presence of stochastic maps,
and model uncertainty, generate a feedback solution with a
probability of success above an a-priori specified probability,
pmin.

A. Generalized PRM : GPRM
If the uncertainties in the robot model and environment

can be modeled probabilistically, the robot motion planning
problem can be formulated as Markov Decision Problem
(MDP). These MDPs are computationally intractable for
anything but small state/ control spaces, and especially hard
to solve in continuous state and control spaces. Hierarchical
Methods can be used to break down the complexity of the
problem. The Generalized Probabilistic Roadmaps(GPRM)
[2, 1], is a sampling based hierarchical method which extends
the Probabilistic Roadmaps (PRM) [19] technique for deter-
ministic path planning, to systems with stochastic model and
map uncertainty. GPRM incorporates feedback controllers
into the topological graph construction phase.

The authors have also developed adaptive sampling tech-
nique, termed as “adaptive GPRM” (AGPRM), [3, 20] to
increase the efficiency and overall success probability of
these planners, especially in high dimensional spaces. The
technique have been implemented on high-dimensional n-
link manipulators, with up to 8 links. The results demonstrate

the ability of the proposed algorithm to handle the feedback
motion planning problem for highly non-linear systems, in
very high-dimensional state spaces.

In this paper, this work is extended to solving stochastic
motion planning problem for a class of heterogeneous multi-
agent systems.

III. MULTI-AGENT SYSTEMS

Multi-agent system (MAS) consists of multiple agents
which execute actions and influence their surroundings. Each
agent receives observations and selects actions individually,
but it is the resulting joint action which influences the
environment and generates the reward1 for the agents. This
has extremely important consequences on the characteristics
and the complexity, of the problem.

A. Coordination Problem
The multi-agent motion planning problem in presence of

process uncertainty and stochastic maps can be posed as an
multi-agent Markov decision process (MMDP). In traditional
methods of solving an MMDP, the problem is treated as a
single large MDP and standard solution techniques available
for MDPs are applied, [21]. The goal of solving an MMDP
should be that of finding the best/optimal policy for the
system of agents. However, actions are taken at the individual
level of the agents, and thus, it should be ensured that,
using limited communication, the combined actions of all
the agents should result in an optimal policy for the system
of agents. The problem of identifying individual policies for
each agent, which results in an optimal joint policy, is called
the coordination problem.

Researchers working on solving this problem have come
up with possible solutions such as coordination graphs (CGs)
[22] and max-plus algorithm in conjunction with CGs [23].
In [22], the solution to cooperative action selection for a
system of agents (or coordination problem) is solved by con-
structing a coordination graph, and optimizing over it using
the variable elimination algorithm. In [23], the researchers
proposed an improved optimization technique, the max-plus
algorithm, which replaces the variable elimination procedure
in optimizing over the coordination graphs.

B. A Class of Multi-Agent Problems in the Presence of
Uncertainty

We want to solve the multi-agent motion planning prob-
lems, in the following scenario :

• m agents, with m initial configurations qI =
{qI1 ,qI2 , . . . ,qIm},

• n goal locations qG = {qG1 ,qG2 , . . . ,qGn},
• Process uncertainty2 present in robot motion model,
• Environment given by a stochastic map, i.e., static

obstacle probabilities.
The problem statement can be stated as : Given a stochastic

map with static obstacle probabilities, a system of m hetero-

geneous robots each equipped with perfect state sensors, the

1cost of transition
2also called motion model uncertainty



initial configurations (qI) of all the robots, a set of n final goal

configurations (qG), to solve, the motion planning problem for

the set of robots in the presence of process uncertainty such

that at least one robot visits each of the goal locations, while

the total cost of operation for the system is minimized

In order to solve the multi-agent problem, the following
sub-problems have to be solved :

• Routing problem : The number of agents and number
of goal locations might not be same, i.e. m 6= n (general
case). The goal locations are different in number, some
agents will have to go to more than one goal and some
might not have to go to any goal. Hence, with the given
scenario, one has to solve a routing problem (or the
coordination problem as discussed in subsection III-A)
for the multi-agent system.
This is the problem of identifying which agents will go
to which goal locations. Hence, given m agents and their
initial configurations, qI = {qI(i)}, i = 1, . . . ,m, and n
target final configurations, qG = {qG(i)}, i = 1, . . . ,n,
and given m 6= n (general case), how to determine which
set of goals any given agent will go to.

• Heterogeneous and homogeneous agents : In a general
multi-agent system, there exist heterogeneous agents,
i.e. agents with different capabilities (or multiple types
of agents). Thus, homogeneous, as well as the heteroge-
neous agent scenario must be addressed in a multi-agent
motion planning problem.

IV. SOLUTION APPROACH TO MULTIAGENT MOTION
PLANNING PROBLEM IN PRESENCE OF UNCERTAINTY

This section discusses the solution approach to solve the
sub-problems of the multi-agent motion planning problem.

A. Routing Problem
The routing problem, in a deterministic framework, has

been solved extensively in the traveling salesman problem

(TSP) research community [24]. The generalized multi-agent
routing problem, in deterministic framework, has been posed
as a multiple traveling salesman problem (MTSP) [25, 18],
and there have been multiple approaches to solve it. We
aim to use existing multiple agents routing problem solution
techniques developed in [18], and synergistically, apply it
along with the GPRM to the multi-agent systems, in presence
of process uncertainty, and stochastic maps. The solution
of GPRM, between any pair of goal locations3 for any
given agent, generates transition costs, and probabilities. The
MTSP algorithm, uses these costs and transition probabilities
from the GPRM, to solve the “routing problem”, and hence,
solve the multi-agent motion planning problem under uncer-
tainty. We expect that this generalized technique, termed - the
multi-agent adaptive sampling based generalized probabilis-
tic roadmaps (MAGPRM), will help us solve the feedback
motion planning problems in high dimensional state spaces,
under uncertainty, in the multiple agent scenario.

3Goal locations here includes the initial configurations and the desired
configurations

B. Homogeneous and Heterogeneous Agents
In the case of all agents being homogeneous in dynamics

and capabilities, a single roadmap (GRPM) is adequate, for
solving the motion planning problem for an agent between
any pair of the goal/start locations. For heterogeneous agents,
solving the motion planning problem will involve construct-
ing roadmaps (GPRMs) for every type of agent present in
the system. (see Figure 1)

Fig. 1. Multiple Agents and the number of associated GPRMs

V. THE SOLUTION

In this section we develop the solution to multi-agent
motion planning problem by developing it for the sub-
problems of routing the agents and having heterogeneous
agents in a multi-agent scenario. We develop a synergistic
coupling of MTSP solutions with GPRM to solve the routing
problem.

A. Definitions
1) General:
C : The configuration space of the agent. A configu-

ration is given by q, i.e a generalized position.
X : The state-space of the agent. A state is given by,

x = (q, q̇), i.e. comprised of generalized position
and generalized velocity.

li : ith landmark, i.e. a sample in state-space (li 2X ).
L : Set of landmarks, i.e. L = {li},8i, on a given

stochastic map.
G : Set of start and goal locations4 in a multiple

agents scenario on a given stochastic map. This
set containing these start and goal locations, is a
sub-set of the set of landmarks, i.e. G ⇢ L

A : Set of all agents, {ai},8i. (ai is the ith agent)
U : Set of controls. (u 2 U )
M : Set of lower level controllers. (µ 2 M )

4landmarks



2) Controls:
µ(·) : The lower level (Level1 in MAGPRM in Figure 2)

controller for the agents. In MAGPRM it is a feed-
back controller, parametrized using the landmark.
Also µ 2 M and :

µ(·) : X 7! U

p(·) : Policy operator at Level2 of MAGPRM (Figure 2),
i.e. solution of GPRM for a single agent.

p(·) : L 7! M

Given a goal landmark, lgoal , p is a solution pro-
vided by GPRM. This solution is dependent on lgoal

and hence the operator p can be rigorously written
as follows:

p(· ; lgoal) : L 7! M

g(·) : An operator at Level3 of MAGPRM.

g(·) : A ⇥G 7! G

Given a particular agent ai 2A , and the location(2
G ) of ai, say g 2 G , the operator outputs the next
goal location for ai, i.e. g0 2G . This g0 parametrizes
the Level2 p(·) operator, i.e.:

p(· ; g0) : L 7! M

Furthermore in terms of goal landmark, lgoal
i 2 L

for the ith agent, the location g0 2 G where G ⇢L ,
is given by :

g0 = lgoal
i , and hence

p(· ; lgoal
i ) : L 7! M , for ith agent

This operator provides the agent, starting at a start
location (2 G ), the goal location (2 G ) it is sup-
posed to go, and a sequence of feedback controllers
(2 M ) to reach there.

B. Solution of MTSP

In [18], a solution methodology is proposed for the gen-
eralized MTSP problem formulation. The solution method-
ology involves two transformation steps:

• Converting a generalized MTSP to a one-in-a-set ATSP

(where ATSP : Asymmetric Traveling Salesman Prob-
lem).

• Converting a one-in-a-set ATSP to a single ATSP. This
is done using the Noon-Bean Transformation [26].

The generalized MTSP is posed as a single ATSP by the
proposed transformations which involve cost modifications.
The single ATSP can be solved using the well-known TSP
solver, Lin-Kernighan heuristic (LKH) [24]. Solving the
single ATSP and working backwards gives the solution to
the generalized MTSP. Details of the algorithm developed
can be seen in [18].

C. Solving Multi-Agent Systems in Presence of Uncertainty
The GPRM was developed [2] as a hierarchical approach.

The proposed algorithm, MAGPRM, for solving the multi-
agent motion planning involves the introduction of a new
level in the existing hierarchy. The lowest level (say Level1
in Figure 2) solves the motion planning problem between one
landmark to another and inherently generates the cost of tran-
sition and transition probabilities between two landmarks.
These transition probabilities and costs induced an abstract
MDP, on the discrete set of landmark states, i.e. the higher
level (Level2 in Figure 2). We use Dynamic Programming to
solve the Level2 abstract MDP with the transition cost and
probabilities generated by the Level1.

Fig. 2. Depicting Hierarchical Planning in Levels (for Multi Agents)

In a multi-agent motion planning scenario, having m
agents and n goal locations, an additional problem needs
to be solved, namely the routing problem. In order to solve
the routing problem we introduce Level3 which comprises of
a graph whose vertices are high level goal locations (g 2 G ),
i.e. the m agents’ initial locations and the n desired goal
locations. These set of goal locations (G ) is a sub-set of the
set of landmarks (i.e., G ⇢ L . See Figure 2). At Level2,
these goal locations (G ) are treated as landmarks. Using L
on Level2, multiple GPRMs (i.e., generalized roadmaps) are
constructed over which the ‘single-agent’ motion planning
problem is solved. Whereas, using G , a MAGPRM (i.e., a
multi-agent roadmap) is constructed on Level3 over which the
‘multi-agent’ motion planning problem is solved. The edges
of the graph in Level3 are abstract connections from “agent
locations to goal locations” and “goal to goal locations”.
“Agent locations to agent locations” connections are avoided
as a part of assumption that an agent should not go to another
agent’s location.

Using GPRMs, the cost of transition and the path probabil-
ity associated with all these edges in Level3, can be computed
(Figure 2). These costs and transition probabilities associated
with every edge is specific to agents. The number of GPRMs
that needs to be solved are 2n(m+n)5. Using the computed
costs6 and after two cost transformations, the prospective

5These are the number of edges that needs to be evaluated. m agents to
n goals and vice versa gives 2mn edges, n goals to n goals gives 2n2 edges
and hence the total is 2n(m+n)

6The MTSP algorithm only takes costs as input, the costs computed by
GPRM do take into account the transition probabilities.



MTSP algorithm [18] via the LKH solver solves the routing
problem, i.e. allotment of sequence of goal locations to
different agents.

In this MTSP level, i.e. Level3 of MAGPRM, the solution
is the operator g(·). For each agent, the operator outputs a
sequence of goal locations to be visited. We mention here
that unlike in Level1 and Level2, the solution (g(·)) is not a
feedback policy at Level3, since if the sequence is broken by
the agents due to some plausible reason, the policy does not
remain optimal, and the paths of the different agents need to
be replanned using the MTSP solver.

D. Multi-Agent GPRM (MAGPRM) Algorithm
The proposed methodology of solving the multi-agent

motion planning problem is summarized in algorithm 1.

Algorithm 1: Multi-Agent GPRM (MAGPRM)
Data: Set of agents (A ), start locations x0, goal

locations xg, pmin for the environment
for ith agent at start location x0i 2 x0 do1

for jth goal location, xg j 2 xg do2

while ps(x0i ! xg j)< pmin do3

if ith agent’s type already evaluated then4

Use already existing roadmap to build5

and connect further;
Construct AGPRM, parametrized with goal6

location xg j and agent-type of ith agent;

Construct a cost of transitions matrix for each7

agent-type (i.e. cost of transitions between
agents $ goals and goals $ goals);
Solve the routing problem for each agent, using the8

above generated costs in prospective MTSP algorithm;

The proposed algorithm solves the general7 multiple agent
motion planning problem in presence of process uncertainty
and stochastic maps.

The algorithm constructs a roadmap using AGPRM be-
tween each pair of start and goal locations. The loop at
line 3 depicts this, i.e., with each combination of start and
goal locations, a new AGPRM (which is parametrized at the
current goal location), is solved.

In the case of multiple agents of same type, lines 4-5

ensure that the existing roadmap, is either extended further,
or is used to find a solution, between the ith agent’s location
and the jth goal location.

In the case of heterogeneous agents, different roadmaps for
different types of agents have to be constructed and hence, is
more computationally intensive. The landmarks might still be
shared but transition costs and transition probabilities calcu-
lations will involve running the simulations and constructing
a different roadmap each time a new type of agent comes into
the system. Line 7 emphasizes this feature of the algorithm.

Once the cost of transitions between each start and goal
locations is computed, the routing problem is solved using

7Involving heterogeneous agents

the prospective MTSP algorithm. The solution of MAGPRM
is the sequence of goal locations to be visited by individual
agents, which takes into account the process uncertainty
in the dynamics of the agents, and their traversal along a
stochastic map.

VI. RESULTS AND DISCUSSION

In this section, we will detail the application of the
multi-agent GPRM (i.e. MAGPRM) algorithm to scenarios
with homogeneous and heterogeneous agents. The agents
involved in these numerical experiments are a unicycle and a
simplified three dimensional vehicle, mimicking a helicopter.

A. Vehicle Models Used
The numerical experiments done using MAGPRM in-

volves the following two types of robot models used along
with their specific feedback controllers.

1) Nonholonomic Unicyle robot: The equations of motion
are given by :

ẋ = vcosq +wx (1)
ẏ = vsinq +wy (2)

q̇ = w +wq (3)

where (x,y,q) represents the pose of the robot, the velocity
v, and the angular velocity w , represents the control inputs
to the problem, and wx,wy and wq are the uncorrelated noise
terms for the different states of the robot. A sampled pose is
in the (x,y,q) spaces and the local feedback controller used
to stabilize the robot about these sampled equilibrium config-
urations is given by [27], a dynamic feedback linearization-
based controller.

2) Simplified 3D helicopter robot: A simplified three-
dimensional helicopter robot is constructed using a Dubins
car for inplane motion (as in [1]) and a decoupled double
integrator in the z�direction. Hence the dynamics of this
simplified robot can be given by:

ẋ = vcosq +wx (4)
ẏ = vsinq +wy (5)

q̇ = w +wq (6)
z̈ = uz +wz (7)

Apart, from the definitions discussed above, uz is the input
force in z�direction, and, wz is uncorrelated noise in the
same direction. Our sampled poses are in the (x,y,q ,z, ż)
spaces. The local feedback controllers can stabilize the robot
about any of the equilibrium configurations sampled.

A dynamic feedback linearization-based controller design
is chosen as in [1] for the Dubins car model, for in-plane
motion. An LQR based feedback controller is designed for
the double integrator in z�direction as in [2].

The values of wx,wy,wq and wz are similar to those
dicussed in [1, 2].

B. Homogeneous Agents
In these numerical experiments, multiple homogeneous

agents8 starting at different locations on a stochastic map
8All agents are Dubins car



were supposed to cover a given number of goal locations.
As the agents are homogeneous, the cost of transition and
the probability of transition from one landmark to another
is the same, given that all agents are working with the same
map and the same sampled landmarks.

The result of our simulation experiments are shown in Fig-
ure 3 and Figure 4. Figure 3(a), Figure 4(a) and Figure 4(b)
show three different cases, i.e. different number of agents
starting at different start locations and that have to visit a
different number of goal locations.

Figure 3 depicts a case in which all the start locations for
the robots were constricted to a smaller region compared to
the spread of the goal locations. Figure 3(a) shows the solu-
tion of MAGPRM (i.e. at Level2 of MAGPRM) in terms of
the goal locations to be visited by the active9 agents and the
various landmarks used to navigate through those assigned
goal locations. Figure 3(b) shows the actual trajectories (i.e.
at Level1 of MAGPRM) of the active agents based on the
dynamics and the corresponding feedback controller.

The solution shows that MTSP (i.e. at Level3 of MAG-
PRM) is driven by space partitioning. And hence, there are
some agents who do not move from their initial locations.

(a) MAGPRM - Solutions for individual vehicles

(b) MAGPRM - Trajectories for individual vehicles

Fig. 3. MAGPRM Solutions and Trajectories - 10 vehicles and 30 goal
locations

Figure 4(a) and Figure 4(b) show results obtained by
MAGPRM, depicting coverage of goal location by the agents

9In MAGPRM solution not all agents need to move and hence active
agents are the ones which have been assigned atleast one goal location.

(a) MAGPRM - 5 vehicles and 40 final locations

(b) MAGPRM - 10 vehicles and 40 final locations

Fig. 4. MAGPRM Solutions

starting from different start locations. Both the solutions have
40 goal locations and the number of agents are 5 and 10
respectively. The solution of MAGPRM in these solutions
also show the space partitioning behavior.

C. Heterogeneous Agents
In these set of experiments, heterogeneous10 agents are

present in the map. A three dimensional static stochastic map
is used for these simulations. In each of these simulations
there are several 3-dimensional and 2-dimensional goal lo-
cations. The Dubins car can only cover the 2-dimensional
goal locations, and the simplified 3D helicopter robot can
traverse to both 2-dimensional, as well as, 3-dimensional
goal locations.

The initial set of landmarks sampled were 2-dimensional
goals. The connections of 3-dimensional goal locations was
facilitated using AGPRM [3], hence the solutions shown
below has less number of 3-dimensional sampled landmarks.

Figure 5 and Figure 6 shows the MAGPRM solution,
for different sets of start and goal locations. The Dubins
car covers all the 2-dimensional goal locations, while the
simplified 3D helicopter robot covers only the 3-dimensional
goal locations. Figure 5(a) shows the solution of MAGPRM

10A Dubins car and a simplified 3D robot



and Figure 5(b) shows the actual trajectories of the robots.
A partitioning of space is again visible.

(a) MTSP solution for the robots

(b) Trajectories of the robots

Fig. 5. MAGPRM with Dubins’ Car and 3D Vehicle with 5-Obstacles :
Case 1

The heterogeneous agents case discussed in this section
depicts the power of MAGPRM. The stochastic decision
making problem in presence of heterogeneous agents, for
which the computation of the cost of transitions are different,
for each agent type, is solved. In order to solve the het-
erogeneous agents problem, the MAGPRM utilizes multiple
GPRMs constructed on the underlying state-space of each
type of agent.

VII. CONCLUSION

In this paper, we have presented a solution to the motion
planning problem under uncertainty for multiple agents. In
order to solve the overall problem, in conjunction with our
solution methodology for a single agent (GPRM), a routing
problem needs to be solved. The routing problem is solved
using an existing solution to the multiple traveling salesman
problem. The MTSP solution methodology, in conjunction
with GPRM, results in the MAGPRM algorithm that solves
the motion planning problem for multiple agents in pres-
ence of process uncertainty, and stochastic maps. Numerical
experiments were performed on sets of homogeneous, and
heterogeneous agents, for maps of different difficulty levels,

Fig. 6. MAGPRM with Dubins’ Car and 3D Vehicle with 5-Obstacles :
Case 2

with different number of start and goal locations, and dif-
ferent number of agents. Results show that the algorithm is
indeed capable of solving the motion planning problem for
multiple agents, with non-trivial nonlinear dynamics, in the
presence of process uncertainty and stochastic maps.
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