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Abstract 

The proposed study investigates a novel neuro-dynamic model which can learn to 

predict or regenerate fluctuated sequence patterns by extracting latent statistical 

structures in the patterns. The novelty of the model is that the fluctuated sequences are 

learned by adequately incorporating stochastic dynamics and deterministic chaos 

self-organized in the network. The model is expected to bring the following advantages: 

(1) adequate mixtures of stochastic dynamics and deterministic one can gain 

representation power of the model, (2) no needs for arbitrary manipulation of data as 

well as interpretation of them by human, (3) possibility for scaling of the model by 

incorporating with the scheme of multiple timescales dynamics for extracting temporal 

hierarchy from the data. The potential impacts by applying the model to sensory-motor 

sequence learning by robots as well as video image understanding by accumulated 

learning of the exemplars are discussed. 

 

1. Introduction 

Capability for learning to predict perceptual streams or encountering events by 

acquiring internal models is indispensable for intelligent or cognitive systems because 

various cognitive functions are based on this compentency including goal-directed 

planning, mental simulation and recognition of the current situation. Learning to 

predict is a difficult task because time-developments of physical systems are often 

observed as noisy or fluctuated. In such situations, with assuming that the phenomena 

are probabilistic, model estimation based on probabilistic model are performed. By 
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partitioning the system’s state space into a finite set of discrete states with labels, 

probabilistic state transition models for the system dynamics can be acquired by 

counting events of each state transition as shown in the Hidden Markov Modeling 

scheme. However, it is not trivial to determine if the observed fluctuated time series 

data are truly generated by some statistical mechanisms especially when the amount of 

observed data are not enough. This is because it might be still possible that the 

observed phenomena are just “pseudo stochastic” by meaning that they are actually 

generated deterministically by means of the initial sensitivity characteristics of chaos 

which is mechanized in the original continuous state space. Such examples can be seen 

in the studies of deterministic neuro-dynamic models (Tani & Fukumura, 1994; 

Nishimoto & Tani, 2005; Namikawa et al, 2011).  

 Although there has been a dichotomy between determinism and 

non-determinism of allowing probability in modeling complex phenomena, such 

dichotomy may not be essential when biological brains or artificial cognitive agents 

attempt to develop internal models of the world via accumulated direct observation or 

perceptual experiences. If deterministic chaos or a particular statistical mechanism is 

necessary to model a set of observed phenomena, either mechanism could be 

self-organized in the course of developing the model rather than given a priori. The 

mechanism self-organized via accumulated learning could turn out to be a merging of 

deterministic chaos and stochastic dynamics rather than one of them. 

 The primary motivation of the research is to examine how these two 

mechanisms can incorporate in developing effective models to account for observed 

temporal phenomena. This research trial could lead to (1) an opening of a new theory for 

handling fluctuated data which is beyond traditional statistical theory of assuming law 

of large number, (2) an invention of a novel but much simpler computational scheme 

which can learn to predict as well as recognize observed fluctuated data in continuous 

space and time domain by utilizing self-organization mechanisms of neuro-dynamic 

systems.  

 The current study utilize a dynamic neural network model, so-called the 

stochastic continuous time recurrent neural network (S-CTRNN) model (Murata et al., 

2013) which was developed in our laboratory previously. The current research 

investigates the aforementioned problems by extending this model. Next section will 

introduce the basic mechanism of S-CTRNN model and explain how it can be extended 

for possible applications for the current problem. 

 

2. The stochastic CTRNN model and its extension 
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Model 

Here, we describe the basic mechanism of S-CTRNN model (Murata et al., 2013) which 

can learn to extract probabilistic structures latent in a set of exemplar sequence patterns 

with particular fluctuations. This model is built on the conventional CTRNN model 

which is characterized by so-called its context loop consisting of context input units 𝑐𝑡 

and context output units 𝑐𝑡+1. The context output units employ the dynamic of leaky 

integrator neuron with decay rate of (1 − τ) where τ is time constant. The S-CTRNN 

is characterized by its capability of predicting subsequent inputs not only with their 

means but also with their variances (see Fig.1).  

 

 

Fig.1 S-CTRNN model 

 

This implies that if some parts of the input sequences are more fluctuated than other 

parts, the time-dependent variances in these periods become larger. On the other hand, if 

some parts are less fluctuated, their variances become smaller. It can be said that 

S-MTRNN can predict own predictability for each dimension of the input sequences in 

a time-dependent manner. The network model trained can reconstruct the target 

fluctuated sequences in terms of stochastic dynamics by adding noise with the estimated 

time-varying variance to the predicted mean of the output at each step. For the purpose 

of learning to predict both average and variance of each dimension of the target 

sequences, the following likelihood function 𝐿𝑜𝑢𝑡 is maximized. 

𝐿𝑜𝑢𝑡 = ∏ ∏ ∏
1

√2𝜋𝑣𝑟,𝑡,𝑖
𝑒𝑥𝑝 (−

(𝑜𝑟,𝑡,𝑖−�̅�𝑟,𝑡,𝑖)
2

2𝑣𝑟,𝑡,𝑖
)𝑖𝑡𝑟       (Eq. 1) 

where 𝑜𝑟,𝑡,𝑖 is the ith dimension of the prediction output at time step t in the rth 

sequence, �̅�𝑟,𝑡,𝑖 is its teaching target, and 𝑣𝑟,𝑡,𝑖 is its predicted variance. Eq. 1 is to 
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minimize the square error divided by estimated variance at each step. This means that 

the prediction error at a particular time step is pressured to be minimized more strongly 

when its variance is estimated as smaller. Otherwise, the prediction error is minimized 

less strongly. In the course of iterative learning with a set of target sequences, this 

likelihood function is maximized by optimizing connectivity weights and the initial 

context states estimated for all corresponding target sequences. After iterative learning 

for maximizing 𝐿𝑜𝑢𝑡, the target sequences can be reconstructed by means of stochastic 

dynamics parameterized by the time-varying variance estimated by the model. 

 Now, we explain an extension of the S-CTRNN model for the purpose of 

investigating the dichotomy between the stochastic model and the deterministic 

dynamics model. As it is well known that deterministic chaos develops by utilizing the 

initial sensitivity characteristics of nonlinear dynamic system. Therefore, we 

hypothesize that a particular control of the initial sensitivity in the network dynamics 

during the learning process could manipulate development of chaotic dynamic 

structures in the network. Our intuition is that if the initial sensitivity is positively 

utilized by allowing large variability in the distribution of the initial context states to be 

determined in the course of learning, fluctuations in the target sequences could be 

represented by developing deterministic chaos while minimizing estimation of the 

output variances. Otherwise, the fluctuations could be reconstructed as driven by noise 

term of which variance is estimated with relatively large value. By following this idea, 

an additional likelihood functions 𝐿𝑖𝑛𝑖𝑡 is considered which controls the distribution of 

initial context unit states determined for the set of target sequences.   

𝐿𝑖𝑛𝑖𝑡 =  ∏ ∏
1

√2𝜋𝜎𝐼𝑆
2

𝑒𝑥𝑝 (−
(𝑢𝑖−𝑢𝑟,0,𝑖)

2

2𝜎𝐼𝑆
2 )𝑖𝑟  (Eq. 2) 

where  𝜎𝐼𝑆
2  is the predefined variance that confines variability of a set of the initial 

context unit states for all teaching target sequences, �̃�𝑖 is the optimized mean of the ith 

dimension internal value of the initial context unit states among all sequences, and 

𝑢𝑟,0,𝑖 is the ith dimension initial state for the rth sequence. Eq. 2 is to put specific 

probabilistic distribution constraints on determining the optimal initial context states for 

all sequences with the parameter 𝜎𝐼𝑆
2 .  If the 𝜎𝐼𝑆

2  is set with a large value, the 

distribution of the initial context states becomes wide. Otherwise, it becomes tight. In 

the proposed extended model, the following likelihood function 𝐼𝑛𝐿𝑎𝑙𝑙 =  𝐼𝑛𝐿𝑜𝑢𝑡 +

 𝐼𝑛𝐿𝑖𝑛𝑖𝑡 is maximized. By maximizing the likelihood 𝐿𝑎𝑙𝑙 during the learning process, 

optimal connectivity weights common to all target sequences, the initial state for each 

target sequence and the estimates of time-dependent variance for each sequence are 
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obtained depending on the parameter 𝜎𝐼𝑆
2 .  

 

Learning to reconstruct stochastic FSM 

In the following simulation experiment, we test the model with an example of learning 

to reconstruct a particular stochastic finite state machine (S-FSM) from the exemplar 

sequences (see Fig.2.)  

 

 

Fig.2 Learning to reconstruct a target S-FSM by a S-CTRNN model 

 

The target S-FSM generates deterministic sequence of “0, 1” in the state transition from 

the state 1 to state 3 whereas it generates 0 or 1 with equal probability in the state 

transition from the state 3 to the state 1. S-CTRNN with 10 context units, 12 hidden 

units and two output units, one for prediction of the mean and the other for the 

estimation of variance is utilized for learning target sequences generated by the target 

S-FSM. The time constant τ is set as 1.0. This means that CTRNN used in the 

experiment turns out to be an RNN with discrete time operation. The target sequences 

consist of 10 sequences each of which is generated with 25 step length. The same target 

sequences are learned with two different learning conditions, so-called the narrow initial 

states distribution with setting 𝜎𝐼𝑆
2  as 0.001 (Narrow IS) and the wide initial state 

distribution with setting 𝜎𝐼𝑆
2  as 1.0 (Wide IS).  

 Fig.3 (a) and Fig.3 (b) show the reconstruction of the target with the network 

model trained under the narrow initial states distribution and the wide one, respectively.  
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Fig.3 Output sequences with X: predicted mean and V: estimated variance with (a) 

the Narrow IS case and with (b) the Wide IS case. 

 

It the narrow distribution case in Fig.3(a), we can see 3 steps length periodic sequence 

pattern of repeating 0.0, 1.0, 0.5 in the out of mean value and 0.0, 0.0, 0.25 in the output 

of  variance estimation with synchronization. This corresponds to the deterministic 

state transitions from the state 1 to the state 2 and to the state 3 and probabilistic one 

returning to the state 1 in the target S-FSM. We can see that the underlying probabilistic 

structure of the target S-FSM is well reconstructed in the trained model in terms of 

stochastic dynamics. On the other hand in the wide distribution case, we can see the 

repetitions of 3 steps sequence composed of 0.0, 1.0, “?” in which “?” comes either 

close to 1.0 or to 0.0 seemingly at random in the output of mean whereas the output of 

variance estimation becomes almost zero. This implies that the sequences are 

reconstructed in terms of deterministic dynamic system. Actually, development of 

deterministic chaos was confirmed by observing a positive value for the maximum 

value of Lyapunov exponents through the analysis of the obtained dynamic trajectories. 

These simulation results show that the extended S-CTRNN can learn to imitate the 

output sequences of S-FSM by reconstructing them either in stochastic dynamics or 

deterministic chaos depending on the learning condition imposed on the initial 

sensitivity characteristic of the network dynamics. 

 

Learning to imitate movement patterns generated with probabilistic decision 

sequences. 

In the real world situation, perceptual sequences could be continuous in time and also 

they could be hierarchically organized. An interesting question might be how the 
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network model can learn to extract latent probabilistic decision structures in the higher 

cognitive level of other agents from its lower level continuous perceptual experience. 

On the purpose of investigating this problem, we performed robot experiments using a 

humanoid robot “NAO”. For the robot task, the robot learns to imitate tutor guided 

behaviors including probabilistic switching between different action primitives. For the 

current robotics experiment, S-CTRNN model was further extended such that it can deal 

with multiple timescale property as shown in our prior study on multiple timescale 

recurrent neural network (MTRNN) model (Yamashita & Tani, 2008). Our speculation 

is that a newly proposed model of S-MTRNN can learn to predict hierarchically 

organized fluctuated patterns by utilizing the multiple timescales property. The proposed 

S-MTRNN (Fig.4) contains two clusters of the fast context units (𝑐𝐹) with smaller τ 

and the slower context units (𝑐𝑆) with larger τ. It receives the current proprioception 

state (the encoder readings of 4 DOF joint angles) and generates the one in next time 

step in continuous manner. Number of the fast context units and the slow context units 

employed were 30 and 10, respectively. The time constant τ was set as 5 for the fast 

context units and 30 for the slow ones. 

 

 

Fig. 4 S-MTRNN model. 

 

 During the tutoring session for NAO robot, the experimenter tutored two types 

of arm movement actions, one for moving the arm to the left-hand side and then 

returning back to the center position and the other for moving the arm to the right-hand 
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side and then returning back to the center position by repeating them in random orders 

in sequences (Fig. 5).  

 

 

 

Fig.5 Tutoring of NAO robot by direct guidance. Repeatedly guiding two different 

arm movements in arbitrary sequential combination, one from center (red block 

position) to left (green block) and the other from center to right (blue block). 

 

Each tutoring trial consists of 5 successive switching and all trials cover all possible 

combinations of 2
5
 sequences. In the training of the S-MTRNN with the tutoring 

patterns, the training was repeated twice with setting 𝜎𝐼𝑆
2  with a small value and a large 

value in order to generate a narrow initial state distribution (Narrow-IS) and a wide 

initial state distribution (Wide-IS), respectively. After the training of the S-MTRNN was 

completed, the robot movement was generated for both training cases by means of the 

so-called closed-loop operation. In the closed-loop operation with the S-MTRNN, a 

Gaussian noise with the estimated variance at each step is added to the feedback from 

previous step prediction outputs to the current step input.  

 Fig. 6 (a) and (b) illustrate examples of behavior generation in terms of the 

proprioception sequence associated with the estimated variance and the internal neural 

activities in the fast and the slow context units generated by the network trained under 

Narrow-IS and Wide-IS conditions, respectively.  
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Fig. 6. The robot behavior generation (a) in Narrow-IS case and (b) in Wide-IS 

case. 

 

In both cases, it can be observed that two behaviors of moving to right or moving to left 

are alternated arbitrarily. In the Narrow-IS case, the estimated variances showed their 

sharp peaks at the decision points but almost zero at other time steps. This implies that 

the trained S-MTRNN developed action primitives of moving to left and right as two 

distinct chunks and their probabilistic switching mechanism at the decision points by 

utilizing the estimated large variance in those time points. Therefore, it can be said that 

probabilistic decision mechanism was developed in the training condition of Narrow-IS. 

On the other hand in the Wide-IS case, the variance is estimated as almost zero for all 

steps including the decision point. This implies that motor behavior is generated as an 

initial sensitive deterministic dynamics in the Wide-IS condition. Although we expected 

the development of chaos again in this experiment, the largest Lyapunov exponent 

turned out to be negative which denied our expectation. However, we observed that 

seemingly random switching at the decision point continues more than 10 consecutive 

switching times before converging into a particular periodic sequence. This implies that 

spontaneous switching was mechanized by transient chaos. For relatively long period, 

arbitrary sequential combinations of two action primitives can be generated depending 
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on the initial context state.  

 Another interesting observation was that the internal neural activity was 

observed as quite different between the two cases. In the Narrow-IS case, the neural 

activities in both of the slow and the fast subnetworks showed the same values for all 

decision points. On the other hand in the Wide-IS case, both of the slow and fast 

neurons exhibit specific activation patterns at each decision point which can predict the 

forthcoming behavior of either moving to left or right. This implies that there was no 

bias in the neutral activity at the moment of the decision in the Narrow-IS case whereas 

there were top-down predictive biases represented with specific neural activation 

patterns in the decision points in the Wide-IS case. Finally, we consider contribution of 

the multiple timescale property of the employed model to the imitative learning of 

hierarchically organized probabilistic decision behavior. Our additional experiments 

revealed that the network model without the slow context units could learn the task with 

the Narrow-IS condition but not with the Wide-IS condition. The slow dynamic part was 

necessary in the Wide-IS condition because transient chaos which enables spontaneous 

switching of the primitive actions stored in the fast dynamics part was developed in the 

slow dynamics part. 

 The current experiment results showed that S-MTRNN model which is 

characterized by the multiple timescale property can learn to reconstruct continuous 

perceptual flow fluctuated as triggered by sequences of probabilistic decisions. It was 

observed that stochastic dynamic was developed by less utilizing the initial sensitivity 

characteristics while deterministic dynamic with transient chaos did by more utilizing 

the initial sensitivity characteristics in the learning processes. This result is analogous to 

the one shown in our previous simulation experiments on the imitative learning of 

S-FSM output sequences.  

 

Two-leveled S-MTRNN to extract probabilistic structures latent in different 

timescales dynamics 

We observed several limitations of the S-MTRNN in the second experiment. First, the 

slow context unit activities were not developed so well in the Narrow-IS condition. 

Second, although the variance peak generated at each switching point, predicted 

temporal sequence became sharp at each switching point. One hypothesis is that 

variance was only connected with fast context units or fast timescale network. That’s 

why variance generation merely depends on fast timescale dynamics. To overcome this 

limitation, we suggest extended S-MTRNN, called two-leveled S-MTRNN. 

Two-leveled S-MTRNN (Fig. 7) consists of two sub-networks, each 
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characterized by different timescale. Fast timescale network contains fast context units 

with small time constant. It receives the current input 𝐼𝑡
𝐹 to generate the one in next 

time step as like the S-MTRNN. The fast timescale network connected with newly 

proposed units, called pseudo target units �̅�𝑡
𝑆. Slow timescale network contains slow 

context units with large time constant to generate pseudo target units in closed-loop 

phase. It receives the current input 𝐼𝑡
𝑆  which comes from pseudo target units for 

previous time step in training phase. 

 

 

Fig. 7. Two-leveled S-MTRNN model 

 

Unlike the previous models, training phase was separated into two stages as 

like a mixture of RNN experts (Namikawa, 2008). In first training phase, the fast 

timescale network trained and the values of the pseudo target units are self-organized 

while slow timescale network fixed, by maximize the likelihood function 𝐿𝑓𝑎𝑠𝑡 defined 

as follows: 

𝐿𝑓𝑎𝑠𝑡 =  ∏ ∏ ∏
1

√2𝜋𝑣𝑟,𝑡,𝑖
𝐹

𝑒𝑥𝑝 (−
(𝑜𝑟,𝑡,𝑖

𝐹 −�̅�𝑟,𝑡,𝑖
𝐹 )

2

2𝑣𝑟,𝑡,𝑖
𝐹 )𝑖𝑡𝑟  (Eq. 3) 

where 𝑜𝑟,𝑡,𝑖
𝐹  is 𝑖th dimension of the output of fast timescale network at time step 𝑡 in 

the 𝑟th sequence, �̅�𝑟,𝑡,𝑖
𝐹  is its teaching target, and 𝑣𝑟,𝑡,𝑖

𝐹  is the variance of fast timescale 

network. The pseudo target play key role in this model by competing with fast output 

and fast variance. More detail, probabilistic structure latent in slower timescale 
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dynamics which cannot be properly minimized by fast output and fast variance, can be 

minimized by self-organizing the pseudo target. 

In second training phase, slow timescale network trained by minimizing 

likelihood function 𝐿𝑠𝑙𝑜𝑤 based on trained fast timescale network. 

𝐿𝑠𝑙𝑜𝑤 =  ∏ ∏ ∏
1

√2𝜋𝑣𝑟,𝑡,𝑖
𝑆

𝑒𝑥𝑝 (−
(𝑜𝑟,𝑡,𝑖

𝑆 −�̅�𝑟,𝑡,𝑖
𝑆 )

2

2𝑣𝑟,𝑡,𝑖
𝑆 )𝑖𝑡𝑟  (Eq. 3) 

where 𝑜𝑟,𝑡,𝑖
𝑆  is 𝑖th dimension of the output of slow timescale network at time step 𝑡 in 

the 𝑟th sequence, �̅�𝑟,𝑡,𝑖
𝑆  is the pseudo target self-organized in first training phase, and 

𝑣𝑟,𝑡,𝑖
𝑆  is the variance of slow timescale network. During the second training phase, slow 

timescale network try to generate the pseudo target by means of slow output and slow 

variance. By doing that, probabilistic structure which captured by pseudo target, can be 

redistributed into slow output and slow variance. 

To verify the capability of the two-leveled S-MTRNN, we conducted simple 

decision making experiment using two different computer generated temporal 

sequences (Fig. 8). Two temporal sequences exactly same until 100 time step. After that 

one goes down the other goes up. The purpose of the experiment is to see whether 

probabilistic structure in slow timescale dynamics can be captured by the two-leveled 

S-MTRNN or not. For this experiment, 30 fast context units with time constant τ set to 

5 in fast timescale network and 1 pseudo target unit while 10 slow context unit with 

time constant τ set to 100 in slow timescale network. The two-leveled S-MTRNN 

trained with two different training conditions: (1) updating initial context state 

(deterministic case) and (2) fixed initial context state (stochastic case). 

 

Fig. 8. Computer generated 2-dimensional branching sequences 
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Fig. 9. The internal dynamics of the two-leveled S-MTRNN (a) in deterministic 

case and (b) stochastic case. 
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In Fig. 9, self-organized structures of the pseudo target were similar while fast 

variance was almost zero regardless of training conditions. It means slow probabilistic 

structure within temporal sequences, such as branching prediction, can be more easily 

extracted by the pseudo target rather than fast output and fast variance. The significant 

difference between training conditions comes in slow timescale networks. In the 

deterministic case, each initial state of the slow context for each target sequence is 

totally separated and slow variance was almost zero. These results showed that network 

already knew the direction of branching from the starting point in terms of initial state 

of slow context. This result is analogous to the robotics experiment results shown in 

(Tani, 2014). On the other hand, in the stochastic case, network cannot predict the 

direction of branching because the initial state of the context was exactly same. But, 

network can predict branching point through slow variance peak generation at 

branching point. In brief, the pseudo target extract slow probabilistic structure in the 

first training phase, and then slow probabilistic structure extracted by the pseudo target, 

was re-extracted by the slow timescale network in stochastic dynamics or deterministic 

dynamics depends on training conditions in the second training phase. At the same time, 

in stochastic case, predicted temporal sequence showed smooth transition in the closed 

loop generation. Because generated noisy of the slow variance added to slow context 

dynamics, not directly added to fast context dynamics. The simulation results in this 

experiment indicate the two-leveled S-MTRNN successfully extract slow probabilistic 

structure in slow timescale dynamics especially thanks to the pseudo target.  

 

3. Summary 

The current study investigated a novel neuro-dynamic scheme by which fluctuated 

sequence patterns generated by particular target sources can be reconstructed by 

extracting latent statistical structures in the target patterns via iterative learning. The 

uniqueness of the proposed scheme is that the fluctuated sequences are learned by 

adequately incorporating stochastic dynamics and deterministic chaos self-organized in 

the network depending on the initial sensitivity condition set in the learning processes. 

If the initial sensitivity is utilized in the Narrow IS condition, non-zero value for 

time-varying variance is estimated along with the prediction of the mean of the target at 

each step. The target sequence is regenerated in terms of stochastic dynamics because 

the sequences are generated by adding noise of the estimated variance to the predicted 

mean at each step. On the other hand, if the initial sensitivity is not utilized, 

deterministic dynamic of chaos or transient chaos is developed by estimating the 

time-varying variance as zero for all steps. 
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 The aforementioned principle was well evaluated by conducting a set of 

experiments associated with a series of extensions in the basic model. The first 

simulation experiment showed that how the basic model of S-CTRNN can learnt to 

reconstruct of a target S-FSM by extracting its probabilistic structure. It was shown that 

the state transition with probabilistic branching in the target S-FSM could be imitated 

by means of estimating adequate variance at the branching step in the result of learning 

with the Narrow-IS condition or by developing deterministic chaos with the Wide-IS 

condition.  

 The second experiment with utilizing a robot showed that how the extended 

model of S-MTRNN can learnt to reconstruct continuous perceptual sequences which 

are generated by particular probabilistic decision sequences. It was shown that 

S-MTRNN learned two different action primitives by utilizing the fast context unit 

activities in both of the Narrow-IS and the Wide-IS conditions. However, the 

mechanism of the probabilistic switching between these primitive actions was 

developed differently between these two conditions. In the Narrow-IS condition, it was 

observed that the time-varying variance was estimated with a peak value at each 

moment of the switching decision. It seemed that the activity in the slow context units 

contributed less to the whole system performance. On the other hand in the Wide-IS 

condition, it was found that the probabilistic switching between two primitive actions 

was mechanized by the transient chaos developed in the slow context activity. One 

question was arisen by obtaining this result. The question is why the slow context unit 

activity cannot be utilized in the Narrow-IS condition. If the switching decision is 

originated by the fluctuation in the higher cognitive level, such fluctuation should 

appear also in the slow dynamic part in the higher level in the model.  

 The third simulation experiment was conducted in order to investigate this 

problem. The two-level S-MTRNN trained to regenerate two branching sequences 

under two different conditions: stochastic case and deterministic case. The training 

phase divides into two sub-training phase. In first training phase, fast timescale network 

was trained while self-organizing the pseudo target. There was no significant difference 

between two training conditions in this phase. In second training phase, slow timescale 

network was trained using trained fast timescale network and the pseudo target. Two 

training conditions were differentiated in second training phase. Probabilistic structure 

extracted by the pseudo target can be re-extracted by initial context state or slow 

variance depends on training condition. As we expected, the two-leveled S-MTRNN 

utilized slow context dynamics and generated smooth transition of predicted temporal 

sequence, even if in stochastic case. But, the two-leveled S-MTRNN has been still in 
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preliminary stage and requires further studies. For the future work, we will provide 

updated version of the two-leveled S-MTRNN which can train fast timescale network 

and slow timescale network at the same time. 
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