
Scheduling Constrained-Deadline Parallel Tasks on
Two-type Heterogeneous Multiprocessors

Björn Andersson
Carnegie Mellon University

Gurulingesh Raravi
Xerox Research Centre India

Abstract—Consider the problem of scheduling a taskset
on a multiprocessor so that all deadlines are met. Assume
(i) constrained-deadline sporadic tasks, i.e., a task generates a
sequence of jobs and the deadline of a job is no greater than
the minimum inter-arrival time of the task that generates the
job, (ii) stage-parallelism, i.e., a task comprises one or more
stages with a stage comprising one or many segments so that
segments in the same stage are allowed to execute in parallel and
a segment is allowed to execute only if all segments of the previous
stage have finished, (iii) two-type heterogeneous multiprocessor
platform, i.e., there are processors of two types, type-1 and type-
2, and for each task, there is a specification of its execution speed
on a type-1 processor and on a type-2 processor, and (iv) intra-
type migration, i.e., a job can migrate between processors of the
same type but for a task, all jobs of this task must execute on the
same processor type. We present an algorithm for this problem; it
assigns each task to a processor type and then schedules tasks on
processors of each type with global-Earliest-Deadline-First. This
algorithm has pseudo-polynomial time complexity and speedup
factor at most 5. This is the first algorithm for scheduling parallel
real-time tasks on a heterogeneous multiprocessor with provably
good performance.

I. INTRODUCTION

Software systems are expected to do more with less, i.e.,
providing more functionality and greater performance with
lower size, weight, and power consumption. The real-time
systems community has taken a great interest in developing
methods that provide foundations for doing so while ensuring,
before run-time, that the software system can respond, at run-
time, to certain events within pre-specified time constraints
(deadlines). Such foundations include algorithms for assign-
ing tasks to heterogeneous multiprocessors. These algorithms
are useful because heterogeneous multiprocessors typically
provide more processing power per watt. Other foundations
include algorithms for scheduling tasks that can execute in
parallel on multiprocessors. These algorithms are relevant for
computations responding to events that have so tight deadlines
that even if a computation is executed on a system with no
other computations present, the only way for the computation
to meet its deadline is to perform execution in parallel.

A computer platform is a homogeneous multiprocessor
(sometimes called identical multiprocessor) if the execution
speed of all tasks is the same on all processors. Conversely, a
computer platform is a heterogeneous multiprocessor (some-
times called unrelated multiprocessor) if the execution speed
of a task depends on both the processor and the task. A
heterogeneous multiprocessor is two-type if it has two types

of processors (a.k.a two-type platform). Analogously, a hetero-
geneous multiprocessor is t-type if it has t types of processors
(a.k.a t-type platform). For two-type platforms, the problem of
assigning tasks to processors is NP-hard in the strong sense
and the problem of assigning tasks to processor types is NP-
hard [1]. For t-type platforms, both the problems are NP-Hard
in the strong sense [2], [3]. Consequently, the research commu-
nity has developed approximation algorithms (i.e., algorithms
with finite speedup factors) for assigning tasks to processors
and to processor types [1]–[15] on such platforms.

Related work. The algorithms for assigning implicit-
deadline sporadic tasks (i.e., a task generates a sequence of
jobs and a job has a deadline that is equal to the minimum
inter-arrival time of the task that generates the job) to proces-
sors and to processor types for two-type platforms [1], [5]–[8]
have lower time complexity than the algorithms for t-type plat-
forms [2]–[4], [9]–[14] while maintaining their performance
bound. In addition, an algorithm for scheduling arbitrary-
deadline sporadic tasks (i.e., a task generates a sequence
of jobs and a job has a deadline that may be less than or
greater than or equal to the minimum inter-arrival time of
the task that generates the job) on t-type platforms is known
as well [15]. However, they [1]–[15] do not support parallel
tasks. The research community has also presented algorithms
with proven speedup factors for scheduling parallel tasks on
homogeneous multiprocessors [16]–[22]. Further, there are
other algorithms [23]–[33] with no proven speedup factors
for scheduling parallel tasks on homogeneous multiprocessors
— some of them [23]–[28] are for constrained-deadline tasks
(i.e., a task generates a sequence of jobs and a job has a dead-
line that may be less than or equal to the minimum inter-arrival
time of the task that generates the job) and the others [29]–[33]
are for implicit-deadline tasks. Unfortunately, none of these
works [16]–[33] support heterogeneous multiprocessors (and
moreover most of these algorithms [23]–[33] have no proven
speedup factors). A work by Holenderski et. al. [34] comes
closest to ours as it also deals with the problem of scheduling
parallel tasks on heterogeneous multiprocessors. However, the
approach presented in [34] has no proven speedup factor.

This research. In this paper, we present a pseudo-
polynomial algorithm for scheduling constrained-deadline par-
allel tasks on a two-type heterogeneous multiprocessor and
prove its speedup factor. Our approach assigns each task
to a processor type and then uses global-Earliest-Deadline-
First (gEDF) on the processors of each type to schedule the

1

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
13 JAN 2015

2. REPORT TYPE
N/A

3. DATES COVERED

4. TITLE AND SUBTITLE
Scheduling Constrained-Deadline Parallel Tasks on Two-type
Heterogeneous Multiprocessors

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)
Raravi /Bjorn A. Andersson Gurulingesh

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Software Engineering Institute Carnegie Mellon University Pittsburgh,
PA 15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release, distribution unlimited.

13. SUPPLEMENTARY NOTES
The original document contains color images.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

SAR

18. NUMBER
OF PAGES

13

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

.

. . .

start
end

stage: 1 stage: 2 stage: j stage: nsi

segments: nsegi,1 segments: nsegi,2 segments: nsegi,j segments: nsegi,nsi

ci,nsi

ci,nsi

ci,nsi

. . .

ci,j

ci,j

ci,j

ci,j. . .

ci,2

ci,2

ci,2

. . .

ci,1

ci,1

ci,1

ci,1

Fig. 1: The parallel task model studied in this paper.

respective tasks. We show that our new algorithm has pseudo-
polynomial time complexity and speedup factor at most 5. We
study the constrained-deadline sporadic task model and we
consider parallelism with stages (i.e., a task is described with
one or more stages with each stage comprising one or many
segments such that segments in the same stage are allowed to
execute in parallel but a segment is only allowed to execute
if all segments of the previous stage have finished execution).
This work makes the following contribution: it presents the
first algorithm for scheduling parallel real-time tasks on a
heterogeneous multiprocessor with a proven speedup factor.

Organization of the paper. The rest of this paper is orga-
nized as follows. Section II states the system model. Section III
lists previous results on parallel scheduling on homogeneous
multiprocessors and also proves new lemmas that we use later
in the paper. Section IV presents our new algorithm for two-
type heterogeneous multiprocessors and proves its speedup
factor and time complexity. Section V concludes.

II. SYSTEM MODEL

We consider the problem of scheduling a set τ of
constrained-deadline sporadic tasks on a two-type heteroge-
neous multiprocessor platform Π comprising m1 processors
of type-1 and m2 processors of type-2. A task τi ∈ τ
is characterized by a minimum inter-arrival time Ti and a
deadline Di such that Di ≤ Ti. Each task τi generates a
sequence of jobs, with the first job arriving at any time and
subsequent jobs arriving at least Ti time units apart.

The execution of a task τi is described by nsi, nsegi,j , and
Ci,j with the interpretation that a job of τi has nsi stages
with stage j comprising nsegi,j segments with each segment
of stage j having execution requirement at most Ci,j — see
Fig. 1. A segment finishes when it performs a number of units
of execution equal to its execution requirement. A segment
executing contiguously for L time units on a processor of
speed s performs L × s units of execution. A segment of a
job is allowed to execute only if all segments of its previous
stage have finished. A job finishes when all segments of its
last stage have finished. If a job of τi finishes at most Di time
units after its arrival, then it meets its deadline.

On a two-type platform, the execution speed of a job
depends on the type of processor on which it executes. Let r1

i

and r2
i denote the execution speeds of a job of task τi when

it executes on a processor of type-1 and type-2 respectively.
We now define terms that we use in the rest of the paper.

Definition 1 (Legal jobset). If, for each task in the taskset τ ,
the task is assigned the number of jobs it generates and each
job is assigned an arrival time such that the minimum inter-
arrival time constraint is satisfied and each segment of a job is
assigned an execution requirement such that the upper bound
on execution requirement of a segment is respected, then we
say that the resulting jobset is a legal jobset with respect to τ .

Definition 2 (Intra-migrative schedule). A schedule is intra-
migrative if both of the following conditions are true: (i) jobs
are allowed to migrate between processors of the same type
and (ii) for each task, it holds that, if a job executes on a
processor of one type then all other jobs of this task execute
on processors of the same type.

Definition 3 (Intra-migrative feasible taskset). A taskset τ is
intra-migrative feasible on a two-type platform Π if for each
jobset that is legal with respect to τ there exists an intra-
migrative schedule in which all deadlines are met.

Definition 4 (S-Schedulable task set). A taskset τ is S-
schedulable on a two-type platform Π if for each jobset that is
legal with respect to τ , for each schedule that S can generate
from the jobset, it holds that the schedule is intra-migrative
and all deadlines are met.

Definition 5 (Speed of the computing platform). If Π is a
two-type platform then let Π × x denote a two-type platform
where the speed of each processor is multiplied by x.

Definition 6 (Speedup factor). A scheduler S has a speedup
factor SFS if, for each taskset τ , for each two-type platform
Π, it holds that: if τ is intra-migrative feasible on Π then τ
is S-schedulable on Π× SFS.

In order to simplify our discussion in the rest of the
paper, we rewrite our model to an equivalent formulation as
follows. Instead of using Ci,j , r1

i , and r2
i , we use parameters

C1
i,j , C

2
i,j , and s selected as follows: C1

i,j/s = Ci,j/r
1
i and

C2
i,j/s = Ci,j/r

2
i . We let s.t. mean such that and : mean it

holds that. We let {x|f(x)} denote a set of elements so that
an element x is in the set if and only if f(x) is true. For
convenience, we write the predicate (∀t > 0 : x) to mean
the predicate (∀t s.t. t > 0 : x). For convenience, we also
define DMAX = maxτi∈τ Di, DMIN = minτi∈τ Di, and
TMAX = maxτi∈τ Ti.

III. SCHEDULABILITY ANALYSIS OF PARALLEL TASKS ON
A HOMOGENEOUS MULTIPROCESSOR

It is known that there is no optimal online algorithm for
scheduling constrained-deadline sporadic tasks on a homoge-
neous multiprocessor (even for tasks without parallelism) [35].
Therefore, in this paper, we use global-Earliest-Deadline-First
(gEDF) scheduling policy as it has a good speedup factor [36].
There is a brute-force approach [37] which provides exact

2

Ci
def
=

nsi∑
j=1

(nsegi,j × Ci,j) ηi
def
=

nsi∑
j=1

(⌈nsegi,j

m

⌉
× Ci,j

)
(1)

WJ (τi, t, s)
def
=

 0 if t < 0
WJS (i, t, 1, s) if 0 ≤ t < ηi

s
Ci if ηi

s ≤ t
bspi,j

def
=

Ci,j
s
×
⌊nsegi,j

m

⌋
spi,j

def
=

Ci,j
s
×
⌈nsegi,j

m

⌉
(2)

WJS (i, t, j, s)
def
=

t×m× s if 0 ≤ t < bspi,j

bspi,j ×m× s+
(
t− bspi,j

)
×
(
nsegi,j mod m

)
× s if bspi,j ≤ t < spi,j

Ci,j × nsegi,j + WJS
(
i, t− spi,j , j + 1, s

)
if spi,j ≤ t

(3)

ffdbf (τi, t, v, s)
def
=

⌊
t

Ti

⌋
× Ci + Ci −WJ (τi, (Di − (t mod Ti))× v, s) (4)

h (τ,m, s, σ, t)
def
=

((∑
τi∈τ

ffdbf
(
τi, t,

σ

s
, s
))
≤
((
m− (m− 1)× σ

s

)
× t× s

))
(5)

(
∃σ s.t.

(
σ ≥ max

τi∈τ

ηi
Di

)
∧ (∀t s.t. t ≥ 0 : h (τ,m, s, σ, t))

)
⇒ τ is gEDF schedulable on m processors of speed s (6)

τ is feasible on m processors of speed s⇒

(
∀t > 0 :

∑
τi∈τ

ffdbf (τi, t, 1, s) ≤ m× t× s

)
(7)

Fig. 2: Previously known [18] schedulability analysis for gEDF scheduling of parallel tasks on a homogeneous multiprocessor.

mi (τ)
def
= 2blog2(maxτi∈τ (Ti+Di))c+1 (8)

ffdbf* (τi, t, v, s, τ)
def
=

{
ffdbf

(
τi, 2

blog2 tc+1, v, s
)

if t ≤ mi (τ)

ffdbf (τi,mi (τ) , v, s) +
(
Ci + Ci

Ti
× (t−mi (τ))

)
if t > mi (τ)

(9)

Fig. 3: New expressions we will use.

schedulability test for gEDF but it has a very large time-
complexity and it does not support parallel tasks and it requires
that tasks parameters are integers. Therefore, in this paper, we
use a sufficient (not exact) schedulability test for parallel tasks.

The research literature provides many sufficient schedula-
bility tests for gEDF for tasks that are not parallel — see
for example [38]–[40]. Of particular interest is [40] which
provides a schedulability test with a speedup factor of two.
This schedulability test states that if there exists a σ such
that σ is at least as large as the density of each task and
if it holds for each value of t that the sum of ffdbf of
tasks is at most a certain value then the taskset is gEDF-
schedulable. Here ffdbf means forced-forward demand-bound
function; it is a function which describes the maximum amount
of execution a given task can demand in a time interval of

duration t. Later work [18] extended this for parallel tasks
and this was done by defining ffdbf for parallel tasks. Fig. 2
shows this schedulability test (see Eq. (6)) for parallel tasks on
a homogeneous multiprocessor [18] comprising m processors.
It also shows a feasibility test (see Eq. (7)) for parallel tasks
on a homogeneous multiprocessor. Since this formulation is
for homogeneous multiprocessors, we do not have the 1 and
2 on Ci,j . Some basic properties of ffdbf are shown below.

Lemma 1. ∀t0 > 0,∀t > t0 : ffdbf (τi, t0, v, s) ≤
ffdbf (τi, t, v, s)

Proof: Follows from inspection of terms in Eqs. (1)-(4).

Lemma 2. ∀l ∈ Z : ffdbf (τi, t+ l × Ti, v, s) =
ffdbf (τi, t, v, s) + l × Ci

3

C1. ∃σ1 s.t.
(
σ1 ≥ δmax,1 (X)

)
∧
(
∀t ≥ 0 :

(∑
τi∈τ ffdbf1

(
τi, t,

σ1

s
, s
)
× x1i

)
≤
((
m1 − (m1 − 1)× σ1

s

)
× t× s

))
C2. ∃σ2 s.t.

(
σ2 ≥ δmax,2 (X)

)
∧
(
∀t ≥ 0 :

(∑
τi∈τ ffdbf2

(
τi, t,

σ2

s
, s
)
× x2i

)
≤
((
m2 − (m2 − 1)× σ2

s

)
× t× s

))
C3. ∀τi ∈ τ : x1i + x2i = 1
C4. ∀τi ∈ τ : x1i ∈ {0, 1} and x2i ∈ {0, 1}

Fig. 4: A naive formulation of constraints for task-to-processor-type assignment.

Proof: Follows from Eq. (4).
Let mi(τ), in Fig. 3, be a duration of a time interval.

Lemma 3. ffdbf (τi,mi(τ), v, s) + Ci ≤
ffdbf (τi, 2×mi(τ), v, s)

Proof: Applying Lemma 2 with t = mi(τ) and l = 1,
yields ffdbf (τi,mi(τ), v, s)+Ci = ffdbf (τi,mi(τ) + Ti, v, s).
From the definition of mi(τ), it follows that Ti ≤ mi(τ).
Applying this on the above and using Lemma 1 yields
ffdbf (τi,mi(τ), v, s) + Ci = ffdbf (τi, 2×mi(τ), v, s). This
states the lemma.

We will now introduce a function ffdbf* (used to over-
approximate ffdbf) such that for inputs where t is less than
or equal to mi(τ), it holds that ffdbf* (τi, t, v, s, τ) is a
staircase function and for t greater than mi(τ), it holds that
ffdbf* (τi, t, v, s, τ) increases linearly with t. Formally, Eq. (9)
in Fig. 3 shows the definition of ffdbf* (τi, t, v, s, τ).

Lemma 4. ∀t > 0 : ffdbf (τi, t, v, s) ≤ ffdbf* (τi, t, v, s, τ)

Proof: See Appendix.

Definition 7. TS(τ, θ)
def
= {t|(2blog2 tc = t) ∧ (DMIN× (1−

θ) ≤ t ≤ mi (τ))} ∪ {2blog2(DMIN×(1−θ))c}

Lemma 5. ∀t ∈ TS(τ, θ) : ffdbf* (τi, t, v, s, τ) =
ffdbf (τi, 2× t, v, s)

Proof: Follows from definition of ffdbf* and Definition 7.

IV. NEW SCHEDULING ALGORITHM AND SPEEDUP FACTOR

In this section, we discuss scheduling on a two-type hetero-
geneous multiprocessor. We will use notations in Fig. 2 and
Fig. 3 but with 1 as superscript; this superscript indicates that
the quantity if based on C1

i,j . Ditto for type-2. For example,

from Eq. (1) we obtain: C1
i

def
=
∑nsi
j=1

(
nsegi,j × C1

i,j

)
and

C2
i

def
=
∑nsi
j=1

(
nsegi,j × C2

i,j

)
.

A. Developing the new algorithm

The problem of scheduling constrained-deadline parallel
sporadic tasks on a two-type heterogeneous multiprocessor.
can be solved in two steps. Step 1: Before run-time, assign
tasks to processor types so that (i) tasks assigned to type-1 are
gEDF-schedulable on the processors of type-1 and (ii) tasks
assigned to type-2 are gEDF-schedulable on the processors
of type-2. Step 2: At run-time, schedule all tasks assigned to
type-1 with gEDF on processors of type-1 and schedule all
tasks assigned to type-2 with gEDF on processors of type-2.

Since Step 2 is straightforward, we focus our discussion on
Step 1.

Step 1 could be solved as follows. Let x1
i = 1 indicate that

task τi is assigned to type-1 processors and let x2
i = 1 indicate

that task τi is assigned to type-2 processors. Let X denote the
matrix of xi values for all tasks in τ . Then, by using Eq. (6),
one could solve Step 1 by assigning values to xi variables such
that all the constraints in Fig. 4 are satisfied. Intuitively, C1 in
Fig. 4 states that according to the schedulability test of Eq. (6),
the tasks assigned to type-1 processors are gEDF-schedulable
on type-1 processors. C2 is analogous for type-2 processors.
C3 combined with C4 states that a task is either assigned
to type-1 or type-2. C4 states that xi-variables are integers.
Unfortunately, creating an algorithm that assigns values to xi
such that all the constraints in Fig. 4 are satisfied is challenging
because (i) it involves an exists-quantifier (∃σ1 in C1 and ∃σ2

in C2) and (ii) it involves a forall-quantifier (∀t in C1 and ∀t
in C2) and (iii) it has integer variables. Hence, we will now
present other constraints so that if these other constraints are
satisfied then the constraints in Fig. 4 are satisfied as well.

Let θ1 and θ2 be non-negative parameters that we can
choose. Then, instead of asking if there exists a σ1 in C1
in Fig. 4 with certain properties, let us only consider those σ1

such that σ1/s = θ1. Then it follows that if there is a task τi
with x1

i = 1 and η1i
Di

> θ1 × s(Π) then C1 is violated. Hence,

if θ1 is given and σ1/s = θ1 and if η1i
Di

> θ1 × s(Π) then it
follows that a necessary condition to satisfy the constraints in
Fig. 4 is that x1

i = 0. We can reason analogously for θ2 and
C2. For this reason, we introduce the following sets.

H12
def
= {τi ∈ τ | (

η1i
Di

> θ1 × s(Π)) ∧ (
η2i
Di

> θ2 × s(Π))} (10)

H1
def
= {τi ∈ τ | (

η1i
Di
≤ θ1 × s(Π)) ∧ (

η2i
Di

> θ2 × s(Π))} (11)

H2
def
= {τi ∈ τ | (

η1i
Di

> θ1 × s(Π)) ∧ (
η2i
Di
≤ θ2 × s(Π))} (12)

L
def
= {τi ∈ τ | (

η1i
Di
≤ θ1 × s(Π)) ∧ (

η2i
Di
≤ θ2 × s(Π))} (13)

Observe that τ = H12∪H1∪H2∪L. We let H12(θ1, θ2, τ)
denote H12 for the parameters θ1, θ2, τ . Analogously for
H1,H2, and L.

Clearly, if θ1 and θ2 are given and σ1/s = θ1 and σ2/s = θ2

and if there is a task in H12 then it is impossible to satisfy
the constraints in Fig. 4. Also, if θ1 is given and σ1/s = θ1

then a necessary condition to satisfy the constraints in Fig. 4
is to set, for each task τi ∈ H1, x1

i = 1. Analogously, if θ2 is
given and σ2/s = θ2 then a necessary condition to satisfy the
constraints in Fig. 4 is to set, for each task τi ∈ H2, x2

i = 1.
This gives us the constraints in Fig. 5. It can be seen that
if θ1 and θ2 are given and for a matrix X, it holds that all

4

C1. ∀t ≥ 0 :
(∑

τi∈τ ffdbf1 (τi, t, θ1, s)× x1i
)
≤ ((m1 − (m1 − 1)× θ1)× t× s)

C2. ∀t ≥ 0 :
(∑

τi∈τ ffdbf2 (τi, t, θ2, s)× x2i
)
≤ ((m2 − (m2 − 1)× θ2)× t× s)

C3. ∀τi ∈ τ : x1i + x2i = 1
C4. ∀τi ∈ τ : x1i ∈ {0, 1} and x2i ∈ {0, 1}
C5. ∀τi ∈ H1 : x1i = 1
C6. ∀τi ∈ H2 : x2i = 1
C7. H12 = ∅

Fig. 5: A slightly less naive formulation of constraints for task-to-processor-type assignment.

C1. ∀ ∈ TS (τ, θ1) :
(∑

τi∈τ ffdbf*
1

(τi, t, θ1, s, τ)× x1i
)
≤ ((m1 − (m1 − 1)× θ1)× t× s)

C2. ∀ ∈ TS (τ, θ2) :
(∑

τi∈τ ffdbf*
2

(τi, t, θ2, s, τ)× x2i
)
≤ ((m2 − (m2 − 1)× θ2)× t× s)

C3. ∀τi ∈ τ : x1i + x2i = 1
C4. ∀τi ∈ τ : x1i ∈ {0, 1} and x2i ∈ {0, 1}
C5. ∀τi ∈ H1 : x1i = 1
C6. ∀τi ∈ H2 : x2i = 1
C7. H12 = ∅
C8.

(∑
τi∈τ (C1

i /Ti)× x1i
)
≤ ((m1 − (m1 − 1)× θ1)× s)

C9.
(∑

τi∈τ (C2
i /Ti)× x2i

)
≤ ((m2 − (m2 − 1)× θ2)× s)

Fig. 6: A formulation of constraints for task-to-processor-type assignment.

C1. ∀t ∈ TS (τ, θ1) :
(∑

τi∈τ ffdbf*
1

(τi, t, θ1, s, τ)× x1i
)
≤ ((m1 − (m1 − 1)× θ1)× t× s× 1/2)

C2. ∀t ∈ TS (τ, θ2) :
(∑

τi∈τ ffdbf*
2

(τi, t, θ2, s, τ)× x2i
)
≤ ((m2 − (m2 − 1)× θ2)× t× s× 1/2)

C3. ∀τi ∈ τ : x1i + x2i = 1
C4. ∀τi ∈ τ : x1i ≥ 0 and x2i ≥ 0
C5. ∀τi ∈ H1 : x1i = 1
C6. ∀τi ∈ H2 : x2i = 1
C7. H12 = ∅
C8.

(∑
τi∈τ (C1

i /Ti)× x1i
)
≤ ((m1 − (m1 − 1)× θ1)× s× 1/2)

C9.
(∑

τi∈τ (C2
i /Ti)× x2i

)
≤ ((m2 − (m2 − 1)× θ2)× s× 1/2)

Fig. 7: A formulation of constraints for task-to-processor-type assignment — relaxed to LP.

C1. ∀t ∈ TS (τ, θ1) :
(∑

τi∈τ ffdbf*
1

(τi, t, θ1, s, τ)× x1i
)
≤ ((m1 − (m1 − 1)× θ1)× t× s)

C2. ∀t ∈ TS (τ, θ2) :
(∑

τi∈τ ffdbf*
2

(τi, t, θ2, s, τ)× x2i
)
≤ ((m2 − (m2 − 1)× θ2)× t× s)

C3. ∀τi ∈ τ : x1i + x2i = 1
C4. ∀τi ∈ τ : x1i ∈ {0, 1} and x2i ∈ {0, 1}
C5. ∀τi ∈ H1 : x1i = 1
C6. ∀τi ∈ H2 : x2i = 1
C7. H12 = ∅
C8.

(∑
τi∈τ (C1

i /Ti)× x1i
)
≤ ((m1 − (m1 − 1)× θ1)× s)

C9.
(∑

τi∈τ (C2
i /Ti)× x2i

)
≤ ((m2 − (m2 − 1)× θ2)× s)

C10. ∀τi ∈ τ s.t.
((
x′1i = 1

)
∨
(
x′2i = 1

))
: x1i = x′1i

C11. ∀τi ∈ τ s.t.
((
x′1i = 1

)
∨
(
x′2i = 1

))
: x2i = x′2i

C12. X′ is the solution to the problem in Fig. 7

Fig. 8: A formulation of constraints for task-to-processor-type assignment; we will show that this can be computed in pseudo-
polynomial time.

constraints in Fig. 5 are satisfied then all constraints in Fig. 4
are satisfied as well.

Note that there is still a ∀t in C1 and C2 in Fig. 5. We will
now present a set of constraints where we only check a finite
number of t — see Fig. 6.

Lemma 6. if X satisfies Fig. 6 then X satisfies Fig. 5.

Proof: Suppose that the lemma was false. Then there
exists τ,Π, θ1, θ2, X such that X satisfies Fig. 6 and X does
not satisfy Fig. 5. Note that it can only be C1 or C2 (or both)
in Fig. 5 that are violated.

If it is C1 then we can reason as follows: There must be a

5

t that violated C1 in Fig. 5. Hence,(∑
τi∈τ

ffdbf1 (τi, t, θ1, s)× x1
i

)
>

(m1 − (m1 − 1)× θ1)× t× s (14)

Let us explore three possibilities:
Case 1: t > mi(τ). Note that mi(τ) is an element in

TS (τ, θ1). This gives us from Fig. 6:(∑
τi∈τ

ffdbf*1
(τi,mi(τ), θ1, s, τ)× x1

i

)
≤

(m1 − (m1 − 1)× θ1)×mi(τ)× s (15)

Because of C8 in Fig. 6, it also holds that:(∑
τi∈τ

(Ci/Ti)× x1
i

)
≤ (m1 − (m1 − 1)× θ1)× s (16)

Multiplying Eq. (16) by (t − mi(τ)) and adding to Eq. (15)
and then combining with Eq. 14 yields:(∑
τi∈τ

(ffdbf*1
(τi,mi(τ), θ1, s, τ) +

Ci
Ti
× (t−mi(τ)))× x1

i

)

<

(∑
τi∈τ

ffdbf1 (τi, t, θ1, s)× x1
i

)
Since TS (τ, θ1), we can apply Lemma 5 on the left-most
term. Doing so and then applying Lemma 3 yields:(∑
τi∈τ

(ffdbf1 (τi,mi(τ), θ1, s) + Ci +
Ci
Ti
× (t−mi(τ)))× x1

i

)

<

(∑
τi∈τ

ffdbf1 (τi, t, θ1, s)× x1
i

)

Note that the left-hand side is the expression of ffdbf*1
(the

second case of Eq. 9). Hence:∑
τi∈τ

ffdbf*1
(τi, t, θ1, s, τ)× x1

i <
∑
τi∈τ

ffdbf1 (τi, t, θ1, s)× x1
i

But this contradicts Lemma 4.
Case 2: t < DMIN × (1 − θ1). For such a t, it holds that

ffdbf1 (τi, t, θ1, s) is zero. But this violates Eq. 14.
Case 3: DMIN × (1 − θ1) ≤ t ≤ mi(τ). Let us define t1

as t1 = 2blog2 tc+1 and let t0 be t1/2. It is easy to see that
t0 ≤ t < t1. Note that t0 is an element in TS (τ, θ1). This
gives us from Fig. 6:(∑

τi∈τ
ffdbf*1

(τi, t0, θ1, s, τ)× x1
i

)
≤

(m1 − (m1 − 1)× θ1)× t0 × s (17)

Since t0 ≤ t it clearly holds that:

(m1 − (m1 − 1)× θ1)× t0 × s ≤
(m1 − (m1 − 1)× θ1)× t× s (18)

Lemma 5 yields: ffdbf*1
(τi, t0, θ1, s, τ) =

ffdbf1 (τi, t1, θ1, s). Combining this with Eq. (14), Eq. (17),
and Eq. (18) yields:∑
τi∈τ

ffdbf1 (τi, t1, θ1, s)× x1
i <

∑
τi∈τ

ffdbf1 (τi, t, θ1, s)× x1
i

Using this and t < t1 and Lemma 1 yields a contradiction.
If C2 is violated then we can reason analogously to the case

when C1 is violated.
It can be seen that if the lemma is false then each case

results in contradiction. Hence, the lemma is true.
Note that in Fig. 6, there is a finite number of constraints and

this is what we want. However, the X variables are integers
and this makes the problem a Mixed-Integer Linear Program
(MILP); the research literature currently neither offers a
polynomial time algorithm for solving general MILP nor for
solving MILP with the special structure of Fig. 6. For Linear
Programming (LP), polynomial time algorithms are known
though (see [41], for example). We will now discuss how to
exploit this. Fig. 7 shows an LP; it differs from Fig. 6 in that
X variables are real numbers instead of integers and it is also
more constrained — s/2 instead of s in C1,C2,C8,C9. With
the solution to this LP, we obtain a new optimization problem
— see Fig. 8. This optimization problem is as follows. First,
we solve the LP (specified by Fig. 7) and obtain a solution
X ′. With this solution X ′, we consider the MILP (specified
by Fig. 6) and require that for those i such that x′1i = 1 or
x′

2
i = 1, the value of x1

i should be equal to x′1i and the value
of x2

i should be equal to x′
2
i . There may be some i:s that

remain; these will be assigned values by solving a MILP (as
specified by Fig. 8).

Lemma 7. If θ1 and θ2 are given and X satisfies Fig. 8 then
X satisfies Fig. 4.

Proof: Follows from the discussion in this subsection.
Hence, solving Fig. 8 yields an assignment of tasks to

processor types.

B. Stating the new algorithm

We let solvePTMILP(τ,Π, θ1, θ2) denote a function which
takes as input a taskset τ and a computer platform Π and θ1

and θ2 and returns a tuple 〈f,X〉 where f is a boolean and
X is a matrix with the following interpretation: if Fig. 8 is
feasible then f is true and X is the solution; if Fig. 8 is
infeasible then f is false and X is undefined.

Algorithm 1 lists the pseudo-code for evaluating the func-
tion solvePTMILP(τ,Π, θ1, θ2).

Definition 8.

R(Π) = 4 + max

(
1−

1

m1
, 1−

1

m2

)

Algorithm 2 shows how the assignment of tasks to processor
types works.

Theorem 1. If 〈f,X〉 = solvePTMILP(τ,Π, θ1, θ2) and f
is true and tasks are assigned to processor types according

6

Algorithm 1: An algorithm for evaluating the function
solvePTMILP(τ,Π, θ1, θ2).

Input : A taskset τ and a two-type platform Π and θ1 and θ2
Output: A tuple 〈f,X〉 where f is a boolean and X is a matrix

1 if H12 = ∅ then
2 Solve the LP in Fig. 7 and obtain a vertex solution
3 if this LP is feasible then
4 Let X′ denote this solution.
5 Let F denote a set of indices of tasks in L such that

(x′1i 6= 1) ∨ (x′2i 6= 1).
6 Let us introduce χfound which is an assignment of values to

the xi-variables whose subscript index is in F ; this
assignment is initialized to be undefined.

7 Let us introduce a local variable foundPTMILP that is
boolean and initialize it to false.

8 foreach assignment of 0-1 to the xi-variables whose subscript
index is in F do

9 Evaluate if Fig. 8 is satisfied for this assignment
10 if the above evaluation yields true then
11 Let χ denote the assignment of 0-1 to the

xi-variables whose subscript index is in F
12 if foundPTMILP = false then
13 Set foundPTMILP to true
14 Set χfound to χ
15 end
16 end
17 end
18 if foundPTMILP then
19 Form the matrix X as follows:
20 For each i ∈ F : Assign x1i and x2i according to

χfound.
21 For each i ∈ L \F : Assign x1i and x2i according to X′.
22 For each i ∈ H1: Assign x1i = 1 and x2i = 0
23 For each i ∈ H2: Assign x1i = 0 and x2i = 1
24 return 〈true, X〉
25 else
26 return 〈false, X′〉
27 end
28 else
29 return 〈false, X〉, where X is undefined.
30 end
31 else
32 return 〈false, X〉, where X is undefined.
33 end

Algorithm 2: The new intra-migrative task assignment
algorithm for two-type heterogeneous multiprocessors.

Input : A taskset τ and a two-type platform Π
Output: An assignment of tasks to processor types indicated by matrix

X
1 〈f,X〉 := solvePTMILP(τ,Π, 1/R(Π), 1/R(Π))
2 if (f = true) then
3 declare SUCCESS and stop
4 else
5 declare FAILURE and stop
6 end

to the X-matrix and tasks are scheduled with gEDF on each
processor type then all deadlines will be met at run-time.

Proof: Follows from Lemma 7 and the fact that Eq. (6)
is a schedulability test.

Theorem 2. If Algorithm 2 declares success and tasks are
assigned to processor types according to the X-matrix and
tasks are scheduled with gEDF on each processor type then

all deadlines will be met at run-time.

Proof: Follows from Theorem 1.

C. Proving the time complexity of the new algorithm

Lemma 8. |TS(τ, θ1)| = blog2
mi(τ)

DMIN×(1−θ1)c + 2 and

|TS(τ, θ2)| = blog2
mi(τ)

DMIN×(1−θ2)c+ 2

Proof: Follows from the definition of TS — see Defini-
tion 7.

Lemma 9. After line 5 of Algorithm 1 has executed, it holds
that: |F | ≤ blog2

mi(τ)
DMIN×(1−θ1)c+ blog2

mi(τ)
DMIN×(1−θ2)c+ 6.

Proof: In the LP, solved on line 2 of Algo-
rithm 1, there are 2 × L variables and there are
blog2

mi(τ)
DMIN×(1−θ1)c + blog2

mi(τ)
DMIN×(1−θ2)c + 6 + |L| con-

straints (blog2
mi(τ)

DMIN×(1−θ1)c+ 2 constraints of C1; the same
number of C2; one constraint of C8; one constraint of
C9; |L| constraints of C3). Let X ′ denote the solution of
the LP in Fig. 7. Since for each vertex solution of LP,
it holds that the number of non-zero variables is at most
the number of constraints, it follows that there are at most
blog2

mi(τ)
DMIN×(1−θ1)c+blog2

mi(τ)
DMIN×(1−θ2)c+6+ |L| non-zero

values of the X ′ variables. For each task in L \ F , it holds
that there is exactly one non-zero value in X ′. For each task
in F , it holds that there is exactly two non-zero values in X ′.
Hence, there are 1× (|L| − |F |) + 2× |F | non-zero values of
the X ′ variables. Consequently: 1× (|L| − |F |) + 2× |F | ≤
blog2

mi(τ)
DMIN×(1−θ1)c+blog2

mi(τ)
DMIN×(1−θ2)c+6+|L|. Rewriting

yields: |F | ≤ blog2
mi(τ)

DMIN×(1−θ1)c+ blog2
mi(τ)

DMIN×(1−θ2)c+ 6.
This states the lemma.

Lemma 10. The number of iterations of the for-loop on line 8
of Algorithm 1 is at most:

(
TMAX+DMAX

DMIN

)2× 256
(1−θ1)×(1−θ2)

Proof: The number of iterations is at most 2|F |. Using
Lemma 9 yields that the number of iterations is at most:

2
blog2

mi(τ)
DMIN×(1−θ1)

c+blog2
mi(τ)

DMIN×(1−θ2)
c+6

Observing that mi(τ) ≤ 2×(TMAX+DMAX) and rewriting
yields the lemma.

Lemma 11. The time complexity of Algorithm 1 is
O
(
poly +

(
TMAX+DMAX

DMIN

)2 × 1
(1−θ1)×(1−θ2)

)
.

Proof: Follows from the facts that (i) linear programs
can be solved in polynomial time [41] and hence line 2 of
Algorithm 1 can be performed in polynomial time and (ii) the
for number of combinations iterated through in the for-loop of
line 8 is at most

(
TMAX+DMAX

DMIN

)2 × 256
(1−θ1)×(1−θ2) . (Follows

from Lemma 10.)

Theorem 3. The time complexity of Algorithm 2 is
O
(
poly +

(
TMAX+DMAX

DMIN

)2)
.

Proof: Since Algorithm 2 calls solvePTMILP once
with θ1 = θ2 = 1/R(Π) it follows that (us-
ing Lemma 11) the time complexity of Algorithm 2 is

7

O
(
poly +

(
TMAX+DMAX

DMIN

)2 × 1
(1−1/R(Π))×(1−1/R(Π))

)
. Ob-

serving that 4 ≤ R(Π) yields that the time complexity of
Algorithm 2 is O

(
poly +

(
TMAX+DMAX

DMIN

)2)
.

D. Proving the speedup factor of the new algorithm

We will start by discussing necessary conditions for intra-
migrative feasibility and then to prove the speedup factor.

Lemma 12. Consider a taskset τ and a computer platform
Π. If τ is intra-migrative feasible on Π then there exists a
matrix X such that all constraints in Fig. 9 are satisfied.

Proof: Follows from the fact that Eq. (7) is a necessary
condition for feasibility.

Lemma 13. Consider a taskset τ and a computer platform Π.
If τ is intra-migrative feasible on Π×1/R(Π) then there exists
a matrix X such that all constraints in Fig. 10 are satisfied.

Proof: Follows from applying Lemma 12 on Π ×
(1/R(Π)) and then considering t→∞ on C1 and C2 yields
C8 and C9 respectively.

Lemma 14. ∀Q ≥ 0 :
(∀t ≥ 0 :

(∑
τi∈τ ffdbf1 (τi, t, θ1, s)

)
≤ m× t×Q)

⇒
(∀t ∈ TS(τ, θ1) :

(∑
τi∈τ ffdbf*1

(τi, t, θ1, s, τ)
)
≤ m× t×

Q× 2)

Proof: See Appendix.

Lemma 15. ∀Q ≥ 0 :
(∀t ≥ 0 :

(∑
τi∈τ ffdbf2 (τi, t, θ2, s)

)
≤ m× t×Q)

⇒
(∀t ∈ TS(τ, θ2) :

(∑
τi∈τ ffdbf*2

(τi, t, θ2, s, τ)
)
≤ m× t×

Q× 2)

Proof: See Appendix.

Lemma 16. Consider a taskset τ and a computer platform
Π. If X satisfies Fig. 10 then X satisfies Fig. 11.

Proof: Follows from applying Lemma 14 on C1 in Fig. 10
and applying Lemma 15 on C2 in Fig. 10.

Lemma 17. Consider a taskset τ and a computer platform Π.
If τ is intra-migrative feasible on Π×1/R(Π) then there exists
a matrix X such that all constraints in Fig. 11 are satisfied.

Proof: Follows Lemma 13 and Lemma 16.

Lemma 18. Consider a taskset τ and a computer platform Π.
If τ is intra-migrative feasible on Π×1/R(Π) then there exists
a matrix X such that all constraints in Fig. 12 are satisfied.

Proof: Algebraic manipulations ofR(Π) (from Defini-

tion 8) yields:

m1 × t×
s

R(Π)
× 2 ≤ (m1 −

m1 − 1

R(Π)
)× t× s

2
(19)

m2 × t×
s

R(Π)
× 2 ≤ (m2 −

m2 − 1

R(Π)
)× t× s

2
(20)

m1 ×
s

R(Π)
≤ (m1 −

m1 − 1

R(Π)
)× s

2
(21)

m2 ×
s

R(Π)
≤ (m2 −

m2 − 1

R(Π)
)× s

2
(22)

Hence, if X satisfies Fig. 11 then it also satisfies Fig. 12.
Combining this with Lemma 17 yields the lemma.

Lemma 19. Consider a taskset τ and a computer platform Π.
If there exists a matrix X such that all constraints in Fig. 12
are satisfied then Algorithm 2 declares SUCCESS.

Proof: Let us suppose that the lemma was false. Then
there is a taskset τ and a computer platform Π such that

there exists a matrix X such that all constraints in

Fig. 12 are satisfied (23)

and Algorithm 2 declares FAILURE.
Relaxing C4 in Fig. 12 yields:

there exists a matrix X such that all constraints in

Fig. 13 are satisfied (24)

Eq. (23) yields

H12(1/R (Π) , 1/R (Π) , τ) = ∅ (25)

Consider Fig. 7 with θ1 = θ2 = 1/R (Π) and compare with
Fig. 13. They are identical. Hence:

there is a matrix X such that all constraints

in Fig. 7 are satisfied for θ1 = θ2 = 1/R(Π) (26)

From the statement that Algorithm 2 declares FAIL-
URE it follows that Algorithm 1 fails for the input
τ,Π, 1/R(Π), 1/R(Π). Since it fails, let us explore the possi-
ble lines at which it can fail.

Case 1. Algorithm declares FAILURE on line 32.
Te condition of the case yields H12(1/R (Π) , 1/R (Π) , τ) 6=
∅. But this contradicts Eq. (25).

Case 2. Algorithm declares FAILURE on line 29.
From the condition of the case, it follows that

there exists no matrix X such that all constraints

in Fig. 7 are satisfied for θ1 = θ2 = 1/R(Π)

But this contradicts Eq. (26).
Case 3. Algorithm declares FAILURE on line 26.

From the condition of the case, it follows that foundPTMILP
is false when the algorithm declares FAILURE on line 26. Let
us partition τ into F and τ \F . Note that for τ \F it holds that
X ′ satisfies Fig. 7 and since this set of tasks have x1

i and x2
i

8

C1. ∀t ≥ 0 :
(∑

τi∈τ ffdbf1 (τi, t, 1, s)× x1i
)
≤ m1 × t× s

C2. ∀t ≥ 0 :
(∑

τi∈τ ffdbf2 (τi, t, 1, s)× x2i
)
≤ m2 × t× s

C3. ∀τi ∈ τ : x1i + x2i = 1
C4. ∀τi ∈ τ : x1i ∈ {0, 1} and x2i ∈ {0, 1}
C5. ∀τi ∈ H1(1, 1, τ) : x1i = 1
C6. ∀τi ∈ H2(1, 1, τ) : x2i = 1
C7. H12(1, 1, τ) = ∅

Fig. 9: Constraints expressing a necessary intra-migrative feasibility condition.

C1. ∀t ≥ 0 :
(∑

τi∈τ ffdbf1 (τi, t, 1/R (Π) , s)× x1i
)
≤ m1 × t× (s/R (Π))

C2. ∀t ≥ 0 :
(∑

τi∈τ ffdbf2 (τi, t, 1/R (Π) , s)× x2i
)
≤ m2 × t× (s/R (Π))

C3. ∀τi ∈ τ : x1i + x2i = 1
C4. ∀τi ∈ τ : x1i ∈ {0, 1} and x2i ∈ {0, 1}
C5. ∀τi ∈ H1(1/R (Π) , 1/R (Π) , τ) : x1i = 1
C6. ∀τi ∈ H2(1/R (Π) , 1/R (Π) , τ) : x2i = 1
C7. H12(1/R (Π) , 1/R (Π) , τ) = ∅
C8.

∑
τi∈τ (C1

i /Ti)× x1i ≤ m1 × (s/R (Π))

C9.
∑
τi∈τ (C2

i /Ti)× x2i ≤ m2 × (s/R (Π))

Fig. 10: Constraints expressing a necessary intra-migrative feasibility condition; rewritten.

C1. ∀t ∈ TS(τ, 1/R (Π)) :
(∑

τi∈τ ffdbf*
1

(τi, t, 1/R (Π) , s, τ)× x1i
)
≤ m1 × t× (s/R (Π))× 2

C2. ∀t ∈ TS(τ, 1/R (Π)) :
(∑

τi∈τ ffdbf*
2

(τi, t, 1/R (Π) , s, τ)× x2i
)
≤ m2 × t× (s/R (Π))× 2

C3. ∀τi ∈ τ : x1i + x2i = 1
C4. ∀τi ∈ τ : x1i ∈ {0, 1} and x2i ∈ {0, 1}
C5. ∀τi ∈ H1(1/R (Π) , 1/R (Π) , τ) : x1i = 1
C6. ∀τi ∈ H2(1/R (Π) , 1/R (Π) , τ) : x2i = 1
C7. H12(1/R (Π) , 1/R (Π) , τ) = ∅
C8.

∑
τi∈τ (C1

i /Ti)× x1i ≤ m1 × (s/R (Π))

C9.
∑
τi∈τ (C2

i /Ti)× x2i ≤ m2 × (s/R (Π))

Fig. 11: Constraints expressing a necessary intra-migrative feasibility condition; rewritten further.

C1. ∀t ∈ TS(τ, 1/R (Π)) :
(∑

τi∈τ ffdbf*
1

(τi, t, 1/R (Π) , s, τ)× x1i
)
≤ (m1 − (m1 − 1)× 1/R (Π))× t× s× 1/2

C2. ∀t ∈ TS(τ, 1/R (Π)) :
(∑

τi∈τ ffdbf*
2

(τi, t, 1/R (Π) , s, τ)× x2i
)
≤ (m2 − (m2 − 1)× 1/R (Π))× t× s× 1/2

C3. ∀τi ∈ τ : x1i + x2i = 1
C4. ∀τi ∈ τ : x1i ∈ {0, 1} and x2i ∈ {0, 1}
C5. ∀τi ∈ H1(1/R (Π) , 1/R (Π) , τ) : x1i = 1
C6. ∀τi ∈ H2(1/R (Π) , 1/R (Π) , τ) : x2i = 1
C7. H12(1/R (Π) , 1/R (Π) , τ) = ∅
C8.

∑
τi∈τ (C1

i /Ti)× x1i ≤ ((m1 − (m1 − 1)× 1/R (Π))× s× 1/2)

C9.
∑
τi∈τ (C2

i /Ti)× x2i ≤ ((m2 − (m2 − 1)× 1/R (Π))× s× 1/2)

Fig. 12: Constraints expressing a necessary intra-migrative feasibility condition; rewritten even more.

C1. ∀t ∈ TS(τ, 1/R (Π)) :
(∑

τi∈τ ffdbf*
1

(τi, t, 1/R (Π) , s, τ)× x1i
)
≤ (m1 − (m1 − 1)× 1/R (Π))× t× s× 1/2

C2. ∀t ∈ TS(τ, 1/R (Π)) :
(∑

τi∈τ ffdbf*
2

(τi, t, 1/R (Π) , s, τ)× x2i
)
≤ (m2 − (m2 − 1)× 1/R (Π))× t× s× 1/2

C3. ∀τi ∈ τ : x1i + x2i = 1
C4. ∀τi ∈ τ : x1i ≥ 0 and x2i ≥ 0
C5. ∀τi ∈ H1(1/R (Π) , 1/R (Π) , τ) : x1i = 1
C6. ∀τi ∈ H2(1/R (Π) , 1/R (Π) , τ) : x2i = 1
C7. H12(1/R (Π) , 1/R (Π) , τ) = ∅
C8.

∑
τi∈τ (C1

i /Ti)× x1i ≤ ((m1 − (m1 − 1)× 1/R (Π))× s× 1/2)

C9.
∑
τi∈τ (C2

i /Ti)× x2i ≤ ((m2 − (m2 − 1)× 1/R (Π))× s× 1/2)

Fig. 13: Constraints expressing a necessary intra-migrative feasibility condition; rewritten to LP.

being integers (follows from the fact that it does not contain the tasks in F), it follows that X ′ also satisfies the following

9

constraints: Fig. 8 where in the expression on the right-hand
side of C1,C2,C8,C9, the symbol s is replaced by s/2. Note
that F ⊆ τ and hence from Eq. (23), it follows that for F , there
is an X that satisfies the following constraints: Fig. 8 where
in the expression on the right-hand side of C1,C2,C8,C9, the
symbol s is replaced by s/2. Adding X ′ and X gives us a new
matrix that satisfies Fig. 8 and this yields that foundPTMILP
is true. This is a contradiction.

It can be seen that if the lemma is false then each case
results in contradiction. Hence, the lemma is true.

Theorem 4. Consider a taskset τ and a computer platform
Π. If τ is intra-migrative feasible on Π × 1/R(Π) then
Algorithm 2 declares SUCCESS.

Proof: Follows from Lemma 18 and Lemma 19.
Hence, the speedup factor of Algorithm 2 is R(Π).

V. CONCLUSIONS

The problem of scheduling real-time tasks on a heteroge-
neous multiprocessor has received increasing attention from
researchers during recent years but no solution was available
for parallel tasks with proven speedup factor. Therefore, in
this paper, we have presented the first algorithm for scheduling
parallel tasks on a heterogeneous multiprocessor with proven
speedup factor. We did so by focusing on constrained-deadline
sporadic tasks and a heterogeneous multiprocessor where pro-
cessors are of two types and we presented a new algorithm that
assigns tasks to processor types and then apply global-Earliest-
Deadline-First on each type of processors. Our new algorithm
has pseudo-polynomial time complexity and speedup factor at
most 5.

ACKNOWLEDGMENT

This material is based upon work funded and supported by
the Department of Defense under Contract No. FA8721-05-
C-0003 with Carnegie Mellon University for the operation of
the Software Engineering Institute, a federally funded research
and development center. This material has been approved for
public release and unlimited distribution. DM-0002064

REFERENCES

[1] G. Raravi, B. Andersson, V. Nélis, and K. Bletsas, “Task assignment
algorithms for two-type heterogeneous multiprocessors,” Real-Time Sys-
tems, 2014.

[2] S. Baruah, “Task partitioning upon heterogeneous multiprocessor plat-
forms,” in RTAS, 2004.

[3] G. Raravi and V. Nélis, “Task assignment algorithms for heterogeneous
multiprocessors,” ACM TECS, 2014.

[4] S. Baruah, “Partitioning real-time tasks among heterogeneous multipro-
cessors,” in ICPP, 2004.

[5] G. Raravi, B. Andersson, and K. Bletsas, “Assigning real-time tasks on
heterogeneous multiprocessors with two unrelated types of processors,”
Real-Time Systems, 2013.

[6] G. Raravi and V. Nélis, “A PTAS for assigning sporadic tasks on two-
type heterogeneous multiprocessors,” in RTSS, 2012.

[7] B. Andersson and G. Raravi, “Provably good task assignment for two-
type heterogeneous multiprocessors using cutting planes,” ACM TECS,
2014.

[8] S. Kedad-Sidhoum, F. Monna, G. Mouni, and D. Trystram, “Scheduling
independent tasks on multi-cores with GPU accelerators,” in Euro-Par,
ser. Springer Lecture Notes in Computer Science, 2014.

[9] A. Wiese, V. Bonifaci, and S. Baruah, “Partitioned EDF scheduling on
a few types of unrelated multiprocessors,” Real-Time Systems, 2013.

[10] J. Lenstra, D. Shmoys, and E. Tardos, “Approximation algorithms for
scheduling unrelated parallel machines,” Math. Program., 1990.

[11] J. Correa, M. Skutella, and J. Verschae, “The power of preemption on
unrelated machines and applications to scheduling orders,” Mathematics
of Operations Research, 2012.

[12] E. Horowitz and S. Sahni, “Exact and Approximate Algorithms for
Scheduling Nonidentical Processors,” Journal of the ACM, 1976.

[13] K. Jansen and L. Porkolab, “Improved approximation schemes for
scheduling unrelated parallel machines,” in STOC, 1999.

[14] M. Niemeier, A. Wiese, and S. Baruah, “Partitioned real-time scheduling
on heterogeneous shared-memory multiprocessors,” in ECRTS, 2011.

[15] A. Marchetti-Spaccamela, C. Rutten, S. van der Ster, and A. Wiese,
“Assigning sporadic tasks to unrelated parallel machines,” in ICALP,
2012.

[16] K. Lakshmanan, S. Kato, and R. Rajkumar, “Scheduling parallel real-
time tasks on multi-core processors,” in RTSS, 2010.

[17] A. Saifullah, K. Agrawal, C. Lu, and C. Gill, “Multi-core real-time
scheduling for generalized parallel task models,” in RTSS, 2011.

[18] B. Andersson and D. de Niz, “Analyzing Global-EDF for multiprocessor
scheduling of parallel tasks,” in OPODIS, 2012.

[19] V. Bonifaci, A. Marchetti-Spaccamela, S. Stiller, and A. Wiese, “Feasi-
bility analysis in the sporadic DAG model,” in ECRTS, 2013.

[20] S. Baruah, V. Bonifaci, A. Marchetti-Spaccamela, L. Stougie, and
A. Wiese, “A generalized parallel task model for recurrent real-time
processes,” in RTSS, 2012.

[21] J. Kim, H. Kim, K. Lakshmanan, and R. R. Rajkumar, “Parallel
scheduling for cyber physical systems: Analysis and case study on a
self-driving car,” in RTAS, 2013.

[22] J. Li, K. Agrawal, C. Lu, and C. Gill, “Analysis of global EDF for
parallel tasks,” in ECRTS, 2013.

[23] L. Cong and J. H. Anderson, “Supporting soft real-time DAG-based
systems on multiprocessors with no utilization loss,” in RTSS, 2010.

[24] S. Kato and Y. Ishikawa, “Gang EDF scheduling of parallel task
systems,” in RTSS, 2009.

[25] P. Jayachandran and T. Abdelzaher, “Reduction-based schedulability
analysis of distributed systems with cycles in the task graph,” Real-Time
Systems, 2010.

[26] M. Qamhieh, F. Fauberteau, G. Laurent, and S. Midonnet, “Global EDF
scheduling of directed acyclic graphs on multiprocessor systems,” in
RTNS, 2013.

[27] D. Ferry, J. Li, M. Mahadevan, K. Agrawal, C. Gill, and C. Lu, “A
real-time scheduling service for parallel tasks,” in RTAS, 2013.

[28] H. S. Chwa, J. Lee, K.-M. Phan, A. Easwaran, and I. Shin, “Global
EDF schedulability analysis for synchronous parallel tasks on multicore
platforms,” in ECRTS, 2013.

[29] S. Collette, L. Cucu, and J. Goossens, “Integrating job parallelism in
real-time scheduling theory,” Information Processing Letters, 2008.

[30] L. Nogueira and L. P. Pinho, “Server-based scheduling of parallel real-
time tasks,” in EMSOFT, 2012.

[31] P. Axer, S. Quinton, M. Neukirchner, R. Ernest, B. Döbel, and H. Härtig,
“Response-time analysis of parallel fork-join workloads with real-time
constraints,” in ECRTS, 2013.

[32] Q. Wang and G. Parmer, “FJOS: Practical, predictable, and efficient
system support for fork-join parallelism,” in RTAS, 2014.

[33] P. Fauberteau, S. Midonnet, and M. Qamhieh, “Partitioned scheduling
of parallel real-time tasks on multiprocessor systems,” SIGBED Review,
2011.

[34] M. Holenderski, R. J. Bril, and J. J. Lukkien, “Parallel-task scheduling
on multiple resources,” in ECRTS, 2012.

[35] N. Fisher, J. Goossens, and S. K. Baruah, “Optimal online multipro-
cessor scheduling of sporadic real-time tasks is impossible,” Real-Time
Systems, 2010.

[36] C. A. Phillips, C. Stein, E. Torng, and J. Wein, “Optimal time-critical
scheduling via resource augmentation,” in STOC, 1997.

[37] T. P. Baker and M. Cirinei, “Brute-force determination of multiprocessor
schedulability for sets of sporadic hard-deadline tasks,” in OPODIS,
2007.

[38] T. P. Baker, “Multiprocessor EDF and deadline monotonic schedulability
analysis,” in RTSS, 2003.

[39] M. Bertogna, M. Cirinei, and G. Lipari, “Improved schedulability
analysis of EDF on multiprocessor platforms,” in ECRTS, 2005.

10

[40] S. K. Baruah, V. Bonifaci, A. Marchetti-Spaccamela, and S. Stiller,
“Implementation of a speedup-optimal global EDF schedulability test,”
in ECRTS, 2009.

[41] N. Karmarkar, “A new polynomial time algorithm for linear program-
ming,” Combinatorica, 1984.

APPENDIX

A. Proof of Lemma 4
In this section, we prove Lemma 4 and we do this incre-

mentally, i.e., by proving some basic results and then merging
them to obtain the desired result.

Lemma 20. ∀t > mi(τ) : ffdbf (τi, t, v, s) ≤
ffdbf (τi,mi(τ), v, s) +

(
Ci + Ci

Ti
× (t−mi(τ))

)
Proof: Algebraic manipulations yield:
t = mi(τ) + (t−mi(τ))

= mi(τ) +

⌊
t−mi(τ)

Ti

⌋
× Ti + (t−mi(τ)) mod Ti

≤ mi(τ) +

⌊
t−mi(τ)

Ti

⌋
× Ti + Ti

≤ mi(τ) +

(⌊
t−mi(τ)

Ti

⌋
+ 1

)
× Ti

Using this on Lemma 1 yields:
ffdbf (τi, t, v, s) ≤

ffdbf

(
τi,mi(τ) +

(⌊
t−mi(τ)

Ti

⌋
+ 1

)
× Ti, v, s

)
Using Lemma 2 yields:
ffdbf (τi, t, v, s) ≤

ffdbf (τi,mi(τ), v, s) +

(⌊
t−mi(τ)

Ti

⌋
+ 1

)
× Ci

Relaxing the bound on the right-hand side and rewriting yields:

ffdbf (τi, t, v, s) ≤

ffdbf (τi,mi(τ), v, s) + (t−mi(τ))×
Ci

Ti
+ Ci

This states the lemma.

Lemma 21. ∀t > 0, t ≤ mi(τ) : ffdbf (τi, t, v, s) ≤
ffdbf

(
τi, 2

blog2 tc+1, v, s
)

Proof: Follows from Lemma 1 (monotonicity) and ob-
serving that t ≤ 2blog2 tc+1.
We now restate Lemma 4 and prove it.

Lemma 4. ffdbf (τi, t, v, s) ≤ ffdbf* (τi, t, v, s, τ)

Proof: We need to consider two cases.
Case 1. t > mi(τ): For this case Lemma 20 along with the
definition of ffdbf* in Eq. (9) proves the lemma.
Case 2. t ≤ mi(τ): For this case Lemma 21 along with the
definition of ffdbf* in Eq. (9) proves the lemma.

B. Proof of Lemma 14 and Lemma 15
In this section, we prove Lemma 14 and Lemma 15 and once

again we do this incrementally, i.e., by proving some basic
results and then merging them to obtain the desired result.

Lemma 22. ∀t ∈ (mi(τ),mi(τ)+Ti] : ffdbf* (τi, t, v, s, τ) ≤
ffdbf (τi, t, v, s) + 2× Ci

Proof: Since t > mi(τ) and because of Lemma 1
(monotonicity), we have:

ffdbf (τi,mi(τ), v, s) ≤ ffdbf (τi, t, v, s) (27)

Rewriting yields:

11

ffdbf (τi,mi(τ), v, s) +Ci +
Ci

Ti
× Ti ≤ ffdbf (τi, t, v, s) + 2×Ci (28)

From t ∈ (mi(τ),mi(τ) + Ti], we obtain that: t−mi(τ) ≤ Ti.
Applying this on Eq. (28) yields: ∀t ∈ (mi(τ),mi(τ) + Ti] :

ffdbf (τi,mi(τ), v, s) + Ci +
Ci

Ti
× (t−mi(τ)) ≤

ffdbf (τi, t, v, s) + 2× Ci (29)

Using the definition of ffdbf* yields: ∀t ∈
(mi(τ),mi(τ) + Ti] :

ffdbf* (τi, t, v, s, τ) ≤ ffdbf (τi, t, v, s) + 2× Ci

Hence the proof.

Lemma 23. ∀t > mi(τ) : ffdbf* (τi, t, v, s, τ) ≤
ffdbf (τi, t, v, s) + 2× Ci

Proof: We prove this by contradiction. If the lemma was
false then there exist a t such that t > mi(τ) and

ffdbf* (τi, t, v, s, τ) > ffdbf (τi, t, v, s) + 2× Ci

If t > mi(τ) + Ti then decreasing t by Ti decreases the left-
hand side and the right-hand side of the above inequality by
the same amount (Ci). Hence, we can decrease t by Ti until
it holds that t ∈ (mi(τ),mi(τ) + Ti]. And this gives us that
there exists a t such that t ∈ (mi(τ),mi(τ) + Ti] and

ffdbf* (τi, t, v, s, τ) > ffdbf (τi, t, v, s) + 2× Ci

But this contradicts Lemma 22 and hence it is not possible
that lemma under discussion is false. Hence the proof.

Lemma 24. ∀t > mi(τ) : ffdbf* (τi, t, v, s, τ) ≤
ffdbf (τi, t, v, s)× 2

Proof: Since t > mi(τ), it follows that t > TMAX +
DMAX and then it follows that:

ffdbf (τi, t, v, s) ≥ 2× Ci (30)

Using Lemma 23 and Eq. (30) yields: ∀t > mi(τ) :

ffdbf* (τi, t, v, s, τ)

ffdbf (τi, t, v, s)
≤

ffdbf (τi, t, v, s) + 2× Ci
ffdbf (τi, t, v, s)

≤ 1 +
2× Ci

ffdbf (τi, t, v, s)

≤ 1 +
2× Ci
2× Ci

≤ 2 (31)

Rewriting yields: ∀t > mi(τ) :

ffdbf* (τi, t, v, s, τ) ≤ ffdbf (τi, t, v, s)× 2

This states the lemma.

Lemma 14. ∀Q ≥ 0,∀v ≥ 0,∀s ≥ 0 :
(∀t ≥ 0 :

(∑
τi∈τ ffdbf (τi, t, v, s)

)
≤ m× t×Q)

⇒
(∀t ∈ TS(τ, θ) :

(∑
τi∈τ ffdbf* (τi, t, v, s, τ)

)
≤ m× t×Q×

2)

Proof: Suppose that the lemma was false. Then it holds
that there exists a Q, v and s such that Q ≥ 0, v ≥ 0, s ≥ 0
and (

∀t ≥ 0 :

(∑
τi∈τ

ffdbf (τi, t, v, s)

)
≤ m× t×Q

)
∧(

∃t ∈ TS(τ, θ) :

(∑
τi∈τ

ffdbf* (τi, t, v, s, τ)

)
> m× t×Q

×2

)

Since there exists a t in TS(τ, θ) such that the last constraint
is true, let us choose one of them and call it t0. This gives us:(

∀t ≥ 0 :

(∑
τi∈τ

ffdbf (τi, t, v, s)

)
≤ m× t×Q

)
∧((∑

τi∈τ
ffdbf* (τi, t0, v, s, τ)

)
> m× t0 ×Q× 2

)
(32)

Let us consider two cases:
Case 1: t0 > mi(τ). Applying Lemma 24 on the last

constraint in Eq. (32) yields:(
∀t s.t. t ≥ 0 :

(∑
τi∈τ

ffdbf (τi, t, v, s)

)
≤ m× t×Q

)
∧(∑

τi∈τ
ffdbf (τi, t0, v, s)× 2 > m× t0 ×Q× 2

)

Dividing the last constraint by 2 yields:(
∀t ≥ 0 :

(∑
τi∈τ

ffdbf (τi, t, v, s)

)
≤ m× t×Q

)
∧(∑

τi∈τ
ffdbf (τi, t0, v, s) > m× t0 ×Q

)

This is a contradiction. End of Case 1.
Case 2: t0 ≤ mi(τ). Applying 2 × t0 on the 1st constraint

in Eq. (32) and relaxing the last constraint yields:((∑
τi∈τ

ffdbf (τi, 2× t0, v, s)

)
≤ m× 2× t0 ×Q

)
∧((∑

τi∈τ
ffdbf* (τi, t0, v, s, τ)

)
> m× t0 ×Q× 2

)

Since t0 ∈ TS(τ, θ), it follows from the definition of ffdbf*

that ffdbf* (τi, t0, v, s, τ) = ffdbf (τi, 2× t0, v, s). Applying

12

this on the last constraint yields:((∑
τi∈τ

ffdbf (τi, 2× t0, v, s)

)
≤ m× 2× t0 ×Q

)
∧((∑

τi∈τ
ffdbf (τi, 2× t0, v, s)

)
> m× t0 ×Q× 2

)
This is a contradiction. End of Case 2.

It can be seen that if the lemma is false then for each case,
we obtain a contradiction. Hence, the lemma is true.

Lemma 15. ∀Q ≥ 0,∀s ≥ 0 :
(∀t ≥ 0 :

(∑
τi∈τ ffdbf2 (τi, t, θ2, s)

)
≤ m× t×Q)

⇒
(∀t ∈ TS(τ, θ2) :

(∑
τi∈τ ffdbf*2

(τi, t, θ2, s)
)
≤ m × t ×

Q× 2)

Proof: Analogous to the proof of Lemma 14.

13

