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Multidrug-resistant Acinetobacter baumannii is among the most prevalent bacterial pathogens associated with trauma-related
wound and bloodstream infections. Although septic shock and disseminated intravascular coagulation have been reported fol-
lowing fulminant A. baumannii sepsis, little is known about the protective host immune response to this pathogen. In this
study, we examined the role of PTX3, a soluble pattern recognition receptor with reported antimicrobial properties and stored
within neutrophil granules. PTX3 production by murine J774a.1 macrophages was assessed following challenge with A. bau-
mannii strains ATCC 19606 and clinical isolates (CI) 77, 78, 79, 80, and 86. Interestingly, only CI strains 79, 80, and 86 induced
PTX3 synthesis in murine J774a.1 macrophages, with greatest production observed following CI 79 and 86 challenge. Subse-
quently, C57BL/6 mice were challenged intraperitoneally with CI 77 and 79 to assess the role of PTX3 in vivo. A. baumannii
strain CI 79 exhibited significantly (P < 0.0005) increased mortality, with an approximate 50% lethal dose (LD50) of 105 CFU,
while an equivalent dose of CI 77 exhibited no mortality. Plasma leukocyte chemokines (KC, MCP-1, and RANTES) and myelo-
peroxidase activity were also significantly elevated following challenge with CI 79, indicating neutrophil recruitment/activation
associated with significant elevation in serum PTX3 levels. Furthermore, 10-fold-greater PTX3 levels were observed in mouse
serum 12 h postchallenge, comparing CI 79 to CI 77 (1,561 ng/ml versus 145 ng/ml), with concomitant severe pathology (liver
and spleen) and coagulopathy. Together, these results suggest that elevation of PTX3 is associated with fulminant disease during
A. baumannii sepsis.

Since the initial widespread use of antibiotics in hospitals dur-
ing the 1930s and subsequently on multiple battlefields,

Gram-negative bacteria resistant to many first-generation cell
wall-targeting antibiotics are now the predominant cause of trau-
matic wound and burn infections (1–3). Complications encoun-
tered during treatment arise in part due to the emergence of mul-
tidrug-resistant (MDR) A. baumannii isolates (4–7) whose
resistance allows them to disseminate, giving rise to septic shock
and disseminated intravascular coagulation (DIC). Consequently,
mortality rates range from 30 to 75% depending on the route of
infection (8). Although specific virulence factors (lipopolysaccha-
ride [LPS] and membrane glycosylation) and a robust cellular
innate immune response (neutrophil infiltration) contribute to
disease severity and clearance during A. baumannii sepsis, respec-
tively, very little is known about differences in virulence or mor-
tality between strains and the overall protective host immune re-
sponse necessary for protection against A. baumannii infection
(9–15).

Neutrophils contain a variety of antimicrobial molecules stored
within cytoplasmic azurophilic granules (16–18). One of these mol-
ecules is the soluble pattern recognition receptor designated pen-
traxin 3 (PTX3), which recognizes and interacts with a variety of
pathogen/damage-associated molecular patterns (PAMP/DAMP)
eliciting protection against select pathogens, e.g., Pseudomonas
aeruginosa and Aspergillus fumigatus, but not Escherichia coli (2,
19–22). Additionally, PTX3 has been shown to opsonize patho-
gens, thus enhancing complement activation and phagocytosis
during bacterial and fungal infections, aiding in pathogen clear-
ance through recruitment of C1q and stimulation of the Fc� re-
ceptor, respectively (16, 18–20, 23–28). Despite immunoprotec-
tive properties, prolonged elevation of patient PTX3 levels has

been reported to correlate with increased morbidity and mortality
in severe sepsis (29–35) thought to arise from increased tissue
factor (TF) expression on the surface of monocytic phagocytes
and vascular endothelial cells observed in vitro following LPS
stimulation (36, 37). Although neutrophils store PTX3 in a pre-
formed active state within cytoplasmic granules, giving rise to
short-lived spikes in serum PTX3 levels following degranulation,
prolonged elevation can arise from induced expression by mono-
cytic cells, e.g., monocytes, macrophages, dendritic cells, and en-
dothelial cells (17, 19, 25, 28, 38, 39). Data presented here suggest
that prolonged elevation of PTX3 during A. baumannii sepsis is
associated with more severe disease.

MATERIALS AND METHODS
Ethics statement. All animal experiments were performed in compliance
with the Animal Welfare Act, the U.S. Public Health Service Policy on
Humane Care and Use of Laboratory Animals, and the Guide for the care
and use of laboratory animals published by the National Research Council.
All animal work was carried out under approved protocol MU070-10/
14A0 in accordance with the guidelines set forth by the University of Texas
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at San Antonio Institutional Animal Care and Use Committee (IACUC)
and Institutional Biosafety Committee (IBC).

Cell lines. Murine J774a.1 peritoneal macrophages were grown in
Dulbecco’s modified Eagle medium (DMEM) (Life Technologies, Carls-
bad, CA) supplemented with 10% fetal bovine serum (FBS) (Thermo
Scientific, Rockford, IL) as well as amphotericin B and gentamicin (final
concentrations, 0.25 �g/ml and 0.01 �g/ml, respectively). Growth me-
dium was replaced with medium lacking antibiotics 24 h prior to bacterial
challenge experiments.

Bacterial strains. Acinetobacter baumannii clinical isolates (CI) lack-
ing personal identifiers (designated CI 77, 78, 79, 80, and 86) were re-
tained by the San Antonio Military Medical Center (SAMMC) (Fort Sam
Houston, San Antonio, TX) from injured military personnel and gra-
ciously provided by James Jorgensen (University of Texas Health Science
Center at San Antonio, San Antonio, TX). A. baumannii (ATCC 19606)
was obtained from the American Type Culture Collection (Manassas,
VA). All strains were grown in Luria-Bertani (LB) broth.

Mice. All animal experiments were performed utilizing 6- to 8-week-
old pathogen-free C57BL/6 mice purchased from Charles River Labora-
tories (Frederick, MD).

LD50 comparison of A. baumannii strains. Mice were challenged by
intraperitoneal injection with 100 �l bacterial phosphate-buffered saline
(PBS) suspension. For 50% lethal dose (LD50) comparison experiments,
each group was challenged with increasing amounts of the A. baumannii
clinical isolates CI 77 and 79, ranging from 104 to 108 CFU, and monitored
for 1 month.

Tissue histology. Tissues (liver, spleen, and kidney) were collected
from mice sacrificed 24 h postchallenge with either CI 77 or 79. Tissues
were subsequently prepared and analyzed for histopathology at the U.S.
Army Institute of Surgical Research (JBSA-Fort Sam Houston, San Anto-
nio, TX). Briefly, tissues were paraffin embedded, and 5-�m-thick sec-
tions were cut using a rotary microtome. Respective sections were placed
on slides, transferred to an oven, heated for 30 min, and stained (standard
hematoxylin-and-eosin (H&E) staining, Shandon automatic stainer;
Thermo Scientific, Rockford, IL). Finally, pathology was assessed and
scored in liver and kidney tissue sections as described by Dalle Lucca et al.
(40).

Whole-blood collections. Whole blood collected from the subman-
dibular vein of anesthetized challenged mice was used for cytokine en-
zyme-linked immunosorbent assay (ELISA) and blood culture. For blood
cultures, 10 �l whole blood was diluted and plated for enumeration of
CFU burden on LB agar supplemented with 50 �g/ml chloramphenicol.
The remaining blood was allowed to clot at room temperature and cen-
trifuged at 1,200 � g to obtain serum for ELISA.

Whole blood collected by cardiac puncture for complete blood count
(CBC) and coagulation studies was transferred to either 500-�l Capiject
capillary blood collection tubes containing EDTA (Terumo Medical
Corp., Elkton, MD) for CBC analysis or 500-�l microcentrifuge tubes
containing 109 mM sodium citrate (8:1 blood-to-anticoagulant ratio;
Becton, Dickinson, Franklin Lakes, NJ) for rotational thromboelastom-
etry (ROTEM). Whole blood used for flow cytometry, prothrombin time
(PT), D dimer, fibrinogen, and cytokine assays was collected from the

descending aorta in 200 mM sodium citrate (9:1 blood-to-anticoagulant
ratio) to accommodate increased blood volumes necessary for the assays
while preventing spontaneous coagulation. In all cases, 100 �g/ml corn
trypsin inhibitor was used to prevent clotting during collection.

Cytokine and myeloperoxidase activity assays. Human and murine
PTX3 (PTX3 Duoset ELISA; R&D Systems, Minneapolis, MN) levels in
mouse serum and cell culture supernatants, as well as murine plasma D2D
(D dimer) and fibrinogen (BioTang Inc., Waltham, MA) levels, were de-
termined by ELISA. Additionally, myeloperoxidase activity in serum from
challenged mice was assessed as previously described (41). Briefly, 2 �l
serum was added to a 200-�l freshly prepared solution of 5 mM o-diani-
sidine dihydrochloride and 0.0005% hydrogen peroxide (Sigma-Aldrich,
St. Louis, MO). Color development was determined after 1 to 3 min at 450
nm. A custom Bio-Plex Pro cytokine panel (Bio-Rad, Hercules, CA) was
used to quantitate plasma levels of the leukocyte chemokines KC, MCP-1,
and RANTES.

Complete blood count and coagulation studies. EDTA-treated
whole blood was subject to CBC analysis using an Advia 120 CBC analyzer
(Siemens, Sacramento, CA) calibrated to mouse parameters. EXTEM and
FIBTEM analyses were performed by ROTEM (TEM Systems Inc., Dur-
ham, NC) to monitor the extrinsic coagulation pathway and fibrin polym-
erization, respectively, using 105 �l whole blood collected in 109 mM
sodium citrate (8:1 ratio). Prothrombin times were assessed on a Stago
ST4 coagulation analyzer using 25 �l whole blood collected in 200 mM
sodium citrate (9:1 ratio).

Flow cytometry. Whole blood collected in 200 mM sodium citrate
(9:1 ratio) was subjected to flow cytometry using the BD FACSCanto flow
cytometer (Becton, Dickinson and Company, San Jose, CA) equipped
with 2 lasers (488 nm and 633 nm). Briefly, 5 �l whole blood was treated
with mouse Fc block (Becton, Dickinson and Company, San Jose, CA) for
5 min at room temperature, followed by either a 10-min incubation in the
dark with allophycocyanin (APC)-conjugated anti-mouse CD41 (eBio-
science, San Diego, CA) and fluorescein isothiocyanate (FITC)-conju-
gated lactadherin (Hematologic Technologies, Inc., Essex Junction, VT)
to monitor platelet activation or a 15-min incubation in the dark with
FITC-conjugated anti-mouse CD45 and phycoerythrin (PE)-Cy7-conju-
gated anti-mouse CD11b (eBioscience, San Diego, CA) to monitor my-
elocytic leukocyte activation. Appropriate isotype controls were used to
account for nonspecific fluorescence. Data acquisition and analysis were
performed using BD FACS Diva v6.13 software.

Statistics. Generally, statistical differences were assessed by one-way
analysis of variance (ANOVA) with Holm-Sidak correction for multiple
comparisons or the Welch t test. Error bars represent standard deviation.

TABLE 1 Acinetobacter species strains used in this study

Species Strain Origina Source MDRb

A. baumannii ATCC 19606 ATCC Urine N
A. baumannii CI 77 OIF Superficial wound Y
A. calcoaceticus CI 78 OEF Respiratory Y
A. baumannii CI 79 OIF Respiratory Y
A. baumannii CI 80 OIF Superficial wound Y
A. baumannii CI 86 OIF Superficial wound Y
a ATCC, American Type Culture Collection; OIF, Operation Iraqi Freedom (Iraq);
OEF, Operation Enduring Freedom (Afghanistan).
b N, no; Y, yes.

FIG 1 A. baumannii induction of PTX3 production in monocytic cells. Levels
of PTX3 in J774a.1 macrophage cell supernatants were assessed, as previously
described in Materials and Methods, 24 h post-challenge with several A. bau-
mannii strains. Error bars represent �SD for triplicate wells in all graphs.
Statistical differences were determined using one-way ANOVA with Holm-
Sidak correction; �, P � 0.05; ��, P � 0.005; ���, P � 0.0005.
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Due to the skewed nature of PT times, D-dimer, and fibrinogen levels,
statistical significance between samples was assessed by the Kruskal-Wal-
lis test with Dunn correction for multiple comparisons. All statistics were
performed using GraphPad Prism statistical software. All data presented
are representative of at least two independent experiments.

RESULTS
Assessment of PTX3 production in monocytic cell lines. Release
of PTX3 following neutrophil degranulation is nonspecific and
short-lived (17, 42). As a result, prolonged elevation of PTX3 lev-
els in circulation requires induced de novo production in mono-
cytic cells (38). Thus, we sought to determine if A. baumannii
induced PTX3 production in the murine J774a.1 macrophage cell
line using a variety of Acinetobacter calcoaceticus-baumannii com-
plex strains isolated from military service personnel injured while
serving in Iraq and Afghanistan (Table 1). Interestingly, of the six
tested strains, only CI 79 (P � 0.0005), 80 (P � 0.05), and 86 (P �
0.0005) induced detectable PTX3 production 24 h postchallenge,
with greatest levels of PTX3 production observed following chal-
lenge with strains CI 79 and 86 (Fig. 1). Given the clear phenotypic
differences observed between A. baumannii strains with regard to
the ability to induce PTX3 production, we selected strains CI 77
and 79 for in vivo survival comparison in a murine intraperitoneal
sepsis model.

In vivo pathogenesis comparison between A. baumannii
strains. Traditionally, bacterial sepsis models used for study of A.
baumannii utilize porcine mucin to enhance virulence of the bac-
terium through inhibition of phagocytosis (13, 43, 44). Conse-
quently, LD50 values as low as 103 to 104 CFU have been reported,
with time to death (TTD) near 1 week postchallenge (13, 14).
However, given that published data (18, 24, 26, 27) indicate that
PTX3 opsonizes the bacteria to promote bacterial phagocytosis,
contributing to clearance, we chose not to use porcine mucin in
the bacterial preparation for our sepsis model. Although the ob-
served LD50 was elevated (data not shown), the TTD in these mice
was greatly reduced. All mice succumbed to challenge with 107

CFU within 24 h regardless of strain (Fig. 2, CI 77 and CI 79 High).
Although 105 CFU corresponded to the LD50 for strain CI 79,
which induced the highest levels of PTX3 in vitro (Fig. 2, CI 79
Low), surprisingly, a significant (P � 0.0005) difference in sur-

FIG 2 Comparison of survival following challenge with A. baumannii CI 77
and 79 challenge. Mice were assessed for survival following challenge with
either the PTX3-noninducing strain CI 77 or the PTX3-inducing strain CI 79,
using an in vivo mouse intraperitoneal sepsis model as previously described in
Materials and Methods. Mice were challenged with a high dose (designated CI
77/79 High; 107 CFU; n � 8), a 100-fold-lower dose (designated CI 77/79 Low;
105 CFU; n � 8), UV-inactivated bacteria (designated CI 77/79 UV; equivalent
to 107 CFU; n � 8) or heat-killed (HK) bacteria (designated CI 77/79 HK;
equivalent to 107 CFU; n � 4). Statistical differences were determined using
the Mantel-Cox log rank test; ���, P � 0.0005.

FIG 3 Chemokine and PTX3 levels in A. baumannii-challenged mice. In vivo production of PTX3 and chemokines was determined as described in Materials and
Methods. (A) Serum PTX3 levels were monitored over a 24-h period (n � 6) in mice challenged with A. baumannii strain CI 77 or 79. The gray bar indicates basal
PTX3 production observed in the mock control group over 24 h (mean � 1 SD). (B) Chemokines KC, MCP-1, and RANTES (mock, n � 22; CI 77, n � 24; CI
79, n � 12) were assessed 24 h postchallenge, as were serum MPO levels (n � 6). Error bars represent �SD in all graphs; statistical differences were determined
by the Welch t test; �, P � 0.05; ��, P � 0.005; ���, P � 0.0005.
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vival was observed following challenge with an equivalent number
of CFU of the PTX3-noninducing strain CI 77, giving rise to zero
mortality (Fig. 2, CI 77 Low). Interestingly, while 100% of CI
79-challenged mice exhibited positive blood cultures, with an av-
erage burden of 2.4 � 106 CFU/ml whole blood, less than 10% of
mice challenged with CI 77 had any detectable bacteria in circula-
tion 24 h postchallenge. Additionally, all mice challenged with 107

CFU UV- or heat-killed (HK) bacteria of either strain survived the
challenge, which was 100% lethal with live organisms (Fig. 2, UV
and HK), indicating that live bacteria are necessary for virulence.

Sodium citrate-treated mouse plasma collected 24 h postchal-
lenge with 105 CFU CI 77 or 79 was subjected to cytokine analysis.
Although PTX3 levels in both CI 77- and 79-challenged mice
peaked 12 h postchallenge (Fig. 3A), 10-fold-higher levels were
observed in mice challenged with CI 79 (145 ng/ml versus 1,561
ng/ml, respectively). Additionally, while PTX3 levels in mice chal-
lenged with CI 77 return to basal levels observed in mock-chal-
lenged mice 24 h postchallenge (Fig. 3A), peak PTX3 levels ob-
served 12 h postchallenge with mice challenged with CI 79
persisted through 24 h, at which time mice either succumbed to

FIG 4 Pathology associated with A. baumannii challenge. Tissues were collected 24 h after A. baumannii low-dose (105) challenge and assessed and scored for
pathology by H&E staining as previously described in Materials and Methods. (A and B) 4� (A) or 10� (B) objective magnification of representative liver tissue
pathology from mock-challenged (left), CI 77-challenged (center), and CI 79-challenged (right) mice. Polymorphonuclear cell infiltration and apoptotic nuclei
are designated by black and white arrows, respectively. (C) Respective hepatic veins and microvessels from mock-challenged (left), CI 77-challenged (center), and
CI 79-challenged (right) mice. (D) Representative spleen tissue pathology from mock-challenged (left), CI 77-challenged (center), and CI 79-challenged (right)
mice. Images are representative of 3 biological samples per treatment. Abbreviations: WP, splenic white pulp; em, emboli; mv, hepatic microvessel; V, hepatic
vein. Scale bars: 4�, 1 mm; 10�, 400 �m; 20�, 200 �m; 40�, 100 �m.
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infection or survived (Fig. 3A). Furthermore, PTX3 levels in sur-
viving mice following CI 79 challenge did not return to basal levels
observed in the mock-challenge control until 72 h postchallenge.

Since the greatest difference in PTX3 levels was observed 24 h
postchallenge between CI 77- and 79-challenged mice, the leuko-
cyte chemokines KC, MCP-1, and RANTES, known to be involved
in neutrophil and T cell recruitment, were also assessed 24 h post-
challenge. As expected, all were significantly (P � 0.005) elevated
in CI 79-challenged mice (Fig. 3B). Although KC and RANTES
were also significantly (P � 0.05) increased in mice challenged
with CI 77, this elevation was minimal compared to levels ob-
served with strain CI 79. Sera from mice collected 24 h postchal-
lenge also exhibited significantly (P � 0.05) elevated myeloperox-
idase (MPO) activity following CI 79 challenge compared to that
of both CI 77- and mock-treated mice, corresponding to increased
neutrophil activation (Fig. 3B). This increase in MPO activity also
corresponded to the elevated PTX3 levels observed in mice chal-
lenged with strain CI 79 compared to those for CI 77-challenged
animals (Fig. 3A). Thus, significant elevation in PTX3 production
appeared to be associated with increased disease severity, consis-
tent with published case studies (29–35).

In addition to plasma cytokine analysis, tissue sections (liver,
spleen, and kidney) obtained 24 h postchallenge were assessed for
organ pathology associated with A. baumannii sepsis. Although
tissue damage was observed in the kidneys of both CI 77- and
79-challenged mice relative to results for mock-challenged control
mice (data not shown), there was no significant difference in pa-
thology between the two challenge groups. However, significant
(P � 0.005) differences in liver pathology between the two tested
strains were observed. As expected, no pathology was observed in
mock-challenged controls (Fig. 4A and B, left). Mice challenged
with CI 77 (average liver pathology score � 3.33) exhibited small
inflammatory foci in the liver (Fig. 4B, center) with polymorpho-
nuclear cell infiltration (Fig. 4B, center; insert, black arrows),
while those challenged with CI 79 (average liver pathology score �
8.67) exhibited distinct apoptotic nuclei (Fig. 4B, right; insert,
white arrows) within large zones of tissue necrosis measuring
more than a millimeter in diameter (Fig. 4A, right). Although
mice challenged with both CI 77 and 79 exhibited microvessel
occlusion, indicating some level of hypercoagulopathy compared
to results for the mock control group (Fig. 4C), only CI 79 exhib-
ited zones of necrosis surrounding occluded microvessels, as well
as large venous emboli, indicating more severe disease (Fig. 4C,
right). Additionally, major pathology was observed in splenic sec-
tions obtained from CI 79-challenged mice, including white pulp
depletion, leukocyte apoptosis, and embolus formation, which
were not observed in CI 77- or mock-challenged mice (Fig. 4D).

Studies have attributed septic shock associated with A. bau-
mannii infections to bacterial LPS and outer membrane shedding
in secreted outer membrane vesicles by the bacterium (14, 44, 45).
However, data presented here suggest that this may not be the
case, but rather, elevated PTX3 production induced by select A.
baumannii strains appears to correspond with increased suscepti-
bility of mice to infection. Furthermore, in agreement with previ-
ously published patient case study data, prolonged elevation of
PTX3 levels was associated with development of hypercoagulopa-
thy and DIC in challenged animals (29–35).

A. baumannii sepsis-induced hypercoagulopathy. Since his-
tological studies indicated that mice challenged with A. baumannii
developed hypercoagulopathy, blood from mice challenged with

PBS (mock), CI 77, or CI 79 was collected, and coagulation pa-
rameters were assessed. Complete blood count (CBC) analyses of
EDTA-treated whole blood revealed a significant (P � 0.0005)
decrease in both platelet and white blood cell counts following CI
79 challenge compared to results for both mock- and CI 77-chal-
lenged mice (Table 2). In agreement with the observed increase in
serum MPO activity, the relative neutrophil count was signifi-
cantly elevated in mice challenged with CI 79; however, in con-
trast, the lymphocyte population was significantly reduced. Fur-
thermore, flow cytometry revealed a significant (P � 0.0005)
increase in CD11b expression on the surface of circulating leuko-
cytes following CI 79 challenge (CD11b mean fluorescence inten-
sity [MFI] � standard deviation [SD]: mock challenge, 11,200 �
5,450 [n � 10]; CI 77 challenge, 9,300 � 1,900 [n � 11]; CI 79
challenge, 24,000 � 7,750 [n � 3]), consistent with neutrophil
and monocyte activation (46). Loss of platelets in CI 79-chal-
lenged mice was not due to spontaneous sample clotting, as evi-
denced by no significant differences being observed in complete
blood cell counts or indices, i.e., hematocrit (HCT), hemoglobin
(HGB), mean cell volume (MCV), etc., (cf. Table 2) compared to
mock- and CI 77-challenged mice. Additionally, a significant (P �
0.005) increase in lactadherin binding of phosphatidylserine, i.e.,
a marker of procoagulant activation (47), on the surface of plate-
lets obtained from CI 79-challenged mice was observed by flow
cytometry (lactadherin MFI � SD: mock challenge, 1,550 � 200
[n � 10]; CI 77 challenge, 1,600 � 450 [n � 11]; CI 79 challenge,
2,600 � 1,000 [n � 4]).

To further assess differences in coagulation parameters, so-
dium citrate-treated whole blood was subjected to rotational
thromboelastometry (ROTEM) analysis using EXTEM and
FIBTEM assays. The EXTEM assay measures hemostatic poten-
tial of whole blood activated with TF and phospholipid, i.e., the
extrinsic coagulation pathway. The FIBTEM assay is a modified
EXTEM assay utilizing cytochalasin D (an inhibitor of actin

TABLE 2 CBC profiles of A. baumannii-challenged mice

CBC parametera

Value for challenge group (nb)c

Mock (3) CI 77 (5) CI 79 (6)

RBC (�106 cells/�l) 9.88 9.82 10.20
HGB (g/dl) 14.9 14.7 15.4
HCT (%) 52.6 52.7 53.5
MCV (fl) 53.3 53.7 52.5 B
RDW (%) 13.7 13.5 14.3

WBC (�103 cells/�l) 9.28 8.36 3.89 A,B
% lymph 85.5 82.5 57.5 A,B
% neut 8.4 9.4 23.2 A,B
% eos 2.5 3.2 A 1.5 A,B
% baso 1.2 1.5 2.8 A,B
% mono 0.7 1.0 2.8

PLT (�103 cells/�l) 1,140 1,130 374 A,B
MPV (fl) 7.1 7.5 7.9 A,B

a CBC, complete blood count; RBC, red blood cells; WBC, white blood cells; PLT,
platelets; HGB, hemoglobin; HCT, hematocrit; MCV, mean corpuscular volume; RDW,
red blood cell distribution width; lymph, lymphocytes; neut, neutrophils; eos,
eosinophils; baso, basophils; mono, monocytes; MPV, mean platelet volume.
b n, no. of mice.
c A, significantly different from mock-challenged animals (P � 0.005); B, significantly
different from CI 77-challenged animals (P � 0.005). Statistical differences were
determined by the Welch t test.
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polymerization) to minimize platelet contribution, thus allow-
ing measurement of fibrin polymerization during clot forma-
tion. Although visually indistinguishable, EXTEM tracings
(Fig. 5A, top) revealed significant (P � 0.05) differences in
�-angle and clot formation time (CFT) between mock-and CI
79-challenged mice (Fig. 5A, bottom). In contrast, FIBTEM

tracings (Fig. 5B, top) exhibited pronounced visual differences
that translated to a significant (P � 0.0005) increase in �-angle
and maximum clot firmness (MCF) as well as significantly (P �
0.05) reduced CFT in mice challenged with CI 79 compared to
CI 77 and mock challenges (Fig. 5B, bottom). Furthermore,
significantly (P � 0.05) elevated D-dimer levels and prolonged

FIG 5 Assessing effects of A. baumannii infection on coagulation. Coagulation parameters ROTEM (EXTEM and FIBTEM), prothrombin time (PT), and ELISA
for plasma D-dimer and fibrinogen determinations were performed as previously described in Materials and Methods. (A) EXTEM tracings (top) and corre-
sponding �-angle, CF, CFT, and MCF parameters (bottom) assessing hemostatic potential of blood activated by tissue factor and phospholipid obtained from
mock-challenged (n � 5), CI 77-challenged (n � 6), and CI 79-challenged (n � 4) mice. (B) FIBTEM tracings (top) and corresponding �-angle, CF, CFT, and
MCF parameters (bottom) assessing the contribution of fibrin polymerization to clot formation with platelet function inhibited in mock-challenged (n � 5), CI
77-challenged (n � 6), and CI 79-challenged (n � 5) mice. (C) Clinical coagulation profiles, including PT, D-dimer, and fibrinogen assays from mock-challenged
(n � 8), CI 77-challenged (n � 9), and CI 79-challenged (n � 4) mice represented in box whisker plots. Error bars represent �SD in panels A and B. Statistical
differences were determined using either the Welch t test (A and B) or the Kruskal-Wallis test with Dunn correction (C); �, P � 0.05; ��, P � 0.005.
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PT were observed in blood samples collected from CI 79-chal-
lenged mice, as were fibrinogen levels (Fig. 5C), consistent with
hypercoagulability or nonovert DIC in severe sepsis observed
in humans (48). These data, in concert with thrombotic
changes observed in liver tissue sections (Fig. 4), indicate
evolving DIC in CI 79-challenged mice, closely resembling
clinical symptoms observed in patients with Gram-negative
sepsis (5, 29, 48).

DISCUSSION

The emergence of MDR A. baumannii as a primary cause of trau-
matic wound and bloodstream infections (2, 49–51), with increas-
ing prevalence in hospitals and clinics worldwide (5, 8, 52–62),
underscores the need for a better understanding of the host im-
mune response toward this pathogen. As part of the humoral arm
of the innate immune system, pentraxins (e.g., C-reactive protein
[CRP], serum amyloid P component [SAP], PTX3, etc.) are
thought to serve as ancestral precursors to antibodies (63), and
have been reported to have a nonredundant role in protection
against both fungal and bacterial pathogens (2, 19–22, 28, 63, 64).
Despite numerous reported protective functions of PTX3 in infec-
tion, female fertility, myocardial infarction, and trauma (18–20,
23, 28, 39, 42, 63–68), sustained elevation in critically ill patients
has been associated with increased morbidity and mortality (29–
35). Similarly, data presented here suggest that prolonged eleva-
tion of PTX3 levels, possibly arising from de novo production in
peritoneal macrophage cells (Fig. 1), is associated with significant
differences in survival and disease severity between the two strains
tested (Fig. 2). A similar association between elevated PTX3 pro-
duction and disease severity has been observed following both
Gram-positive and Gram-negative sepsis in human patients (29–
33, 35); however, at this time we cannot discern if the effects ob-
served here are due in part to other entities, e.g., inflammatory
molecules. Interestingly, although studies examining A. bauman-
nii bloodstream infections involving hypercoagulability and DIC
have attributed these symptoms to bacterial LPS and outer mem-
brane shedding (14, 44, 45), data presented here indicate that dis-
ease severity was dependent on interaction of live bacteria with the
immune system, as evidenced by the complete lack of mortality in
mice challenged with UV-killed or HK bacteria administered at
high inocula (Fig. 2). The significant increase in mortality ob-
served in mice challenged with CI 79 corresponded with very high
(i.e., 10-fold-elevated) serum PTX3 levels sustained over 24 h (Fig.
3A), as well as neutrophil recruitment and activation (Fig. 3B).
Additionally, when challenged with another PTX3-inducing
strain (i.e., CI 86), mice exhibited comparable (P � 0.313) levels
of PTX3 production 24 h postchallenge with respect to CI 79-
challenged mice, and all succumbed to infection within 48 h (data
not shown). Although positive blood cultures were observed in
100% of mice challenged with CI 79 at 24 h postchallenge, with an
average systemic burden of 2.4 � 106 CFU/ml blood, surprisingly
the elevated PTX3 levels observed in these mice 24 h postchallenge
did not appear to be directly related to the bacterial burden, since
surviving mice (n � 2) exhibited an average burden of only 450
CFU/ml blood yet still produced microgram quantities of PTX3.

Mice challenged with CI 79 also exhibited more severe pathol-
ogy in the liver and spleen inclusive of features consistent with
hypercoagulability, i.e., large emboli causing vessel blockage and
tissue damage not observed in mock- or CI 77-challenged mice
(Fig. 4). Mice challenged with A. baumannii strain CI 79 exhibited

CBC and coagulation profiles consistent with severe hypercoagu-
lopathy and DIC (Table 2 and Fig. 5). These observations appear
to be in agreement with previous observations associating hypero-
cagulopathy and disease severity arising from increased TF ex-
pression (29–37, 69); however, the causal link between PTX3 pro-
duction and pathology/disease severity in A. baumannii sepsis
requires further elucidation.

To date, this is the first study examining the possible role of
PTX3 in A. baumannii sepsis. Although we do observe an associ-
ation between PTX3 production and disease severity in A. bau-
mannii sepsis in a wild-type C57BL/6 murine sepsis model, a
larger cohort of A. baumannii clinical isolates, human patient
samples, and studies involving PTX3 KO mice are required to
firmly establish its utility as a biomarker or if a cause/effect rela-
tionship exists between PTX3 levels and disease severity in A. bau-
mannii sepsis.
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