REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. | 1. REPORT DATE (DD-MM-YYYY) | 2. REPORT TYPE | 3. DATES COVERED (From - To) | | | |---|--------------------------------|---------------------------------------|--|--| | December 2014 | Briefing Charts | December 2014-January 2015 | | | | 4. TITLE AND SUBTITLE | | 5a. CONTRACT NUMBER | | | | | | In-House | | | | The Response of Cryogenic H2/O2 | Coaxial Jet Flames to Acoustic | 5b. GRANT NUMBER | | | | Disturbances | | | | | | | | 5c. PROGRAM ELEMENT NUMBER | | | | 6. AUTHOR(S) | | 5d. PROJECT NUMBER | | | | Forliti, Badakhshan, Wegener, Leyv | va, Talley | 5e. TASK NUMBER | | | | | | 5f. WORK UNIT NUMBER | | | | | | Q0YA | | | | 7. PERFORMING ORGANIZATION NAM | ME(S) AND ADDRESS(ES) | 8. PERFORMING ORGANIZATION REPORT NO. | | | | Air Force Research Laboratory (AF | MC) | | | | | AFRL/RQRC | | | | | | 10 E. Saturn Blvd. | | | | | | Edwards AFB, CA, 93524-7680 | | | | | | 9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) | | 10. SPONSOR/MONITOR'S ACRONYM(S) | | | | | | | | | | Air Force Research Laboratory (AF | MC) | | | | | AFRL/RQR | | 11. SPONSOR/MONITOR'S REPORT | | | | 5 Pollux Drive. | | NUMBER(S) | | | | Edwards AFB, CA, 93524-7048 | | AFRL-RQ-ED-VG-2014-371 | | | | 12 DISTRIBUTION / AVAIL ARILITY ST | ATEMENT | | | | #### 12. DISTRIBUTION / AVAILABILITY STATEMENT Distribution A: Approved for public release; distribution unlimited #### 13. SUPPLEMENTARY NOTES Briefing Charts presented at AIAA SciTech; Kissimmee, Fl; 8 Jan 15 #### 14. ABSTRACT An experimental study has been conducted at the Air Force Research Laboratory(AFRL) at Edwards Air Force Base to explore the coupling between a coaxial jet flame and transverse acoustic perturbations. A new experimental facility at AFRL was used to expose a single H2/O2 shear coaxial diffusion flame to controlled acoustic resonances. A variety of chamber conditions including acoustic resonance properties were considered. The acoustic frequency and amplitude were selected relative to the characteristic frequency and dynamic pressure of the reacting injector flow. Placing the flame within the pressure node and antinode was also considered. Diagnostics employed high-speed imaging including backlit visualization and OH* chemiluminescence. The images were analyzed using proper orthogonal decomposition to identify the natural frequencies and organized structure of the unforced jet flame. These techniques were used to elucidate the effects of forcing, including the structure and relative importance of forced modes relative to the natural flame behavior. | 15. SUBJECT TERMS | | | | | | | | |---------------------------------|--------------|-------------------------------|------------------------|---|---------------------------------------|--|--| | 16. SECURITY CLASSIFICATION OF: | | 17. LIMITATION
OF ABSTRACT | 18. NUMBER
OF PAGES | 19a. NAME OF RESPONSIBLE PERSON D. Talley | | | | | a. REPORT | b. ABSTRACT | c. THIS PAGE | SAR | 32 | 19b. TELEPHONE NO (include area code) | | | | Unclassified | Unclassified | Unclassified | | | 661-275-6174 | | | Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std. 239.18 Integrity ★ Service ★ Excellence # The Response of Cryogenic H2/O2 Coaxial Jet Flames to Acoustic Disturbances AIAA SciTech 2015 David Forliti, Sierra Lobo, Inc. Al Badakhshan, ERC Jeff Wegener, Physical Sciences Inc. Ivett Leyva and Doug Talley, AFRL #### **Outline** - Background and objectives - Experimental facility - Overview of features - Current operating conditions - Unforced characteristics - With and without flame - Spectral features - Forced flame results - With and without flame - Pressure node and antinode - Dynamic mode decomposition analysis - Conclusions and future work ## **Background** - Combustion systems can no longer be designed to meet modern requirements without considering system dynamics - Combustion dynamics always includes acoustic waves, and in enclosed systems, acoustic waves can often reach detrimental amplitudes - eg, combustion instabilities - Achieving modern thermodynamic efficiencies requires achieving increasingly higher chamber pressures, sometimes exceeding the critical pressure of the reactants - eg, liquid rockets, future gas turbines - When the combustion systems are for propulsion, limited tankage dictates that on-board propellants be stored in condensed form - eg, kerosene, liquid oxygen in rockets ## **Objectives** - Accordingly, we consider here the dynamics of a high pressure, chemically reacting, multiphase, acoustically driven shear flow in the form of a coaxial jet flame - Canonical flow - Geometry is applicable to liquid rockets - Subcritical and supercritical pressures - With and without acoustic waves at various amplitudes - Traceable to past research on non-chemically reacting coaxial jets - Liquid oxygen and gaseous hydrogen, also applicable to liquid rockets - Future: kerosene #### Objectives - Effect of variations in the above quantities; regime maps - Effect of the presence of chemical reactions; comparison between cold and hot - Effect of the presence of neighboring coaxial jet flames #### **Coaxial Jets/Flames** #### Geometry parameters Area ratio **Dimensionless** post thickness $$AR = \frac{D_3^2 - D_2^2}{D_1^2}$$ #### Flow parameters $$\operatorname{Re}_{i} = \frac{\rho_{1}U_{1}D_{1}}{\mu_{1}}$$ $\operatorname{Re}_{o} = \frac{\rho_{2}U_{2}(D_{3} - D_{2})}{\mu_{2}}$ $$\mu_{1} \qquad \mu_{2} \\ J = \frac{\rho_{2}U_{2}^{2}}{\rho_{1}U_{1}^{2}} \qquad r = \frac{U_{2}}{U_{1}} \\ MR = \frac{\dot{m}_{i}}{\dot{m}_{o}} \qquad s_{1} = \frac{\rho_{2}}{s_{2}} \qquad s_{2} = \frac{\rho_{3}}{s_{2}}$$ $$R = \frac{m_i}{\dot{m}_o}$$ $$s_1 = \frac{\rho_2}{\rho_1} \qquad s_2 = \frac{\rho_3}{\rho_2}$$ #### Inflow boundary conditions - Mean velocity profiles - RMS fluctuation profiles - Spectral content #### Acoustic frequencies - Transverse Acoustic mode from chamber/siren - f=f(c, geometry) - Acoustic modes propellant lines - f~c/2L #### Hydrodynamic frequencies - Post wake - St=ft/U_{ch} - Shear layer instabilities - $St_q = f\theta/U_{ch}$ - Jet preferred modes - $St=fD_{ii}/U_{ii}$ ## Feedback loop Heidmann, NASA TN D-2725, 1965. frequency and amplitude controlled independently ## **New Experimental Facility** #### **Features** - Frequency and amplitude independent of combustion accurate control of frequency and amp. - Pressurization independent of combustion accurate control of pressure. - Subcritical and supercritical pressures - Precise cryocooler accurate control of temperature to within ±1 K. - Chamber-within-a-chamber - Outer chamber contains pressure pressure containing elements remain cool - Inner chamber contains acoustics and combustion only allows finer adjustment of inner elements - High amplitude piezosirens specially designed for high pressure - On-axis windows for shadowgraph, Schlieren, chemiluminescence, OH* emission - Off-axis windows for PIV/PLIF - Fully developed turbulent injector flows well known boundary conditions ## Receptivity - Shift pressure normalization from chamber pressure to injector dynamic pressure - Normalize the frequency by the preferred mode of the coaxial jet - Identify receptivity inception point—threshold for coupling between acoustics and flame $$P'/\overline{P_c} \rightarrow \frac{P'}{\rho U^2/2}$$ $$F = \frac{f_{forcing}}{f_{jet}}$$ ## Receptivity Study # Just completed a detailed receptivity study on nonreacting coaxial jets (Wegener Ph.D.) - Scaling law for preferred mode frequency for coaxial jet - Verified characteristic velocity for frequency scaling law - Receptivity characteristics for pressure node and antinode conditions for two momentum flux ratios ## Receptivity ## **Experimental Conditions** #### New injector - D₁ = 1.4 mm - AR = 1.68 - t/D₁ = 0.27 - -MR = 6 - $\bullet J = 2.7$ - •Liquid O₂ inner jet @ 130 K - •Gaseous H₂ @ 250 K - •O₂ velocity: 3 m/s - •H₂ velocity: 83 m/s - $\bullet O_2 \text{ Re} \sim 4.7 \times 10^4$ - •H₂ Re ~ 2.2x10⁴ - Fully-developed turbulent flow conditions - •Chamber pressure 3.4 MPa (500 psi)→ subcritical #### Results #### Unforced cases - With and without the flame - Qualitative features - Spectral characteristics #### Forced cases - With and without the flame - Dynamic mode decomposition (DMD) isolation of the forced mode characteristics - Pressure node and antinode cases - Different frequencies ## **Unforced Jet/Flame Behavior** Water condensation on the window #### Unfiltered backlit/chemiluminescence H_2/O_2 no flame H₂/O₂ with flame AFRL ## **Spectral Features of Unforced Cases** ## **Spectral Features of Unforced Cases** ## **Spectral Features of Unforced Cases** #### **Forced Jets/Flames** # Pressure node forcing 1950 Hz, 1.5 V input H_2/O_2 no flame H₂/O₂ with flame Flame dramatically attenuates the flapping of the jet column, and the LOX core is apparently much longer ### **Forced Flames** #### Pressure node forcing Voltage input to amplitude Increasing forcing strength #### **DMD Reconstructions** #### Decomposition/reconstruction Form: $0 < x/D_1 < 10$ Original data #### Reconstructions with: 2 modes 10 modes 248 (all) modes ## **Dynamic Mode Decomposition** Dynamic mode decomposition (DMD) applied to first 10 inner jet diameters ## **Dynamic Mode Decomposition** Dynamic mode decomposition (DMD) applied to first 10 inner jet diameters #### **Forced Flames** #### Pressure antinode forcing Voltage input to amplitude Increasing forcing strength ## **Dynamic Mode Decomposition** Dynamic mode decomposition (DMD) applied to first 10 inner jet diameters ## **Dynamic Mode Decomposition** Dynamic mode decomposition (DMD) applied to first 10 inner jet diameters #### **DMD Reconstructions** #### Pressure antinode, max forcing, 2950 Hz 2 modes 10 modes #### **Convection Velocities** Burning structures travel slower than the estimated convection velocity based on the Dimotakis (1986) expression of 7.5 m/s. $$U_c = \frac{\rho_1^{1/2}U_1 + \rho_2^{1/2}U_2}{\rho_1^{1/2} + \rho_2^{1/2}}$$ #### **Conclusions** - Unforced reacting and nonreacting H₂/O₂ flows - Flame appears to delay mixing and lengthen the liquid core length - Slight changes in spectral content - Forced flames - Qualitatively similar to nonreacting forced coaxial flows - Pressure node forcing - Flame response is antisymmetric - Potentially degraded response at higher frequency - Pressure antinode forcing - No obvious changes in the raw images - DMD extracts the spatial mode responding to the forcing - Response seems to be tilted axisymmetric mode or possibly a combination of axisymmetric and helical modes #### What's Next? - More detailed quantification of the spectral content in unforced coaxial jet flames - Effects of flame sheet on frequency content - Isolation and scaling of dominant "preferred modes" - Search for injector conditions with strong inner-post wake instabilities - Forced flames - Detailed exploration of relative frequency and amplitude - OH* chemiluminescence - Different injector flow conditions - Quantitative optical diagnostics (OH PLIF) ## **Dynamic Mode Decomposition** Dynamic mode decomposition (DMD) applied to first 10 inner jet diameters 30 ## **New Experimental Facility** #### **Capabilities** - Cryogenic propellant temperature control with high accuracy (±1 K) - Sub- and super-critical chamber pressure (p_c up to 10.4 MPa) - High amplitude acoustic forcing ($p'/p_c \sim 0.02$) - Coaxial injector with extended length for fully developed turbulent flow ($I_e/D > 110$) - High-speed diagnostic tools - Pressure transducer(s) natural frequency > 100 kHz - Time-series backlit imaging (f > 25 kHz) - Off-axis windows for future PIV/PLIF measurements