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Outline 

• Background and objectives
• Experimental facility

• Overview of features
• Current operating conditions

• Unforced characteristics
• With and without flame
• Spectral features

• Forced flame results
• With and without flame
• Pressure node and antinode
• Dynamic mode decomposition analysis

• Conclusions and future work
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Background 

• Combustion systems can no longer be designed to meet 
modern requirements without considering system dynamics

• Combustion dynamics always includes acoustic waves, and 
in enclosed systems, acoustic waves can often reach 
detrimental amplitudes
– eg, combustion instabilities

• Achieving modern thermodynamic efficiencies requires
achieving increasingly higher chamber pressures, sometimes
exceeding the critical pressure of the reactants
– eg, liquid rockets, future gas turbines

• When the combustion systems are for propulsion, limited
tankage dictates that on-board propellants be stored in
condensed form
– eg, kerosene, liquid oxygen in rockets
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Objectives 

• Accordingly, we consider here the dynamics of a high 
pressure, chemically reacting, multiphase, acoustically driven 
shear flow in the form of a coaxial jet flame
– Canonical flow
– Geometry is applicable to liquid rockets
– Subcritical and supercritical pressures
– With and without acoustic waves at various amplitudes
– Traceable to past research on non-chemically reacting coaxial

jets
– Liquid oxygen and gaseous hydrogen, also applicable to liquid

rockets
• Future: kerosene

• Objectives
– Effect of variations in the above quantities; regime maps
– Effect of the presence of chemical reactions; comparison between cold

and hot
– Effect of the presence of neighboring coaxial jet flames
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Coaxial Jets/Flames 

Geometry parameters 
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Heidmann, NASA TN D-2725, 1965. 

control volume 

frequency and amplitude 
controlled independently 
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New Experimental Facility 

 Features 
– Frequency and amplitude independent of combustion – accurate control of frequency and amp.
– Pressurization independent of combustion – accurate control of pressure.

• Subcritical and supercritical pressures
– Precise cryocooler – accurate control of temperature to within ±1 K.
– Chamber-within-a-chamber

• Outer chamber contains pressure – pressure containing elements remain cool
• Inner chamber contains acoustics and combustion only – allows finer adjustment of inner elements

– High amplitude piezosirens specially designed for high pressure
– On-axis windows for shadowgraph, Schlieren, chemiluminescence, OH* emission
– Off-axis windows for PIV/PLIF
– Fully developed turbulent injector flows – well known boundary conditions
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Receptivity 
• Shift pressure normalization from chamber pressure to injector dynamic pressure
• Normalize the frequency by the preferred mode of the coaxial jet
• Identify receptivity inception point—threshold for coupling between acoustics and flame
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Receptivity Study 

Just completed a detailed receptivity study on 
nonreacting coaxial jets (Wegener Ph.D.) 
• Scaling law for preferred mode frequency for coaxial jet
• Verified characteristic velocity for frequency scaling law
• Receptivity characteristics for pressure node and anti

node conditions for two momentum flux ratios
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Receptivity 
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Experimental Conditions 

•New injector
– D1 = 1.4 mm
– AR = 1.68
– t/D1 = 0.27

•MR = 6
•J = 2.7
•Liquid O2 inner jet @ 130 K
•Gaseous H2 @ 250 K
•O2 velocity:  3 m/s
•H2 velocity:  83 m/s
•O2 Re ~ 4.7x104

•H2 Re ~ 2.2x104

•Fully-developed turbulent flow conditions
•Chamber pressure 3.4 MPa (500 psi) subcritical

Liquid O2

Gas H2

Ambient gas N2
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Results 

•Unforced cases 
– With and without the flame 
– Qualitative features 
– Spectral characteristics 

•Forced cases 
– With and without the flame 
– Dynamic mode decomposition (DMD) isolation of the 

forced mode characteristics 
– Pressure node and antinode cases 
– Different frequencies 
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Unforced Jet/Flame Behavior 

H2/O2 no flame H2/O2 with flame 

Unfiltered backlit/chemiluminescence 

Water 
condensation 
on the window 
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Shear layer? 

Coaxial jet preferred mode 
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Spectral Features of Unforced Cases 
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Forced Jets/Flames 

Pressure node forcing 
1950 Hz, 1.5 V input 

Flame 
dramatically 

attenuates the 
flapping of the 
jet column, and 
the LOX core is 

apparently 
much longer 

H2/O2 no flame H2/O2 with flame 
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Forced Flames 

Pressure node forcing 
Voltage input to amplitude 

0 V 0.5 V 1.0 V 1.5 V 2.0 V 

Increasing forcing strength 
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DMD Reconstructions 

Decomposition/reconstruction Form: 
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Dynamic Mode Decomposition 

Pressure node, max forcing, 1950 Hz 

Dynamic mode decomposition (DMD) applied to first 10 inner jet diameters 

real

imaginary 

Convective 
flame 

structures 

Forced mode 
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Dynamic Mode Decomposition 

Pressure node, max forcing, 3090 Hz 

Dynamic mode decomposition (DMD) applied to first 10 inner jet diameters 

real 

imaginary 

Convective 
flame 

structures 

Forced mode 

Reduced relative amplitude, 
degraded receptivity? 

Higher 
wavenumbers 
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Forced Flames 

Pressure antinode forcing 
Voltage input to amplitude 

0 V 0.5 V 1.0 V 1.5 V 2.0 V 

Increasing forcing strength 
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Dynamic Mode Decomposition 

Pressure antinode, max forcing, 1900 Hz 

Dynamic mode decomposition (DMD) applied to first 10 inner jet diameters 

real 

imaginary 

real 

imaginary 
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Dynamic Mode Decomposition 

Pressure antinode, max forcing, 2950 Hz 

Dynamic mode decomposition (DMD) applied to first 10 inner jet diameters 

real 

imaginary 

real 

imaginary 
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DMD Reconstructions 

2 modes 4 modes 6 modes 

10 modes 100 modes 548 modes 

Pressure antinode, max forcing, 2950 Hz 
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Convection Velocities 

λ 

f = 1950 Hz f = 3090 Hz f = 1900 Hz f = 2950 Hz 

Burning structures travel slower than the 
estimated convection velocity based on the 
Dimotakis (1986) expression of 7.5 m/s. 
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Conclusions 

• Unforced reacting and nonreacting H2/O2 flows 
• Flame appears to delay mixing and lengthen the liquid core 

length 
• Slight changes in spectral content 

• Forced flames 
• Qualitatively similar to nonreacting forced coaxial flows 
• Pressure node forcing 

• Flame response is antisymmetric 
• Potentially degraded response at higher frequency 

• Pressure antinode forcing 
• No obvious changes in the raw images 
• DMD extracts the spatial mode responding to the 

forcing 
• Response seems to be tilted axisymmetric mode or 

possibly a combination of axisymmetric and helical 
modes 
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What’s Next? 

• More detailed quantification of the spectral content in 
unforced coaxial jet flames 

• Effects of flame sheet on frequency content 
• Isolation and scaling of dominant “preferred modes” 
• Search for injector conditions with strong inner-post wake 

instabilities 
• Forced flames 

• Detailed exploration of relative frequency and amplitude 
• OH* chemiluminescence  
• Different injector flow conditions 
• Quantitative optical diagnostics (OH PLIF) 
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Dynamic Mode Decomposition 

Pressure antinode, max forcing, 2950 Hz 

Dynamic mode decomposition (DMD) applied to first 10 inner jet diameters 

real 

imaginary 

Convective 
flame 

structures 
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New Experimental Facility 

Acoustic Source 
 Waveguide 

Inner Chamber (Test Section) 

 Transverse Direction 

 Capabilities 
– Cryogenic propellant temperature control with high accuracy (±1 K) 
– Sub- and super-critical chamber pressure (pc up to 10.4 MPa) 
– High amplitude acoustic forcing (pʹ/pc ~ 0.02) 
– Coaxial injector with extended length for fully developed turbulent flow (le/D > 110) 
– High-speed diagnostic tools 

• Pressure transducer(s) natural frequency > 100 kHz 
• Time-series backlit imaging ( f > 25 kHz) 
• Off-axis windows for future PIV/PLIF measurements 
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