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1. Research Background and Motivation 

Data assimilation addresses the dual goals of ( I) producing the best estimate of the state of the 
physical system (e.g., atmosphere, ocean, land) and (2) quantifyi ng the uncertainty on that 
estimate. All modern data assimilation systems are based on the idea that the most complete 
information about the state of a system can be expressed as a conjunction of information 
contained in a prior estimate, a set of observations, and a model of the physical system. 
Probabi lity distribution functions (PDFs) are used to define each type of information, and the 
solution is obtained from the joint probabi lity distribution of the control variable(s) and the 
ava ilable information. Over the past 50 years, research in statistica l estimation techniques and 
their application to large systems has resulted in estimates of the atmosphere, ocean, and land 
state that are robust for most cases. However, significant challenges remain to be addressed. Key 
among these are how to properly account for model error and how to produce estimates for 
highly nonlinear systems, especially for high-impact weather events (e.g., severe storms). 

Ensemble data assimilation algorithms have increasingly been used in nonlinear systems 
because they do not require use of a linear approximation to the forecast model (e.g., tangent 
linear model or adjoint). Ensemble assimi lation algorithms produce a so lution by generating a 
sample of the joint PDF of interest, but are subject to potentially limiting assumptions about 
these probabil ities (e.g., Gaussian). By contrast, Markov chain Monte Carlo (MCMC) algorithms 
require no speci fic form of the probabi lity distributions of interest, and product: a sample of the 
true solution probabil ity. MCMC has been used to effectively characterize uncertainty and 
information content in remote sensing retrievals (Posselt et al., 2008; Posselt and Mace, 2014), 
and to assess the uncertainty in model physics parameterizations (Posselt and Vukicevic, 20 I 0). 
MCMC algorithms are well-suited to non-Gaussian estimation in the presence of nonlinearities, 
but are relatively computationally expensive and are only practical for relatively simple models 
and low-dimensional systems. The research conducted in the course of this project was designed 
to use MCMC to evaluate two modern data assimilation systems developed at the Naval 
Research Laboratory in Monterey, CA. In the process, it seeks to move the data assimilation 
community in the direction of an operational particle filter-based data assimi lation system. 

The fo llowing tasks were conducted in the course of the three-year project: 

I. Examine the strengths and limitations of Ensemble Kalman Filter (EnKF) type data 
assimilation algorithms when appl ied to estimat ion of convective cloud system 
properties. 

2. Determine whether EnKF algorithms are capable of representing rapid changes in the 
state associated with transitions between convective and stratiform precipitation. 

3. Explore the degree to which EnKF techniques can properly return estimates of positive 
definite quantities (e.g., cloud content). 

4. Assess whether a recent innovation on traditional EnKF algorithms (the quadratic filter; 
Hodyss, 20 II ) is capable of improving the representation of positive definite quantities. 

Each of these three tasks draws on the PI ' s expertise with nonlinear data assimilation methods, 
and leverages the resources and expertise available at the Naval Research Laboratory in 
Monterey, CA. In the following sections, the results obtained in each of the above task areas is 
briefly described, along with reference to relevant publications. 
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2. Estimation of Convective Cloud System Properties Using an EnKF Algorithm 

This work was designed to assess the effectiveness of an Ensemble Transform Kalman Filter 
(ETKF) to represent convective processes. Previous research found that the probability density 
functions (PDFs) of cloud microphysical parameters were non-Gauss ian, and in many cases, had 
a non-unique solution (multiple PDF modes). In this work, we built upon the work of Posselt and 
Vukicevic (20 I 0), and used MCMC to examine the degree to which an ETKF algorithm was able 
to characterize non-Gaussian PDFs. We uti lized a column convective model and built an ETKF 
algorithm suitable for performing model parameter estimation. 

The major findings of this research consisted of the following: 

I. The effect of model nonlinearity on the posterior PDF is included in ETKS in that the 
nonlinear model is allowed to respond to changes in model parameters; the full nonlinear model 
propagates perturbations forward in time. However, these changes are constrained by the 
requirement that the ETKS posterior perturbations be strictly linear functions of the prior 
perturbations. In contrast, the accept-reject procedure of the MCMC finds posterior perturbations 
that can be any function of the prior perturbations. 

2. Ensemble Kalman Smoothers can preserve key aspects of Non-Gaussian priors. Specifically, 
the ETKF was found to give a qualitatively accurate multi-modal posterior PDF when given an 
accurate multi-modal prior. The implication is that it is not the Gaussian assumption used in the 
derivation of the ETKS that causes mis-representation of the posterior. Instead, it is the lack of 
information on higher moments and/or multiple modes in the prior ensemble. 

3. Response of ETKF Estimates to Changes in Convective Regime 

In this portion of the research, we used the same column model framework described in section 2 
to explore the extent to which EnKF type algorithms are capable of tracking changes in cloud 
regime with time. Specifically, the model is designed to simulate a transition between deep 
convection and stratiform rainfall half way through its three-hour integration. The PDFs of cloud 
microphysical variables change significantly at thi s transition point due to the influence of 
different parameters at different stages of the convective life cycle. MCMC naturally tracks the 
effect of these changes on the model output, but it was unclear whether an EnKF algorithm is 
capable of doing the same. We generated posterior probability distributions using sequentially 
greater numbers of observations in time, and evaluated the efficacy of the EnKF as compared 
with MCMC. 

The major conclusions of this study were the following: 

I. Ensemble Ka lman smoothers perform poorly when the posterior mean and perturbations are 
strongly non-linear functions of the fo recast error. This was evidenced by a failure of the ETKF 
to represent the transition of the posterior PDF from a uni-modal to multi-modal form when 
observations of the stratiform phase of cloud evolution were assimilated. Though the ETKS is 
unable to produce a multimode analysis from a uni-mode prior, the posterior PDF produced by 
both the deterministic and perturbed observations versions of the ETKS is clearly non-Gauss ian. 

3 



D. J. Posselt NRL BAA 75-09-0 I 22 September 20 14 

2. The uncertainty characteristics of model physics parameterizations depend critically on the 
characteristics of the environment. Abrupt changes in the physical env ironment can lead to 
s imilarly abrupt changes in parameter uncertainty. Ensemble Kalman Fi lter-type algoritms, while 
not capable of capturing rapid (nonlinear) transitions in the nature ofthe posterior PDF, can be 
shown to perform well if prov ided with a robust prior ensemble. As such, Ensemble-Kalman
Filter-type algorithms have promise as cost-efficient methods for model parameter estimation . 

4. Determination of whether ETKF Algorithms can Represent Positive Definite Quantities 

This research addressed the question of whether ensemble filters, wh ich employ the full 
nonlinear model, are capable of representing quantities that are hard bounded. In this case, the 
quantities of interest are c loud microphysical parameters that are hard bounded at a value of zero. 
As in the research described in sections (2) and (3) above, this work employed a column 
convection model with control parameters that were tunable constants in the cloud microphysical 
scheme. In contrast to previous work, which examined only one set of microphysical values, this 
work tested several sets of values. The goals were to determine (I) how the posterior PDF 
changes with true state, and (2) whether the EnKF estimate degrades with proximity to a hard 
bound. 

The major conclusions of this work were the following: 

I. The true analysis ensemble, as constructed from samples of the Bayesian posterior 
distribution, changes shape significantly with changes in the true parameter set for a model in 
which control parameters are nonlinearly re lated to the observations. 

2. Multimodality is realized on ly in certain regions of the parameter space, and is associated with 
non-monotonicity in the parameter-observation response function. 

3. EnKF algorithms produce PDFs with increasing probability mass at non-physical values as 
parameter values approach zero. In fact , for parameters very close to zero, the posterior mean 
may be non-physical. 

4. The slope of the parameter-observation response function detennines parameter sensitivity, 
and, by extension, the posterior variance. A constant response function derivative leads to 
posterior variance that is independent of the true parameter value. This is consistent with results 
found by Hodyss (20 I I), who showed that the first derivative of the response function with 
respect to observations determines the posterior variance while the second derivative determines 
the posterior th ird moment. 

5. Evaluation of a Quadratic Ensemble Filter 

In this final portion of the work, we explored the extent to which an ensemble filter that accounts 
for skewness in the PDFs of interest can improve the so lution PDF for nonlinear and non
Gaussian quantities. We implemented a version of the Quadratic Ensemble Filter (QEF), 
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developed at NRL-Monterey, and tested it for the same convective system used in topics (2)
(4) above. The major conclusions ofth is work were the following: 

1. The true error distribution for a given set of observations (the "error of the day") is not 
reproduced by ensemble smoothers. Instead, the distribution produced by ensemble filters 
(ETKF and QEF) consists of the expected analysis error covariance matrix produced by 
integrating over all possible observations for a given prior. 

2. When approximate ensemble so lutions are compared with the integral over multiple Bayesian 
posteriors constructed from multiple draws of the true parameters from the prior (e.g., by running 
MCMC multiple times using different true parameter sets), both ETKF and QEF can be shown to 
provide a realistic estimate of the average posterior analysis distribution, but with larger 
ensemble variance than that of the average of the true posterior analysis distributions. 

3. A filter constructed with a nonlinear update that accounts for the effects of skewness in the 
prior and posterior distribution produces on average an estimate that is more consistent with the 
true posterior ensemble mean, but which still fails for cases with non-monotonic nonlinearity. 
For these cases, the mean is closer to the true mean than an EnKS algorithm, but, like the EnKS, 
is also not restricted to regions of phase space where known physically consistent so lutions exist. 
In add ition, for state estimates hard bounded at some va lue (e.g., zero for concentrations of scalar 
quantities), a significant portion of the posterior ensemble density may lie in an unphysical 
region of the parameter space. This becomes more marked when the observed concentrations 
and/or parameter values approach the specified limit. 

6. Summary 

This project led to s ign ificant advances in the understanding of ensemble data assimilation 
theory, and has subsequently supported the development of new assimilation schemes more 
suitable for nonlinear systems. MCMC was shown to be a robust tool for the evaluation of 
ensemble data assimilation schemes, and exploration of how MCMC may be used to evaluate 
new state of the art assimi lation systems is now underway. 
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