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Abstract

Considering two classes of vehicles, we aim to identify the physical elements of the

vehicles with the most impact on identifying the class of the vehicle in synthetic aperture

radar (SAR) images. We classify vehicles using features, from polarimetric SAR images,

corresponding to the structure of physical elements. We demonstrate a method which

determines the most impactful features to classification by applying subset selection on

the features. Determination of the most impactful elements of the vehicles is beneficial to

the development of low observables, target models, and automatic target recognition (ATR)

algorithms.

We show how previous work with features from individual pixels is applied to a greater

number of target states. At a greater number of target states, the previous work has poor

classification performance. Additionally, the nature of the features from pixels limits the

identification of the most impactful elements of vehicles. We apply concepts from optical

sensing to reduce the limitation on identification of physical elements.

We draw from optical sensing feature extraction with the use of Histogram of

Oriented Gradients (HOG). From the cells of HOG, we form features from frequency

and polarization attributes of SAR images. Using a subset set of features, we achieve a

classification performance of 96.10 percent correct classification. Using the features from

HOG and the cells, we identify the features with the most impact.

Using backward selection, a process for subset selection, we identify the features with

the most impact to classification. The execution of backward selection removes the features

which induce the most error in classification. We report features extracted from polarization

attributes of SAR images have the most positive impact on classification performance.
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ANALYSIS OF FEATURES FOR SYNTHETIC APERTURE RADAR TARGET

CLASSIFICATION

I. Introduction

Considering two classes of vehicles in Figure 1.1, we aim to identify the physical

elements of the vehicles with the most impact on identifying the class from synthetic

aperture radar (SAR) images. We classify vehicles using features, extracted from

polarimetric SAR images, corresponding to the structure of physical elements. We

demonstrate a method which determines the most impactful features to classification by

applying a subset selection on the features. Determination of the most impactful elements

of the vehicles is beneficial to the development of low observables, target models, and

automatic target recognition (ATR) algorithms.

Figure 1.1: CV Domes Vehicles [1].

Various processes are used to identify targets within SAR images. Some processes

chip the SAR images and then correlate the chips with a dictionary of chips to identify the

class [2]. Other processes use Principle Component Analysis to define the SAR images and
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a nearest neighbor classifier to identify the class [3, 4]. The diameter, inertia, percent bright

constant false alarm rate (CFAR), and fractal dimension of the target in the image have been

used and compared to training data to determine the class [5]. Another process fingerprints

SAR images, utilizing machine learning to identify the class [6]. The previously stated

research all assess the information from the entire SAR image to identify a target class.

Work performed by Flynn [7] used information from a single pixel in the SAR image and

machine learning to identify the class.

This thesis explores the pixel based features used by Flynn [7] and full image

classification. Flynn’s pixel based features tie information back to physical elements of

the vehicles, but does not classify using the entire image. Full image classification utilizes

the entire SAR image, but is limited in tying the features used to physical elements of the

vehicle. We extend the work performed by Flynn [7] to extract features from the entire

image. We also explore the impact of features on classification of the vehicle through the

use of backward selection.

SAR ATR is a challenging problem. Inherent to the nature of SAR, the images suffer

from low resolution compared to other imaging systems [8]. Also, the targets contain

multiple states encompassing 360 degrees in azimuth and a change in elevation dependent

upon the concept of operations. As such, classification of SAR images requires a high-

dimensional feature space, which is computationally intensive. To evaluate classification

performance, the Air Force Research Laboratory (AFRL) high performance computing

(HPC) resources are used in the execution of this research [9].

Through subset selection, we show that classification performance is improved using

features extracted from cells of an image. Subset selection also identifies features with the

most impact on classification. Analysis of these features may expose the impact of physical

elements of the vehicles on SAR ATR.
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1.1 Thesis Organization

This thesis is organized into five chapters. Chapter II covers the tools, techniques,

and algorithms used to support the analysis of the impact of features. Previous research

by Flynn [7] is also reviewed in Chapter II. Chapter III covers the application of pixel and

cell methods for feature extraction from SAR images. Flynn’s research [7] is extended

in Chapter III. Chapter IV covers the methodology behind backward selection and the

evaluation of the impact of features. Chapter V completes this thesis with final conclusions

and recommendations for future work.
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II. Background

The goal of this chapter is to build and define the foundation of knowledge used in

the development and execution of this research. Section 2.1 introduces the ATR process

and focuses this thesis on feature formation. Section 2.2 introduces the nature of features,

attributes, and feature vectors. Section 2.3 introduces the spectrum parted linked image

test (SPLIT) algorithm for attribute extraction from SAR images. Section 2.4 introduces

the classifiers we use in this thesis. Section 2.5 reviews how previous work by Flynn [7]

formed features and used classifiers with SAR images.

2.1 ATR Overview

The ATR process is characterized by the process shown in Figure 2.1. Data is

processed into a form where targets are detected. The detected targets are segmented

from the data and features are extracted. Using the features, the target is classified. The

classification of the target is used to impact system or mission parameters in real time [10].

In this thesis, we focus on the fourth stage of the ATR process (i.e. feature computation,

selection, and classification).

Figure 2.1: Block Diagram of a Typical ATR System [10].

2.2 Feature Computation, Selection, and Classification

Features, formed from the attributes of SAR images, are applied in the ATR process to

classify targets. Chapter III evaluates two ways to form features from the attributes in SAR
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images. The full set of features used to classify targets is a feature vector. The relationship

between attributes, features, and feature vectors is illustrated in Figure 2.2.

Figure 2.2: Relation of Attributes, Features, and Feature Vectors.

Figure 2.3 shows the generic process we use in this thesis to evaluate the classification

performance of feature vectors. The first step extracts attributes from the data. The second

step formulates the extracted attributes into features. Third, a feature vector is populated

from a subset of all possible features. The fourth step is to train and test on the feature

vector using a classifier to arrive at a metric of performance for the feature vector.

In Chapter III, we use SPLIT to extract the odd bounce polarization response attribute,

ko, from SAR images. Using the pixel method, we form a feature directly from the extracted

ko pixel value. Using the cell method, we form a feature from the mean of the extracted

ko pixel values over a spatial region of pixels called a cell. Other features are formed from

different attributes. A combination of features forms a feature vector. The percent correct

classification of targets is used as the metric of classification performance corresponding to

the feature vector.
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Figure 2.3: Block Diagram of Classification Process.

2.3 Attribute Extraction

In this thesis, we use the SPLIT algorithm developed by Fuller and Saville [11] for

the extraction of attributes. SPLIT constructs a set of three 2-D sub-images for each

polarization channel of the target in the x-y plane using a form of back-projection [11].

The sub-images are related to the frequency spectrum of the phase history. The phase

history is filtered into overlapping frequency banks. The first frequency bank is the first

half of the bandwidth, the second is the middle two-fourths of the bandwidth, and the third

is the second half of the bandwidth.

Peaks that are a result of canonical scatterers are stable in location across sub-images

of the back projection [12]. Attributes are extracted for the stable peak pixels in the sub-
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images. As such, identification of the stable peaks in a target area is the first step in attribute

extraction. SPLIT uses a watershed technique on the sub-images to identify peaks within

each sub-image. The threshold of the watershed technique is variable within SPLIT. A low

threshold rejects peaks with an amplitude more than 1dB below the maximum peak in the

image. A medium threshold rejects peaks with an amplitude more than 10 dB below the

maximum peak in the image. A high threshold rejects peaks with an amplitude more than

32 dB below the maximum peak. The frequency response attribute is extracted from the

peak pixels. We use the high threshold in this thesis. Work with ATR and SPLIT reports

classification performance is best using a high threshold [13].

SPLIT extracts α from each co-polarization channel, and [ko, ke] from each of the sub-

images [11]. The final α for the pixel is the weighted average of the attribute across the

co-polarization channels. The weight of each α is the magnitude of the pixel amplitude

related to the α. The final [ke, ko] for the pixel is the weighted average of the attributes

across the sub-images. Each attribute is described in detail in Subsections 2.3.1-2.3.3.

2.3.1 Amplitude Attribute.

The amplitude attributes of the pixels relate to the scatters of a target and are displayed

as SAR images. SPLIT forms images from the horizontal polarization, PHH, vertical

polarization, PVV , and cross polariztion, PHV , channels using a form of backprojection [11].

The combination of the three images, [PHH, PVV , PHV], forms the final image, I, where the

pixel amplitudes are the extracted amplitude attributes for the image. The three images are

combined as [11]

I = |PHH |
2 + |PVV |

2 + |PHV |
2. (2.1)

2.3.2 Frequency Response Attribute.

The frequency response attribute is extracted from the change in pixel amplitude

across the sub-images. The frequency response ties back to the curvature of the physical

element of the target. Physical elements that are doubly curved, such as a sphere, have an
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approximate α value of zero [11, 14]. Physical elements that are singly curved, such as

a cylinder, have an approximate α value of one or negative one [11, 14]. Finally, target

elements that are a corner reflector, such as a trihedral, have an approximate α value of

two or negative two [11, 14]. The isotropic model for the frequency response is shown as

[11, 15, 16]

S̃ f ( f , A, α) = A( j f )
α
2 , (2.2)

where f is the frequency of the waveform, and A is a complex value related to the radar

cross section of the point. The relationship between curvature and the α value is illustrated

in Figure 2.4. SPLIT uses an iterative curve fitting algorithm to estimate α. The amplitude

of the pixels of the three sub-images defines the curve α is estimated to fit. An iterative

curve fitting method is used to minimize the residual between the estimated amplitude

curve and measured amplitudes of the sub-images [11].

The α attribute for a pixel is fit to minimize the norm of the residual for the kth iteration

expressed as
∥∥∥∥ σν̂k
− f (άk)

∥∥∥∥
2

[11]. The normalization frequency vector, f(αk), is expressed as

[11]

f(αk) =
[( fc1)αk+2, ( fc2)αk+2, ( fc3)αk+2]T

( fc)αk+2 , (2.3)

where fc1 is the center frequency of subimage 1, fc2 is the center frequency of subimage

2, fc3 is the center frequency of subimage 3, and fc is the center frequency of the full

bandwidth. The observation vector, σ, is expressed as [11]

σ = [|a1|
2, |a2|

2, |a3|
2]T , (2.4)

where a1 is the amplitude of the pixel in subimage 1, a2 is the amplitude of the pixel in

subimage 2, and a3 is the amplitude of the pixel in subimage 3. The normalization factor,

ν̂k, is expressed as [11]

ν̂k =
σTσ

σT f (άk)
. (2.5)
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Figure 2.4: Relationship Between Curvature and Frequency Response (used with
permission: Dr. Julie Jackson) [17].

The first iteration curve fitting method is initialized at [11]

ά1 =
log |a1 |

2

|a3 |2

log fc1
fc3

− 2. (2.6)

The frequency parameter, αk, is adjusted by a scaled version of norm of the residual

expressed as [11]

δk = (0.95)k
∥∥∥∥∥σν̂k
− f (άk)

∥∥∥∥∥
2
, (2.7)

where αk+1 is expressed as

άk+1 =


άk + δk,

∥∥∥∥ σν̂k
− f (άk + δk)

∥∥∥∥
2
<

∥∥∥∥ σν̂k
− f (άk − δk)

∥∥∥∥
2
,

άk − δk, otherwise.
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SPLIT applies a threshold to the initial frequency response parameter, α1, where if ά1 <

[−6, 6], then the estimation is considered to be not of a scattering center and the estimated

value is discarded [11]. SPLIT applies a threshold to δk, where if δk < 0.001, then αk+1 has

converged on the prescribed amount of precision and is the finalized estimate of frequency

response, αK [11]. SPLIT then applies a threshold to the finalized estimate of αK , where

if αK < [−4, 4], then the estimation is considered to be not of a scattering center and the

estimate value is discarded [11].

2.3.3 Polarization Response Attributes.

The polarization response attributes are extracted by SPLIT from the relationship

between the amplitude of the three polarization channels. The characteristics of the

physical elements of the target affect the polarization of the field that is re-radiated back

to the radar [18]. Specifically, the presence and type of a corner reflector affects the

polarization of the re-radiated field. When a linearly polarized electric field is incident

on a flat perfect electric conductor (PEC), the reflected field maintains the polarization

characteristics of the incident field [18]. When a linearly polarized electric field is incident

upon a dihedral corner reflector, the component perpendicular to the reflector becomes

inverted [11]. Additionally, for a linearly polarized electric field incident on a trihedral

corner reflector, the reflected field maintains the polarization characteristics of the incident

field. The nature of the polarization response is documented in Figure 2.5 [11, 18].

Given fully polarimetric SAR data, the polarization response may be extracted.

Fully polarimetric SAR data is only attainable with a system pre-configured to transmit,

receive, and process radar waveforms with both vertical and horizontal polarization

simultaneously. Radar returns consisting of only one polarization cannot be processed

to extract a polarization response.
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Figure 2.5: Reflection Behavior for Linearly Polarized Electric Fields (used with
permission: Dane Fuller) [11, 18].

The relationship between the incident field and the scattered or received field contains

the polarization response information. The relationship is defined as [19]

Es =

E
s
H

E s
V

 =
1
√

4πr
SEie− jkr =

1
√

4πr

S HH S HV

S VH S VV


E

i
H

Ei
V

 e− jkr, (2.8)

where Ei is the incident electric field, Es is the scattered or received electric field, r is the

distance between the receive antenna and the scatterer, and S is the Sinclair Matrix. The

Sinclair Matrix is composed of horizontal and vertical, transmit and receive components.

It is important to note the S HV is equivalent to S VH in the case of a monostatic radar

[7, 15, 20]. The equivalence of S HV and S VH does not hold true in the case of bistatic

radar.
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The attributes are decomposed using Krogager decomposition referencing circular

polarization. The Sinclair Matrix is translated to circular polarization, where R is right-

hand polarized and L is left-hand polarized, by [21]

S RR = jS HV +
1
2

(S HH − S VV), (2.9)

S LL = jS HV −
1
2

(S HH − S VV), (2.10)

S RL =
1
2

(S HH + S VV). (2.11)

From the circular polarization, a measure of the odd, even, and helical scattering

mechanisms are extracted by the Krogager decomposition given by [21]

ke = min(|S LL| , |S RR|), (2.12)

ko = |S RL| , (2.13)

kh = abs(|S RR| − |S LL|), (2.14)

where ke is a coefficient of the even bounce mechanism, ko is a coefficient of the odd bounce

mechanism, and kh is a coefficient of the helical bounce mechanism. The finalized attributes

are the normalized coefficient of the bounce mechanisms defined by

κo =
ko√

|ko|
2 + |ke|

2 + |kh|
2
, (2.15)

κe =
ke√

|ko|
2 + |ke|

2 + |kh|
2
. (2.16)

SPLIT does not extract the helical bounce mechanism because the helical mechanism can

be defined as the relationship between ke and ko as [11]

kh = 1 − ko − ke. (2.17)

We use the ke and ko attributes extracted for every pixel in Chapters III and IV. Once we have

the extracted amplitude, frequency, and polarization attributes from SPLIT, we form them

into features and evaluate the classification performance using machine learning classifiers.
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2.4 Classifiers

We used both a linear and a non-linear machine learning classifier to evaluate the

classification performance of feature vectors. The linear machine learning classifier we use

is linear discriminant analysis (LDA). The non-linear machine learning classifier we use is

relevance vector machine (RVM). Each classifier is described in detail in Subsection 2.4.1

and 2.4.2.

2.4.1 Linear Discriminant Analysis.

Linear discriminant analysis (LDA) is a supervised machine learning method for

dimensionality reduction, classification, and learning [22]. The process projects a P-

dimensional feature vector into a one-dimensional space. The process statistically

minimizes the variance of class data in the one-dimensional space, while maximizing

separation between classes. LDA is only applicable when P is greater than or equal to

2.

LDA develops a projection, w, such that [22]

z = wT x, (2.18)

where x is the feature vector, and z is a point in one-dimensional space. The projection

matrix, w, is defined such that the classes are projected to maximize the separation between

classes and minimize the scatter within a class [22]. Given a two class comparison with P

total features and N instances of each class, there exists the mean of x1,n ∈ R
P, m1 of class

1 and a mean of x2,n ∈ R
P, m2 of class 2. There also exists a projection of m1 and m2, m1

and m2, such that [22]

m1 = wT m1, (2.19)

m2 = wT m2. (2.20)
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The scatter within a class, s2
1 for class 1 and s2

2 for class 2, is characterized as

s2
1 =

N∑
n=1

(wT x1,n − m1)2, (2.21)

s2
2 =

N∑
n=1

(wT x2,n − m2)2. (2.22)

The objective is to maximize |m1 − m2| and minimize (s2
1 + s2

2) [22]. The w maximizing

J(w) =
(m1 − m2)2

s2
1 + s2

2

, (2.23)

is the Fisher’s linear discriminant [22]. From the numerator, we derive the between-class

scatter matrix, SB, through [22]

(m1 − m2)2 = (wT m1 − wT m2)2,

= wT (m1 −m2)(m1 −m2)T w,

= wT SBw. (2.24)

The within-class scatter matrix, Sc is extracted by rewriting the variance of a class after

projection as

s2
c =

∑
n

wT (xc,n −mc)(xc,n −mc)T w,

= wT Scw, (2.25)

where subscript c ∈ [1, 2] is the class designator and Sc =
∑

n(xc,n − mc)(xc,n − mc)T .

Substituting s2
1 + s2

2 in the denominator of Equation (2.23) with

s2
1 + s2

2 = wT S1w + wT S2w,

= wT SWw, (2.26)

where SW = S1 + S2, and the numerator with Equation (2.24), Equation (2.23) is rewritten

as

J(w) =
wT SBw
wT SWw

. (2.27)
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To evaluate where J(w) is maximized, the gradient with respect to w is taken and set equal

to zero. The result is [22]

wT (m1 −m2)
wT SWw

(
2(m1 −m2) −

wT (m1 −m2)
wT SWw

SWw
)

= 0. (2.28)

Solving Equation (2.28) for w,

w = S−1
W (m1 −m2). (2.29)

LDA is optimal when the classes are normally distributed [22]. In such a case, the

distribution of class c is N(mc,SW), where SW is the same as in Equation (2.29).

Additionally, if m1 ≈ m2, then w approaches zero as m1 goes to m2. In such a case,

the classes are inseparable with the features used.

We use the LDA classifier later in Chapter III. We do not expect the LDA to perform

well with the high dimensionality of the target states. If m1 ≈ m2, then LDA is unable to

separate the classes. Instead, we use the non-linear classifier, RVM, to classify in the high

dimensional space.

2.4.2 Relevance Vector Machine.

Relevance vector machine (RVM) is a supervised machine learning process using

a Bayesian framework and kernel functions to obtain sparse solutions to non-linear

classification tasks [23]. RVM uses a Bayesian framework applied to the structure of

another sparse linearly-parameterized model, the support vector machine (SVM). Similar

to LDA, SVM attempts to maximize the spread between classes and minimize the error or

variance within a class [24, 25].

SVM classification decisions are based on [24–26]

yi = sgn(vT xi + b), (2.30)

where v is a vector of weights defining the hyperplane with a crossing at b, x is a feature

vector, and yi is the class identifier yi ∈ {−1, 1}. The hyperplane separates the yi = 1
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and yi = −1 classes given linearly separable data. The SVM optimizes the hyperplane v,

defined by [25],

v =

l∑
i=1

yiαixi, (2.31)

where l is the total number of training vectors. The αi are Lagrange multipliers and the

primal Lagrangian is [25, 27],

L(α) =

l∑
i=1

αi −
1
2

l∑
i, j=1

yiy jαiα j〈xi · x j〉, (2.32)

where 〈〉 is the kernel operator we will discuss later in this section. The kernel in Equation

(2.32) is the dot product of xi and x j. The vector α∗ that maximizes the primal Lagrangian

in Equation (2.32) while also holding to [25]

l∑
i=1

yiαi = 0, (2.33)

and

αi ≥ 0, i = 1, ..., l, (2.34)

optimizes the hyperplane v in Equation 2.31. The optimized hyperplane, v∗ is defined as

v∗ =

l∑
i=1

yiα
∗
i xi. (2.35)

The value of b∗ is defined where v∗ optimally separates the two classes by [25]

b∗ = −
maxyi=−1〈v∗ · xi〉 + minyi=1〈v∗ · xi〉

2
. (2.36)

The Karush-Kuhn-Tucker complementary conditions apply such that [25, 27]

α∗i [yi(〈v∗ · xi〉 + b∗) − 1] = 0, i = 1, ..., l, (2.37)

implying that only inputs xi closest to the hyperplane have a corresponding non-zero α∗i

[25]. The xi with non-zero α∗i are called support vectors [23–25]. Figure 2.6 illustrates the

concept in a two-dimensional linearly separable feature space. The circled points are the

support vectors.
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Figure 2.6: Hyperplane Through Two Linearly Separable Classes [24].

Using the support vectors, the optimal hyperplane can be expressed without explicitly

defining the hyperplane v∗ as [25]

f (x,α∗, b∗, x∈sv) =
∑
i∈sv

yiα
∗
i 〈xi · x〉 + b∗, (2.38)

where sv are the indices of the support vectors. From Equation (2.38), 〈xi · x〉 is defined as

the linear kernel.

For classification of non-linearly separable data, the linear kernel does not provide

separation between the classes in a linear feature space. A non-linear kernel is used to

implicitly map xi into a non-linear feature space. The non-linearly separable classes shown

in Figure 2.7 are defined by two parameters, one on each axis in the left image. Notice that a

hyperplane cannot be defined to separate the classes. However, the classes are separable in

17



a third-dimension, as shown on the right side of Figure 2.7. The third dimension is similar

to a non-linear feature space created by a non-linear kernel. SVM uses kernel mapping to

evaluate in the third dimension. In this thesis we use non-linear kernel called the radial

Figure 2.7: Data Re-Mapping Using the Radial Basis Function.

basis function, defined as [24]

K(xi, x j) = e
−

(
‖xi−x j‖

2

2σ2

)
, (2.39)

where the subscripts on x are individual instances of the training feature vectors. The form

of the primal Lagrangian to optimize the hyperplane using the non-linear radial basis kernel

is [24]

L(α) =

l∑
i=1

αi −
1
2

l∑
i, j=1

yiy jαiα jK(xi, x j). (2.40)

Solving for α∗ as in [25], b∗ is defined by [24]

b∗ =
1
Ns

∑
i∈sv

(yi −
∑
j∈sv

α∗jy jK(xi, x j)). (2.41)

The hyperplane is then defined similar to Equation (2.38) as [24, 25, 27]

f (x,α∗, b∗) =
∑
i∈sv

yiαiK(xi, x) + b∗. (2.42)
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Using the same process as with the radial basis function, other non-linear kernels may be

implemented.

SVM develops a hyperplane for use as a classification boundary, given sufficient

training vectors. SVM distills the training vectors down to support vectors used to define

the hyperplane. The hyperplane is defined using the kernel function in conjunction with

support vectors. There exists a linear correlation between the number of training vectors

and support vectors [23]. As the number of support vectors grows, so does the number of

basis functions of the kernel function. For large training sets, the increase in support vectors

becomes computationally prohibitive. Additionally, the increase in the support vectors

reduces the smoothness of the boundary between classes leading to over-classification. In

response to the faults of SVM, RVM was developed by Tipping [23].

RVM is a Bayesian approach to SVM [23, 28]. The Bayesian approach further

increases the sparseness already present in the SVM support vectors by inclining the αi

value to zero [23, 28]. The new set of vectors, called relevance vectors, are sparsely

determined with the posterior distribution of the training vectors and a limiting prior

distribution on the weight αi [23].

RVM manipulates the optimal hyperplane in Equation (2.42), removing yi and b∗ to

be [23, 28]

f (x,α∗) =
∑
i∈rv

α∗i K(xi, x), (2.43)

where rv are the indices of relevance vectors. Assuming a Gaussian distribution of yi, the

likelihood function of the complete data set P(y|x,α, σ2) is defined as [28],

P(y|x,α, σ2) =

N∏
i=1

(2πσ2)−
1
2 e( −1

2σ2 (yi− fi)2), (2.44)

where N is the number of training vectors, n and i are the indexes of the training vectors,

and

fi =

N∑
n=1

αnK(xn, xi). (2.45)
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Constraining the magnitude of α, RVM uses a bias in the form of zero-mean Gaussian prior

[28],

p(α|ϑ) =

N∏
i=1

N(0, ϑ−1
i ). (2.46)

A Gaussian prior distribution is enforced over the αi values with a mean of zero [23]. The

variance ϑ is defined through the maximization of the marginal likelihood, lending to more

αi weights evaluating to zero, and resulting in an increasingly sparse relevance vector set

[23]. From the prior in Equation (2.46) of α and the likelihood function (2.44), the posterior

probability is represented as [23, 28]

p(α,ϑ, σ2|y) = p(α|y,ϑ, σ2)p(ϑ, σ2|y). (2.47)

From the posterior probability in Equation (2.47), the marginal likelihood P(y|ϑ, σ2) is

derived [23, 28]. The maximization of the marginal likelihood with respect to ϑ and σ2

gives the optimal hyperplane [23, 28].

Implementing the additional Bayesian constraints of RVM on the SVM classification

method produces a sparse set of relevance vectors [23]. The sparsity of the relevance vector

set, enforced by Equation (2.46), limits the number of basis functions, and smooths the

hyperplane. We use RVM to evaluate the classification performance of different feature

vectors in Chapters III and IV. The work done by Flynn [7] used RVM to compare

classification performance of different combinations of bandwidth, elevation, azimuth and

aperture.

2.5 Previous Work With Pixel Attributes From SPLIT

Previous work performed by Flynn used SPLIT to extract feature vectors from pixels

of SAR images [7]. Flynn used multiple feature vectors extracted from each image to

classify the vehicle in the image [7]. The work in this thesis is a follow-on effort to Flynn’s

research.
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2.5.1 Flynn’s Work on Pixel Attributes From SPLIT.

The work performed by Flynn analyzed the impact of bandwidth, elevation, azimuth

and aperture on classification performance [7]. The features used for classification were

formed directly from peak pixel attributes, [α, ke, ko, x, y], extracted using SPLIT. The

features from a single pixel made up the feature vector used to classify the image. RVM

and the AFRL civilian vehicles (CV) Domes data set was used to evaluate the performance

of different combinations of bandwidth, elevation, azimuth, and aperture. The next sections

discuss CV Domes and Flynn’s work [7] in more detail.

2.5.2 CV Domes.

Training and testing data was drawn from the CV Domes data set. The CV Domes data

set is a collection of X-band scattering data for a set of ten vehicles [1]. Fully-polarized

far-field monostatic scatter data is simulated over 360 degrees of azimuth and from 30

degrees up to 60 degrees of elevation. In azimuth, data was simulated every 0.0625 degrees,

resulting in a total of 5, 760 azimuth samples for each elevation. In elevation, the data was

simulated every 0.0625 degrees, resulting in a total of 480 elevation samples per azimuth

angle.

Phase history is generated for each of the ten vehicles in Figure 1.1 [1]. For each

elevation and azimuth pair, a 1-dimensional profile is simulated with 512 frequency

samples with a center frequency of 9.6 GHz and a bandwidth of 5.35 GHz [1]. The 1-

dimensional profiles are documented in the frequency domain as phase history. The data is

fully polarimetric with HH, HV, and VV linear polarization channels [1].

The CV domes data using full bandwidth with an aperture of 20 degrees has a

cross-range resolution of 0.0448 meters and a range resolution of 0.0280 meters. Range

resolution, ρx, is a function of the bandwidth, B, and the speed of light, c, where [8]

ρx =
c

2B
. (2.48)
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Cross-range resolution, ρy, is a function of the wavelength, λ, and the aperture, ∆φ, in

radians where [8]

ρy =
λ

2∆φ
. (2.49)

2.5.3 Flynn’s Results.

Flynn’s research using a single observation state and feature vectors tied back

to a single pixel classified SAR images [7]. Flynn concluded the research with a

recommendation on the bandwidth, elevation, azimuth, and aperture collection parameter

for SAR images. He used the CV Domes data set to simulate classification performance

with different bandwidth, elevation, azimuth, and aperture parameters. From the

classification performance results, Flynn identified a parameter set with the highest

performance [7]. Flynn recommends an azimuth angle of 90 degrees to 135 degrees, an

aperture size of 60 degrees, an elevation angle of 30 degrees, and a bandwidth from 640

MHz to 3 GHz based on the performance of the parameters [7]. Similarly, we compare

feature vectors in Chapters III and IV.

2.6 Research Goals and Assumptions

We want to implement the pixel method from [7] using the full extent of observation

angles and an aperture of 20 degrees. Considering the concept of operation of a SAR

platform [29], we conclude the platform has limited control of the observation angles

of a target. Because there is limited control of the elevation and azimuth of a target,

classification performance must be evaluated using the full extent of observation angles.

Additionally, given a bandwidth of 5.35GHz and a center frequency fc = 9.6GHz, a 60

degree aperture is considered a wide-angle synthetic aperture [30]. A wide-angle synthetic

aperture is any synthesized aperture having an angular extent, ∆φ, greater than required to

have equivalent resolution in range and cross-range given by [30]. A wide-angle synthetic

aperture is defined as [30]
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∆φ > 2 sin−1
(

BW
2 fc

)
, (2.50)

where BW is the bandwidth and fc is the center frequency. Also, unlike ideal point scatters,

canonical scatterers have an angular persistence of less than 20 degrees [31]. For these

reasons, we use a 20 degree aperture. Note that, given a distinct SAR collection scenario,

the aperture may be different, as the aperture is dependent on the equipment and the concept

of operation.

From the CV domes data set, there are a total of 27,705,600 possible target states given

the constraints of a 20 degree aperture, and a constant elevation angle across the aperture.

Figure 2.8 illustrates all possible target states. Separating the CV Domes into sedans and

SUVs, there are 16,623,360 possible sedan states and 11,082,240 possible SUV states. To

reduce the data size and respect computational limitations, we sparsely sample from the full

extent of elevation and azimuth. The rate at which we sample the target states is defined in

Sections 3.1 and 3.3.

Figure 2.8: All Possible Target States From the CV Domes Data Set.
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We want to capture the entire image in a single feature vector to investigate the

attributes of the entire image for impact on classification performance. Evaluating the

performance of subsets of features in the feature vector enables us to relate classification

performance to individual features. If the features, and the attributes they are composed of,

are tied back to physical elements of the vehicles, then we can tie physical elements of the

vehicles to impact in classification performance.

In Chapter III, we construct a process to form feature vectors from an entire SAR

image. First, we extend the research by Flynn [7] to use more target states and investigate

the corresponding classification performance of subsets of the overall feature vector. With

a baseline of the performance from Flynn’s feature extraction method [7], we extend the

method to form features across the entire image space. Utilizing features from the entire

image space, we investigate the corresponding classification performance of subsets of all

the features we extract from the image.
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III. Application of Feature Extraction Methods

The goal of this chapter is to apply various methods for feature extraction and to

evaluate their corresponding classification performance. Classification performance is

evaluated using the linear and non-linear classifiers, LDA and RVM respectively. In

Sections 3.1 and 3.2, the classification performance of feature vectors formed using the

pixel method is evaluated. In Sections 3.3-3.5, the classification performance of feature

vectors formed using the cell method is evaluated. Section 3.6 reports the notable

conclusions from the pixel method and the cell method. Section 3.7 introduces the concept

of feature saliency.

3.1 Pixel Method for Extracting Features

The pixel method for extracting features is similar to the method used by Flynn [7].

There are two major differences between the implementation of the pixel method employed

in this work and previous work [7]. First, we train and test using target states spanning

180 degrees in azimuth and up to nine degrees in elevation. The second difference is the

implementation of a segmentation process to reduce the number of feature vectors extracted

from each target state’s image.

3.1.1 Pixel Method.

We use the process shown in Figure 3.1 to implement the pixel method. Attributes are

extracted from the data using SPLIT. Features are formed from the attributes of individual

pixels. The extracted features then are used to populate a feature vector to be analyzed.

The classification performance of various feature vectors is then simulated and evaluated.

The image segmentation and formation of features shown in the third block of Figure 3.1,

is unique to the pixel method. We are unable to process all of the data from the CV Domes

data set and pull all possible feature vectors from each image due to computational limits.
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We limit the number of feature vectors by sparsely sampling the target states from the CV

Domes data set and using image segmentation.

Figure 3.1: Block Diagram of Classification Performance Analysis of Pixel Method
Feature Vectors.

Using the extracted feature vectors from all of the pixels with a valid alpha value, as

was performed by Flynn in [7], is computationally expensive when implementing multiple

observation states. To reduce the computational costs, we reduce the number of feature

vectors we extract per image using segmentation. The pixels in the SAR images are

segmented using threshold values of all the attributes of pixels, [ x, y, A, α, ko, ke] based

on the ideal mapping shown in Figure 3.2. Unlike previous work [11], we implement a

threshold on distances from peak amplitude pixels within the image instead of ideal pixel

attributes to segment pixels.
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Figure 3.2: Three Dimensional Attribute Space [11].

We utilize the process shown in Figure 3.3 to segment the pixels in an image. The

pixels are sorted from highest to lowest by amplitude. The first pixel is defined to be

an associate pixel. The subsequent pixels are segmented with an associate pixel or are

assigned to be a new associate pixel based on a threshold on distance between pixels in

attribute space.

Figure 3.2 shows there are three general cases for the threshold on distance in attribute

space under which two pixels can still be classified as the same type of canonical shape.

The first case is the ideal mapping of a dihedral0 in attribute space. The second case is the

mapping of a cylinder0 in attribute space. The third case is the mapping of the remaining

canonical shapes. To model the different cases, we use three different sets of thresholds

depending on the location of the associate pixel in attribute space.

• Case 1: If the associate pixel is αas < 0.5, a ke as > 0.5, and a ko as < 0.5.

• Case 2: If the associate pixel is αas < −0.5, a ke as < 0.5, and a ko as < 0.5.

• Case 3: If the associate pixel is not case 1 or case 2.
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Figure 3.3: Block Diagram of the Image Segmentation Process.

For associate pixels that exist in Case 1, the threshold on the distance between a pixel and

the associate pixel is

|αas − αii| ≤ 3 & |ke as − ke ii| ≤ 0.5 & |ko as − ko ii| ≤ 0.5 &

|xas − xii| ≤ 0.75 & |yas − yii| ≤ 0.75,
(3.1)

where the subscript as is the index of associate pixels and the subscript ii is the index of

the pixel being segmented. For associate pixels that exist in Case 2, the threshold on the

distance between a pixel and the associate pixel is

|αas − αii| ≤ 2 & |ke as − ke ii| ≤ 0.5 & |ko as − ko ii| ≤ 0.5 &

|xas − xii| ≤ 0.75 & |yas − yii| ≤ 0.75.
(3.2)
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For associate pixels that exist in Case 3, the threshold on the distance between a pixel and

the associate pixel is

|αas − αii| ≤ 1 & |ke as − ke ii| ≤ 0.5 & |ko as − ko ii| ≤ 0.5 &

|xas − xii| ≤ 0.75 & |yas − yii| ≤ 0.75.
(3.3)

Figure 3.4 shows an example of pixel segmentation based on the outlined process. After

Figure 3.4: Segmented Pixels With the Ideal Mapping of Extracted Attributes to Canonical
Shapes of Toyota Camry at 30 Degrees Elevation, and 50 Degrees Azimuth.

the segmentation process feature vectors are formed from the attributes of the associate

pixels. The segmentation process shown in Figure 3.3 reduces the number of feature vectors

extracted for an image by more than an order of magnitude.

The process of segmentation implicitly captures the pixel amplitude in the location

features, x and y. The pixel amplitude is also explicitly captured in the amplitude feature,

A. However, we define segments by the pixel with the greatest amplitude, and the

location features also contain pixel amplitude information. With the feature vector from
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segmentation, we evaluate the classification performance of the feature vectors formed

from different sets of features itemized in Table 3.1.

Table 3.1: Pixel Based Feature Vectors.

Reference # Feature Vector

1 [ x, y]

2 [ x, y, A]

3 [ x, y, ko]

4 [ x, y, ke]

5 [ x, y, ko, ke]

6 [ x, y, A, ko, ke]

7 [ x, y, α]

8 [ x, y, A, α]

9 [ x, y, ko, α]

10 [ x, y, ke, α]

11 [ x, y, ko, ke, α]

12 [ x, y, A, ko, ke, α]

If we evaluate with all possible target states from the CV Domes data set, we are

unable to process all the data with the computational resources available. Respecting

computational limitations, we use the states shown in Figure 3.5. We increase the span

of elevation states from 30 to 32 degrees up to 30 to 39 degrees and report the impact

of increasing the diversity in elevation to classification performance. Computational

limitations prohibit examining a greater diversity in elevation.
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Figure 3.5: Target States Used to Evaluate Classification Performance of Pixel Method.

3.2 Pixel Method Results

We evaluated the feature vectors in Table 3.1 using the process shown in Figure

3.1. The metric used to evaluate classification performance is the mean classification

performance for the feature vectors based on 30 trials using randomly chosen training and

testing data. We compare the averaged corresponding performance of each feature vector

to evaluate the pixel method for classifying targets.

Feature vectors from Table 3.1 containing the amplitude feature consistently have the

performance of a 1R classifier [32], where all test feature vectors are classified to be the

class with the greatest number of training feature vectors. The classification results for all

feature vectors with an amplitude feature have 100 percent correct classification for sedans

and zero percent correct classification for SUVs. The classification performance of the

remaining feature vectors is reported in Figure 3.6.

The use of polarization response attributes is associated with the highest classification

performance. The highest performing feature vectors are feature vectors three and five from
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Figure 3.6: Classification Performance Versus Elevation Sampling Diversity. Elevation
sampling diversity is from 30 to θ degrees elevation. The error bars are the standard
deviation of the classification performance.

Table 3.1, both of which include the odd bounce polarization attribute, ko. Feature vector

four is the next best performing feature vector and includes the even bounce polarization

attribute, ke.

The use of frequency response attributes reduces classification performance. For

example, the classification performance of feature vector one is reduced with the addition

of the frequency response attribute, α, in feature vector seven. The highest performing

feature vector is reduced by more than its standard deviation with the addition of α in

feature vector 11.

The classification performance using the pixel method for feature extraction peaks at

66 percent correct classification, although the results from other methods show that higher

classification performances are attainable [3–6]. Due to the poor classification performance
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of the pixel method under the given test conditions, we want to explore another option for

feature extraction.

3.2.1 Motivation for Cell Method.

It is desirable to improve classification performance, and to identify attributes and

features which have the greatest impact on the classification performance. Backward

selection is a common method for analyzing the impact of features on classification,

and will be discussed in Section 4.1. However, the structure of a pixel method feature

vector is not appropriate for backward selection. A single feature vector that captures the

information within an entire SAR image is required for backward selection. One method of

constructing a single feature vector from an image is to use cells as a framework to extract

features.

3.3 Cell Method for Extracting Features

An image is composed of a matrix of pixels which may be divided into spatial regions

defined as cells and blocks. Cells do not overlap, and four cells compose a spatial region

defined as a block. The relationship of a pixel to a cell to a block is captured in Figure

3.7. The use of cells as a framework to extract features is presented in Dalal and Triggs’

histograms of oriented gradients (HOG) work [33]. Features are extracted in two ways

from the cells. First, the mean and mode of attributes within the cells are used to form

features. Second, HOG is used to form features.

Six feature types are formed using the mean and mode of an attribute within a cell.

The “α mean” feature type is the mean of the α attribute within a cell. The “α mode”

feature type is the mode of the α attributes within a cell. The “ke mean” feature type is the

mean of the ke attribute within a cell. The “ke mode” feature type is the mode of the ke

attribute within a cell. The “ko mean” feature type is the mean of the ko attribute within a
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Figure 3.7: The Pixel to Cell to Block Relationship.

cell. The “ko mode” feature type is the mode of the ko attribute within a cell. The second

method we use to form features is HOG on amplitude and polarization images.

Histogram of oriented gradients (HOG) is a tool originating from computer vision and

image processing which defines the orientation of contours within an image space using

gradient computations based on cells of an image [33]. HOG calculates the gradient vector,

also known as an image gradient, for each pixel, pc within each cell of an image [33]. The

gradient vector of pixel pc is

[∆px,∆py] = [pr − pl, pu − pd], (3.4)

where the notation is shown in Figure 3.8. The magnitude of the gradient vector of a

pixel, pmag, is pmag =
√

∆p2
x + ∆p2

y . The angle of the gradient vector of a pixel, pang, is

pang = tan−1( |∆py |

|∆px |
).

A histogram of gradients is constructed for each cell from the gradient vectors of all

of the pixels in each cell. The bins of the histogram are the gradient vector angles. The
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Figure 3.8: Example for Pixel Gradient Vectors.

magnitude in each bin is the sum of the gradient vector magnitudes of each pixel in the bin.

From the image in Figure 3.9, HOG forms the histogram in Figure 3.10 for a single cell.

Figure 3.9: Non-Coherently Formed 360 Degree Image of a Toyota Camry, Formed with
20 Degree Apertures.
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Figure 3.10: Histogram of gradients of a cell of Figure 3.9. Cell spans x = [−3 : −2] and
y = [1.333 : 2].

HOG groups cells into larger spatial regions defined as blocks [33]. The blocks

overlap, covering the entire image. Within each block, the histograms of the all the

cells are normalized, and the normalized copies of the histograms are defined as features.

Because of the overlapping blocks, multiple normalized histograms are defined as features

for each cell. If HOG is implemented without normalization, then the original histogram

bin magnitudes from each cell are also recorded as features. We implement HOG using

MATLABs “computer vision” toolbox [34].

Using HOG, we derive three feature types; HOG of amplitude, HOG of ke, and HOG

of ko. The name of each types comes from the attribute used to develop the image on

which HOG operates. Shown in Figure 3.11 is an image developed from the amplitude

attributes of pixels extracted using SPLIT. Figure 3.12 shows an image developed from the

ke attributes of pixels extracted using SPLIT. Figure 3.13 shows an image developed from

the ko attributes of pixels extracted using SPLIT.
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Figure 3.11: Image From Amplitude Attribute of Pixels. Source is a 20 degree aperture of
a Toyota Camry at 30 degrees elevation and 10 degrees azimuth.

Figure 3.12: Image from ke Attribute of Pixels. Source is a 20 degree aperture of a Toyota
Camry at 30 degrees elevation and 10 degrees azimuth.
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Figure 3.13: Image from ko Attribute of Pixels. Source is a 20 degree aperture of a Toyota
Camry at 30 degrees elevation and 10 degrees azimuth.

3.4 Cell Method Evaluation

We use the process shown in Figure 3.14 to evaluate the classification performance

of the cell method. Attributes are extracted from the data using SPLIT. Features are then

formed from the attributes of the cells. The resulting features are used to populate feature

vectors for evaluation. The classification performance of the resulting feature vectors may

then be evaluated.

We evaluate the cell method using a 6x6 grid of cells. A comparison of a 5x5 grid,

a 6x6 grid, a 7x7 grid, and an 8x8 grid, shown in Figure 3.15, gives no clear indication

of a superior grid size. The 6x6 grid of cells gives a similar symmetric grid of cells and a

smaller overall feature vector than an 8x8 grid of cells. The 6x6 grid of cells is laid out and

labeled as shown in Figure 3.16. The labels are used for reference in Section 4.3. The SAR

image, on which the 6x6 grid is overlaid, is a single target state of a Toyota Camry at 10

degrees azimuth and 30 degrees elevation.
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Figure 3.14: Block Diagram of Classification Performance Analysis of Cell Method
Feature Vectors.

Figure 3.15: Comparison of Cell Size Classification Performance with the RVM Classifier.
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Figure 3.16: 6x6 Grid of Cells Laid Over a SAR Image.
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If we evaluate the cell method with all possible target states from the CV Domes data

set, then we are unable to process all the data with the computational resources available.

To reduce the computational resources required, the CV Domes data set is sparsely sampled

every 0.25 degrees in elevation, 20 degrees in azimuth, and using every vehicle. The

result is non-overlapping apertures covering 360 degrees on the vehicles and 30 degrees

in elevation. A total of 21,780 target states are used. Respecting the computational limit,

we use the states shown in Figure 3.17.

Figure 3.17: Target States Used to Evaluate Classification Performance of Cell Method.

The feature vectors itemized in Table 3.2 are 21 different combinations of feature types

we evaluate for classification performance. The vector length column in Figure 3.2 with

two entries correspond to the feature vector length with HOG normalization, and without

HOG normalization respectively. Comparison of the classification performance of each

feature vector shows the comparative impact of the feature types. Section 3.5 reports the

classification performance of each feature vector.
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Table 3.2: Feature Vectors for Classification.

Feature α α ke ke ko ko amp ke ko Vector

Vector mean mode mean mode mean mode HOG HOG HOG Length

1
√

36

2
√

36

3
√

36

4
√

36

5
√

36

6
√

36

7
√

324, 900

8
√

324, 900

9
√

324, 900

10
√ √

72

11
√ √

72

12
√ √ √

108

13
√ √ √

108

14
√ √

360, 936

15
√ √

360, 936

16
√ √ √

396, 972

17
√ √ √

396, 972

18
√ √ √ √

432, 1008

19
√ √ √ √

432, 1008

20
√ √ √ √ √ √ √

540, 1116

21
√ √ √ √ √ √ √ √ √

1188, 2916
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3.5 Cell Method Results

Using the cell method described in Section 3.3, the classification performance of

the feature vectors is evaluated and then itemized in Tables 3.3-3.6. The classification

performance using the cell method is better than that of the pixel method. Similar to

the pixel method results, feature vectors including polarization attributes outperform those

which included only amplitude attributes, as well as those including frequency attributes.

In some cases, the results also show an enhanced classification performance when a set of

feature types are used to construct a feature vector. The classification performance of the

LDA classifier proved to be lower than the classification performance of the RVM classifier

under the test conditions.

3.5.1 Cell Method Results Using Linear Discriminant Analysis.

The LDA classification performance using the features from the cell method without

normalized HOG is reported in Table 3.3 and varies between 56.75 percent correct

classification and 75.91 percent correct classification. The use of frequency response

features is correlated with the lowest classification performances, which is consistent with

the pixel method results. Feature vector one, with only the α mean type of features,

shows the lowest classification performance of all the feature vectors. The second worst

classification performance is demonstrated by feature vector four, which has only the α

mode feature. Out of all the feature types, the α mean and α mode features have the

smallest positive impact on classification performance.

The use of the odd bounce polarization response corresponds to the highest

classification performance for features not derived using HOG. Feature vector six, with

only the ko mode type of features, shows the highest classification performance out of

feature vectors one through nine, which have only one feature type. Feature vector three,

with only the ko mean type of features, has the second highest classification performance.
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Table 3.3: Feature Vectors Classification Results Using LDA Without HOG Normalization.

Feature α α ke ke ko ko amp ke ko Performance

Vector mean mode mean mode mean mode HOG HOG HOG % Correct

1
√

56.75

2
√

60.58

3
√

62.74

4
√

57.39

5
√

62.66

6
√

63.93

7
√

75.91

8
√

72.77

9
√

74.21

10
√ √

66.29

11
√ √

67.04

12
√ √ √

68.11

13
√ √ √

69.28

14
√ √

72.10

15
√ √

72.33

16
√ √ √

69.84

17
√ √ √

67.58

18
√ √ √ √

69.89

19
√ √ √ √

66.42

20
√ √ √ √ √ √ √

67.09

21
√ √ √ √ √ √ √ √ √

65.62

Using normalization, Dalal and Triggs’ improved the classification performance of

HOG features for human detection by four percent [33], and similar performance gains are
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observed in the comparison of Table 3.4 and Table 3.3 for the HOG features. The use of

HOG normalization on the HOG feature types corresponds to an improved classification

performance of seven to ten percent correct classification. The additional dimensions

in the feature vector, due to the normalization process, improve the linear classification

performance of feature vectors with HOG feature types.

Table 3.4: Feature Vectors Classification Results Using LDA With HOG Normalization.

Feature α α ke ke ko Ko amp ke ko Performance

Vector mean mode mean mode mean mode HOG HOG HOG % Correct

7
√

85.94

8
√

79.99

9
√

83.67

14
√ √

76.66

15
√ √

74.09

16
√ √ √

69.32

17
√ √ √

67.31

18
√ √ √ √

70.33

19
√ √ √ √

66.64

20
√ √ √ √ √ √ √

66.71

21
√ √ √ √ √ √ √ √ √

65.73

3.5.2 Cell Method Results Using Relevance Vector Machine.

The RVM classification performance varies between 72.65 percent correct classifi-

cation and 95.90 percent correct classification using the features from the cell method,

without normalized HOG, as reported in Table 3.5. The use of frequency response fea-

tures correlates to the lowest classification performances, which is consistent with the pixel
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method results. Feature vector one, with only the α mean feature type, shows the lowest

corresponding classification performance of all the feature vectors. The second worst clas-

sification performance corresponds to feature vector three, with only the α mode feature

type. The inclusion of α features to the highest performing feature vector, feature vector

17, correlates to a reduction in classification performance of 1.58 percent in feature vector

19. A reduction in the classification performance is reported in every instance where an α

feature type is added to a feature vector in Table 3.5. Out of all the feature types, the α

mean and α mode features have the least positive impact on classification performance.

The use of the odd bounce polarization response corresponds to the highest

classification performance. Of all the feature vectors with a single feature type, feature

vector three, with only ko mean feature type, shows the highest corresponding classification

performance. The inclusion of ko feature types always improves the classification

performance of the feature vector.

The use of multiple feature types corresponds to the highest classification perfor-

mances. Feature vector 17, with ke mode, ko mode, and HOG feature types, shows the

highest overall corresponding classification performance. Feature vector 16, with ke mean,

ko mean, and HOG feature types, shows the second highest overall corresponding classifi-

cation performance.

The improvement of classification performance with HOG normalization is reported

in Table 3.6. The use of HOG normalization on the HOG feature types corresponds to

a minimal improvement in classification performance. Unlike the improvements reported

in Table 3.4 using LDA, the use of normalization with HOG reported in Table 3.6 has at

best an improvement of 4 percent correct classification. Some of the feature vectors had a

decrease in classification performance with the use of the normalization process of HOG

(e.g. feature vectors 8, 9, 16, and 17).
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Table 3.5: Feature Vector Classification Results Using RVM Without HOG Normalization.

Feature α α ke ke ko ko amp ke ko Performance

Vector mean mode mean mode mean mode HOG HOG HOG % Correct

1
√

72.65

2
√

89.60

3
√

92.32

4
√

72.30

5
√

83.15

6
√

87.12

7
√

91.22

8
√

83.73

9
√

86.10

10
√ √

92.76

11
√ √

94.29

12
√ √ √

87.11

13
√ √ √

89.21

14
√ √

91.11

15
√ √

90.78

16
√ √ √

95.49

17
√ √ √

95.90

18
√ √ √ √

94.23

19
√ √ √ √

94.32

20
√ √ √ √ √ √ √

94.98

21
√ √ √ √ √ √ √ √ √

94.65
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Table 3.6: Feature Vector Classification Results Using RVM With HOG Normalization.

Feature α α ke ke ko ko amp ke ko Performance

Vector mean mode mean mode mean mode HOG HOG HOG % Correct

7
√

91.56

8
√

78.81

9
√

83.27

14
√ √

92.43

15
√ √

91.99

16
√ √ √

94.52

17
√ √ √

93.89

18
√ √ √ √

94.60

19
√ √ √ √

94.37

20
√ √ √ √ √ √ √

95.71

21
√ √ √ √ √ √ √ √ √

96.10
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3.6 Conclusions

We report a similar trend in classification performance for both LDA and RVM. The

use of frequency response features uniformly reduced classification performance. The

use of polarization response features and the use of HOG features correlates to the best

performance of the feature vectors evaluated. Notably, the combination of feature types in

feature vector 17 corresponds to the best performance of all the feature vectors evaluated.

3.7 Saliency of Features

A feature vector formed from a subset of all features results in the highest classification

performance. We ask three question. Is there a subset of features with optimal separation

between classes? If there is a optimal subset of features, then how do we identify the

optimal subset of features? If we identify an optimal subset, then what can we learn from

it?

The subset of features whose corresponding classification performance is optimal,

compared to all the permutations of the overall features set, may be taken as the salient

set of features. Saliency of feature types is measured by the change in classification

performance from the removal of the features from the feature type. Chapter IV evaluates

the saliency of the cell method features using the process of backward selection.
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IV. Application of Backward Selection on Cell Method Features

The goal of Chapter IV is to evaluate the saliency of features using cell method features

from Section 3.4 and the CV Domes data set. Section 4.1 introduces backward selection

for feature subset selection. In Section 4.2, backward selection is applied to the cell method

features. Section 4.3 reports the results of backward selection on the cell method features.

4.1 Backward Selection

Backward selection is a process for subset selection. Subset selection is a process of

finding the smallest number of dimensions of a feature set that contribute the most to the

accuracy of the classifier [22]. Backward selection starts with all available features and

removes them one by one. Within each iteration, the candidate feature whose removal

decreases the classification error the most is left out of the feature subset on the next

iteration of backward selection [22]. Backward selection iterates and is complete when

the removal of features no longer reduces the error in classification.

Backward selection is computationally expensive, but systematically converges on a

salient set of features. For each feature removed, the classification performance must be

evaluated for each of the remaining features [22]. To reduce the dimension of the set

of features from (N) to (N − r) features, classification performance must be evaluated

N + (N − 1) + (N − 2) + · · · + (N − r + 2) + (N − r + 1) times [22]. Backward selection

is more efficient than completing a grid search of all permutations of the feature set, which

would require N!
(N−r)!r! evaluations.

4.2 Implementation of Backward Selection

4.2.1 Rules.

To apply backward selection to the cell method feature vectors, the following rules are

adopted:
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• Treat histogram bins from HOG as a single “feature.” The HOG feature types form

nine features to a cell from histogram bins. Treating the nine features from HOG

histograms as a single “feature” permits a single feature type to be removed from a

cell on each iteration of backward selection.

• The percent correct classification performance metric from the analysis of the cell

method introduced in Section 3.4 is used to evaluate the impact of removing a feature.

The feature whose removal results in the highest percent correct classification is

permanently removed from the feature set.

• Use the RVM classifier to evaluate the change in classification performance for

the removal of a feature because the RVM classifier has a superior classification

performance over LDA, as reported in Chapter III.

4.2.2 Method.

The same process as the analysis of the cell method introduced in Section 3.4 is used

to evaluate the classification performance associated with removing different features. All

the permutations of the feature set, denoted as FSii, with a single feature removed are the

feature vectors, denoted as FVv, v ∈ [1...N − ii + 1]. The classifier is trained and tested

T times for each of the feature vectors, FVv. The mean of the classification performance

across all T trials for a feature vector, FVv, is the classification performance, Pcv, of the

feature vector.

A wrapper is added to the cell method introduced in Section 3.4 to systematically

remove features one at a time. To systematically reduce the dimension of the feature set,

FSii, the wrapper permanently removes one feature from the feature set on each iteration

and redefines all permutations, FVv, of the feature set, FSii+1. The process shown in Figure

4.1 summarizes the process used to execute backward selection.
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Figure 4.1: Block Diagram of the Backward Selection Process. Backward selection
uses the same process as cell method to evaluate the classification performance of feature
vectors.

The computational limits are observed by using fewer states than the analysis of the

cell method implemented in Section 3.3. The states are sampled in elevation every three

degrees, as opposed to the 0.25 degrees used in analysis of the cell method. By reducing

the sampling in elevation of the states, the classification performance from the cell method

decreases to the performance reported in Table 4.1.

Backward selection is initialized using the set of features in feature vector 20 of Table

4.1. The feature types in feature vector 20 are α mean, α mode, ke mean, ke mode, ko mean,

ko mode, and HOG of amplitude. We do not initialize with feature vector 21 because the

inclusion of the HOG of ke and the HOG of ko feature types increases the number of features
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Table 4.1: Feature Vector Classification Results Using RVM With HOG Normalization, 3
Degree Elevation Sampling.

Feature α α Ke Ke Ko Ko amp ke ko Performance

Vector mean mode mean mode mean mode HOG HOG HOG % Correct

1
√

60.45

2
√

72.53

3
√

76.16

4
√

58.04

5
√

66.27

6
√

73.30

7
√

75.35

8
√

65.28

9
√

68.45

10
√ √

77.83

11
√ √

76.89

12
√ √ √

66.41

13
√ √ √

74.41

14
√ √

74.58

15
√ √

73.45

16
√ √ √

80.40

17
√ √ √

82.12

18
√ √ √ √

77.65

19
√ √ √ √

80.47

20
√ √ √ √ √ √ √

77.23

21
√ √ √ √ √ √ √ √ √

79.89

by 1800 features. The additional 1800 features almost double the number of permutations

of FSii to be evaluated. Doubling the number of permutations, doubles the computation
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resources required for each iteration of backward selection. Also, because feature vector

17 has a higher corresponding classification performance, we know there is a more salient

subset of features within feature vector 20.

4.2.3 Metrics.

The comparison of feature type saliency is based on the change in classification

performance from the removal of the features corresponding to each feature type. Saliency

of a feature type is expressed as

S FT =
∆CPFT

FFT
, (4.1)

where ∆CPFT is the overall change in percent correct classification from the removal of the

features of the feature type, and FFT is the number of features removed of the feature type.

The comparison of cell saliency is done in a similar fashion as the saliency of feature

types. The change in percent correct classification from the removal of the features

corresponding to each cell is the metric used. Saliency of a cell is expressed as

S C =
∆CPC

CC
, (4.2)

where ∆CPC is the overall change in classification from the removal of the features from

the cell, and CC is the number of features removed from the cell.

4.3 Results

Using the method from Section 4.2, we executed backward selection on the feature set

from feature vector 20 reported in Table 4.1. The process of backward selection iterated

204 times to select a set of features that is more salient than the feature vectors reported

in Table 4.1. The reported metrics indicate the least salient feature type is α mean, and

the most salient feature type is ko mode. The highest classification performance of each

iteration of backward selection is shown in Figure 4.2.

Application of backward selection improves the classification performance, showing

an increase from 77.23 to 84.28 percent correct classification. The first iteration achieved a
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Figure 4.2: Tracking of the Highest Classification Performance of Each Iteration of
Backward Selection Using RVM and 30 Trials.

classification performance of 78.64 percent correct classification with the removal of an α

mode feature from cell 16. The first 20 iterations eliminated 6
72 of the frequency response

features, 5
72 of the even bounce polarization response features, 5

72 of the odd bounce

polarization response features, and 4
100 of the HOG feature sets with an increase of three

percent correct classification. The second 20 iterations eliminated none of the frequency

response features, 8
67 of the remaining even bounce polarization response features, 8

67 of

the remaining odd bounce polarization response features, and 4
100 of the remaining HOG

features sets with no significant gain in percent correct classification. The next 40 iterations

eliminated 6
66 of the remaining frequency response features, 17

59 of the remaining even

bounce polarization features, 11
59 of the remaining odd bounce polarization features, and

6
92 of the remaining HOG feature sets with an increase of five percent correct classification
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from the baseline. The next 40 iterations eliminated 2
60 of the remaining frequency response

features, 13
42 of the remaining even bounce polarization features, 12

48 of the remaining odd

bounce polarization features, and 13
86 of the remaining HOG feature sets with an increase to

82.32 percent correct classification. The next 60 iterations eliminated 14
58 of the remaining

frequency response features, 14
29 of the remaining even bounce polarization features, 13

36

of the remaining odd bounce polarization features, and 19
73 of the remaining HOG feature

sets with no significant increase in percent correct classification. The next 24 iterations

eliminated 14
44 of the remaining frequency response features, 4

15 of the remaining even

bounce polarization features, 4
23 of the remaining odd bounce polarization features, and

2
54 of the remaining HOG feature sets with an increase to the peak performance of 84.28

percent correct classification. From the analysis of the removed features and the change in

classification performance, the saliency metric of feature types is shown in Figure 4.3.

Figure 4.3: Comparison of Feature Type Saliency.
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The least salient feature type is α mean. The greatest improvement in classification

performance was made through the removal of the α mean features. Removal of any other

feature type results in an increase in classification performance of less than 0.00032 percent

correct classification on average. The increase in classification performance associated

with the removal of the α mean features indicates that the feature had a negative impact on

classification performance. The lack of saliency associated with α mean is consistent with

the results from Chapter III.

The most salient feature type is ko mode. The smallest improvement in classification

performance was made through the removal of ko mode features. Removal of the ko mode

type of features resulted in an increase of 7.79 × 10−5 percent correct classification on

average. The ko mode feature type’s saliency is consistent with the results from Chapter

III.

Figure 4.4: Comparison of Cell Saliency.
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The saliency of cells is reported using a similar metric as the saliency of feature types.

The saliency of cells is shown in Figure 4.4. The least salient cells are 1, 2, 5, 6, 7, 13, 18,

and 31. Removal of features from cells 1, 2, 5, 6, 7, 13, 18, and 31 resulted in an increase of

more than 0.00090 percent correct classification on average. The increase in classification

performance associated with the removal of features is an indication that the features have a

negative impact on classification performance. Removal of all other cells’ features resulted

in less improvement to classification performance than the removal of features from cell

18.

The most salient cells are 16, 22, and 35. Removal of features from cells 16, 22, and 35

resulted in a decrease of more than 0.00062 percent correct classification on average. The

overall decrease in classification performance associated with the removal of features is an

indication that the features have a positive impact on classification performance. Results

show saliency for some cells.

Due to the symmetry of target vehicles, the saliency of the cells should also be

symmetric. However, results indicate that the cell saliency is not symmetric. The lack of

symmetry of the cells is an indication that the removal of non-salient features is hindered by

the variance in classification performance. The variance in classification performance for

the initial set of features is shown in Figure 4.5. Variance in classification performance at

30 trials is much greater than the maximum change observed in classification performance

for each iteration. The maximum change in classification performance is 0.0045 percent

correct classification. The hypothesis is that the ambiguity, resulting from variance, causes

the wrong features to be removed and leads to the lack of symmetry in the saliency of the

cells shown in Figure 4.4.
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Figure 4.5: Variance in Classification Performance of Feature Vector 20.
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V. Conclusions and Future Work

5.1 Conclusions

The cell method for feature extraction extracts features from SAR images related to

the structure of physical elements of the target as well as captures image attributes from an

entire image in a single feature vector. We implemented backward selection on the set of

features formed with the cell method. Backward selection identified a set of features more

salient than the initial set of features. The initial set had a classification performance of

77.23 percent correct classification, and the classification performance of the set of features

selected by backward selection has a classification performance of 84.28 percent correct

classification.

Backward selection selected a set of features that is not the most salient set of features.

The set of features selected is more salient than the initial set in feature vector 20, but

the improvement in classification performance was not monotonically increasing. We

expect a monotonic increase in the classification performance with the removal of non-

salient features [22]. Additionally, contrary to our expectations, the saliency of cells was

not symmetric. We hypothesize that a reduction in classification variance will result in

the selection of a more salient set of features. Completely eliminating the impact of the

variance would result in the selection of the most salient set of features. High variance in

the classification performance limits the performance of backward selection. Despite the

high variance, the saliency of feature types is consistent with the results from the pixel

method and the cell method, supporting the use of the saliency metric.

Analysis in Sections 3.2, 3.5, and 4.3 shows the frequency response attribute, α, is

the least informative attribute for classifying SAR images from the CV Domes data set.

Reported in the pixel method results, the inclusion of α in a feature vector decreased the

corresponding classification performance of the feature vector. Reported in the cell method
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results, the α feature type has the lowest corresponding classification performance of all the

feature types. Finally, the saliency metric from the result of backward selection indicates

the α feature type is the least salient feature type.

Analysis in Sections 3.5 and 4.3 shows that a combination of polarization response

features and image amplitude features form the most salient set of features for classifying

SAR images from the CV Domes data set. In the pixel method analysis, the inclusion of

polarization and location features corresponded to the highest classification performance.

In the cell method, the combination of polarization and HOG of amplitude feature types

corresponded to the highest classification performance. The salient nature of amplitude

features is expected as previous work on SAR ATR focuses on amplitude of images

[5, 6]. The salient nature of polarization features, supports the incorporation of polarization

information into SAR ATR.

5.2 Future Work

There are additional directions this research may take to follow what has been

performed here. The directions span from a continuation of work, to the application

of research. Future work may look into the variance in the classification performance,

verify the extraction of the α attribute, review the SVM classifier for SAR ATR, and apply

polarization attributes to other SAR ATR algorithms such as those in [3, 5, 6].

Future work should look into ways to manage or reduce the variance. We identified

the variance in the classification performance as a driver for missing the most salient set of

features in the execution of backward selection. One way to manage the variance is to use a

greater number of trials in evaluating the classification performance. Also, using a greater

number of target states may also reduce the variance. Both of these methods will require

greater computational resources than used in this thesis.

The extraction of the α attribute should be investigated for accuracy. The poor

performance of the α attribute may be attributed to either a bad extraction of the attribute
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or a lack of consistency in the curvature of the physical elements of the vehicles. For future

work to use the α attribute, the method for extracting the attribute should be verified.

Given the great amount of complexity in the SAR ATR problem, it may be

advantageous to use the SVM classifier instead of the RVM classifier. SVM uses a greater

number of support vectors than RVM. The greater number of support vectors allows for a

hyperplane to mold to the high complexity of the feature space.

The polarization attributes, or a variation of them, should be applied to other SAR

ATR algorithms. Results from the cell method, the pixel method, and backward selection

identified the saliency of the polarization attributes in this thesis. The inclusion of

polarization attributes may have a significant improvement in the performance of the

algorithms.
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