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An Adaptive Property-Aware HW/SW Framework for DDDAS 
 

 

1.  Summary and Objectives 

This project focused on the design of an adaptable computing infrastructure to support DDDAS 

systems in the context of Unmanned Aerial Vehicles (UAVs). A unifying theme that drives our 

research is the concept of responding and adapting to surprise. Some examples of surprise are: 1) 

in-flight changes in mission objectives, 2) unexpected encounters with friends or foes, and 3) 

changes in the environment. Two examples of environmental changes could be a chipped blade 

(which changes the dynamics of the UAV), or unexpected turbulence. 

In support of responding to surprise, research was pursued to allow elements of the computing 

platform to adapt to the system or tasks moving between different modalities (e.g. real-time, 

high-performance, small-footprint, energy-conserving). 

Key areas of focus that support adaptation to surprise and changing modalities are: 

 Data structures that span HW/SW boundaries: In this area, we explored SW data 

structures that can dynamically change their internal makeup to best suite a task's current 

modality (e.g. maximizing average throughput when in high-performance mode, or 

bounding worst-case access time when in a real-time mode), or migrating their storage 

and operators between SW/HW boundaries to improve performance and/or improve 

predictability. [1],[4]  

 

 Instruction Set Architecture (ISA) extensions and hardware support: This area 

focuses on the design and evaluation of specialized hardware to support common tasks 

that can be found in UAV applications (e.g. sensor acquisition/processing, issuing 

actuator commands, signal processing, vehicle controller logic) for the purpose of 

increased computational efficiency (explicitly exploiting concurrency) and/or enforcing 

guarantees on task behavior (e.g. tightening bounds on execution variation, guarantees on 

resources availability) [1],[2],[4],[5] 

 

 Establishing performance metrics: i) tolerance of vehicle stability to jitter in its control 

loop, ii) overheads associated with dynamically morphing data structures or migrating 

them across SW/HW boundaries. [3]  

 

2. Accomplishments and Highlights 

 

2.1 A Scalable hardware scheduler architecture for real time systems [1].  In Dynamic 

Data-Driven Application Systems, applications must dynamically adapt their behavior in 

response to objectives and conditions that change while deployed. One approach to achieve 

dynamic adaptation is to offer middleware that facilitates component migration between 

modalities in response to such dynamic changes. The triggering, planning, and cost evaluation of 

adaptation takes place within a scheduler. Scheduling overhead is a major limiting factor for 

implementing dynamic scheduling algorithms with high frequency timer-tick resolution in real 
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time systems. In [1], we present a scalable hardware scheduler architecture for real time systems 

that reduces processing overhead and improves timing predictability of the scheduler. A new 

hardware priority queue design is presented, which supports insertions in constant time, and 

removals in O(log n) time. The hardware scheduler supports three (Rate Monotonic Scheduling 

(RMS), Earliest Deadline First (EDF), and priority based) scheduling algorithms, which can be 

configured during run-time. 

 

2.2 Hardware-software architecture for priority queue management in real-time and 

embedded systems [4].  The use of hardware-based data structures for accelerating real-time and 

embedded system applications is limited by the scarceness of hardware resources. Being limited 

by the silicon area available, hardware data structures cannot scale in size as easily as their 

software counterparts.  In this work, we extend on our previous work in [1], and assert a 

hardware-software co-design approach is required to elegantly overcome these limitations.  We 

present and evaluate a hybrid priority queue architecture that includes a hardware accelerated 

binary heap that can also be managed in software when the queue size exceeds hardware limits. 

A memory mapped interface provides software with access to priority-queue structured on-chip 

memory, which enables quick and low overhead transitions between hardware and software 

management.  As an application of this hybrid architecture, we present a scalable task scheduler 

for real-time systems that reduces scheduler processing overhead and improves timing 

determinism of the scheduler. 

 

2.3 Adaptable binary search tree [1].  In [1], we report on our efforts to improve software 

timing predictability by using multiple implementations of abstract data types, using only 

software (earlier in [1] presents a software/hardware co-design approach).  We propose the idea 

of a hybrid binary search tree implementation.  Sections of the tree would be implemented as 

AVL when it is predicted many search operations would be executed, and would be implemented 

as Red-Black when it is predicted a section of the application will execute many 

insertion/deletion operations.  Specifically, in this work, we introduce a new technique for 

efficiently converting between AVL tree and Red-Black tree implementations. 

 

2.4 Plant-on-Chip system design approach [3].  Digital control systems are traditionally 

designed independent of their implementation platform, assuming constant sensor sampling rates 

and processor response times. Applications are deployed to processors that are shared amongst 

control and non-control tasks, to maximize resource utilization. This potentially overlooks that 

computing mechanisms meant for improving average CPU usage, such as cache, interrupts, and 

task management through schedulers, contribute to nondeterministic interference between tasks. 

This response-time jitter can result in reduced system stability, motivating further study by both 

the controls and computing communities to maximize CPU utilization, while maintaining 

physical system stability needs. In [3], we describe a field-programmable gate array (FPGA)-

based embedded software platform coupled with a hardware plant emulator (as opposed to 

purely software-based simulations or hardware-in-the-loop setups) that forms a basis for safe and 

accurate system analysis.  We model and analyze an inverted pendulum to demonstrate that our 

setup can provide a significantly more accurate representation of a real system. 
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2.5 Cache design for mixed criticality real-time systems [2, 5].   In Dynamic Data-Driven 

Application Systems (DDDAS), applications must dynamically adapt their behavior in response 

to objectives and conditions that change while deployed.  Often these applications may be safety 

critical or tightly resource constrained, with a need for graceful degradation when introduced to 

unexpected conditions. In [2], we motivate and provide a vision for a dynamically adaptable 

mixed critical computing platform to support DDDAS applications. We then specifically focus 

on the need for advancements in task models and scheduling algorithms to manage the resources 

of such a platform. We discuss the short comings of existing task models for capturing important 

attributes of our envisioned computing platform, and identify challenges that must be addressed 

when developing scheduling algorithms that act upon our proposed extended task model.  These 

investigations lead to our work on criticality-aware cache architectures, highlight below. 

 

Tasks sharing caches in mixed criticality systems are a source of interference for safety critical 

tasks. This sharing of memory not only leads to worst-case execution time (WCET) pessimism, 

but also affects the response time of safety critical tasks.  In [5], we present a criticality aware 

cache design that implements a Least Critical (LC) cache replacement policy, where a least 

recently used non-critical cache line is replaced during a cache miss.  The cache acts as a Least 

Recently Used (LRU) cache if there are no critical lines or if all cache lines are critical in a set. 

In our design, data within a certain address space is given higher preference in the cache. These 

critical address spaces are configured using critical address range (CAR) registers.  The new 

cache design was implemented in a Leon3 processor core, a 32bit processor compliant with the 

SPARC V8 architecture.  Experimental results are presented that illustrate the impact of the 

Least Critical cache replacement policy on the response time of critical tasks, and on overall 

application performance as compared to a conventional LRU cache policy. 
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[2] C. Kumar, S. Vyas, R. Cytron, C. Gill, J. Zambreno and P. Jones, Scheduling Challenges 

in Mixed Critical Real-time Heterogeneous Computing Platforms, Proceedings of 

Dynamic Data Driven Application Systems (DDDAS), June, 2013. 
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6. Conclusions 

 

As a result of this work, we have better insight into computer architectures and tools for 

supporting and evaluating systems with dynamic needs.  We are currently leveraging our work 

with Mixed-Criticality cache architectures and our Plant-on-Chip physical system evaluation 

approach to begin experimentation with closer to real-world workloads and vehicles.  We 

estimate within the next year will we be deploying our ideas on actual battery-powered 

quadcopters for evaluation.   
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Abstract

In Dynamic Data-Driven Application Systems, applications must dynamically adapt their behavior in response
to objectives and conditions that change while deployed. One approach to achieve dynamic adaptation is to offer
middleware that facilitates component migration between modalities in response to such dynamic changes. The
triggering, planning, and cost evaluation of adaptation takes place within a scheduler. Scheduling overhead is a major
limiting factor for implementing dynamic scheduling algorithms with high frequency timer-tick resolution in real
time systems. In this paper, we present a scalable hardware scheduler architecture for real time systems that reduces
processing overhead and improves timing predictability of the scheduler. A new hardware priority queue design
is presented, which supports insertions in constant time, and removals in O(log n) time. The hardware scheduler
supports three (Rate Monotonic Scheduling (RMS), Earliest Deadline First (EDF), and priority based) scheduling
algorithms, which can be configured during run-time. The interface to the scheduler is provided through a set of
custom instructions as an extension to the processors instruction set architecture. We also report on our experience
migrating between two implementations of an ordered-set implementation, with the goal of providing predictable
performance for real-time applications.

Keywords: hardware scheduler, real-time system, priority queue, ordered set, hardware accelerated data structure

1. Introduction

In the context of Dynamic Data-Driven Applications Systems (DDDAS), we have been investigating data structure
implementations that are suitable for avionics missions with multimodal dynamic requirements. These data structures
serve DDDAS through their ability to adapt to evolving conditions and change their behavior to preserve an appli-
cation’s current mission or to facilitate migration to a new mission. In particular, we are interested in applications
where elements of surprise may impose sudden and perhaps short-lived modality shifts. For example, a component
of an application that has been operating under best-effort conditions may be required to respond in real-time based

Email addresses: ckng@iastate.edu (Chetan Kumar N G), spvyas@iastate.edu (Sudhanshu Vyas), shidalj@wustl.edu (Jonathan
A. Shidal), cytron@cse.wustl.edu (Ron K. Cytron), cdgill@cse.wustl.edu (Christopher D. Gill), zambreno@iastate.edu (Joseph
Zambreno), phjones@iastate.edu (Phillip H. Jones)

1Corresponding author
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on emergence of a threat or environmental degradations. The modalities we currently consider are best-effort (high
performance), real-time, and embedded (small footprint). The general idea is that an implementation while operating
in one mode can respond to a request to change its mode. The response includes not only the data structure’s initial
movement toward the new mode, but also a schedule indicating its projected performance as it switches modality.

The data structures we develop in this manner are “elastic” in the sense that their functionality does not change,
but their implementations adapt between the modes under consideration. An earlier and very specific example of our
work is a hashtable implementation that is suitable for real-time [1].

While we are investigating algorithmic solutions to achieve elastic data structures, we focus in this paper on
another technique for obtaining real-time implementations, namely the development of logic deployed in hardware to
achieve predictability and improve performance. The subject of our study here is a priority queue and its use within a
real-time operating system to facilitate scheduling.

A real-time operating system (RTOS) is designed to execute tasks within given timing constraints. An impor-
tant characteristic of an RTOS is predictable response under all conditions. The core of the RTOS is the scheduler,
which ensures tasks are completed by their deadline. The choice of a scheduling algorithm is crucial for a real-time
application. Online scheduling algorithms incur overhead, as the task queues must be updated regularly. This action
is typically paced using a timer that generates periodic interrupts. The scheduler overhead generally increases with
the number of tasks. A high resolution timer is required to distribute CPU load accurately based on a scheduling
discipline in real-time systems, but such fine-grain time management increases the operating system overhead [2], [3].

Figure 1: In order to allow analytical analysis of schedule feasibility, worst-case execution time (WCET) typically
needs to be assumed. Thus, scheduler execution time variations that cause large differences between WCET and
typical case execution time reduce utilization of system computing resources.

The extent to which a scheduler can ideally implement a given scheduling paradigm (e.g. EDF, RMS), and thus
provide the guarantees associated with that paradigm, is in part dependent on its timing determinism. A metric for
helping quantify the amount of non-determinism that is introduced to the system by the scheduler is the variation in
execution time among individual scheduler invocations. This can be roughly summarized by noting its best-case and
worst-case execution times. Variations in scheduler execution time can be caused by system factors such as changes
in task set composition, cache misses, etc. Hence, reducing the scheduler’s timing sensitivity to such factors can help
increase deterministic behavior, which in turn allows the scheduler to better model a given scheduling paradigm.

Figure 1 illustrates how the variation in scheduler overhead affects processor utilization. To ensure that tasks meet
their deadlines, the scheduler’s worst-case execution times are often overestimated. This can cause a system to be
underutilized and wastes CPU resources. In this paper, we examine how the scheduler overhead and its variation can
be reduced by migrating scheduling functionality (along with time-tick processing) to hardware logic. The expected
results of our efforts are increased CPU utilization and better system predictability. Another benefit is that the hardware
clock provides accurate high-resolution timing.

The rest of the paper is organized as follows. Section 2 presents related work on hardware schedulers. Section 3
describes the scalable hardware scheduler architecture and implementation details. The evaluation methodology and
results are discussed in Sections 4 and 5. Section 6 describes a software approach to an adaptive ordered-set data
structure. Conclusions and future work are presented in Section 7.
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2. Related Work

Many architectures [3], [4], [5], [6], [7], [8] have been proposed to improve the performance of schedulers using
hardware accelerators. A real time kernel called FASTHARD has been implemented in hardware [3]. The scheduler
of FASTHARD can handle 256 tasks and 8 priority levels. The Spring scheduling coprocessor [4] was built to
accelerate scheduling algorithms used in the Spring kernel [9], which was used to perform feasibility analysis of the
schedule. Mooney et al. [5] implemented a configurable hardware scheduler that provided support for three scheduling
disciplines, configurable during runtime. A slack stealing scheduling algorithm was implemented in hardware [6]
to support scheduling of tasks (periodic and aperiodic) and to reduce scheduling overhead. A hardware scheduler
for multiprocessor system on chip is presented in [7], which implements the Pfair scheduling algorithm. A real
time task manager (RTM) that implements scheduling, time management, and event management in hardware is
presented in [8]. That RTM supports static priority-based scheduling and is implemented as an on-chip peripheral that
communicates with the processor though memory mapped interface.

Most of the schedulers listed above implement some kind of priority based scheduling algorithm that requires
a priority queue to sort the tasks based on their priority. Many hardware priority queue architectures have been
implemented in the past, most of them in the realm of real-time networks for packet scheduling [10, 11, 12]. Moon
et al. [10] compared four scalable priority queue architectures: fifo, binary tree, shift registers and systolic array
based. The shift-register architecture suffers from bus loading, as new tasks must be broadcasted to all the queue
cells. The systolic array architecture overcomes the problem of bus loading at the cost of doubling hardware storage
requirements. The hardware complexity for both the shift register and systolic array architecture increases linearly
with the number of elements, as each cell requires a separate comparator. This makes these architecture expensive
to scale in terms of hardware resources. Bhagwan and Lin [11] proposed a new pipelined priority queue architecture
based on p-heap (a new data structure similar to binary heap). A pipelined heap manager was proposed in [12] to
pipeline conventional heap data structure operations. Both of these pipelined implementations of a priority queue are
scalable and are designed to achieve high throughput, but at the expense of increased hardware complexity.

In this paper we present a scalable hardware priority queue architecture that implements a conventional binary heap
in hardware. The priority queue is used as a part of the scheduler to improve system performance and predictability.
The hardware priority queue supports constant time enqueue operations and dequeue operations in O(log n) time.
The hardware utilization of the our priority queue increases logarithmically with the queue size and avoids complex
pipelining logic.

3. Architecture Overview

The hardware scheduler architecture we propose is designed to reduce time-tick processing and scheduling over-
head of the system. The design also uses concurrency in hardware to make the operations on a priority queue more
predictable. The instruction set architecture of the processor is correspondingly extended to support a set of custom
instructions to communicate with the scheduler. The hardware scheduler executes the scheduling algorithm and re-
turns the control to the processor along with the next task to execute, and context switching is then done in software.
A software timer periodically generates interrupts to check for the availability of a higher priority task. The check is
accomplished using a single custom instruction that returns a preempt flag set by the hardware scheduler, based on
which the processor can then choose to continue the execution of the current task or to run another. A high level block
diagram of the hardware scheduler is shown in Figure 2.

The controller is the central processing unit of the scheduler. It is responsible for the execution of the scheduling
algorithm. The controller processes instruction calls from the processor and monitors task queues. The timer unit
keeps track of time elapsed since the start of the scheduler. This provides accurate high-resolution timing for the
scheduler. The resolution of the timer-tick can be configured at runtime. The interface to the scheduler is provided
through a set of custom instructions as an extension to the instruction set architecture of the processor. This removes
bus dependencies for data transfer. Basic scheduler operations such as run, configure, add task, and preempt task are
supported. The ready queue stores active tasks based on their priority. The sleep queue stores sleeping tasks until
their activation time. The task with the earliest activation time is at the front of the sleep queue. At the core of the
scheduler are the task queues, which are implemented as priority queues that keep the tasks in sorted order based on
their priority (ready queue) or activation time (sleep queue).



Chetan et al. / Procedia Computer Science 00 (2012) 1–9 4

Figure 2: A high level architecture diagram of the hardware scheduler along with the custom instruction interface.

3.1. Priority Queue Architecture
One of the common software data structures for implementing a priority queue is the binary heap, which supports

enqueue and dequeue operations in O(log n) time. The binary heap is stored as a linear array where the first element
corresponds to the root. Given an index i of an element, i/2, 2i and 2i + 1 are the indices of its parent, left and right
child respectively. Here we present a hardware implementation of the conventional binary heap that supports enqueue
and peek operations in O(1) time and dequeue operations in O(log n) time. Although the dequeue operation takes
O(log n) time to complete, the top-priority task can be returned immediately, so that a dequeue operation overlaps its
work with that of the rest of the scheduler and the application. A high level architecture diagram for the priority queue
is shown in Figure 3.

Figure 3: The priority queue architecture.

Central to the priority queue is the queue manager, which provides the necessary interface and executes operations
on the queue. Elements in each level of the heap are stored in separate on-chip memories called Block Rams (BRAMs)
to enable parallel access to heap elements, similar to [11, 12]. The address decoder generates addresses and control
signals for the BRAM blocks. Queue operations are explained in detail below.

3.1.1. Enqueue
Enqueue operations in a binary heap are accomplished by inserting the new element at the bottom of the heap

and performing compare-swap operation with successive parents until the priority of the new element is less than its
parent. The worst-case behavior occurs when the priority of the new element is greater than the rest of the nodes
present in the heap. In this case, the new element bubbles-up all the way to the root of the heap. We first calculate
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the path from a leaf node to the root. The leaf node is always one more than the current size of the queue. This path
includes all ancestors from the leaf node to the heap’s root. The heap property ensures that the elements in this path
are in sorted order.

The shift register mechanism, shown in Figure 3, inserts a new element in constant time. This is similar to the
shift-register priority queue described in [10]. Each level of the heap is mapped to an enqueue cell, which consists of
a comparator, multiplexor and a register. The element to be inserted is broadcast to all the cells during an enqueue
operation. The enqueue operation is then completed in the three steps shown in Figure 4. In the first step, all the
elements in the path from the leaf node to root node are loaded into the corresponding enqueue cells. The address
for each BRAM block is generated by the address decoder. In the second step, the comparator in each enqueue cell
compares the priority of the new element with the element stored locally and decides whether to latch the current
element, new element or the element above it. In the final step, the elements along with the new entry are stored back
into the heap.

Figure 4: Steps of enqueue operation.

3.1.2. Dequeue
The dequeue operation can be divided into two parts: removing the root element from the queue (as the value to be

returned by the dequeue call), and reconstruction of the heap. The root element is removed by replacing it with the last
element of the queue to keep the heap balanced. The new root element is then compared with smallest of its children
and swapped if the priority of new node is less than that of a child. This operation is repeated until the priority of the
new root element is more than that of its children. An example of a dequeue operation is shown in Figure 5

Note that the highest priority value is obtained in constant time and as the priority queue is managed in hardware
the processor is not required to wait for the operation to complete. The worst case execution time of a dequeue
operation is O(log n), which would affect the rate at which consecutive operations can be performed on the queue.
However, since requests for dequeue operations are paced by software, consecutive dequeue operations on the task
queue are rare. Hence, this has little effect on the performance of the scheduler.

Figure 5: Steps of dequeue operation.

Comparing our approach with the related work reported in Section 2, our approach scales nicely without requiring
hardware to manage pipelining and obtains suitably low latencies for the scheduler.

4. Evaluation Methodology

The hardware scheduler was deployed and evaluated on the Recongurable Autonomous Vehicle Infrastructure
(RAVI) board, an FPGA development platform developed at Iowa State University. RAVI leverages Field Pro-
grammable Gate Array (FPGA) technology to allow custom hardware to be tightly integrated to a soft-core processor
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on a single computing device. It enables exploration of the software/hardware codesign space for designing system
architectures that best fit an applications requirements. The portions of the RAVI board we used for our experiments
included the Cyclone III FPGA, the on-board DDR DRAM and the UART port. The FPGA was used to implement the
NIOS-II (Alteras soft-processor), the DDR stored software that was run on the NIOS-II, and the UART port supported
data collection. A pictorial description of the setup is shown in Figure 6.

Figure 6: Evaluation platform.

The hardware scheduler is implemented as an extension to the instruction set architecture (custom instruction)
of a Nios II embedded processor running at 50 MHz on an Altera Cyclone III FPGA. The scheduler supports up to
256 tasks and can be configured to use EDF or fixed priority based scheduling algorithm such as RMS. A software
test bench was built to measure the overhead of the scheduler for different task sets and timer resolutions. An Earliest
Deadline First (EDF) scheduler was deployed to measure the impact of running a dynamic scheduling algorithm
on the processor. EDF is a dynamic priority-based scheduling algorithm in which higher priorities are assigned to
the tasks with closer absolute deadlines. A software EDF scheduler implementation was used to characterize the
runtime overhead involved in implementing a dynamic scheduling algorithm and to compare against our hardware
implementation.

5. Results and Analysis

The overhead of the scheduler was measured for different sets of tasks and timer tick resolutions. Figure 7 shows
the percentage overhead of the software scheduler. As evident in Figure 7, the scheduler overhead increases with
the number of tasks and the timer-tick resolution. For a timer tick resolution of 0.1ms and with 256 tasks, the
processor overhead reaches up to 18%. This would limit the amount of time available for the CPU and may cause
tasks to miss deadlines. Most of this overhead results from time tick processing where the scheduler periodically
processes interrupt requests to check for new tasks and managing the task queues. This has been a limiting factor for
implementing dynamic priority based scheduling algorithms in embedded real time systems.

Figure 8 shows the scheduling overhead when the hardware scheduler is used. The results show that when the
timer tick resolution is set to 0.1ms and with 256 tasks the scheduler overhead is less than 0.5%. This shows a 97%
reduction in scheduler overhead as compared to the software model. Most of the scheduling overhead is eliminated
by the hardware scheduler, as the time tick processing and a majority of the scheduling functionality is migrated to
hardware. A call to the software scheduler is replaced by a custom instruction call to obtain the next task for execution
or to preempt the current task. The predictability of the scheduler can be measured as the variation in the execution
time of a single call to the scheduler. The best, average and worst case execution times of the scheduler are shown in
Figure 9. The difference between the best case and worst case execution time is large in the software scheduler. Hence
the scheduler can be a significant source of unpredictability in real time systems. The system then must be designed
for the worst case behavior to ensure task deadlines are not missed, which would cause the CPU to be underutilized
most of the time. On the other hand, the execution times of the hardware scheduler show more deterministic behavior
with very little variation, which results in tighter worst-case execution time bounds.
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Figure 7: Software scheduler overhead. Figure 8: Hardware scheduler overhead.

Figure 9: Variation in scheduler execution time.

6. Adaptable Binary Search Trees

Although this paper is primarily concerned with deployment of data structure functionality in hardware to achieve
real-time properties, we report here on our recent efforts to achieve predictability by using multiple implementations
of an abstract data type in software alone. The problem we address is that of maintaining an ordered set using a binary
search tree (BST). A BST organizes the elements of a set as follows. At each node n, all elements ordered less than
n’s value are stored in n’s left subtree, and all elements ordered greater than n’s value are stored in n’s right subtree.
Thus, an in-order traversal of the tree produces a listing of the set’s elements in ascending order.

If a BST is balanced, then all single-node operations are bounded by O(log n) time, which is the height of a
balanced tree of n nodes. The shape of a BST depends on the order in which elements are inserted and deleted from
the ordered set. Without care, a BST can become unbalanced: the most unbalanced tree behaves as a linked list, with
all single-node operations taking O(n) time. For example, such a tree results from inserting n elements in ascending
order.

Self-balancing BSTs are therefore an important data structure for real-time systems, and we consider here two
such implementations: AVL trees and Red-Black trees. The following table summarizes the worst-case behaviors of
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interest for these implementations:

Worst case AVL Red-Black
Rotations for insert 2 2
Rotations for delete log n 3
Height for n nodes < 1.44 log (n + 2) − 1 ≤ 2 log (n) + 1

Because of the height bounds, both implementations achieve an O log (n) time bound to find a node in the tree. While
the bounds are asymptotically the same, Red-Black trees are essentially as unbalanced as possible while maintaining
their bounds, while AVL trees are as balanced as possible. The difference in subtree height at any Red-Black tree
node n can be off by a factor of 2, while the subtree heights for any AVL tree node n differ by at most 1.

While asymptotically irrelevant, these differences can be considerable for real-time applications, and neither im-
plementation is preferable in all situations to the other. As shown in the table above, AVL trees maintain their better
lookup performance by performing at most log (n) rotations in response to changes in the BST. On the other hand,
changes to a Red-Black tree preciptate at most 3 rotations, but lookup times could differ by a factor of 2.

We seek an implementation that can dynamically change its behavior between the two implementations in response
to DDDAS considerations. Our work thus far has concerned the cost of converting one implementation to the other.
We report here on a new technique for converting an AVL tree to a Red-Black tree. One approach is simply to traverse
the tree and establish the color at each node. This has been considered by Glick [13], and while that algorithm requires
no rotations to establish the Red-Black tree, a traversal of the entire tree is required.

For real-time systems, an operation that must traverse the entire tree is signicantly more expensive than all of the
other operations on a BST. To avoid such expense, we observe the following property of establishing a Red-Black
tree from an extant AVL tree. The color at a given node can be determined by the height of a node and the height
of its parent in the BST. For AVL trees that include such height information, establishing Red-Black coloring can be
accomplished incrementally as operations are performed on the BST. Information the algorithm uses to color a node
is its height and the height of its parent. To color a node n, three cases must be considered. The first is if the parent
of n has even height. In this case we simply color n black. The next two cases occur when the parent of n has odd
height. If n has even height it must be colored red, if odd it is colored black. It follows from this construction that it
is impossible for both a node and its parent to be colored red.

In a DDDAS system, we can observe the types of functions that are called on the BST and thus predict sections
of the tree that may be more active than others. The tree can be converted from AVL to Red-Black according to these
predictions. For instance, if the system anticipates a search-heavy section of operations, the system will convert the
tree to AVL for faster searches. When the system anticipates new elements will be added and deleted from the tree, it
can convert the tree to Red-Black.

Our approach to coloring nodes incrementally creates an intriguing idea of a hybrid tree that contains some AVL
sections as well as Red-Black sections. This could allow sections of the tree that are being searched often to remain
AVL for quicker searches, while other sections are Red-Black.

7. Conclusion

A scalable hardware scheduler has been implemented that supports 256 tasks and can be configured to run one
of three (EDF, RMS, other fixed-priority) scheduling disciplines. A new hardware priority queue architecture is im-
plemented that supports enqueue and peek operations in O(1) time, returns the top-priority task in O(1) time, and
completes a dequeue operation in O(log n) time. The hardware scheduler reduced the scheduling and time tick pro-
cessing overhead of the system. Our results show that the hardware scheduler has reasonably deterministic behavior
with predictable execution times, which is necessary in high-performance real time systems.
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Abstract

In Dynamic Data-Driven Application Systems (DDDAS), applications must dynamically adapt their behavior in response to
objectives and conditions that change while deployed. Often these applications may be safety critical or tightly resource
constrained, with a need for graceful degradation when introduced to unexpected conditions. This paper begins by motivating
and providing a vision for a dynamically adaptable mixed critical computing platform to support DDDAS applications. We
then specifically focus on the need for advancements in task models and scheduling algorithms to manage the resources of
such a platform. We discuss the short comings of existing task models for capturing important attributes of our envisioned
computing platform, and identify challenges that must be addressed when developing scheduling algorithms that act upon our
proposed extended task model.

Keywords: mixed criticality, real-time system, hybrid computing, hardware accelerators

1. Introduction

An applications ability to respond dynamically and swiftly to new information is central to the Dynamic Data
Driven Applications Systems (DDDAS) concept. To achieve this capability, run-time platforms are needed that
can monitor and adapt to changing conditions, not only with respect to an applications evolving requirements, but
also to the dynamics of the platform and the operating environment.

While conventional techniques have optimized such platforms for performance, a greater challenge today is
to optimize the platforms ability to anticipate strategic surprise [1]. Success is then measured by the platforms
ability to retask themselves in response to unexpected phenomena that spontaneously introduce requirements to
monitor, avoid, or respond to such surprises. This challenge falls squarely in the domain of DDDAS and is
especially important for assets that are in flight and therefore typically beyond the reach of physical modification.

Towards the development of such systems, our group’s research aims to develop a prototype execution frame-
work through which application and environment data are streamed at run-time, and which can adapt dynamically
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to maintain essential system properties, and to optimize the collection, analysis, and application of the data. In
addition to adapting its own behavior to the data flowing through it, the execution framework will shape and
optimize the flows of data themselves, to integrate multiple concerns of the DDDAS platform and its applications.

Illustrative example. Consider an autonomous helicopter operating within specified mission parameters, such as
the requirement to acquire and maintain surveillance of particular ground vehicles. The data streams that flow
through the system may include: 1) data from sensors that capture the state of the environment in which the
helicopter is operating, 2) data from sensors that capture the physical state of the helicopter, 3) monitors that
assess and track the health and performance of power and computational electronics, and 4) monitors that track
and quantify how well the helicopter is performing tasks specific to the mission at hand.

However, since the very nature of surprise precludes its precise characterization a priori, a significantly more
comprehensive and fundamental shift in how the resources of the mission platform may be retasked to address sur-
prise is needed. In response to unexpected adverse conditions, tactical opportunities, or in-mission re-prioritization
of objectives, the sensors, computational resources, and flight-control systems may require different combinations
of coordination with respect both to their individual behavioral requirements and to cross-cutting constraints on
overall system properties. For example, the filters that select and transform data may require reprogramming and
reconfiguration so that an unexpected phenomenon of interest can be monitored, computational resources may
require reallocation to ensure timely extraction of mission-relevant information from that data, and flight con-
trol parameters may require adaptation to keep the helicopter oriented to best observe the phenomenon while it
persists.

To illustrate how data streaming through a DDDAS execution framework could dynamically optimize per-
formance in the helicopter example, consider how an on-board camera could be used to track an object entering
its field of vision. To ensure both overall image quality and the accuracy of object identification and tracking
in particular, it is necessary to ensure that the helicopter’s flight control algorithm keeps the helicopter reason-
ably steady. Such a control function would be designed to meet a particular set of specifications (e.g., hold the
helicopter within k meters of position (x, y, z), with an angle of deviation from level of no more than θ).

Although this kind of specification and applicable control theory are both well understood, in practice there
are a number of dynamic factors that can impact both the effectiveness and precision of such control. For example,
coaxial electric helicopters may suffer blade strikes that can cause a part of the main rotor blade to chip. Even a
small chip on a rotor blade in turn can have a significant impact on flight dynamics for which the vehicle’s flight
controllers, platform resources, and applications may need to compensate.

Furthermore, once it has been determined that the helicopter has a damaged blade, to maintain both control
of the vehicle and awareness of its condition, the execution framework may need to modify how sensor data
is streamed through the system. For example, when the helicopter is flying smoothly with undamaged blades,
using a light-weight filter for the accelerometer sensor data may be sufficient (e.g., computing a weighted running
average). However, in the presence of heightened vibrations a more computationally expensive filter that fuses
data from accelerometer and gyroscope sensors maybe needed (e.g., a Kalman filter).

Limitations of the current state of the art. At issue in the example above is the extent to which such diverse
modifications to a mission can be characterized and the relevant hardware and software reconfigured to meet its
constraints and accomplish its goals reliably, under a wide range of such possible adaptations. Both the original
and modified missions would typically contain elements that classically would be called embedded (small foot-
print), real-time (must meet deadlines and have low latency), and high-performance (best possible throughput,
data fidelity, and computational resolution). While it may have been possible pre-flight to analyze the original
mission with respect to the platform’s ability to operate stably and meet its requirements, relatively little time may
be available to determine the suitability of the platform for its modified mission once a phenomenon of interest
appears.

While the DDDAS paradigm appears well suited for addressing a number of aspects of the previously given
example, traditional system design tools and methods treat disjointly the behaviors of individual hardware and
software components, and the many system properties that cross-cut them, as Figure 1 illustrates. Traditional
layers of abstraction also tend to isolate application-level concerns from hardware- and physical-level concerns.
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Fig. 1: Traditional layered architecture for helicopter example.

While this can help developers of traditional applications manage system complexity, such separation comes at a
cost of less visibility and control over the interactions among the hardware and software components.

Grand Vision. The current state of the art in system software and hardware platforms poses crucial impediments
to realizing the full potential of the DDDAS paradigm, and motivates an ambitious reconsideration of how hard-
ware and software co-design can enable coordinated adaptive re-configuration while a mission is in progress.

The grand vision of our work is to move toward producing a computing platform that seamlessly conjoins
system properties that are typically treated disjointedly (e.g., real-time schedulability, and feedback from internal
and external sensors). If successful, this holistic approach to cross-cutting system properties and the exploration
of underlying enhancements to compilers, middleware, and computer architecture would reinforce and enhance
DDDAS ability to optimize system performance through the interplay of streamed data and dynamic execution.

Figure 2 depicts the high-level vision we have for weaving system-level properties and concerns throughout
the system stack. A significantly more dynamic treatment of system behavior and properties is enabled by our
envisioned execution framework, which orchestrates the migration of functionality and sharing of information
across computing layers, for the purpose of increased system efficiency and robustness. Middleware is tuned
to application needs through dynamic data structure adaptation and a property-aware scheduler, while hardware
resources are retasked under the direction of middleware to best serve system demands.

The system stack will support data structures whose properties are dynamically adapted in response to streamed
data to make performance trade-offs at the system level (e.g., timing jitter vs. memory footprint vs. throughput
vs. thermal and power concerns). Continuing on this front, middleware and compiler mechanisms will support
aspect-based weaving of system properties into these data structures. Additionally, low-level hardware-based sys-
tem monitors and instruction set architectures will support low-latency dynamic adaptation to changes in streamed
data from sensors and hardware monitors, thus integrating both hardware and software layers of an overall DDDAS
architecture.

New task models and scheduling algorithms. This paper focuses on the need for advancements in task models
and scheduling algorithms to support our envisioned platform’s adaptation to strategic surprise. These models
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Fig. 2: Integrated hardware/software architecture for adaptive reconfigurable execution.

and algorithms will form the heart of our platform’s “Schedule” and “HW/SW Resource Manager”. They must
capture the dynamics of mission mode changes, the existence of heterogeneous computing resources that are
shared among many tasks, and allow for graceful degradation under overload conditions. The remainder of this
paper discusses: 1) short comings of existing models for developing schedulers for such mixed critical real-time
heterogeneous computing platforms, and 2) challenges that must be addressed by algorithms that are applied to
our proposed extended task model.

2. Related Work

To address the issue of scheduling in mixed criticality systems, two alternative task models have been proposed
by Vestal et al. [2, 3] and de Niz et al. [4, 5]. In Vestal’s multi-criticality task model, each task τi is assigned a
criticality level Li and may have alternative worst case execution times (WCET), Ci(l), corresponding to different
criticality levels. The higher the criticality level, the more conservative will be the WCET estimation. Vestal
et al. suggested the use of Audesly’s prioirity assignment scheme [6] and period transformation technique [7]
to improve the schedulability and utilization of mixed criticality tasks. Many scheduling models and algorithms
[8, 9, 10, 11, 12] have been proposed based on Vestal’s model to improve the schedulability of certifiable mixed
criticality tasks. Effectiveness of reservation-based and priority-based scheduling approaches to dual-criticality
systems were studied in [8, 11] by using processor speed-up factor as a metric. PLRS, a scheduling algorithm
for certifiable mixed criticality sporadic task systems is presented in [9] and an offline computation method was
provided to check the schedulability of the task set. Criticality based earliest deadline first (CBEDF) algorithm
was presented in [10] to schedule tasks on dual-criticality systems. Earliest Deadline First with Virtual Dead-
lines (EDF-VD) scheduling algorithm was proposed in [12] for scheduling of mixed-criticality implicit-deadline
sporadic tasks on preemptive uniprocessors.

In de Niz’s task model, each task τi can have two execution times: Ci - worst case execution time under
normal conditions and Co

i - overload execution budget. Each task is assigned a criticality level Li. Based on
this task model, a zero slack scheduling method was proposed by de Niz et al. [4], which works on top of any
priority based scheduling algorithm. Each task can be executed in either normal or critical mode. The tasks in
normal mode are scheduled based on their priority to maximize resource utilization. When executing in critical
mode, all the lower criticality tasks are suspended to guarantee the execution of higher criticality tasks. A metric
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for overload-resilience called ductility was developed and Compress-On-Overload Packing (COP), an algorithm
which works on top of zero slack rate monotonic scheduler to maximize ductility in distributed mixed-criticality
systems was presented in [5].

The scheduling algorithms discussed above do not apply when tasks share mutually exclusive resources. Lak-
shmanan et al. [13] presented extensions to priority inheritance and ceiling protocols for zero slack scheduling [4]
to solve the task synchronization problem in mixed criticality systems. A two tier dynamic resource management
framework for mixed criticality embedded systems is presented in [14]. The framework provides static resource
guarantees and enables fault isolation for distributed application subsystems with mixed criticality requirements
and facilitates certification of safety-critical applications. A software based memory throttling mechanism is pre-
sented in [15], which controls the memory interference and guarantees the schedulability of critical tasks in mixed
criticality real-time systems.

3. Mixed Critical Real-time Heterogeneous Computing Platforms: Proposed Task Model

Mixed critical real-time heterogeneous systems execute under varied operating conditions. Identifying differ-
ent system configurations which is representative of all the scenarios and operating conditions would be challeng-
ing if not unrealistic. However, we believe it is possible to identify some of the key configurations or modes of
operation during the design phase and transitions between these modes could be tested and certified. We call these
as stable states of execution. As an example let us consider an autonomous helicopter with a mission to acquire
and maintain surveillance of a ground vehicle. The stable states of execution and the occurrence of “surprise”
during a representative autonomous helicopter mission is illustrated in Figure 3. The autonomous aircraft needs
to minimize the consequences of these surprise situations. This could be achieved by dynamically changing the
application characteristics to maintain the stability of the system. A task model should capture these dynamic
changes in operating conditions to support the platform’s ability to anticipate strategic surprise.

Fig. 3: Illustration of a “surprise” occurring during a representative autonomous helicopter mission.

The following are some of the main properties of mixed critical heterogeneous computing platforms which are
not captured in the existing mixed criticality task models:

Dynamically changing task criticality. Existing mixed criticality models assume, the criticality level of a task
to be constant. Some tasks may be critical only during certain operating conditions. Assuming the task to be
critical all the time may lead to under utilization of resources as more conservative WCETs need to considered for
schedulability analysis. A better utilization of resources could be achieved by varying the criticality of the tasks
based on operating conditions.

Required and Optional Resources. Conventional resources, such as data structures and files, are considered as
required resources. Some resources could be optional and its availability may increase application performance,
predictability and/or improve quality of service. Reconfigurable hardware accelerators are an example of an
optional resource. The availability of these optional resources enable the scheduler to optimize resource sharing
for different system attributes such as stability, utilization and/or other utility functions.
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Fig. 4: Hardware priority queue architecture. As queue data is stored in hardware, allocating the hardware priority
queue to a different task will incur considerable overhead. This should be accounted for during schedulability
analysis.

Resource Preemption Overhead. Generally, overhead incurred due to preemption of resources is not accounted
for (e.g. placing a semaphore on a data structure.). Some resources (e.g. hardware accelerators) may have large
preemption overhead and this needs to be accounted for accurate schedulability analysis. For example, consider
the hardware priority queue described in [16]. A high-level hardware architecture diagram of the priority queue
is shown in Figure 4. For example, lets say that the hardware priority queue is being used by the scheduler. The
queue data will be stored in hardware as shown in Figure 4. Now to allocate the queue to a another application
(e.g. network bandwidth manager), the scheduler data stored in hardware needs to be copied to software memory
and the hardware queue should be initialized with new data. The preemption overhead of the hardware priority
queue varies depending on the size of the queue. This cannot be ignored during scheduling/resource allocation.

WCET dependency on resource allocated. The availability of reconfigurable logic will enable the use of hard-
ware accelerators to improve application performance and predictability. The resources allocated and, in turn, a
task’s WCET can change during run time.

Proposed Task Model. Taking into consideration the properties discussed, a new task model is presented where
each task, τi, is defined as:
τi = (Ti, Ai,Di, Pi,Vi,RRi[], Li,Mi,Ci(RAi[])) where,

• Ti is the task period,
• Ai is the arrival time,
• Di is the relative deadline,
• Pi is the priority of the task,
• Ui(t) is the task utility function, where t is the time elapsed since its arrival.
• RRi[] is resource requirement vector, which has the list of required and optional resources.
• Li is the task criticality level,
• Mi is modality,
• Ci(RAi[]) is the worst case execution time, which depends on resources currently allocated, RAi[], to the

task.

Each resource Rx is defined as: Rx = (nx, tx, scx, dx[]) where,

• nx is the count of the available resources Rx,
• tx is the resource type (Blocking/Non-blocking),
• scx is the worst case switching cost associated with the resource,



Kumar et al. / Procedia Computer Science 00 (2013) 000–000

Fig. 5: Conceptual architecture of a resource manager and scheduler for the envisioned adaptive mixed criticality
system.

• dx[] is the resource dependency vector.

One of our end goals is to develop a real-time resource manager and scheduler as part of the adaptive computa-
tional stack for heterogeneous mixed critical real-time systems, as conceptually illustrated in Figure 5. The hard-
ware accelerators are dedicated hardware modules that are used to accelerate a certain functionality or operation.
The applications make use of these hardware components to improve application throughput. Each application
task is associated with a criticality level, which changes the resource requirements and parameters of the appli-
cation. The criticality of applications may change during run-time, which is triggered by dynamically changing
operating conditions (environment). The resource mapping table stores the task parameters, status and resource
requirements of all applications. This is used by 1) the resource manager for the allocation and management of
hardware resources, and 2) the task scheduler, which takes takes into account the criticality of the applications
and generates schedules accordingly to ensure that the tasks are completed within their deadline. As the applica-
tion parameters and resource requirements change during run-time, there is a need for a parametric-based on-line
scheduling approach.

There are numerous challenges in scheduling and resource management for the envisioned adaptive mixed
critical real-time systems. Some of the key challenges are:

• Identifying the stable states of execution and guaranteeing system stability during state transitions.
• Schedulability analysis: Scheduling space expands rapidly when there are n modes and n2 transitions. The

WCET of a task depends on the resources allocated and for n optional resources, there can be 2n possible
resource combinations for each task. Mitigating or overcoming this potentially overwhelming search space
size is a key scheduling challenge.
• Defining the semantics of hardware accelerators.
• Calculating the speed-up factor for task using a hardware accelerator, if it is data dependent.
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4. Conclusion

A vision for an adaptable computing platform to support DDDAS applications operating under unexpected
conditions (i.e. strategic surprise) was introduced. We discussed the limitations of existing mixed criticality
task models, which does not fully capture the dynamics of mixed-critical heterogeneous computing platforms and
proposed an extended task model. We briefly discussed the challenges associated with developing scheduling
and resource management algorithms for such a platform. These challenges are starting points for rich areas of
continued research.
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Abstract—Digital control systems are traditionally designed
independent of their implementation platform, assuming constant
sensor sampling rates and processor response times. Applica-
tions are deployed to processors that are shared amongst control
and noncontrol tasks, to maximize resource utilization. This
potentially overlooks that computing mechanisms meant for
improving average CPU usage, such as cache, interrupts, and task
management through schedulers, contribute to nondeterministic
interference between tasks. This response time jitter can result
in reduced system stability, motivating further study by both the
controls and computing communities to maximize CPU utilization,
while maintaining physical system stability needs. In this letter,
we describe an field-programmable gate array (FPGA)-based
embedded software platform coupled with a hardware plant
emulator (as opposed to purely software-based simulations or
hardware-in-the-loop setups) that forms a basis for safe and accu-
rate analysis of cyber-physical systems. We model and analyze an
inverted pendulum to demonstrate that our setup can provide a
significantly more accurate representation of a real system.

Index Terms—Cyber-physical systems, embedded systems, field-
programmable gate aray (FPGA), hardware emulation, plant-on-
chip.

I. INTRODUCTION

E MBEDDED systems and digital control theory have inde-
pendently developed into mature fields, despite the clear

connection between controllers and embedded platforms. Ini-
tially, each digital control loop was implemented on a dedicated
processor, thus maintaining a separation of concerns. The de-
mand for tighter system integration and the use of economical
commercial-off-the-shelf products has blurred this separation
[1]. In modern systems, the tasks running on the processor un-
knowingly compete for processor resources. These resources,
meant to improve average resource usage for nonreal-time sys-
tems, are becoming sources of nondeterministic computation
time or computation jitter. Example causes include interrupts
[1], branch misprediction [8], cache misses [11], and task man-
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agement through operating systems [12]. These features limit
the degree to which time invariance can be guaranteed, and
cause systems to break control engineers’ key assumption of
constant sample rates and processor response time [2]. Ulti-
mately, control loop robustness is greatly affected by this tran-
sition from a dedicated processor system to an environment of
tasks competing for resources [5]. Thus, a more holistic view
is now needed to develop and deploy controllers that take into
account cyber-architecture artifacts on a system’s physical sta-
bility.
As a motivating example, Fig. 1 shows the timing response of

an inverted pendulummodel as we vary the computational delay
(the time between receiving a sensor sample and sending the re-
sponse), while holding sensor sample rate constant. In Fig. 1(a),
a controller computing delay that is 15% of the state sampling
rate has negligible impact on the system’s stability. As the delay
increases to 65% of the sample period [see Fig. 1(b)], some
ringing in the control signal becomes apparent. Progressing to
a delay of 85% of the sample period [see Fig. 1(c)] causes the
plant to become less stable with oscillations that are now more
pronounced. It is interesting to note that the state of the plant
(i.e., cart position and pendulum angle) still appears stable. A
further increase in the computational delay [see Fig. 1(d)] leads
to loss of controller stability resulting in an eventual fall for the
pendulum.
Previous work has identified jitter in cyber-physical systems

(CPS) as a significant research challenge. The authors in [11]
worked on characterizing Linux for real-time applications and
found that the sources of jitter were implicit to the processor
and were not completely correctable through software. A de-
tailed analysis of branch-prediction schemes [8] concludes that
static branching schemes work better for real-time systems than
dynamic branch prediction. In [4], the authors compare several
scheduling methods and concluded that deadline advancement
was the most consistent, with minimal degradation in perfor-
mance of controllers as the number of tasks increased and had
relatively consistent low jitter. Controls experts are developing
toolflows, like TrueTime-JitterBug, to evaluate the impact of a
controller’s response-time jitter on closed-loop stability [5]. In
[6], [9] the authors have developed a set of stability criteria for
closed-loop systems in which the sample rate contains jitter. In
[7], a quantitative metric similar to the concept of phase margin
is proposed, called jitter margin, which is the upper-bound of
delay that a control loop can tolerate before going unstable. In an
approach closely related to ours, the delay and period of control
loops are used in a cost function, which is then treated as a min-
imization problem [3], and later a convex optimization problem

1943-0663 © 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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Fig. 1. Effect of computational delay on a digital control system. With the
sample period fixed at 15 ms, the delay is varied from 15% (a) to 90% (d).
At 65%, a ringing begins to appear in (b), which becomes more pronounced at
85% (c). Finally, at 90% (d), the plant remains stable while the controller con-
tinuously oscillates.

[13]. A limitation of many of the previous approaches is their
reliance on analytical tools and simulations of CPS which mask
the jitter caused by hardware architectures.
In contrast, this letter presents the design and implementation

of a control systems emulation framework that couples plant
emulation hardware with an embedded processor, together
on a field-programmable gate array (FPGA)-based platform.
This hardware/software framework allows us to more ac-
curately study the interaction between an actual processor
and a plant-on-chip (PoC). Our experimental results, using a
state-space model of an inverted pendulum as captured in the
PoC hardware, indicate that this proposed framework both
safely and accurately captures the nondeterministic effects of
modern processor architecture on a physical plant. Since the
setup uses the same interfaces that the actual system would
use, once the PoC is replaced by the real plant, the input and
output jitter from sampling and actuating are already accounted
for in the platform. The PoC could be integrated via on-chip or
off-chip networking interface to emulate plants being controlled
over a network.

II. ARCHITECTURE

Fig. 2 illustrates our FPGA-based infrastructure for CPS anal-
ysis. The FPGA is configured to implement the three main com-

Fig. 2. Our experimental setup implemented on our in-house reconfigurable
platform, RAVI. Note and of the plant model.

ponents: 1) an embedded processor (NIOS II) with conventional
architectural features that is capable of running a modern oper-
ating system (OS); 2) a custom PoC emulator that implements a
given model for the system under test; and 3) a profiler module
that collects appropriate performance data and reports back to a
host workstation. Our in-house reconfigurable platform, the re-
configurable autonomous vehicle infrastructure (RAVI) board,
is also shown in Fig. 2. This small form factor (90 grams and
3.4” 3.4”) board was specifically designed and fabricated at
Iowa State University to promote the development of efficient
control systems for mobile autonomous vehicles, hosting an Al-
tera Cyclone III FPGA for deploying the computational stack,
an inertial measurement unit (IMU) for monitoring physical dy-
namics of vehicles, and other features that enable it to support a
wide range of autonomous vehicles and applications.
Our proposed dedicated hardware (see Fig. 3) emulates the

state-space model of the chosen physical plant. Our example
plant is an inverted pendulum from [10], where the state-vector,
consists of four variables, the pendulum’s angle and an-

gular rate , and its cart’s position and velocity . is the
input variable that comes from the controller to stabilize the
plant and is stored in the “Control Input reg.” The previous state
of is stored in the “Old X RAM.” The feed-back matrix
and input matrix are constants and thus stored in “A ROM”
and “B ROM.” The new state of is calculated by the hard-
ware, with the help of a finite state machine (FSM) and internal
timers, as follows. is sequentially multiplied with the “B” ma-
trix and the result stored in “uB RAM.” Next, the dot products
of with each row of is sequentially calculated with the
help of the accumulator and stored in the “AX RAM.” Then,
the addition of vectors and is performed, resulting in
the new, updated state and stored in the “Xnew RAM.” The
processor may sample at any time through the “Sample Reg.”
A hardware interface is dedicated to nonintrusive transmission
of , and their respective time stamps through the “UART
Reg.” Other important evaluation metrics like sample-to-actua-
tion time delay and the energy consumed by actuators are per-
formed during post processing from the recorded data.
We require a noise source to emulate a noisy environment

and test robustness in the same manner as JitterBug [5]. This
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Fig. 3. Register Level architecture of the state-space based Plant-on-Chip em-
ulator.

is implemented with the ‘Dist ROM’ which contains a sample
array of a white-noise signal similar to JitterBug’s disturbance.
A value from the “Dist ROM” is periodically injected into the
system by adding it to the input before starting a state-update.
This emulates an external force being exerted on the cart and
can be enabled or disabled through software by an application
designer.
The current hardware utilization is fairly small with

2900 LUTs, 800 flip-flops, 32 DSP blocks, and 1 K of
RAM/ROM. With a 50 MHz clock source, the emulator up-
dates its state every 100 s, which is sufficient for emulating
our example inverted pendulum plant. The advantage of our
setup is that the states are periodically updated, independent
of the processor controlling the hardware emulator. This elim-
inates the effects software simulations have on the computer
they are usually running on (for example missing or late up-
dates), especially when that computer is running the control
algorithm, as well. The processor controlling this emulator
cannot distinguish between the actual plant or its emulation,
as the interface is unchanged and the hardware appears as an
independent entity.

III. EXPERIMENTAL SETUP AND RESULTS

In evaluating our framework, we attempted a validation of the
PoC against known control system evaluation tools and stan-
dards. Control systems can be evaluated based on transient re-
sponse, energy consumption, or other cost functions. These met-
rics correlate with the amount of effort the controller exerts to
keep the system stable after receiving a change either in ref-
erence value, or when experiencing an external disturbance.
We shall now refer to this metric as . For Jitterbug, is an
“integration of square of error” [5], where error is the devia-
tion of a designer specified variable from zero. The PoC’s
is the energy (Joules) spent by the actuator. A secondary in-
terest was in comparing the ’s from JitterBug and the PoC.
Initial experiments indicate that a JitterBug cost function of

was closest to the amount
of energy used by the actuator to keep the pendulum upright.
Method 1 describes our routine for characterizing system costs.
We explored the design space by varying sample period and
computational delay and measured the cost in JitterBug and the
energy in our setup to keep the system stable. The points where
JitterBug’s plots trend to infinity (equivalent to the plateau re-
gion of our setup’s plots) correspond to the unstable regions of

the system. To give a physical perspective, these regions corre-
spond to our pendulum example losing balance.
We conducted two sets of experiments. First, we attempted

to maintain the pendulum cart at a fixed location, given various
external disturbances. This can be done in JitterBug and in our
setup. Next, we tested our setup with a step-response, which Jit-
terBug does not permit. We performed a profiling of the relevant
cost, as outlined in Method 1, and fed this data into Matlab to
create the following surface plots.
Fig. 4 gives a summary of the first experiment’s results. We

see common trends in both setups. As we increase the compu-
tational delay from 0% of the sample period to a full sample pe-
riod, the cost [see Fig. 4(a)] of keeping the system stable and the
amount of energy [see Fig. 4(b)] needed by the system to keep
the system stable increase in a similar fashion. Both setups show
an increase in cost and energy as the sample period of the con-
troller is increased. The region of instability is almost the same
in both setups, with the PoC setup showing a slightly smaller
region. An example point is where sample period is 15 ms and
delay percentage is 70%. JitterBug shows that the systemwill be
unstable whereas the PoC setup indicates that the system will be
stable, but will spendmore energy tomaintain stability. This dif-
ference is because the pattern and magnitude of JitterBug’s ex-
ternal disturbance is unknown and an estimated pattern is used
in the PoC setup. The major difference between the setups is
that JitterBug predicts that the system will be stable when the
sample period is 20 ms and delay is roughly 40% or less. Since
the PoC is a more realistic setup and shows that a 20 ms sample
period even with no delay will be unstable, we can safely say
that JitterBug’s prediction is less accurate.
While analyzing our setup’s step response (see Fig. 5) to dif-

ferent combinations of sample period and delay, we can refer
back to Fig. 1 for additional clarity. Keeping the sample period
fixed to 15 ms, let us observe the impact of increasing delay.
At 15% delay, the system is very stable in the time response
plot [see Fig. 1(a)] and is in the dark-blue plain of Fig. 5. As
we increase delay, we start seeing a damp oscillation in the con-
troller signal begin to increase in Fig. 1(b) and (c) and the en-
ergy increase and climb the cliff of the surface plot of Fig. 5.
At 95%, the system is unstable [see Fig. 1(d)] and the corre-
sponding point on the surface plot is on the plateau, further indi-
cating instability. A JitterBug version of this test is not possible
as the reference value cannot be set by a user to produce a step
input.

IV. CONCLUSION

We presented a method for analyzing Cyber-Physical
Systems using a hardware plant emulator we designed and
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Fig. 4. Surface plots of cost (a) and energy (b) while injecting disturbance in cart position . (a) JitterBug. (b) Plant-on-Chip.

Fig. 5. Characterization plot of PoC’s step-response.

integrated with an embedded processor in an FPGA-based plat-
form. Our framework provides insight for embedded designers
into how computer architecture can influence control loops.
Though current simulation-based design tools provide a good
approximation of a system’s robustness to sample-period and
delay, they work in environments and with assumptions that
the delay can be modeled as a probability distribution function
[4], [5]. Research in [8], [11], and [12] shows this to be not
realistic and that computer elements cause nondeterministic
time-varying delay and sample-period.With an actual processor
under test, our setup inherently contains these nondeterministic
sources of delay jitter and thus gives a more accurate result,
when characterizing a system’s robustness against sample
period and delay variation.

In the future, we plan to control a plant-on-chip emulator
while sharing processor resources with other tasks, using a real-
time operating system (e.g., RT-Linux).
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1 Introduction 

Deploying increasing amounts of computation into smaller 
form factor devices is required to keep pace with the ever 
increasing needs of real-time and embedded system 
applications. The area of micro unmanned aerial vehicles 
(UAVs) is an example of where such need exists. The size 
of these vehicles has rapidly decreased, while the 
capabilities users wish to deploy continue to explode. As 
recently as June 2011, the New York Times published 
several articles on the cutting-edge work being pursued by 
Wright Patterson Air Force Base to develop micro-drones to 
aid soldiers on the battlefield (Bumiller and Shanker, 2011). 
In February of 2011, the DARPA funded nano air vehicle 
(NAV) program demonstrated a humming bird form-factor 
UAV weighing less than 20 grams (e.g., less than an AA 
battery) (DARPA, 2011; Grossman et al., 2011) with video 
streaming capabilities. These real-time and embedded 
applications can no longer rely on manufacturing advances 

to provide computing performance at Moore’s law rates, 
owing to transistors approaching atomic scales and thermal 
constraints (ITRS, 2009). Thus, more efficient use of the 
transistors available is needed. For example, use of 
application specific hardware has showed promise in 
accelerating various application domains, from 
cryptography (Eberle et al., 2008; Ors et al., 2008) to 
numerical simulation (Rahmouni et al., 2013) to control 
systems (Muller et al., 2013). 

We assert that the boundaries of software and hardware 
must be reexamined and we believe a fruitful realm for 
research is the hardware-software co-design of functionality 
that has been traditionally implemented in software. Such a 
co-design is needed to balance the cost of dedicating limited 
silicon resources for high-performance fixed hardware 
functionality, with the flexibility and scalability offered by 
software. Additionally, we claim seamless migration 
between software and hardware implemented functionality 
is required to allow systems to adapt to the dynamic needs 
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of applications. In this paper we examine a hybrid 
architecture for priority queue management and evaluate 
this architecture within a real-time scheduling context. The 
following motivates the importance of low processing 
overhead and timing predictably to a real-time scheduler’s 
performance. 

A real-time operating system (RTOS) is designed to 
execute tasks within given timing constraints. An important 
characteristic of an RTOS is predictable response under all 
conditions. The core of the RTOS is the scheduler, which 
ensures tasks are completed by their deadline. The choice of 
a scheduling algorithm is crucial for a real-time application. 
Online scheduling algorithms incur overhead, as the task 
queues must be updated regularly. This action is typically 
paced using a timer that generates periodic interrupts. The 
scheduler overhead generally increases with the number of 
tasks. A high resolution timer is required to distribute CPU 
load accurately based on a scheduling discipline in real-time 
systems, but such fine-grain time management increases the 
operating system overhead (Park et al., 2001; Adomat et al., 
1996). 

The extent to which a scheduler can ideally implement a 
given scheduling paradigm [e.g., earliest deadline first 
(EDF), rate monotonic (RM)], and thus provide the 
guarantees associated with that paradigm, is in part 
dependent on its timing determinism. A metric for helping 
quantify the amount of non-determinism that is introduced 
to the system by the scheduler is the variation in execution 
time among individual scheduler invocations. This can be 
roughly summarised by noting its best-case and worst-case 
execution times. Variations in scheduler execution time can 
be caused by system factors such as changes in task set 
composition, cache misses, etc. Reducing the scheduler’s 
timing sensitivity to such factors can help increase 
deterministic behaviour, which in turn allows the scheduler 
to better model a given scheduling paradigm. 

Figure 1 In order to allow analytical analysis of schedule 
feasibility, worst-case execution time (WCET) 
typically needs to be assumed (see online version  
for colours) 

 
Note: Thus, scheduler execution time variations that 

cause large differences between WCET and 
typical case execution time reduce utilisation of 
system computing resources. 

Figure 1 illustrates how the variation in scheduler overhead 
affects processor utilisation. To ensure that tasks meet their 
deadlines, the scheduler’s worst-case execution times are 
often overestimated. This can cause a system to be 
underutilised and wastes CPU resources. In this paper, we 
examine how the scheduler overhead and its variation  

can be reduced by migrating scheduling functionality (along 
with time-tick interrupt processing) to hardware logic. The 
expected results of our efforts are increased CPU utilisation, 
better system predictability, finer schedule and timing 
resolution. 

1.1 Contributions 

The primary contributions of this paper are 

1 a hardware accelerated binary min heap that supports 
enqueue and peek operations in O(1) time, returns the 
top-priority element in O(1) time, and completes a 
dequeue operation in O(log n) time 

2 a scalable hardware-software priority queue 
architecture that enables fast and low-overhead 
transitions of queue management between hardware 
and hybrid modes of operation 

3 a hybrid scheduler architecture that reduces scheduling 
overhead and improves predictability. 

1.2 Organisation 

The reminder of this paper is organised as follows.  
Section 2 describes the hardware-software priority queue 
architecture and implementation details. Section 3 describes 
the hardware scheduler architecture, which uses our priority 
queue design. The evaluation methodology and results are 
discussed in Sections 4 and 5. Section 6 presents related 
work on hardware accelerated priority queues and 
schedulers. Conclusions and future work are presented in 
Section 7. 

2 Hybrid priority queue architecture 

Priority queues are commonly implemented using a binary 
heap data structure, which supports enqueue and dequeue 
operations in O(log n) time. A binary heap is constrained by 
the heap property, where the priority of each node is always 
less than or equal to its parent. In a binary min heap, lower 
key-value corresponds to higher priority and the root node 
has the highest priority (lowest key value). A binary heap 
can be stored as a linear array where the first element 
corresponds to the root. Given an index i of an element, i/2, 
2i and 2i + 1 are the indices of its parent, left and right child 
respectively. 

Here we present a hybrid priority queue architecture that 
includes the hardware implementation of a conventional 
binary min heap (lower key value corresponds to higher 
priority), which can be managed in hardware and/or 
software. A binary heap could be stored compactly when 
compared to skip list, binomial heap and Fibonacci heap, 
without requiring additional space for pointers. Since the 
memory available in hardware (on-chip memory) is limited, 
the priority queue was implemented as a binary heap to 
better utilise the available resources. The priority queue 
operates in hardware mode when the queue size is less than 
a hardware limit threshold. When managed in hardware, the 
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priority queue supports enqueue and peek operations in 
O(1) time and dequeue operations in O(log n) time. 
Although the dequeue operation takes O(log n) time to 
complete, the top-priority (lowest key value) element can be 
returned immediately, allowing the dequeue operation to 
overlap its execution with the primary processor. Software 
issues custom instructions to initiate hardware-implemented 
enqueue and dequeue operations. 

Once the priority queue size exceeds hardware limits, 
excess elements are stored in the system’s main memory 
and managed by both hardware and software. Elements of 
the priority queue that are managed by hardware are 
memory mapped, providing software with direct access to 
these elements that are stored in a priority-queue-structured 
on-chip memory. Figure 2 illustrates this architecture. 
Memory mapping the priority-queue-structured on-chip 
memory additionally allows rarely used priority queue 
operations (e.g., delete element and decrease key) to be 
easily implemented in software, thus reducing the 
complexity of hardware control logic. 

Figure 2 A high level block diagram of the hardware-base 
priority queue interface (see online version for colours) 

 

2.1 Hardware priority queue 

A high level architecture diagram for the priority queue is 
shown in Figure 3. Central to the priority queue is the queue 
manager, which provides the necessary interface to the CPU 

and executes operations on the queue. Elements in each 
level of the binary heap are stored in separate on-chip 
memories called block rams (BRAMs) to enable parallel 
access to elements, similar to Bhagwan and Lin (2000) and 
Ioannou and Katevenis (2007). The address decoder 
generates addresses and control signals for the BRAM 
blocks. Queue operations in hardware mode are explained in 
detail below, using a min-heap example, where a lower key 
value corresponds to a higher priority. 

2.1.1 Enqueue 

Enqueue operations in a software binary heap are 
accomplished by inserting the new element at the bottom of 
the heap and performing compare-swap operations with 
successive parents until the priority of the new element is 
less than its parent. In software, the worst-case behaviour of 
this operation occurs when the priority of the new element 
is greater than the rest of the nodes present in the heap. In 
this case, the new element bubbles-up all the way to the root 
of the heap [i.e., O(log n) time]. 

However, our hardware implementation can perform 
this operation in O(1) time. We first calculate the path from 
the next vacant leaf node to the root. The index, i, of this 
leaf node is always one more than the current size of the 
queue, and each ancestor of this leaf node can be computed 
in parallel using a closed form equation (e.g., kth parent is 
located at index i/2k) in hardware. This path includes all 
ancestors from the leaf node to the heap’s root. The heap 
property ensures that the elements in this path are in sorted 
order. 

The shift register mechanism, shown in Figure 3, inserts 
a new element in constant time. This is similar to the  
shift-register priority queue described in Moon et al. (1997). 
Each level of the heap is mapped to an enqueue cell, which 
consists of a comparator, multiplexer and a register. The 
element to be inserted is broadcast to all the cells during an 
enqueue operation. The enqueue operation is then 
completed in the three steps shown in Figure 4. In the first 
step, all the elements in the path from the leaf node to the 
root node are loaded into the corresponding enqueue cells. 
The address for each BRAM block is generated by the 
address decoder. In the second step, the comparator in each 
enqueue cell compares the priority of the new element with 
the element stored locally and decides whether to latch the 
current element, new element or the element above it. In the 
final step, the elements along with the new entry are stored 
back into the heap. 
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Figure 3 The hardware priority queue architecture (see online version for colours) 

 

Figure 4 Steps of enqueue operation in hardware mode, (a) elements in the insertion path are loaded to enqueue cells  
(b) sorted insert of the new element to the enqueue cell array (c) elements in the enqueue cell array are stored  
back to the heap (see online version for colours) 

 

Figure 5 Steps of dequeue operation in hardware mode, (a) the root element is removed by replacing it with last element  
of the queue (b) new root is swapped with highest priority child (c) no more swap operations as the heap property  
is restored (see online version for colours) 

 
Note: In worst case there will be log(n) swap operations. 
 
2.1.2 Dequeue 

Figure 5 illustrates an example of a dequeue operation in 
hardware mode. The dequeue operation can be divided into 
two stages: removing the root element from the queue  
(as the value to be returned by the dequeue call), and 
reconstruction of the heap. The root element is first 
removed by replacing it with the last element of the queue 
to keep the heap balanced. The new root element is then 
compared with its highest priority child and is swapped if its 
priority is less than that of its child. This operation is 
repeated until the priority of the new root element is greater 
than that of its children. 

 
 
 
 

Note that the root element is returned immediately to the 
processor before restoring the heap property. The processor 
is not required to wait for the operation to complete, as the 
heap property of the queue is restored in hardware which 
executes in parallel to the CPU. Back-to-back dequeue 
operations would cause the processor to wait for the first 
operation to be completed in hardware before getting the 
result of the second request. Hence, the worst case 
execution time of a dequeue operation is O(log n). 
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2.1.3 Decrease-key and delete 

The decrease-key operation decreases the priority of a given 
queue element, and the delete operation removes a specified 
element from the queue. Supporting these rarely used 
operations in hardware adds considerable complexity to the 
hardware’s control logic. To avoid this complexity, these 
operations have been implemented in software. Software 
accesses the hardware priority queue elements via a 
memory mapped interface as if they resided in main 
memory. 

2.2 Hybrid priority queue management 

The size of the hardware priority queue is limited by the 
available on-chip memory resources of the device. 
Gracefully handling size overflow situations allows the use 
of hardware data structures for a wider range of 
applications. We achieve this by extending the heap array to 
off-chip memory (i.e., main memory) and managing the 
queue in both hardware and software. In hybrid mode, the 
enqueue and dequeue operations are executed in two stages. 
The hardware executes a part of the queue operation in the 
first stage, and then control is returned to software, which 
completes the rest of the operation. 

A memory mapped interface, shown in Figure 6(a), 
provides software access to on-chip priority queue elements 
as if they were resident in main memory. Since the address 
space of memory mapped hardware and the extended 
priority queue will typically not be part of the same 
continuous memory block, as shown in Figure 6(b). The 
queue algorithm needs to be modified accordingly to access 
the correct address depending on the array index of the 
element. The combination of memory mapping the 
hardware-base priority queue and implementing small 
modification to the queue algorithm enables our hybrid 
approach to have fast and low overhead transitioning 
between hardware and software management. The priority 
queue operations in hybrid mode are explained in detail 
below. 

Figure 6 (a) Memory mapped interface provides access to 
priority queue elements stored in BRAM  
(b) Virtual address space showing extended  
priority queue (see online version for colours) 

(a)   (b)  

2.2.1 Enqueue 

Figure 7 presents an example of the enqueue operation in 
hybrid mode. In the first stage of an enqueue operation, the 
new element is inserted into the hardware priority queue, 
which forms the top portion of the queue. This is similar  
to the hardware enqueue operation as explained in  
Section 2.1.1. Since we only go into hybrid mode when the 
queue size exceeds hardware limits, the lowest priority 
element in the hardware insertion path must be moved to the 
overflow buffer shown in Figure 3. This first stage is 
performed in constant time as explained in Section 2.1.1. 
Control is then returned to software. The overflow buffer is 
available to software through a memory mapped interface. 
In the second stage of the enqueue operation, the element in 
the overflow buffer is copied to the bottom of the extended 
queue and compare-swap operations are performed with 
successive parents until the heap property is restored. This 
stage is similar to the software enqueue operation and only 
the extended part of the queue (stored in main memory) is 
modified by software. The software implementation of 
enqueue operation is outlined in Algorithm 1. 

Algorithm 1 Pseudocode of hybrid priority queue’s enqueue 
operation 

1: procedure HYBRiD_PQ_ENQUEUE(queue, elem) 

2:  if Queue = Full then 

3:   throwexception 

4:  end if 

5:  Hardware_pq_enqueue(elem) 

6:  queue.size + + 

7:  if queue.size > queue.hwlimit then 

8:   index = queue.size 

9:   Copy overflown hardware element to the end of 
software queue. 

10:   queue.data[index] = overflow_cell 

11:   while index > queue.hw_limit do 

12:    if queue.data[index] 
<queue.data[parent(index)} then 

13:     swap_queue_data(queue, index, 
parent(index)) 

14:     index = parent(index) 

15:    end if 

16:   end while 

17:  end if 

18: end procedure 
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Figure 7 Steps of enqueue operation in hybrid mode, in this example we assume that the first 3 levels of the heap are managed in 
hardware, (a) hardware elements in the insertion path are loaded to enqueue cells (b) sorted insert of the new element and the 
lowest priority element is moved to the overflow buffer (c) hardware stores back the elements in enqueue cells and the overflow 
buffer element is moved to the bottom of the queue by software (d) software performs compare-swap operation to restore heap 
property (see online version for colours) 

 

Figure 8 Steps of dequeue operation in hybrid mode, in this example we assume that the first three levels of the heap are managed in 
hardware, (a) the root element is removed by replacing it with the last element of the queue by software (b) the heap property is 
restored by swapping the new root (31) with highest priority child (c) hardware completes dequeue operation and returns the 
position of new root(31) (d) software continues restoring the heap property from the position returned (see online version  
for colours) 

 

 
2.2.2 Dequeue 

Figure 8 provides an example of the dequeue operation in 
hybrid mode. In the first stage of a dequeue operation, the 
root element of the queue is removed by replacing it with 
the last element of the queue. This operation should be 
performed by software, since the last element of the queue 
resides in main memory. The hardware dequeue operation is 
then initiated through a custom instruction, which restores 
the heap property of the hardware portion of the queue as 
explained in Section 2.1.2. The custom instruction when 

completed returns the position of the newly inserted 
element, which can be accessed by software through 
memory mapped interface. The software then continues 
restoring the heap property starting from the position 
returned. The software implementation of dequeue 
operation is outlined in Algorithm 2. 

Comparing our approach with the related work reported 
in Section 6, our approach scales nicely without requiring 
complex hardware control logic to manage pipelining. Our 
hardware-software co-design approach overcomes the size 
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limitations of hardware, enabling the support of arbitrarily 
large priority queues. 

3 Hardware scheduler 

3.1 Overview 

As an application of the priority queue described above, we 
propose a hardware-software scheduler architecture 
designed to reduce the time-tick interrupt processing and 
scheduling overhead of a system. In addition, our hybrid 
architecture increases the timing determinism of the 
scheduler operations. The instruction set architecture of a 
processor was extended to support a set of custom 
instructions to communicate with the scheduler. The 
hardware scheduler executes the scheduling algorithm and 
returns control to the processor along with the next task to 
execute. Software then performs context switching before 
executing the next task. 

Algorithm 2 Pseudocode of hybrid priority queue’s dequeue 
operation 

1: procedure HYBRiD_PQ_DEQUEUE(queue) 
2:  if Queue = Empty then 
3:   throw exception 
4:  end if 
5:  result = queue.top; 
6:  if queue.size < queue.hw_limit then 
7:   hardware_pq_dequeue() 
8:  else 
9:   Replace root with last element of heap array. 
10:   queue.data[0] = queue.data[size] 
11:   Execute hardware dequeue and return position of 

newly inserted element. 
12:   new_index = hardware_pq_dequeue() 
13:   Continue heap restoration in software from the 

position returned. 
14:   Restore_sw_heap(new_index) 
15:  end if 
16:  queue.size – –; 
17: end procedure 

A software timer periodically generates interrupts to check 
for the availability of a higher priority task. The check is 
accomplished using a single custom instruction that returns 
a preempt flag, set by the hardware scheduler, based on 
which the processor chooses to continue executing the 
current task or preempts it to run a higher priority task. The 
following describes the functionality of the key components 
of the hardware accelerated scheduler. 

3.2 Architecture 

A high level block diagram of the hardware scheduler is 
shown in Figure 9. 

3.2.1 Controller  

The controller is the central processing unit of the 
scheduler. It is responsible for the execution of the 
scheduling algorithm. The controller processes instruction 
calls from the processor and monitors task queues (ready 
queue and sleep queue). 

3.2.2 Timer unit 

The timer unit keeps track of the time elapsed since the start 
of the scheduler. This provides accurate high-resolution 
timing for the scheduler. The resolution of the timer-tick 
can be configured at run time. 

3.2.3 CPU interface 

The interface to the scheduler is provided through a set of 
custom instructions as an extension to the instruction set 
architecture of the processor. This removes bus arbitration 
timing dependencies for data transfer. Basic scheduler 
operations such as run, configure, add task, and preempt 
task are supported. 

3.2.4 Task queues 

At the core of the scheduler are the task queues, which are 
implemented as priority queues. The ready queue stores 
active tasks based on their priority. The sleep queue stores 
inactive tasks until their activation time. The task with the 
earliest activation time is located at the front of the sleep 
queue. 

3.3 Modes of operation 

The scheduler is designed to operate in either hardware or 
hybrid mode, depending on the size of the hardware priority 
queues and the number of tasks in the system. Once the 
number of tasks exceeds the hardware limit, the queues 
extend to off-chip memory (i.e., main memory) and the 
scheduler starts operating in hybrid mode. In hybrid mode 
the scheduling algorithm is executed in software and the 
hybrid priority queues described in Section 2 are used to 
accelerate scheduler operations. This transition involves 
stalling the hardware scheduler through a co-processor call 
(custom instruction) and calling the software scheduler 
function. As the elements stored in the on-chip priority 
queues can be accessed by software via a memory mapped 
interface, it avoids the need to copy data between hardware 
and software memory when the scheduler changes modes. 
The proposed scheduler architecture scales to support an 
arbitrarily large number of tasks. 

4 Evaluation methodology 

4.1 Platform 

The hybrid priority queue and the scheduler were deployed 
and evaluated on the re-configurable autonomous vehicle 
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infrastructure (RAVI) board, an in-house developed FPGA 
prototyping platform. RAVI leverages field programmable 
gate array (FPGA) technology to allow custom hardware to 
be tightly integrated to a soft-core processor on a single 
computing device. It enables exploration of the 
software/hardware co-design space for designing system 
architectures that best fit an application’s requirements. The 
portions of the RAVI board used for our experiments 
included the Cyclone III FPGA, the on-board DDR DRAM 
and the UART. The FPGA was used to implement the 
NIOS-II (Altera’s soft-processor), the DDR stored software 
that was executed on the NIOS-II, and the UART supported 
data collection. A pictorial description of the setup is shown 
in Figure 10. 

4.2 Architecture configuration 

The priority queue and the scheduler were implemented  
as an extension to the instruction set architecture  
(using custom instructions) of a Nios II embedded processor 
running at 50 MHz on an Altera Cyclone III FPGA. The 
priority queue supported up to 255 elements in hardware 
mode and up an arbitrarily large number of elements in 
hybrid mode of operation. For our evaluation we limited the 
queue size to 8,192 elements. A binary heap-based priority 
queue implemented in software was used as a baseline to 

compare against the performance of our hybrid priority 
queue. 

The scheduler can support up to 255 tasks when 
managed in hardware, and up to an arbitrarily large number 
of tasks when in hybrid mode. For our evaluation we limited 
the task set size to 2,048, which is sufficient to support a 
vast majority of embedded systems. The scheduler can be 
configured to use EDF or a fixed priority-based scheduling 
algorithm such as rate monotonic scheduling (RMS). The 
scheduler overhead was also measured using different 
timer-tick resolutions (0.1 ms, 1 ms, 10 ms), which is used 
to generate periodic interrupts for the scheduler. A software 
test bench was built to accurately measure the overhead of 
the scheduler for different task sets and timer resolutions. 
Hardware-based performance counters, supported by the 
NIOS II processor provided a relatively unobtrusive 
mechanism to profile software programs including interrupt 
service routines in real-time. An EDF (Liu and Layland, 
1973) scheduler was deployed to measure the impact of 
running a dynamic scheduling algorithm on the processor. 
In EDF scheduling, task priorities are assigned based on the 
absolute deadline of the current request. At any given time, 
the task with the nearest deadline will be assigned the 
highest priority and executed. A software EDF scheduler 
implementation was used as a baseline to compare against 
our hybrid implementation. 
 

Figure 9 A high level architecture diagram of the hardware scheduler along with the custom instruction interface  
(see online version for colours) 

 

Figure 10 FPGA-based evaluation platform (see online version for colours) 
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4.3 Workload and metrics 

The performance of the priority queue was evaluated using 
the classic hold model (Vaucher and Duval, 1975); Jones, 
1986), where a priority queue of a given size is initialised 
and hold operations (dequeue followed by enqueue) are 
performed repeatedly on the queue. The size of the queue 
remains constant for the whole duration of the experiment. 
The access time measured by the hold model is dependent 
on the initial queue size and priority increment distribution. 
For our evaluation we used exponential, uniform, bimodal 
and triangular distributions, similar to those used in Vaucher 
and Duval (1975) and Ronngren and Ayani (1997). The 
transient behaviour of the priority queue is measured using 
the up/down model (Ronngren et al., 1991), where the 
queue is initialised to a given size by series of enqueue 
operation and then emptied by series of dequeue operation. 

A set of periodic tasks with randomly generated 
parameters (i.e., task execution time and period) was used to 
evaluate the performance of the EDF scheduler. The relative 
deadline of the tasks were assumed to be equal to their 
period. The number of tasks in the task set were varied, 
keeping the utilisation factor constant at 80%. The metrics 
used to evaluate our scheduler were: 

• scheduler overhead: time spent executing the 
scheduling algorithm 

• timer-tick overhead: time taken to service the periodic 
timer interrupt 

• predictability: variation in the execution time of 
individual scheduler invocations. 

5 Results and analysis 

This section presents the results of our hybrid priority queue 
versus software priority queue evaluation experiments. A 
discussion is then given on the results of our hybrid and 
hardware scheduler evaluation experiments. 

5.1 Priority queue 

5.1.1 Mean access time 

The mean access times of the hybrid and software priority 
queues measured using classic hold and up/down 

experiments are shown in Figures 11 and 12. The hybrid 
priority queue is fully managed in hardware when the queue 
size is 255 or less. The results show that the hybrid queue is 
six times faster than the software queue when the queue size 
is 255. The hybrid priority queue extends to software 
memory when the queue size exceeds 255 elements and the 
fraction of total work done in hardware decreases as more 
levels of heap are stored in software memory. Hence, the 
difference in performance between the hybrid and software 
priority queue decreases as the size of the queue increases. 
Even when the queue contains 8,192 elements, the hybrid 
priority queue performs close to 30% better than software 
priority queue. The performance of the hybrid and software 
priority queue is not very sensitive to priority increment 
distributions. 

5.1.2 Resource utilisation and scalability 

We implemented our hardware priority queue design on an 
Altera Cyclone III (EP3C25) FPGA. The resource 
utilisation of the priority queue for different queue lengths is 
shown in Table 1. Each priority queue element is 64 bits 
wide, with a 32 bit priority value. The amount of 
combinational logic required increases logarithmically with 
the size of priority queue. Since the number of elements 
doubles with each additional level, the combinational logic 
scales logarithmically with queue size. The device contains 
66 M9K memory blocks, which can be used as on chip 
memory. Each M9K block can hold 8,192 memory bits with 
a maximum data port width of 36. Since each level of the 
heap is stored in a BRAM with a 64 bit wide port, a 
minimum of 2 M9K blocks are used per level. The BRAM 
usage can be optimised by moving the first 5 levels of the 
heap to memory mapped registers. We also implemented the 
shift-register and systolic array-based priority queue 
architectures described in Moon et al. (1997). The resource 
utilisation of both architectures are shown in Table 2. These 
architectures use distributed memory instead of BRAMs to 
store queue elements. Figure 13 shows that our queue 
architecture scales well for large queues, as compared  
to shift-register and systolic array-based architectures 
(Moon et al., 1997) in which the combinational logic 
required increases linearly with queue size. 

 

 

 

 

 

 



 Hardware-software architecture for priority queue management in real-time and embedded systems 329 

Figure 11 Performance comparison between the software and hybrid implementation of a priority queue, (a) software priority queue  
(b) hybrid priority queue (see online version for colours) 

  
(a)       (b) 

Note: Evaluated using the classic hold model, for four different priority increment distributions. 

Table 1 FPGA resource utilisation of the proposed priority queue design for different queue sizes 

Resources1 
Size 

Look-up tables (LUTs) Flip-flops Memory (bits) BRAMs 

31 1,411 (5.73%) 906 (3.68%) 1,920 (0.32%) 8 (12.12%)
63 1,996 (8.1%) 1,048 (4.25%) 3,968 (0.65%) 10 (15.15%) 
127 2,561 (10.4%) 1,182 (4.8%) 8,064 (1.325%) 12 (18.18%) 
255 3,161 (12.84%) 1,330 (5.4%) 16,256 (2.67%) 14 (21.21%) 

Note: 1Altera Cylone III FPGA contains: 24,624 LUTs, 24,624 flip-flops and 66 BRAMs. 

Table 2 FPGA resource utilisation of shift register and systolic array-based priority queue architectures (Moon et al., 1997) in 
comparison with proposed priority queue design 

Shift register Systolic array Proposed design 
Size 

LUTs Flip-flops 
 

LUTs Flip-flops 
 

LUTs Flip-flops 

31 4,995 (20.29%) 2,077 (8.43%)  8,560 (34.76%) 3,999 (16.24%) 1,411 (5.73%) 906 (3.68%)
63 10,275 (41.73%) 4,221 (17.14%)  17,520 (71.15%) 8,127 (33.00%)  1,996 (8.1%) 1,048 (4.25%) 
127 20,835 (84.61%) 8,509 (34.56%)  – –  2,561 (10.4%) 1,182 (4.8%) 
255 – –  – –  3,161 (12.84%) 1,330 (5.4%) 

Note: – Configurations for which the priority queue resources do not fit in Altera Cyclone III FPGA. 

Figure 12 Performance comparison between the software and hybrid implementation of a priority queue, (a) software priority queue (b) 
hybrid priority queue (see online version for colours) 

  
(a)       (b) 

Note: Evaluated using the up/down model, for four different priority increment distributions. 
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Figure 13 Comparing FPGA look-up table utilisation of the 
proposed priority queue design against shift register 
and systolic array-based priority queue architectures 
(Moon et al., 1997) for different queue sizes  
(see online version for colours) 

 
Note: Flip-flop utilisation also shows a similar trend. 

5.2 Scheduler 

For our analysis we have considered the following three 
configurations of an EDF scheduler. 

• Software scheduler: used as the baseline for evaluating 
our hybrid and hardware scheduler. Evaluated for up to 
2,048 tasks. 

• Hardware scheduler: executes scheduling algorithm, 
manages task queues, and supports up to 255 tasks in 
hardware. 

• Hybrid scheduler: the task queues of the software 
scheduler is replaced by our hybrid priority queue to 
accelerate scheduler operations. Evaluated for up to 
2,048 tasks. 

5.2.1 Scheduler overhead 

The overhead of the scheduler was measured for different 
sets of tasks and timer tick resolutions. Figure 14(a) shows 
the percentage overhead of software scheduler. The 
software scheduler overhead increases with the number of 
tasks and the timer-tick resolution. Most of this overhead 
results from time tick processing, where the scheduler 
periodically processes interrupt requests to check for new 
tasks and managing the task queues. This time-tick 
processing has been a limiting factor for implementing 
dynamic priority-based scheduling algorithms in embedded 
real time systems (Park et al., 2001; Adomat et al., 1996), 
since finer granularity time ticks lead to closer to ideal 
implementation of such schedulers. 

Figure 14(b) shows the scheduling overhead when the 
hardware scheduler is used. The results show that when the 
timer tick resolution is set to 0.1 ms and with 255 tasks, the 
scheduler overhead is less than 0.4%. This is a 90% 
reduction in scheduler overhead as compared to the 
software implementation. Most of the scheduling overhead 
is eliminated by the hardware scheduler, as the time tick 
processing and a majority of the scheduling functionality is 
migrated to hardware. A call to the software scheduler is 
now replaced by a custom instruction call to obtain the next 
task for execution or to preempt the current task. The 
overhead of managing the task queues in software is 
removed, as the scheduler runs in parallel to the processor 
and hardware priority queues are used to accelerate task 
queue management. The time tick processing overhead is 
reduced considerably as the software interrupt service 
routine just needs to execute a single instruction to check 
the availability of a higher priority task in the hardware 
scheduler. 

 
 

Figure 14 Performance of the software scheduler compared with hardware scheduler for task sizes less than or equal to 255,  
(a) software scheduler (b) hardware scheduler (see online version for colours) 

  
(a)       (b) 
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Figure 15 Performance of software scheduler compared with hybrid scheduler for task sizes greater than 255, (a) software scheduler  
(b) hardware scheduler (see online version for colours) 

  
(a)       (b) 

Figure 16 Variation in execution times of software and hardware scheduler, (a) software scheduler (b) hardware scheduler  
(see online version for colours) 

  
(a)       (b) 

 
Once the number of tasks exceeds 255, our scheduler 
executes in hybrid mode where the scheduling algorithm 
runs in software and queue operations are accelerated using 
our hybrid priority queues. The switching between hardware 
and hybrid scheduler mode is quick and has little or no 
overhead in part due to the hardware queues being memory 
mapped. The overhead of the scheduler in hybrid mode is 
50% less than the software scheduler overhead as seen in 
Figure 15. 

5.2.2 Predictability 

The predictability of the scheduler can be measured as the 
variation in the execution time of a single call to the 
scheduler. The variation in execution times of the hardware 
and software scheduler is shown in Figure 16. The 
difference between the best case and worst case execution 
time of the software scheduler is 50 times larger then the 
hardware implementation as shown in Figure 16. This 
variation for the software implementation is due to system 
factors such as changes in task-set composition, cache 

misses, etc. The processing time of the software priority 
queues (task queues) varies, as it depends on the current 
queue size and task parameters. These variations can make 
the scheduler a significant source of non-determinism in 
real-time systems. Since the system must be designed for 
worst case behaviour to ensure task deadlines are met, 
increases in execution time variation reduces CPU task 
utilisation (i.e., CPU becomes underutilised). On the other 
hand, the execution times of the hardware scheduler show 
more deterministic behaviour with very little variation. 
Migrating time-tick processing to hardware and the use of 
hardware accelerated priority queues results in tighter 
worst-case execution time bounds for the scheduler. This in 
turn leads to higher CPU task utilisation. Figure 17 shows 
the variation in execution time of the hybrid scheduler in 
comparison with the software scheduler. The use of hybrid 
priority queues in the software scheduler reduces the 
variation in the scheduler execution time by more than 50% 
as shown in Figure 17. 
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Figure 17 Variation in execution times of software and hybrid scheduler, a) software scheduler (b) hardware scheduler  
(see online version for colours) 

  
(a)       (b) 

 
6 Related work 

6.1 Hardware priority queues 

Many hardware priority queue architectures have been 
implemented in the past, most of them in the realm of  
real-time networks for packet scheduling (Moon et al., 
1997; Bhagwan and Lin, 2000; Ioannou and Katevenis, 
2007). Moon et al. (1997) compared four scalable priority 
queue architectures: first-in-first-out, binary tree, shift 
registers and systolic array-based. The shift-register 
architecture suffers from bus loading, as new tasks must be 
broadcasted to all the queue cells. The systolic array 
architecture overcomes the problem of bus loading at the 
cost of doubling hardware storage requirements. The 
hardware complexity for both the shift register and systolic 
array architecture increases linearly with the number of 
elements, as each cell requires a separate comparator. This 
makes these architectures expensive to scale in terms of 
hardware resources. 

Bhagwan and Lin (2000) proposed a new pipelined 
priority queue architecture based on p-heap (a new data 
structure similar to binary heap). A pipelined heap manager 
was proposed in Ioannou and Katevenis (2007) to pipeline 
conventional heap data structure operations. Both of these 
pipelined implementations of a priority queue are scalable 
and are designed to achieve high throughput, but at the 
expense of increased hardware complexity. 

The size of the priority queues discussed above is 
limited by the availability of on-chip memory. A hybrid 
priority queue system (HPQS) was proposed in Zhuang and 
Pande (2006), where both SRAM and DRAM was used to 
store large priority queues used in high speed network 
devices. A java-based hardware-software priority queue  
was proposed in Chandra and Sinnen (2010), where a  
shift-register-based priority queue (Moon et al., 1997) was 
extended by appending a software binary heap. Bloom et al. 
(2012) presented an exception-based mechanism for 
handling overflows in hardware priority queue, where 
additional data is moved to secondary storage by the 
exception handler. 

6.2 Hardware schedulers 

Several architectures (Adomat et al., 1996; Burleson et al., 
1999; Saez et al., 1999; Kuacharoen et al., 2003;  
Gupta et al., 2010; Kohout et al., 2003) have been proposed 
to improve the performance of schedulers using hardware 
accelerators. Most schedulers implement some kind of 
priority-based scheduling algorithm that requires a priority 
queue to sort the tasks based on their priority. A real time 
kernel called FASTHARD has been implemented in 
hardware (Adomat et al., 1996). The scheduler of 
FASTHARD can handle 256 tasks and eight priority levels. 
The Spring scheduling coprocessor (Burleson et al., 1999) 
was built to accelerate scheduling algorithms used in the 
Spring kernel (Stankovic and Ramamritham, 1991), which 
was used to perform feasibility analysis of the schedule. 
Kuacharoen et al. (2003) implemented a configurable 
hardware scheduler that provided support for three 
scheduling disciplines, configurable during runtime. A slack 
stealing scheduling algorithm was implemented in hardware 
(Saez et al., 1999) to support scheduling of tasks (periodic 
and aperiodic) and to reduce scheduling overhead. Nakano 
et al. (1995) implemented most of the/xITRON kernel 
functionality including tasks scheduling in a co-processor 
called STRON-1 which reduced the kernel overhead. A 
hardware scheduler for multiprocessor system on chip is 
presented in Gupta et al. (2010), which implements the Pfair 
scheduling algorithm. A real time task manager (RTM) that 
implements scheduling, time management, and event 
management in hardware is presented in Kohout et al. 
(2003). The RTM supports static priority-based scheduling 
and is implemented as an on-chip peripheral that 
communicates with the processor though a memory mapped 
interface. The SERRA run-time scheduler synthesis  
and analysis tool was presented in Mooney and  
Micheli (1997). The tool automatically generated a  
run-time hardware-software scheduler from system level 
specification. A hardware-software kernel was presented in 
Morton and Loucks (2004), which implemented a 
scheduling co-processor running EDF scheduling algorithm. 
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A hardware real-time scheduler coprocessor (HRTSC) 
architecture for NIOS II processor was described in  
Varela et al. (2012), which could be configured to run any 
priority-based scheduling discipline. 

The hardware priority queues described above use  
on-chip memory to store data, which limits the size of the 
queue due to resource constraints of the device. In our 
hybrid priority queue architecture, the hardware priority 
queue can be extended into off-chip memory and managed 
in both hardware and software, when the queue size exceeds 
hardware limits. The priority queue, when managed in 
hardware, supports constant time enqueue operations and 
dequeue operations in O(log n) time. The hardware 
utilisation of the our priority queue increases 
logarithmically with the queue size and avoids complex 
pipelining logic. 

One of the limitations of the hardware schedulers 
described above is that, once deployed, they can only 
support a fixed number of tasks. Our hybrid scheduler 
architecture overcomes this limitation by switching between 
hardware and software modes of operation depending on the 
number of tasks in the system. The transitions between 
hardware and software is fast and has low overhead. The 
hybrid priority queue is used as a part of our real-time 
scheduler to improve performance and timing predictability. 

7 Conclusions and future work 

A new hybrid priority queue architecture has been 
implemented, which can be managed in hardware and/or 
software. The priority queue when managed in hardware 
supports enqueue and peek operations in O(1) time, returns 
the top-priority element in O(1) time, and completes a 
dequeue operation in O(log n) time. The design enables 
quick and low overhead transition between hardware and 
software management. We utilise hardware logic to enhance 
the performance of queue operations even when managing 
the priority queue in software. As an application of the 
proposed priority queue architecture, a scalable hybrid 
scheduler is implemented that supports 255 tasks in 
hardware mode and up to an arbitrarily large number of 
tasks in hybrid mode. The scheduler when managed in 
hardware, showed up to 90% reduction in scheduler 
overhead when compared to the software scheduler. Our 
results show that the hardware scheduler has 98% less 
variation in execution time when compared to the software 
scheduler, thus giving more predictable execution times, 
which is necessary in high-performance real time systems. 

Avenues of future work include, 

1 reducing the rate of performance degradation as queue 
overflows into software, 

2 evaluating the use of our hybrid priority queue in 
discrete event simulation and network optimisation 
algorithms 

3 integrating our hybrid scheduler with Real-time Linux 
and characterising the scheduler performance. 
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Abstract—Shared caches in mixed criticality systems are a
source of interference for safety critical tasks. Shared memory not
only leads to worst-case execution time (WCET) pessimism, but
also affects the response time of safety critical tasks. In this paper,
we present a criticality aware cache design which implements
a Least Critical (LC) cache replacement policy, where a least
recently used non-critical cache line is replaced during a cache
miss. The cache acts as a Least Recently Used (LRU) cache if
there are no critical lines or if all cache lines are critical in a
set. In our design, data within a certain address space is given
higher preference in the cache. These critical address spaces
are configured using critical address range (CAR) registers. The
new cache design was implemented in a Leon3 processor core,
a 32bit processor compliant with the SPARC V8 architecture.
Experimental results are presented that illustrate the impact
of the Least Critical cache replacement policy on the response
time of critical tasks, and on overall application performance as
compared to a conventional LRU cache policy.

I. INTRODUCTION

Cache memories greatly improve the overall performance
of processors by bridging the increasing gap between processor
and memory speed. In real-time systems, it is necessary to
accurately estimate the worst-case execution time (WCET)
of a task to ensure tasks are completed within certain dead-
lines. The unpredictable behavior of shared caches complicates
WCET analysis [14], which leads to overestimation of WCET
and decreases processor utilization. Various techniques such
as cache locking and partitioning have been proposed to
make shared caches more predictable in real-time systems.
Higher predictability is often achieved at the cost of reduced
application performance.

In mixed criticality real-time systems, where tasks of
different criticalities are executed on the same platform, it is
necessary to ensure the timing constraints of critical tasks are
met under all conditions, while trying to maximize average
processor utilization. To achieve this, we need to mitigate the
interference of lower criticality tasks on the timing behavior
of higher criticality tasks. Shared caches in mixed criticality
systems is one such source of interference that can increase
the response time of critical tasks.

In this paper, we present a cache design for mixed critical-
ity real-time systems in which critical task data is least likely to
be evicted from cache during a cache miss. We assume data is
either critical or non-critical. An extension of the least recently
used (LRU) cache replacement policy, called Least Critical
(LC), is implemented as a part of our proposed cache design.
In our LC cache replacement policy, data from certain address
spaces are given preference in the cache. These critical address

spaces are defined by a critical address range (CAR), which is
configurable during run-time. Our design enables fine grained
control over classifying task data as critical, and allows run-
time configuration of a critical address space to better manage
cache performance.

II. RELATED WORK

In the context of shared caches in real-time systems,
various cache locking and partitioning schemes have been
proposed to improve predictability and overall performance
of real-time tasks. In cache partitioning, a portion of the
cache is assigned to a task and the task is restricted to
only use that assigned partition. This removes inter-task cache
conflicts. Software based partitioning techniques such as [5],
[2], [15], [6] require changing from address to cache-line
mapping to eliminate inter-task conflicts, which makes it
difficult for system-wide application. The use of hardware
based techniques [8], [12] is limited by fixed partition sizes
and coarse grained configurability, which may reduce cache
utilization. Cache locking allows certain lines of the cache
to be locked in place, which enables accurate calculation of
memory access times. While cache locking [13], [1], [11]
provides fine grained control over task data, it will lead to poor
utilization when data does not fit in the cache [13]. Dynamic
cache locking also increases overhead and can affect overall
task performance, if cache lines are locked unnecessarily.

More recently, cache management techniques for mixed
criticality real-time systems have been proposed to improve
predictability and performance of critical tasks. PRETI, a
partitioned real time cache scheme was presented in [7], where
a critical task is assigned a private cache space to reduce inter-
task conflict. The cache lines not claimed by a task are marked
as shared, and can be used by all tasks. [9] proposed a cache
management framework for multi-core architectures to provide
a deterministic cache hit rate for a set of hot pages used by
a task. Cache scheduling and locking techniques to manage
shared caches within the MC2 scheduling framework [10] was
presented in [4].

In our proposed cache design, we allow fine grained control
over task data by providing a mechanism to store critical
data in separate address spaces. This enables better cache
utilization as the non-critical cache lines are shared by all
tasks. By placing critical task data in separate address ranges,
which are given preference in cache, the overhead involved
in locking/unlocking individual cache lines is also eliminated.
Our design provides the flexibility to change critical address
ranges at run-time, which enables applications to better utilize
cache.



III. CRITICALITY AWARE CACHE DESIGN

We present a criticality aware cache design for shared
caches in mixed criticality real-time systems to reduce inter-
task conflicts and decrease response time of critical tasks. The
core of the design is a new cache replacement policy, called
Least Critical, which is described in detail next.

A. Least Critical Cache

Our Least Critical cache (LC cache) replacement policy
targets set associative shared caches in mixed criticality real-
time systems. The LC policy is an extension of a conventional
least recently used (LRU) cache. For each cache set, we keep
a count of lines which have data from critical address range.
We also maintain LRU order for critical and non-critical lines
in each cache set. During a cache hit, the LRU order of either
critical or non-critical lines in the cache set is modified based
on the line being accessed. When there is a cache miss, the
line to be replaced is selected based on the following order:
1. Empty cache line. 2. Least recently used non-critical cache
line. 3. Least recently used critical cache line, if all the lines
in a cache set are critical.

During a cache miss, if the data accessed or evicted is from
a critical address range, then the number of critical cache lines
in that set is updated. During a cache miss, a critical cache line
gets evicted only when all lines in a cache set are critical. The
LC cache replacement policy acts as LRU, if all the lines in
a cache set are from a critical address range or if there is no
critical data in a cache set. A working example of the LC cache
policy is shown in Figure 1.
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Fig. 1. A working example of our Least Critical cache replacement policy.
The LRU order, for both critical and non-critical data, is maintained using a
state transition table. C indicates critical cache lines.

B. Hardware Implementation

Figure 2 depicts a high level block diagram of the LC cache
architecture. It is composed of four primary components: 1)
CAR Compare, 2) Access History, 3) Tag Compare, and 4)
Data Control.

Critical Address Range (CAR) Compare. CAR registers are
used to identify critical data based on memory address. An
application configures these memory-mapped registers to spec-
ify where critical data resides in memory. The architecture

supports the use of multiple CAR registers sets, each defines an
address space for holding critical data. The memory address is
compared with CAR registers during cache access to identify
critical cache lines. The implementation of our architecture
additionally allows dynamically switching between our LC
cache policy and a conventional LRU policy at run-time.

Access History. The LRU order of critical and non-critical
lines along with the number of critical lines is maintained as
an access history, which is updated on every memory access.
In addition to the bits used to store the LRU order for each set,
logA+ 1 bits are required to track the number critical lines
in each set, where A is the cache set associativity.

Tag Compare. Generates cache hit/miss signals by comparing
requested memory addresses with tag bits associated with each
cache line.

Data Control. Provides an interface to the CPU to read/write
data from cache or main memory.
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Fig. 2. High level block diagram of the Least Critical (LC) Cache Controller.

The design allows run-time modification of the critical
address ranges. Since modifying CAR registers at run-time
impacts the coherency of the critical-cache-line count, a mech-
anism is needed to restore coherency. For maintaining co-
herency, a soft-reset mechanism is used to clear the critical data
line count of each cache set to zero. This is accomplished by
the application writing to a specific memory mapped register.
A soft-reset of the cache should be performed before updating
CAR registers.

Switching between LC and LRU. The LC cache can be
reverted to behaving as LRU by clearing the CAR registers
and triggering a soft-reset of the critical line counts. After a
soft-reset of the LC cache, existing critical cache lines default
to most recently used non-critical cache lines.

Application-level usage model of LC cache. To make
use of the LC cache, the application should tag criti-
cal data variables and the compiler should place those
variables in a separate section of memory. In GCC, this
could be accomplished using the ”section” attribute, which
specifies that a variable resides in a particular section.
Ex. int cdata attribute ((section(”critical”)));



Frequently used memory pages e.g., from the application could
also be made critical by configuring CAR registers.

When compared to cache locking, our technique avoids the
run-time overhead of locking mechanisms and allows critical
data to stay in cache. We also provide graceful degradation
when critical data is larger than the cache size, since the cache
acts as LRU when all the lines in a set are critical.

IV. EVALUATION METHODOLOGY

A. Hardware Platform and Configuration

The LC cache replacement policy was evaluated on a
XUPV5-LX110T, a Xilinx FPGA development and evalua-
tion platform that features a Virtex-5 FPGA, 256 MB RAM
(DDR2), JTAG and UART interfaces. Leon3, a 32bit soft-core
processor compliant with the SPARC V8 architecture, was
used to implement our cache design. Leon3 features a 7-stage
pipeline and separate instruction and data caches. In this paper,
we limit the analysis to data cache only. Our cache design
was implemented as a L1 data cache in the Leon3 processor
running at 33MHz with no memory management unit (MMU).
For our evaluation, we used a 4-way set associative data cache
of size 4KB with 16 bytes/line. The LRU cache supported by
Leon3 was used as the baseline to compare the performance of
our LC cache design. A non-intrusive hardware cache profiler
was designed to accurately measure the performance of the
data cache unobtrusively. The profiler could be configured to
measure data cache hits and misses for each task, along with
overall application statistics. The profiler sends the data offline
to a server through a UART interface.

TABLE I. CHARACTERISTICS OF BENCHMARK PROGRAMS USED TO
EVALUATE OUR CACHE DESIGN.

Task Name Code Size (bytes) Data Size (bytes) Execution Time (ms)1

CRC 1216 1048 0.16

FDCT 2940 132 0.49

FIR 572 2948 54.06

Compress 3316 2416 18.52

IPC 1092 256 - 8192 0.11 - 4.87

1 Execution time for task running alone.

B. Workload and Metrics

To evaluate the performance of our cache design, we used
a set of five real-time benchmark programs. The critical task
was an inverted pendulum controller (IPC). We varied the
resolution of the controller so that its critical data (matrix
used in the control computation) ranged from 256 to 8K bytes.
Background tasks were drawn from the WCET project [3] and
consisted of CRC, FDCT (discrete cosine), FIR (finite impulse
response filter), and compress. The characteristics of these
programs are shown in Table I. FreeRTOS, an open source
kernel designed for embedded real-time systems, was used
to run the benchmark applications on Leon3. FreeRTOS was
configured to execute a preemptive priority based scheduling
algorithm. The cache miss rate of both the critical task and
the overall application was measured for LC and LRU cache
replacement policies.

V. RESULTS AND ANALYSIS

To evaluate the performance of data cache, the benchmark
programs were executed using rate monotonic (RM) schedul-
ing. The period of non-critical tasks were kept constant at
200ms and the experiment was conducted for three different
critical task periods (50ms, 100ms, 200ms). Figure 3 shows
the cache miss rates for our critical task, as the size of its
critical data increases. With the LC policy, its references are
favored and we generally see a marked improvement over the
LRU policy for the critical task. When the size of the critical
task’s bytes reach the cache size (4K), we see an increase
in the critical task miss rate even for the LC replacement
policy. This is because the critical tasks’ references are due
to matrix multiplications, which will incur misses once the
cache size is exceeded. Finally at 8K critical data bytes, we
have exceeded the size of the 4K-byte cache. Then, LRU and
LC are indistinguishable for the critical task.

When using LRU, the miss rate of the critical task increases
with its period as shown in Figure 3. This is due to inter-task
interference increasing when the critical task is not executed
often. In comparison, the LC cache shows a predictable miss
rate for the critical task while performing 40% - 70% better
than the LRU cache. The LC cache reduces the impact of inter-
task conflicts on the critical task by giving preference to that
task’s critical data.

The cache miss rates for the overall application (critical and
noncritical tasks) is shown in Figure 4. Overall performance is
not adversely affected by LC’s favoring the critical task, until
we reach the size of the L1 cache at 4K bytes. Comparing
across the figures, at 4K, we see reason to favor the critical
task, improving its execution time at the expense of the
noncritical tasks. However, at 8K, favoring the critical task
benefits neither that task nor any other task. LRU would be a
better choice at this point.

VI. CONCLUSION

In this paper, we presented a criticality aware cache design
for mixed criticality real-time systems. A new cache replace-
ment policy, called Least Critical, was proposed where data
within a critical address space is given higher preference in the
cache. Our design enables fine grained control over classifying
task data as critical, and allows run-time configuration of a
critical address space to better manage cache performance.
Our experimental results show that the cache miss rate of
a critical task is reduced by up to 70% when using LC
cache in comparison with LRU cache. We also show that
increasing critical data size deteriorates the performance of
non-critical tasks. In order to manage overall performance of
the application, we recommend limiting critical data size to
less than cache size, or switching to a LRU cache policy at
run-time when this threshold is surpassed. Avenues for future
work include, 1) extending the analysis to instruction cache and
2) enabling support for data with multiple criticality levels.
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Fig. 3. Critical Task: Performance of LC cache when compared to LRU cache. Critical task run with CRC, FDCT, Compress, and FIR. Non-Critical Task
Period = 200 ms
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Fig. 4. Overall Application: Performance of LC cache when compared to LRU cache. Critical task run with CRC, FDCT, Compress, and FIR. Non-Critical
Task Period = 200 ms
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