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Report Title
Final Report: Spray and Combustion of Gelled Hypergolic Propellants for Future Rocket and Missile Engines
ABSTRACT

This final report contains a summary of findings associated with research related to the development of gelled and nongelled hypergolic
propellant spray and combustion technologies for future rocket and missile propulsion systems. The research has utilized recent
breakthroughs in modeling and diagnostic techniques to substantially improve the state of knowledge. New diagnostic and numerical
techniques were developed to resolve the entire range of length and time scales (from atomistic to device levels). Emphasis was placed on
both microscale and macroscale processes that dictate the propellant interfacial dynamics and chemical initiation mechanisms, as well as the
propellant atomization, mixing, and flame development. In this research program, the team of researchers made significant progress in
several areas, including, a) property measurements of gelled and nongelled fuels, b) examination of dynamics of droplet collisions, c) jet
atomization, spray formation, and mixing of nonreacting gelled and nongelled liquid streams, d) simulation of interfacial reactions at
atomistic & molecular scales, e) laser spectroscopy of reactions at interfaces, f) confined interaction and droplet studies of various gelled and
nongelled hydrazine fuels and nitric acid, g) flow visualization studies of impinging liquid streams in a microreactor, h) modeling and
experiments of MMH/NO?2 reaction mechanism and reduction, i) modeling and simulation of nonreacting liquid stream impingement and
spray formation, and j) design of subscale combustor testing and diagnostics.
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