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INTRODUCTION 

The goal of this innovator award is to continue to develop and apply RNAi-based 
screening methods to discover new routes toward breast cancer therapy. The project has three 
sets of goals. First is to integrate genomic and genetic information on available breast cancer 
cell lines to identify tumor-specific vulnerabilities and to understand genetic determinants of 
therapy resistance. Second is to probe the roles of breast cancer stem cells, with a particular 
emphasis on microRNAs. The third is to examine regions that determine familial susceptibility to 
breast cancer by applying novel, focal re-sequencing methods developed in the laboratory. 
 
BODY 
 
Third (V3)/Fourth (V4)/Fifth (V5) generation RNAi libraries 
 
 Although our second-generation shRNA library was a major improvement over our first 
version (1), we knew that even given improved designs, only a fraction of constructs showed 
highly penetrant knockdown. Based on our previous knowledge from shRNA screening, we also 
knew that genuine shRNA hits tend to be hairpins of high efficacy. We therefore needed to 
develop a clever, large-scale, high throughput, shRNA validation approach toward measuring 
hairpin efficacy. This led to the development of our ‘sensor assay’ for shRNA potency, a project 
we undertook in collaboration with Scott Lowe’s lab (CSHL & MSKCC) (2). In essence we 
produced shRNA sensor libraries by using oligonucleotides (185nt), which carry both the shRNA 
sequence and its corresponding target site, synthesized on DNA microarrays (Agilent 
Technologies Inc.). After converting the single-stranded oligonucleotides into double-stranded 
DNAs, the PCR amplified constructs are inserted into a vector and repaired with a second insert 
to form two independent transcriptional units. One of which expresses the shRNA from an 
inducible promoter and one of which expresses the target (composed of a Venus fluorescent 
marker with the target site inserted into the 3’UTR of the reporter) constitutively. In this way, 
each individual cell reports the activity of a particular shRNA, with the readout of efficiency being 
a change in expression of the fluorescent reporter. Using this method, we were able to measure 
the activity of more 22,000 different shRNAs in a single pool. We applied this approach to 
measure the efficacy of the top 12 designs of shRNAs for every gene in the human genome 
based on the DSIR siRNA prediction algorithm (3). This generated approximately 250,000 
measurements of shRNA efficacy, the largest such dataset ever generated, and provided the 
training data to devise a predictive algorithm (we termed shERWOOD) that can essentially 
predict the results of functional, sensor testing of shRNAs in silico. The top 6 DSIR designs 
were used to produce our third-generation shRNA libraries (for human and mouse genomes). 
This shRNA library was used in all of our genomewide shRNA screens of breast cancer cell 
lines covering all three disease treatment subtypes. This huge undertaking was done in 
collaboration with Stephen Elledge (Harvard Medical School). 
 All algorithms that predict effective RNAi tools tend to choose sequences that being with 
a U. This is thought to have a structural basis in the interaction between the RNA and 
Argonaute, the key core of the RNAi effector complex. That 5’ residue has been shown to reside 
in a binding pocket, which favors interaction with U. Therefore, the sequence space available for 
effective RNAi tools is really restricted to only ¼ of the transcriptome. When the small RNA 
interacts with Argonaute, its 5’ end is not available for pairing to the target RNA. Therefore, even 
though the 5’ U contributes to RISC binding, it is irrelevant to target recognition. We therefore 
tested the idea that we could expand available sequence space by simply releasing the 
aforementioned constraint, in essence predicting on every positing in the transcriptome and 
changing the small RNA guide that would pair to that site so that it contained a 5’ U. This 
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produced even higher scores in the algorithm and was especially important for small genes with 
limited numbers of potential target sequences. 
 To build our version 4 (V4) libraries, we generated a collection of over 1.3 million 
oligonucleotides corresponding to shERWOOD shRNA predictions encompassing the human, 
mouse, rat, and fly genomes. These used both the conventional genomes and the 1U strategy. 
We confined our fourth generation libraries to REFSEQ genes and employed a series of 
heuristics to maximize the likelihood that our target sites would fall within constitutive exons. We 
cloned these into our basic shRNA expression vector and produced arrayed collections of 
sequence-verified clones targeting the human, mouse, and fly genomes. The completed V4 
human shRNA library is composed of 76,861 shRNAs targeting 18,651 genes. The mouse V4 
library currently has 58,113 shRNAs targeting 18,769 genes with 11,936 genes represented by 
three or more shRNAs. 
 During the first quarter of 2014, we began construction of our fifth-generation shRNA 
libraries. This V5 design, termed ‘ultramir’ shRNAs, consists of shERWOOD predicted hairpins 
inserted into an improved microRNA shell, resulting in more than 2-fold increase in mature small 
RNA production compared to our V4 design. This increase translates to a significant 
improvement in efficacy. We have recently submitted a manuscript describing the shERWOOD 
algorithm and the ultramir shRNA design to Molecular Cell and it is currently under review. See 
attached manuscript of the title “ A computational algorithm to predict shRNA potency “. 
 
 
Progress of Genomewide shRNA screens of breast tumor-derived cell lines 
 

Breast Cancer Cell 
Lines Screening Conditions Status 

Her2+ treatment 
category 

  
JIMT1 No drug (straight-lethal) Screen completed & sequenced 

JIMT1 Lapatinib IC20 Screen completed & sequenced 

MDA-MB-453 No drug (straight-lethal) Screen completed & sequenced 

MDA-MB-453 Lapatinib IC20 Screen completed & sequenced 

MDA-MB-361 No drug (straight-lethal) Screen completed 

MDA-MB-361 Lapatinib IC20 Screen completed 

EFM-TR No drug (straight-lethal) Screen completed 

EFM-TR Trastuzumab (15ug/ml) Screen completed 

EFM192A No drug (straight-lethal) Screen completed & sequenced 

EFM-192A Trastuzumab (15ug/ml) Screen completed & sequenced 

SkBr3 No drug (straight-lethal) Screen completed & sequenced 

SkBr3 Trastuzumab (15ug/ml) Screen completed & sequenced 

Sk-TR No drug (straight-lethal) Screen completed & sequenced 

Sk-TR Trastuzumab (15ug/ml) Screen completed & sequenced 

HCC1954 No drug (straight-lethal) Screen completed & sequenced 
 
ER+ treatment category 

 
  



	
   6	
  

ZR75-1 Parental  + E2 Screen completed & sequenced 

ZR75-1 Parental - E2 Screen completed & sequenced 

ZR75-1Parental  - E2 / + Tamoxifen  Screen completed & sequenced 

ZR75-1-EDR + E2 Screen completed & sequenced 

ZR75-1-EDR - E2 Screen completed & sequenced 

ZR75-1-TAMR + E2 Screen completed & sequenced 

ZR75-1-TAMR - E2 / + Tamoxifen Screen completed & sequenced 

MCF7 Parental + E2 Screen completed 

MCF7 Parental - E2 Screen completed 

MCF7 Parental - E2 / + Tamoxifen Screen completed  

MCF7 -EDR + E2 Screen completed  

MCF7 –EDR - E2 Screen completed 

MCF7-TAMR + E2 Screen completed 

MCF7-TAMR - E2 / + Tamoxifen Screen completed 

T47D No drug (straight-lethal) 
Screen completed/microarray 

analysis completed 
TN/Basal treatment 

category 
 

  

Hs578T No drug (straight-lethal) Screen completed 

MDAMB231 No drug (straight-lethal) Screen completed 

MDAMB468 No drug (straight-lethal) Screen completed 

MDAMB436 No drug (straight-lethal) 
Screen completed / microarray 

analysis completed 

HCC1143 No drug (straight-lethal) 
Screen completed / microarray 

analysis completed 

HCC1937 No drug (straight-lethal) 
Screen completed / microarray 

analysis completed 

SUM149 No drug (straight-lethal) 
Screen completed / microarray 

analysis completed 

SUM1315 No drug (straight-lethal) 
Screen completed / microarray 

analysis completed 
	
  

We have set out to perform 24 genome-wide RNAi screens on breast cancer cell line 
models of all three treatment subgroups and we have exceeded our goal. The Hannon/Elledge 
groups has completed 38 genome-wide RNAi screens (in triplicate) using our second-
generation (75,905 shRNAs targeting 19,011 genes) and third-generation (74,304 shRNAs and 
targeting over 19,000 genes) shRNA libraries.  

 
Genome-wide RNAi screens of Her2-positive models  

 
Approximately 20% to 25% of invasive breast cancers exhibit overexpression of the 

human epidermal growth factor receptor (HER) 2 tyrosine kinase receptor. As elevated HER2 
levels are associated with reduced disease-free and overall survival in metastatic breast cancer, 
therapeutic strategies have been developed to target this oncoprotein. Trastuzumab, a 
recombinant humanized monoclonal antibody directed against an extracellular region of HER2, 
was the first HER2-targeted therapy approved for treatment of HER2-overexpressing metastatic 
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breast cancer. This drug is active as a single agent and in combination with adjuvant 
chemotherapy (either in sequence or in combination) in HER2-positive breast cancers. 
However, the objective response rates to trastuzumab mono-therapy were low (12% to 35%), 
and for a median duration of nine months, suggesting a majority of HER2-overexpressing 
tumors demonstrated de novo resistance. Phase III trials revealed that the combination of 
trastuzumab and paclitaxel or docetaxel could increase response rates, time to disease 
progression, and overall survival compared to trastuzumab mono-therapy. For HER2-positive 
patients who had not received prior chemotherapy, the median time to progression in response 
to trastuzumab as single-agent was less than five months. In patients who received trastuzumab 
and chemotherapy, the median time to progression was 7.5 months. Thus, the majority of 
patients who achieve an initial response to trastuzumab-based regimens develop resistance 
within one year. Elucidating the molecular mechanisms underlying acquired resistance to 
trastuzumab is essential for improving the survival of HER2-positive, metastatic breast cancer 
patients. The second-generation drug, lapatinib, targeting both HER1 and HER2 receptors, has 
demonstrated efficacy in killing trastuzumab-resistant human breast cancer cells. Unfortunately, 
intrinsic resistance to lapatinib has been observed in a number of metastatic, HER2-positive 
tumor derived cell lines. 

To identify genes conferring secondary (acquired) resistance to trastuzumab from the 
datasets, we set a cutoff of FDR<0.25 and filtered for genes that depleted only upon 
trastuzumab treatment in the drug resistant line, SKTR, but not in either of the two drug 
sensitive lines, SKBR3 and EFM192A. This produced a list of 25 genes (Figure 1: Heatmap of 
the 25 genes), which included those from PI3K-mTOR signaling (PI4K2A, Raptor, Insulin 
receptor, and EIF4A), RNA processing (PRPF8, U2AF1, and LSM6), mitotic checkpoint 
(BUB1B), and genes of relatively less well-known function. Identification of the insulin receptor 
and members of the PI3K-mTOR signaling pathway fulfills our expectation of finding these 
genes in this screen since they are known to be functionally associated with trastuzumab 

resistance. 
However, 

TNFSF11/RANKL 
(ligand of the 
receptor activator 
of nuclear factor 
kappa B), a gene 
of significant 
relevance to 
breast cancer, 
was also found in 
the screen as one 
of two most highly 
depleted hits. 
Figure 1. Heatmap of 
shRNAs (FDR<0.25) for 
gene targets that 
sensitize drug resistant 
(SKTR) and not drug 
sensitive cell line models 
(SKBR3 and EFM192A). 
These are potentially 
novel candidates for 

trastuzumab 
combination therapy. 
	
  

 
Figure 2. Competition assays to validate selected hits. Cell line: SKTR (Drug resistant), Drug = Trastuzumab. 
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Figure 3. Competition assays to validate selected hits. Cell line: SKBR3 (Drug Sensitive), Drug = Trastuzumab.

	
  
We validated 17 of the 25 targets (Figure 1) by using competition assays and the results 

demonstrated that these target genes specifically sensitize the trastuzumab resistant cells 
(SKTR) when silenced by RNAi (Figure 2 and 3). In the competition assay, shRNA-expressing 
cells (GFP+) are mixed with an equal proportion of parental cells (no shRNA). Each cell line 
mixture is plated in triplicate and either untreated or treated with drug. The percentage of GFP+ 
cells remaining is then tracked over time.  We prioritized our effort by selecting 
RANKL/TNFSF11 as the first target for further validation due to the existence of a clinically 
approved inhibitor called Denosumab. Xenografts of these cell lines are currently being tested to 
validate whether RANKL is a target for transtuzumab sensitization in vivo. Ultimately, our goal is 
to test whether this combination approach will have an impact on reducing tumorigenicity in 
primary human breast cancer cells from patients that are resistant to trastuzumab therapy. In 
addition, we will continue to pursue the remaining targets in further validation studies. 

Denosumab is a humanized monoclonal antibody designed to inhibit RANKL for treating 
various bone related conditions. This drug was approved to treat giant cell tumor of the bone, 
breast cancer patients on adjuvant aromatase inhibitor therapy to increase bone mass, 
postmenopausal women with risk of osteoporosis, and for the prevention of skeletal-related 
events in patients with bone metastases from solid tumors. Denosumab is highly specific as it 
binds human RANKL, but not murine RANKL, human TRAIL, or other human TNF family 
members. RANKL and its receptor RANK are best known for their essential function in bone 
remodeling and bone-related pathologies including osteoporosis and arthritis. The dysregulation 
of the RANKL-RANK system is the major cause of osteoporosis in post-menopausal women. 
Appropriate RANKL signaling is also required for the formation of a lactating mammary gland, 
and both RANKL and RANK are expressed under the control of progesterone, prolactin, and the 
parathyroid hormone protein-related peptide (PTHrP). Recent data also implicate RANKL and 
RANK in the control of metastasis of breast cancer cells to the bone and sex hormone-driven 
primary mammary cancer. Unfortunately, synthetic progesterone derivatives (progestins), such 
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as medroxyprogesterone acetate (MPA), used in hormone replacement therapy and 
contraceptives have been demonstrated to induce the RANKL-RANK system, providing growth 
and survival advantage to damaged mammary epithelium, a requisite for tumor initiation. In 
addition, recent evidence links Her2 expression to RANKL-RANK signaling. Her2 expression is 
increased in luminal tumor cells grown in mouse bone xenografts, as well as in bone 
metastases from patients with breast cancer as compared to matched primary tumors. The 
increase in Her2 protein levels was not due to gene amplification, but rather was mediated by 
RANKL in the bone environment. 

We have analyzed the genome-wide RNAi screen data of JIMT1 (no drug) and MDA-
MB-453 (no drug) for common genes that are essential for de novo lapatinib resistance. This 
common gene list was filtered against essential genes for the ER-positive cell line ZR75-1 to 
remove those genes that might also be essential for ER-positive breast cancer cells. This 
analysis produced a list of candidate genes that is specific for Her2 driven cancer cells. 
Molecular pathways that are enriched for this set of genes  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

include the cell cycle, protein ubuiquitination, proteasome, organelle biogenesis and 
organization, and others. Among the candidate genes is LGR5/GPR49, a cell surface marker 
involved in self-renewal in normal and cancer cells (e.g. colon cancer). Also of note is TOP1  
(topoisomerase I), one of the genes that is predicted to be essential for JIMT1 and MDA-MB-
453 cells to survive. We will validate a selected list of targets including TOP1 (using both RNAi 
and small molecule inhibition with irinotecan) and LGR5 for the survival of de novo lapatinib 
resistant cells.  
 We have also analyzed the same data in a manner to inform us of potential modifiers of 
lapatinib resistance, particularly genes that could be targeted to sensitize de novo lapatinib 
resistant cells to the drug. Molecular pathway enrichment analysis of genes common to both 
JIMT1 and MDA-MB-453 suggests that several molecular complexes could be targeted to 
sensitize lapatinib resistant cells to the drug, including the APC/C (anaphase promoting 
complex/cyclosome), proteasome, and coatamer complexes. Other highly enriched cellular 
pathways include mTOR, EIF2, EIF4/p70S6 kinase, glucocorticoid receptor, and protein 
ubiquitination (Figures 1 and 2). 

Validation will be carried out on a panel of de novo lapaitinib resistant cell lines 
(including JIMT1 and MDA-MB-453), lapatinib sensitive lines, and normal (immortalized) human 
epithelial cells (HMEC) in vitro. Promising candidates will be further tested for their ability to 
sensitize lapatinib resistance in vivo. 
Genome-wide RNAi screens of Triple-negative models 

	
  

Figure 5.  Interaction network  of lapatinib 
sensitizing genes for JIMT1 cell line (Ingenuity). 

	
  

	
  

	
  

Figure 4. Interaction network  of lapatinib 
sensitizing genes for MDA-MB-453 cell line 
(Ingenuity). 
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Triple-negative (TN) breast cancer accounts for 15-20% of all breast cancer cases, and 

is associated with poor prognosis and unfavorable clinical outcome. Our goal is to uncover 
genetic dependencies of survival to define heterogeneities between different TN tumor-derived 
cell lines and on the identification of pathways/genes that can be candidates for targeted 
therapy. Cells defective in DNA repair (BRCA1-negative) have been demonstrated to be 
sensitive to strategies involving PARP inhibition. We have focused our effort to find new targets 
for BRCA1 mutant, TN, cancer cells. Candidate genes essential for proliferation or survival for 
BRCA1-negative cell lines were identified by comparing lethal signatures of BRCA1 -/- 
(HCC1937, SUM149, SUM1315, and MDA-MB-436) and BRCA1 +/+ cells (HCC1143, 
HCC1954, and T47D). Initial validation of candidates uncovered four potential BRCA1 synthetic 
lethal genes. This study will be continued beyond the funding period of this grant. 
 

 
 
 
 
 
 
 
 
 
 
 
Figure 6. 
Validation of 
hits from 
BRCA1 
synthetic lethal 
screens. 
 
 
 
 
 
 
 
 
 
 
 
 

Focused RNAi Screens 
 

It has become increasingly clear that tumor cells, like normal cells, are driven by self-
renewing compartments known as tumor-initiating or cancer stem cell populations. These cells 
exhibit higher resistance to targeted therapy than the rest of the tumor cell population. Thus it is 
important to understand the essential pathways that drive tumor-initiating cells and how these 
signatures differ from those that enable normal breast progenitor cells to survive. To mark 
progenitor cells in normal mouse mammary epithelial cells, we have applied an approach 
developed by E. Fuchs laboratory (Rockefeller University) to identify/purify label-retaining cells 
(LRCs) that mark the skin stem cell niche. The system is built upon the premise that stem cells 
are slow cycling and active for the keratin5 promoter. It utilizes a tetracycline-responsive 
promoter driving histone 2B-GFP (H2B-GFP) in a transgenic mouse model expressing the tet 
repressor-VP16 (tTA) transgene from the K5 promoter. In the absence of doxycyline, the 
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expression of GFP is high in epithelial cells. After feeding the animal doxycycline for a period of 
several weeks only very small populations of epithelial cells retain GFP fluorescence.  

Using this system we have isolated LRCs from mammary epithelial cells and have 
demonstrated their self-renewal potential both in vitro (mammosphere formation assay) and in 
vivo (reconstitution of mammary gland). Furthermore, we have profiled the H2B-GFP+ cells for 
transcriptome, methylome, and miRNA expression analysis. Comparison of the transcriptomes 
of LRCs and other subpopulations of the mammary gland (luminal ductal cells, luminal alveolar 
cells, luminal progenitors, myoepithelial progenitors, and myoepithelial cells) has allowed us to 
identify new a cell surface-specific marker for the H2B-GFP+ cells, CD1. CD1-specific cell 
populations were also found to be present in human basal breast cancer cell lines. We are 
currently testing if these human CD1-specific tumor cell populations have self-renewing 
capacity.    

To find essential genes/survival pathways for H2B-GFP+ breast cancer progenitor cells, 
we have made a focused shRNA library targeting the MaSC (mammary gland stem cell) genes, 
which are highly expressed in the H2B-GFP+ compartment but not in other normal mammary 
cell types. This MaSC shRNA library was then used to perform a well-by-well RNAi screen to 
test the effect of each individual shRNA on the survival of COMMA-D cells (normal mouse 
mammary epithelial cell line) and 4T-1 cells (mouse mammary basal-like, metastatic cell line). 
Several candidate genes, including CD1, from these screens are being tested to determine 
whether they are essential for survival in human triple-negative breast cancer cells. 

This study was published in the journal Proceedings of the National Academy of 
Sciences and is titled “ Molecular hierarchy of mammary differentiation yields refined markers of 
mammary stem cells “ (see attachment). 

To explore the role of epigenetics in cancer cell survival, we have completed another 
well-by-well RNAi screen in the mouse metastatic, basal-like, 4T1 cells using a collection of 
1,100 shRNAs targeting 243 genes involved in chromatin regulation. BRD4, a gene that was 
recently identified as a therapeutic target in acute myeloid leukemia (C. Vakoc, CSHL), was one 
of the top hits (three independent shRNAs were identified). After completion of initial candidate 
validations, we chose to focus on the gene BPTF (involved in chromatin remodeling), which so 
far has demonstrated its requirement for the survival of human breast cancer cell lines 
representing all three treatment subgroups. Additional preclinical studies are being carried out to 
determine whether BPBF could be a new target for clinical testing. 
 
Regulation of breast tumor-initiating cells by miRNAs 

 Accumulating evidence suggests that cancer stem cells are key to tumor formation, 
progression, and metastasis. This subset of tumor cells may resist conventional therapies 
providing a potential reservoir for relapse. We have previously discovered that the 
stem/progenitor compartment of comma-1D cells fail to express the let-7 and miR-93 miRNAs 
and their enforced expression can deplete this population of stem cells (4). Further studies of 
miR-93 have uncovered that it can modulate the fate of breast cancer stem cells by regulating 
their proliferation and differentiation states. In claudin-low SUM159 cells, expression of miR-93 
induced MET (Mesenchymal-Epithelial Transition)  and is associated with the downregulation of 
multiple stem cell regulatory genes, including JAK1, AKT3, SOX4, EZH1, and HMGA2, resulting 
in cancer stem cell depletion. Enforced expression of miR-93 completely blocked tumor 
development in mammary fat pads and development of metastases following intracardiac 
injection in xenograft mouse models. This work was done in collaboration with Max Wicha 
(University of Michigan) and was published in PLOS Genetics (see attachment). 
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Epigenetic characterization of the mammary epithelial lineage 
  
 Using whole-genome shotgun bisulfate sequencing to generate single nucleotide-
resolution methylation profiles, a method we developed in 2011(5) (see attachment), we have 
fully characterized the DNA methylation status and gene expression patterns of mammary gland 
cells of nulliparous (virgin) and parous (two to three sets of pregnancies) mice. 

 Having established that H2b-GFPh (GFPh=GFP+) MaSCs have mammary gland 
reconstitution properties, we endeavored to characterize their global mammary gland DNA 
methylation patterns. Using a combination of cell surface markers, six distinct cell types were 
isolated via FACS to a purity of >90%: H2b-GFP MaSCs (Lin-CD24+CD29hH2b-GFPhCD61-), 
myoepithelial progenitor cells (Lin-CD24+CD29hH2b-GFP-/lCD61+), myoepithelial differentiated 
cells (Lin-CD24+CD29hH2b-GFP-CD61-), luminal progenitor cells (Lin-

CD24hCD29+CD61+CD133-), luminal ductal cells (Lin-CD24hCD29+CD61-CD133+), and luminal 
alveolar cells (Lin-CD24hCD29+CD61-CD133) (Figure 7).	
  	
  	
  	
  

In all sequenced samples, we 
achieved an optimal genome 
read coverage (with a mean of 
nine-fold), enabling us to 
interrogate the status of the 
majority of CpG sites in the 
genome. Hierarchical clustering 
of the methylation levels on 
promoter-associated CpGs 
effectively separated the six cell 
types into two major branches 
(Figure 8A). The same 
compartment clustering was 
demonstrated after pair-wise 
comparision among all different 
cell types of the levels of 
methylation of Differentiated 
Hypomethylated Regions 
(DMRs) (Figure 8B). The notion 
that mammary gland cells are 

segregated into two compartments was first suggested based on gene expression analysis of 
murine and human cells. 

We next defined luminal-differentiated DMRs (luminal alveolar and luminal ductal cell 
types) (Figure 8C, far left panel) and myoepithelial differentiated DMRs (Figure 8C, left panel) 
and plotted the levels of DNA methylation for H2b-GFP+ cells for the same regions. Patterns of 
DNA methylation of H2b-GFP+ cells greatly overlapped with those of basal differentiated cells, 
supporting the idea that a MaSC-enriched population is biased towards the basal compartment. 
Conversely, analysis of H2b-GFP DNA methylation levels in luminal progenitor DMRs (Figure 
8C, right panel) and in myoepithelial progenitors DMRs (Figure 8C, far right panel) revealed a 
more intermediate methylation status, but still basally-biased, at regions where luminal 
progenitors and basal progenitors showed opposing methylation patterns. This observation 
could suggest that differentiation from a more stem-like cell type to a more lineage-committed 
cell type involves both acquisition and loss of DNA methylation.   Regulation of epigenetic 
mechanisms at the mammary gland stem cell level is important in the control of self-renewal 
and differentiation, since the default condensed methylation levels in stem cells accommodate 
changes in DNA methylation that would dictate lineage specificity, a hypothesis experimentally  

Figure	
  7	
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supported in variety of tissues. In order to understand how DNA methylation orchestrates 
mammary gland cell differentiation or lineage specification we carried out RNAseq for each one 
of the cell types and computed their RPKM values. We next defined three sets of differentially 
expressed genes: H2b upregulated genes, basal upregulated genes (all genes commonly 
upregulated in H2b-GFP cells, myoepithelial progenitor cells and myoepithelial differentiated 
cells), and luminal upregulated genes (all genes commonly upregulated in luminal progenitor 
cells, luminal alveolar cells and luminal ductal cells). Each set contained approximately 50 
genes (Figure 9A). We next collected data regarding methylation levels surrounding the 
transcription start site (TSS) of genes upregulated in each one of these gene pools (Figure 9B). 
In all six mammary gland cell types, genes differentially expressed in H2b cells displayed 
unchanged DNA methylation levels upstream of the TSS and slightly lower levels downstream 
of the TSS relative to genes that were not differentially expressed. The landscape of methylation 
levels across the TSS of upregulated genes displayed a greater degree of differential 
methylation 1-2kb downstream of the TSS. Collectively, our results contributed to the 
elaboration of the first mouse mammary methylome and provided important insights about the 
dynamics of DNA methylation across a spectrum of mammary gland cell types. We are currently 
analyzing DNA methylation libraries from CD1d-isolated MaSCs to further improve our 
knowledge of DNA methylation dynamics of mammary gland cells. 
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Having documented the DNA methylation signature of all mammary cells from nulliparous 
(virgin) mammary gland, we next generated parous mammary methylome libraries using the 
same cell sorting strategy described above. Female mice were allowed two full pregnancy 
cycles, including birth, nursing and full involution (two months). Due to increased cell division 
rates, no H2b-GFP+ cells were present in the glands of parous mice. We are currently preparing 
DNA methylation libraries from CD1d-isolated MaSCs to investigate the effects of pregnancy in 
the MaSC compartment.  Genomic coverage for the parous libraries resembles that achieved 
for the nulliparous methylome (approximately 9-fold coverage). 

In order to map DMRs we 
analyzed both libraries in 
a bidirectional pair-wise 
fashion, by comparing 
each cell to its 
corresponding cell type 
before and after 
pregnancy (Figure 
nulliparous DMRs (lower 
methylation levels before 
pregnancy) was 
substantially smaller 
(dashed line, upper right 
side) than the number of 
parous DMRs (lower 
methylation levels after 
pregnancy), suggesting a 
dramatic loss of 

methylation by most cell types post-pregnancy (dashed line, lower left side). The loss of 
methylated sites after pregnancy could translate into changes in gene expression, an 
observation that was previously suggested to be the case for a small subset of genes. We are 
currently comparing RNAseq libraries of all mouse mammary cell types before and after 
pregnancy to more precisely identify the changes in gene expression patterns.  

The luminal compartment, 
exhibited the most DNA 
methylation changes after 
pregnancy. The extent of 
these differences was 
reflected in the number of 
acquired hypomethylated 
sites (DMRs) but was most 
importantly also correlated 
with DNA methylation loss. 
Among all luminal cell types 
(progenitor cells, alveolar 
cells and ductal cells), a 
great portion of shared 
DMRs occurred nearby 
binding sites recognized by 
the STAT transcription factor 
(Figure 11), which might 
suggest a role for this family 
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of proteins during pregnancy, lactation and involution. Interestingly, the STAT-associated DMRs 
were further enriched for a class of genes with known roles in apoptosis and potential antitumor 
activity. 

STAT transcription factors have been previously suggested to play important roles in 
mammary cells. STAT5a and STAT5b have been implicated in the transcriptional activation of 
milk protein in response to progesterone levels, although STAT5a and STAT5b protein levels 
only slightly increased during pregnancy and lactation. Lack of STAT5a expression resulted in 
decreased lobuloalveolar development during normal mammopoiesis and blocked milk 
production in the first pregnancy, although ductal density and milk production resumed at the 
onset of a second pregnancy. Conversely, overexpression of full-length STAT5a not only 
induced lobuloalveolar development but also delayed involution, whereas overexpression of a c-
terminally truncated form of STAT5a accelerated apoptosis during involution. Further 
understanding of how STAT transcription factors regulate gene expression in mammary cells, 
including how this regulation is susceptible to changes during pregnancy could provide a clear 
foundation for evaluating the role of STATs in pregnancy-induced breast cancer protection. 
 
Identification of potential new breast tumor suppressor genes 
 
 SNP-based linkage analysis in 41 non-BRCA1/2 families identified several candidate 
regions containing breast cancer susceptibility genes (6). The large size of the candidate 
regions and the high number of genes described within them, led us to couple linkage analysis 
with high throughput sequencing-based mutational screening as a new strategy for variation 
detection. For this study we used hybrid selection, a method developed in my lab (7), of discrete 
genomic intervals on custom-designed microarrays as an exon-specific enrichment of all the 
genes located within two complete candidate regions on chromosomes 3 and 6. This study was 
performed in collaboration with Javier Benitez (Spanish National Cancer Research Center). This 
work was published in PLOS One in 2010 (see attachment). 
 
Identification of structural variations in breast cancer 
 
 Cancer is a disease driven by genetic alterations such as single nucleotide variations 
(SNVs), structural variations (SVs), and anueploidy. Large scale SVs including deletions, 
insertions, inversions, tandem duplications, translocations, and more complex rearrangements 
could alter gene function to favor tumorigenesis. We have developed a method to detect 

structural variations by constructing/Illumina sequencing of mate-pair 
genomic DNA libraries of 5kb fragment size (see Figure 12).	
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We set of out to characterize structural variation in a panel of ER-positive human breast cancer 
cell lines as a proof of principle. We constructed mate pair libraries from seven cell lines (MDA-
MB-134IV, MDA-MB-175VI, MDA-MB-415,  MCF-7, CAMA-1, T47D, ZR-75-1), and using 
human mammary epithelial cells (HMECs) as negative control (reference genome). Paired-end 
mapping detected SV when both ends of the mate-pair map in the reference genome according 
to fragment size of the library (see Figure 13). We used the Hydra algorithm (8), which allows 
for identification of SV from mate-pairs with discordant mapping positions such that multiple 
mappings can be considered for characterization of SV in repetitive regions of the genome. We 
honed our technique to specifically detect translocations. Our criteria for detecting a 
translocation requires mate-pairs to be derived from different chromosomes and represented by 
at least 3 different mate-pairs for each candidate SV. We excluded those SVs that are found in 
HMECs. We identified 53 translocations in MDA-MB-134IV, 28 in MDA-MB-175VI, 29 in MDA- 

 
MB-415, 428 in MCF7, 93 in CAMA-1, 90 in T47D, and 47 in ZR-75-1. Spectral karyotyping 
(SKY) was performed to confirm whether the putative translocations can be visibly detected. In 
addition, we performed RNA-seq analysis to detect novel gene fusions using a gene-fusion 
transcript discovery software called deFuse. Eighty candidate fusion genes were identified at 
the mRNA level and fifty-two of them were also found at the DNA level by mate-pair analysis. 
Seventy-one of the candidates were validated by RT-PCR and were present in the breast 
cancer cell lines and not HMEC. Next we screened RNAs from 12 ER+/HER2- human patient 
samples for the occurrence of the 71 candidate gene fusions by RT-PCR. One fusion gene 
candidate, KIAA1267(KANSL1)-ARL17A, was present in 5 of 12 breast cancer patient samples 
(Figure 14). This fusion gene is a product of tandem duplication on chromosome 17 and is 
composed of the first 3 exons of the KANSL1 gene fused to the last 2 exons of ARL17. Recent 
data (unpublished) from another group have found that this gene fusion presents itself as a 
genetic variation in the human genome in one quarter of Caucasion populations. In particular, 
the gene product was detected in 12% of breast cancers in this group. We will continue to 
pursue this finding by other funding sources. This study demonstrates that this technology can 
be applied to detect SVs in the genome. 
 
 
 
 

Figure 14. Validation of 71/80 fusion genes by RT-PCR from RNA of human breast tumor samples. One fusion 
gene candidate, KIAA1267 (or KANSL)-ARL17A were scored in 5 of 12 human patient samples. 
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KEY RESEARCH ACCOMPLISHMENTS 
 

• Development of a highly parallel, large scale, high throughput method to measure 
efficacy of shRNAs. 

• Generation of the largest dataset of approximately 250,000 measurements of shRNA 
efficacy. 

• Derivation of a shRNA-based prediction algorithm, called shERWOOD, that essentially 
predicts the results of functional, sensor testing of shRNAs in silico. 

• Constructed sequence-verified, V4, shRNA libraries at full genome coverage for human 
and mouse. 

• Development of a fifth-generation shRNA design, called ‘ultramir’ by optimization of the 
miR30 miRNA scaffold. 

• Construction of the V5 shRNA libraries began during the first quarter of 2014. 
• Completed a comprehensive, genome-wide, functional profiling study for genes involved 

in proliferation and survival in all three treatment subtypes (ER+, HER2+, Triple-negative) 
of breast cancer. 

• Discovery of potential target genes to sensitize Her2-positive, trastuzumab-resistant cell 
models of breast cancer. 

• Discovery of potential genes to target BRCA-mutant breast cancer cells. 
• Isolation/purification of H2b-GFPh MaSCs and demonstrated its mammary gland 

reconstitution potential 
• Defining the molecular hierarchy of mammary differentiation yielded refined markers of 

mammary stem cells. 
• Development of a methodology for whole genome, shotgun, bisulfate sequencing to 

generate single nucleotide-resolution methylation profiles. 
• Characterization of DNA methylation and gene expression patterns of mammary gland 

cells of nulliparous and parous mice uncovered STAT transcription factors as being 
involved in mammary gland development during pregnancy. 

• Development of a method to detect structural variation in the genome. 
• Study to uncover structural variations in breast cancer cells led to the identification of a 

gene fusion called KANSL1-ARL17A. 
• Discovery of miR-93 in modulating fate of tumor-initiating cells by regulating the 

proliferation and diffentiation states. 
• Enforced expression of miR-93 competely blocked tumor development in mammary fat 

pads and development of metastases following intracardiac injection in mouse xenograft 
models. 

 
 
REPORTABLE OUTCOMES 
 

• Developed a shRNA-specific prediction algorithm called shERWOOD. 
• Completed construction of fourth-generation shRNA libraries targeting human and 

mouse genomes. These resources have been made available to the scientific 
community.  

• Began construction of our V5 shRNA libraries. These clones will also be made publicly 
available. Completion is expected to be sometime during 2015. 

• Publication: Deep sequencing of Target Linkage Assay identified regions in familial 
breast cancer: methods, analysis pipeline, and troubleshooting. 
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Rosa-Rosa J.M.1, Gracia-Aznárez F.J., Hodges E., Pita G., Rooks M., Xuan 
Z., Bhattacharjee A., Brizuela L., Silva J.M., Hannon G.J., Benitez J. (2010). PLOS One, 
5(4):e9967. 

• Publication: Functional identification of optimized RNAi triggers using a massively 
parallel sensor assay. 
Fellmann C., Zuber J., McJunkin K., Chang K., Malone C.D., Dickins R.A., Xu Q., 
Hengartner M.O., Elledge S.J., Hannon G.J., Lowe S.W. (2011). Molecular Cell, 
41(6):733-46. 

• Publication: Directional DNA methylation changes and complex intermediate states 
accompany lineage specificity in the adult hematopoietic compartment. 
Hodges E.1, Molaro A., Dos Santos C.O., Thekkat P., Song Q., Uren P.J., Park J., Butler 
J., Rafii S., McCombie W.R., Smith A.D., Hannon G.J. (2011). Molecular Cell, 44(1):17-
28. 

• Publication: MicroRNA93 regulates proliferation and differentiation of normal and 
malignant breast stem cells. 
Liu S.1, Patel S.H., Ginestier C., Ibarra I., Martin-Trevino R., Bai S., McDermott 
S.P., Shang L., Ke J., Ou S.J., Heath A., Zhang K.J., Korkaya H., Clouthier 
S.G., Charafe-Jauffret E., Birnbaum D., Hannon G.J., Wicha M.S. (2012). PLOS 
Genetics, 8(6):e1002751. 

• Publication: Molecular hierarchy of mammary differentiation yields refined markers of 
mammary stem cells. 
dos Santos C.O., Rebbeck C., Rozhkova E., Valentine A., Samuels A., Kadiri L.R., 
Osten P., Harris E.Y., Uren P.J., Smith A.D., Hannon G.J. (2013). Proc. Natl. Acad. Sci. 
USA, 110,(18):7123-30. 

• Publication under review (Molecular Cell): A computational algorithm to predict shRNA 
potency. 
Simon R.V. Knott1, Ashley Maceli1, Nicolas Erard1, Kenneth Chang1, Krista 
Marran, Xin Zhou, Assaf Gordon, Osama El Demerdash, Elvin Wagenblast, 
Christof Fellmann&, and Gregory J. Hannon. 

 
 
CONCLUSIONS 
 
 The overall goal of this innovator award is to apply RNAi and other technologies my lab 
have developed over the past 10 years toward improving breast cancer therapy. This is 
achieved through three main aims. The first aim is to apply our whole genome shRNA screening 
approach to screen human breast cancer cell lines representing all three major clinical 
subgroups of the disease. This unbiased approach identified pathways that support growth and 
survival of breast tumor cells, both during tumor progression and in the face of therapeutic 
challenge. The dataset also addresses drug resistance mechanisms of herceptin, lapatinib, 
tamoxifen, and estrogen-deprivation therapy. This study produced lethality signatures for all 
types of breast cancer cells and will be a rich resource of data to discover new therapeutic leads 
for novel treatments of breast cancer. We have embarked on several in-depth investigations on 
selected candidate genes for targeting the HER2-positive and triple-negative subtypes. This 
dataset will be made available to the scientific community. Our second aim is to address the role 
of the tumor-initiating compartment of breast cancer cells in the context of miRNAs. While we 
have studied how particular miRNAs impact the self-renewing populations of breast cancer 
cells, we are well aware that this compartment is very heterogeneous and complex. To this end, 
we set out to identify normal mammary gland stem cells (in parous and nulliparous animals), 
using a strategy that does not depend on known cell surface markers from other types of stem 
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cells. We demonstrated that this slow-cycling compartment (H2b-GFPh) has mammary gland 
regeneration potential and have profiled its transcriptome and methylome. Furthermore, we 
have identified a new cell surface marker, CD-1, for this self-renewing population. Currently we 
are researching the function of how H2b-GFPh populations in breast cancer cells contribute to 
tumor progression and therapy resistance. Our hope is that this knowledge will lead to new 
therapeutic approaches to breast cancer. Our last aim is to apply our next-generation re-
sequencing approach (hybrid selection) to hone in on candidate chromosomal regions 
containing breast cancer susceptibility genes that were previously identified by SNP-based 
linkage analysis on BRCA1/2 families. This method selectively enriched for exons located within 
those regions to identify new tumor suppressor genes responsible for hereditary breast cancer. 
 With this award, we have managed to produce some very promising outcomes and have 
been very productive in terms of scientific achievement (5 published articles and 1 currently 
under review). While it is beyond the scope of this award to translate our new findings to clinical 
studies, the data from this grant will pave the way for promising new therapeutic treatments for 
breast cancer. 
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APPENDICES 
 
Attached are 5 published articles and 1 manuscript currently under review. 
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Abstract

Background: The classical candidate-gene approach has failed to identify novel breast cancer susceptibility genes.
Nowadays, massive parallel sequencing technology allows the development of studies unaffordable a few years ago.
However, analysis protocols are not yet sufficiently developed to extract all information from the huge amount of data
obtained.

Methodology/Principal Findings: In this study, we performed high throughput sequencing in two regions located on
chromosomes 3 and 6, recently identified by linkage studies by our group as candidate regions for harbouring breast cancer
susceptibility genes. In order to enrich for the coding regions of all described genes located in both candidate regions, a
hybrid-selection method on tiling microarrays was performed.

Conclusions/Significance: We developed an analysis pipeline based on SOAP aligner to identify candidate variants with a
high real positive confirmation rate (0.89), with which we identified eight variants considered candidates for functional
studies. The results suggest that the present strategy might be a valid second step for identifying high penetrance genes.
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Introduction

Breast cancer (BC [MIM #114480]) is the most frequent

malignancy among women, with approximately one million new

cases per year around the world [1]. About five percent of all BC

cases are considered to be hereditary, and mutations in either the

BRCA1 [MIM +113705] or the BRCA2 [MIM +600185] gene

account for 25–30% of these cases [2]. Thus, about 70% of BC

families remain unexplained, and are known as non-BRCA1/2

families [3]. In this regard, several linkage studies have been

performed during the last years on familial BC, and many

candidate regions that may contain BC susceptibility genes have

been described. However, mutational screenings in linkage assay-

identified regions using the classical candidate-gene approach did

not identify any clear pathogenic variants [4,5,6]. Therefore, new

strategies seem to be necessary.

Massive parallel sequencing technology allows nowadays the

development of studies unachievable a few years ago. Despite the

fact that the advantages of this technology were evidenced in each

of the published studies based on it, the analysis of all data

generated by this process remains a hard task to face. The first step

in the regular analysis protocol is based on the alignment of

millions of short sequences obtained from each run. For that

reason, during the past years many computer tools have been

developed to improve the accuracy of this process [7,8,9]. One of

the main obstacles is the specificity in the analysis of the data to

obtain the output required by any given study. For example, the

identification of novel variants, chromosomal translocations, or

transcription factor target sites are some of the aims of the many

studies that can be performed using high throughput sequencing

technologies, and each of them would require a specific analysis

pipeline.

A major success in the use of this technology was the re-

sequencing of the whole human genome, published in several

studies in the past years [10,11,12,13,14]. The results showed a

higher complexity level of the human genome, with the
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appearance of many new variants, short length insertions and

deletions and, even, small inversions. However, the amount of

time required for re-sequencing large genomes and its high

economic cost make it impractical as a common laboratory

technique. For that reason, the search for specific sequence-

enrichment protocols applicable to massive parallel sequencing has

been an important goal during these years. One of the approaches

developed [15] and improved [16] to obtain this specific

enrichment is the technique of selective exon-capture or hybrid

selection, based on high-density tiling DNA microarrays.

In a previous study, we performed a SNP-based linkage analysis

in 41 non-BRCA1/2 families and obtained several candidate

regions for containing BC susceptibility genes [17]. The large size

of the candidate regions and the high number of genes described

within them, led us to couple linkage analysis with high-

throughput sequencing-based mutational screening as a new

strategy for variation detection. In the present study, we used

hybrid selection of discrete genomic intervals on custom-designed

microarrays as an exon-specific enrichment of all the genes located

within two complete candidate regions on chromosomes 3 and 6,

that presented a suggestive linkage LOD score (LOD.2.2). We

also describe the complex analysis pipeline based on SOAP

aligner, developed to analyse all the data obtained, and present

eight variants that are candidates for playing a role in the

development of familial BC.

Results

Regions and capture
We performed a complete mutational screening via single-end

massive parallel sequencing technology on the 128 known genes

located on two different chromosomal regions, previously

described as candidates for containing a breast cancer suscepti-

bility gene [17]. The first region is located on 3q25, extends over

10.8 Mb (from 160,964 to 171,786 Kb), and contains 69 known

genes; the second region is located on 6q24 and spans 6.5 Mb

(from 146,078 to 152,515 Kb), containing 59 known genes. To

selectively sequence the coding region of these genes, we used

hybrid selection on tiling microarrays [16], which was validated

via qPCR (data not shown).

Reads, coverage and depth
DNA samples from 20 affected individuals, belonging to 9

different non-BRCA1/2 families, and 4 healthy unrelated

individuals from the control population were used for the analysis

process. More than 102 million reads were obtained from the

affected individuals and almost 22.4 million reads were obtained

from the control individuals (see Table 1). The average number of

reads per affected individual was 5.14 million, and this number

was increased to 5.21 million when control individuals were taken

into account. We used SOAP v1.0 to align our data set, obtaining

an average of 91.58% aligned sequences against the whole genome

with #2 mismatches. Among these, an average of 39.99%

matched our candidate coding regions. Thus, since the total

number of base pairs covered by the tiling array is 0.014% of the

genome length (434,039 bp), the average enrichment was

approximately 2.85 thousand times, calculated as the percentage

of the sequences aligned to the genome that successfully matched

to the candidate regions (39.99) divided by the percentage of the

genome length that candidate regions represent (0.014).

We calculated the coverage (number of bases covered after the

alignment) per individual and obtained an average of 98.25% of

candidate bases covered for the affected and the control

individuals (Table 1). We did not observe significant coverage

differences between the candidate coding regions located on

chromosomes 3 and 6. Importantly, a lack of correlation between

the coverage and the total number of sequences was observed

(r2 = 0.013, Figure S1A). However, this lack of correlation turned

into a logarithmic trend when the number of sequences aligned to

the candidate coding regions was used (r2 = 0.69, Figure S1B).

In order to know the power to confidentially detect possible

causal variants, we calculated the global depth (number of

sequences that cover a single base) for every base along the

candidate coding regions per individual. As expected, a strong

correlation (r2 = 0.96) was found between the global depth and the

number of reads aligned to the candidate coding regions (Figure

S1C). Taking into account only those bases that presented

coverage (depth .0), from both affected and controls individuals,

the mean and the median of the depth were 37 and 34

respectively, showing a strong correlation between them

(r2 = 0.98, Figure S1D).

Data quality control
a) Coverage homogeneity. We calculated the mean and the

median of the depth for stretches of 15 bases along the candidate

regions, and obtained the log-ratio of the median between each

affected individual and the control pool. The mean log-ratio for

the global data was 20.06 with a standard deviation of 0.55

(Table 2), showing a homogeneous distribution of the coverage

between affected and control individuals. We calculated the upper

and lower threshold for each individual (Table 2) and we identified

several regions where the coverage differed between the affected

individuals and the control pool (data not shown), most of them

flanking the candidate coding regions (which are usually low

coverage regions). In addition, the strong correlation (r2 = 0.99,

Figure S1E) between the median and the mean of the coverage for

these regions in the dataset supported that these differences in

coverage are not due to extreme values within the same coding

region but are due to chance, ruling out potential problems in the

capture step.

b) Score. Genotype calling accuracy was demonstrated

elsewhere (.90% of the known SNPs) by using a HapMap

sample in the exon-capture report [16]. In order to test the

suitability of our analysis pipeline when looking for unknown

polymorphisms, we used the candidate SNPs from a single family

obtained using different Depth Score (DS, see Material and

Methods) thresholds for both the affected samples and the control

pool data (Table 3). We observed that from DS = 50 onwards for

the samples, the DS threshold used for the control pool data had

no effect on the number of candidate SNPs, highlighting the

specificity of our DS. In order to be as conservative as possible, we

considered that the best False Positive/False Negative (FP/FN)

relationship was for a DS .50 for samples and a DS .14 for the

control pool. Additionally, we performed an analysis using MAQ

software in a subgroup of families and we observed that there was

no correlation between MAQ variant score and Sanger

confirmation (Table 4). These results demonstrated the higher

accuracy of our analysis methodology compared to the algorithm

used by MAQ.

Variant identification
We included a first filter (see Material and Methods) in our

SOAP-based SNP-caller to discard the maximum amount of false

positives, obtaining 99% of SNP variants discarded (Figure 1). We

selected only those variants located on the chromosome of interest

for each individual, resulting in an average of 71 SNPs per

individual (Table 5). Subsequent filters (discarding homozygous

variants, comparing to controls and comparing within members of
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the same family) discarded almost 80% of the remaining SNPs.

Then, we used a newly developed Perl script to differentiate between

described and previously undescribed SNPs and also to obtain the

functional consequences for each undescribed SNP, resulting in 5

undescribed variants per family on average. Since we observed that

one variant could have consequences for more than one transcript/

gene, subsequent filtering was performed using the consequences of

the variants instead of the variants themselves. Next, we discarded

intronic consequences and continued the analysis with exonic

consequences only (an average of 23% of the original number of

consequences). After that, each of the remaining SNPs showed only

one consequence, and in the following step we checked if the

remaining SNPs could be due to homology between different

regions. Finally, an average of 1 (6.25%) of the SNPs shared by all

the affected members of a family could be considered a strong

candidate (Table 5). Finally, 8 out of 9 candidate SNPs were

confirmed by Sanger sequencing, supporting a high real positive

confirmation rate (0.89). Information data about variant position,

gene, type of change, Alamuth prediction, and gene function from

the 8 final candidate SNPs is shown in Table 6. The mean DS for

confirmed variants was 115 (74–185), whereas the mean DS for

ruled out variants was 56.5 (56–57), which means that our DS score

is a suitable variable for the filtering process.

Regarding indel variants, we followed the same analysis pipeline

as with SNP variants. Even though 12 bp gaps were allowed

(maximum length allowed for an indel variant), an average of only

1.15 indels per individual were identified, and this number

decreased to 0.50 after comparison to the control pool of data.

Moreover, no indel was found to segregate in our family dataset.

In order to rule out the possibility that a putative causal indel

could be found in one member of a family but not in the other

members, we checked the consequences for the remaining indels

after the comparison to the control pool data for all 20 individuals

from the 9 non-BRCA1/2 families. We observed a total of 8

undescribed indel variants for the 20 individuals. Three of them

were located in intronic regions, two were located in 3’ UTR

regions, and the remaining three indels were homozygous with a

global depth = 1. Thus, no putative truncating indel was found in

our individual dataset (Table S1).

Discussion

High-throughput sequencing
The classical candidate-gene approach turned out to be a low-

efficiency tool with regard to cost and time when used for the

identification of causal genes in genetic diseases, especially when there

Table 1. Summary of high throughput sequencing data.

Number of sequences Depth

Chromosomea Family Individual Total
Aligned to whole
genome (%*)

Aligned to candidate
regions (%**)

Coverage
in % Mean Median

3 27 07S722 3,123,937 2,956,483 (94.64) 1,186,611 (40.14) 98.04 26 25

07S723 4,922,157 4,538,392 (92.20) 1,518,625 (33.46) 98.43 29 29

07S724 4,183,568 3,954,837 (94.53) 1,515,614 (38.32) 97.89 28 26

07S725 2,952,969 2,839,271 (96.15) 1,168,679 (41.16) 97.11 24 22

60 06-240 2,652,926 2,580,914 (97.29) 882,837 (34.21) 97.96 22 20

96-652 5,934,453 4,737,175 (79.82) 1,670,157 (35.26) 98.15 28 24

531 I-1408 12,228,047 11,188,204 (91.50) 4,694,871 (41.96) 99.07 57 48

I-904 4,293,087 3,585,982 (83.53) 1,531,322 (42.70) 97.50 30 22

713 07S635 7,568,672 7,442,938 (98.34) 2,793,056 (37.53) 99.11 45 44

07S636 7,160,552 6,889,152 (96.21) 2,574,119 (37.36) 98.94 43 42

6 11 04-168 5,734,052 5,599,100 (97.65) 2,459,740 (43.93) 98.57 43 42

96-265 6,240,024 6,012,522 (96.35) 2,642,942 (43.96) 98.22 35 32

40 07S576 2,006,661 1,667,648 (83.11) 779,723 (46.76) 97.11 18 17

07S581 4,016,214 3,618,178 (90.09) 1,568,060 (43.34) 97.66 25 23

929 I-1627 5,811,276 5,665,182 (97.49) 2,311,149 (40.80) 98.52 33 32

I-3345 2,602,250 2,554,051 (98.15) 1,059,131 (41.47) 98.27 23 23

990 I-1927 8,134,956 7,903,785 (97.16) 3,029,994 (38.34) 98.84 51 50

I-1928 7,922,500 7,590,406 (95.81) 2,817,358 (37.12) 99.02 49 48

1125 I-2033 2,747,911 2,666,280 (97.03) 1,105,059 (41.45) 97.87 24 23

I-4347 2,517,619 2,406,505 (95.59) 1,088,350 (45.23) 97.74 24 24

TOTAL 102.753.831 96,397,005 (93.81) 38,397,397 (39.83)

Average Affected 5,137,692 4,819,850 (93.63) 1,919,870 (40.22) 98.20 33 31

Control pool 22,390,251 18,221,565 (81.38) 7,438,610 (40.82) 99.33 111 98

Average All 5,214,336 4,775,773 (91.58) 1,909,833 (39.99) 98.25 37 34

The number of sequences and the depth values are shown for a total of 20 individuals from 9 non-BRCA1/2 families and 4 individuals from the control population
(Control pool).
achromosome in which linkage signal was found for each of the families.
*with respect to the total number of sequences, ** with respect to the numbers of sequences aligned to the whole genome.
doi:10.1371/journal.pone.0009976.t001
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is a large number of candidate genes (dozens to hundreds). For that

reason, we decided to explore the new possibilities that massive

parallel sequencing brings for the analysis of hundred of genes in the

same reaction. Moreover, in the present study we developed a solid

analysis pipeline based on SOAP aligner for variant detection in

families with a common genetic disease via high throughput

sequencing data. Hybrid selection on tiling microarrays [16] was

used for the enrichment of exonic sequences within two candidate

regions for carrying a breast cancer susceptibility gene. We analysed

the data from 20 affected individuals from 9 different non-BRCA1/2

families to perform a mutational screening of 128 known genes and,

through an exhaustive filtering process, we obtained 8 variants that

are currently under different genetic and functional studies (Table 6).

From a technical point of view, we obtained an average of 5.14

million reads per individual, which allowed reaching a mean global

depth of 336. We observed that multiplexing of the samples by using

5-base barcodes did not affect the capture step or the sequencing

process, and that it thus represents a valuable tool when the number

of sequences required to confidently cover the target region is

proportionally lower than the number of sequences obtained per lane.

We performed a CGH-like analysis obtaining the log-ratio

between the normalised depth data from every affected individual

and the control pool to confirm a homogenous distribution of the

coverage along the candidate regions. Although the results showed

that the distribution was very homogeneous, some differences in

coverage were observed mainly in regions flanking the coding

candidate regions (low coverage regions), where small and random

differences in depth value may produce bigger differences in the

Table 2. Index value parameters for coverage study.

Chr Fam Ind Mean St Dev Upper Lower

3 27 07S722 20.13 0.75 1.12 21.38

07S723 20.04 0.31 0.77 20.86

07S724 20.07 0.35 0.77 20.92

07S725 20.10 0.43 0.82 21.03

60 06-240 20.01 0.40 0.89 20.91

69-652 0.00 0.59 1.10 21.09

531 I-1408 0.05 0.53 1.08 20.97

I-904 20.31 1.83 2.02 22.64

713 07S635 20.04 0.62 1.08 21.16

07S636 20.04 0.45 0.92 20.99

6 11 04-168 20.09 0.35 0.76 20.94

96-265 20.02 0.36 0.83 20.88

40 07S576 20.05 0.73 1.18 21.29

07S581 0.00 0.41 0.91 20.91

929 I-1627 20.02 0.36 0.83 20.88

I-3345 20.09 0.36 0.77 20.95

990 I-1927 20.08 0.80 1.22 21.38

I-1928 20.03 0.63 1.10 21.16

1125 I-2033 20.03 0.44 0.91 20.97

I-4347 20.09 0.39 0.80 20.98

Global 20.06 0.55 0.99 21.11

In order to evaluate the quality of the coverage within the candidate coding
regions, we calculated an index value (Is, see Material and Methods). Mean,
standard deviation, and lower and upper thresholds for Is used in the coverage
study are shown for each affected individual and for the entire set of individuals
(Global).
doi:10.1371/journal.pone.0009976.t002

T
a

b
le

3
.

D
e

p
th

Sc
o

re
th

re
sh

o
ld

o
p

ti
m

iz
at

io
n

as
sa

y.

C
h

r
6

F
a

m
il

y
9

9
0

D
S

_
In

d
iv

id
u

a
ls

0
1

0
2

0
3

0
4

0
5

0
6

0
7

0
8

0
9

0
1

0
0

D
S

_
C

o
n

tr
o

l
P

o
o

l
0

1
4

5
0

0
1

4
5

0
0

1
4

5
0

0
1

4
5

0
0

1
4

5
0

0
1

4
5

0
0

1
4

5
0

0
1

4
5

0
0

1
4

5
0

0
1

4
5

0
0

1
4

5
0

C
a

n
d

id
a

te
S

N
P

s
b

e
fo

re
h

o
m

o
lo

g
y

9
7

6
8

1
5

7
9

1
1

5
8

8
0

3
3

6
0

1
0

1
1

2
1

4
2

7
1

0
1

0
1

5
9

9
1

2
8

8
8

7
7

7
5

5
5

3
3

3
2

2
2

1
1

1

C
a

n
d

id
a

te
S

N
P

s
a

ft
e

r
h

o
m

o
lo

g
y

–
–

–
2

5
4

3
7

1
7

7
1

6
5

5
8

4
4

6
4

4
4

4
4

4
4

4
4

3
3

3
2

2
2

1
1

1

C
o

n
fi

rm
e

d
b

y
S

a
n

g
e

r
–

–
–

–
–

–
4

4
4

4
4

4
4

4
4

4
4

4
4

4
4

4
4

4
3

3
3

2
2

2
1

1
1

F
P

R
–

–
–

–
–

–
4

3
4

3
7

5
2

0
2

0
5

0
0

0
3

3
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0

F
N

R
–

–
–

–
–

–
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
2

5
2

5
2

5
5

0
5

0
5

0
7

5
7

5
7

5

T
h

e
fi

lt
e

ri
n

g
re

su
lt

s
fo

r
va

ri
o

u
s

D
S

sc
o

re
s

in
a

sa
m

p
le

fa
m

ily
(F

am
ily

9
9

0
)

ar
e

sh
o

w
n

b
e

lo
w

.W
e

o
b

se
rv

e
d

th
at

th
e

th
re

sh
o

ld
u

se
d

fo
r

th
e

co
n

tr
o

lp
o

o
ld

id
n

o
t

af
fe

ct
th

e
to

ta
ln

u
m

b
e

r
o

f
va

ri
an

ts
id

e
n

ti
fi

e
d

w
h

e
n

u
si

n
g

a
D

S
th

re
sh

o
ld

o
f

5
0

o
r

h
ig

h
e

r
fo

r
th

e
ca

se
s.

T
ak

in
g

in
to

ac
co

u
n

t
th

e
fa

ls
e

p
o

si
ti

ve
ra

te
s

(F
P

R
)

an
d

fa
ls

e
n

e
g

at
iv

e
ra

te
s

(F
N

R
),

an
d

in
o

rd
e

r
to

b
e

as
co

n
se

rv
at

iv
e

as
p

o
ss

ib
le

,w
e

fi
n

al
ly

ch
o

se
a

D
S

th
re

sh
o

ld
o

f
5

0
fo

r
ca

se
s

an
d

a
D

S
th

re
sh

o
ld

o
f

1
4

fo
r

th
e

co
n

tr
o

l
p

o
o

l
d

at
a.

d
o

i:1
0

.1
3

7
1

/j
o

u
rn

al
.p

o
n

e
.0

0
0

9
9

7
6

.t
0

0
3

A Novel NGS Analysis Pipeline

PLoS ONE | www.plosone.org 4 April 2010 | Volume 5 | Issue 4 | e9976



index value. These data supported that the capture and sequencing

of the candidate regions were successfully fulfilled in the sample set.

Mutational screening
In order to identify de novo mutations, we consider that the best

option is to maintain those sequences that match equally to more

than one location, even though it could be a source of alignment

errors due to homology between regions. For that reason, we

tested two different aligners (SOAP and Mosaik), which allow the

possibility of maintaining this kind of sequences. We finally

decided to use SOAP v1.0 because its output file kept all the

information of the input data, while being able to detect SNPs and

short (gaps .1 bp) indel variants in single-end data.

The two high throughput sequencing-based mutation-detection

studies published in the literature used MAQ software for SNP-

calling [11,18]. In the first study, mutation detection was

performed comparing data from tumour and skin tissues from a

single leukaemia patient (AML [MIM 601626])[11]. The analysis

pipeline showed a high false positive rate (87.4%) when trying to

confirm final candidate SNPs. This high false positive rate

suggested that more stringent conditions were necessary to filter

the variants. For that reason, we designed two scores based on

intrinsic variant features such as base quality (QS) and depth (DS),

which were used as a first filter in our SOAP-based SNP-caller.

Although more than 99% of the variants were discarded with this

filter, the number of remaining variants suggested the need for

further refinement. For that reason, we developed a comparison-

based pipeline as previously described (see Material and Methods:

Data analysis and Figure 1). Only 1 SNP (less than 1.5% of the

variants detected in each individual, and around 6% of the

variants shared by the same family) per family on average passed

this filtering process, showing that, even after using restrictive

thresholds, additional information has to be used to select the most

probable variants (Table 5). Candidate SNPs were Sanger

sequencing validated, and finally 8 of the 9 SNPs (89%) were

confirmed. These variants had a minimum depth of 196 and a

maximum depth of 1556, of which between 9 and 70 reads

carried the variant. Quality scores were all close to 100,

corroborating Solexa’s good base-call quality in those positions.

The 8 variants, which are currently under study (including

functional characterization), are located in different genes (Table 6)

and could be considered as the final candidate SNPs. The

confirmation rate (0.89) and the lack of putatively causal mutations

wrongly discarded in the filtering process (Table S2) suggested that

our restrictive analysis pipeline successfully identified real

previously undescribed variants.

In the second mutational screening study performed using high-

throughput technology and MAQ software, the authors set up a

global exome-capture method based on microarrays and a specific

analysis pipeline, which was conceptually quite similar to ours, to

identify causal variants for a monogenic disease [18]. The analysis

pipeline was based on comparisons between data from affected

individuals, HapMap individuals, and the dbSNP database,

considering as candidates those functional variants that were not

present in HapMap sample data nor in the dbSNP database. With

a subset of our data, we performed a test using MAQ software and

our analysis pipeline and observed no correlation between MAQ

variant score and the confirmation rate (Table 4), evidencing a

lack of accuracy in MAQ’s algorithm.

Regarding indel variants, no indel fulfilled the criteria to be

considered a candidate variant, neither in our dataset (Table S1)

nor in the previously cited study. This could be due to the fact that

indel discovery on single-end data is not as accurate as with the

new paired-end technology, affecting the sensitivity of indel

detection in both studies. Similarly, we cannot discard the

possibility of missing the existence of large rearrangements due

to the limitations of single-end data. Recently published studies are

starting to demonstrate the efficiency of paired-end sequencing in

the identification of genomic rearrangements [19,20].

In another study, a complete mutational screening using Sanger

sequencing was performed on 718 genes located on chromosome

X in probandi from a set of 208 families diagnosed with X-linked

mental retardation [21]. The authors obtained 1858 coding

variants, among which 1814 (980 missense, 22 nonsense, 13 splice-

site, and 799 synonymous) were SNPs, 3 were double SNPs

(missense), and 41 were indels. However, only 18 SNPs (17

nonsense and 1 missense, less than 1% of the initial SNPs) and 15

indels located in 26 different genes resulted to be strong candidates

Table 4. Variant filtering results using MAQ software.

Chr Family
Position
(hg18) Gen Reference Variant MSa Consequence

Sanger
confirmation

3 27 170968060 TERC
[MIM:602322]

G C 255/39 NON_SYNONYMOUS_CODING No

531 162443032 NMD3
[MIM:611021]

A G 16/55 NON_SYNONYMOUS_CODING No

6 531 150094561 NUP43
[MIM:608141]

C T 38/11 STOP_GAINED Nob

713 149763387 SUMO4
[MIM:608829]

A G 50/50 NON_SYNONYMOUS_CODING No

990 146761618 GRM1
[MIM:604473]

C T 93/80 NON_SYNONYMOUS_CODING Yes

150205485 LRP11c T C 55/77 NON_SYNONYMOUS_CODING Yes

151202809 PLEKHG1c G A 63/46 NON_SYNONYMOUS_CODING Yesd

A lack of correlation between MAQ score (MS) and Sanger sequencing confirmation was observed, since variants showing a MS = 255 (maximum) were not confirmed
whereas others with a MS = 55 were validated.
aMAQ score for individual 1/individual 2.
bvariant selected in a non-candidate chromosome for this family because of the truncating effect.
cNo MIM reference [25].
drecently described in the Ensembl database.
doi:10.1371/journal.pone.0009976.t004
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for being involved in X-linked mental retardation. Similarly, our

results showed that around 1% of the initial SNP variants obtained

via high throughput sequencing could be considered candidates

(Table 6). Because no truncating mutations passed our filters,

further functional studies are required to assess whether any of the

confirmed variants is ultimately a causal mutation, specifically

those variants considered of interest because of their functional

implications (missense and 3’UTR) and gene function.

In summary, we designed an integral analysis pipeline for

mutational screening via SOAP v1.0 that resulted in a low false

positive rate with a low probability of discarding real positive

variants, with which we identified 8 candidate variants that are

currently under functional characterization. We consider that the

present strategy might be a valid second step for identifying high

penetrance genes, specifically when the regions of interest show

significant evidence of linkage.

Materials and Methods

Ethics Statement
All patients provided written informed consent for the

collection of samples and subsequent analysis. We obtained

ethics approval for this study from the ethics committees at all

institutions/hospitals where participants were recruited [17]. The

GEO [22] accesion number (GSE20406) for this study has been

approved as well as GEO accession numbers for each of the

samples (Table 7).

Samples and candidate regions
As stated earlier, in a previous study we genotyped a total of 132

individuals from 41 non-BRCA1/2 families with almost 6,000

SNP markers, and we observed a linkage profile showing several

candidate regions. Suggestive linkage signals (HLOD .2.2) were

found in two regions located on chromosomes 3 and 6, which span

10.8 and 6.5 Mb, respectively, and we found 6 and 5 families

putatively linked to each region [17].

In the present study, 10 of these 11 families were selected based

on the availability of DNA (from at least 2 affected members per

family for a total of 22 DNA samples collected) to perform a

mutational screening via massive parallel sequencing. One family

(Family 21) was excluded from the final analysis because the DNA

library preparation of one of the members failed. However,

putatively truncating mutations (e.g. new stop codons or

modifications within essential splice sites, and indel variants) were

analysed for the remaining individual of this family (see Table S1).

We also sequenced DNA of 4 healthy individuals from Spanish

control population, which were pooled into a single control data

file. This pooled-control design presented several advantages,

Figure 1. Filtering process. Analysis pipeline used in the identification of the candidate variants. Left boxes correspond to processing of variants;
right box corresponds to coverage analysis. See text for details.
doi:10.1371/journal.pone.0009976.g001

Table 5. Summary of the variant filtering process.

Chr Family Individual SNPs
After
control

Shared by
family Undescribed Consequences Exonic

Candidate
SNPs (%)*

3 27 07S722 49 10 0 0 0 0 0 (0.00)

07S723 39 2

07S724 45 18

07S725 25 4

60 06-240 47 18 15 7 6 3 1 (6.67)

96-652 61 26

531 I-1408 38 15 5 2 1 1 0 (0.00)

I-904 66 42

713 07S635 50 32 8 4 5 2 1 (12.50)

07S636 46 24

6 11 96_265 96 36 17 5 12 1 0 (0.00)

04_168 81 35

40 07S581 93 40 26 8 32 7 3 (11.54)

07S576 96 53

929 I-3345 81 28 13 3 10 3 0 (0.00)

I-1627 75 34

990 I-1927 131 63 52 14 40 8 4 (7.69)

I-1928 119 54

1125 I-4347 99 33 11 2 7 0 0 (0.00)

I-2033 74 26

Average 71 30 16 5 13 3 1 (6.25)

The number of variants after each of the filtering steps is shown for the 9 non-BRCA1/2 families. The original SNPs were matched against the control pool as well as with
the other member/s of the family. Previously undescribed variants were then selected and consequences obtained using PerlAPI tools. Intronic consequences were
discarded and finally the variants were checked for homology.
*with respect to SNPs shared by family.
doi:10.1371/journal.pone.0009976.t005
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namely reduced repercussion of differential sample DNA degra-

dation, increased sample heterozygosity, and a balancing effect

over the number of reads per sample in the final control data,

leading to increased data homogeneity.

Sequencing and exon-capture
We used the Illumina single-end technique to perform the

sequencing process and an exon-capture protocol recently

published [16], which was divided into two steps:

a) Library construction. Genomic DNA (2.5 mg) was

fragmented by a triple sonication step. To optimise the

sequencing process, we used 5-base barcodes (#1: 59-GATCT-

39; #2: 59-ATCGT-39; #3: 59-TGTCT39; #4: 59-GTGAT-39)

linked to the ligated oligos, in order to be able to pool 3 or 4

individuals per array and to discriminate the sequences obtained

from each individual. After ligating the modified adaptors, 150–

300 bp fragments were selected by agarose gel electrophoresis and

purified. To obtain a suitable amount of product, multiple parallel

PCR reactions were carried out per sample.

b) Exon capture. A total of 142,983 60-mer probes were

designed to cover the 787 exonic regions and immobilized on high-

density tiling arrays, in order to capture the coding sequences of the

128 genes located in both candidate regions. We used 14 arrays to

perform the enrichment step for all the samples. A final amount of

20 mg of PCR product from 3–4 individuals was hybridised onto the

array, with several blocking agents, during 65 hours (see Figure 1).

After amplification of the eluted DNA, the enrichment was validated

by quantitative PCR (qPCR) using the product from 4 different arrays.

Data analysis
a) Alignment. After the identification of the sequences

belonging to each individual and before the alignment, we

removed the first five bases of every sequence corresponding to

each of the barcodes. We selected SOAP v1.0 to analyse our

dataset using the following parameters: a seed of 12 positions, gaps

allowed up to 12 bases, a maximum of 2 mismatches, and a

maximum of 5 repeated regions (reporting every region on which

the sequences matched equally), using the whole genome as

Table 6. Final candidate SNPs.

Chr Family Position (hg18) Gene Reference Variant QSa DSb Consequencec
Alamuth
predictiond Gene function

3 60 161301596 AC026118.17e A T 91/91 56/57 NCG Pseudogene

713 170284589 EVI1 [MIM:165215] A G 95/94 128/100 3UTR Hematopoietic
proliferation
protein, related
to acute myeloid
leukemia

6 40 152502855 SYNE1 [MIM:608441] C T 105/98 90/92 NSYN TOL A spectrin repeat
containing
protein
expressed in
skeletal and
smooth muscle,
and in peripheral
blood
lymphocytes,
that localizes to
the nuclear
membrane

151203125 PLEKHG1 C T 103/98 133/146 SYN S1186S Unknown

151713613 AKAP12 [MIM:604698] C T 98/96 185/183 SYN P700P Scaffold protein
in signal
transduction, is a
cell growth-
related protein

990 146761618 GRM1 C T 101/96 101/81 NSYN R584C AFF Metabotropic
glutamate
receptor

150087915 NUP43 T C 95/93 101/97 3UTR Part of a nuclear
pore complex,
mediating
bidirectional
transport of
macromolecules
between
cytoplasm and
nucleus

150205485 LRP11 T C 101/101 74/95 NSYN I312V NDB Unknown

151564223 AL451072.14e G A 93/98 119/116 NCG Non-coding RNA

Variants confirmed by direct sequencing are marked in bold.
a) Quality Score Ind1/Ind2, b) Depth Score Ind1/Ind2, c) NCG: Non-coding gene, SYN: Synonymous, 3UTR: 39 UTR, NSYN: Non-synonymous.
d) NDB: Not in database, AFF: predicted to affect the protein, TOL: predicted to be tolerated.
e) No MIM reference.
doi:10.1371/journal.pone.0009976.t006
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reference sequence. One of the main advantages of SOAP v1.0 is

its ability to identify short insertions and deletions (indels) in single-

end data, while maintaining all input information in the output

file. We developed a specific SNP caller written in the Perl

programming language to extract the information contained in the

SOAP output file. The whole analysis pipeline for re-sequencing

data is shown in Figure 1.

b) Coverage. To evaluate the homogeneity of the coverage,

we calculated the mean and the median of the depth for stretches

of 15 bases along the candidate regions. For each sample, we

obtained the index value (IS) for each 15-base fragment as:

IS~log2

MDFS=MDS

MDFC=MDC

,

where MDFS and MDFC are the median of the depth in a 15-base

fragment for the sample and the control pool respectively, and MDS

and MDC are the global median of the depth for the sample and the

control pool respectively. To select supposedly altered regions, we

calculated the upper and the lower thresholds as:

IS§MDSzStMDSz0:5

or

ISƒMDS{StMDS{0:5

where MDS is the global median and StMDS the standard

deviation of the depth for the sample. Finally, for these putatively

altered regions, we calculated the correlation between the mean

and the median of the depth to evaluate possible coverage gaps

within them.

c) Scores. To further select candidate heterozygous variants,

we calculated the mean quality (base-calling quality from Illumina

Genome Analyser) and the allele depth (number of different

sequences in which an allele appeared) for both the variant and the

reference alleles, and also the global depth (number of different

sequences that cover a single base). We calculated two different

scores based on the same mathematical formula:

score~
XV

XR

� �
|100,

where XV represents the mean quality (for Quality Score

calculations) or the allele depth (for Depth Score calculations) of

the variant allele, and XR represents in each case the same

parameter but for the reference allele. Scores close to 100 indicate

that both alleles are equally represented.

In order to determine the optimal DS threshold for the analysis,

we performed a study using the information from a single family

(Table 3). We used different DS score values for the affected

individuals of Family 990 and for the control pool data. We

observed that the number of final candidate variants depended

mostly on the threshold used for the sample data, although the

false positive rate increased when using a DS threshold of 50 for

the control data. Taking into account the optimal False Positive/

False Negative detection rate and being as conservative as possible,

we finally selected a DS threshold of 50 for the samples and a DS

threshold of 14 for the control pool data (Table 3).

d) Variants. In the pipeline analysis (Figure 1), firstly those

variants with a global depth , MDS and a DS ,50 were removed

from the sample files as an integral function of the newly-

developed SNP-caller. Homozygous variants were also discarded

since we expected low-frequency heterozygous variants to be the

causal variants. Similarly, variants presenting a DS ,14 in the

control file were discarded (see above for explanation). Only non-

common variants from the previous step were selected for

subsequent analysis. The next step was an intrafamilial

comparison, with which variants putatively segregating in each

family were obtained. Although the filtering process was

performed for both SNP and indel variants, from this point

onwards subsequent filters were applied to SNP variants only

because no indel variants were found that fulfilled the previous

conditions (Table S1). We developed a Perl tool to distinguish

between described and previously undescribed variants, and also

to obtain the consequences of every undescribed variant on the

known transcripts, via the Ensembl database through the PerlAPI

tools [23]. From this point onwards, intronic consequences where

filtered out for each affected individual. In order to rule out

possible false positives due to homology artefacts, each variant was

manually checked for homology using BLAT search [24]. The

following step was the confirmation of those variants that passed

all filters previously mentioned via Sanger sequencing. As a final

step, we used Alamut version 1.5 software to evaluate, in silico, how

non-synonymous variants would affect the functionality of the

respective candidate proteins (Figure 1).

In order to rule out the possibility that a truncating mutation

was detected in one member of a family but not in the others, we

analysed the truncating consequences (e.g. stop-gains and

alterations in essential splice sites) of the remaining SNPs after

comparison against the control pool data (Table S2).

Table 7. GEO accession numbers of the raw data from each
of the samples.

Family Individual Accesion Number

27 07S722 GSM511164

07S723 GSM511165

07S724 GSM511166

07S725 GSM511167

60 06-240 GSM511168

96-652 GSM511169

531 I-1408 GSM511170

I-904 GSM511171

713 07S635 GSM511172

07S636 GSM511173

11 96-265 GSM511175

04-168 GSM511174

40 07S581 GSM511177

07S576 GSM511176

929 I-3345 GSM511179

I-1627 GSM511178

990 I-1927 GSM511180

I-1928 GSM511181

1125 I-4347 GSM511183

I-2033 GSM511182

Control pool GSM511184

doi:10.1371/journal.pone.0009976.t007
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Finally, we compared the sensitivity of our scores with a

published reference, and for that we followed our analysis pipeline

using MAQ software in a subset of families applying no threshold

for MAQ variant score (Table 4).

Supporting Information

Figure S1 Correlations. Coverage along the candidate regions

was very high (98% on average) and no correlation between

coverage and the number of sequences obtained per individual

was observed (A), although we observed a logarithmic trend when

the number of sequences aligned to the candidate regions was used

(B). On the other hand, a strong correlation between the number

of sequences aligned to the candidate coding regions and the mean

depth was observed in our dataset (C). Failures in the capture step

were discarded since high correlations between the global mean

and the global median of the depth per individual (D) and between

the mean and the median of the depth in putatively altered 15-bp

regions for all the individuals (E) were observed (see text for

details).

Found at: doi:10.1371/journal.pone.0009976.s001 (0.13 MB

DOCX)

Table S1 Indel variant filtering process.

Found at: doi:10.1371/journal.pone.0009976.s002 (0.05 MB

DOCX)

Table S2 Putative truncating variants discarded during the

filtering process. A. Summary of the whole list of truncating

variants (STOP_GAINED and ESSENTIAL_SPLICE_SITE) in

some individuals after comparison to the control pool data. The

original list has been filtered (Depth Score . 50) for simplicity,

given that variants showing a Depth Score below the threshold are

likely to be false positives. As evidenced in the table, none of the

variants above the threshold has a high Global Depth value, which

paired to the fair Depth Score means that in every case the variant

allele was detected in a low proportion in relation to the respective

reference allele. Additionally, this table shows that no putative

candidate truncating variants were discarded during the filtering

process, reassuring that filtering using Depth Score and Global

Depth is a stringent but adequate filtering step. In conclusion, the

low Global Depth and Depth Scores explain why these variants

are likely to be false positive results and they were therefore

excluded from the final candidate SNP list (Table 6). B. The list of

truncating variants for sample 05_980. The other member of this

family failed in the library preparation step, but we still performed

the analysis of the variants. The most likely variant (in red) was

ruled out through Sanger sequencing.

Found at: doi:10.1371/journal.pone.0009976.s003 (0.15 MB

DOCX)

Acknowledgments

We would like to thank to Ana Osorio and Fernando Fernandez from the

Human Genetics Group in the CNIO, and Gordon Assaf from CSHL for

their practical and technical support.

Author Contributions

Conceived and designed the experiments: JMS GJH JB. Performed the

experiments: JMRR EH. Analyzed the data: JMRR FJGA EH ZX.

Contributed reagents/materials/analysis tools: JMRR FJGA EH GP MR

AB LB. Wrote the paper: JMRR FJGA JB.

References

1. Parkin DM, Bray F, Ferlay J, Pisani P (2005) Global cancer statistics, 2002. CA
Cancer J Clin 55: 74–108.

2. Nathanson KL, Wooster R, Weber BL (2001) Breast cancer genetics: what we
know and what we need. Nat Med 7: 552–556.

3. Diez O, Osorio A, Duran M, Martinez-Ferrandis JI, de la Hoya M, et al. (2003)

Analysis of BRCA1 and BRCA2 genes in Spanish breast/ovarian cancer
patients: a high proportion of mutations unique to Spain and evidence of

founder effects. Hum Mutat 22: 301–312.
4. Bergman A, Abel F, Behboudi A, Yhr M, Mattsson J, et al. (2008) No germline

mutations in supposed tumour suppressor genes SAFB1 and SAFB2 in familial

breast cancer with linkage to 19p. BMC Med Genet 9: 108.
5. Oldenburg RA, Kroeze-Jansema KH, Houwing-Duistermaat JJ, Bayley JP,

Dambrot C, et al. (2008) Genome-wide linkage scan in Dutch hereditary non-
BRCA1/2 breast cancer families identifies 9q21-22 as a putative breast cancer

susceptibility locus. Genes Chromosomes Cancer 47: 947–956.

6. Rosa-Rosa JM, Pita G, Gonzalez-Neira A, Milne RL, Fernandez V, et al. (2009)
A 7 Mb region within 11q13 may contain a high penetrance gene for breast

cancer. Breast Cancer Res Treat 118: 151–159.
7. Li H, Ruan J, Durbin R (2008) Mapping short DNA sequencing reads and

calling variants using mapping quality scores. Genome Res 18: 1851–1858.
8. Li R, Li Y, Kristiansen K, Wang J (2008) SOAP: short oligonucleotide

alignment program. Bioinformatics 24: 713–714.

9. Lin H, Zhang Z, Zhang MQ, Ma B, Li M (2008) ZOOM! Zillions of oligos
mapped. Bioinformatics 24: 2431–2437.

10. Levy S, Sutton G, Ng PC, Feuk L, Halpern AL, et al. (2007) The diploid genome
sequence of an individual human. PLoS Biol 5: e254.

11. Ley TJ, Mardis ER, Ding L, Fulton B, McLellan MD, et al. (2008) DNA

sequencing of a cytogenetically normal acute myeloid leukaemia genome.
Nature 456: 66–72.

12. Pushkarev D, Neff NF, Quake SR (2009) Single-molecule sequencing of an
individual human genome. Nat Biotechnol.

13. Wang J, Wang W, Li R, Li Y, Tian G, et al. (2008) The diploid genome

sequence of an Asian individual. Nature 456: 60–65.

14. Wheeler DA, Srinivasan M, Egholm M, Shen Y, Chen L, et al. (2008) The

complete genome of an individual by massively parallel DNA sequencing.

Nature 452: 872–876.

15. Hodges E, Xuan Z, Balija V, Kramer M, Molla MN, et al. (2007) Genome-wide

in situ exon capture for selective resequencing. Nat Genet 39: 1522–1527.

16. Hodges E, Rooks M, Xuan Z, Bhattacharjee A, Benjamin Gordon D, et al.

(2009) Hybrid selection of discrete genomic intervals on custom-designed

microarrays for massively parallel sequencing. Nat Protoc 4: 960–974.

17. Rosa-Rosa JM, Pita G, Urioste M, Llort G, Brunet J, et al. (2009) Genome-wide

linkage scan reveals three putative breast-cancer-susceptibility loci. Am J Hum

Genet 84: 115–122.

18. Ng SB, Turner EH, Robertson PD, Flygare SD, Bigham AW, et al. (2009)

Targeted capture and massively parallel sequencing of 12 human exomes.

Nature 461: 272–276.

19. Leary RJ, Kinde I, Diehl F, Schmidt J, Clouser C, et al. (2010) Development of

personalized tumor biomarkers using massively parallel sequencing. Science

Translational Medicine Vol 2.

20. Stephens PJ, McBride DJ, Lin ML, Varela I, Pleasance ED, et al. (2009)

Complex landscapes of somatic rearrangement in human breast cancer

genomes. Nature 462: 1005–1010.

21. Tarpey PS, Smith R, Pleasance E, Whibley A, Edkins S, et al. (2009) A

systematic, large-scale resequencing screen of X-chromosome coding exons in

mental retardation. Nat Genet 41: 535–543.

22. http://www.ncbi.nlm.nih.gov/geo/.

23. http://www.ensembl.org/info/data/api.html.

24. http://genome.ucsc.edu/cgi-bin/hgBlat.

25. http://www.ncbi.nlm.nih.gov/Omim/.

A Novel NGS Analysis Pipeline

PLoS ONE | www.plosone.org 10 April 2010 | Volume 5 | Issue 4 | e9976



Molecular Cell

Article

Functional Identification of Optimized RNAi Triggers
Using a Massively Parallel Sensor Assay
Christof Fellmann,1,3,7 Johannes Zuber,1,7,8 Katherine McJunkin,1 Kenneth Chang,1 Colin D. Malone,1 Ross A. Dickins,4

Qikai Xu,5 Michael O. Hengartner,3 Stephen J. Elledge,5,6 Gregory J. Hannon,1,2,* and Scott W. Lowe1,2,*
1Cold Spring Harbor Laboratory
2Howard Hughes Medical Institute
1 Bungtown Road, Cold Spring Harbor, NY 11724, USA
3Institute of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
4The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Melbourne, 3050 VIC, Australia
5Department of Genetics
6Howard Hughes Medical Institute
Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
7These authors contributed equally to this work
8Present address: Research Institute of Molecular Pathology, Dr. Bohr-Gasse 7, A-1030 Vienna, Austria
*Correspondence: hannon@cshl.edu (G.J.H.), lowe@cshl.edu (S.W.L.)
DOI 10.1016/j.molcel.2011.02.008

SUMMARY

Short hairpin RNAs (shRNAs) provide powerful
experimental tools by enabling stable and regulated
gene silencing through programming of endogenous
microRNApathways. Since requirements for efficient
shRNA biogenesis and target suppression are largely
unknown, many predicted shRNAs fail to efficiently
suppress their target. To overcome this barrier, we
developed a ‘‘Sensor assay’’ that enables the bio-
logical identification of effective shRNAs at large
scale. By constructing and evaluating 20,000 RNAi
reporters covering every possible target site in
nine mammalian transcripts, we show that our
assay reliably identifies potent shRNAs that are
surprisingly rare and predominantly missed by exist-
ing algorithms. Our unbiased analyses reveal that
potent shRNAs share various predicted and previ-
ously unknown features associated with specific
microRNA processing steps, and suggest a model
for competitive strand selection. Together, our study
establishes a powerful tool for large-scale identifica-
tion of highly potent shRNAs and provides insights
into sequence requirements of effective RNAi.

INTRODUCTION

RNA interference (RNAi) provides a programmable mechanism
for targeted suppression of gene expression. Through a highly
conserved pathway, the RNAi machinery recognizes and
processes double-stranded RNAs into small RNAs that guide
the repression of complementary genes (for review, see Bartel,
2004; Hannon, 2002). Experimental RNAi acts by providing
exogenous sources of double-stranded RNA that mimic endog-
enous triggers and has paved the way for rapid loss-of-function

studies that range from exploring the function of single genes to
large-scale genetic screens. Moreover, RNAi is being developed
into new therapies that can, in principle, inhibit any gene product.
In animals, somatic RNAi is mainly programmed by micro-

RNAs (miRNAs), small noncoding RNAs that regulate gene
expression (for review, see Bartel, 2004; Filipowicz et al.,
2008). Most miRNAs are produced through a coordinated pro-
cessing program whereby primary miRNA transcripts (pri-miR-
NAs) are cleaved by the nuclear Drosha/DGCR8 complex, result-
ing in the formation of precursor miRNAs (pre-miRNAs). These
short hairpin-like molecules are actively exported to the cyto-
plasm, where Dicer excises mature small RNA duplexes that
are incorporated into the RNA-induced silencing complex
(RISC). Following strand selection, AGO2 discards the
passenger (Leuschner et al., 2006; Matranga et al., 2005) and
uses the guide for selection of complementary target mRNA
substrates, whose expression is suppressed by accelerated
mRNA degradation and/or translational inhibition.
Synthetic sources of double-stranded RNA can enter the RNAi

pathway at various points. The most basic approach involves
transfection of small interfering RNA (siRNA) duplexes (Elbashir
et al., 2001) that resemble Dicer products. Although often potent,
siRNA effects are transient and limited to transfectable cell
types. An alternative approach relies on vectors that express
stem-loop short hairpin RNAs (shRNAs), which resemble pre-
miRNAs and enable stable and heritable gene silencing (Brum-
melkamp et al., 2002; Paddison et al., 2002). shRNAs can also
be embedded in the context of endogenous miRNA tran-
scripts—a configuration that creates a natural substrate for
miRNA pathways (Silva et al., 2005; Zeng et al., 2002), enables
stable and regulated expression from polymerase-II promoters
(Dickins et al., 2005; Stegmeier et al., 2005), and reduces shRNA
associated toxicity (Castanotto et al., 2007; McBride et al.,
2008). Such miRNA-mimetics provide a versatile tool for
long-term gene suppression in vitro and in vivo, as well as
pool-based RNAi screening (see, for example, Dickins et al.,
2007; Schlabach et al., 2008; Silva et al., 2008; Zender et al.,
2008; Zuber et al., 2011).
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While powerful, RNAi technology has some limitations.
Besides suppressing the intended target gene, synthetic RNAi
triggers can evoke off-target effects by suppressing unintended
transcripts due to sequence homologies of either the sense or
the antisense strand. Generally, the potential for misinterpreting
such false positive results can be minimized through the use of
several independent RNAi triggers targeting the same transcript.
In addition, high intracellular levels of synthetic small RNAs can
result in toxicities related to saturation of the RNAi machinery
(Grimm et al., 2006). Such effects can be reduced by the use
of miRNA-based RNAi triggers (Castanotto et al., 2007; McBride
et al., 2008) and, in principle, would be eliminated through the
use of shRNAs that effectively repress gene expression at low
concentrations.

Beyond off-target effects, it remains difficult to identify potent
shRNAs from among hundreds or thousands of possibilities
within a given transcript. Consequently, many shRNAs are inef-
fective, leading to false-negative results in functional studies
and screens. The precise sequence requirements of efficient
RNAi remain incompletely understood, hampering the establish-
ment of rational shRNA prediction rules. Studies using siRNA
data sets indicate that RISC loading and target repression are
dictated by sequence features in both the mature small RNA
and the targeted mRNA region (Ameres et al., 2007; Khvorova
et al., 2003; Schwarz et al., 2003). These include a preference
for thermodynamic asymmetry (Khvorova et al., 2003; Schwarz
et al., 2003), lowG/C content (Reynolds et al., 2004), and a strong
bias for A/U at the 50 end of the guide strand (Tomari and Zamore,
2005). Nonetheless, these features are not sufficient to accu-
rately distinguish between potent and weak RNAi triggers.

Machine-learning-based applications trained on siRNA data
sets have produced algorithms that facilitate prediction of potent
siRNAs (Huesken et al., 2005; Vert et al., 2006). However, such
analyses have not been applied to shRNAs, which may require
more stringent criteria as they rely on transcription and multistep
miRNA processing for the production of small RNA duplexes.
Indeed, experience indicates that siRNA algorithms are ineffi-
cient for predicting potent shRNAs, leaving their identification
to laborious testing (Bassik et al., 2009; Li et al., 2007). Moreover,
key RNAi applications such as pooled shRNA screening and
RNAi transgenics require shRNAs that are effective even when
expressed from a single genomic locus (‘‘single copy’’). Since
most currently available shRNA reagents are not designed or
tested to fulfill such stringent criteria, studies using shRNAs often
rely on suboptimal reagents, and libraries contain many ineffec-
tive shRNAs that complicate the execution and interpretation of
genetic screens.

Here we describe a high-throughput assay to evaluate
shRNA potency in a massively parallel format. Our approach
is based on a single-vector reporter assay that functionally
monitors the interaction of shRNAs with their specific target
sites, and thereby takes into account all aspects of shRNA
biogenesis and target repression. This simple strategy reliably
identifies rare potent shRNAs, most of which are not predicted
using existing algorithms. By tracking the behavior of 20,000
shRNAs through all steps of miRNA biogenesis, we uncovered
sequence preferences that contribute to potent and specific
RNAi. Such information will advance the use of RNAi in func-

tional studies and lays the groundwork for validated shRNA
libraries.

RESULTS

Single-Vector Sensor Assay for Functional shRNA
Evaluation
Synthetic RNAi triggers can be accurately evaluated in functional
assays by placing their cognate target site (‘‘Sensor’’) in the
30UTR of a reporter gene and quantifying its RNAi-mediated
repression (Du et al., 2004; Kumar et al., 2003). In previous
systems, the reporter construct and RNAi trigger were delivered
separately and thus had to be assayed in a one-by-one format.
We reasoned that physically linking shRNAs and their cognate
target sites in a single vector would enable multiplexed analysis
of shRNA-target pairs. Therefore, we constructed a reporter
vector (pSENSOR; Figure 1A) harboring an shRNA expressed
under the control of a Tet-responsive element (TREtight) (Gossen
and Bujard, 1992; Sipo et al., 2006) and its cognate target
sequence (Sensor) in the 30UTR of a constitutively expressed
fluorescent reporter (Venus) (Nagai et al., 2002). Since the adja-
cent context of target sites may affect RNAi potency (Ameres
et al., 2007), we designed Sensors as 50 nt fragments of the
endogenous mRNA, harboring the 22 nt target in the center
(see Figure S1A available online). In reporter cells expressing
the reverse Tet-transactivator (rtTA) (see the Experimental
Procedures; Gossen et al., 1995), doxycycline (Dox) induces
shRNA expression, which in turn represses the Venus reporter
to an extent that reflects the potency of the shRNA (Figure 1A).
To determine the dynamic range of the assay, we constructed

a set of pSENSOR vectors harboring 17 pre-existing shRNAs of
different potency, which were re-evaluated by western blotting
and classified into groups of strong, intermediate, and weak
shRNAs (Figure 1B, Figures S1B–S1E). Following transduction
into rtTA-reporter cells, we quantified changes in Venus expres-
sion after Dox treatment for all 17 shRNAs (Figures 1C and 1D
and data not shown). Induction of strong shRNAs resulted in
dramatic reduction of Venus fluorescence; conversely, interme-
diate andweak shRNAs induced only amoderate or slight reduc-
tion of Venus intensity, respectively. Overall, Venus repression
reflected the efficacy of individual shRNAs in suppressing their
endogenous target, indicating that the Sensor assay accurately
quantifies shRNA potency.

Pooled Evaluation of shRNAs
Since each shRNA and its corresponding Sensor are delivered in
a single vector, our assay is adaptable to a pooled format. In
such a setting, pooled shRNA-Sensor constructs must be trans-
duced at single copy to ensure that Venus fluorescence of each
cell reports the activity of a single shRNA. Upon shRNA induc-
tion, cells displaying strong Venus repression can be isolated
using fluorescence-activated cell sorting (FACS), and potent
shRNAs subsequently identified through sequencing of proviral
shRNA cassettes. To evaluate this approach, we transduced
a pool of 17 pretested pSENSOR constructs into rtTA reporter
cells and sorted equal fractions of low, medium, and high
Venus-expressing cells in the absence and presence of Dox (Fig-
ure 1E and Table S1). Next, genomic DNA was isolated from
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sorted cells in each fraction, and the abundance of each shRNA
was determined by capillary sequencing (288 reads for each
fraction). In the absence of Dox, each shRNAwas equally distrib-

uted among the three fractions (Figure 1F). Following Dox addi-
tion, potent shRNAs were enriched in the low Venus fraction and
underrepresented in the high Venus fraction, while weak shRNAs

A

B

C

E

D

F

Figure 1. Sensor Assay for Assessment of shRNA Potency
(A) Schematic of the Sensor assay. The pSENSOR vector harbors a Tet-inducible shRNA and its cognate target sequence in the 30UTR of a PGK-driven Venus

reporter. Upon infection of cells expressing rtTA, Dox treatment induces shRNA expression. In turn, the extent of Venus knockdown directly reports shRNA

potency. Histograms depict predicted fluorescence intensity distributions for shRNAs of different potencies.

(B) Immunoblotting of Cebpa and Pten in NIH 3T3s transduced with Cebpa or Pten shRNAs of different potencies. C, sh.Luci.1309 control shRNA. KD%,

knockdown level relative to C and normalized to actin.

(C) Flow cytometry analysis of ERC reporter cells transduced with pSENSOR carrying indicated shRNA-Sensor cassettes and treated with or without Dox

(On/OffDox). The leftmost peaks represent uninfected cells. C, control construct harboring an shRNA with a noncorresponding Sensor.

(D) Quantification of Venus fluorescence intensity of OnDox cells shown in (C) and uninfected reporter cells (uninf) used to define background levels. Error bars

represent the standard deviation of triplicates.

(E) Flow cytometry plots of rtTA reporter cells transduced with aMiniPool of 17 shRNA-Sensor constructs and treated ± Dox for 7 days. The lower panels illustrate

Venus-based cell sorting of each population into three equal subpopulations.

(F) Quantification of shRNA sequence reads within the sorted populations outlined in (E). For each shRNA, the distribution of reads among low/medium/high

Venus fractions is plotted as a percentage of total reads of that shRNA. The shRNAs are clustered according to their preannotated groups (see Figure S1E

for details).
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Figure 2. Sensor Ping-Pong Strategy for Deconvolution of Complex shRNA-Sensor Libraries
(A) Schematic of design and cloning of shRNA-Sensor libraries. A library of 20,000 constructs tiling every possible target site in nine mammalian transcripts was

designed. 185-mer oligonucleotides containing shRNAs and cognate Sensors were synthesized and cloned into a 50miR30 recipient vector. In a second step, the

30miR30-PGK-Venus reporter cassette was cloned between shRNAs and their cognate Sensor to reconstitute complete pSENSOR vectors.
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were shifted to the high Venus fraction and almost absent in the
low Venus fraction. Thus, the Sensor assay can be used to select
shRNAs based on their potency in a pooled format.

Optimization of the Sensor Assay
In pilot experiments, we observed that potent shRNA-Sensor
constructs showed decreased viral titers, potentially reducing
their representation in the population. We hypothesized that
this was due to potent shRNAs targeting their Sensor on proviral
transcripts, thereby inducing their degradation. To circumvent
this, we transiently suppressed shRNA biogenesis in packaging
cells by cotransfecting a potent DGCR8 siRNA. Indeed, this
modification normalized the packaging and transduction effi-
ciency of pSENSOR constructs (Figures S2A–S2C).
We also realized that effects of shRNAs on their endogenous

target might alter the proliferation and/or viability of reporter cells
and thereby bias the assay. For example, potent shRNAs target-
ing essential genes will deplete reporter cells and thereby
escape identification in a pooled setting. Since RNAi utilizes an
evolutionarily conserved machinery, we reasoned that an avian
reporter cell line would provide an accurate system for evalu-
ating mammalian shRNAs, where biases induced by effects on
endogenous targets would be minimized due to divergence at
the nucleic acid level. We therefore engineered DF-1 chicken
embryonic fibroblasts (Himly et al., 1998) to express the eco-
tropic retroviral receptor and an improved reverse Tet-transacti-
vator (rtTA3) (Das et al., 2004). When tested using different
shRNA-Sensor constructs, ‘‘Eco-rtTA-chicken’’ (ERC) reporter
cells accurately reported shRNAs of different potency (Figures
S2D–S2F), indicating that shRNA processing is similar between
ERC and mammalian cells (see Figure S5I for large-scale confir-
mation). Therefore, avian ERC cells are accurate reporters for the
Sensor assay and less sensitive to the biological effects of
mammalian shRNAs.

Generation of a High-Complexity Sensor Library
To evaluate the ability of the Sensor assay to simultaneously
analyze the potency of thousands of shRNAs, we constructed
and surveyed a library of !20,000 shRNA-Sensor constructs
comprising every possible shRNA for nine mammalian tran-
scripts (Table S2). To ensure that individual shRNAs were cloned
together with their specific Sensor, we applied large-scale on-
chip oligonucleotide synthesis (Cleary et al., 2004) to produce
!20,000 185-mers, each harboring an shRNA and its target
sequence separated by cloning sites, and used them to
assemble the Sensor library in a pooled two-step procedure (Fig-

ure 2A). Serving as internal controls, all 17 previously character-
ized shRNAs were included at 15-fold representation to ensure
their presence in the final pool. Deep sequencing of the library
after cloning revealed that >99% of all designed shRNAs were
present (Figure 2D).

Multiplexed Evaluation of shRNA Potency Using Sensor
Ping-Pong Sorting
To evaluate shRNA potency in this complex library, we initially
applied fractionated sorting paralleling our analysis of small
pools (Figure 1E). However, at an increased complexity level
this strategy failed to distinguish strong and weak control
shRNAs (data not shown). Reasoning that iterative rounds of
selection could be used to strongly enrich potent shRNAs and
eliminate background noise, we developed a FACS strategy
(Sensor Ping-Pong, Figure 2B) that involves sequential cycles
of shRNA induction and withdrawal, each followed by sorting
for reporter cells displaying Venus levels similar to potent
shRNA-Sensor controls. In this approach, OnDox sorts for
‘‘Venus-low’’ reporter cells exclude cells harboring dysfunctional
shRNAs (thusmaintaining high Venus levels); conversely, OffDox
steps for ‘‘Venus-high’’ reporters eliminate cells with constitu-
tively defective reporters, e.g., due to positional effects of the
retroviral integration. In each sort, FACS gating was guided by
parallel analysis of two small reference pools containing five
strong (Top5) and five weak (Bottom5) control shRNAs. By four
cycles of enrichment (Sort 7), the OnDox FACS profile of the
library became more uniform and resembled that of the Top5
reference population (Figure 2C, Figures S2G and S2H).
To monitor the representation of individual shRNAs

throughout the procedure, genomic DNA was extracted after
every sort, and shRNA guide strands were amplified and quanti-
fied by deep sequencing. While more than 98% of all cloned
constructs were initially represented in infected ERC reporter
cells, each sort led to a reduction of library complexity such
that less than 2000 shRNAs remained after seven sorts (Fig-
ure 2D). Importantly, the shRNA composition of independent
duplicates correlated throughout the procedure (Figure 2E),
while their correlation to the initial population was progressively
lost (Figure 2F). Therefore, the decrease in pool complexity that
occurred throughout the procedure results from a nonrandom
enrichment of specific shRNAs.
Next, we quantified the abundance of our 17 internal control

shRNAs throughout the experiment. After the second cycle
(Sort 3), strong shRNA controls already showed significant
enrichment, and weak shRNAs were depleted (Figure 3A).

(B) Schematic of the Sensor Ping-Pong sorting strategy. Reporter cells infected with an shRNA-Sensor library at single copy are cultured sequentially in presence

or absence of Dox. According to reference populations, sorting gates are drawn to include only cells harboring potent shRNAs (see Figures S2G and S2H for

details). Through iterative rounds of shRNA induction and FACS-based selection, the initial library is reduced to a pool of functional shRNA-Sensor constructs

that can be identified by deep sequencing.

(C) Representative flow cytometry histograms of Top5 reference and library populations at sorting steps 1, 2, 3, and 7. ERC reporter cells were infected with the

Library, Top5, or Bottom5 pools; grown repeatedly for 6–7 days On- then OffDox; and sorted according to the indicated gates. Data are presented as Venus

intensity histograms; actual sorts were done using Venus/FSC dot plots (see Figure S2H for details).

(D) Histogram of library complexity over sort cycles. Shown are normalized read numbers in one replicate for each shRNA represented within the pool after the

indicated sorts.

(E) Correlation of reads per shRNA between two replicates after the indicated sorts. r, Pearson correlation coefficient.

(F) Correlation of reads per shRNA between the initial library pool and the pools after the indicated sorts. r, Pearson correlation coefficient.
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By the fourth cycle (Sort 7), all strong shRNAs were robustly en-
riched, while all weak and most intermediate shRNAs were virtu-
ally eliminated (Figures 3A and 3B). The initial overrepresentation
of some weak control shRNAs in the library did not prevent their
eventual depletion (Figure 3B), suggesting the assay can tolerate
imbalances in the initial pool composition. Optimal enrichment
was obtained by four cycles, after which we did not observe
any additional changes in the overall representation of our

control shRNAs (data not shown). We also explored the use of
bar-coded shRNA-Sensor libraries in conjunction with microar-
ray-based monitoring of shRNA representation and found that
this approach can stratify controls of known potency (Figures
S3A and S3B). Collectively, the behavior of our 17 control
shRNAs indicates that the Sensor Ping-Pong assay strongly
enriches for potent shRNAs while robustly depleting nonfunc-
tional and weak shRNAs.

A

B

C

D

E

F

G

Figure 3. Assay Performance of Control shRNAs and shRNA-Sensor Constructs Tiling Trp53
(A) Enrichment or depletion of 17 control shRNA-Sensor constructs in transduced reporter cells before sorting (top), and after Sort 3 (middle) and Sort 7 (bottom).

Values denote the log2 ratio of reads at the indicated stage compared to reads in the initial shRNA-Sensor plasmid library.

(B) Representation of control shRNA-Sensor constructs in the initial plasmid library and after seven sorts. Pie wedges represent mean values of technical (Library)

or biological (Sort 7) duplicates.

(C) Trp53 transcript coverage in the initial library. Shown are absolute reads (mean of technical duplicates) for 1733 Trp53 shRNA-Sensor constructs in the

plasmid pool. Asterisk, XhoI restriction site affecting the cloning of 45 shRNAs. Double asterisk, most abundant shRNA, sh.p53.816.

(D) Read numbers (mean of biological duplicates) for Trp53 shRNA-Sensor constructs after four Ping-Pong cycles (Sort 7). 814, most abundant shRNA,

sh.p53.814.

(E) Product enrichment scores (ProdEn, representing the product of the relative enrichment in each replicate at Sort 7 compared to the initial library) of all 1733

Trp53 shRNA-Sensor constructs. Numbers (279, 393, 703, 814) pinpoint highly enriched shRNAs.

(F) Integrated Score for selected shRNAs analyzed by western blotting.

(G) Western blot analysis of Trp53 levels in adriamycin-treated NIH 3T3s stably expressing the shRNAs indicated above from a single genomic integration. C1 and

C2, control shRNAs (sh.Bcl2.906, sh.Bcl2.1132). C1 25%andC2 25%, 1:4 diluted control samples. KD%, knockdown level relative to C1 and normalized to actin.
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Validation of Sensor-Identified shRNAs
Sequence analysis indicated that the Sensor assay can identify
potent shRNAs from complex libraries de novo. For example,
all 1733 possible Trp53 shRNAs were represented at the begin-
ning of the assay, with the exception of 11 shRNAs containing
a restriction site used for cloning and five shRNAs in the poly(A)
tail (Figure 3C). Conversely, after four cycles most shRNAs were
completely absent from the pool (Figure 3D), while only a few
were enriched. Strikingly, the most prominent hit based on total
reads was sh.p53.814 (formerly annotated as sh.p53.1224)—an
shRNA that was previously identified empirically and shown to
be extremely potent (Dickins et al., 2005).
To rank and select shRNAs for further validation, wedeveloped

two complementary scoring systems. The quantitative product
enrichment (ProdEn), defined as the product of enrichment ratios
in independent replicates, takes both the initial representation
and consistency between replicates into account (Figure 3E).
A second semiquantitative score uses a logistic function to inte-
grate the initial representation of each shRNA, the consistency
between replicates, and the trend for shRNA enrichment or
depletion throughout all sorts (Figure 3F and Table S3). Based
on these readouts, we examined the potency of four top-scoring
and three nonscoring Trp53 shRNAs by immunoblotting
(Figure 3G). All three newly identified Trp53 shRNAs showed
similar potency to sh.p53.814, suppressing Trp53 expression
to virtually undetectable levels, while the nonscoring shRNAs
had no effect. These results validate the Sensor assay’s ability
to identify potent shRNAs and suggest that these RNAi triggers
are very rare and equally distributed over a given transcript.
These observations were confirmed by Sensor results from

other tiled transcripts. While the initial transcript coverage was
nearly complete (98.1% overall), only a small number of shRNAs
were enriched for each transcript after four Sensor Ping-Pong
cycles (2.4% of all shRNAs had a score >10; Figures 4A, 4E,
5A, and 5E and Figure S4C). The vastmajority of scoring shRNAs
examined (85%–90%) showed strong knockdown of their target
protein when expressed at single copy (Figures 4C, 4G, 5C, 5G;
Figure S4E; and Table S4). Importantly, nonscoring shRNAs that
were ineffective at single copy often showed substantial knock-
down when transduced under conditions that lead to multiple
proviral integrations (Figure 4D and data not shown). Hence,
the Sensor assay accurately distinguishes between shRNAs
that work at single versus high copy—the latter of which are
useless in pool-based shRNA screens or other applications
where only single integrations are achievable or desirable.
To functionally validate selected shRNAs, we developed

a series of simple biological readouts for several of the genes.
Generally, shRNAs that showed potent knockdown by immuno-
blotting displayed the most pronounced biological effects. For
Mcl1, an antiapoptotic protein, we transducedNIH 3T3s at single
or multiple copies with sh.Mcl1.1334 or a control shRNA and
treated them with various concentrations of ABT-737 (Oltersdorf
et al., 2005), an inhibitor of Bcl-2, Bcl-XL, and Bcl-w that is known
to synergize with Mcl1 inactivation to promote cell death (van
Delft et al., 2006). As predicted, knockdown of Mcl1 sensitized
NIH 3T3s to ABT-737 in a dose-dependent manner (Figure 4H).
For Rpa3 and Myc, proteins involved in DNA replication and

cell proliferation, respectively, we examined shRNA potency

using competitive proliferation assays. All five tested top-scoring
shRNAs targeting mouse Myc rapidly depleted B cell lymphoma
cells isolated from diseased Em-Myc; p53"/" transgenic mice
(Figures 5A–5D). Similarly, the most potent humanMYC shRNAs
displayed deleterious effects in two human leukemia cell lines
(Figures 5E–5H). Such potent shRNAs can be readily applied in
Tet-regulated expression systems, where Dox titration can be
used to generate hypomorphic states (Figure S4A). All strongly
scoring Rpa3 shRNAs tested impaired proliferation of fibro-
blasts, while several randomly selected nonscoring shRNAs
were neutral (Figures S4C–S4F). A few functional Rpa3 shRNAs
that were previously identified empirically (Zuber et al., 2011)
were not identified using the Sensor assay, suggesting it does
not identify every potent shRNA. However, all other previously
characterized functional and nonfunctional shRNAs reported
correctly (data not shown).

Comparison to Existing Design Algorithms
To compare our results to existing siRNA-based design tools, we
obtained the top 50 predictions for all nine transcripts using three
different algorithms (Huesken et al., 2005; Sachidanandam,
2004; Vert et al., 2006) and compared them to the 50 highest
scoring Sensor-derived shRNAs for each gene. Strikingly,
>70% of our scoring shRNAs were not identified in the top 50
predictions of any algorithm (Figure S5A). While such false nega-
tives, in principle, may have little practical significance, the
majority of algorithm-predicted shRNAs did not score in the
Sensor assay (FigureS5B), closely resembling their lowvalidation
rate in empirical testing (J.Z. and S.W.L., unpublished data).
Together, these results demonstrate that siRNA algorithms are
poor at predicting potent shRNAs (see also Bassik et al., 2009;
Li et al., 2007) and underscore the value of the Sensor approach.

Global Analysis of shRNA Processing
We noticed that potent shRNAs identified through our unbiased
functional assay share common sequence features. Top-scoring
shRNAs (Score > 10; 453 shRNAs in total) are predominantly A/U
rich (Figure 6A) and exhibit a strong thermodynamic asymmetry
(Figure 6B)—two features that have been previously observed in
studies of effective siRNAs (Khvorova et al., 2003; Reynolds
etal., 2004;Schwarzetal., 2003). Incontrast tononscoringshRNAs
and flanking mRNA regions, the nucleotide composition of potent
guide strands shows many significant positional biases (p < 0.01,
Pearson’s c2 test with !Sidák correction) that progressively emerge
throughout the assay (Figure 6CandFigure S5C). Overwhelmingly,
88% of all top-scoring shRNAs carry U or A in guide position 1.
Other A/U-rich positions include 2, 10, 13, and 14, while positions
20 and 21 are the only ones with a slight G/C bias. Position 20
also shows a remarkable depletion of A. Notably, most of these
features have not been observed in siRNA-based studies.
To systematically analyze the interplay between nucleotide

composition, shRNA processing, and biologic activity, we trans-
duced the entire Sensor library into human HEK293T and
chicken ERC cells. In the absence of cell sorting, we generated
and quantified small RNA libraries designed to represent shRNA
intermediates after major biogenesis steps (pri-, pre-, and
mature miRNAs), and compared their abundance with our func-
tional Sensor data from Ping-Pong sorted cells. At the pri-miRNA
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level, >97% of all 18,720 shRNAs were identified and their abun-
dances strongly correlated with those in the input library (r = 0.83
and 0.89 for ERC and HEK293T cells, respectively), indicating
the absence of sequence biases in transduction and transcrip-
tion. In both cell types, Drosha/DGCR8 cleavage occurred

in >70% at the predicted site for most shRNAs (Figures S1A,
S5D, and S5E). Miscleaved pre-miRNAs were associated with
G/C richness and a particular bias for C at guide position 20
(Figure S5F, p < 0.01), suggesting that structural signals in
pri-miRNAs guide processing to a specific site.
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Figure 4. Analysis of Sensor-Identified shRNAs Targeting Bcl2 and Mcl1
(A) Product enrichment scores (ProdEn) of 1937 shRNA-Sensor constructs tiling the common region of both murine Bcl2 transcripts. Asterisk, sh.Bcl2.1241.

Numbers highlight enriched shRNAs that were analyzed by immunoblotting.

(B) Integrated score for selected Bcl2 shRNAs.

(C)Western blot analysis of Bcl2 levels in NIH 3T3s expressing the shRNAs indicated above from a single genomic integration.Bcl2"/"MEFs served as control. C,

sh.Luci.1309. Two different exposures are shown. KD%, knockdown level relative to C and normalized to actin.

(D) Integrated score for selected Bcl2 shRNAs and western blot analysis of Bcl2 levels in NIH 3T3s expressing the indicated shRNAs from a single (single copy) or

multiple (high copy, red) genomic integrations. C, uninfected cells.

(E) Product enrichment scores (ProdEn) of 3449 shRNA-Sensor constructs covering the mouse Mcl1 transcript. Asterisk, sh.Mcl1.1792. Double asterisk,

sh.Mcl1.2018. Numbers highlight enriched shRNAs that were analyzed by immunoblotting.

(F) Integrated score for selected Mcl1 shRNAs.

(G) Western blot analysis of Mcl1 expression in NIH 3T3s expressing the shRNAs indicated above from a single genomic integration. C, sh.Luci.1309. Two

different exposures are shown.

(H) Synthetic lethal assay using the BH3-mimetic ABT-737 in combination with a potent Sensor-identified Mcl1 shRNA (sh.Mcl1.1334) or a control shRNA

(C, sh.Luci.1309). NIH 3T3s expressing the indicated shRNA from a single or multiple genomic integrations were treated with ABT-737 for 48 hr and subsequently

analyzed for viable cell numbers using flow cytometry (FSC/SSC and propidium iodide staining). DMSO (1%)-treated cells were used for normalization. Error bars

represent the standard deviation of duplicate experiments.
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To determine the stage in which dysfunctional shRNAs are
eliminated from the biogenesis pathway, we calculated the
dropout rate for each processing step. Our data reveal that
a substantial fraction of shRNAs fail processing at each level
(Figure S5G), while the representation of individual precursors
remained highly correlated between ERC and HEK293T cells
throughout miRNA biogenesis (Figure S5I). Together, this indi-
cates that each processing step has restrictive and specific
requirements. Notably, shRNAs that score in the Sensor assay
are enriched at each processing step (Figure S5H), illustrating
that efficient shRNA processing is a key determinant of potency.
To explore specific features associated with effective pro-

cessing, we analyzed the nucleotide composition of shRNAs
that were enriched at each step (Figure 6D). Efficient

Drosha/DGCR8 cleavage was strongly associated with a preva-
lence of A/U at position 13/14 and G at position 20 and 21
(p < 0.01 for all). The transition from pre- to mature miRNAs,
which represents Dicer/TRBP cleavage and likely AGO2
loading, shows biases for A/U in position 1 (p < 0.01), while
the remaining guide is characterized by a flat profile with
a slightly G-rich 30 side (nt 10–22). To monitor features associ-
ated with the terminal pathway steps (AGO2 loading, target
recognition, and cleavage) we analyzed shRNAs that showed
an increase in their relative abundance from the mature miRNA
stage to the endpoint of the Sensor assay (Sort 7). Only at this
level, the structural pattern of enriched shRNAs exhibited
a strong thermodynamic asymmetry (Figure 6D). Importantly,
guide position 1 presented an extreme bias for U (p < 0.01)
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Figure 5. Analysis of Sensor-Identified shRNAs Targeting Mouse and Human MYC
(A) Product enrichment scores (ProdEn) of 2350 shRNA-Sensor constructs tiling the mouse Myc transcript.

(B) Integrated score for selected scoring Myc shRNAs.

(C) Western blot analysis of immortalized Rosa26-rtTA-M2 (RRT) MEFs expressing Flag-tagged murine Myc and shRNAs indicated above at single copy. Over-

expression of Myc lacking the 30UTR rescues knockdown by sh.Myc.1988 and 2105 (Figure S4B). C, sh.Luci.1309. KD%, knockdown level relative to C and

normalized to actin.

(D) Competitive proliferation assay of Em-Myc; p53"/" lymphoma cells expressing the indicated shRNAs. The relative percentage of shRNA expressing cells at

indicated days following retroviral transduction is shown. C, sh.Luci.1309.

(E) Product enrichment scores (ProdEn) of 2328 shRNA-Sensor constructs tiling the human MYC transcript.

(F) Integrated score for selected scoring MYC shRNAs.

(G) Flag-tag western blot analysis in RRT MEFs expressing Flag-tagged human MYC and shRNAs indicated above at single copy. C, sh.Luci.1309.

(H) Competitive proliferation assay of K-562 and MOLM-13 human leukemia cell lines expressing the indicated shRNAs. The relative percentage of shRNA-

expressing cells at the indicated days following shRNA induction is shown. C, sh.Luci.1309.
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and a near absence of G and C. These biases show a remark-
able correlation to recently reported nucleotide binding affini-
ties of the MID domain of human AGO2 (Frank et al., 2010)
(Figure 7A), suggesting that a strong interaction between
AGO2 and the 50 end of the guide strand is a decisive prereq-
uisite for potent RNAi.

In nucleotide profiles associated with mature miRNA produc-
tion and function, we also noted an unusual rareness of A at posi-
tion 20 (Figure 6D, p < 0.05). In line with the above, shRNAs
harboring A in guide position 20 will yield passenger strands
carrying U at their 50 end such that the passengers may outcom-
pete target-specific guide strands in RISC loading due to their
affinity for AGO2 binding (Figure 7B). Indeed, shRNAs showing

strong guide selection are biased for U in position 1 (p < 0.01)
and against A in position 20 (p < 0.01), while the key features
of shRNAs with passenger strand preference are an absence
of A/U in position 1 (p < 0.01) and a strong bias for A/U in position
20 (p < 0.01, Figure 7C and Figure S6A). Notably, guide:passen-
ger ratios for individual shRNAs were highly correlated between
HEK293T and ERC cells (Figure S6B), indicating that prefer-
ences in strand selection are due to a conserved and specific
process. Overall, potent shRNAs identified in our assay show
extreme guide selection biases (39- and 95-fold in HEK293T
and ERC cells, respectively, Figure 7D), illustrating that a strong
preference for utilizing target-specific guide strands is a hallmark
of effective RNAi.

A B

C D

Figure 6. Sequence Features of Sensor-Identified shRNAs and Step-Specific RNAi Requirements
(A) Overall A/U content of nonscoring (Score < 1) and scoring (Score > 10) shRNAs, showing enrichment of relatively A/U-rich shRNAs.

(B) Local G/C content (4 nt sliding window) of nonscoring (Score < 1) and scoring (Score > 10) shRNAs, indicating thermodynamic asymmetry of scoring shRNAs.

(C) Nucleotide frequency in nonscoring (Score < 1, top) and scoring (Score > 10, bottom) shRNA-Sensor constructs. Shown are 22 nt shRNA guide strands (dark

colors, reverse complement to 22 nt target site in endogenous transcript) and adjacent mRNA regions flanking the target site (pastel colors, reverse complement

to mRNA). Asterisk, p < 0.01 (Pearson’s c2 test with !Sidák correction).

(D) Nucleotide bias of shRNAs that were significantly enriched (>5-fold) at the respective step and sufficiently represented (>100 reads) in the previous state.

Drosha indicates sequences enriched from pri- to pre-miRNA (733 shRNAs). Dicer indicates sequences enriched from pre- to mature miRNA (931 shRNAs).

RISC indicates sequences enriched frommature miRNA to shRNA representation at the genomic level after Sort 7 (root-mean-square value of all four replicates;

216 shRNAs). Data are shown for ERC cells; comparable patterns were observed in HEK293T cells.
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DISCUSSION

Here we describe an unbiased, accurate, and scalable strategy
for identifying highly potent shRNAs targeting any gene. Our
approach measures the potency of shRNAs by monitoring their
interactionwith a surrogate target cloned into the 30UTRof a fluo-
rescent reporter, and thus integrates most aspects of shRNA
biogenesis, target recognition, and repression. Combining on-
chip synthesis of long oligonucleotides with a two-step cloning
procedure, we generated a library of !20,000 shRNA-Sensor
constructs representing almost every target site (>99%) in nine
mammalian transcripts. Using genetically distant avian reporter
cells, we simultaneously evaluated the potency of every shRNA
within this library via iterative cycles of FACS-based enrichment
and deep-sequencing-based quantification, and thereby estab-
lished a straightforward protocol for identifying potent shRNAs in
a multiplexed format.
Our Sensor strategy accurately predicts the activity of shRNAs

toward their endogenous targets and reliably identifies shRNAs

that are effective when expressed from a single genomic integra-
tion—a criterion largely neglected in current shRNA libraries and
prediction tools. As such, the assay vastly outperforms existing
siRNA-based algorithms, which miss >70% of Sensor-derived
shRNAs and generally necessitate the testing of many predic-
tions to identify even a single potent shRNA. For example,
despite previously testing !15 top siRNA predictions from
state-of-the-art algorithms, we found zero and only one potent
shRNA targeting murine Mcl1 and Bcl2, respectively (data not
shown). In contrast, the Sensor approach readily identified
multiple highly effective shRNAs for both genes (Figures 4C
and 4G).
Roughly 10%–15% of scoring shRNAs did not efficiently

suppress their endogenous target. These false positives could
arise from technical problems linked to our multistep protocol
or off-target effects of the tested shRNA on the Venus transcript.
Additionally, a subset of target sites could be occluded by long-
range RNA interactions or protein binding events that are not
reproduced on the abbreviated target site in our system.
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D

Figure 7. Potent shRNAs Show a Strong Strand Bias Dictated by Guide Positions 1 and 20
(A) Graphical analysis of the nucleotide bias at position 1 of the guide strand, demonstrating specific binding preferences for each nucleotide. The graph shows

the correlation between dissociation constants obtained from data on crystal structures of the MID domain of human AGO2 (Frank et al., 2010) and Sensor-

derived nucleotide frequencies. A linear regression indicates the trend of the data set. r, Pearson correlation coefficient.

(B) Model for AGO2-mediated competitive guide selection. Specific binding of the 50 nucleotide to the MID domain of vertebrate AGO2 strongly influences strand

selection, thereby defining the RISC-loaded guide strand (see Figure S6C for details).

(C) Nucleotide frequency bias of favored (guide/passenger > 50; 1546 shRNAs) and neglected (guide/passenger < 0.02; 439 shRNAs) guide strands in ERC cells

transduced with the Sensor library. Comparable results were obtained with HEK293T cells.

(D)Mean guide versus passenger ratios for scoring (Score > 10) and nonscoring (Score < 1) shRNAs in ERC andHEK293T cells transducedwith the Sensor library.

Error bars represent the standard error of the mean.
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Although we presently have no estimate of false-negative rates,
the Sensor assay generally allowed us to easily find two or more
potent RNAi triggers for every gene tested.

By surveying !20,000 shRNAs produced in the absence of
any design bias, our study describes a systematic analysis of
shRNA efficiency and provides the largest data set of functionally
annotated RNAi triggers currently available. Our data reveal that
potent single-copy shRNAs are surprisingly rare, with frequen-
cies ranging between 0.5% (Trp53) and 4.4% (Pcna) across
the surveyed transcripts (2.4% on average). Except for sparing
G/C-rich regions, potent shRNAs appear to be evenly distributed
throughout transcripts, indicating that there is no preferential tar-
geting of 30UTRs.

To systematically explore the importance of efficient shRNA
biogenesis for RNAi potency, we overlaid our functional data
with a deep-sequencing-based analysis of small RNA species
at different stages of miRNAmaturation. Surprisingly, a substan-
tial fraction of shRNAs failed to be processed at each step, while
potent shRNAs were consistently well represented (Figures S5G
and S5H). Highly processed shRNAs shared distinct sequence
features that are attributable to specific steps in miRNA biogen-
esis and, mostly, have not been noted previously. For example,
efficient pre-shRNA production is associatedwith A/U in position
13/14 and G in position 20/21, while C in position 20 impairs the
accuracy of Drosha/DGCR8 cleavage. Together, our findings
illustrate that the multistep process of miRNA biogenesis intro-
duces additional structural constraints, providing an explanation
for why siRNA-based algorithms often fail to predict functional
shRNAs.

Other determinants of shRNA potency emerge at the end of
the RNAi pathway. Strikingly, nucleotide frequencies of potent
shRNAs at guide position 1 precisely mirror nucleotide binding
affinities of AGO2 (Frank et al., 2010) and resemble Argonaute-
loading preferences for 50 U-containing strands in other organ-
isms (Buhler et al., 2008). Together with biases at position 20,
this suggests that the interaction between AGO2 and the 50

end of both strands plays a decisive role in competitive strand
selection (Figure S6C). In turn, most potent shRNAs are charac-
terized by a strong preference for selecting the intended guide,
suggesting that accurate strand selection is a key feature of
effective RNAi.

Preferentially loaded strands also showed a subtle general
bias for G but lacked thermodynamic asymmetry (Figure 7C),
which previously has been implicated in RISC assembly
(Schwarz et al., 2003). Since well-selected guide strands that
potently suppress their target show thermodynamic asymmetry
(Figure 6D and Figure S6D), this feature may become relevant
only after strand selection, e.g., by facilitating target release after
cleavage and enhancing RISC turnover (Haley and Zamore,
2004; Leuschner et al., 2006). Together, our data suggest that
RISC loading is based on competitive binding of the 50 nucleo-
tides of both strands to AGO2, while thermodynamic asymmetry
enhances the efficiency of later steps in the RNAi process.

Although the Sensor assay was designed to improve RNAi
potency, its implementation may also impact RNAi specificity.
First, our assay helps to control for sequence-specific off-target
effects by enabling the identification of multiple potent shRNAs
against any gene. Second, it will reduce passenger-mediated

off-target effects by selecting potent shRNAs with a bias for
incorporating the intended guide strand into RISC. Third, the
identification of parameters guiding Drosha/DGCR8 processing
will help to minimize off-target effects mediated by aberrant
guide strands. Finally, by providing shRNAs with single-copy
activity, our assay should further reduce off-target toxicities
owing to saturation of the RNAi machinery. Indeed, we see that
miR30-based shRNAs expressed from a single-copy promoter
do not interfere with the processing of endogenous miRNAs
(Premsrirut et al., 2011).
We believe that the Sensor assay provides a powerful and

efficient method for identifying potent shRNAs. By taking an
unbiased approach, our pilot study not only validated the Sensor
assay but, unexpectedly, revealed insights into sequence
requirements of miRNA biogenesis, strand selection, and
efficient target knockdown. Indeed, features deduced from our
analyses provide an shRNA-specific criteria framework for
rational shRNA design (Table S5). Although these simple rules
do not fully recapitulate the accuracy of the assay, they can be
used to filter shRNAs prior to their Sensor-based evaluation
and thereby dramatically increase the number of genes that
can be surveyed in one Sensor experiment. As such, our
approach lays out a practical workflow for the rapid generation
of functionally validated shRNA libraries as well as the identifica-
tion of potent RNAi triggers for biological studies and, eventually,
RNAi therapeutics.

EXPERIMENTAL PROCEDURES

Vectors and Library Construction
The pSENSOR reporter vector, containing TREtight-NeoR-miR30-PGK-Venus-

Sensor, was assembled in the pQCXIX retroviral backbone (Clontech). We

designed !20,000 185-mer oligonucleotides (each containing a 101 nt

miR30-shRNA fragment, an EcoRI/MluI cloning site, the cognate 50 nt Sensor

cassette, and an 18 nt primer binding site), which were synthesized alongside

controls on a 55,000 features oligonucleotide array (Agilent Technologies). The

shRNA-Sensor library was constructed in a two-step procedure, involving

cloning of PCR-amplified shRNA-Sensor fragments into a 50miR30-pSENSOR

recipient vector, and inserting the 30miR30-PGK-Venus cassette between

shRNA and Sensor cassette. shRNAs were named according to the position

of the 30 nucleotide of the guide strand on the tiled transcript.

Reporter Cell Lines
RRT MEFs were generated by immortalizing Rosa26-rtTA-M2 MEFs through

transduction of lentiviral SV40 large T antigen and subsequent passaging.

ERC reporter cells were derived from a single-cell clone of DF-1 chicken

embryonic fibroblasts (Himly et al., 1998) transduced with MSCV-rtTA3-

PGK-Puro and MSCV-EcoReceptor-PGK-Hygro retroviruses, and grown in

DMEM supplemented with 10% FBS, 1 mM sodium pyruvate, 100 U/ml

penicillin, and 100 mg/ml streptomycin. Tet-regulatable shRNAs were induced

using Dox concentrations of 1.0–2.0 mg/ml in RRT MEFs and 0.5 mg/ml in ERC

cells.

Sensor Ping-Pong Assay
FACS procedures were carried out on a FACSAria II (BD Biosciences). ERC

reporter cells were infected with pSENSOR libraries at singly copy and sorted

in iterative cycles, either after treatment with Dox and G418 (500 mg/ml) for

6–7 days (OnDox) or after Dox and G418 withdrawal for 6–7 days (OffDox).

The gating was guided by reference cells transduced with small pools of

potent (Top5) and weak (Bottom5) control shRNA-Sensor constructs. In all

sorts, a representation of 1000-fold the pool complexity was maintained.

Deep sequencing template libraries were generated by PCR amplification of
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shRNA guide strands from genomic DNA of at least 10 million cells, using

primers that tag standard Illumina adapters to the product, and sequenced

using a primer reading reverse into the guide strand. Only sequences

completely matching the Sensor library were retained.

Small RNA Libraries
Libraries were generated as previously described (Malone et al., 2009). In brief,

total RNA from HEK293T or ERC cells transduced with the pSENSOR library

was extracted with TRIzol (Invitrogen) and two phenol:chloroform:IAA

(Ambion) purification steps. Of total RNA, 40 mg was run on a 12% denaturing

polyacrylamide gel and 18–26 nt mature small RNAs or 50–70 nt pre-miRNAs

were selected for cloning; pri-miRNA libraries were obtained by direct amplifi-

cation from total RNA using miR30-specific primers. Following Illumina

sequencing, only sequences completely matching the Sensor library were re-

tained for further analysis.

SUPPLEMENTAL INFORMATION
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SUMMARY

DNA methylation has been implicated as an epige-
netic component of mechanisms that stabilize cell-
fate decisions. Here, we have characterized the
methylomes of human female hematopoietic stem/
progenitor cells (HSPCs) and mature cells from the
myeloid and lymphoid lineages. Hypomethylated
regions (HMRs) associated with lineage-specific
genes were often methylated in the opposing
lineage. In HSPCs, these sites tended to show inter-
mediate, complex patterns that resolve to uniformity
upon differentiation, by increased or decreased
methylation. Promoter HMRs shared across diverse
cell types typically display a constitutive core that
expands and contracts in a lineage-specific manner
to fine-tune the expression of associated genes.
Many newly identified intergenic HMRs, both consti-
tutive and lineage specific, were enriched for factor
binding sites with an implied role in genome organi-
zation and regulation of gene expression, respec-
tively. Overall, our studies represent an important
reference data set and provide insights into direc-
tional changes in DNA methylation as cells adopt
terminal fates.

INTRODUCTION

Development and tissue homeostasis rely on the balance

between faithful stem-cell self-renewal and the ordered, sequen-

tial execution of programs essential for lineage commitment.

Under normal circumstances, commitment is thought to be

unidirectional with repressive epigenetic marks stabilizing loss

of plasticity (De Carvalho et al., 2010). However, certain differen-

tiatedmammalian cells can be reverted to an induced pluripotent

state (iPSCs) through exogenous transduction of specific tran-

scription factors (Takahashi and Yamanaka, 2006). Yet, even

these reprogrammed cells retain a residual ‘‘memory’’ of their
former fate, displaying DNA methylation signatures specific to

their tissue of origin (Kim et al., 2010).

DNA methylation is critical for the self-renewal and normal

differentiation of somatic stem cells. For example, within the

hematopoietic compartment, impaired DNA methyltransferase

function disrupts stem cell maintenance (Maunakea et al., 2010;

Trowbridge and Orkin, 2010), and loss of DNMT1 leads to defec-

tive differentiation and unbalanced commitment to the myeloid

and lymphoid lineages (Bröske et al., 2009; Trowbridge et al.,

2009). These studies highlight thewell-characterized hematopoi-

etic compartment as a context in which to study the link between

DNA methylation patterns and cell-fate specification.

Toward this end, DNA methylation profiles of murine hemato-

poietic progenitors through early stages of lineage commitment

were recently compared with CHARM (Irizarry et al., 2008; Ji

et al., 2010), which profiles a predefined set of CpG-dense inter-

vals. Overall, CHARM revealed that early lymphopoeisis involves

more global acquisition of DNA methylation than myelopoiesis

and that DNMT1 inhibition skews progenitors toward the

myeloid state. These data support earlier reports that DNMT1

hypomorphic hematopoietic stem and progenitor cells (HSPCs)

show reduced lymphoid differentiation potential (Bröske et al.,

2009). Importantly, regions identified to have differential methyl-

ation through sequential stages of differentiation most often did

not correspond to CpG islands (CGIs) but instead lay adjacent in

areas referred to as ‘‘shores.’’

Higher-resolution maps of DNA methylation with shotgun

bisulfite sequencing have mainly been produced from cultured

cells (Laurent et al., 2010; Lister et al., 2009) or mixed cell types

(Li et al., 2010). Several unexpected findings emerged from these

early studies including significant frequencies of cytosinesmeth-

ylated in a non-CpG context in human embryonic stem cells

(ESCs), a characteristic previously thought to be restricted to

plants. Other genome-wide studies have implicated DNA meth-

ylation in the regulation of alternative promoters and even RNA

splicing patterns (Maunakea et al., 2010). These observations

emphasize the need for complete, unbiased, and quantitative

assessment of cytosine methylation and the establishment of

referencemethylomes from purified populations of primary cells.

Here, we performed whole-genome shotgun bisulfite se-

quencing on female human HSPCs, B cells, and neutrophils to
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Figure 1. Features of Methylomes in Hematopoietic Cells

(A and B) Genome browser tracks depict methylation profiles across a lymphoid (A) and myeloid (B) specific locus in blood cells, ESCs, and sperm. Methylation

frequencies, ranging between 0 and 1, of unique reads covering individual CpG sites are shown in gray with identified hypomethylated regions (HMRs) indicated
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examine the relationships between themethylation states ofmul-

tipotent blood-forming stem cells and two divergent derived line-

ages. This enabled us to probe directional changes in DNAmeth-

ylation associated with cell-fate specification. Comparison of the

three referencemethylomes revealed anumber of important prin-

ciples of epigenetic regulation, in addition to providing insights

into the dynamics of epigenetic changes during development.

RESULTS AND DISCUSSION

Lineage-Specific Hypomethylated Regions Extend
beyond Annotated CGIs
We sought to generate reference, single nucleotide-resolution

methylation profiles for several nodes within the human hemato-

poietic lineage using whole-genome bisulfite sequencing (see

the Experimental Procedures). Therefore, we examined CD34+

CD38–Lin– HSPCs, CD19+ B cells, and granulocytic neutrophils

fromperipheral blood of pooled human female donors. These cell

types represent one of the earliest self-renewing, multipotent

populations, and two derived, mature cell types from the

lymphoid and myeloid lineages, respectively. For comparison,

we generated methylomes from HSPCs from male umbilical

cord blood (CD133+CD34+CD38–Lin–) and compared to data

sets created fromprimate sperm (Molaro et al., 2011) and embry-

onic stem cells (Laurent et al., 2010). In all cases, we achieved

a median of 103 independent sequence coverage, sufficient to

interrogate 96% of genomic CpG sites (Figure S1A and Table

S1A available online). While this level of coverage is still subject

to sampling error at individual sites (see discussion in Hodges

et al., 2009), features such as transitions from high to low levels

of methylation can still be identified with a resolution of the

boundaries to within a few CpG sites.

In the genome as a whole, CpG dinucleotides have a strong

tendency to bemethylated (70%–80%) (Lister et al., 2009). Coin-

cidently, CpGs are also underrepresented, perhaps because

of their vulnerability to methylation-induced deamination and

consequent loss over evolutionary time (Cooper and Krawczak,

1989; Gardiner-Garden and Frommer, 1987). Areas of increased

CpG density, called CpG islands (CGIs) have a lower probability

of being methylated and these or their adjacent regions (CGI

shores) have been implicated as potential regulatory domains

(Gardiner-Garden and Frommer, 1987; Irizarry et al., 2009a;

Wu et al., 2010). Though CGIs have been defined computation-

ally (Irizarry et al., 2009b), we developed an algorithm to identify

hypomethylated regions (HMRs) empirically in bisulfite

sequencing data sets, based on their methylation state alone

(see Figures 1A and 1B).

Between 50,000 and 60,000 HMRs were identified from each

hematopoietic profile (Table S1B), with neutrophils displaying
by orange bars. UCSC predicted/annotated CpG islands (green bars) and HMM-b

(top) indicate base position along the chromosome.

(C) Venn diagrams depict the intersection between HMRs identified in blood as w

The size of the circles and the proportion of circle overlap reflect the relative numb

HMRs.

(D) Dendrogram clusters cell-types according to their pearson correlations of in

lapping, across all tissues examined.

See also Figures S1 and S2 and Table S1.
the greatest number (�60,000), followed by HSPCs (�55,000)

and B lymphocytes (�53,000) (Figure 1C). Interestingly, this

was lower than the number in male germ cells (�80,000),

perhaps because of the extensive repeat hypomethylation

observed in sperm as compared to somatic cells.

Certainly, many annotated CGIs were contained within our set

of functionally defined HMRs; however, CGIs appeared to fall

short as a benchmark by which to define all HMRs with probable

regulatory significance. Annotated CGIs accounted for fewer

than half of the HMRs identified in any cell type (Figure 1C and

Figure S1B). Moreover, many HMRs whose biological relevance

is supported by lineage-specific methylation failed to meet the

conservative CGI criteria.

Sequence tracks showing methylation levels for a lymphoid-

(Figure 1A) or myeloid- (Figure 1B) specific gene illustrate several

characteristics of HMRs. The locus for the B cell marker CD19

displays a broad, cell type-specific HMR at its transcriptional start

site (TSS), which does not overlap a predicted CGI. In contrast,

‘‘tidal’’ methylation at CGI shores characterizes several HMRs

surrounding the myeloid transcription factor, CEBPA. The cores

of these HMRs are shared among blood forming cells, but their

widths differ, with neutrophils demonstrating the most expansive

hypomethylation. In fact, sharedHMRsoftenshowvariablewidths,

suggesting that the boundaries of HMRs fluctuate in a cell type-

dependent manner. Due to the dynamic behavior of the HMRs,

we were motivated to seek further validation of these characteris-

tics as biological phenomena, rather than as technical artifacts of

themethodology. Therefore, we focused on an independent data-

set derived from chimpanzee. We reasoned that genic relation-

ships to methylation dynamics should be preserved in closely

related species. Indeed, HMRs show significant overlap between

human and chimp, with chimp HMRs following very similar

patterns of boundary fluctuations (Table S1C and Figure S2).

While a high proportion of identified HMRs (R70%) inter-

sected all blood cell types studied, �10-fold more HMRs were

shared only between HSPCs and neutrophils than exclusively

between HSPCs and B cells (Figure 1C). In contrast, �45%–

50% of HMRs identified in blood cells overlap sperm HMRs.

Interestingly, the diversity of differentially expressed genes

within the hematopoietic lineage has been reported to be similar

to the complexity observed across human tissues (Novershtern

et al., 2011). However, at the epigenetic level, HMR profiles

easily distinguished closely related cell types (blood forming)

from distantly related ones (Figure 1D), indicating that patterns

of DNA methylation are strongly correlated within a lineage.

HMR Expansion Correlates with Differential Expression
Differentially methylated regions (DMRs) at promoters have been

ascribed regulatory roles, with differential methylation being
asedCpG islands (blue bars) (Irizarry et al., 2009b) are also displayed. Numbers

ell as the overlap between blood-derived cells, sperm, and UCSC CpG islands.

er of HMRs identified as well as the degree of intersection between each set of

dividual CpG methylation levels within HMRs, both overlapping and nonover-
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Figure 2. Promoter Differential Methylation and Gene Expression

(A) Average methylation levels across promoters of genes having a DMR within 4 kb of the TSS are shown. Two separate graphs display neutrophil hypo-

methylated promoter DMRs relative to B cells (N < B, top) and B cell hypomethylated promoter DMRs relative to neutrophils (B < N, bottom). The number of DMRs

covering nonoverlapping 50 bp windows across the promoter is also shown.

(B) Correlations between differential methylation and differential expression between neutrophils and B cells as a function of position relative to the TSS are

shown. The correlations were obtained by comparing log odds of differential methylation and log of RPKM. The probability for differential methylation at a given

CpG is described in the Supplemental Experimental Procedures. The gray area displays the smoothed 95% confidence interval. The closed circles indicate

correlation coefficients that are significantly different from 0.
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linked to tissue-specific expression. Yet, HSPCs, B cells, and

neutrophils mainly share promoter-associated HMRs at differen-

tially expressed genes. Prior studies have associated changes in

gene expression with changes in methylation states adjacent to

constitutively hypomethylated CGIs, in so-called ‘‘CGI shores’’

(Irizarry et al., 2009a). Therefore, we examined correlations

between the geography of promoter HMRs and changes in

lineage-specific expression, focusing on a comparison of B cells

and neutrophils.

Differential methylation often manifested as a broadening of

TSS-associated HMRs in a specific lineage (Table S2A). The

changes were asymmetric, with the greatest loss of methylation

on the gene-ward side (Wilcoxon ranks sum: p < 5e-60, both

DMR sets). Globally, these HMRs were broadest in sperm and

constricted in ESCs (Figure 2A) (see also Molaro et al., 2011),

widening again in a tissue-specific fashion. Thus, our analyses

provide global support for ‘‘tidal’’ methylation changes at CGI

shores.

For deeper analysis of these tidal patterns, we measured

differential methylation in 50 base windows surrounding TSSs

(Figure 2A). Moving 30 toward B cell hypomethylated promoters

(B < N), coverage by DMRs peaked between 1.5 Kbp and 2 Kbp

downstreamof the TSS. A slightly different pattern was observed

for neutrophil hypomethylated promoters (N < B), with DMRs

rising to a peak directly at the TSS. In both data sets, the greatest

concentration of differential methylation occurred �1–2 Kb

downstream of the TSS, consistent with overall methylation

being selectively reduced in the transcribed regions of genes

with tissue-specific DMRs.

We next askedwhether any element of DMR geography corre-

lated with tissue-specific gene expression. We carried out

RNA-seq and computed RPKM values for each cell type (Table

S2B). We then computed the correlation between differential

expression and differential methylation in 100 base windows

surrounding the TSS (see the Experimental Procedures). This

correlation was strongly asymmetric, peaking �1,000 bases

downstream of the TSS. Notably, this corresponded with the

expansion of HMRs that contributes to tissue-specific promoter

hypomethylation (Figure 2B).

CD22 provides a specific example of the general phenomena

that we observed (Figure 2C). CD22 is expressed in B cells, but

not neutrophils. In each cell type its TSS is covered by an HMR,

which in HSPCs and neutrophils extends �500 bp and centered

on the TSS. In B cells, the HMR begins at the same position

upstream of the CD22 TSS, but extends more than 4,300 bp

into the transcribed region.

The properties noted for differentially expressed genes were

extensible to the entire set of REFSEQ genes. Though hypome-

thylation was largely symmetric around REFSEQ TSSs, a strong

correlation could be seen between RPKM and lower methylation

levels peaking �1.0 Kb downstream of the TSS (Figure 2D). This
(C) The browser image shows gene expression for CD22 in the form of mapped

Figure 1A) along with HMRs.

(D) Correlations betweenmethylation levels and expression levels represented by

coefficients were averaged in 100 bp bins across regions between 4 kb upstream

See also Figure S3 and Table S2.
was true of all cell types examined, though the magnitude of the

effect was lowest in HSPCs.

Our results are in accord with a recent study that revealed

a unique chromatin signature surrounding the TSS of tissue-

specific loci. Spreading of H3K4me2 into the 50 untranslated
region (UTR) was observed at tissue-specific genes, whereas it

remained as a discrete peak at the TSS of ubiquitously ex-

pressed genes (Pekowska et al., 2010). To look for similar rela-

tionships between histone profiles and expanding promoter

HMRs, we analyzed chromatin immunoprecipitation sequencing

(ChIP-seq) data for H3K4me3, H3K4me1, and H3K27ac enrich-

ment across eight different ENCODE cell lines (Bernstein et al.,

2005; Birney et al., 2007). The ENCODE cell lines are derived

from a variety of tissues and include GM12878, which is a lym-

phoblastoid cell line. First, we observe a strong enrichment for

these histone marks at B cell promoters containing expanded

HMRs. In addition, the greatest difference between the lymphoid

cell line and the other cell lines appears upstream and down-

stream of the TSS compared to all promoters. Interestingly, the

H3K4me3 differential enrichment is biased on the 30 side of the

TSS (Figure 3).

It has also been noted that for a subset of CGI-associated

promoters, high CpG density extends downstream of the TSS

and hypomethylation of the extended region is required for

RNA polymerase II binding (Appanah et al., 2007). In fact, anal-

ysis of existing lymphoid ChIP-seq data of RNA polymerase II

revealed a 33 enrichment in B cell expanded HMR regions

compared to neutrophil-expanded regions (Table S2C) (Barski

et al., 2010). This suggests that while core CGI promoters remain

hypomethylated by default, expansion downstream of the TSS

may be important for productive transcription.

Features of Shared and Lineage-Specific
Intergenic HMRs
While REFSEQ gene promoters were often associated with an

HMR, the majority of HMRs were not found at promoters (Fig-

ure S3). Nearly half of all identified HMRs were located in gene

bodies. An additional quarter lay >10 Kb from the nearest anno-

tated genes, and we defined this class as ‘‘intergenic HMRs.’’

Like promoter-associated HMRs, intergenic HMRs showed

sequence conservation, suggesting that these are functional

elements (Figure 4A). In fact, genome-wide comparisons of

methylation states of orthologous sites in the corresponding

cell types of chimpanzee supported concomitant conservation

of constitutive and cell type-specific patterns of intergenic meth-

ylation (data not shown). Intergenic HMRs tended to be narrower

than those found at promoters and were less likely to be shared

among cell types. When they were shared, they displayed

patterns of expansion and contraction very similar to what was

observed for promoter-associated regions (Figure 4A), with their

overall extent being widest in sperm.
read profiles from RNA-seq data. Methylation profiles are also shown (as in

RPKMvalues are shown as a function of position relative to the TSS. Correlation

and downstream of the TSS. Y axis labels were reversed.
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Figure 3. Histone Enrichment across Expanded HMRs

Read count enrichment ratios per 25 bp bins located 10 kb upstream and 10 kb

downstream of the TSS were calculated for promoters overlapping HMRs

included in Figure 2A for B cell HMRs (red lines) or neutrophil HMRs (blue lines)

for H3K4me3 (A), H3K4me1 (B), and H3K27ac (C) by comparison of read

counts across all REFSEQ annotated promoters. Data were obtained from

ENCODE and include histone profiles for eight different cell lines. The lym-

phoblastoid cell line GM12878 is highlighted in darker shaded colors.
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An early, pervasive view of DNA methylation proposed that

germ cell profiles should represent a default state of hypomethy-

lation in all potential regulatory regions (Gardiner-Garden and

Frommer, 1987). This was based on the idea that hypomethyla-

tion in germ cells would prevent CpG erosion over evolutionary

time spans. The high number of nonoverlapping HMRs in the

adult somatic cell strongly argues against both of these notions

(Figure 1C). However, the width of both genic and intergenic

HMRs in sperm compared to somatic cells suggests that germ

cells can define the ultimate boundaries of somatic HMRs.

Guided by the strong general enrichment for potential tran-

scription factor binding sites in all HMRs (see Table 1), we

searched for motifs in intergenic DMRs specific to neutrophils

or B cells (Figure 4B). The strongest scoring motifs in the neutro-

phil-specific intergenic DMRs included those associated with
6 Molecular Cell 44, 1–12, October 7, 2011 ª2011 Elsevier Inc.
C/EBP and ETS families, along with HLF and STAT motifs. This

striking enrichment for C/EBP and ETS family binding sites is

consistent with the functions of ETS factor PU.1 and several

C/EBP factors as multipotent progenitors commit to become

myeloblasts, which ultimately give rise to neutrophils (Nerlov

andGraf, 1998). Because the ETS family contains a large number

of transcription factors, we sought experimental support for their

binding at HMRs. Therefore we probed existing ChIP-seq data of

PU.1 from human HSPCs (Novershtern et al., 2011). We find

numerous examples PU.1 enrichment in HMRs, several of which

are provided in Figure S4. In contrast, the strongest scoring

motifs in B cell-specific intergenic DMRs included the EBFmotif,

POU family motifs, E-boxes, a PAX motif, and those associated

with NFkB and IRF. The simultaneous enrichment of EBF, E-box,

and PAX motifs is consistent with the interacting roles of EBF,

E2A (which binds E-boxes) and PAX5 as common lymphoid

progenitors progress along the B cell lineage (Lin et al., 2010;

Medina et al., 2004; Sigvardsson et al., 2002). The enrichment

of NFkB and IRF motifs is consistent with the known roles for

these factors in both activation and differentiation of lympho-

cytes (Hayden et al., 2006). Considered together, these analyses

strongly suggest that at least a subset of intergenic DMRs can

be engaged by tissue-specific transcription factors, leading to

changes in chromatin organization that might have long-

distance impacts on annotated genes or more local impacts on

as yet unidentified ncRNAs. In fact, we do find evidence of tran-

scriptional activity surrounding intergenic DMRs in our RNA-seq

data sets, but we have not yet pursued this observation further

(data not shown). Irrespective of the model, our results strongly

support the biological relevance of tissue-specific intergenic

HMRs.

We also probed the possible functions of shared intergenic

HMRs. Prior studies had experimentally identified binding sites

for the insulator protein, CTCF, by chromatin immunoprecipita-

tion (Kim et al., 2007). These sites are strongly enriched (155-

fold) in nonrepeat intergenic HMRs that are common to all cell

types examined. In fact, �90% (>500) of the nonrepeat, shared

intergenic HMRs contain a CTCF site. This correlates with the

known propensity of CTCF to bind unmethylated regions and

suggests that many of the shared intergenic HMRs that we

detect may function in the structural organization of chromo-

somes and nuclear domains.

Myeloid-Biased, Poised Methylation States
Characterize HSPC Methylomes
For loci whose differential expression characterizes the lym-

phoid and myeloid lineages, we set out with a simple general

expectation. Low methylation levels in stem and progenitor cells

would be permissive for expression in either lineage, and an

accumulation of methylation during differentiation would corre-

late with silencing of loci in the lineage in which they are not

expressed.

To test this hypothesis, we selected lineage-specific HMRs

arising from a comparison of neutrophils and B cells and exam-

ined their status in HSPCs. Both at the level of individual CpGs

(Figure 5A) and at the level of overall methylation (Figure 5B),

HSPCs showed intermediate methylation states at sites where

B cells and neutrophils show opposing methylation patterns.



Figure 4. Features of Intergenic HMRs and DMRs

(A) Composite methylation profiles are plotted for individual CpG sites within HMRs. The x axes of the plots indicate genomic position centered on themidpoint of

HMRs in the reference cell type labeled for each plot. Methylation profiles are given for the reference cell and sperm, separately for regions where the reference

Molecular Cell

Human Hematopoietic Methylomes

Molecular Cell 44, 1–12, October 7, 2011 ª2011 Elsevier Inc. 7

Please cite this article in press as: Hodges et al., Directional DNA Methylation Changes and Complex Intermediate States Accompany Lineage Spec-
ificity in the Adult Hematopoietic Compartment, Molecular Cell (2011), doi:10.1016/j.molcel.2011.08.026



Molecular Cell

Human Hematopoietic Methylomes

Please cite this article in press as: Hodges et al., Directional DNA Methylation Changes and Complex Intermediate States Accompany Lineage Spec-
ificity in the Adult Hematopoietic Compartment, Molecular Cell (2011), doi:10.1016/j.molcel.2011.08.026
This suggests that differentiation involves both gains and losses

of DNA methylation at lineage-specific HMRs, an observation

consistent with recent studies using other methodologies (At-

tema et al., 2007; Claus et al., 2005; Ji et al., 2010).

At the level of individual CpGs, HSPC patterns correlated

better with those seen in neutrophils at myeloid HMRs than

they did with B cell methylation patterns at nonoverlapping

lymphoid HMRs (Figure 5A). Moreover, the median methylation

level for B cells at B cell DMRs was more than twice as high as

the median level at neutrophil specific DMRs (Figure 5B). This

finding, along with the fact that B cells exhibited fewer total

HMRs than either HSPCs or neutrophils, supported an earlier

observation that lymphoid commitment in mice involves globally

increased DNA methylation (Ji et al., 2010). As a whole, our

results indicate that the HSPC methylome has more myeloid

than lymphoid character. Many fewer DMRs were identified in

comparisons of HSPC and neutrophil methylation profiles than

of HSPCs and B cells (Figure S3). Such a myeloid bias is also

consistent with prior studies, which point to the myeloid lineage

as a default differentiation path for HSPCs (Månsson et al.,

2007).

Regions that exhibit intermediate methylation occurred in two

forms. The well-documented mode is allelic methylation that is

characteristic of dosage compensated and imprinted genes.

We detected such loci abundantly in our data sets, and these

encompassed both known monoallelic genes and new candi-

dates for monoallelic expression (data not shown). More

prevalent were regions of intermediate methylation wherein

each chromosome displayed different patterns of CpGmodifica-

tion with little correlation between the states of adjacent CpGs.

Partially methylated regions were previously noted in ESCs

(Lister et al., 2009), though they did not investigate whether these

presented allelic versus stochastic and complex patterns.

To discriminate between allelic and complex patterns, we per-

formed targeted conventional bisulfite PCR sequencing of indi-

vidual clones from HSPCs across a selected set of myeloid loci

and a known locus with allele-specific methylation (Figure 5C,

Figure S5, and Table S3). This allowed detailed analysis of adja-

cent CpG methylation on individual molecules. As expected, for

the allelic XIST locus on chromosome X, we observed uniform

methylation profiles of adjacent CpG sites within individual

clones representing two states that contributed nearly equally

to the partial methylation observed. In contrast, the myeloid

AZU1 locus exemplified a stochastic pattern of methylation in

HSPC. We cannot determine whether the complex states that

we observed were in dynamic equilibrium or whether they were

fixed in each chromosome that contributed to our analysis.

While the mechanisms underlying complex, partial methyla-

tion patterns in HSPCs are unclear, they are reminiscent of biva-

lent promoters that contain both repressive and active histone

marks (Bernstein et al., 2006). Both during embryonic develop-
cell HMR spans a TSS and intergenic region (>10 Kbp from any RefSeq transcrip

PhyloP probabilities derived from 44-way multiple alignments are plotted separa

(B) Transcription factor binding site motifs enriched in DMRs between neutrophils

for N < B and B < N DMRs, based on the motifclass tool in the CREAD packag

calculations.

See also Figures S3 and S4.
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ment and during stem cell differentiation, such poised promoters

are converted to a determinate chromatin state by shifting the

balance of histone marks. This has already been noted for

lineage-specific genes in HSPCs (Attema et al., 2007), and our

data indicate that this well-established property of chromatin

may also extend to DNA methylation patterns.

Alternative explanations for our results must also be consid-

ered. Since we have used pooled individuals, each of the

observed patterns could be specific to one donor, giving rise

to a complex pool of clones; however, this seems unlikely as

we also detect lower correlations between neighboring CpGs

within single clones. Alternatively, complex states could repre-

sent heterogeneity within the isolated HSPC population (see Fig-

ure S6), with our data coming from a mixture of self-renewing

and more committed cell types. To investigate this possibility,

we searched within our RNA-seq data for expression patterns

characteristic of each purified cell population. Transcriptional

profiles revealed the top differentially expressed genes within

the HSPC compartment to be highly enriched for signature

gene markers associated with self-renewing hematopoietic

stem cells (Figure 5D) and depleted for genes associated with

committed progenitors. Collectively, these data suggest that

the observedmethylation patterns are likely derived froma highly

enriched stem cell population, and indicate that those popula-

tions may naturally adopt complex, potentially dynamic, methyl-

ation patterns at lineage-specific HMRs.

Both the general trends ofmethylation loss along a lineage and

the possibility of dynamic poised methylation states imply that

demethylation, either passive or active, is a common event. In

mammals, factors capable of promoting active demethylation

have remained somewhat elusive (Ooi and Bestor, 2008).

In vitro studies have demonstrated that MBD2, a methyl-CpG

binding protein, can specifically demethylate cytosines, and

components of the elongator complex and the cytidine deami-

nase, AID, have been implicated in demethylation during early

development (Bhattacharya et al., 1999; Okada et al., 2010;

Popp et al., 2010). Furthermore, in zebrafish, the coordinated

activities of glycosylases, deaminases, and DNA repair proteins

have been reported to cause differentiation defects when disrup-

ted, and this has been posited as an effect of improper DNA

methylation (Rai et al., 2010). Alternatively, demethylation could

potentially be achieved through the action of hydroxymethylases

(e.g., TET1-3), which have been proposed to execute an interme-

diate step towardmethylation loss (Ito et al., 2010; Tahiliani et al.,

2009; Zhang et al., 2010). Additional information will be neces-

sary to resolve the relevance of any of these pathways to the

transition in methylation states between HSPCs and mature

neutrophils and B cells.

As a whole, our data not only provide insights into the global

behavior of DNA methylation, both in individual cell types and

along a well-characterized lineage, but also provide a critical
t; not overlapping a repeat). Average cross-species conservation scores from

tely for promoter and intergenic HMRs.

and B cells are shown. The top 20 most enriched motifs are shown separately

e. See the Supplemental Experimental Procedures for details of enrichment



Table 1. TFBS Enrichment in HMRs across Intergenic and

Promoter Regions

Cell Region CGI? HMRa TFBS Expected

Enrich-

ment

N/A promoter 34,257 244,998 91,570.8 2.7

promoter cgi 24,601 191,452 65,760.9 2.9

promoter nocgi 9,656 53,852 25,810 2.1

intergenic cgi 10,630 13,608 4,603.76 3.0

B Cell all 53,834 339,943 76,196.1 4.5

intergenic 5,849 16,150 3,779 4.3

intergenic cgi 1,670 4,802 1,194.97 4.0

intergenic nocgi 4,179 11,348 2,584.01 4.4

promoter 13,650 212,644 36,548.3 5.8

promoter cgi 12,828 206,556 35,080 5.9

promoter nocgi 822 6,088 1,468.27 4.1

CD133 all 49,593 339,191 67,778.2 5.0

intergenic 6,494 17,708 3,816.73 4.6

intergenic cgi 1,630 4,817 1,207.45 4.0

intergenic nocgi 4,864 12,891 2,609.26 4.9

promoter 13,745 224,955 37,395.1 6.0

promoter cgi 12,965 219,407 36,309.9 6.0

promoter nocgi 780 5,548 1,085.18 5.1

ESC all 40,476 318,377 65,062.3 4.9

intergenic 3,768 11,220 2,404.28 4.7

intergenic cgi 1,151 3,295 882.802 3.7

intergenic nocgi 2,617 7,925 1,521.45 5.2

promoter 13,098 222,654 36,332.4 6.1

promoter cgi 12,661 218,765 35,769.4 6.1

promoter nocgi 437 3,889 562.951 6.9

HSPC all 55,984 352,574 77,671.2 4.5

intergenic 6,154 17,619 3,972.1 4.4

intergenic cgi 1,663 4,775 1,222.27 3.9

intergenic nocgi 4,491 12,844 2,749.81 4.7

promoter 13,820 222,635 37,830.8 5.9

promoter cgi 12,948 216,433 36,461.3 5.9

promoter nocgi 872 6,202 1,369.4 4.5

Neut. all 60,594 362,074 82,427.7 4.4

intergenic 6,422 18,515 4,212.75 4.4

intergenic cgi 1,626 4,760 1,243.88 3.8

intergenic nocgi 4,796 13,755 2,968.85 4.6

promoter 13,862 224,621 38,503.6 5.8

promoter cgi 12,950 218,281 37,060.6 5.9

promoter nocgi 912 6,340 1,442.93 4.4

Sperm all 81,446 440,856 201,006 2.2

intergenic 2,616 14,903 3,158.15 4.7

intergenic cgi 865 6,181 1,307.11 4.7

intergenic nocgi 1,751 8,722 1,851.02 4.7

promoter 14,051 270,798 63,641.3 4.3

promoter cgi 13,588 266,658 62,357.8 4.3

promoter nocgi 463 4,140 1,283.49 3.2

Enrichment of predicted transcription factor binding sites (TFBSs) in in-

tergenic HMRs and HMRs that overlap promoters. For each set of
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reference data set to enable detailed future studies of both the

mechanisms that set somatic DNA methylation patterns and

the consequences of those patterns for gene expression and

genome organization.

EXPERIMENTAL PROCEDURES

Flow Cytometry and DNA Extraction

Peripheral bloodwas collected from six healthy female donors ages 25–35 and

pooled. After isolation by Ficoll gradient, mononuclear cells were fixed in 1%

paraformaldehyde (PFA) and stained with antibodies against the following

human cell surface markers (eBiosciences): anti-CD34 (mucosialin) conju-

gated to PE-Cy7, anti-CD38 conjugated to APC, anti-CD45 conjugated to

PE, anti-CD19 conjugated to PE, and anti-CD235a (Glycophorin) conjugated

to PE. For lineage depletion, either a combination of PE-conjugated antibodies

against CD45, CD19, and CD235a or a commercially available human hema-

topoietic lineage cocktail was used. CD34+CD38–Lin– hematopoietic stem

cells and CD19+ B cells were purified with the FACSAriaII (Becton Dickinson).

Neutrophils were purified according to their forward and side-scatter profile.

FACS profiles are provided in Figure S6. Umbilical cord blood was collected

from a single donor, and CD133+ cells were selected via magnetic separation

on CD133+ microbeads (Milteny Biotec) according to instructions supplied by

the manufacturer. Two column separations were performed for additional

purity. All cells were collected in cell lysis buffer (50 mM Tris, 10 mM EDTA

and 1% SDS), and PFA induced crosslinks were reversed with RNase A and

a 65�C incubation overnight, after which residual proteins were digested

with Proteinase K for 3 hr at 42�C. DNA was extracted with an equal volume

of phenol:chloroform, followed by a single extraction with chloroform and

ethanol precipitation. Human sperm was purified and sequenced according

to methods described in Molaro et al. (2011).

Illumina Library Preparation for Bisulfite Sequencing

Bisulfite sequencing libraries were generated by previously described

methods (Hodges et al., 2009) and on themanufacturer’s instructions (Illumina)

but with several additional modifications. In brief, after each enzymatic

step, genomic DNA was recovered by phenol:chloroform extraction and

ethanol precipitation. Adenylated fragments were ligated to Illumina-compat-

ible paired-end adaptors synthesized with 50-methyl-cytosine, and, when

necessary, adaptors were diluted 1003–10003 to compensate for low-input

libraries and maintain an approximate 10-fold excess of adaptor oligonucleo-

tides. After ligation, DNA fragments were purified and concentrated on

MinElute columns (QIAGEN). The standard gel purification step for size selec-

tion was excluded from the protocol. Fragments were denatured and treated

with sodium bisulfite with the EZ DNA Methylation Gold kit according to the

manufacturer’s instructions (Zymo). Lastly, the sample was desulfonated

and the converted, adaptor-ligated fragments were PCR enriched with

paired-end adaptor-compatible primers 1.0 and 2.0 (Illumina) and the Expand

High Fidelity Plus PCR system (Roche). Paired-end Illumina sequencing was

performed on bisulfite converted libraries for 76–100 cycles each end.

RNA-Seq

For isolation of RNA from target cell populations, unfixed (live) cells were

sorted as described above into Trizol-LS (Invitrogen), and RNA was purified
HMRs, corresponding to a cell type, the TFBS enrichment (observed/

expected site counts) is given for all HMRs, those overlapping promoters,

those that are intergenic, separately according to whether the HMRs

overlap CGIs. Data are presented for each of the following cell types: B

cells, CD133 cord blood, HSPCs, ESCs, neutrophils, and sperm. For

comparison, the TFBS enrichment in the full set of promoters (including

those overlapping CGIs) is given, along with enrichment in the full set of

intergenic CGIs.
a For the ‘‘N/A’’ group, the HMRs are simply the number of promoters

or CGIs.
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Figure 5. Methylation Dynamics during Lineage Selection

(A) Smoothed scatter plot heat maps showing the correlation between individual CpG methylation levels in HSPCs versus B cells (left) and HSPCs

versus neutrophils (right) within B cell- and neutrophil-specific HMRs, respectively. Darker shading (red) indicates greater density of data points, while

lighter (yellow) shading reflects lower density. Positive correlations between HSPCs and both B cells and neutrophils indicate an intermediate state for

HSPCs.
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according to themanufacturer’s recommendations. Double-stranded comple-

mentary DNA (cDNA) libraries were generated with the Ovation RNA-seq

system (Nugen). After reverse transcription and cDNA amplification, double-

stranded cDNA fragments were phosphorylated, adenylated, and ligated to

Illumina paired-end adaptors followed by 15 cycles of PCR amplification

with Phusion HF PCR master mix (Finnzymes) according to the standard

Illumina protocol for genomic libraries. Single-end sequencing was performed

for 36 cycles.

Conventional Bisulfite Cloning and Sanger Sequencing

Genomic DNA isolated from pooled human HSPCs was bisulfite converted

with the EZ DNA Methylation Gold kit (Zymo). For selection of specific regions

for amplification, forward and reverse primers were designed with Methprimer

(Li and Dahiya, 2002). Primer sequences are provided in the Table S3. The

following PCR reaction components were combined in a total volume of

25 ml: 5 ml 53 Expand High Fidelity Plus buffer without MgCl2, 1 ml 10 mM

dNTPs, 1 ml 10 mM each forward and reverse primers, 2.5 ml 25 mM MgCl2,

2 ml DNA template, and 11.5 ml nuclease-free water. Thermal cycling was per-

formed as follows: 35 cycles each of denaturation at 94�C for 2 min, annealing

at 60�C or 53�C for 1 min, and extension at 72�C for 30 s followed by 7 min at

72�C. The PCR products were purified on columns with a PCR purification kit

(QIAGEN). PCR products were adenylated with Klenow exo– and purified.

Purified amplicons were cloned and sequenced according to previously

described methods (Hodges et al., 2009).

Computational Methods Summary

The Supplemental Experimental Procedures contain a detailed description of

computational methods. Mapping bisulfite treated reads was done with

methods described by Smith et al. (2009) with tools from the RMAP package

(Smith et al., 2009). Hypomethylated regions (HMRs) were identified with

a hidden Markov model as described in Molaro et al. (2011). DMRs were iden-

tified by (1) computation of probabilities of differential methylation at individual

CpGs based on number of reads and frequencies of methylation, and (2) iden-

tification of peaks in these profiles after kernel smoothing. Cross-species

conservation information was taken from UCSC MULTIZ 44-way vertebrate

alignments and PhyloP profiles from these alignments.

ACCESSION NUMBERS

Data analyzed herein have been deposited in GEO with accession number

GSE31971.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

six figures, and three tables and can be found with this article online at

doi:10.1016/j.molcel.2011.08.026.
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Abstract

MicroRNAs (miRNAs) play important roles in normal cellular differentiation and oncogenesis. microRNA93 (mir-93), a
member of the mir106b-25 cluster, located in intron 13 of the MCM7 gene, although frequently overexpressed in human
malignancies may also function as a tumor suppressor gene. Using a series of breast cancer cell lines representing different
stages of differentiation and mouse xenograft models, we demonstrate that mir-93 modulates the fate of breast cancer
stem cells (BCSCs) by regulating their proliferation and differentiation states. In ‘‘claudinlow’’ SUM159 cells, expression of mir-
93 induces Mesenchymal-Epithelial Transition (MET) associated with downregulation of TGFb signaling and downregulates
multiple stem cell regulatory genes, including JAK1, STAT3, AKT3, SOX4, EZH1, and HMGA2, resulting in cancer stem cell
(CSC) depletion. Enforced expression of mir-93 completely blocks tumor development in mammary fat pads and
development of metastases following intracardiac injection in mouse xenografts. The effect of mir-93 on the CSC population
is dependent on the cellular differentiation state, with mir-93 expression increasing the CSC population in MCF7 cells that
display a more differentiated ‘‘luminal’’ phenotype. mir-93 also regulates the proliferation and differentiation of normal
breast stem cells isolated from reduction mammoplasties. These studies demonstrate that miRNAs can regulate the states
and fates of normal and malignant mammary stem cells, findings which have important biological and clinical implications.
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Introduction

miRNAs serve vital functions in many of normal developmental

processes, as well as in carcinogenesis. A number of these miRNAs

have been shown to function as oncogenes with increased

expression in lung cancer, prostate cancer and colorectal cancer

[1,2,3,4,5,6,7,8]. In contrast, other miRNAs such as Let7 are

frequently downregulated in malignancies including breast cancer

and lung cancer in these contexts functioning as a tumor

suppressor gene [9,10,11]. The mir106b-25 cluster is composed

of the highly conserved miRNA106b (mir-106b), miRNA93 (mir-

93) and miRNA25 (mir-25) that have been reported to be

overexpressed in a number of cancers including gastric, prostate

and pancreatic neural endocrine tumors, neuroblastoma and

multiple myeloma [1,2,3]. These miRNAs are located in a 515-

base region on chromosome band 7q22 in intron13 of the host

MCM7 gene where they are co-transcribed in the context of

MCM7 primary transcripts [1]. MCM7 is a DNA licensing factor

obligate for cellular replication. Studies have suggested that the

mir-106b-25 miRNA cluster functions as a proto oncogene.

Several studies suggest that a primary mechanism of oncogenesis

involves targeting of PTEN which cooperates with MCM7 to drive

cellular proliferation [12]. Despite evidence for this miRNA cluster

functioning as a proto oncogene, in some contexts it has been

reported to function as a tumor suppressor inhibiting tumor

growth [13]. The molecular mechanisms accounting for this

discrepancy have not been determined.

Studies associating miRNA expression with oncogenesis have

largely been performed in bulk tumor populations. However, there

is substantial evidence supporting the CSC hypothesis which

suggests that tumors are hierarchically organized and that many

tumors, including those of the breast, are maintained by a

subpopulation of cells that displays stem cell properties [14,15,16].

These cells may mediate invasion and metastasis and contribute to

treatment resistance [17]. miRNAs have also been found to play

important roles in normal and malignant stem cell function. Silber

et al, reported that mir-124 and mir-137 induced differentiation of

neural and glioblastoma stem cells, a state associated with cell

cycle arrest [18]. Furthermore, recent studies have shown that the

miRNAs Let7 and mir-200c regulate self-renewal of BCSCs

[10,19]. Stem cell regulatory genes such as BMI-1 and HMGA2

may mediate this process [10,19]. We have previously demon-
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strated that normal breast tissue, primary breast cancers and

breast cancer cell lines contain subpopulations with stem cell

properties that can be enriched by virtue of their expression of

aldehyde dehydrogenase (ALDH) as assessed by the Aldefluor

assay (Stem Cell Technologies, Inc., Vancouver, British Columbia)

or by tumor initiation in NOD/SCID mice [20]. Recently, Ibarra,

et al, showed that Let7, as well as mir-93 are highly depleted in

mouse mammary stem/progenitor cells isolated with the stem cell

marker ALDH [21]. We have utilized breast cancer cell lines

representing different molecular subtypes of breast cancer as well

as primary xenografts of breast cancer and normal mammary cells

to examine the role of mir-93 in the regulation of normal and

malignant breast stem cells. We demonstrate that this miRNA is

able to regulate stem cell fate including cellular proliferation and

differentiation. These studies suggest that miRNAs regulate the

transition between CSC states findings which have important

biological and clinical implications.

Results

Tumor initiating capacity is associated with low mir-93
expression

We have previously demonstrated that primary human breast

cancers and established breast cancer cell lines contain subpop-

ulations with stem cell properties that can be isolated by virtue of

their expression of ALDH as assessed by the Aldefluor assay.

These cells displayed increased tumor initiating capacity and

metastatic potential compared to corresponding Aldefluor-nega-

tive cells [22]. mir-93 was shown as one of the most abundant

miRNAs in ALDH2 cells [21]. As assessed by qRT-PCR, mir-93

expression was significantly increased in the ALDH2 compared to

ALDH+ populations in SUM159 claudinlow and HCC1954 basal

subtype of human breast cancer (Figure 1A and Figure S1A). As

shown in Figure S3, mir-93 expression was lower in CSCs which

were characterized by their expression of the CSC markers:

ALDH+ or CD242CD44+. To determine the relationship between

mir-93 expression and tumor initiating capacity, we constructed a

mir-93 sensor tagged with GFP (mir-93-sensor-GFP) containing a

mir-93 target UTR coupled to GFP. In cells transfected with this

vector, mir-93 expression results in degradation of GFP mRNA

(sensor-negative), whereas mir-93-negative cells express GFP

(sensor-positive) (Figure 1B). mir-93 expression was significantly

higher in GFP-negative cells than GFP-positive cells (Figure S4)

and the ALDH1A1 was much lower in GFP-negative cells than

GFP-positive cells as accessed by western blot or immunohisto-

chemical staining (Figure S5). Furthermore, GFP was significantly

reduced by overexpression of mir-93 (Figure S6), demonstrating

that the sensor reports mir-93 function. The relationship between

mir-93 expression and tumor initiation was determined by

introducing serial dilutions of sensor-positive (mir-93-negative)

and sensor-negative (mir-93-positive) SUM159 cells into the

mammary fatpads of NOD/SCID mice. As shown in Figure 1C,

sensor-positive (mir-93-negative) cells had significantly higher

tumor initiating capacity and CSC frequency than sensor-negative

(mir-93-positive) cells. Moreover, mir-93-negative cells gave rise to

tumors containing both mir-93-negative and mir-93-positive

populations, whereas mir-93-positive cells gave rise only to small,

slow growing tumors containing exclusively mir-93-positive

populations (Figure 1D). Similar findings were seen using

HCC1954 cells (data not shown). These studies demonstrated

that in these breast cancer cell lines low mir-93 expression is

associated with the CSC phenotype characterized by increased

aldehyde dehydrogenase expression, tumor initiating capacity and

the ability to generate heterogeneous tumors containing both stem

cell and non-stem cell populations.

mir-93 overexpression decreases CSCs in vitro
We utilized a tetracycline (TET) inducible mir-93 construct

tagged with RFP (pTRIPZ-mir-93-RFP) to determine the

functional role of mir-93 in CSCs. mir-93 levels were significantly

increased by ten hours following tetracycline induction in these

cells (Figure 2A). Induction of mir-93 was associated with a

significant decrease in the CSC population as assessed by the

Aldefluor assay (Figure 2B), which were also seen in two basal

breast cancer cell lines HCC1954 and SUM149 (Figure S1B and

Figure S7). Furthermore, this decrease did not result from

induction of apoptosis in these cells as assessed by Annexin V

staining (Figure 2B). Our group and others have previously shown

that CSCs were relatively resistant to cytotoxic chemotherapy.

Consistent with this, addition of the cytotoxic agent docetaxel

resulted in a relative increase in the percentage of Aldefluor-

positive cells (Figure 2B), an increase associated with induction of

apoptosis in the bulk cell population (42.8% versus 1.1% control)

(Figure 2B). The relative increase in the Aldefluor-positive

population seen with docetaxel treatment was abrogated by

simultaneous mir-93 expression (Figure 2B). These experiments

suggested that unlike cytotoxic agents which primarily target the

bulk cell population, mir-93 overexpression was able to reduce the

CSC population. Moreover, this did not appear to result from

increased CSC apoptosis suggesting a potential role for mir-93 in

promoting differentiation of CSCs. Furthermore, since the TET-

inducible mir-93 system allows for the controlled regulation of

CSC populations, it provides a valuable tool for assessing the role

of CSCs in tumor growth in mouse xenograft models. Further-

more, the ability to regulate the CSC population during different

phases of tumor growth allows for the assessment of the role of

these cells in tumor initiation and maintenance.

Author Summary

Recent evidence suggests that many cancers, including
those of the breast, are maintained by a population of
cancer cells that display stem cell properties. These ‘‘cancer
stem cells’’ may also contribute to tumor metastasis,
treatment resistance, and relapse. Recently, miRNAs (small
non-coding RNAs) have been reported to be capable of
functioning as oncogenes or tumor suppressors. miRNA93
(mir-93) is frequently overexpressed in human cancer but,
paradoxically, has been found to function as a tumor
suppressor in some contexts. Using a series of breast
cancer cell lines representing different stages of differen-
tiation and mouse xenograft models, we demonstrate that
mir-93 modulates the fate of breast cancer stem cells by
regulating their proliferation and differentiation states. In
less differentiated tumors, enforced expression of mir-93
completely blocks tumor development in mammary fat
pads and development of metastases following intracar-
diac injection in mouse xenografts by reducing breast
cancer stem cells. However, the effect of mir-93 on the
cancer stem cell population is dependent on the cellular
differentiation state, with mir-93 expression increasing the
cancer stem cell population in more differentiated breast
tumors. These studies demonstrate that miRNAs can
regulate breast stem cell proliferation and differentiation,
an observation with important biological and clinical
implications.

mir-93 Regulates Breast Stem Cells
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mir-93 overexpression inhibits the growth of established
tumor xenografts

We first determined the effect of mir-93 induction on the growth

of established tumors and compared these effects to those of

cytotoxic chemotherapy. When tumors reached 0.2–0.3 cm in

diameter, we induced mir-93 (with doxycycline treatment,

hereafter DOX) or initiated cytotoxic chemotherapy with

docetaxel or the combination. Induction of mir-93 significantly

inhibited the growth of SUM159 and HCC1954 xenografts

(Figure 2C and Figure S1C). Furthermore, induction of mir-93

further reduced tumor growth when added to the docetaxel

chemotherapy (Figure 2C and Figure S1C). Following five weeks

of treatment, animals were sacrificed and CSC populations were

assessed by the Aldefluor assay and ALDH1 immunohistochem-

istry. Induction of mir-93 alone or in combination with docetaxel

reduced the Aldefluor-positive population by more than 60%

compared to control or docetaxel alone (Figure 2D and Figure

S1D). These observations were confirmed by immunohistochem-

istry of ALDH1 expression (Figure 2D and Figure S1D). mir-93

expression was significantly higher in DOX group compared to

the control group at the end of treatment (Figure S2). To provide a

more definitive assessment of CSCs, we determined the ability of

serial dilutions of cells obtained from primary tumors to form

tumors in secondary NOD/SCID mice. Tumor cells isolated from

docetaxel treated mice, initiated tumors at lower concentrations

with accelerated growth compared to control animals (Figure 2E,

Figure S1E). This was consistent with previous studies demon-

strating a relative increase in CSCs following chemotherapy [17].

In contrast, cells isolated from tumors with mir-93 induction with

or without docetaxel chemotherapy had markedly reduced tumor

initiating capacity in secondary mice with no tumors observed

from introduction of fifty cells from the mir-93 docetaxel treated

group (Figure 2E, Figure S1E). The CSC frequency was lower in

the groups of DOX alone and DOX+docetaxel, and was

significantly increased in the docetaxel group (Figure 2E and

Figure S1E). These studies demonstrated that mir-93 induction

reduced the CSC population reducing growth of established tumor

xenografts.

In order to determine whether down-regulation of mir-93

promoted tumorigenesis, we utilized a mirZip anti-sense miRNA

in SUM159 cells. qRT-PCR was utilized to confirm the efficient

knock-down of mir-93 (Figure S8A). ALDH+ cells were signifi-

cantly increased after mir-93 was knocked down (mirZip93-

DsRed) (Figure S8B). As shown in Figure S8C, knockdown of mir-

93 significantly promoted the growth of SUM159 cells in tumor

xenografts and increased the CSC frequency. Furthermore, the

proportion of ALDH+ cells were significantly increased after mir-

93 was knocked down (mirZip93-DsRed) (Figure S8D).

mir-93 expression in the adjuvant setting prevents tumor
growth

Preclinical models have suggested that CSCs play a role in

tumor recurrence and metastasis following adjuvant therapy [23].

This suggests that targeting of CSCs may have more dramatic

effects in the adjuvant than in the advanced tumor settings. To

simulate the adjuvant setting we induced mir-93 and/or admin-

istered docetaxel immediately after tumor cell implantation.

Although tumors grew after four to five weeks in control animals,

there was no observed tumor growth following mir-93 induction

and/or docetaxel treatments for eight weeks (Figure 2F, Figure

S1F). After eight weeks, treatments were stopped and animals

observed for an additional ten weeks. In SUM159 xenografts,

tumors developed in all mice who received eight weeks of

docetaxel alone. In contrast, no tumors developed in mice

Figure 1. mir-93-negative SUM159 cells have increased tumor-initiating capacity. A. ALDH+ cells from SUM159 cells shows lower mir-93
expression level in comparison to ALDH2 cells as accessed by qRT-PCR. P,0.05; Error bars represent mean 6 STDEV. B. A schematic of mir-93-Sensor-
GFP lentiviral construct; C. SUM159 cells were transduced with the mir-93-sensor-GFP lentivirus and selected with hygromycin B, and cells were
sorted based on the GFP expression. A serial dilution of mir-93-negative (sensor/GFP-positive) SUM159 cells and mir-93-positive (sensor/GFP-
negative) SUM159 cells were injected into the 4th fatpads of NOD/SCID mouse. *p,0.05. D. mir-93-negative cells gave rise to tumors containing both
mir-93-negative and mir-93-positive cell populations, but mir-93-positive cells only gave rise to tumors containing mir-93-positive cell populations.
doi:10.1371/journal.pgen.1002751.g001
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following mir-93 induction with or without docetaxel (Figure 2F,

Figure S1F). In order to extend these observations to primary

breast tumors, we examined the effect of mir-93 induction on three

primary breast xenografts, MC1 (Figure S10A), UM2 (Figure

S10B) and UM1 (Figure S10C) which were directly established

from patient tumors and not passaged in vitro. MC1 and UM1

were derived from claudinlow and UM2 from a basal breast

carcinoma. Induction of mir-93 upon cell implantation completely

Figure 2. mir-93 inhibits tumor growth and metastasis by decreasing CSCs in SUM159 cells. A. SUM159 cells were transduced with the
pTRIPZ-mir-93 lentivirus and selected with Puromycin for 7 days. Tetracycline (DOX) induces mir-93 expression in suspension-cultured SUM159 cells
by 10 hours; B. 16106 SUM159 cells or pTRIPZ-SUM159 -mir-93 cells were plated in T75 flasks and, after overnight, the cells were treated with Vehicle
control, with (DOX) or without (CTRL) DOX (1 ug/ml), docetaxel (10 nM) or the combination for 7 days. Cells were utilized for Aldefluor assay and
stained for Annexin V-APC and DAPI for apoptosis assay. C. 100 k pTRIPZ-SUM159-mir-93 cells were injected into the 4th fatpads of NOD/SCID mice.
The treatment started as indicated by the red arrow. DOX alone (1 mg/ml in drinking water), or docetaxel (10 mg/kg i.p. once weekly) alone, or the
combination inhibits SUM159 tumor growth in vivo (note: The Y-axis is on a logarithmic scale). D. Tumors from each group were collected. ALDH was
accessed by the Aldefluor assay on viable dissociated cells and by ALDH1 immunohistochemistry on fixed sections. E. Serial dilutions of cells obtained
from these xenografts were implanted in the 4th fatpads of secondary mice, which received no further treatment. F. 10k pTRIPZ-SUM159-mir-93 cells
were injected into the 4th fatpads of NOD/SCID mice. The treatment started immediately after injection as indicated by the red arrow and stopped as
indicated by the green arrow. G. 200k pTRIPZ-SUM159-mir-93-Luc cells in 100 ul of PBS were injected into the left ventricle of NOD/SCID mice. The
treatment started immediately after injection as indicated by the red arrow and stopped as indicated by the green arrow. Metastasis formation was
monitored using bioluminescence imaging. Quantification of the normalized photon flux, measured at weekly intervals following inoculation.
*p,0.05; Error bars represent mean 6 STDEV. The colored ‘‘*’’ on the side of the tumor growth curve indicates that the tumor growth or metastasis is
significantly different between the control group and the group with the same colored curve.
doi:10.1371/journal.pgen.1002751.g002
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prevented tumor growth in this model. Together these studies

suggested that mir-93 regulated the CSC population and that this

population mediates tumor growth following adjuvant therapy.

mir-93 prevents tumor metastasis in the adjuvant setting
Previous studies have demonstrated that CSCs mediate tumor

invasion and metastasis. To determine the effect of mir-93

expression on tumor invasion, we examined the effect of mir-93

induction and/or downregulation on invasion of SUM159 cells

using a matrigel invasion assay. Overexpression of mir-93

significantly inhibited the ability of SUM159 cells to invade in

this assay (Figure S8E). In contrast, knockdown of mir-93 utilizing

the mirZip93-DsRed promoted tumor invasion (Figure S8F).

To determine whether the expression of mir-93 affect the

growth of tumor metastasis in vivo, SUM159 (Figure 2G) and

HCC1954 (Figure S1G) cells co-transfected with the inducible

mir-93 vector and luciferase were introduced into NOD/SCID

mice by intracardiac injection and metastasis formation monitored

by bioluminescence imaging. DOX and/or docetaxel treatments

were initiated following intracardiac injection. As shown in

Figure 2G, mir-93 induction completely suppressed whereas

docetaxel partially suppressed metastasis formation. Metastasis

was confirmed by histologic examination with pan-cytokeratin

staining (Figures S9, S1H). Treatments were stopped at eight

weeks and animals were observed for an additional ten weeks for

development of metastasis. In animals receiving docetaxel alone,

metastasis rapidly developed following cessation of therapy. In

contrast, no metastases developed in mice following mir-93

induction with or without docetaxel chemotherapy (Figure 2G).

In animals injected with HCC1954 cells, animals from all groups

developed metastasis following cessation of therapy. However,

development of metastasis were delayed and reduced in mice

following mir-93 induction with or without docetaxel chemother-

apy (Figure S1G).

mir-93 overexpression increases the CSC population and
accelerates tumor growth in luminal subtype MCF7 cells

Human breast cancer represents a heterogeneous set of diseases

with distinct molecular profiles and clinical behaviors [24]. These

subtypes may represent different cells of origin and/or differen-

tiation state. It has been proposed that the most undifferentiated

‘‘claudinlow’’ tumors originate from and resemble normal mam-

mary stem cells, whereas the triple-negative basal tumors arise

from a more differentiated luminal progenitor cell and the most

differentiated luminal tumors which express estrogen and proges-

terone receptors originate from and are composed of the most

differentiated cells [24]. To determine the relationship between

mir-93 expression and level of cellular differentiation, we

compared the expression of mir-93 in claudinlow (SUM159), basal

(HCC1954) and luminal (MCF7) cells. As shown in Figure S11,

mir-93 levels correlate with postulated differentiation state of these

cell lines. Furthermore, in the claudinlow SUM159 cells and basal

HCC1954 cells, mir-93 expression is significantly lower in

Aldefluor-positive as compared to Aldefluor-negative populations

(Figure S11). In contrast, the CSC population in MCF7 cells

characterized by the phenotype CD242CD44+ [25] expressed the

same high level of mir-93 as did the other (non-stem) cells

constituting the bulk population (Figure 3A, Figure S11). This

suggests that mir-93 may play a different role in more

differentiated luminal breast cancer than in the more undifferen-

tiated claudinlow and basal subtype. Consistent with this, induction

of mir-93 in MCF7 cells increased the CD242CD44+ population

(Figure 3B). Docetaxel also increased this population, as did the

combination of mir-93 plus docetaxel (Figure 3B). In xenografts,

induction of mir-93 accelerated the growth of MCF7 xenografts

compared to control (Figure 3C), findings which were confirmed

using two additional luminal cell lines MDA-MB-453 and T47D

(Figures S12A and S13A). In contrast, docetaxel reduced tumor

growth (Figure 3C). Analysis of treated MCF7 tumors confirmed

that mir-93 induction increased the proportion of CD242CD44+

cells and ALDH+ cells in tumors as did docetaxel or DOX plus

docetaxel (Figure 3D). mir-93 expression level was significantly

higher in DOX group compared to the control group at the end of

treatment (Figure S14). mir-93 induction increased the proportion

of ALDH+ cells from 1.01% to 9.5% in MDA-MB-453 tumors

(Figure S12B) and from 1.26% to 3.84% in T47D tumors (Figure

S13B). Furthermore, the calculated tumor initiating frequency was

significantly increased after mir-93 induction (Figure 3E, Figures

S12C and S13C). These results were confirmed and extended by

demonstrating that mir-93 induction in primary tumors increased

their tumor-initiating capacity when implanted into secondary

recipients (Figure 3E, Figures S12C, S13C). Together, these

experiments suggested that the effects of mir-93 on the CSC

population differed in different molecular subtypes of breast

cancer, an observation consistent with the hypothesis that miRNA

effects might be differentiation state dependent.

mir-93 downregulates stem cell regulatory genes in
BCSCs

In order to determine the cellular targets of mir-93 in BCSCs,

ALDH+ and ALDH2 populations of SUM159 cells were

separated and cultured in suspension in the presence or absence

of DOX for ten hours. Gene expression profiles in the four

populations were determined utilizing Affymetrix oligonucleotide

microarrays (Figure 4A). Of the 2,000 genes downregulated at

least two-fold upon DOX treatment in the ALDH+ population

(Table S1), 127 overlapped with the predicted target sequences of

mir-93 including twenty-four genes known to be involved in stem

cell regulation (Figure 4A and Table S2) including JAK1, SOX4,

STAT3, AKT, E2H1 and HMGAZ. The downregulation of these

genes in pTRIPZ-SUM159-mir-93, pTRIPZ-HCC1954-mir-93

cell lines and pTRIPZ-MC1-mir-93 were confirmed with custom-

ized PCR array plates (Figures S15, S16, S17). In contrast, only

352 genes were significantly downregulated by DOX in the

ALDH2 population (Table S3) with twelve of these genes (no stem

cell genes) overlapping with the predicted mir-93 targets. These

studies suggest that mir-93 regulates the CSC population by

simultaneously targeting a number of stem cell regulatory genes.

To confirm this, we utilized a luceriferase reporter assay to

determine the effect of mir-93 on the expression of the stem cell

regulatory genes AKT3, SOX4 and STAT3 selected from the

expression profiling data. Expression of mir-93 reduced the level of

these stem cell regulatory genes in SUM159 (Figure 4B) and

HCC1954 cells (Figure S18) but not in luminal MCF7 and MDA-

MB-453 cells (Figure S19). Furthermore, knockdown of STAT3 or

SOX4 but not AKT3 decreases the proportion of ALDH+

SUM159 cells suggesting these genes play a role in the regulation

of CSC self-renewal (Figure S20). The 127 genes in pTRIPZ-

MCF7-mir-93 were also tested with customized PCR array plates,

and interestingly, most of the stem cell genes were not knocked-

down by mir-93 induction in the ALDH+ proportion of MCF7

(Figure S21).

mir-93 regulates cell proliferation
To determine the relationship between mir-93 expression and

cell cycle kinetics, we assessed mir-93 expression in quiescent and

cycling ALDH+ and ALDH2 populations. Cycling (S/G2/M) cells

expressed significantly higher levels of mir-93 compared to

mir-93 Regulates Breast Stem Cells
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quiescent (G0/G1) cells in both the ALDH2 and ALDH+

compartments (Figure 5A). To determine whether mir-93 induces

or is a consequence of cellular proliferation, we utilized the DOX

inducible mir-93 construct to determine the effect of mir-93

induction on cell cycle distribution. Induction of mir-93 reduced

the quiescent cell population from 64% to 42% suggesting that this

miRNA has the capacity to directly regulate the cell cycle

(Figure 5B). Furthermore, induction of mir-93 increased the

proliferation of SUM159 by 29% (Figure S22). Although mir-93

induction had similar effects on the basal HCC1954 cell lines it

had no significant effect on the cell cycle of the luminal MCF7 cells

(Figure S22, Figure S23).

To determine the relationship between the stem cell phenotype

and cell cycle kinetics, we determined the cell cycle distribution of

ALDH+ and ALDH2 populations. The ALDH+ population in

SUM159 cells had a higher fraction of non-cycling cells compared

to ALDH2 cells (Figure 5A). This finding was confirmed by Ki67

and MCM7 staining (Figure S24).

mir-93 promotes Mesenchymal-Epithelial Transition
(MET) in SUM159 cells

SUM159 cells are derived from a ‘‘claudinlow’’ subtype of breast

cancer which is characterized as having a high proportion of cells

displaying ‘‘epithelial-mesenchymal transition (EMT)’’. This state

is characterized by loss of epithelial characteristics such as apical

basal polarity and E-Cadherin expression and acquisition of

mesenchymal characteristics, including loss of cell polarity and

expression of Vimentin. We determined the effects of mir-93

expression on MET of SUM159 cells by assessing markers of these

states at the protein and mRNA levels. SUM159 cells have a

mesenchymal morphology and express Vimentin, but not the

epithelial marker E-Cadherin, an effect not dependent on cell

density (Figure 6A). Expression of mir-93 in these cells caused

them to assume a more epithelial appearance associated with a

decrease in Vimentin and an increase in E-Cadherin expression

(Figure 6A). Similar effects were seen in the basal HCC1954 cell

line (Figure S25) although these were less pronounced. To confirm

and extend these results we determined the effect of mir-93

expression on mRNA expression of a wider panel of epithelial and

mesenchymal markers. We also determined the time course of

expression of epithelial and mesenchymal marker mRNAs

expressed in ALDH+ stem cells and ALDH2 non-stem cell

populations. Expression of mir-93 in SUM159 cells resulted in a

time dependent decrease in expression of mesenchymal markers,

Vimentin, N-cadherin and Twist, and an increase in the epithelial

markers E-Cadherin and Claudin (Figure 6B). Furthermore,

Figure 3. mir-93 promotes tumor growth by increasing CSCs in MCF7 cells. A. Mir-93 is expressed equally in CD242CD44+ and bulk (non-
CD242CD44+) populations of MCF7 cells. B. 16106 pTRIPZ-MCF7-mir-93 cells were plated in T75 flasks and, after overnight, the cells were treated with
Vehicle control, DOX (1 ug/ml), docetaxel (10 nM) or the combination for 7 days. DOX alone, docetaxel alone or the combination increased the
CD242CD44+ population in vitro. C. 1000k pTRIPZ-MCF7-mir-93 cells were injected into the 4th fatpads of NOD/SCID mice. Treatment was initiated as
indicated by the red arrow. DOX alone (1 mg/ml in drinking water) promoted MCF7 tumor growth in vivo; docetaxel (10 mg/kg i.p. once weekly)
alone or the combination inhibits MCF7 tumor growth in vivo. D. Tumors from each group were collected. Analysis for CD24 and CD44 was
performed on dissociated cells. DOX alone, docetaxel alone, or the combination increased the CD242CD44+ populations in MCF7. E. Serial dilutions of
cells obtained from these xenografts were implanted in the 4th fatpads of secondary mice, which received no further treatment. Cells from DOX-,
docetaxel-, or combination-treated tumors formed secondary tumors at all dilutions (50000, 5000, 500), whereas only higher numbers of cells (50000,
5000) obtained from control xenografts were able to generate tumors. *p,0.05; Error bars represent mean 6 STDEV. The colored ‘‘*’’ on the side of
the tumor growth curve indicates that tumor growth is significantly different between the control group and the group with the same colored curve.
doi:10.1371/journal.pgen.1002751.g003
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although these effects were seen in ALDH2 populations, they were

even more pronounced in the ALDH+ stem cell compartment.

Since TGFb is a major inducer of the EMT [26,27], we examined

the effect of mir-93 expression on components of this pathway.

Interestingly, expression of mir-93 significantly reduced expression

of the mRNA for TGFbR2 in both ALDH+ and ALDH2

SUM159 cells. This effect was seen as early as twelve hours,

suggesting a potential role for down regulation of TGFb signaling

in inducing the MET.

mir-93 maintains normal breast stem cells in an epithelial
state

In addition to breast cancer cells, we also determined the effects

of mir-93 expression on normal breast cell differentiation. We

utilized flow cytometry to access expression of EpCAM and

CD49f in breast epithelial cells obtained from reduction mam-

moplasties. It has previously been shown that mammary stem cells

are contained within the EpCAM2CD49f+ population while

double positive (EpCAM+CD49f+) cells are luminal progenitors,

EpCAM+CD49f2 more differentiated Luminal cells, while

EpCAM2CD49f2 constitute stromal cells [28]. We compared

mir-93 expression levels in these four populations. Interestingly,

we found that the highest level of mir-93 is expressed in the

EpCAM+CD49f+ population (Figure 7A), which suggested mir-93

was required to maintain the cells as EpCAM+CD49f+. Further-

more, overexpression of mir-93 in freshly isolated normal breast

cells or in immortalized non-transformed MCF-10A cells in-

creased the proportion of cells expressing EpCAM (Figure 7B,

7C). These studies suggested that mir-93 played a role in

maintaining normal breast cells in an epithelial (EpCAM+) state.

Discussion

In these studies, we demonstrate that mir-93 is capable of

modulating breast CSC populations by regulating their prolifer-

ation and differentiation states. To examine this, we utilized breast

cancer cell lines representing different states of differentiation. The

levels of endogenous mir-93 expression paralleled cellular differ-

entiation states with mir-93 levels lowest in the most primitive

‘‘claudinlow’’ SUM159 cells, highest in the ‘‘luminal’’ MCF7 cells

and intermediate in the ‘‘basal’’ HCC1915 cells. We utilized a

DOX inducible system to determine the effects of enforced mir-93

expression on the CSC populations assessed by expression of the

stem cell markers ALDH and CD242CD44+ as well as by mouse

xenograft assays [14,22]. Enforced mir-93 expression in claudinlow

and basal breast cancer cell lines significantly reduced the CSC

populations as assessed by the Aldefluor assay. To assess the

functional relevance of this, we determined the effect of mir-93

induction in SUM159 and HCC1954 cells on tumor growth in

NOD/SCID mouse xenografts. The effects of mir-93 expression

on tumor initiating capacity was confirmed using two primary

breast xenografts generated without in vitro culture. mir-93

expression decreased the CSC in these claudinlow primary

xenografts. In contrast, overexpresson of mir-93 in the luminal

MCF7 cells line resulted in an increase in CD242CD44+ CSC

resulting in increased tumor growth. This demonstrates that the

effect of mir-93 on CSC populations is dependent on the cellular

differentiation state. This model allowed us to simulate potential

clinical scenarios involving CSC targeting agents. To simulate the

effects of CSC targeting agents in advanced disease, tumors were

inoculated into mammary fatpads and when the tumors were

palpable mir-93 was induced by addition of doxycycline to the

mouse drinking water. In this setting, mir-93 induction had only a

modest effect in reducing tumor growth. Addition of the

chemotherapeutic agent docetaxel resulted in a more significant

reduction in tumor size, an effect that was accentuated by mir-93

induction. CSC models predict that the efficacy of CSC targeting

agents should be most pronounced in the adjuvant setting where

tumor growth from micrometastasis is dependent on stem cell self-

renewal [29]. Consistent with this model, induction of mir-93

immediately after fatpad implantation or after development of

micrometastasis by intracardiac injection completely blocked

tumor recurrence. Furthermore, when treatment was discontinued

at eight weeks, animals that received chemotherapy alone

Figure 4. mir-93 targets stem cell regulatory genes. A. Schematic
representation of the experimental design to identify the direct targets
of mir-93 in SUM159 cells. B. Activity of the luciferase gene linked to the
39UTR of AKT3, SOX4, or STAT3. The pMIR-REPORT firefly luciferase
reporter plasmids with the wild-type 39UTR sequences of AKT3, SOX4,
or STAT3 were transiently transfected into pTRIPZ-mir-93-SUM159 cells
and an internal control ACTB luciferase reporter was co-transfected for
normalization. The cells were treated with or without DOX. Luciferase
activities were measured after 48 hr. The relative luciferase activity was
calculated as the ratio of (the results from the cells transfected by
individual reporter)/(the results from the cells transfected by the
internal control in the same cell group). The data are mean and
standard deviation (SD) of separate transfections (n = 4). *p,0.05; Error
bars represent mean 6 STDEV.
doi:10.1371/journal.pgen.1002751.g004
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developed local tumor growth and metastasis while those with mir-

93 induction with or without chemotherapy showed no recurrence

when animals were sacrificed after four months. These studies

provide strong support for the CSC hypothesis and provide a

valuable animal model for clinical trial design using CSC targeting

agents.

To determine the molecular mechanisms of mir-93 CSC

regulation, we employed an unbiased approach assessing the

effect of mir-93 expression on early changes in global gene

expression profile coupled with prediction of miRNA target

sequences. Interestingly, this analysis revealed that twenty-four

genes known to be involved in stem cell self-renewal including

JAK1, SOX4, STAT3, AKT, EZH1, HMGA2 are targeted by

mir-93. In addition, this miRNA targets two important regulators

of TGFb signaling, TGFbR2 and SMAD5.

mir-93 expression was also associated with and in turn regulates

cellular proliferation. Quiescent G0/G1 cells expressed lower

levels of mir-93 than proliferating cells in S/G2/M phase.

Furthermore, enforced expression of mir-93 increased the fraction

of cycling cells.

We demonstrate that induction of mir-93 in mesenchymal-like

SUM159 cells induces an MET in the ALDH+ CSC population

characterized by increased expression of E-Cadherin and Claudin,

with concomitant downreguation of mesenchymal genes, such as

Vimentin, N-Cadherin and Twist. mir-93 also inhibits TGFb
signaling by targeting TGFbR2, an effect seen within twelve hours

of mir-93 induction. This was followed by an MET in the

Aldefluor-positive CSC population. Since TGFb is a major

regulator of EMT, abrogation of this signaling pathway may

facilitate MET. Of interest, it has been recently reported that the

mir-106b-25 cluster including mir-93 is induced in the early stages

of nuclear reprogramming of fibroblasts into IPS cells [30]. This is

accompanied by a mesenchymal to epithelial conversion in these

cells which is obligatory for reprogramming to recur. This suggests

that this miRNA cluster may regulate MET in multiple biological

contexts.

In summary, our experiments suggest that CSCs can exist in

two alternative epithelial and mesenchymal states, the balance of

which is regulated by miRNAs including mir-93 (Figure 8). The

mesenchymal state associated with an invasive phenotype charac-

terized by quiescence and low mir-93 expression is maintained by

growth factors such as TGFb. Upon activation of cellular

proliferation, MYC and E2F are induced leading to expression

of MCM7, a licensing factor required for DNA synthesis.

Concomitantly, mir-93 and its related miRNA cluster is co-

synthesized which promotes further proliferation while simulta-

neously downregulating TGFb signaling. This facilitates a

mesenchymal to epithelial transition in the CSC population

characterized by decreased invasiveness and increased prolifera-

tion. Continued expression of mir-93 simultaneously downregu-

lates a number of stem cell self-renewal pathways including JAK/

STAT, AKT, EZH1 and HMGH2, promoting cellular differen-

tiation and depleting the CSC population. The model depicted in

Figure 8 is consistent with our observation that mir-93 level is

highest in the EpCAM+CD49f+ normal mammary cells and

decreased with terminal differentiation. In contrast, the effects of

mir-93 depend on the cellular differentiation state accounting for

differences we observed in claudinlow, basal and luminal breast

cancers, with mir-93 level highest in the luminal MCF7 cell line

compared to basal HCC1954 and claudinlow SUM159 cell lines.

MCF7 cells are highly proliferative although unlike normal

mammary cells incapable of terminal differentiation (Figure 8).

Figure 5. mir-93 regulates the cell cycle in SUM159 cells. A. SUM159 cells were stained with Aldefluor and Hoechst33342 and dead cells
excluded by 7-AAD staining. Cells from G0/G1 and S/G2/M were sorted from ALDH+ or ALDH2 populations and mir-93 expression was measured with
qRT-PCR. B. Cell cycle analysis of pTRIPZ-SUM159-mir-93 cells in the presence or absence of DOX for 7 days. Propidium iodide staining followed by
flow cytometry was used to analyze cell cycle distribution. mir-93 induction with DOX resulted in a decreased proportion of cells in G0/G1 and an
increased proportion of cells in S/G2/M. *p,0.05; Error bars represent mean 6 STDEV.
doi:10.1371/journal.pgen.1002751.g005
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Figure 6. mir-93 initiates MET in SUM159 cells. A. pTRIPZ-SUM159-mir-93 cells were plated in 2-well chamber slides with (DOX) or without
(CTRL) Doxycycline for 7 days. E-Cadherin and Vimentin were deleted by immunofluorescence staining. Expression of mir-93 in SUM159 cells causes
them to assume a more epithelial appearance associated with a decrease in Vimentin and an increase in membrane localized E-Cadherin expression.
The phase micrographs for CTRL and DOX are also shown. E-Cadherin, Green; Vimentin, Red; DAPI, Blue. A representative sample from 3 independent
samples is shown. B. The effect of mir-93 expression on a panel of epithelial and mesenchymal markers at the mRNA level as accessed by qPCR.
pTRIPZ-SUM159-mir-93 cells were plated with or without DOX, and ALDH+ and ALDH2 cells were sorted at different times (12 hours, 1 day, 3 days, 8
days, 15 days) by Aldefluor assay. qRT-PCR was utilized to access the effects of mir-93 on mRNA expression of mesenchymal markers (Vimentin, N-
Cadherin and Twist), epithelial markers (E-Cadherin and Claudin), and TGFbR2. *p,0.05; Error bars represent mean 6 STDEV.
doi:10.1371/journal.pgen.1002751.g006

Figure 7. mir93 promotes MET in normal breast epithelial cells. A. Single cells were isolated from normal breast tissues and stained with
EpCAM-APC and CD49f-FITC for FACS sorting. After sorting, total RNA were isolated from different sorted groups (EpCAM+CD49f2, EpCAM+CD49f+,
EpCAM2CD49f+, EpCAM2CD49f2) and mir-93 expression were measured by qRT-PCR. p,0.05; Error bars represent mean 6 STDEV. B. Single cells
were isolated from normal breast tissues and infected with mir-93-expressing lentiviruses in suspension. After one week, mammospheres were
dissociated into single cells and plated in adherent culture in the absence (CTRL) or presence (DOX) of DOX for two weeks. Then, cells were
dissociated and stained with EpCAM-APC and CD49f-FITC for FACS analysis. C. MCF10A cells were cultured in the absence (CTRL) or presence (DOX) of
DOX for two weeks. Cells were then dissociated and stained with EpCAM-APC and CD49f-FITC for FACS analysis.
doi:10.1371/journal.pgen.1002751.g007
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The existence of alternative CSC states, associated with expression

of different protein markers has important implications for

understanding the plasticity of CSCs. For example, it has been

claimed that CSCs may be generated from non-CSC tumor

populations through induction of EMT [31]. However, the

existence of alternative CSC state suggests that the acquisition of

stem cell markers may reflect transition of CSC states rather than

generation of CSCs from non-CSC populations. In addition, the

existence of multiple stem cell states suggests the necessity of

developing of therapeutic strategies capable of effectively targeting

CSCs in all of these states.

Materials and Methods

Cell culture
Breast cancer cell line SUM159 and SUM149 have been

extensively characterized (http://www.asterand.com) [32].

HCC1954, MCF-7, MDA-MB-453 and MCF10A were purchased

from ATCC. The cell lines were grown using the recommended

culture conditions. Briefly, the culture medium for SUM159 and

SUM149 is Ham’s F-12 (Invitrogen) supplemented with 5% FBS,

5 ug/mL insulin, and 1 ug/mL hydrocortisone (both from Sigma,

St. Louis, MO). MCF7, MDA-MB-453 and HCC1954 cells were

maintained in RPMI1640 medium (Invitrogen, Carlsbad, CA)

supplemented with 10% fetal bovine serum (ThermoFisher

Scientific, Pittsburgh, PA), 1% antibiotic-antimycotic (Invitrogen,

Carlsbad, CA), and 5 mg/ml insulin (Sigma-Aldrich, St Louis,

MO).

Dissociation of mammary tissue
100–200 g of normal breast tissue from reduction mammoplas-

ties was minced with scalpels, dissociated enzymatically, and single

cells were isolated as described previously [33,34]. The single cells

were utilized for FACS sorting or were cultured in suspension as

described previously [33,34]. Mammospheres were dissociated

into single cells enzymatically and mechanically, and then cultured

in regular cell culture plates [33,34].

Constructs and virus infection
For construction of the mir-93 sensor, miRNA-complementary

oligonucleotides were annealed and cloned into a Marx vector that

directs GFP expression. The mir-93 miRNA target sequence was

engineered into the 39 untranslated region (UTR) of the cDNA

encoding for the GFP fluorescent protein. Expression of this

construct in cells that express the mir-93 miRNA results in a RNAi

pathway-dependent degradation of GFP mRNA and thus no

green fluorescence. In contrast, in cells with repressed mir-93

miRNA, the GFP mRNA is not degraded and resulting in

expression of the fluorescent GFP. shRNA oligos for STAT3,

AKT3 or SOX4 were inserted to PlentiLox3.7-DsRed lentiviral

vector. A highly efficient lentiviral expression system (TRIPZ

lentivral vector;www.openbiosystems.com/RNAi) was used to

generate mir-93-expressing lentiviruses; and mirZIP-lentivector

(SBI, Mountain View, CA) was used to generate mir-93-

knockdown lentiviruses in UM Vector Core Facility. The cell

lines were infected with the lentiviruses as described previously

[34].

Aldefluor assay and flow cytometry
The Aldefluor kit (StemCell Technologies, Inc, Vancouver, BC,

Canada) was used to isolate cells with high ALDH enzymatic

activity as illustrated in the manufacturer’s instructions. Briefly,

single cells were suspended in buffer containing ALDH substrate –

BAAA (1 mmol/l per 16106 cells) and incubated at 37uC for

40 minutes. In each experiment, the specific ALDH inhibitor

diethylaminobenzaldehyde (DEAB) was used as negative control at

50 mmol/L. A FACStarPLUS (Becton Dickinson) was used for

FACS. Aldefluor fluorescence was excited at 488 nm and

fluorescence emission was detected using a standard fluorescein

isothiocyanate (FITC) 530/30 band pass filter. The sorting gates

Figure 8. A hypothetic model illustrating regulation of normal and malignant mammary stem cell states and fates by mir-93.
doi:10.1371/journal.pgen.1002751.g008
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were established based on negative controls. CD44/CD24 staining

was performed as previously described [14]. Briefly, cells were

stained with primary antibodies anti-CD44 labeled APC (dilution

1:10, BD Pharmingen), and anti-CD24 labeled FITC (dilution

1:10, BD Pharmingen). In all in vivo experiments, mouse cells were

eliminated by excluding H2Kd+ (mouse histocompatibility class I,

BD Pharmagen) cells during flow cytometry. 0.5 mg/ml 49,6-

diamidino-2-phenylindole (DAPI) (Sigma) was used to access cell

viability.

Cell cycle analysis
Cells (16106) were harvested and washed in cold PBS followed

by fixation in 70% alcohol for thirty minutes on ice. After washing

in cold PBS three times, cells were resuspended in 0.8 mL of PBS

solution with 40 mg of propidium iodide and 0.1 mg of RNase A

for thirty minutes at 37uC. Samples were analyzed for DNA

content using aFACSCalibur cytometer (Becton Dickinson, San

Jose, CA).

MTT assay
The effect of mir-93 on cell proliferation was measured using an

MTT assay. Briefly, 200–500 cells from Control and DOX-treated

groups were seeded in 96-well culture plates and were cultured in

the absence (CTRL) and presence (DOX) of DOX for 7 days.

Subsequently, 0.025 ml of MTT solution (5 mg/ml) was added to

each well, and the cells were incubated for 2 h. After centrifuga-

tion, the supernatant was removed from each well. The colored

formazan crystal produced from MTT was dissolved in 0.15 ml of

isopropanol with 4 mM HCl and 0.1% NP40, and the optical

density (OD) value was measured at 590 nm.

RNA extraction
Total RNA was isolated using RNeasy Micro Kit (Qiagen,

Valencia, CA), and total RNA with enriched miRNA was isolated

using miRNeasy mini Kit, according to the manufacturer’s

instructions.

Gene expression profiling with DNA microarrays
Gene expression analyses used Affymetrix U133 Plus 2.0 human

oligonucleotide microarrays containing over 47,000 transcripts

and variants including 38,500 well-characterized human genes.

Preparation of cRNA, hybridizations, washes and detection were

done as recommended by the supplier (http://www.affymetrix.

com/index.affx). Expression data were analyzed by the Robust-

Multichip Average method in R using Bioconductor and

associated packages [35].

Real-time quantitative PCR (qRT–PCR)
MiRNA expression level was measured utilizing TaqMan qRT-

PCR (Applied Biosystems, Carlsbad, CA). Single-stranded cDNA

was synthesized from 10 ng of miRNA enriched total RNA using

specific miRNA primers (TaqMan MiRNA Assay, PN 4427975,

Applied Biosystems) and the TaqMan MiRNA Reverse Tran-

scription Kit (PN 4366596, Applied Biosystems). Two ul of cDNA

was used as a template in a 20 ul PCR reaction. PCR products

were amplified using specific primers (TaqMan MiRNA Assay)

and the Taq-Man Universal PCR Master Mix (PN 4324018,

Applied Biosystems), and PCR was performed in a ABI PRISM

7900HT sequence detection system with 384-Well block module

and automation accessory (Applied Biosystems) by incubation at

50uC for two min and then 95uC for ten min followed by forty

amplification cycles (fifteen seconds of denaturation at 95uC and

one min of hybridization and elongation at 60uC). PCR reactions

for each sample were run in triplicate. The number of cycles

required for amplification to reach the threshold limit, the Ct-

value was used for quantification. RNU24 was used as an

endogenous control for miRNA data normalization, and TBP was

used as an endogenous control for other gene normalization. All

TaqMan miRNA assays used in this study were obtained from

Applied Biosystems.

Tumorigenicity in NOD/SCID mice
All mice were housed in the AAALAC-accredited specific

pathogen-free rodent facilities at the University of Michigan. Mice

were housed on sterilized, ventilated racks and supplied with

commercial chow and sterile water both previously autoclaved. All

experimentation involving live mice were conducted in accordance

with standard operating procedures approved by the University

Committee on the Use and Care of Animals at the University of

Michigan. Six-week old female NOD/SCID mice were purchased

from Jackson Laboratories (Bar Harbor, ME) and housed in SPF

microisolator cages in the animal facility of University of

Michigan. Tumorigenicity of 10,000 (Adjuvant setting) cells or

100,000 (Advanced setting) cells in the mamary fatpads of NOD/

SCID mice was accessed. Six mice were included in each cohort.

The animals were euthanized when the tumors were 1.0–1.5 cm

in diameter, in compliance with regulations for use of vertebrate

animal in research. A portion of each fat pad was fixed in formalin

and embedded in paraffin for histological analysis. Another

portion was analyzed by the ALDH or CD24/CD44 cytometric

staining.

Primary xenografts
Human breast tumors were obtained as biopsy cores or pieces of

tumors after surgery and implanted in humanized cleared fat pads

of NOD/SCID mice for establishing xenotransplants. The success

of xenotransplantation was approximately 20%, similar to

previous reports in the literature. Three xenotransplants were

used: an ER2PR2ERBB22 tumor at the 20th passage in animals

(MC1), an ER2PR2ERBB22 tumor at the 5th passage (UM1),

and an ER+PR+ERBB22 tumor at the 8th passage (UM2).

Intra-cardiac injection
All procedures were approved by the University Committee for

the Use and Care of Animals (UCUCA) of the University of

Michigan. The intracardiac injection was carried out according to

previously published methods [36]. Briefly, six-week-old NOD/

SCID mice were anesthetized with isoflurane gas (a 2%

isofluorane/air mixture) and injected in the left ventricle of the

heart with 100,000 cells in 100 ml of sterile Dulbecco’s PBS lacking

Ca2+ and Mg2+. For each of the cell lines (SUM159-luc,

HCC1954-luc), five animals were injected.

Bioluminescence imaging
Baseline bioluminescence was assessed before inoculation and

each week thereafter. Mice were anesthetized with isoflurane gas

and given a single i.p. dose of 150 mg/kg D-luciferin (Promega) in

PBS. For photon flux counting, we used a charge-coupled device

camera system (Xenogen) with a nose-cone isofluorane delivery

system and heated stage for maintaining body temperature.

Results were analyzed after six min of exposure using Living

Image software provided with the Xenogen IVIS imaging system.

Immunostaining
For ALDH1 staining, paraffin-embedded sections of breast

tumors from xenografts were deparaffinized in xylene and
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rehydrated in graded alcohol. Antigen enhancement was done by

incubating the sections in citrate buffer pH 6.0 (Dakocytomation,

Copenhagen, Denmark) as recommended. Slides were stained

using Peroxidase histostain-Plus Kit (Zymed) according to the

manufacturer’s protocol. ALDH1 antibody (BD biosciences) was

used at a 1:50 dilution. AEC (Zymed) was used as substrate for

peroxidase. Slides were counter-stained with hematoxylin and

coverslipped using glycerin. For E-Cadehrin, Vimentin, MCM7,

Ki67 and DAPI fluorescent staining, cells were fixed in ice-cold

methanol and permeablized with 0.15% triton X-100. E-Cadherin

antibody (Santa Cruz, 1:100 dilution), Vimentin antibody (Santa

Cruz, 1:200 dilution), MCM7 antibody (Cell signaling, 1:100

dilution), p21 antibody (Cell Signaling, 1:400 dilution) and Ki67

antibody (Dako, 1:150 dilution) were used and incubated for

1 hour at room temperature. PE and FITC labeled secondary

antibodies (Jackson Labs) were used at the dilution 1:200 and

incubated for twenty min. Nuclei were counterstained with DAPI/

antifade (INVITROGEN) and cover slipped. Sections were

examined with a Leica fluorescent microscope.

39 UTR luciferase reporter assay
The pMIR-REPORT luciferase reporter plasimds with the 39

UTR sequence of AKT3, SOX4, STAT3 or the control ACTB

were transfected into the cell lines using Fugene HD tansfection

reagent (Roche Applied Science) according to the manufacturer’s

instruction. After transfection, cells were dissociated and cultured

with or without DOX. Luciferase activity was assayed by luciferase

assay kit (Promega). Luciferase activities were measured after forty-

eight hrs utilizing a luminometer. The results were presented as

the luciferase activity of cells transfected with 39 UTR sequence of

AKT3, SOX4, or STAT3 normalized to cells transfected with the

luciferase activity of cells transfected with 39 UTR sequence of

ACTB.

Statistical analysis
Results are presented as the mean 6 standard deviation

(STDEV) for at least three repeated individual experiments for

each group using Microsoft Excel. Statistical differences were

determined by using ANOVA and student’s t-test for independent

samples. A p-value of less than 0.05 was considered statistically

significant.

Supporting Information

Figure S1 mir93 inhibits tumor growth and metastasis by

decreasing CSCs in HCC1954 cells. A. ALDH-positive cells from

HCC1954 cells shows lower mir93 expression level in comparison

to ALDH-negative cells by qRT-PCR. B. 16106 pTRIPZ-

HCC1954-mir93 cells were plated in T75 flasks and, after

overnight, the cells were treated with Vehicle control, DOX

(1 ug/ml), docetaxel (10 nM) or the combination for 3–7days.

Cells were utilized for Aldefluor assay and stained for Annexin V-

APC and DAPI for apoptosis assay. C. 100k pTRIPZ-HCC1954-

mir93 cells were injected into the 4th fatpads of NOD/SCID mice.

The treatment started as indicated by the red arrow. DOX alone

(1 mg/ml in drinking water), or docetaxel (10 mg/kg i.p. once

weekly) alone, or the combination inhibits SUM159 tumor growth

in vivo. D. Tumors from each group were collected. ALDH was

accessed by the Aldefluor assay on viable dissociated cells and by

ALDH1 immunohistochemistry on fixed sections. E. Serial

dilutions of cells obtained from these xenografts were implanted

in the 4th fatpads of secondary mice, which received no further

treatment. F. 10k pTRIPZ-HCC1954-mir93 cells were injected

into the 4th fatpads of NOD/SCID mice. The treatment started

immediately after injection as indicated by the red arrow and

stopped as indicated by the green arrow. G. 200k pTRIPZ-

HCC1954-mir93-luc cells in 100 ul of PBS were injected into the

left ventricle of NOD/SCID mice. The treatment started

immediately after injection as indicated by the red arrow and

stopped as indicated by the green arrow. Metastasis formation was

monitored using bioluminescence imaging. Quantification of the

normalized photon flux, measured at weekly intervals following

inoculation. H. Histologic confirmation, by H&E staining, of

metastasis in soft tissues resulting from mice with different

treatments in G. *p,0.05; Error bars represent mean 6 STDEV.

The colored ‘‘*’’ on the side of the tumor growth or metastasis

curve represents the tumor growth is significantly different

between Control group and the group with the same colored

curve.

(PDF)

Figure S2 mir-93 is induced in primary tumors with DOX. 100k

pTRIPZ-SUM159-mir-93 cells were injected into the 4th fatpads

of NOD/SCID mice. Different treatments were initiated (Vehicle

Control (Control), DOX alone (DOX), docetaxel alone, or the

combination). At the end of treatment, cells from Control and

DOX groups were isolated from the tumors and mir-93 expression

level was measured by qRT-PCR.

(PDF)

Figure S3 Induction of mir93 decreases both ALDH+ and

CD242CD44+ cells in the primary breast tumor xenografts. Cells

isolated from primary human breast xenografts UM2 (A), MC1 (B)

and UM1 (C) were sorted for ALDH+ and ALDH2 or

CD242CD44+ and the rest (CD242CD442, CD24+CD44+,

CD24+CD442). RNA was isolated from each group of sorted cells

and the expression level of mir-93 or RNU24 level was measured by

qRT-PCR. *p,0.05; Error bars represent mean 6 STDEV.

(PDF)

Figure S4 mir-93 expression in Sensor-GFP-positive and

Sensor-GFP-negative SUM159 cells. Mir-93-sensor-GFP

SUM159 cells were sorted for GFP-positive and GFP-negative

cells by flow cytometry and RNA was isolated from both group of

sorted cells and the expression level of mir-93 or RNU24 level was

measured by qRT-PCR. *p,0.05; Error bars represent mean 6

STDEV.

(PDF)

Figure S5 ALDH1A1 protein level in Sensor-GFP-positive and

Sensor-GFP-negative SUM159 cells. mir-93-sensor-GFP SUM159

cells were sorted for GFP-positive and GFP-negative cells by flow

cytometry. A portion of cells were utilized for western blot, and

some cells were cytospun down and stained with ALDH1A1 by

immunohistochemical staining. *p,0.05; Error bars represent

mean 6STDEV.

(PDF)

Figure S6 mir-93 induction reduces GFP in mir93-sensor-GFP-

SUM159 cells. mir93-sensor-GFP-SUM159 cells were infected

with pTRIPZ-mir93 lentivirus and grow in T75 flasks. DOX were

added to the culture medium in the DOX group. Images were

taken with fluorescence microscope.

(PDF)

Figure S7 16106 pTRIPZ-SUM149-mir93 cells were plated in

T75 flasks and, after overnight, the cells were treated with Vehicle

control or DOX (1 ug/ml) for 3–7 days. Induction of mir93

expression by DOX decreased the ALDH-positive population.

*p,0.05; Error bars represent mean 6 STDEV.

(PDF)
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Figure S8 Modulation of mir93 level in SUM159 cells altered

cell invasion in vitro and knockdown increases tumor growth in

vivo. SUM159 cells were infected with no virus (non-infection),

DsRed control lentivirus (SUM159-Neg-DsRed) or mirZip

antisense mir93 lentivirus (SUM159-mirZip93-DsRed). A. micro-

RNA RT-PCR demonstrated SUM159-mirZip93-DsRed reduced

mir93 expression by more than 90%. B. SUM159-non-infection,

SUM159-Neg-DsRed, SUM159-mirZip93-DsRed cells were

grown in T75 flasks and Aldefluor assay was utilized to measure

the percentage of ALDH+ cells. C. Serial dilutions of cells were

implanted in the 4th fatpads of NOD/SCID mice. SUM159-

mirZip93-DsRed cells initiated tumors sooner and accelerated

growth compared to equivalent number of control cells. D. Cells

were isolated from the tumors in C and Aldefluor assay was

utilized to measure the percentage of ALDH+ cells. E. Invasive

capacity was assessed by a Matrigel invasion assay using serum as

attractant. pTRIPZ-SUM159-mir93 cells are less invasive than the

control cells in vitro accesses at 27 hours. F. The invasion was

assessed by a Matrigel invasion assay using serum as attractant.

SUM159-mirZip93-DsRed cells are more invasive than the

control cells in vitro accesses at 27 hours. *p,0.05; Error bars

represent mean 6 STDEV. The colored ‘‘*’’ on the side of the

tumor growth curve represents the tumor growth is significantly

different between Control group and the group with the same

colored curve.

(PDF)

Figure S9 mir-93 inhibits tumor metastasis in SUM159 cells.

200k pTRIPZ-SUM159-mir-93-Luc cells in 100 ul of PBS were

injected into the left ventricle of NOD/SCID mice. Different

treatments were initiated (Vehicle Control (Control), DOX alone

(DOX), docetaxel alone, or the combination). At the end of

treatment, H&E staining and Pan-cytokeratin (AE1/AE3) staining

(in Brown) were performed to confirm the metastasis in bone and

soft tissues resulting from mice with different treatments.

(PDF)

Figure S10 mir93 inhibits tumor growth in primary human

breast xenografts MC1, UM2, and UM1. Cells isolated from

primary xenografts MC1 (A) or UM2 (B) or UM1 (C) were

transduced with the pTRIPZ-mir93 lentivirus in suspension. 10k

pTRIPZ-MC1-mir93 or pTRIPZ-UM2-mir93 cells were injected

into the 4th fatpads of NOD/SCID mice. The treatment started

right after injection as indicated by the red arrow. DOX alone,

docetaxel alone or the combination prevented tumor growth.

*p,0.05; Error bars represent mean 6 STDEV. The colored ‘‘*’’

on the side of the tumor growth curve represents the tumor growth

is significantly different between Control group and the group with

the same colored curve.

(PDF)

Figure S11 Endogenous mir93 expression levels parallel cell

differentiation state. ALDH+ population and ALDH2 population

were separated from SUM159 cells and HCC1954 cells.

CD242CD44+ population and the remaining cell populations

were separated from MCF7 cells. mir93 level was analyzed by

microRNA qRT-PCR. Among these three cell lines, mir93

expression level is highest in MCF7 cells and lowest in the

SM159 cells. In both SUM159 cells and HCC1954 cells, ALDH+

cells have lower mir93 expression compared to ALDH2 cells. In

contrast, CD242CD44+ in MCF7 cells showed no difference for

mir93 expression level in comparison to the bulk population.

*p,0.05; Error bars represent mean 6 STDEV.

(PDF)

Figure S12 mir93 promotes tumor growth by increasing CSCs

in MDA-MB-453 cells. A. 200k pTRIPZ-MDA-MB-453-mir93

cells were injected into the 4th fatpads of NOD/SCID mice.

Treatment was initiated as indicated by the red arrow. DOX

(1 mg/ml in drinking water) promoted MDA-MB-453 tumor

growth in vivo. B. Tumors from each group were collected.

Aldefluor assay was performed on dissociated cells. DOX

increased the ALDH+ populations in MDA-MB-453. C. Serial

dilutions of cells obtained from these xenografts were implanted in

the 4th fatpads of secondary mice, which received no further

treatment. Cells from DOX-treated tumors formed secondary

tumors at all dilutions (1k, 10k, 32k), whereas only higher numbers

of cells (32k) obtained from control xenografts were able to

generate tumors. *p,0.05; Error bars represent mean 6 STDEV.

(PDF)

Figure S13 mir93 promotes tumor growth by increasing CSCs

in T47D cells. A. 500k pTRIPZ-T47D-mir93 cells were injected

into the 4th fatpads of NOD/SCID mice. Treatment was initiated

as indicated by the red arrow. DOX (1 mg/ml in drinking water)

promoted T47D tumor growth in vivo. B. Tumors from each

group were collected. Aldefluor assay was performed on

dissociated cells. DOX increased the ALDH+ populations in

T47D. C. Serial dilutions of cells obtained from these xenografts

were implanted in the 4th fatpads of secondary mice, which

received no further treatment. Cells from DOX-treated tumors

formed secondary tumors at all dilutions (5k, 50k, 500k). *p,0.05;

Error bars represent mean 6 STDEV.

(PDF)

Figure S14 mir-93 is induced in primary tumors with DOX.

1000k pTRIPZ-MCF7-mir-93 cells were injected into the 4th

fatpads of NOD/SCID mice. Different treatments were initiated

(Vehicle Control (Control), DOX alone (DOX), docetaxel alone,

or the combination). At the end of treatment, cells from Control

and DOX groups were isolated from the tumors and mir-93

expression level was measured by qRT-PCR.

(PDF)

Figure S15 Validation of the 127 overlapped gene expression

with customerized StellArray PCR array plate in pTRIPZ-

SUM159-mir93.

(PDF)

Figure S16 Validation of the 127 overlapped gene expression

with customerized StellArray PCR array plate in pTRIPZ-

HCC1954-mir93.

(PDF)

Figure S17 Validation of the 127 overlapped gene expression

with customerized StellArray PCR array plate in pTRIPZ-MC1-

mir93.

(PDF)

Figure S18 Luciferase assay confirming mir93 targets. The

39UTR of AKT3, SOX4, and STAT3 pMIR-REPORT firefly

luciferase reporter plasmids with the wild-type 39UTR sequences

of AKT3, SOX4, or STAT3 were transiently transfected into

pTRIPZ-HCC1954-mir93 cells and an internal control ACTB

luciferase reporter was co-transfected for normalization. The cells

were treated with or without DOX. Luciferase activities were

measured after 48 hr. The relative luciferase activity is shown as

the ratio of (the results from the cells transfected by individual

reporter)/(the results from the cells transfected by the internal

control in the same cell group). *p,0.05; Error bars represent

mean 6 STDEV.

(PDF)
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Figure S19 Luciferase assay testing mir93 targets. The 39UTR

of AKT3, SOX4, and STAT3 pMIR-REPORT firefly luciferase

reporter plasmids with the wild-type 39UTR sequences of AKT3,

SOX4, or STAT3 were transiently transfected into pTRIPZ-

MCF7-mir93 (A) or pTRIPZ-MDA-MB-453-mir93 (B) cells and

an internal control ACTB luciferase reporter was co-transfected

for normalization. The cells were treated with or without DOX.

Luciferase activities were measured after 48 hr. The relative

luciferase activity is shown as the ratio of (the results from the cells

transfected by individual reporter)/(the results from the cells

transfected by the internal control in the same cell group). Error

bars represent mean 6 STDEV.

(PDF)

Figure S20 Knockdown of STAT3 (A), AKT3 (B) or SOX4 (C)

decreases ALDH+ cells in SUM159 cells. SUM159 cells were

transfected with PlentiLox3.7-shRNA-DsRed viruses and accessed

for the ALDH+ population by Aldeflour assay. *p,0.05; Error

bars represent mean 6 STDEV.

(PDF)

Figure S21 Validation of the 127 overlapped gene expression

with customerized StellArray PCR array plate in pTRIPZ-MCF7-

mir93.

(PDF)

Figure S22 The effects of mir93 on cell proliferation. Cell

proliferation was measured with the MTT assay. 200–500 cells

from Control and DOX-treated groups were seeded in 96-well

culture plates and were cultured in the absence (CTRL) and

presence (DOX) of DOX for 7days.Data represents means SEM,

n = 5. *p,0.05; Error bars represent mean 6 STDEV.

(PDF)

Figure S23 Analysis of cell cycle for pTRIPZ-HCC1954-mir93

cells and pTRIPZ-MCF7-mir93cells. Cell cycle analysis of

pTRIPZ-HCC1954-mir93 cells and pTRIPZ-MCF7-mir93 cells

in the presence or absence of DOX. Propidium iodide staining

followed by flow cytometry was used to analyze cell cycle

distribution. Mir93 induced by DOX treatment resulted in a

decreased proportion of cells in the G0/G1 phase and an

increased proportion of cells in the S/G2/M phase for pTRIPZ-

HCC1954-mir93 cells. In contrast, DOX treatment has no effects

on the cell cycle for pTRIPZ-MCF7-mir93 cells.

(PDF)

Figure S24 MCM7 and Ki67 expression is increased in ALDH-

compared to ALDH+ SUM159 cells. ALDH + and 2 cells were

separated by Aldefluor assay and expression of Ki67 and MCM7

accessed by immunofluorescence. Ki67, Red; MCM7, Green;

DAPI, Blue. One representative sample from 3 independent

samples is shown.

(PDF)

Figure S25 mir93 expression induces MET in HCC1954 cells.

pTRIPZ-HCC1954-mir93 cells were plated in 2-well chamber

slides with (DOX) or without (CTRL) Doxycycline for 7 days. E-

Cadherin and Vimentin were stained with immunofluorescence

staining. E-Cadherin, Green; Vimentin, Red; DAPI, Blue. One

representative sample from 3 independent samples is shown.

(PDF)

Table S1 Downregualted probe set in ALDH+ population from

DOX vs. ALDH+ population from CTRL.

(PDF)

Table S2 mir93 direct targets in SUM159 cells. Overlap

between mir93 predicted targets from TargetScan 5.1 and

profiling data from DOX-treated cells (DOX) to non-DOX-

treated cells (CTRL) in the ALDH2 population (12 genes) or in

the ALDH+ population (352 genes). Known stem cell regulatory

genes highlighted in red. Genes underlined and bolded were

analyzed utilizing the luciferase reporter assay.

(PDF)

Table S3 Downregualted probe set in ALDH2 population from

DOX vs. ALDH2 population from CTRL.

(PDF)
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The partial purification of mouse mammary gland stem cells (MaSCs)
using combinatorial cell surface markers (Lin−CD24+CD29hCD49fh)
has improved our understanding of their role in normal develop-
ment and breast tumorigenesis. Despite the significant improve-
ment in MaSC enrichment, there is presently no methodology that
adequately isolates pure MaSCs. Seeking new markers of MaSCs,
we characterized the stem-like properties and expression signa-
ture of label-retaining cells from the mammary gland of mice
expressing a controllable H2b-GFP transgene. In this system, the
transgene expression can be repressed in a doxycycline-dependent
fashion, allowing isolation of slowly dividing cells with retained
nuclear GFP signal. Here, we show that H2b-GFPh cells reside
within the predicted MaSC compartment and display greater
mammary reconstitution unit frequency compared with H2b-
GFPneg MaSCs. According to their transcriptome profile, H2b-GFPh

MaSCs are enriched for pathways thought to play important roles
in adult stem cells. We found Cd1d, a glycoprotein expressed on
the surface of antigen-presenting cells, to be highly expressed by
H2b-GFPh MaSCs, and isolation of Cd1d+ MaSCs further improved
the mammary reconstitution unit enrichment frequency to nearly
a single-cell level. Additionally, we functionally characterized a set
of MaSC-enriched genes, discovering factors controlling MaSC sur-
vival. Collectively, our data provide tools for isolating a more pre-
cisely defined population of MaSCs and point to potentially critical
factors for MaSC maintenance.

FACS sorting | mammary gland transplant | shRNA screen

The murine mammary gland resembles, to some extent, the
human mammary gland in development, milk production,

and progression to carcinogenesis, making it an ideal system to
develop methodologies and form hypotheses of relevance to
women. The use of cell surface markers to isolate selected cell
types from mice has greatly enhanced our understanding of de-
velopment and our knowledge of molecular pathways and inter-
actions that influence it. Mammary gland stem cells (MaSCs) have
commanded attention because of not only their roles in the cycles
of gland morphogenesis but also their potential contribution in
tumor initiation. Full characterization of MaSCs, however, has
been hampered by their scarcity. Enrichment of the MaSC com-
partment has, until now, been achieved by using a combination of
cell surface markers (Lin−CD24+CD29hCD49fh) (1, 2). Thus far,
these cells have been enriched to 1 MaSC per every 64 cells
stained Lin−CD24+CD29h (1). This is sufficient to test for MaSC
repopulation capacity and to some extent, roles in tumorigenesis,
but this level of purity is less suitable for more complex molecular
analyses that define MaSCs and their properties.
Additional characterization of MaSCs has been achieved using

a transgenic mouse model expressingGFP under the control of the
s-ship promoter (3). This gene is expressed in embryonic and he-
matopoietic stem cells but not differentiated cells (4). GFP+ cells in
this mouse model were shown to reside at the tips of the terminal
end buds, where MaSCs are believed to be located in these

developing mammary gland structures (3, 5). Transplantation of
the MaSC-enriched GFP+CD49fh cells improved the mammary
reconstitution unit (MRU) frequency to 1/48 cells, an increase over
the previous shown frequency for CD24+CD29hCD49fh cells. Al-
though being very elegantly performed and enhancing our un-
derstanding of MaSC localization, studies with this mouse model
did not achieve a greater enrichment for MaSCs using more con-
veniently accessible markers, such as cell surface proteins.
Given the limitations in accurately purifying MaSCs, we sought

to devise a method better suited for identifying this population.
Here, we describe the use of long-term label retention to increase
the MRU frequency within MaSC-enriched CD24+CD29h cells.
This approach, previously applied to the isolation of skin stem
cells (6), enables the identification of slowly dividing cells, a
characteristic of adult stem cells. To mark slowly dividing cells,
expression of the H2b histone, linked to GFP, is regulated by a
tetracycline responsive element (TRE) and a tet-controlled
transcription activator (tTA) under the endogenous keratin K5
promoter (K5tTA-H2b-GFP). In the absence of tetracycline or its
analog doxycycline (DOX), the tTA binds to TRE and activates
transcription of H2b-GFP. Treatment with DOX prevents the
tTA binding to TRE, and transcription of H2b-GFP is terminated
(6). As the cell divides, newly synthesized, unlabeled H2b replaces
the H2b-GFP; therefore, the more slowly dividing cells will retain
GFP expression for an extended period.
We were able to improve the MaSC enrichment by isolating

GFP-retaining cells after a long-term inhibition of transgene
expression. We refer to these cells as H2b-GFPh MaSCs (CD24+

CD29hH2b-GFPh). Comparisons between expression profiles of
all mammary gland cell types suggested that H2b-GFPh MaSCs
differentially expressed several genes involved in pathways pre-
viously described as playing roles in other adult stem cells. Ad-
ditional analysis of the H2b-GFPh MaSC expression signature
led to the identification of a cell surface marker that, combined
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with conventional markers, resulted in the isolation of an MaSC
population with an elevated proportion of MRUs. In addition,
we performed a focused shRNA screen, targeting genes that
were differentially expressed in our newly characterized MaSC-
enriched cell population, revealing potential regulators of mam-
mary gland biogenesis. Overall, this work improves our ability to
purify MaSCs and provides valuable insights into their role in
mammary gland development and perhaps, even tumor initiation.

Results
H2b-GFP Label-Retaining Cells Enrich for MaSCs. To better enrich for
the MaSC population, we assessed the feasibility of using mam-
mary gland label-retaining cells to select for MaSCs, given that
a slower division rate is an excepted characteristic of adult stem
cells. We adopted a system wherein expression of the H2b his-
tone, linked to GFP, is regulated by a TRE and a tTA under the
endogenous keratin K5 promoter K5tTA-H2b-GFP (a gift from
Elaine Fuchs, Rockefeller University, New York, NY). Keratin
K5 is expressed in cells of the basal compartment, the region
considered to be home to MaSCs (7). This system displays some
advantages over the previous gene reporter-based methods used
to isolate MaSCs, because it takes advantage of one of the more
general properties of stem cells: their relative quiescence. In
support of the use of this mouse model, there were previous hints
that MaSC-enriched CD24+CD29h cells display BrdU label-
retaining properties (1), although label-retaining populations
were not functionally characterized.
Initial experiments using the H2b-GFP mice assessed the ex-

pression and distribution of GFP-positive cells in the adult
mammary gland (Fig. 1A). Histological sections revealed the
presence of several GFP+ cells located within structures re-
sembling the mammary gland ductal epithelium (Fig. 1B and Fig.
S1A,Upper). Treatment of H2b-GFP mice with DOX over a 12-wk
period, thus ceasing transcription of H2b-GFP transgene, dra-
matically reduced the number of cells expressing GFP. Notably,
those cells that remained GFP+ were located at the tips of the
terminal end buds. These distinct sites in the ductal epithelium
are the areas currently believed to be resident by MaSCs (8) (Fig.
1C and Fig. S1A, Lower).
To compliment this observation, under the hypothesis that

mammary gland label-retaining cells comprise a population of
potential MaSCs, we investigated the correlation between GFP
retention and expression of previously defined MaSC-enriched
cell surface markers, CD24 and CD29. Using FACS analysis, we
were able to subdivide the mammary gland (after depletion
of endothelial and hematopoietic cells as shown in Fig. S1B) into
three distinct cell compartments: luminal (CD24hCD29+), oc-
cupied by luminal cells; basal (CD24+CD29h), occupied by
myoepithelial cells and MaSCs; and stromal (CD24−CD29+) (1)
(Fig. 1D, Upper Left). The majority of GFP+ cells from a trans-
genic H2b-GFP mouse off DOX could be categorized into either
basal or stromal compartments, with far fewer GFP+ cells oc-
cupying the luminal compartment (Fig. 1D, Upper Right and Fig.
S1C, Left). After a 12-wk DOX chase, the overall proportion
of GFP+ cells decreased by more than one-half, and the
presence of a GFP+ luminal compartment was all but elimi-
nated (Fig. 1D, Lower Left and Fig. S1C, Center). Focusing on
GFP intensity (a measure that directly relates to the rate of cell
division), selection of only the brightest GFP+ cells (GFPh)
resulted in a greater proportion remaining in the CD24+CD29h

basal compartment, whereas the stromal compartment was sig-
nificantly reduced after GFPdim cells were removed (Fig. 1D,
Lower Right and Fig. S1C, Right). This result suggests that the
most label-retaining cells reside within the basal compart-
ment and may represent the MaSCs population.
The benefit of using GFP to test for label retention, as op-

posed to BrdU, is that its detection does not require fixation and
staining. We were then able to test the biological differences,

using mammary gland transplants, between GFPh cells (H2b-
GFPh MaSCs) and GFP− cells (H2b-GFP− MaSCs) within the
MaSC-enriched compartment. Transplantation assays are a fun-
damental criterion to evaluate stemness and have been used
previously for several tissues, including the mammary gland (1, 2, 9).
For these experiments, the inguinal glands were removed from
the endogenous tissue of prepubescent females before injection
of donor cells. Donor cells were harvested from mammary glands
of H2b-GFP mice after a 12-wk DOX chase, dissociated, lineage-
depleted, and sorted according to GFP intensity (Fig. S1D). Cells
(GFPh and GFP−) were then injected, and outgrowths from
donor cells were compared (by visualization of GFP+ epithe-
lium) 12 wk posttransplantation. Given that the recipient animals
are not treated with DOX, all cells derived from the donor mice
will resume expression of the H2b-GFP transgene and give rise
to GFP+ outgrows. MRU frequency was estimated according
to the previously described algorithm (10). Transplantation of
500 H2b-GFPh MaSCs (n = 5) gave rise to GFP+ epithelium in
all injected glands. This ability to reconstitute was still retained
when only 50 cells were transplanted (Fig. 1E). In contrast, only
one-half of the glands injected with 500 H2b-GFP− MaSCs dis-
played fluorescent outgrowths, decreasing to just 29% with in-
jection of 50 cells (Dataset S1). These results represent an
increase in the estimated frequency ofMRUs from1/70 cells, when
MaSC selection was performed using CD24+CD29h alone (1), to
1/33 cells, with restriction to H2b-GFPh cells to further define
MaSCs. Comparatively, the MRU frequency among H2b-GFP−

MaSCs was estimated to be 1/149 (Dataset S1). Colony-forming
ability was also twofold greater for H2b-GFPh MaSCs when 500 of
these cells were seeded in aMatrigel (BD Bioscience) and cultured
for 7 d (Fig. S1E).

Considered together, these data suggest that mammary gland
H2b-GFPh label-retaining cells represent a subset, if not an entire
population, of the MaSCs. Our experiments using a repressible
H2b-GFP transgene have built on previous knowledge regarding
the label-retaining properties of stem cells in the mammary gland
and confirmed that MaSC CD24+CD29h cells reside mainly
within the H2b-GFPh label-retaining cell population. In addition
to these experiments, we also found that hormone-dependent
activation of MaSC proliferation and differentiation, triggered
by one complete cycle of pregnancy and involution in transgenic
H2b-GFP mice treated with DOX, completely depleted GFP+

cells, validating that H2b-GFPh cells truly represent a population
of slowly dividing cells rather than being a transgenic artifact.
It has been proposed that MaSCs comprise less than 5% of the

total basal compartment. Our findings support this notion given
that we find label-retaining H2b-GFPh cells to account for ∼0.2%
of the total CD24+CD29h population (Fig. S1D,Upper Right). We
also compared the distribution of H2b-GFPh

–retaining cells with
expression of a recently identified marker for myoepithelial
progenitor-like cells, CD61. This marker was expressed by most of
the H2b-GFPdim population, whereas virtually all H2b-GFPh cells
were negative for CD61 staining, suggesting perhaps a unique
mammary gland cell differentiation pattern, where H2b-GFPh la-
bel-retaining cells might occupy the top of hierarchy.

H2b-GFP Cells Display a Stem Cell-Like Expression Signature. Having
established that H2b-GFPh MaSCs have reconstitution properties,
we next sought to determine where these cells fall in the mammary
differentiation hierarchy with regard to their gene expression pat-
terns. Using a combination of cell surface markers (1, 11), six dis-
tinct cell types were isolated by FACS to a purity of >90%: H2b-
GFP MaSCs (Lin−CD24+CD29hH2b-GFPhCD61−), myoepithelial
progenitor-like cells (Lin-CD24+CD29hH2b-GFP−/lCD61+),
myoepithelial differentiated cells (Lin−CD24+CD29hH2b-GFP−

CD61−), luminal progenitor cells (Lin−CD24hCD29+CD61+

CD133−), luminal ductal cells (Lin−CD24hCD29+CD61−CD133+),
and luminal alveolar cells (Lin−CD24hCD29+CD61− CD133−)
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(Fig. 2A). The myoepithelial progenitor-like cells were defined
by expression of CD61 as a positive cell surface marker and their
positioning as the second most label-retaining cell population.
Hierarchical clustering of combined RNAseq replicates split

mammary gland cells into two main branches: the basal com-
partment, comprising myoepithelial progenitor cells, myoepithe-
lial differentiated cells, and H2b-GFP MaSCs, and the luminal
compartment, with luminal progenitor cells and differentiated
cells (Fig. 2B). As predicted by prior characterization of MaSCs
(1), we found the expression profile of H2b-GFP MaSCs to be

more closely related to the expression profile of myoepithelial cells
than luminal cells; however, H2b-GFP MaSCs were still an out-
group compared with other cells in this cluster. Analysis over all
mammary gland cell types yielded several hundred genes differ-
entially expressed among all cell types (Fig. 2B), spanning diverse
gene ontology groups and pathways (Dataset S2). More specifi-
cally, genes differentially expressed in H2b-GFP MaSCs were
enriched in G protein-coupled receptors and pathways involving
Wnt/B-catenin signaling, areas previously described to play fun-
damental roles in other adult stem cells (12). Differential

Fig. 1. H2b-GFP label-retaining cells represent a population of MaSCs. (A) Experimental scheme. Mammary glands were harvested from K5tTa-H2b-GFP
transgenic mice either off (GFP pulse) or on DOX diet (GFP chase) and further processed for immunological staining or single-cell suspension FACS sorting. (B and
C) Tissue histology H2b-GFP+ cells distribution. Mammary glands from transgenic mice off and on DOX diet were harvested, defatted, embedded in agarose, and
imaged with two-photon microscopy. (B) Mice off DOX diet (GFP pulse) showing a broad distribution of GFP+ cells in mammary gland ductal structures. (C) After
a 12-wk DOX chase, H2b-GFP+ label-retaining cells became restricted to the edges of the ductal structures. (D) Flow cytometry profile of H2B-GFP+ cells. Upper Left
shows the profile of a lineage-depleted (CD45−, Ter119−, and CD31−) nontransgenic mammary gland according to CD24 and CD29 staining and highlights the
three cell compartments: luminal (CD24hCD29+; comprising luminal progenitor cells, luminal alveolar cells, and luminal ductal cells); basal (CD24+CD29h; com-
prising myoepithelial progenitor cells, myoepithelial differentiated cells, and MaSCs); and stromal. Total GFP+ cells from H2b-GFP transgenic mice off DOX diet
(GFP pulse mice; Upper Right) displayed a similar cellular compartmental distribution with fewer luminal-type cells. The CD24CD29 cell profile of H2b-GFP+ cells
from GFP chase mice (on DOX) were analyzed using two strategies to define GFP-expressing cells. Lower Left displays CD24CD29 staining of total H2b-GFP+ cells,
whereas Lower Right shows the CD24CD29 staining of H2b-GFPh cells. The focus on GFPh cells, the most label-retaining cells, drastically decreased the cellular
content of all mammary gland compartments and retained a greater proportion of cells inside of the basal compartment, potentially representing MaSCs. (E)
Histological analysis of mammary gland H2b-GFPh MaSCs outgrowths. Cleared fat pads from prepubescent female mice were injected with either total H2b-GFP−

MaSCs (CD24+CD29hGFP− cells) or H2b-GFPh MaSCs (CD24+CD29hGFPhcells), harvested 12 wk after transplantation, embedded in agarose, stained with antibodies,
and imaged on a Zeiss 710 LSM (Zeiss) confocal microscope. Images display outgrowths of two distinct glands injected with H2b-GFPh MaSCs.
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expression patterns were confirmed on four genes by performing
quantitative RT-PCR on H2b-GFP MaSCs (n = 4 individually
sorted samples) and myoepithelial progenitor cells (n = 3 in-
dividually sorted samples) (Fig. S2). mRNA for the Cd24 and
Cd29 genes was quantified as control, because all myoepithelial
cells displayed similar levels of expression for these genes.
These results further confirmed that mammary cell types could

be differentiated based on their gene expression profiles, allowing
us to use these profiles to select cell type-specific genetic identifiers.

Additional Cell Surface Marker to Improve MaSCs Purification. Be-
cause of limitations on the ability to purify MaSCs to homoge-
neity based on currently used cell surface markers, we searched
for new surface markers that might identify MaSCs using the
RNAseq data. We first generated a list of ∼500 genes that en-
code for cell surface markers according to their gene ontology
term function (e.g., basolateral membrane, cell surface, mem-
brane protein, or basement membrane). This list was further
reduced to genes with high expression levels for the MaSC H2b-
GFP cells. Five candidate cell surface proteins came out of this
analysis (Fig. S3A): CD1d, a glycoprotein expressed on the sur-
face of various mouse and human antigen-presenting cells (13);
Cd59a, a regulator of the membrane attack complex (14); CD22,
a regulatory lectin involved in repressing hyperactivation of the
immune system (15); CD93, a C-type lectin involved in cell–cell
adhesion processes (16); and CD74, an HLA class II protein,
part of the major histocompatibility complex (17). Antibodies
against CD1d, CD59a, and CD22 positively stained a distinct
population of cells contained within the Lin-MaSC CD24+

CD29h cells (Fig. 3A), whereas antibodies against the proteins,

CD93 and CD74, failed to stain any mammary gland cells. We
further tested CD1d MaSCs (CD24+CD29hCD1d+), CD59a
MaSCs (CD24+CD29hCD59ah), and CD22 MaSCs (CD24+

CD29hCD22+) for their ability to grow colonies in Matrigel cul-
ture. Two populations, CD1d MaSCs and CD59ah MaSCs [rep-
resenting 1% and 4%, respectively, of the total MaSC (CD24+

CD29h) population], displayed an approximately twofold increase
in colony-forming ability compared with the total MaSCs pop-
ulation (Fig. S3B). However, we found CD1d MaSCs to have a
greater colony-forming ability compared with CD59ah MaSCs,
with one-half as many cells needed to produce the same number
of colonies (200 and 500 cells, respectively, seeded on Matrigel).
Additional analysis showed that all CD1d+ cells from the MaSC-
enriched CD24+CD29h population were also CD59ah, whereas
the remaining majority of CD59a+ cells from the MaSC-enriched
CD24+CD29h population was negative for CD1d expression (Fig.
3B). Based on the enhanced colony-forming abilities of CD1d
MaSCs over CD59ah MaSCs and the overlap of the two markers
within the CD1d+ populations, we decided to pursue the experi-
ments using CD1d as an MaSC marker.
We next sorted CD1d+ MaSCs for RNAseq and compared

their gene expression profile with those cell populations de-
scribed in Fig. 2. Cluster analysis of all RNAseq libraries suggests
that the CD1d MaSC expression signature is closer to the ex-
pression pattern found for H2b-GFP MaSCs than for any other
cell type (Fig. S3C). These results could be suggestive that the
common expression signature between CD1d+ MaSCs and H2b-
GFPh MaSCs defines the stem cell state of mammary gland cells.
To ask whether CD1d+ MaSCs are slowly dividing cells, we

performed BrdU label retention experiments. We injected BrdU
into eight prepubescence female mice (3 wk old) over 5 consec-
utive d. Cells were harvested on the day of the last injection (week 0)
from one-half of the mice and after 12 wk from the remaining mice
(Fig. 3C). FACS analysis showed that ∼20% of the total MaSC
population retained BrdU, and up to 60% of CD1d MaSCs were
BrdU-retentive. This result adds confidence to the use of CD1d as
a cell surface marker to represent the H2b-GFPMaSCs, because it
is the most label-retaining cells and perhaps, therefore, the most
enriched for stem-like cells within the mammary gland.
We then went on to repeat the mammary gland reconstruction

assays, but this time, we compared CD1d+ MaSC transplantation
efficiency with the transplantation efficiency displayed by the
total MaSC (Lin−CD24+CD29h) population using cells from the
H2b-GFP mice off DOX. Comparing donor-derived outgrowths
(identifiable by GFP expression) between injection with CD1d+

MaSCs and injection with total MaSCs, we found that, despite
bringing the injected cell number down to single digits, CD1d+

MaSCs effectively gave rise to GFP outgrowths in the majority of
graft recipients (Fig. 3D and Dataset S3). This result gave a pre-
dicted MRU frequency of ∼1/8 CD1d MaSCs compared with the
1/44 MRU frequency from total MaSCs (Dataset S3). FACS
collection of CD1d+ MaSCs from a reconstructed gland also ef-
fectively gave rise to a gland when serially transplanted into an-
other mouse, showing that these cells also have the capacity to
self-renew in addition to regenerating the gland (Fig. 3E).

MaSC-Focused shRNA Screen. To identify genes and pathways
necessary for the maintenance of MaSC reconstitution potential,
we selected a set of abundantly and differentially expressed genes
from RNAseq libraries of H2b-GFPh MaSCs and CD1d+ MaSCs
and targeted them in shRNA-mediated knockdown experiments.
We used shRNAs identified by a prediction algorithm developed
in our laboratory, taking, on average, two hairpins per gene.
Hairpins targeting nondifferentially expressed genes were also
included as well as depletion control hairpins targeting Rpa3 and
Polr2b and neutral control hairpins targeting Firefly luciferase
and Renilla luciferase. All genes were targeted in a one-by-one
approach in an assay lasting ∼3 wk (Fig. S4A).

Fig. 2. H2b-GFPh MaSCs display a stem-like expression signature. (A) Sorting
strategy. We used a combination of four cell surface markers in addition to
H2b-GFP expression to segregate the lineage-depleted mammary gland cells
into six distinct cell types: H2b-GFPh MaSCs (Lin−CD24+CD29hH2b-GFPhCD61−),
myoepithelial progenitors cells (Lin-CD24+CD29hH2b-GFP−CD61+), myoepi-
thelial differentiated cells (Lin−CD24+CD29hH2b-GFP−CD61−), luminal pro-
genitor cells (Lin−CD24hCD29lCD61+CD133−), luminal ductal cells (Lin−CD24h

CD29lCD61−CD133+), and luminal alveolar cells (Lin−CD24hCD29lCD61−

CD133−). For each library, two biological replicates were analyzed. (B)
Mammary gland differential expression heat map. Clustering of RPKM
profiles for the 100 genes with highest variance across all samples. Two main
cell clusters were generated according to the expression patterns of ana-
lyzed genes: luminal- (progenitor, alveolar, and ductal cells) and basal-type
cells (H2b-GFPh MaSCs, progenitors, and differentiated cells). Note that H2b-
GFPh MaSCs cluster with other basal compartment cells but have an ex-
pression signature distinct from the other two cell types in this cluster.
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shRNAs were introduced into the immortalized mammary
gland cell line, Comma-Dβ (18). These cells give rise to both
luminal and myoepithelial compartments in colony-forming and
transplantation assays, independent of the method of MaSC
enrichment (19–21). In addition, ∼50% of Comma-Dβ cells stain
positive for Cd1d, placing them in our improved MaSCs isolation
profile (Fig. S4B).

Cells were monitored for GFP expression (as a proxy for
shRNA expression), and changes in the proportion of GFP-
expressing cells would be indicative of a relevant gene function.
The majority of screened shRNAs did not alter GFP levels during
the 3-wk screening period (Fig. 4A), which could suggest that the
correspondent genes were not essential for growth maintenance
of Comma-Dβ cells. However, a distinct set of shRNAs altered

Fig. 3. Cd1d is an additional cell surface marker for purification of MaSCs. (A) FACS analysis of MaSC cell surface markers. Total MaSCs (CD24+CD29h cells)
were additionally segregated according to the expression of the cell surface markers CD1d, CD59ah, or CD22. (B) CD1d is expressed by a subset of CD59ah cells.
Lin− mammary gland cells were stained with antibodies against CD24, CD29, CD1d, and CD59a and further analyzed on an LSRII Cell Analyzer (BD Bioscience).
The entire basal compartment (CD24+CD29h) was selected and analyzed according to CD1d and CD59a expression. The majority of cells within the basal
compartment stained positive for CD59a, and CD1d+ cells fell mainly in the CD59ah area. (C) CD1d MaSCs are the most label-retaining cells within the
mammary gland. Prepubescence mice were injected with BrdU (50 mg/kg body weight) for 5 d. Glands were either harvested from mice on the last day of
BrdU injection to evaluate the total BrdU incorporation (week 0) or harvested after a 12 wk BrdU chase. Single-cell suspensions were stained with antibodies
against CD24, CD29, and CD1d and analyzed on an LSRII Cell Analyzer (BD Bioscience). BrdU incorporation was measured in total MaSC (CD24+CD29h) and
CD1d MaSC (CD24+CD29hCD1d+) populations. (D and E) Histological analysis of mammary gland CD1d MaSCs outgrowths. Cleared fat pads from pre-
pubescent female mice were injected with (D) either total MaSCs or CD1d MaSCs and (E) 25 CD1d MaSCs cells harvested from glands pretransplanted with
CD1d MaSCs. Glands were harvested 12 wk after transplantation and embedded in agarose, and endogenous GFP signal was imaged. Images display out-
growths from two distinct glands injected with CD1d MaSCs cells (D) or secondary transplanted CD1d MaSCs (E).
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the maintenance of GFP-expressing cells by either depleting
GFP+ cells (Fig. 4A, lethal shRNAs) or promoting expansion of
GFP+ cells (Fig. 4A, survival shRNAs) over time.
We decided to further investigate a subset of genes that in-

terfered with Comma-Dβ growth, because our focus was to un-
derstand the spectrum of genes that might block normal
mammary gland biogenesis. Among the selected genes were
mucin-like gene (Muc4), G protein-coupled receptor gene family
member (Grk4), and transcription factors (MafK and Sltm). An
additional set of hairpins for these genes was rescreened in
Comma-Dβ cells with GFP levels followed for 10 d. No clear
effect on the percentage of GFP-positive cells was observed
when cells expressed the new shRNAs against Muc4 and Renilla
luciferase control, whereas an shRNA-dependent response was
observed, according to GFP frequency, when the genes Grk4 and
Mafk were targeted (Fig. 4B). In addition, both new shRNAs
against the gene Sltm consistently decreased GFP-expressing
cells to levels comparable with the depletion achieved by Rpa3,
the lethal control. Interestingly, Sltm encodes a transcription
factor-like protein that binds both DNA (scaffold attachment
factor-box DNA binding motif) and RNA (RNA binding do-
main) in response to estrogen levels (22). We are currently
investigating the implications caused by loss of Sltm expression
during normal mammary gland development and tumorigenesis.

Discussion
The ongoing interest in stem cells and more recently, cancer
stem cells highlights the need for improvements in purification
and analysis of this rare but important population. Our previous
understanding of MaSCs has been clouded by the limited

capability to obtain a pure population devoid of contaminating,
more differentiated cells. Here, we took advantage of a pre-
viously used system to identify relatively quiescent cells (6) in the
mammary gland. We propose that the label-retaining cells from the
K5tTa-H2b-GFP mouse represent a subset of active MaSCs,
displaying increased mammary gland reconstitution ability over
previously published cell populations identified as MaSCs.
Unlike previous methods, where cell selection is based on the

presence of constitutive fluorescence in cells (3, 23), the use of
a cell state-dependent GFP system allows for a more biological
relevant fluorescence reliability. The extended time between
halting GFP expression and analysis and also, selection of only
the brightest cells decrease the possibility that the GFP protein
might be detected in a cell cycling at a normal rate, despite the
fact that the GFP expression is switched off. This system allowed
for the possibility of a much more stringent selection process;
however, it is acknowledged that there are limitations with using
this mouse model on a routine basis for enriching for MaSCs.
The need to use a transgenic mouse and however reduced, the
level of heterogeneity within cells selected—evident by <100%
regrowth efficiency—illustrate the need for the cell surface
marker, CD1d, identified in our study.
Cd1d is known to be expressed as a cell surface marker on

a variety of antigen-presenting cells belonging to a cluster of
glycoproteins involved in T-cell antigen presentation (13). Be-
cause we physically remove all hematopoietic cells using mag-
netic beads before FACS, we are confident that this differentially
expressed marker does not simply reflect contaminating cells.
This statement is supported by the presence of CD1d+ cells
within the normal-like mammary gland cell line, Comma-1Dβ. In
fact, 50% of these cells, isolated during midpregnancy, were
positive for CD1d when stained with two distinct antibodies
(Fig. S4B).
We, therefore, propose that CD1d is a genuine marker for

MaSCs and when used combined with the cell surface markers
CD24 and CD29, greatly enhances the purification of recon-
stituting cells above and beyond those cells selected based on
label retention alone and those selected based on previously
published markers. We perhaps did not exhaust all of the pos-
sibilities presented by our RNAseq data for the description of
novel MaSC markers, but our findings do support CD1d as being
a valuable component for purifying true MaSCs.
We found the proportion of CD1d+ cells (1%) within the basal

compartment to be greater than the proportion ofH2b-GFPh cells
(0.2%) in this same compartment. This observation draws to light
another drawback of relying solely on this particular label-
retaining mouse model and in the same context, relying on GFP
expression of a gene reporter mouse to identify MaSCs. The
cytokeratin K5 (Krt5), for example, although shown to be
expressed by basal-type cells, may not be expressed by all cells in
this compartment. In addition, GFP expression may also be dis-
rupted in some cells, perhaps by suppression of the transgene
promoter; alternatively, some cells could fail to shut down GFP
expression on DOX treatment. Had we only selected cells based
on GFP expression from the K5 promoter, we would not be
selecting all—or solely—those cells capable of self-renewal. This
exclusion of MaSCs has been illustrated previously, where cells
negative for a reporter GFP were able to still proliferate and re-
generate into a new gland (3), something that we also see to
a small degree with the K5tTa-H2b-GFP mouse model.
The identification of CD1d as a unique marker for this MaSC

population and the distinct transcriptome of the Cd1d MaSCs
suggest that these cells perform a function distinct from pro-
genitors and more differentiated cells. Despite their gene ex-
pression profile clustering more closely with myoepithelial cells,
they are still able to produce a new gland. It is unclear, however,
if all of the CD1d MaSCs are multipotent stem cells or if they
represent a combination of the recently described luminal and

Fig. 4. Mammary gland focused screen. (A) One by one screen; 206 shRNAs,
covering ∼56 genes, were tested. The solid line square shows the fold
change of shRNAs considered to be lethal, because GFP percent for these
cells decreased overtime, whereas the dashed line square highlights data
from shRNAs considered to show survival preferences in cells, because GFP
percent increased overtime. (B) Screen hits validation. Two new hairpins
targeting four genes selected as lethal hits from the first screen. The chart
represents results of two independent experiments. *P = 0.05 by the t test.
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myoepithelial unipotent MaSCs (23). Because we are not using
lineage tracing here, we cannot say for certain if all of the
injected CD1d MaSCs would give rise to both compartments
when allowed to repopulate the gland and if they are them-
selves the precursors to the cells that are largely responsible for
tissue maintenance.
Identifying the genes involved in maintaining a stem cell and

their self-renewing capabilities is vital to furthering our un-
derstanding of how these genes might be involved in abnormal
gland development and tumorigenesis. Our current knowledge
on this hypothesis, however, is, at best, limited; until now, it has
been difficult to segregate myoepithelial cells and MaSCs, be-
cause they share common cell surface markers and very similar
gene expression profiles (1, 24). The large number of shared
genes expressed among cells identified by standard markers
would mask any true differential patterns expressed by those
cells with self-renewing properties. CD1d MaSCs cells only be-
come divergent when the expression patterns of a relatively small
number of genes are considered, a fact that would be overlooked
if not using a more refined selection process. In addition to
improving gene profiling as a whole for this minority population,
the use of CD1d to isolate single cells for profiling could provide
clues to gene expression changes between hypothesized MaSC
states. For example, the complete loss of label-retaining cells
after pregnancy suggests that these cells have undergone a more
extensive process of cell division than in a virgin gland. However,
CD1d+ cells are still present, unaltered to some extent, and using
this marker, it would be possible to monitor gene expression
changes during pregnancy and involution.
It has been suggested that stem cells within the mammary gland

contribute in some way to the proposed notion of a cancer stem
cell. In mouse mammary tumor virus (MMTV)-Wnt1 and p53−/−

mice, for example, a preneoplastic mammary gland was seen to
have an increased number of functional MaSCs, and ectopic ex-
pression of wnt-1 enhanced the self-renewing capabilities of cells,
leading to cancers (24). CD1d itself has even been linked to breast
cancer. In one study, antibodies against CD1d, combined with anti
death receptor 5 (anti-DR5), a TNF-related apoptosis inducing
ligand (TRAIL) receptor, led to rejection of tumor growth after
injection of 4T1 tumor cells, a mouse breast cancer cell line (25),
into a syngeneic mouse fat pad (26). Whether this observation was
a result of the proposed interaction with natural killer cells or
a disruption of the ability of the cancer to self-renew remains to be
seen. The latter could be possible, because we show that the 4T1
mouse breast cancer cell line (Fig. S4C) and primary mouse breast
cells (27) (Fig. S4D) display a population of cells that is positive
for Cd1d. In humans as well, CD1d plays some unknown role.
Down-regulation of CD1d expression has been shown to correlate
with increasing metastasis in a mouse breast cancer model (28)
and disease progression in multiple myeloma (29). Our own
studies have shown that CD1d is expressed as a cell surface
marker in some but not all of the human breast cancer cell lines
tested (Fig. S4E). Those cell lines that showed CD1d+ cells were
from basal-like breast cancers; luminal-like cancer cell lines,
however, showed no CD1d+ cells.
With the ability to now purify a more homogeneous self-

renewing population of MaSCs, it is possible to delve more deeply
into the biology of these cells. We have not only appointed CD1d
as a marker of MaSCs but also used this information to draw out
gene targets for disrupting mammary gland development and
possibly, malignancies. It is also unknown yet if these specific cell
markers are a cause or effect of the ability of the cell to retain
stemness; interrupting their expression and studying the effect on
gland development and cancer are critical topics of future study.

Materials and Methods
Mice. K5tTa-H2b-GFP heterozygote mice (6) were bred, and 20-d-old pups
were checked for GFP expression using the IVIS100 in vivo imaging system

(Caliper). CD-1 female mice were purchased from Charles River. Basal-like
mouse mammary gland tumors were obtained from the transgenic mouse
mammary tumor model C3-tag (27) (a gift from Mikala Egeblad, Cold Spring
Harbor Laboratory, New York). All experiments were performed in agree-
ment with and approved by the Cold Spring Harbor Laboratory Institutional
Animal Care and Use Committee.

Two-Photon Microscopy. Mammary glands were harvested and defatted by
three rounds of acetone treatment (20 min each). Defatted mammary glands
were embedded and imaged according to previously published methods (30).
In short, experiments were performed on a high-speed multiphoton micro-
scope with integrated vibratome sectioning (TissueCyte 1000; TissueVision,
Inc.). 3D scanning of 5-mm Z-volume stacks was achieved with a microscope
objective piezo (PI E-665 LVPZT amplifier and P-725 PIFOC long-travel ob-
jective scanner), which translated the microscope objective with respect to
the sample. Each optical section was imaged as a mosaic of individual fields
of view equal to 0.83 × 0.83 mm and reconstructed posthoc using Fiji and
custom-written Matlab software.

Antibodies. Antibodies for flow cytometry were purchased from eBioscience
unless otherwise specified, and they include anti-CD24 eFluor@ 450, bio-
tinylated and PE-conjugated anti-CD45, biotinylated and phycoerythrin
(PE)-conjugated anti-CD31, biotinylated and PE-conjugated anti-Ter119, PE-
Cy7–conjugated anti-CD29, FITC- and PE-conjugated anti-CD61, antigen-
presenting cell-conjugated anti-CD133, PerCP-CY5.5– and PE-conjugated
anti-Cd1d (clones 1B1 and K253, respectively; BioLegend), PE-conjugated
anti-CD22, monoclonal CD59a (Hycult Biotech), PE-conjugated human anti-
Cd1d, 7-AAD viability staining solution (BioLegend), FITC-conjugated mouse
IgG, and PE-conjugated rabbit IgG. Antibodies for immunostaining were
chicken anti-GFP (Invitrogen), mouse monoclonal Cytokeratin 18 (SCTB), anti-
chicken–IgG-Alexa Fluor 647 (Invitrogen), and anti-mouse–IgG Alexa Fluor 568
(Invitrogen).

Mammary Gland Preparation. Mammary glands were harvested from young
female mice (6–10 wk) and dissociated according to previously published
protocol (1). After dissociation, cells were resuspended in 1 mL MACS Buffer
(Myltenyi Biotech) and incubated with biotinylated anti-CD45, anti-Ter119,
and anti-CD31 antibodies for 20 min. Cells were washed with 10 volumes
MACS Buffer and further incubated with antibiotin magnetic microbeads
(Myltenyi Biotech). Labeled cells were loaded into a magnetic column at-
tached to a magnetic field (Myltenyi Biotech), and lineage-depleted flow-
through cells were collected and further stained.

Flow Cytometry. Cells were stained for 30 min at 4 °C with antibody mix in PBS
supplemented with 1% (vol/vol) FBS followed by wash with 10× volume PBS.
Cells were resuspended in PBS plus 1% (vol/vol) FBS and further stained with
7-AAD immediately before sorting or analysis. Cells were sorted using a FACS
ARIAII SORP (BD Bioscience). For cell analysis, LRSII (BD Bioscience) cell an-
alyzer or MACSQuant (Myltenyi Biotech) were used. Data analysis was per-
formed using either FloJo (Tree Star) or Diva (BD Bioscience).

Matrigel Colony Assay. Cells were sorted into 96-well plates containing 100 μL
chilled 50% (vol/vol) Matrigel Matrix (BD Bioscience), further transferred to
100% Matrigel Precoated Chamber Slides (Lab-Tek), and incubated at 37 °C
for 5 min. Complete Growth Media (1) was added to the chamber and
renewed every other day for 10 d. Colonies were counted using Nikon
Eclipse T1 microscope (Nikon).

Mammary Gland Transplant. Cells were sorted into 96-well plates containing
30 μL 50% (vol/vol) Growth Factor Reduced Matrigel (BD Bioscience) and
0.01% (vol/vol) Tripan Blue (Sigma). Cells were injected into inguinal glands
of 3-wk-old females that had been cleared of endogenous epithelium. Re-
cipient glands were removed for evaluation 8–12 wk after cell injection.

Mammary Transplant Analysis. Frozen sections and/or agarose-embedded
sections were fixed with 4% paraformaldehyde (Sigma) for 20 min followed
by tissue permeabilization and blocking using 10% (vol/vol) goat serum
(Sigma). Paraffin-embedded sections were dewaxed and subjected to antigen
retrieval for 15 min in Trilogy buffer (Cell Marque) before blocking as de-
scribed above. Primary antibody staining was performed overnight at 4 °C
with constant agitation followed by three washes with 0.1% (vol/vol) Tween
20. Secondary antibody staining was carried out for 45 min at room tem-
perature with constant agitation followed by three washes with 0.1% (vol/
vol) Tween 20. Slides were mounted with ProLong Gold supplemented with
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DAPI (Invitrogen). For immunohistochemistry detection of GFP-positive
outgrowths, the kit Ace IHC Detection Kit (Epitomics) was used according to
the manufacturer’s instructions. Tissue sections were analyzed using either
the Nikon Eclipse T1 microscope (Nikon) or Zeiss LSM 710 confocal micro-
scope. For whole-mount images, glands were harvested, spread atop a glass
slide, defatted, and stained with Carmine Aluminum solution prior image
analysis. MRU frequency was estimated using the ELDA algorithm (10).
Mammary gland reconstitution was considered successful if, by the time
of analysis, at least one-third of the fat pad was repopulated with GFP+

structures.

RNAseq Library Preparation. Cells were sorted into Eppendorf tubesfilled with
TRIzol LS (Invitrogen), and RNA purification was performed according to
the manufacturer’s instructions. DNase-free RNA samples were used for the
preparation of double-strand cDNA libraries using the Version 1 Ovation
RNAseq System (Nugen). cDNA libraries were phosphorylated, adenylated,
and ligated to Illumina adapters followed by PCR enrichment. Single-ended
sequencing was performed for 36 cycles in Illumina GAII instruments (Illumina).

RNAseq Mapping and Analysis. We used the Refseq transcriptome (mm9
mouse assembly) downloaded through the University of California, Santa
Cruz (USCS) Table Browser (31). Reads were mapped in two stages: first, they
were mapped to sequences constructed using all annotated Refseq exons
with overlapping exons collapsed, and second, they were mapped to all
possible junctions formed from all pairs of exons for the same gene. Map-
ping was done with RMAP (32) and allowed up to three mismatches in 36
bases. Reads mapping ambiguously (including mapping to an exon and
a junction) were discarded. For each Refseq transcript, we counted the
number of reads with mapping location that was inside the transcript’s
exons (allowing a given read to be counted for two distinct transcripts as
long as the location is unique) or through one of the transcript’s junctions.
Reads per kilobase per million (RPKM) calculations discarded duplicate reads
and corrected gene size for the portion of the gene that cannot be uniquely
mapped. Differential expression between two RNAseq experiments was
computed using a 2 × 2 contingency table and either a χ2 statistic or Fisher
exact test to obtain a P value for differential expression. Briefly, the con-
tingency tables contained, for each gene, the counts of reads mapping into
the gene and the counts of reads mapping outside the gene for both
experiments. The P values were corrected for multiple testing using the
Bonferroni correction. The genes that remained were called as differentially

expressed (corrected P > 0.01), and rankings for differentially expressed
genes were based on ratios of RPKM values.

Quantitative PCR. Cells were sorted into 96-well plates containing 30 μL Cell-
To-Ct lysis buffer (Ambion). cDNA synthesis was performed according to the
manufacturer’s instruction. Real-time PCR was performed using specific
Taqman probes (Applied Biosystems) for each gene and Gapdh mRNA as an
endogenous control. Samples were run on a 7900 Real-Time PCR System
(Applied Biosystems).

BrdU Experiment. BrdU label-retaining experiments were performed using the
BrdU-APC Flow Kit (BD Bioscience); 3-wk-old female mice were injected with
BrdU (one time per day for 5 consecutive d, 50 mg/kg body weight), and
mammary glands were harvest at specified time points. Mammary gland cells
were prepared according to the BrdU manufacturer’s recommendations.
Cells were analyzed with an LSRII Cell Analyzer (BD Bioscience), and 1 million
cells were recorded per sample. For each experiment (n = 2), three glands
were analyzed at week 0 (last day of BrdU injection), and three glands were
analyzed at week 12 after BrdU injection.

Knockdown Experiment. shRNAs against 56 selected genes were pulled and
transferred frompGIPz (LMN vector) lentiviral backbone (Open Biosystems) to
MSCV-miR30-PGK-NEO-IRES-GFP retroviral backbone (a gift from Christopher
R. Vakoc, Cold Spring Harbor Laboratory, New York). Plasmid was transfected
into Plat-E cells (33) using Lipofectamine 2000 and vesicular stomatitis virus
g-protein (VSVG), and virus was collected 24 and 36 h posttransfection. Cells
were infected by spin infection and allowed 2 d for recovery. GFP levels were
measured using MACSQuant Cell analyzer (Miltenyi Biotech) from 10,000
cells. Hairpins used on validation experiments were ordered as oligonucleo-
tides from Integrated DNA Technologies (IDT) and used as the template for
PCR reactions using KOD hot-start polymerase (EMDMilipore) and the primers
5MIR (5′-CAGAAGGCTCGAGAAGGTATATTGCTGTTGACAGTGAGCG-3′) and
3MIR (5′-CTAAAGTAGCCCCTTGAATTCCGAGGCAGTAGGCA-3′). PCR products
were column-purified (Qiagen), digested with EcoRI and XhoI enzymes, and
cloned into predigested LMN vectors using T4 rapid ligase (Promega).
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Fig. S1. Characterization of H2b-GFP mammary gland label-retaining cells. Effects of doxycycline diet on K5tTa-H2b-GFP transgenic mouse mammary glands.
(A) Paraffin-embedded sections with DAPI nuclear staining and anti-GFP antibody. (B) Lineage depletion strategy. FACS analysis showing removal of PE-stained
red blood cells (Ter119+ cells), white blood cells (CD45+ cells), and endothelial cells (CD31+ cells) after magnetic bead lineage depletion. (C) H2b-GFP+ cells
gating strategy. Lin− mammary gland cells were first selected according to GFP expression (GFP− and GFP+) and further analyzed according to anti-CD24 and
anti-CD29 staining as displayed in Fig. 2. (D) FACS sorting strategy for transplantation assays. Lin− GFP chase cells, stained with 7-ADD for dead cell exclusion,
were divided based on GFP expression, H2b-GFP− mammary gland stem cells (MaSCs; CD24+CD29hGFP−), and H2b-GFPh MaSCs (CD24+CD29hGFPh) and either
transplanted into cleared fat pads of prepubescent female mice or (E) carried through to colony-forming assays.
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Fig. S2. Quantitative RT-PCR validation of mammary gland transcriptome. Lin− mammary gland cells (n = 10) were sorted into lyses buffer for quantitative
PCR using Taqman probes. Cd24 and Cd29 mRNAs were included as controls. Samples were normalized to the levels of Gapdh expression. Error bars represent
SD among replicated. *P < 0.05 by the t test.

Fig. S3. Identification of MaSC cell surface markers. (A) Heat map of cell surface markers expression across all mammary gland cell types profiled. Those cell
surface markers shown are the most abundantly expressed within the H2b-GFPh MaSCs. (B) MaSC markers colony-forming assay. Cells were sorted using Cd24+

Cd29h alone (total MaSC) or Cd24+Cd29h plus one of three markers: CD1d (CD1d MaSC), CD59a (CD59ah MaSC), or CD22 (CD22 MaSC). *Two hundred cells. (C)
Expression dendogram for the top most abundantly expressed genes across all mammary gland cells, including CD1d MaSCs and CD59ah MaSCs. (D) Repre-
sentative whole-mount images from mammary glands injected with Cd1d+ MaSCs. *Scar tissue from cell injection. (E) Representative images from paraffin-
embedded sections of Cd1d+ MaSC-injected glands stained with H&E and anti-GFP immunohistochemistry (IHC) (Left Inset). (Scale bar: 2 mm; Left Inset, 100 μm.)

dos Santos et al. www.pnas.org/cgi/content/short/1303919110 2 of 4

www.pnas.org/cgi/content/short/1303919110


Fig. S4. Mammary gland-focused screen. (A) Screen strategy scheme. Plat-E cells were transfected with shRNAs as described in Materials and Methods.
Comma-Dβ cells were infected with the virus supernatant for 20 h; 48 h postinfection, GFP percent was quantified using the MACSQuant Cell Analyzer (Miltenyi
Biotech). T0 represents the GFP percent on day 2 postinfection, and T3 represents the GFP percent on day 12 d postinfection. CD1d+ cells in mouse cell lines (B)
Comma-Dβ cells, (C) 4T1 mouse breast cancer cells, and (D) C3-tag breast cancer model primary cells. (E) CD1d+ in the human cell line MDA-MB-468.

Dataset S1. Mammary reconstitution unit (MRU) frequency in H2b-GFPh MaSC

Dataset S1

Reconstituted mammary glands harvested 12 wk postinjection of either H2b-GFPh MaSCs or H2b-GFP− MaSCs. A minimum of 25 outgrowths is required to be
considered a reconstituted gland. MRU frequency was estimated using the ELDA algorithm.

Dataset S2. Mammary gland pathway analysis

Dataset S2

Top differentially expressed genes of all mammary gland cell types were analyzed for pathway enrichment and molecular functions using Ingenuity
Pathways Analysis (Ingenuity Systems). A minimum of 50 genes per cell type was analyzed.
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Dataset S3. MRU frequency in CD1d+ MaSC

Dataset S3

Total MaSC cells (CD24+CD29h) and CD1d MaSC cells (CD24+CD29hCD1d+) were isolated from the H2b-GFP transgenic mouse off doxycycline diet (GFP pulse).
Reconstituted mammary glands harvested 12 wk postcell injection. A minimum of 25 outgrowths is required to be considered a reconstituted gland. MRU
frequency was estimated using the ELDA algorithm.
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The strength of conclusions drawn from RNAi-based studies is heavily 
influenced by the quality of tools used to elicit knockdown. Prior studies 
have developed algorithms for the design of siRNAs.  However, to date, no 
established method has emerged to identify effective shRNAs, which have 
lower intracellular abundance and undergo additional processing steps.  
We recently developed a multiplexed assay for identifying potent shRNAs 
and have used this method to generate ~250,000 shRNA efficacy data 
points. Using these data, we developed shERWOOD, an algorithm capable 
of predicting, for any shRNA, the likelihood that it will elicit potent target 
knockdown. Combined with additional shRNA design strategies, 
shERWOOD allows the ab initio identification of potent shRNAs that target, 
specifically, the majority of each gene’s multiple transcripts.  We have 
validated the performance of our shRNA designs using several orthogonal 
strategies and have constructed genome-wide collections of shRNAs for 
humans and mice based upon our approach. 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
  



Highlights 
 

• An in-depth analysis of 250,000 shRNA sequence/efficacy data-points 
identifies key sequence characteristics for predicting shRNA potency 

 
• An shRNA specific algorithm allows for significant increases in shRNA 

loss-of-function screen quality 
 

• Structure-guided strategies allow for an expanded shRNA search space 
 

• An alternative miR scaffold increases shRNA processing and potency 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
Introduction 
 
The discovery of RNAi promised a new era in which the power of genetics could 
be applied to model organisms for which large-scale studies of gene function 
were previously inconvenient or impossible (Berns et al., 2004; Brummelkamp, 
Bernards, & Agami, 2002; Chuang & Meyerowitz, 2000; Fire et al., 1998; Gupta, 
Schoer, Egan, Hannon, & Mittal, 2004; Hannon, 2002; Kamath et al., 2003; 
Kambris et al., 2006; Paddison et al., 2004; Sanchez Alvarado & Newmark, 
1999; Svoboda, Stein, Hayashi, & Schultz, 2000; Timmons & Fire, 1998; Tuschl, 
Zamore, Lehmann, Bartel, & Sharp, 1999; Zender et al., 2008). Yet, it quickly 
became clear that implementing RNAi, especially on a genome-wide scale, could 
be challenging. This was particularly true for applications in mammalian cells 
wherein discrete sequences, in the form of siRNAs or shRNAs, were used as 
silencing triggers (Brummelkamp et al., 2002; Elbashir et al., 2001; Paddison, 
Caudy, Bernstein, Hannon, & Conklin, 2002).  The overall degree of knockdown 
achieved was found to vary tremendously, depending upon the precise sequence 
of the small RNA that is loaded into the RNAi effector complex (RISC) (Chiu & 
Rana, 2002; Khvorova, Reynolds, & Jayasena, 2003; Schwarz et al., 2003). Yet, 
the nature of sequence and structural motifs that favor RISC loading and high 
turnover target cleavage has yet to be fully revealed (Ameres & Zamore, 2013).  
 
Early studies aimed at optimizing RNAi in mammals used endogenous 
microRNAs as a guide to the design of effective artificial RNAi triggers (Khvorova 
et al., 2003; Reynolds et al., 2004; Schwarz et al., 2003; Ui-Tei et al., 2004; Zeng 
& Cullen, 2003). Canonical microRNAs are processed by a two-step, nucleolytic 
mechanism (Seitz & Zamore, 2006). The initial cleavage of the primary miRNA 
transcript in the nucleus by the Microprocessor yields a short, often imperfect, 
hairpin loop, the pre-miRNA (Denli, Tops, Plasterk, Ketting, & Hannon, 2004; Lee 
et al., 2003).  This is exported to the cytoplasm where a second cleavage by 
Dicer and its associated cofactors yields a short duplex of ~19-20 nucleotides 
with 2 nucleotide 3’ overhangs (Bernstein, Caudy, Hammond, & Hannon, 2001; 
Grishok et al., 2001; Hutvagner et al., 2001; Ketting et al., 2001; Lund, Guttinger, 
Calado, Dahlberg, & Kutay, 2004; Yi, Qin, Macara, & Cullen, 2003).  This duplex 
serves as a substrate for preferential loading of one strand into Argonaute 
proteins in the context of RISC (Hammond, Boettcher, Caudy, Kobayashi, & 
Hannon, 2001; Hutvagner & Zamore, 2002; Khvorova et al., 2003; Martinez, 
Patkaniowska, Urlaub, Luhrmann, & Tuschl, 2002; Schwarz et al., 2003). 
 
An examination of the sequences of endogenous miRNAs indicated that 
thermodynamic asymmetry between the two ends of the short duplex was a 
strong predictor of which strand would be accepted by Argonaute as the “guide” 
(Khvorova et al., 2003; Schwarz et al., 2003).  The first few base pairs of native 
guide strands were generally less stable than were the terminal few base pairs. 
Note that the latter can also be considered as the more stable 5’ base pairs of 
the “passenger” strand that is not effectively loaded.  Applying this insight to 



artificial triggers, initially in the form of siRNAs, validated the generality of this 
observation, and thermodynamic asymmetry became a key guiding principle of 
both siRNA and shRNA design (Reynolds et al., 2004; Silva et al., 2005).  
Subsequent studies of the structure of the Ago-small RNA complex have also 
indicated a sequence preference for a 5’ terminal U that fits into a binding pocket 
in the mid domain of the Argonaute protein (Seitz, Ghildiyal, & Zamore, 2008; 
Wang, Sheng, Juranek, Tuschl, & Patel, 2008). 
 
In many ways, siRNAs gain entry into RISC by simulating the end product of the 
two-step miRNA processing pathway.  shRNAs, which mimic either the primary 
miRNA or pre-miRNA must be nucleolytically processed prior to RISC loading 
(Brummelkamp et al., 2002; Cullen, 2006; Paddison et al., 2002).  Therefore, 
shRNAs are likely subject to additional constraints that lead to efficient 
recognition by Drosha and Dicer.  Many transcripts can adopt structures that 
superficially resemble the short hairpin loops that give rise to miRNAs, yet only a 
tiny fraction of these efficiently give rise to small RNAs.  We do not yet 
understand the selection rules for effective flux through the miRNA biogenesis 
pathway and therefore cannot predict ab initio what transcripts will produce small 
RNAs.  However, studies of Drosha, in particular, have implicated patterns of 
conservation and base pairing in the basal stem, those regions adjacent to the 
Drosha cleavage site, as determinants of efficient pri-miRNA cleavage (Auyeung, 
Ulitsky, McGeary, & Bartel, 2013; Chen, Li, Lodish, & Bartel, 2004; Han et al., 
2006; Seitz & Zamore, 2006).  Elements within the hairpin loop have also been 
shown to have an impact both on Drosha efficiently and its site preference (Han 
et al., 2006; Zhang & Zeng, 2010).   
 
Though many factors affect the efficiency with which a small RNA will be 
generated from a longer precursor and loaded into RISC, small RNA abundance, 
per se, is clearly not the only determinant of effective silencing.  In fact, the 
overall rate of substrate cleavage by mature RISC seems to have a substantial 
impact.  Initial biochemical studies indicated that RISC might be limited by the 
product release step (Hutvagner & Zamore, 2002). In fact, Drosophila 
Argonautes have been optimized by evolution for rapid product release (Ago2) or 
slow product release (Ago1) in a manner that correlates with their acting by an 
siRNA-based cleavage mode or an miRNA-based, cleavage-independent 
repression of protein synthesis (Ameres et al., 2010; Meister, 2013; Okamura, 
Ishizuka, Siomi, & Siomi, 2004).  Moreover, in mammals, large-scale studies of 
silencing potency also point to the efficiency of mature RISC as the major 
determinant of effective repression (Fellmann et al., 2011; Reynolds et al., 2004). 
As yet, biochemical studies have not provided detailed guides to the design of 
small RNAs, which produce high RISC turnover rates. 
 
Given this constraint, several attempts have been made to extract predictive 
rules for the design of effective small RNAs from endpoint silencing data. The 
first serious attempt applied Artificial Neural Networks (ANNs) to a set of ~2,000 
paired data points associating the sequence of siRNA guides with a 



corresponding knockdown measurement (established using fluorescent 
reporters) (Huesken et al., 2005). Experience in the field supported the 
effectiveness of BIOPREDSi; however, access to the algorithm eventually 
became impossible.  The same dataset was subsequently used to produce a 
second algorithm, DSIR, which included additional input variables (the frequency 
of each nucleotide, each 2mer and each 3mer within the guide) (Vert, Foveau, 
Lajaunie, & Vandenbrouck, 2006). To accommodate this large number of 
parameters, linear modeling was performed using Lasso Regression (a form of 
linear regression that iteratively decreases the use of non-predictive variables in 
the linear model) (Tibshirani, 1995).  
 
siRNA design algorithms could be applied for the design of shRNAs, and these 
did inform the design of genome-wide shRNA collections (Berns et al., 2004; 
Paddison et al., 2004). However, the prognostic power of siRNA design 
algorithms is compromised for shRNA design.  shRNAs, expressed from RNA 
polII or polIII promoters, reach lower intracellular concentrations than do 
transfected, synthetic siRNAs (Berns et al., 2004; Paddison et al., 2004).  
Moreover, shRNAs have additional constraints for effective processing.  
Therefore, it was imperative that shRNA-specific algorithms be developed. 
 
The generation of accurate siRNA design algorithms was only made possible 
with the creation of large training datasets. Thus far, a corresponding shRNA 
dataset has been lacking. Recently, we developed a “sensor” method that allows 
for the parallel assessment of shRNA potencies on a massive scale (Fellmann et 
al., 2011). Using the sensor approach, we interrogated ~250,000 shRNAs for 
their effectiveness in the reporter setting.  We have used this dataset to train a 
machine-learning algorithm for potent shRNA prediction.  We have tested this 
algorithm, which we term, shERWOOD, both at the level of individual shRNAs 
and at the level of optimized shRNA mini-libraries.  We have demonstrated that 
by applying computational shRNA selection in combination with novel target 
selection heuristics and with an optimized microRNA scaffold, we are able to 
create highly potent shRNAs.  We have build upon this result to design and 
construct next-generation shRNA libraries targeting the constitutive exomes of 
mice and humans.  Predictions for other organisms and custom shRNA designs 
are also made available via a web-based version of shERWOOD. 
  



Results 
 
Neighboring Positions of the Target Sequence are Predictive of ShRNA 
Strength 
 
As a prelude to creating an shRNA design algorithm, it was necessary to 
generate a large “sensor” dataset in which shRNA potency was measured and 
associated with sequence information.  To perform the assay, we synthesized 
constructs that include a doxycycline inducible shRNA and a GFP-tagged shRNA 
target sequence located downstream of a constitutive promoter (Fellmann et al., 
2011). Libraries of ~25K constructs were packaged and infected (at single copy) 
into a reporter cell line. In the absence of doxycycline, GFP was detectable in 
each cell. However, in the presence of doxycycline the shRNAs became 
expressed and the resultant GFP signal was reduced in a manner proportional to 
shRNA potency. Using Florescence Activated Cell Sorting (FACS), cells with low 
GFP levels, in the presence of drug, were gathered and analyzed via NGS to 
determine which shRNAs became enriched (i.e. which shRNAs have high 
potency). Operating iterative cycles of this assay has been shown to identify 
extremely potent constructs (Fellmann et al., 2011). 
 
We next wished to extract what variables (sequence characteristics) were most 
predictive of shRNA efficacy. This subset of characteristics could then be 
employed as inputs during machine learning. First, we calculated, for each of the 
~250, 000 shRNAs tested via the sensor, a potency measurement. To define this 
measurement we constructed a matrix wherein rows correspond to shRNAs and 
columns represents the enrichment level of each shRNA at each iteration of the 
sensor (with respect to the initially infected shRNA population). From this matrix, 
the first principal components were extracted and averaged across replicates to 
give a final potency measurement.  These values accurately capture the 
enrichment pattern of individual iterations of the sensor in one single value, thus 
allowing downstream machine learning to proceed more easily (Fig. 1A). 
Analysis of the coefficients used for principal component extraction shows that 
information from the final sensor iteration contributes the most to the final 
potency value, however information from the second iteration is also included, 
(Fig. S1A). 
 
To distinguish discretely between strong and weak shRNAs, we applied an 
Empirical-Bayes Moderated T-Test to the replicate potency measurements for 
each shRNA. This allowed us to classify shRNAs as being either potent or weak 
(FDR < 0.05), which, in turn, allowed for standard statistical techniques to be 
employed to assess how various sequence characteristics stratified the two 
shRNA classes. To test individual nucleotide positions for their predictive 
capacity, we compared, at each position in the target sequence, each 
nucleotide’s enrichment and or depletion levels in the potent shRNAs with 
respect to the weak shRNAs (binomial-test p-value < 0.05). This task was 
performed separately for twelve non-overlapping sets of ~25K shRNAs that were 



analyzed separately via the sensor assay. The results from a representative 
analysis is shown in Figure 1B, and the reproducibility of results across all sets 
can be seen in Figure S1B. In general, low GC content in the nucleotides flanking 
the shRNA target site is predictive of high efficacy. This is also the case within 
the target region, with the exception of the third nucleotide, which shows a strong 
selection for cytosine. Also of note is a lack of enrichment for thymidine at the 
22nd position of the target (corresponding to the first position of the guide). This 
bias arose because the majority of our input datasets were derived from shRNAs 
pre-selected by DSIR.  Examination of unbiased sets of tiled shRNAs does not 
show a similar bias. 
 
We next tested whether any pairs of positions within the target sequence had 
predictive capacity for shRNA strength, beyond that achieved by summing their 
individual predictive power. To calculate a measurement for each position pair, 
we applied linear regression to identify nucleotide combinations with synergistic 
predictive capacity (p-value < 0.05; see Supplemental Methods). Following this, 
each position-pair was assigned a value equal to the sum of nucleotide 
combinations that were predictive of shRNA potency when assessed at the two 
positions. Figure 1C shows the relative predictive power of position-pairs when 
all data is combined (for a corresponding analysis of the twelve shRNA subsets, 
see Figure S1C). For a given position within the target, the most predictive 
partner is the neighboring nucleotide. An exception to this trend is observed in 
the positions corresponding to the shRNA guide seed, where predictive position-
pairs are also observed in nucleotides separated by up to four bases. 
 
Finally, we wished to determine if triplets of positions showed a similar trend to 
that observed in the pair-wise analysis. For this, we performed a modified version 
of the linear regression tests described above, where triplets instead of pairs of 
nucleotides were assessed for synergistic predictive capacity. Figure 1D 
demonstrates that, as with the pairwise analysis, neighboring triplets of positions 
within the target show strong predictive power as compared to triplets of non-
neighboring positions. Also, as with the pairwise analysis, the distance between 
predictive triplets is extended slightly in the guide seed region of the shRNA.  
 
A Sensor-Based Computational Algorithm to Predict shRNA Efficacy 
 
Since sequence-based characteristics correlated with shRNA efficiency, we 
sought to apply machine learning to the sensor-derived efficacy measurements.  
The goal was to develop a computational algorithm that would predict, for any 
target sequence, the potency of a corresponding shRNA. We reasoned that the 
best machine-learning tool to apply to this task was Random Forest Regression 
Analysis. The reasons for this decision were two-fold. First, there is no decrease 
in the accuracy of Random Forests when the number of input variables is large. 
Second, the architecture of the algorithm takes into account increases in 
accuracy that can be achieved by analyzing combinations of input variables.  
 



Our training dataset was of two distinct types.  One comprised an unbiased set of 
shRNAs that tiled every nucleotide of 9 genes (Fellmann et al., 2011).  A second 
comprised a larger set of shRNAs corresponding to ~18,000 genes and 
representing the top 12 DSIR predictions for those genes.  We therefore chose to 
separate data corresponding to each input class and to train separate forests.  
We also chose to separate data based upon the 5’ nucleotide of the guide.  This 
was done for two reasons.  First, previous studies, supported by structural 
insights, had suggested that the 5’ nucleotide of the guide was a prominent 
determinant of small RNA potency (Fellmann et al., 2011; Frank, Sonenberg, & 
Nagar, 2010; Khvorova et al., 2003; Reynolds et al., 2004).  Therefore training 
forests individually for shRNAs initiating with each base focused the prediction 
process on additional determinants.  Moreover, the DSIR-based predictions were 
already heavily biased toward U and A at the 5’ position.  In fact, the bias was so 
strong that we did not have sufficient data to train 5’C and 5’G forests for these 
datasets.  This meant that, in the first pass, we trained six independent modules. 
 
In each module, input data were composed of individual base information as well 
as all neighboring pairs of bases throughout the guide sequence. In addition, the 
set of triplet-position/nucleotide-combinations found to be predictive, as assessed 
by linear regression, were also included (Figure 1D). To consolidate these 
modules, a second-tier random forest was trained using the first tier outputs, the 
corresponding shRNA-guide 5’ base information, and a set of thermodynamic 
properties extracted from each shRNA (e.g. enthalpy, entropy). See Figure S2A 
for a schematic representation of the algorithm and Table S1 for the list of 
thermodynamic properties included during training.  We name the compiled 
algorithm, shERWOOD. 
 
To test the prognostic power of shERWOOD, we took advantage of the unbiased 
nature of the tiled shRNA sensor data (Fellmann et al., 2011) (Fig. 2A).  For each 
of the 9 genes represented, we independently trained a shERWOOD algorithm 
without the data corresponding to that gene.   We could then test shERWOOD 
performance against experimental data in a manner that was not skewed by the 
use of that data for training.  We saw an overall Pearson correlation of 0.72 
between experimentally derived potency measurements and computational 
predictions, with the prediction separated according to the first base of the guide. 
When we consider only shRNAs with a 5’ U, the correlation rises to 0.78, likely 
due to the greater number of data point available for training that algorithm.  For 
comparison, DSIR achieves a correlation of 0.4 and a prior shRNA prediction 
algorithm trained on a subset of the sensor data used in this study achieves 0.56 
(Matveeva, Nazipova, Ogurtsov, & Shabalina, 2012; Vert et al., 2006). This 
indicates that shERWOOD achieves a roughly 180% increase in performance 
over currently existing siRNA prediction algorithms and a 126% increase in 
efficacy over existing shRNA specific prediction algorithms.  
 
We have supplemented shERWOOD with additional heuristics to maximize the 
probability of successfully reducing protein levels in most cell and tissue types.  



The complex nature of alternative splicing patterns provided a strong motivation 
for directing shRNAs against constitutive exons.  We therefore developed a 
strategy that iteratively searches for regions within a gene that are shared by at 
least 80% of transcripts (see Supplemental Methods).  This algorithm also tests 
whether high potency shRNAs have the potential to co-suppress paralogous 
genes, in order to minimize such off target effects.  Considered together, these 
strategies have the potential to maximize the probability of biologically 
meaningful results from studies using shRNAs. 
 
Benchmarking shERWOOD 
 
To assess the performance of the shERWOOD algorithm, we felt that it was 
necessary to test a large number of shRNAs for their biological effects, as one 
can find anecdotal evidence for excellent performance for nearly any algorithm or 
strategy.  We therefore chose ~2,200 genes based upon their enrichment in gene 
ontology (GO) categories likely to impact the growth and survival of cells in 
culture (Fig. 2B).  As controls, particularly for the likelihood of off-target effects, 
we included 400 olfactory receptor genes.  Olfactory receptors are expressed 
only in olfactory neurons, and even then, they display allelic choice so that only 
one paralog is expressed per cell.  Thus, shRNAs targeting olfactory receptors 
are highly unlikely to have relevant, on-target biological effects in any cell line 
screened in vitro.  To benchmark the performance of shERWOOD, we compared 
a focused, mini-library predicted with this algorithm to two widely used genome-
wide collections, namely the TRC collection distributed by Sigma-Genosys and 
the so-called Hannon-Elledge v3 library distributed presently by Thermo-Fisher 
(Chang et al., unpublished).  To produce the shERWOOD-based library and a 
deeper simulation of the v3 library, we used either shERWOOD or DSIR to 
predict their top 10 scoring shRNAs for our test genes.  The sequences of TRC 
shRNAs are listed on a public web portal and we selected all listed shRNAs for 
each gene.  In the case of TRC shRNAs, it was necessary to adapt them to a 
22bp stem for placement into the miR-30 context.   
 
For each test library, we synthesized 27,000 oligonucleotides in solid phase on 
microarrays (Cleary et al., 2004).  These were cleaved, amplified, and cloned 
directly into a miR-30 scaffold within an MSCV-based retroviral vector without 
sequence validation. In this arrangement, the primary shRNA was transcribed 
from the LTR promoter while GFP and Neomycin resistance were separately 
expressed as a bicistronic transcription unit from the Phosphoglycerate Kinase 
promoter (PGK; Fig. S2D). Pilot sequencing showed that each library was of 
similar quality and representation. 
 
Each library was infected separately into the pancreatic ductal adenocarcinoma 
cell line, A385. Two days after infection, cells were collected for a reference time-
point, and after ~12 doublings cells were again harvested for a final time-point 
(see Supplemental Methods).  shRNA representation was determined following 
amplification of hairpin inserts from genomic DNA (Sims et al., 2011), and after 



processing, shRNA read counts were compared between the initial and final 
time-points. Corresponding log-fold changes were normalized to remove GC bias 
(see Supplemental Figure S2E,F and Supplemental Methods). Normalized log-
ratios were then analyzed using an Empirical-Bayes Moderated-T-Test to call 
significantly enriched and depleted shRNAs (FDR<0.05; Figure S2G).  
 
To enable direct comparisons between libraries, we censored the shERWOOD 
and DSIR-based libraries on a per gene basis to contain the same number of 
hairpins as were available in the TRC library, keeping those with the best 
algorithmic scores.  We then selected the consensus set of “essential” genes, 
accepting only those where at least two hairpins in each library passed the 
statistical threshold (FDR<0.05).  As expected, the resulting set of genes that 
were important for the growth and survival of A385 were strongly depleted of 
olfactory receptor shRNAs (Fig. 2C).  An inspection of the olfactory shRNAs that 
depleted found them to be common to all libraries. None mapped to any 
alternative genomic locations. In contrast, the set of consensus essential genes 
was enriched for GO terms associated with translation and replication.  
 
To benchmark shRNA selection strategies against each other, we determined the 
percentage of shRNAs in each mini-library that scored for each consensus 
essential gene.  For the TRC library 22% of shRNAs achieved significant 
depletion, whereas 26% of DSIR-predicted sequences and 31% of shERWOOD-
based hairpins scored (Fig. 2D).  We also considered performance from the 
perspective of median log-fold depletion.  For the TRC collection the average log-
fold change was -0.08; for DSIR this rose to -0.11, and it increased further to -
0.14 for shERWOOD shRNAs (Fig. 2E).  We note that this type of analysis favors 
slightly the library with the weakest overall shRNAs, since it will be this collection 
that sets entry criteria for the consensus essential gene set. 
 
To assess whether shERWOOD scores were a proxy for shRNA potency, we 
examined the relationship between shERWOOD score and the probability of 
being significantly depleted for each consensus essential gene.  For this, we 
analyzed all 10 shERWOOD predictions using a sliding scale of shERWOOD 
score cut-offs (Fig. 2F).  As examples, considering shRNAs with a score greater 
than 0.5, the likelihood that an shRNA will be depleted if it targets one of our 
consensus essential genes is 33%. This rises to 39% for shRNAs with a score 
greater than 1. Again, this underestimates the information content of 
shERWOOD scores since in the cumulative plot shown, the minimum number of 
scoring hairpins for a given gene irrespective of scores is 2 (i.e., 20%).   
 
Considered together, these data demonstrate that the use of shERWOOD can 
maximize the probability of obtaining potent shRNAs, increasing the number of 
hairpins that are called significant for any given gene and increasing also the 
penetrance of resulting phenotypes.  By selecting hairpins with the highest 
shERWOOD scores, one can both increase confidence in the results of large-



scale screens and maximize the probability that a given hairpin will effectively 
silence its target and produce a phenotype in validation studies. 
 
Structure-guided insights expand the shRNA prediction space 
 
Regardless of the accuracy of predictive models, we sometimes found it difficult 
to identify potent shRNAs due to search space restrictions imposed by sequence 
constraints (e.g. GC content), gene length, or the complexity of alternative 
splicing patterns.  We therefore sought ways to expand the sequence space to 
which we could apply the shERWOOD approach.  Analysis of miRNA seed 
sequences as well as other data have suggested that the first base of the small 
RNA guide does not pair with its target (Lai, 2002; Lewis, Burge, & Bartel, 2005; 
Yuan, Pei, Chen, Tuschl, & Patel, 2006).  Structural studies have supported this 
hypothesis by showing that the first base of the guide is tightly bound within a 
pocket in the mid domain of Ago proteins (Fig. S3A) (Elkayam et al., 2012; Frank 
et al., 2010; Nakanishi, Weinberg, Bartel, & Patel, 2012; Wang et al., 2008).  
Moreover, there is a clear structural basis for the U preference at this site.  Since 
the first base of the guide is a strong contributor to shRNA efficacy, we reasoned 
that we could expand the range of possible effective shRNAs by simply changing 
the first base of all potential guides to a U, promoting their binding to RISC and 
theoretically not altering target site choice. We will henceforth refer to this as the 
1U-strategy. A simulated construction of a human genome-wide shRNA library 
demonstrates that, when this strategy is implemented, predicted shRNA-
potencies increase dramatically, particularly for short GC rich genes (Fig. S3B).  
 
To test the 1U-strategy in a high-throughput manner, we constructed a sensor 
library where the top 15 shRNAs targeting a set of ~2000 “druggable” genes 
were predicted using the canonical genome or the 1U-strategy. The constructs 
were designed such that the shRNAs contained the 1U-conversion and the target 
sites contained the endogenous base. shRNA potencies were extracted as 
described for Figure 1, and these are plotted in Figure 3A along with the mean 
potencies of a set of weak, fair, good and very good shRNA controls (with mean 
knockdown efficiencies of 25%, 50%, 75% and >90%, respectively). The 
distribution indicates that ~50% of the shRNAs were strong or very strong 
(knockdown efficiency >75%).  When shRNAs were separated into native and 
artificial 1U sets and the score distributions were plotted, we were surprised to 
see a significant reduction in the efficacy of the non-native-1U shRNAs (p-value < 
0.01).  This was strongly suggestive that RISC interacts not only with the 1U of 
the guide but also with the first base of the target site.   
 
We therefore stratified 1U shRNAs into four sets based on their endogenous 5’ 
nucleotide (Fig. 3C). This analysis indicated that only a subset of shRNAs 
perform well when a 1U-switch is made (based on the bi-modal distributions for 
endogenous 1A, 1C and 1G shRNAs), but the subset that do perform well are 
predicted to be quite efficacious by the sensor assay. This bimodal distribution is 
not observed for shERWOOD-selected endogenous 1U shRNAs and we see that 



the majority of this shRNA class are efficient (75% have sensor scores higher 
than the “good” shRNA controls).  
 
Given these results, we sought to determine whether we could predict those 
sequences for which a 1U conversion would result in a highly effective shRNA. 
We fit a Gaussian-mixture model to the sensor scores (Fig. S3C) and applied this 
model to assign shRNAs into one of the two resultant populations (Fig. S3D). 
Following clustering, we applied a binomial test separately for shRNAs where the 
endogenous base was 1A, 1C, 1G and 1U to determine if any nucleotides were 
enriched/depleted in the strong shRNAs with respect to weak shRNAs.  As can 
be seen in Figure 3F, all sets show a strong enrichment for U in the target region 
corresponding to the shRNA guide positions 3, 7 and 8. There is also a strong 
selection for Cs in the target region corresponding position 19 of the endogenous 
1A, 1C and 1G shRNA guides.   
 
These results prompted us to develop a computational algorithm that could both 
select the strongest endogenous 1U shRNAs and identify which endogenous 1C, 
1G and 1A shRNAs were likely to yield potent 1U-converted molecules. Data 
points for which the mixed-Gaussian clustering resulting in less than a 70% 
confidence group assignment were censored (Fig. S3E). We trained a random 
forest using the 22 nucleotides of the endogenous base as well as all 
neighboring pairs of nucleotides as input and the corresponding 1U-conversion 
sensor scores as output. The algorithm was able to achieve 80% specificity while 
maintaining 50% sensitivity. Notably, we were able to increase the specificity to 
85% through the supplemental application of previously reported rules for shRNA 
selection (Fig. 3E)(Fellmann et al., 2011; Matveeva et al., 2012). 
 
To validate this addition to the shERWOOD algorithm, we performed an shRNA 
screen as described above, wherein shRNAs were selected with the 1U-strategy 
with or without applying the additional filter. We also applied the new variant of 
the algorithm to shRNA screen described for Figure 2. We found that when 
additional filters were applied to the 1U strategy, shRNAs targeting our set of 
consensus essential genes showed a significantly higher percentage of depleted 
shRNAs per gene (p<0.01) and a stronger mean depletion as measured by log 
ratio (p<0.01; Fig. 3F). 
 
A variant miRNA scaffold increases shRNA potency 
 
Studies of evolutionarily conserved determinants of Drosha processing raised the 
possibility that the placement of the EcoRI site in the standard miR-30 scaffold 
might have reduced the efficiency of pri-miRNA cleavage (Auyeung et al., 2013).  
Others have reported that alternatively positioning the EcoRI site within the 
scaffold increases small RNA levels, presumably by improving biogenesis. This 
led to overall more potent knockdown (Fellmann et al., 2013).  We therefore 
chose to create shRNAs by Gibson assembly, thus removing restriction sites 
altogether from the shRNA scaffold.  We felt that this was the safest way to avoid 



any unanticipated impacts of altering processing signals (Fig. 4A).  In addition, 
based on the rates at which intermediate substrates are transformed into E. coli, 
library transfer via the Gibson assembly is roughly 10-fold more efficient than 
with traditional cloning methods. We termed this scaffold, ultramiR. 
 
To test ultramiR performance, we inserted two shRNAs, targeting luciferase or 
mouse RPA3, into the standard scaffold and into ultramiR.  These constructs 
were packaged and infected in duplicate (MOI < 0.3) into the modified DF1 
fibroblast cell line (Gallus gallus) that we employ as a reporter line for the sensor 
screen (Fellmann et al., 2011).  Following selection for singly infected cells, we 
analyzed levels of mature shRNAs by small RNA sequencing (Malone, 
Brennecke, Czech, Aravin, & Hannon, 2012). shRNA guide counts were 
normalized across libraries by determining their log-fold enrichment relative to 
the median count of the ten most highly expressed microRNAs. A comparison of 
the normalized shRNA values indicated that, when shRNAs were placed into the 
ultramiR scaffold, mature small RNA levels were significantly increased relative 
to levels observed using the standard miR-30 scaffold (roughly two-fold; Fig. 4B). 
Notably, the performance of ultramiR and the previously described alternate 
scaffold, miR-E, were indistinguishable (not shown).  
 
To provide a more rigorous test of ultramiR performance, we created a variant of 
shERWOOD-selected 1U-strategy shRNA library, as described above, and 
compared its performance to that of the same library in the standard scaffold. 
Considering the consensus essential gene set, nearly half of all shRNAs in the 
library were significantly depleted (Fig. 4C).  This substantial improvement (from 
38% to 47%, p<0.01) was accompanied by a greater degree of mean log-fold 
depletion for each construct (from -0.13 to -0.18, p<0.01).   
 
We also tested a limited number of individual shRNAs for their potency by target 
knockdown.  We selected the four shRNAs with the highest shERWOOD scores 
for mouse Mgp, Serpine2 SerpinE2 and Slpi.  These were cloned into an MSCV-
based ultramiR vector wherein hygromycin resistance and mCherry were also 
expressed as a bicistronic transcript from the PGK promoter.  Mouse 4T1 cells 
were infected at single copy and knockdown was tested following selection of 
infected cells.  Every one of the shRNAs tested reduced target mRNA levels by 
over 80%, and the vast majority reduced target mRNA levels by more than 90% 
(Fig. 4D).  Considered together, our data indicate that the combined use of 
shERWOOD and the ultramiR scaffold consistently produces highly potent 
shRNAs. 
 
 
  



Discussion 
 
The application of RNAi in mammalian cells promised a revolution in 
understanding gene function and in the discovery and validation of therapeutic 
targets.  While the impact of RNAi has been enormous, there have also been 
substantial frustrations in attempts to fully realize the potential of this technology.  
Many different sequences often need to be tested in order to obtain one that 
potently suppresses expression, a problem that is particularly acute with shRNAs 
expressed from single-copy transgenes.  This, and the resulting variability in the 
quality of publicly available genome-wide shRNA collections, has caused 
consternation, particularly when very similar shRNA screens carried out by 
different investigators yield largely non-overlapping results (Babij et al., 2011; 
Luo et al., 2009; Scholl et al., 2009). We have tried to address problems with 
current shRNA technologies both by optimizing target sequence choice and by 
optimizing small RNA production.   
 
We have leveraged our prior development of a high-throughput assay for testing 
shRNA potency to develop a computational algorithm capable of accurately 
predicting the outcome of the sensor screen and in turn predicting potentially 
potent shRNAs.   Though iterative cycles of training and refinement, we have 
produced a tool that permits highly efficacious shRNAs to be generated for nearly 
any gene.   
 
We have validated the performance of our approach and benchmarked it against 
current tools using non-sequence verified, focused shRNA libraries. Based upon 
our analyses, we can now generate shRNA libraries where nearly 60% of all 
hairpins targeting essential genes are strongly depleted in multiplexed screens.  
This means that for any library containing on average 4 hairpins per gene, most 
bona fide hits will be identified by multiple hairpins, greatly reducing the 
probability of false-positive calls.  Since our libraries were used in their raw form, 
we feel that this is a lower boundary of performance, since sequence-validated 
and arrayed collections will not contain a mixture of shRNA variants generated by 
synthesis and PCR errors.  
 
 Given the promise of our approach, we have undertaken the construction of 
fourth- and fifth-generation, sequence-verified shRNA libraries targeting the 
mouse and human genomes.  The fourth generation toolkit takes advantage of 
shERWOOD in a canonical miR-30 scaffold and currently comprises over 75,000 
shRNAs targeting human genes and 40,000 shRNAs targeting mouse genes.   
The fifth generation toolkit places shERWOOD shRNAs in the ultramiR scaffold 
and is presently ~50% complete.   
 
We have predicted shERWOOD shRNAs targeting constitutive exons of 
annotated mouse and human protein coding genes, and these are available via a 
web portal.  We have also broadened predictions to rat, Drosophila, and canine 
genes.  We have additionally made shERWOOD available as a web-based tool 



for custom shRNA prediction, for example for the design of shRNAs for other 
model organisms or for specific mRNA isoforms or non-coding RNAs.   
 
Overall, we feel that the combination of improvements to shRNA technologies 
described herein creates a next-generation RNAi toolkit that will produce more 
reliable outcomes for investigators, whether applied on a gene-by-gene basis or 
in the context of unbiased, genome-wide screens. 
 
Experimental Procedures 
 
Vectors and Library Construction 
 
The vector used for the sensor assay was the same as reported in (Fellmann et 
al., 2011). All RNAi screens and small RNA cloning experiments were performed 
with an MSCV-based retroviral vector harboring a bi-cistronic transcript (eGFP-
IRES-Neomycin) downstream of the PGK promoter. Single target knockdown 
experiments were performed with a similar vector where Neomycin is replaced 
with Hygromycin and eGFP is replaced with mCHERRY.  
 
To ensure high complexity end products, all shRNA libraries were amplified from 
16 separate 1 ul 100 uM aliquots of input material using 22 PCR cycles. All 
transformations of were performed with Invitrogen’s MegaX DH10B T1 
Electrocomp cells using a Biorad Gene Pulser Xcell and Biorad Gene Pulser 
1mm cuvettes for electroporation. For each library a minimum of 5M successfully 
transformed cells were obtained.  
 
Cell Lines 
 
The sensor algorithm was performed using ERC cells (derived from DF-1 chicken 
embryonic fibroblasts (Fellmann et al., 2011). All shRNA screens were performed 
in the pancreatic adenocarcinoma cell line A385 (Cui et al., 2012). All small RNA 
cloning was performed in the ERC cell line.  Individual shRNA knockdown 
experiments were performed in the 4T1 murine mammary cancer cell line (Dexter 
et al., 1978).  
 
Library Preparation for High-Throughput Sequencing.  
 
Sensor assays and RNAi screen preparation involved a two-step PCR process. 
For the first step (to maximize library complexity) ~200 ug of genomic DNA was 
PCRed using primers that were fully complementary to regions flanking the 
shRNA.  These PCRs were performed in 96 well plates with 2 ug input material in 
each well. The second PCR step involved addition of illumina adapter 
sequences. One primer was composed of illumina’s P5 sequence followed by a 
small insert and then the shRNA loop. The small insert was designed such that it 
in combination with the shRNA loop had the same GC content and melting 
temperature as Illuminas SBS3 sequencing primer. The other primer contained 



Illumina’s P7 sequence and then a region complementary to the PGK promoter. 
For each PCR step 25 cycles were performed.  
All small RNA cloning libraries were constructed using Illumina’s small RNA 
cloning kit. 
 
The twelve DSIR based sensor experiments were sequenced on Illumina’s GAII 
High-Throughput sequencing system. The shERWOOD sensor assay and all 
RNAi screens were sequenced on an Illumina Hi-Seq High Throughput 
sequencing system. Small RNA sequencing was performed on an Illumina Mi-
Seq High Throughput sequencing system. 
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Figure Legends 
 
Figure 1. Identification of Sequence Characteristics Predictive of shRNA 
Efficacy A) shRNA score determination via sensor NGS data. On the left is a 
heatmap representation of normalized shRNA read counts for each on-dox 
sensor sort. The right panel represents shRNA potencies, calculated by 
extracting the first principal component of the left panel matrix.  B) A nucleotide 
logo representing enriched (top) and depleted (bottom) nucleotides (p-value < 
0.05) in potent shRNAs. C) A heatmap demonstrating the predictive capacity 
(with respect to shRNA potency) of each pair of positions within the target region. 
Heatmap cells are colored to represent the number of nucleotide combinations 
that were significantly predictive (p-value <0.05), at each position-pair. D) The 
predictive capacity of each triplet of positions within the target region. Data-point 
colors and sizes represent the number of nucleotide triplets that were 
significantly predictive (p-value <0.05) at each position-triplet. 
 
Figure 2. Construction and Validation of an shRNA-specific Predictive 
Algorithm A) Consolidated cross validation of predictions vs. sensor-scores for 
all shRNAs in the Fellmann et al. dataset (shRNAs are separated by the guide 5’ 
nucleotide). B) GO-term instances associated with the targeted gene set 
selected for shRNA validation screens.  C) GO-term instances associated with 
genes for which at least two hairpins significantly depleted in each of the TRC, 
Hannon-Elledge (HE) and shERWOOD (SW) validation screens D) The 
percentage of shRNAs targeting consensus essential genes that depleted in 
each of the TRC, HE and shERWOOD shRNA screens. E) Average log-fold 
change for shRNAs targeting consensus essential genes (per gene) for each of 
the TRC, EH and shERWOOD validation screens. F) The percentage of shRNAs 
corresponding to consensus essential genes that, for any given shERWOOD 
score, depleted in the shERWOOD validation screen. e.g., on average, ~34% of 
shERWOOD selected shRNAs with a score of 0.5 or greater depleted. 
 
Figure 3. Structure-guided Maximization of shRNA-Prediction Space A) 
Histogram of sensor scores for the top fifteen shRNAs, as identified by the 
shERWOOD-1U strategy, targeting ~2000 “druggable” genes. Overlaid are the 
mean sensor scores for control shRNAs representing poor, medium, potent and 
very potent shRNAs (with mean knockdown efficiencies of 25%, 50%, 75% and 
>90%, respectively).  B) The distribution of shERWOOD-1U prediction scores for 
shRNAs where endogenous 1U-shRNAs are separated from endogenous non-
1U-shRNAs. Sensor scores for endogenous 1U- and non-1U-shRNAS are 
displayed on the left. C) Distribution of sensor scores for shERWOOD-1U-
selected shRNAs, separated by endogenous guide 5’ nucleotides. D) A 
nucleotide logo representing enriched (top) and depleted (bottom) nucleotides (p-
value < 0.05) in potent shERWOOD-1U-selected shRNAs (separated by 
endogenous guide 5’ nucleotides). E) The distribution of sensor scores for 
shRNAs classified as weak and potent by a random forest classifier trained on 
the shERWOO-1U sensor data. F) The distributions of the percentage of 



shERWOOD- and shERWOOD-1U-selected shRNAs targeting consensus 
essential genes that depleted in validation screens (left).  In addition normalized 
log-fold changes of shRNAs, identified under each selection scheme, are 
displayed (right). 
 
Figure 4. Validation of an Alternative Mir Scaffold A) Schematic 
representation of the cloning schemes for traditional miR30 and ultramiR shRNA 
scaffolds. B) Relative abundances of processed guide sequences for two 
shRNAs (as determined via small RNA cloning + NGS analysis) when cloned into 
traditional miR30 and ultramiR scaffolds. Values represent the log-fold 
enrichment of shRNA guides with respect to sequences corresponding to the  ten 
most abundant microRNAs. C) Distributions of the percentage of shHERWOOD-
1U-selected shRNAs targeting consensus essential genes that depleted in 
validation screens when shRNAs were placed into miR30 and ultramiR scaffolds. 
Log-fold changes for the same constructs are displayed on the left. D) 
Knockdown efficiencies for twelve shERWOOD-1U selected shRNAs cloned into 
the ultramiR scaffold. Four shRNAs were selected for three genes, as indicated. 
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