
© 2014 Carnegie Mellon University

Efficient Verification of

Periodic Programs Using

Sequential Consistency and

Snapshots

Sagar Chaki, Arie Gurfinkel, Nishant Sinha
October 24, 2014

FMCAD’14, Lausanne, Switzerland

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
24 OCT 2014

2. REPORT TYPE
N/A

3. DATES COVERED

4. TITLE AND SUBTITLE
Efficient Verification of Periodic Programs Using Sequential Consistency
and Snapshots

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)
Chaki /Sagar

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Software Engineering Institute Carnegie Mellon University Pittsburgh,
PA 15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release, distribution unlimited.

13. SUPPLEMENTARY NOTES
The original document contains color images.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

SAR

18. NUMBER
OF PAGES

23

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

2

Efficient Verification of Periodic Programs

Sagar Chaki, October 24, 2014

© 2014 Carnegie Mellon University

Copyright 2014 Carnegie Mellon University

This material is based upon work funded and supported by the Department of Defense under Contract No. FA8721-

05-C-0003 with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded

research and development center.

Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s)

and do not necessarily reflect the views of the United States Department of Defense.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS

FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND,

EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS

FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL.

CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM

FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

This material has been approved for public release and unlimited distribution except as restricted below.

This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic

form without requesting formal permission. Permission is required for any other use. Requests for permission

should be directed to the Software Engineering Institute at permission@sei.cmu.edu.

DM-0001817

3

Efficient Verification of Periodic Programs

Sagar Chaki, October 24, 2014

© 2014 Carnegie Mellon University

Outline

• Context

• Periodic Programs

• Time-Bounded Verification

• Verification Condition Generation

• Hierarchical Lamport Clocks

• Snapshotting

• Experimental Results

• Related Work

4

Efficient Verification of Periodic Programs

Sagar Chaki, October 24, 2014

© 2014 Carnegie Mellon University

Periodic Embedded Real-Time Software

Automotive System

Rate Monotonic Scheduling (RMS)

Task Period

Engine control 10ms

Airbag 40ms

Braking 40ms

Cruise Control 50ms

Collision Detection 50ms

Entertainment 80ms

Domains: Avionics, Automotive

OS: OSEK, VxWorks, RTEMS

We call them periodic programs

5

Efficient Verification of Periodic Programs

Sagar Chaki, October 24, 2014

© 2014 Carnegie Mellon University

Time-Bounded Verification [FMCAD’11&’14, VMCAI’13]

Input: Periodic Program

• Collection of periodic tasks

• Execute concurrently with preemptive priority-based scheduling

• Priorities respect RMS

• Communicate through shared memory

Problem: Time-Bounded Verification

• Assertion A violated within X ms of a system’s execution from initial state I?

• A, X , I are user specified

• Time bounds map naturally to program’s functionality (e.g., air bags)

Solution: Bounded Model Checking

• Generate Verification Condition (SMT Formula over Bit-Vectors)

• Use SMT Solver to check satisfiability

Main focus of

this paper

6

Efficient Verification of Periodic Programs

Sagar Chaki, October 24, 2014

© 2014 Carnegie Mellon University

Periodic Program (PP)

An N-task periodic program PP is a set of tasks {1, …, N}

A task  is a tuple 〈𝐼, 𝑇, 𝑃, 𝐶, 𝐴〉, where

• 𝐼 is a task identifier = its priority

• 𝑇 is a task body (i.e., code)

• 𝑃 is a period

• 𝐶 is the worst-case execution time

• 𝐴 is the release time: the time at which task becomes first enabled

Semantics of PP bounded by time 𝑋 ≡ asynchronous concurrent program:

ki = 0;

while (ki < Ji && Wait(i, ki))

 Ti ();

 ki = ki + 1;

parallel

execution

w/ priorities

blocks 𝜏𝑖
until time

 𝐴𝑖 + 𝑘𝑖 × 𝑃𝑖

𝐽𝑖 =
𝑋

𝑃𝑖

7

Efficient Verification of Periodic Programs

Sagar Chaki, October 24, 2014

© 2014 Carnegie Mellon University

Periodic Program Example

𝐽1

𝐽2 𝐽3

0 2

𝜏1

𝜏2

1 3 4 5 6 7 8

0 2 1 3 4 5 6 7 8

0 2 1 3 4 5 6 7 8

Low-Priority

Task

High-Priority

Task

𝝉𝟏 = 𝟏, 𝑱𝟏, 𝟖, 𝟐, 𝟎 , 𝝉𝟐= 〈𝟐, 𝑱𝟐 = 𝑱𝟑, 𝟒, 𝟏, 𝟏〉

Legal Execution – 𝝉𝟏

executes for 𝟐 units

0 2 1 3 4 5 6 7 8

Another Legal Execution

– 𝝉𝟏 executes for 𝟏 units

Illegal Execution – 𝝉𝟏

preempts 𝝉𝟐

Job1

of 𝝉𝟐

Job2

of 𝝉𝟐

8

Efficient Verification of Periodic Programs

Sagar Chaki, October 24, 2014

© 2014 Carnegie Mellon University

Verification Condition

𝑽𝑪 = 𝑽𝑪𝒔𝒆𝒒 ∧ 𝑽𝑪𝒄𝒍𝒌 ∧ 𝑽𝑪𝒐𝒃𝒔

Encodes Purely Job-

local computation.

Value Read/Written by

each Shared Variable

access represented by

a fresh variable.

Associates each

shared variable access

with a hierarchical

Lamport Clock.

Constraints values of

Clock components

based on timing and

priority.

Connects value read at

each “Read” to the

value written by most

recent write according

to the Lamport Clock.

9

Efficient Verification of Periodic Programs

Sagar Chaki, October 24, 2014

© 2014 Carnegie Mellon University

Verification Condition 𝑽𝑪𝒔𝒆𝒒

𝐽1

𝐽2 𝐽3

0 2

𝜏1

𝜏2

1 3 4 5 6 7 8

𝑱𝟏() { 𝒙 ≔ 𝒙 + 𝟏; }

𝑱𝟐() { 𝒙 ≔ 𝒙 + 𝟏; }

𝑱𝟑() { 𝒙 ≔ 𝒙 + 𝟏; }

𝒙𝟐 = 𝒙𝟏 + 𝟏

𝒙𝟒 = 𝒙𝟑 + 𝟏

𝒙𝟔 = 𝒙𝟓 + 𝟏

∧

∧
𝑽𝑪𝒔𝒆𝒒

Same as verification condition for

sequential program except that both

reads and writes are given fresh

variables

10

Efficient Verification of Periodic Programs

Sagar Chaki, October 24, 2014

© 2014 Carnegie Mellon University

Verification Condition 𝑽𝑪𝒄𝒍𝒌

• 𝝅𝒊 = 𝒑𝒓𝒊𝒐𝒓𝒊𝒕𝒚 𝒐𝒇 𝒋𝒐𝒃 𝒂𝒄𝒄𝒆𝒔𝒔𝒊𝒏𝒈 𝒙𝒊

• 𝝅𝟏 = 𝝅𝟐 = 𝟏, 𝝅𝟑 = ⋯ = 𝝅𝟔 = 𝟐

• 𝑹𝒊 = #𝒐𝒇 𝒋𝒐𝒃𝒔 𝒇𝒊𝒏𝒊𝒔𝒉𝒆𝒅 𝒃𝒆𝒇𝒐𝒓𝒆 𝒙𝒊 𝒂𝒄𝒄𝒆𝒔𝒔𝒆𝒅

• 𝑹𝟏 = 𝑹𝟑 = 𝑹𝟒 = 𝟎, 𝑹𝟐 = 𝟏, 𝑹𝟓 = 𝑹𝟔 = 𝟐

• 𝜾𝒊 = 𝒊𝒏𝒅𝒆𝒙 𝒐𝒇 𝒊𝒏𝒔𝒕𝒓𝒖𝒄𝒕𝒊𝒐𝒏 𝒂𝒄𝒄𝒆𝒔𝒔𝒊𝒏𝒈 𝒙𝒊 𝒊𝒏
𝒕𝒐𝒑𝒐𝒍𝒐𝒈𝒊𝒄𝒂𝒍 𝒐𝒓𝒅𝒆𝒓𝒊𝒏𝒈 𝒐𝒇 𝑪𝑭𝑮

• 𝜾𝟏 = 𝜾𝟑 = 𝜾𝟓 = 𝟏, 𝜾𝟐 = 𝜾𝟒 = 𝜾𝟔 = 𝟐

Observe: 𝒙𝒊 is accessed before 𝒙𝒋 iff

𝑹𝒊, 𝝅𝒊, 𝜾𝒊 < 𝑹𝒋, 𝝅𝒋, 𝜾𝒋

where < is lexicographic ordering

Claim/Intuition: This holds for all legal

executions, not just this one.

𝑽𝑪𝒄𝒍𝒌

11

Efficient Verification of Periodic Programs

Sagar Chaki, October 24, 2014

© 2014 Carnegie Mellon University

Verification Condition 𝑽𝑪𝒐𝒃𝒔

Let 𝑱𝒊 = job in which 𝒙𝒊 is accessed

Compute: 𝑱 ⊏ 𝑱′ if 𝑱 always completes before 𝑱′ starts

Let 𝜿𝒊 = (𝑹𝒊, 𝝅𝒊, 𝜾𝒊) and for each read 𝒙𝒊, let

𝑾𝒊 = {𝒙𝒋|𝒙𝒋 𝒊𝒔 𝒂 𝒘𝒓𝒊𝒕𝒆 ∧ ¬(𝑱𝒊 ⊏ 𝑱𝒋)}, i.e., the set of all writes that

𝒙𝒊 “may observe”

𝑽𝑪𝒐𝒃𝒔 ≡

The value of each 𝒙𝒊 accessed by a read equals the value of 𝒙𝒋

such that 𝜿𝒋 = 𝒎𝒂𝒙 𝜿𝒌 𝜿𝒌 < 𝜿𝒊 𝒂𝒏𝒅 𝒙𝒌 ∈ 𝑾𝒊 , where 𝒎𝒂𝒙{} =

initial value of 𝒙.

12

Efficient Verification of Periodic Programs

Sagar Chaki, October 24, 2014

© 2014 Carnegie Mellon University

Verification Condition 𝑽𝑪𝒐𝒃𝒔

For each read 𝒙𝒊 introduce 𝜿 𝒊 = clock of write action observed

𝑽𝑪𝒐𝒃𝒔 ≡

∧𝒙𝒋∈𝑾𝒊
𝜿𝒋 < 𝜿𝒊 ⇒ 𝜿𝒋 ≤ 𝜿 𝒊

∧

(𝑽𝑪𝒐𝒃𝒔
𝟏 ∨ ∨𝒙𝒋∈𝑾𝒊

𝑽𝑪𝑶𝒃𝒔
𝟐 𝒋)

𝑽𝑪𝒐𝒃𝒔
𝟏 ≡ (∧𝒙𝒋∈𝑾𝒊

𝜿𝒋 ≥ 𝜿𝒊) ∧ (𝒙𝒊 = 𝒙𝑰𝒏𝒊𝒕)

𝑽𝑪𝑶𝒃𝒔
𝟐 𝒋 ≡ 𝜿𝒋 < 𝜿𝒊 ∧ 𝜿𝒋 = 𝜿 𝒊 ∧ 𝒙𝒊 = 𝒙𝒋

𝒙𝒊 observes

initial value 𝒙𝑰𝒏𝒊𝒕
of 𝒙

𝒙𝒊 observes 𝒙𝒋

In the paper, we handle multiple shared variables.

13

Efficient Verification of Periodic Programs

Sagar Chaki, October 24, 2014

© 2014 Carnegie Mellon University

Handling Locks

We handle two types of locks (both involve changing priorities)

• Each thread has a base priority = priority of task it executes

• Each PCP lock 𝑙 is associated with priority 𝜋(𝑙)

• A CPU lock is a PCP lock such that 𝜋 𝑙 = ∞

• Thread’s priority = max (its base priority, priorities of all PCP locks it holds)

Lock operation encoded by “priority-test-and-set” action (𝐽, 𝑝𝑐, 𝜋𝑡 , 𝐿𝑟 , 𝐿𝑎)

• Guard: All held locks must have priority less than 𝜋𝑡

• Command: Locks in 𝐿𝑟 are released; Locks in 𝐿𝑎 are acquired

• Encode by updating 𝑉𝐶𝑐𝑙𝑘 and 𝑉𝐶𝑜𝑏𝑠 appropriately

Note: To handle locks, we generalize VC-Gen to support operations that
read and write program state (in this case held locks) atomically

• This will be useful for snapshotting (coming up)

14

Efficient Verification of Periodic Programs

Sagar Chaki, October 24, 2014

© 2014 Carnegie Mellon University

Snapshotting: Problem

𝑱𝟏() { 𝒕 ≔ 𝒙; 𝒊𝒇 𝒕 𝒙 ≔ 𝒕 + 𝟏;
 𝒆𝒍𝒔𝒆 𝒙 ≔ 𝒕 + 𝟐; }

Sequence of jobs. Each job writes to

a variable multiple times.

𝑱𝟐() { 𝒕 ≔ 𝒙; 𝒊𝒇 𝒕 𝒙 ≔ 𝒕 + 𝟏;
 𝒆𝒍𝒔𝒆 𝒙 ≔ 𝒕 + 𝟐; }

𝑱𝒏() { 𝒕 ≔ 𝒙; 𝒊𝒇 𝒕 𝒙 ≔ 𝒕 + 𝟏;
 𝒆𝒍𝒔𝒆 𝒙 ≔ 𝒕 + 𝟐; }

{ 𝒕 ≔ 𝒙𝟏; 𝒊𝒇 𝒕 𝒙𝟐 ≔ 𝒕 + 𝟏;
 𝒆𝒍𝒔𝒆 𝒙𝟑 ≔ 𝒕 + 𝟐; }

{ 𝒕 ≔ 𝒙𝟒; 𝒊𝒇 𝒕 𝒙𝟓 ≔ 𝒕 + 𝟏;
 𝒆𝒍𝒔𝒆 𝒙𝟔 ≔ 𝒕 + 𝟐; }

{ 𝒕 ≔ 𝒙𝟑𝒏−𝟐; 𝒊𝒇 𝒕 𝒙𝟑𝒏−𝟏 ≔ 𝒕 + 𝟏;
 𝒆𝒍𝒔𝒆 𝒙𝟑𝒏 ≔ 𝒕 + 𝟐; }

Observe: 𝑾𝟏 = {𝒙𝟐, 𝒙𝟑},𝑾𝟒 = 𝒙𝟐, 𝒙𝟑, 𝒙𝟓, 𝒙𝟔 ,𝑾𝟕 = 𝒙𝟐, 𝒙𝟑, 𝒙𝟓, 𝒙𝟔, 𝒙𝟖, 𝒙𝟗 , …

Result: 𝑽𝑪𝒐𝒃𝒔 has large disjunctions with many redundant sub-formulas

Empirically: SMT solvers do not scale beyond small number of jobs

15

Efficient Verification of Periodic Programs

Sagar Chaki, October 24, 2014

© 2014 Carnegie Mellon University

Snapshotting: Solution

𝑱𝟏() { 𝒕 ≔ 𝒙; 𝒊𝒇 𝒕 𝒙 ≔ 𝒕 + 𝟏;
 𝒆𝒍𝒔𝒆 𝒙 ≔ 𝒕 + 𝟐;

𝒂𝒕𝒐𝒎𝒊𝒄: 𝒙 ≔ 𝒙; }

Atomically read and write variable at the end of

the job. Dominates all other access in the job.

𝑱𝟐() { 𝒕 ≔ 𝒙; 𝒊𝒇 𝒕 𝒙 ≔ 𝒕 + 𝟏;
 𝒆𝒍𝒔𝒆 𝒙 ≔ 𝒕 + 𝟐; }

𝑱𝒏() { 𝒕 ≔ 𝒙; 𝒊𝒇 𝒕 𝒙 ≔ 𝒕 + 𝟏;
 𝒆𝒍𝒔𝒆 𝒙 ≔ 𝒕 + 𝟐; }

{ 𝒕 ≔ 𝒙𝟏; 𝒊𝒇 𝒕 𝒙𝟐 ≔ 𝒕 + 𝟏;
 𝒆𝒍𝒔𝒆 𝒙𝟑 ≔ 𝒕 + 𝟐;

𝒙𝟒 ≔ 𝒙𝟒; }

{ 𝒕 ≔ 𝒙𝟓; 𝒊𝒇 𝒕 𝒙𝟔 ≔ 𝒕 + 𝟏;
 𝒆𝒍𝒔𝒆 𝒙𝟕 ≔ 𝒕 + 𝟐;

𝒙𝟖 ≔ 𝒙𝟖; }

{ 𝒕 ≔ 𝒙𝟒𝒏−𝟑; 𝒊𝒇 𝒕 𝒙𝟒𝒏−𝟐 ≔ 𝒕 + 𝟏;
 𝒆𝒍𝒔𝒆 𝒙𝟒𝒏−𝟏 ≔ 𝒕 + 𝟐;

𝒙𝟒𝒏 ≔ 𝒙𝟒𝒏; }

Now: 𝑾𝟏 = 𝑾𝟒 = 𝒙𝟐, 𝒙𝟑 ,𝑾𝟓 = 𝑾𝟖 = 𝒙𝟒, 𝒙𝟔, 𝒙𝟕 ,𝑾𝟗 = 𝑾𝟏𝟐 = 𝒙𝟖, 𝒙𝟏𝟎, 𝒙𝟏𝟏 , …

Result: 𝑽𝑪𝒐𝒃𝒔 has smaller disjunctions with fewer redundant sub-formulas

Empirically: SMT solvers scale beyond small number of jobs

Choice of variables to snapshot: (i) all variables (ii) only written by the job

16

Efficient Verification of Periodic Programs

Sagar Chaki, October 24, 2014

© 2014 Carnegie Mellon University

Verification Condition 𝑽𝑪𝒐𝒃𝒔 with Snapshotting

Input: 𝑺𝒏𝒂𝒑𝒔(𝑱) = set of variables snapshotted by 𝑱

Compute: Relation 𝑱 ↑ 𝑱′ iff 𝑱 can be preempted by 𝑱′

Let 𝚿⊏(𝑱, 𝒈) = maximal jobs less that 𝑱 that snapshot 𝒈

Let 𝚿↑ 𝑱, 𝒈 = 𝑱′ 𝑱 ↑ 𝑱′ ∧ 𝒈 ∈ 𝑺𝒏𝒂𝒑𝒔(𝑱′)}

Let 𝚿↓ 𝑱 = 𝑱′ 𝑱′ = 𝑱 ∨ 𝑱′ ↑ 𝑱}

𝑾𝒊 = 𝒙𝒋 𝒙𝒋 𝒊𝒔 𝒂 𝒔𝒏𝒂𝒑𝒔𝒉𝒐𝒕 ∧ 𝑱𝒋 ∈ 𝚿↑ 𝑱, 𝒈 ∪

𝒙𝒋 𝒙𝒋 𝒊𝒔 𝒂 𝒔𝒏𝒂𝒑𝒔𝒉𝒐𝒕 ∧ 𝑱𝒋 ∈ 𝚿⊏ 𝑱, 𝒈 ∪

𝒙𝒋 𝒙𝒋 𝒊𝒔 𝒂 𝒘𝒓𝒊𝒕𝒆 ∧ 𝑱𝒋 ∈ 𝚿↓ 𝑱, 𝒈

𝑽𝑪𝒐𝒃𝒔 ≡ same as before with the new definition of 𝑾𝒊 above

17

Efficient Verification of Periodic Programs

Sagar Chaki, October 24, 2014

© 2014 Carnegie Mellon University

Results (Time in seconds)

NONE=No snapshotting, ALL=Snapshot all variables,

MOD=Snapshot only modified variables,

REKH=Previous tool based on sequentialization

2GB Memory Limit

60min Time Limit

18

Efficient Verification of Periodic Programs

Sagar Chaki, October 24, 2014

© 2014 Carnegie Mellon University

Results (Time in seconds)

NONE=No snapshotting, ALL=Snapshot all variables,

MOD=Snapshot only modified variables,

REKH=Previous tool based on sequentialization

2GB Memory Limit

60min Time Limit

19

Efficient Verification of Periodic Programs

Sagar Chaki, October 24, 2014

© 2014 Carnegie Mellon University

Observability Sizes

𝐴𝑉𝐺𝑂𝐵𝑆(𝑃) = avg. no. of reads observing each write or snapshot
|𝑾(𝑷)| = total no. of snapshot and write variables

A . G0Bs(P } I (P) I
nxt.bug[:H[0 E ~1\LL OD 0 AlL UJD

nxtbu g2:Hl 25.6 2.9 '29 298 455 4]6
nxt.ok]: Hl 26.5 3.1 3.2 310 492 429

nxt.ok2: Hl 25.6 2.9 2.9 298 455 416

nxt.ok3:Hl 25.4 3.0 '29 298 454 415
26.5 3.1 3.2 310 492 429 aso.bug1: H 1
26.0 3.6 3.6 304 512 427 o.bug2:H1
26.4 3.7 3.7 308 516 43]

a o.bug3:H1 25.5 3.6 3.5 355 615 504
a o.bug4:H1 26.5 4.6 4.4 309 543 434
a o.okl :H] 27.1. 4.1 4.2 31] 519 434
a. o.ok2:H] 26.5 4.6 4.4 31] 545 436
nxtbugl :H4 99.5 3.0 3.0 1]92 1835 1676
nx t. bug2: H4 102.9 3.1 3.2]240 1989 173]
[[L"\ t. ok] : H4 99.5 3.0 3.0 11 92 1835 1676

20

Efficient Verification of Periodic Programs

Sagar Chaki, October 24, 2014

© 2014 Carnegie Mellon University

Observability Sizes

𝐴𝑉𝐺𝑂𝐵𝑆(𝑃) = avg. no. of reads observing each write or snapshot
|𝑾(𝑷)| = total no. of snapshot and write variables

A\rGO~us, (P) IW,. (P)
0 ALL OD 0 · AlL ~OD

nxt.ok2:H4 99.3 3.0 3.0 1]92 1834 1675
nxt.ok3:H4 102.9 3.1 3.2 1240 1989 1731
a o.bug1: H4 99.9 3.6 3.6 12]6 2002 1723
aso.bug2: H4 101.6 3.7 3.7 1232 2088 1739
aso.bug3: H4 98.3 3.6 3.5 1420 24-90 2034
aso.bug4: H4 100.4 4.6 4-.4 1236 2199 1751
a· o.ok.l :H4 103.2 4.1 4.2 1244 2100 1751
aso.ok.2: H 4 100.1 4.6 4.4 1244 2207 1759
ctm.hug2 [7.9 4.1 4-.5 512 1052 683
ctm.hugJ 26.6 4.1 4-.5 768 1588 1033
ctn1.okl [8.6 4.1 4.6 512 1052 684
cm1.ok2 [8. [4.1 4.5 512 1052 683
ctn1.okJ 27.9 4.1 4-.5 780 1600 1057
cm1.ok4 36.4 4.2 4.7 1040 2140 1400

21

Efficient Verification of Periodic Programs

Sagar Chaki, October 24, 2014

© 2014 Carnegie Mellon University

Related Work

Generate Verification
Condition by Encoding
Dataflow between Reads
and Writes Using Lamport
Clocks

• Nishant Sinha, Chao
Wang: Staged concurrent
program analysis.
SIGSOFT FSE 2010: 47-
56

Generate Verification
Condition per Scheduling
round using prophecy
variables, and ensure that
output of one round equals
input to the next

• Akash Lal, Thomas W.
Reps: Reducing Concurrent
Analysis Under a Context
Bound to Sequential
Analysis. CAV 2008: 37-51

• Snapshotting combines both ideas

• Interplay between Logical Clocks and Prophecy Variables

• Both due to Lamport

© 2014 Carnegie Mellon University

QUESTIONS?

23

Efficient Verification of Periodic Programs

Sagar Chaki, October 24, 2014

© 2014 Carnegie Mellon University

Contact Information Slide Format

Sagar Chaki

Principal Researcher

SSD/CSC

Telephone: +1 412-268-1436

Email: chaki@sei.cmu.edu

U.S. Mail

Software Engineering Institute

Customer Relations

4500 Fifth Avenue

Pittsburgh, PA 15213-2612

USA

Web

www.sei.cmu.edu

www.sei.cmu.edu/contact.cfm

Customer Relations

Email: info@sei.cmu.edu

Telephone: +1 412-268-5800

SEI Phone: +1 412-268-5800

SEI Fax: +1 412-268-6257

