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Periodic Embedded Real-Time Software

Automotive System
Rate Monotonic Scheduling (RMS)

Engine control 10ms
Airbag 40ms
Braking 40ms
Cruise Control 50ms

. . : Domains: Avionics, Automotive
Collision Detection 50ms

OS: OSEK, VxWorks, RTEMS
Entertainment 80ms We call them periodic programs

Efficient Verification of Periodic Programs
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Time-Bounded Verification [FMCAD’11&’14, VMCAI’13]

Input: Periodic Program
 Collection of periodic tasks
» Execute concurrently with preemptive priority-based scheduling
* Priorities respect RMS
« Communicate through shared memory

Problem: Time-Bounded Verification
« Assertion A violated within X ms of a system’s execution from initial state 1?
* A, X, | are user specified
« Time bounds map naturally to program’s functionality (e.g., air bags)

Solution: Bounded Model Checking

« Generate Verification Condition (SMT Formula over Bit-Vectors)
« Use SMT Solver to check satisfiability

Main focus of
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Periodic Program (PP)

An N-task periodic program PP is a set of tasks {t,, ..., T3}
Atask tisatuple (I,T,P,C,A), where
[ is a task identifier = its priority
T is a task body (i.e., code)
P is a period
C is the worst-case execution time
A is the release time: the time at which task becomes first enabled

Semantics of PP bounded by time X = asynchronous concurrent program:

blocks t;

parall_el while (k < J; && Wait(r;, k;)) oS T

execution - until time

w/ priorities T: O3 \ Ai + ki X Py
= k; + 1; _ X

Efficient Verification of Periodic Programs
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Periodic Program Example

Low-Priority High-Priority
Task Task .
lllegal Execution — 74
preempts z,
(51 J1
Jobl T2 J2 J3 Job2

of 1, 012345678 %2 012345678

T1 — (1,]1,8,2,0), Ty = (2,]2 =]3,4', 1,1)

0123456 78 0123456 78
Legal Execution — 74 Another Legal Execution
executes for 2 units — T4 executes for 1 units

Efficient Verification of Periodic Programs
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Verification Condition

VC = VCeq N VACclk A VCA'OI)S

/Encodes Purely Job- \
local computation.

Value Read/Written by / Associates each Connects value read at
each Shared Variable shared variable access each “Read” to the
access represented by with a hierarchical value written by most
. a fresh variable. - Lamport Clock. recent write according
Constraints values of \_to the Lamport Clock. )

Clock components
based on timing and

\ priority. /

Efficient Verification of Periodic Programs
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Verification Condition VCs,,

Same as verification condition for
1 _ L sequential program except that both
reads and writes are given fresh
variables

T2 J2 J3
0123456 78

J10{x=x+1} > x,=x1+1 |
N
20{x=x+1;} >4 =2x3+1 = VCypq
A\
J30{x=x+1;} > xg=x5+1 |

Efficient Verification of Periodic Programs
Sagar Chaki, October 24, 2014
© 2014 Carnegie Mellon University
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Verification Condition VC_y

71 J1

Observe: x; is accessed before x; iff
To ]2 ]3 (Rl" IT;, li) < (R], 71']', l])

where < is lexicographic ordering

Claim/Intuition: This holds for all legal
executions, not just this one.

« 1; = priority of job accessing x;
s My =my=1m3="--=1¢g =2

* R; =#ofjobs finished before x; accessed
+ Ri=R;=R,=0R,=1Rs=Rs=2 | [~ VC

 ; =index of instruction accessing x; in
topological ordering of CFG

s y=pr=k=1L=1L=1g=2

Efficient Verification of Periodic Programs

Software Engineering Institute | Carnegie Mellon University —Sagar Chaki, October 24, 2014 10

© 2014 Carnegie Mellon University




Verification Condition VC,j

Let J; =job in which x; is accessed
Compute: J = J' if J always completes before J' starts
Let k; = (R;, m;, ;) and for each read x;, let

W; = {xj|x; is awrite A =(J; C J;)}, i.e., the set of all writes that
x; “may observe”

VCobs =

The value of each x; accessed by a read equals the value of x;
such that x; = max{xy|x, < k; and x; € W;}, where max{} =
Initial value of x.

Efficient Verification of Periodic Programs
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Verification Condition VC,j

x; observes
initial value xp,;;
of x

=

For each read x; introduce k; = clock of write action observed

VCobs =
Axjew; Kj < K; = K; < K;
A\

((Vcobs) v (ijEWi V('%bs(i)))
VCops = (Axjew; Kj 2 Ki) N (Xi = Xpnit)

VC%bS(i) = (K] < K; A\ Kj — kl) NX; = x]'

. x; observes x; |

In the paper, we handle multiple shared variables.

Efficient Verification of Periodic Programs
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Handling Locks

We handle two types of locks (both involve changing priorities)
« Each thread has a base priority = priority of task it executes
 Each PCP lock [ is associated with priority m (1)
« ACPU lockis a PCP lock such that m(l) = o
« Thread'’s priority = max (its base priority, priorities of all PCP locks it holds)

Lock operation encoded by “priority-test-and-set” action (J, pc, ¢, Ly, L)
« Guard: All held locks must have priority less than m;
« Command: Locks in L, are released; Locks in L, are acquired
« Encode by updating VC.;; and VC,,s appropriately

Note: To handle locks, we generalize VC-Gen to support operations that
read and write program state (in this case held locks) atomically

« This will be useful for snapshotting (coming up)

Efficient Verification of Periodic Programs
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Snapshotting: Problem

Sequence of jobs. Each job writes to
a variable multiple times.

J10{t=x;if(t) x =t + 1; > {t=xg;if(®) x;=t+1;
else x=t+2;} else x3=t+2; }
J20{t=x;if(t) x =t + 1; > {t:=x4if(t) x5 :=t+1;
else x =t+2;} else x¢ =t+2; }
- -
| |
| |
| |
JnO{t=xifOx=1t+1; 3 (6= X3n2; if(t) x3p-1 =t +1;
else x=t+2;} else x3,=t+2;}

Observe: W]_ = {Xz,Xg}, W4_ = {xz,xg,x5,x6}, W7 = {Xz,X3,X5,x6, Xg, xg},
Result: VC,,s has large disjunctions with many redundant sub-formulas

Empirically: SMT solvers do not scale beyond small number of jobs

Efficient Verification of Periodic Programs
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Snapshotting: Solution

Atomically read and write variable at the end of
the job. Dominates all other access in the job.

J10{t=x;if(t) x =t + 1; {t=x3;;if(t) x; =t+1;
else x:=t+2; > else x5 =t + 2;
atomic: x == x; } X4 = X4}

{t=x5;if(t) xg =1+ 1;

LRO{t=xif(Ox=t+1; > else x7 =t+ 2;
else x=t+2;} .

. Xg = Xg; }

- ]

- ]

- ]

- ]

o ir - . {t:=x4n_3;if(t) X492 =L+ 1;

WO{t=xif)x=1t+1, > else x4, 1 =1+ 2;

else x=t+2;} gy = Xy )
n *— *n

Now: Wy = Wy = {x3,x3}, W5 = Wg = {x4,%6,x7}, Wog = W15 = {xg,X10,X11}, ..

Result: VC,,s has smaller disjunctions with fewer redundant sub-formulas

Empirically: SMT solvers scale beyond small number of jobs

15
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Verification Condition VC,,s with Snapshotting

Input: Snaps(J) = set of variables snapshotted by J
Compute: Relation J T J' iff J can be preempted by J'
Let W-(J,g) = maximal jobs less that J that snapshot g
Let W1(J,9) ={'lJ 1] A g € Snaps(J')}

Let W (D=1 =JVv]' 1]}

W; = {x]- xj is a snapshot A J; € W1(J, g)} U
{xj | x; is a snapshot A J; € $-(J, g)} U
{xj| xjisawriten]; € ¥,(J,9)}

VC,,s = same as before with the new definition of W; above

Efficient Verification of Periodic Programs
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Results (Time in seconds)

NONE | ALL| MOD| REKH |
nxt.bugl:HI 33 Y [ 1%
nxt.bug2:HI 32 10 7 31
nxtokl:HI 19 7 & 17
nxt.ok2:HI 20 7 6 29
nxt.ok3:HI 30 8 6 31
aso.buel:HI 29 0 0 34 2GB Memory Limit
Hs;ﬂ-huél:l-ll 28 10y 4 32 60min Time Limit
aso.bug3:HI 29 13 11 80
aso.bugd:-HI 32 17 9 66
aso.ok1:H1 32 11 110 32
aso.0k2:H1 38 29 17 67
nxt.bugl:H4 ¥ 119 74 *
nxt.bug2:H4 * 172 02 *
nxt.okl:H4 * 89 49 *
NONE=No snapshotting, ALL=Snapshot all variables,

MOD=Snapshot only modified variables, 1 of Periodic Programs
REKH=Previous tool based on sequentialization per 24, 2014 17
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Results (Time in seconds)

| NONE| ALL| MOD| REKH

nxt.ok2:H4 * 125 49 *
nxt.ok3:H4 # 358 133 *
aso.bugl:H4 * 128 92 *
aso.bugl: H4 * 147 74 *
aso.bug3:H4 * 200 136 *
aso.bug4:H4 * 329 152 * 2GB Memory Limit
aso.0k1:H4 # 270 | 210 * i
aso.o0k2:H4 * # 1312 *

ctm. bug?2 36 29 21 105

ctm.bug3 * 124 59 258

ctm.ok1 23 37 21 122

ctm.ok?2 28 26 17 111

ctm.ok3 * 116 53 275

ctm.ok4 * 320 143 | 395

NONE=No snapshotting, ALL=Snapshot all variables,
MOD=Snapshot only modified variables, i
REKH=Previous tool based on sequentialization o poaaooreme

© 2014 Carnegie Mellon University



Observability Sizes

AVGOBS(P) W (P)]

nxtbugl:HT | NONE] ALL| mMoOD|| NONE[ ALL| MOD
nxtbug2:H1 | 256 | 20| 29 || 298 | 455 | 416
nxtok-HI | 265 | 3.1 | 32| 310 | 492 | 429
1ok HT 1 256 | 29| 29 || 298 | 455 | 416
o3 AT | 254 | 30| 20 || 298 | 454 415
— , 265 | 3.1 | 32 || 310 | 492 | 429
aso.bugl Bl | T 36 [ 36 [ 302 | 512 | 427
as0.0Ug 2 Hl 37137 [ 308 | 516 | 431
aso.bugdHl sz 5 135 [ 355 | 615 504
aso.bugtH1 =176 24 [ 300 | 543 | 234
aso.okl:Hl 75777747 42 || 311 | 519 | 434
as0.0k2:H1 765 | 4.6 | 44 || 311 | 545 | 436
nxtbugl:H4 79951 30 30 || 1192 1835] 1676
nxt.bug2:H4 | 1029 31| 3.2 1240 | 1989 | 1731
nxt.okl:H4 995 | 3.0 | 3.0 1192 | 1835| 1676

AVGOBS(P) = avg. no. of reads observing each write or snapshot

|W(P)| = total no. of snapshot and write variables

© 2014 Carnegie Mellon University



Observability Sizes

AvGOBS(P) W (P)
NONE [ ALL| MOD|| NONE| ALL | MOD
nxt.ok2:H4 99.3 | 3.0 | 3.0 1192 | 1834 | 1675
nxt.ok3:H4 102.9 | 3.1 3.2 1240 | 1989 | 1731
aso.bugl:H4 99.9 [ 3.6 3.6 1216 | 2072 1723
aso0.bug2: H4 101.6 | 3.7 3.7 1232 | 2088 | 1739
aso.bug3: H4 98.3 | 3.6 3.5 1420 | 2490 ( 2034
aso.bugd: H4 1004 46 | 44 1236 | 2199 1751
aso.ok1:H4 103.2 | 4.1 4.2 1244 | 2100 | 1751
aso.0k2:H4 100.1 | 46| 44 1244 | 2207 | 1759

ctm.bug?2 17.9 | 4.1 4.5 512 | 1052 683
ctm.bug3 266 | 4.1 4.5 768 | 1588 | 1033
ctm.ok| 18.6 | 4.1 4.6 512 | 1052 684
ctm.ok?2 18.1 4.1 4.5 512 | 1052 683
ctm.ok3 279 | 4.1 4.5 780 | 1600 1057
ctm.ok4 jo.4 | 4.2 4.7 1040 | 2140 1400

AVGOBS(P) = avg. no. of reads observing each write or snapshot
|W(P)| = total no. of snapshot and write variables

© 2014 Carnegie Mellon University



Related Work

Generate Verification Generate Verification
Condition by Encoding Condition per Scheduling
Dataflow between Reads round using prophecy
and Writes Using Lamport variables, and ensure that
Clocks output of one round equals
Nishant Sinha, Chao Input to the next
Wang: Staged concurrent - Akash Lal, Thomas W.
program analysis. Reps: Reducing Concurrent
SIGSOFT FSE 2010: 47- Analysis Under a Context
56 Bound to Sequential
Analysis. CAV 2008: 37-51

 Snapshotting combines both ideas

* Interplay between Logical Clocks and Prophecy Variables

 Both due to Lamport

Efficient Verification of Periodic Programs
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