Software Engineering Institute | Carnegie Mellon University © 2014 Carnegie Mellon University

Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE 2. REPORT TYPE 3. DATES COVERED

24 OCT 2014 N/A

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

Efficient Verification of Periodic Programs Using Sequential Consistency | . -\t NUMBER

and Snapshots
5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

Chaki /Sagar 5e. TASK NUMBER
5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

Softwar e Engineering I nstitute Car negie M ellon University Pittsburgh, REPORT NUMBER

PA 15213

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONYM(S)
11. SPONSOR/MONITOR'’ S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release, distribution unlimited.

13. SUPPLEMENTARY NOTES

The original document contains color images.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17.LIMITATION OF | 18 NUMBER | 19a NAME OF

ABSTRACT OF PAGES RESPONSIBLE PERSON
a REPORT b. ABSTRACT c. THISPAGE SAR 23
unclassified unclassified unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Copyright 2014 Carnegie Mellon University

This material is based upon work funded and supported by the Department of Defense under Contract No. FA8721-
05-C-0003 with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded
research and development center.

Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s)
and do not necessarily reflect the views of the United States Department of Defense.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND,
EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS
FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL.
CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM
FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

This material has been approved for public release and unlimited distribution except as restricted below.

This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic
form without requesting formal permission. Permission is required for any other use. Requests for permission
should be directed to the Software Engineering Institute at permission@sei.cmu.edu.

DM-0001817

Efficient Verification of Periodic Programs

—— Software Engineering Institute | Carnegie Mellon University Sagar Chaki, October 24, 2014 2

© 2014 Carnegie Mellon University

Outline

Context
« Periodic Programs
« Time-Bounded Verification

Verification Condition Generation
« Hierarchical Lamport Clocks
* Snapshotting

Experimental Results

Related Work

Efficient Verification of Periodic Programs

——= Software Engineering Institute | Carnegie Mellon University ~Sagar Chaki, October 24, 2014 3

© 2014 Carnegie Mellon University

Periodic Embedded Real-Time Software

Automotive System
Rate Monotonic Scheduling (RMS)

Engine control 10ms
Airbag 40ms
Braking 40ms
Cruise Control 50ms

. . : Domains: Avionics, Automotive
Collision Detection 50ms

OS: OSEK, VxWorks, RTEMS
Entertainment 80ms We call them periodic programs

Efficient Verification of Periodic Programs

——= Software Engineering Institute | Carnegie Mellon University ~Sagar Chaki, October 24, 2014 4

© 2014 Carnegie Mellon University

Time-Bounded Verification [FMCAD’11&’14, VMCAI’13]

Input: Periodic Program
 Collection of periodic tasks
» Execute concurrently with preemptive priority-based scheduling
* Priorities respect RMS
« Communicate through shared memory

Problem: Time-Bounded Verification
« Assertion A violated within X ms of a system’s execution from initial state 1?
* A, X, | are user specified
« Time bounds map naturally to program’s functionality (e.g., air bags)

Solution: Bounded Model Checking

« Generate Verification Condition (SMT Formula over Bit-Vectors)
« Use SMT Solver to check satisfiability

Main focus of

= . . . Efficient Veri} th|s aber
——— Software Engineering Institute H Carnegie Mellon University ~ Sagar Chaki, 8 Pap

© 2014 Carnegie Mellon University

Periodic Program (PP)

An N-task periodic program PP is a set of tasks {t,, ..., T3}
Atask tisatuple (I,T,P,C,A), where
[is a task identifier = its priority
T is a task body (i.e., code)
P is a period
C is the worst-case execution time
A is the release time: the time at which task becomes first enabled

Semantics of PP bounded by time X = asynchronous concurrent program:

blocks t;

parall_el while (k < J; && Wait(r;, k;)) oS T

execution - until time

w/ priorities T: O3 \ Ai + ki X Py
= k; + 1; _ X

Efficient Verification of Periodic Programs

== Software Engineering Institute H Carnegie Mellon University Sagar Chaki, October 24, 2014 6

© 2014 Carnegie Mellon University

Periodic Program Example

Low-Priority High-Priority
Task Task .
lllegal Execution — 74
preempts z,
(51 J1
Jobl T2 J2 J3 Job2

of 1, 012345678 %2 012345678

T1 — (1,]1,8,2,0), Ty = (2,]2 =]3,4', 1,1)

0123456 78 0123456 78
Legal Execution — 74 Another Legal Execution
executes for 2 units — T4 executes for 1 units

Efficient Verification of Periodic Programs

—— Software Engineering Institute | Carnegie Mellon University Sagar Chaki, October 24, 2014 7

© 2014 Carnegie Mellon University

Verification Condition

VC = VCeq N VACclk A VCA'OI)S

/Encodes Purely Job- \
local computation.

Value Read/Written by / Associates each Connects value read at
each Shared Variable shared variable access each “Read” to the
access represented by with a hierarchical value written by most
. a fresh variable. - Lamport Clock. recent write according
Constraints values of _to the Lamport Clock.)

Clock components
based on timing and

\ priority. /

Efficient Verification of Periodic Programs

Software Engineering Institute H Carnegie Mellon University ~ Sagar Chaki, October 24, 2014 8

© 2014 Carnegie Mellon University

Verification Condition VCs,,

Same as verification condition for
1 _ L sequential program except that both
reads and writes are given fresh
variables

T2 J2 J3
0123456 78

J10{x=x+1} > x,=x1+1 |
N
20{x=x+1;} >4 =2x3+1 = VCypq
A\
J30{x=x+1;} > xg=x5+1 |

Efficient Verification of Periodic Programs
Sagar Chaki, October 24, 2014
© 2014 Carnegie Mellon University

9

Carnegie Mellon University

=== Software Engineering Institute

Verification Condition VC_y

71 J1

Observe: x; is accessed before x; iff
To]2]3 (Rl" IT;, li) < (R], 71']', l])

where < is lexicographic ordering

Claim/Intuition: This holds for all legal
executions, not just this one.

« 1; = priority of job accessing x;
s My =my=1m3="--=1¢g =2

* R; =#ofjobs finished before x; accessed
+ Ri=R;=R,=0R,=1Rs=Rs=2 | [~ VC

 ; =index of instruction accessing x; in
topological ordering of CFG

s y=pr=k=1L=1L=1g=2

Efficient Verification of Periodic Programs

Software Engineering Institute | Carnegie Mellon University —Sagar Chaki, October 24, 2014 10

© 2014 Carnegie Mellon University

Verification Condition VC,j

Let J; =job in which x; is accessed
Compute: J = J' if J always completes before J' starts
Let k; = (R;, m;, ;) and for each read x;, let

W; = {xj|x; is awrite A =(J; C J;)}, i.e., the set of all writes that
x; “may observe”

VCobs =

The value of each x; accessed by a read equals the value of x;
such that x; = max{xy|x, < k; and x; € W;}, where max{} =
Initial value of x.

Efficient Verification of Periodic Programs

Software Engineering Institute | Carnegie Mellon University —Sagar Chaki, October 24, 2014 11

© 2014 Carnegie Mellon University

Verification Condition VC,j

x; observes
initial value xp,;;
of x

=

For each read x; introduce k; = clock of write action observed

VCobs =
Axjew; Kj < K; = K; < K;
A\

((Vcobs) v (ijEWi V('%bs(i)))
VCops = (Axjew; Kj 2 Ki) N (Xi = Xpnit)

VC%bS(i) = (K] < K; A\ Kj — kl) NX; = x]'

. x; observes x; |

In the paper, we handle multiple shared variables.

Efficient Verification of Periodic Programs

——= Software Engineering Institute H Carnegie Mellon University ~ Sagar Chaki, October 24, 2014

© 2014 Carnegie Mellon University

12

Handling Locks

We handle two types of locks (both involve changing priorities)
« Each thread has a base priority = priority of task it executes
 Each PCP lock [is associated with priority m (1)
« ACPU lockis a PCP lock such that m(l) = o
« Thread'’s priority = max (its base priority, priorities of all PCP locks it holds)

Lock operation encoded by “priority-test-and-set” action (J, pc, ¢, Ly, L)
« Guard: All held locks must have priority less than m;
« Command: Locks in L, are released; Locks in L, are acquired
« Encode by updating VC.;; and VC,,s appropriately

Note: To handle locks, we generalize VC-Gen to support operations that
read and write program state (in this case held locks) atomically

« This will be useful for snapshotting (coming up)

Efficient Verification of Periodic Programs

——= Software Engineering Institute H Carnegie Mellon University Sagar Chaki, October 24, 2014 13

© 2014 Carnegie Mellon University

Snapshotting: Problem

Sequence of jobs. Each job writes to
a variable multiple times.

J10{t=x;if(t) x =t + 1; > {t=xg;if(®) x;=t+1;
else x=t+2;} else x3=t+2; }
J20{t=x;if(t) x =t + 1; > {t:=x4if(t) x5 :=t+1;
else x =t+2;} else x¢ =t+2; }
- -
| |
| |
| |
JnO{t=xifOx=1t+1; 3 (6= X3n2; if(t) x3p-1 =t +1;
else x=t+2;} else x3,=t+2;}

Observe: W]_ = {Xz,Xg}, W4_ = {xz,xg,x5,x6}, W7 = {Xz,X3,X5,x6, Xg, xg},
Result: VC,,s has large disjunctions with many redundant sub-formulas

Empirically: SMT solvers do not scale beyond small number of jobs

Efficient Verification of Periodic Programs

Software Engineering Institute | Carnegie Mellon University —Sagar Chaki, October 24, 2014 14

© 2014 Carnegie Mellon University

Snapshotting: Solution

Atomically read and write variable at the end of
the job. Dominates all other access in the job.

J10{t=x;if(t) x =t + 1; {t=x3;;if(t) x; =t+1;
else x:=t+2; > else x5 =t + 2;
atomic: x == x; } X4 = X4}

{t=x5;if(t) xg =1+ 1;

LRO{t=xif(Ox=t+1; > else x7 =t+ 2;
else x=t+2;} .

. Xg = Xg; }

-]

-]

-]

-]

o ir - . {t:=x4n_3;if(t) X492 =L+ 1;

WO{t=xif)x=1t+1, > else x4, 1 =1+ 2;

else x=t+2;} gy = Xy)
n *— *n

Now: Wy = Wy = {x3,x3}, W5 = Wg = {x4,%6,x7}, Wog = W15 = {xg,X10,X11}, ..

Result: VC,,s has smaller disjunctions with fewer redundant sub-formulas

Empirically: SMT solvers scale beyond small number of jobs

15

© 2014 Carnegle Mellon Unlver5|ty

Verification Condition VC,,s with Snapshotting

Input: Snaps(J) = set of variables snapshotted by J
Compute: Relation J T J' iff J can be preempted by J'
Let W-(J,g) = maximal jobs less that J that snapshot g
Let W1(J,9) ={'lJ 1] A g € Snaps(J')}

Let W (D=1 =JVv]' 1]}

W; = {x]- xj is a snapshot A J; € W1(J, g)} U
{xj | x; is a snapshot A J; € $-(J, g)} U
{xj| xjisawriten]; € ¥,(J,9)}

VC,,s = same as before with the new definition of W; above

Efficient Verification of Periodic Programs

——= Software Engineering Institute H Carnegie Mellon University ~ Sagar Chaki, October 24, 2014 16

© 2014 Carnegie Mellon University

Results (Time in seconds)

NONE | ALL| MOD| REKH |
nxt.bugl:HI 33 Y [1%
nxt.bug2:HI 32 10 7 31
nxtokl:HI 19 7 & 17
nxt.ok2:HI 20 7 6 29
nxt.ok3:HI 30 8 6 31
aso.buel:HI 29 0 0 34 2GB Memory Limit
Hs;ﬂ-huél:l-ll 28 10y 4 32 60min Time Limit
aso.bug3:HI 29 13 11 80
aso.bugd:-HI 32 17 9 66
aso.ok1:H1 32 11 110 32
aso.0k2:H1 38 29 17 67
nxt.bugl:H4 ¥ 119 74 *
nxt.bug2:H4 * 172 02 *
nxt.okl:H4 * 89 49 *
NONE=No snapshotting, ALL=Snapshot all variables,

MOD=Snapshot only modified variables, 1 of Periodic Programs
REKH=Previous tool based on sequentialization per 24, 2014 17

niversi

Results (Time in seconds)

| NONE| ALL| MOD| REKH

nxt.ok2:H4 * 125 49 *
nxt.ok3:H4 # 358 133 *
aso.bugl:H4 * 128 92 *
aso.bugl: H4 * 147 74 *
aso.bug3:H4 * 200 136 *
aso.bug4:H4 * 329 152 * 2GB Memory Limit
aso.0k1:H4 # 270 | 210 * i
aso.o0k2:H4 * # 1312 *

ctm. bug?2 36 29 21 105

ctm.bug3 * 124 59 258

ctm.ok1 23 37 21 122

ctm.ok?2 28 26 17 111

ctm.ok3 * 116 53 275

ctm.ok4 * 320 143 | 395

NONE=No snapshotting, ALL=Snapshot all variables,
MOD=Snapshot only modified variables, i
REKH=Previous tool based on sequentialization o poaaooreme

© 2014 Carnegie Mellon University

Observability Sizes

AVGOBS(P) W (P)]

nxtbugl:HT | NONE] ALL| mMoOD|| NONE[ALL| MOD
nxtbug2:H1 | 256 | 20| 29 || 298 | 455 | 416
nxtok-HI | 265 | 3.1 | 32| 310 | 492 | 429
1ok HT 1 256 | 29| 29 || 298 | 455 | 416
o3 AT | 254 | 30| 20 || 298 | 454 415
— , 265 | 3.1 | 32 || 310 | 492 | 429
aso.bugl Bl | T 36 [36 [302 | 512 | 427
as0.0Ug 2 Hl 37137 [308 | 516 | 431
aso.bugdHl sz 5 135 [355 | 615 504
aso.bugtH1 =176 24 [300 | 543 | 234
aso.okl:Hl 75777747 42 || 311 | 519 | 434
as0.0k2:H1 765 | 4.6 | 44 || 311 | 545 | 436
nxtbugl:H4 79951 30 30 || 1192 1835] 1676
nxt.bug2:H4 | 1029 31| 3.2 1240 | 1989 | 1731
nxt.okl:H4 995 | 3.0 | 3.0 1192 | 1835| 1676

AVGOBS(P) = avg. no. of reads observing each write or snapshot

|W(P)| = total no. of snapshot and write variables

© 2014 Carnegie Mellon University

Observability Sizes

AvGOBS(P) W (P)
NONE [ALL| MOD|| NONE| ALL | MOD
nxt.ok2:H4 99.3 | 3.0 | 3.0 1192 | 1834 | 1675
nxt.ok3:H4 102.9 | 3.1 3.2 1240 | 1989 | 1731
aso.bugl:H4 99.9 [3.6 3.6 1216 | 2072 1723
aso0.bug2: H4 101.6 | 3.7 3.7 1232 | 2088 | 1739
aso.bug3: H4 98.3 | 3.6 3.5 1420 | 2490 (2034
aso.bugd: H4 1004 46 | 44 1236 | 2199 1751
aso.ok1:H4 103.2 | 4.1 4.2 1244 | 2100 | 1751
aso.0k2:H4 100.1 | 46| 44 1244 | 2207 | 1759

ctm.bug?2 17.9 | 4.1 4.5 512 | 1052 683
ctm.bug3 266 | 4.1 4.5 768 | 1588 | 1033
ctm.ok| 18.6 | 4.1 4.6 512 | 1052 684
ctm.ok?2 18.1 4.1 4.5 512 | 1052 683
ctm.ok3 279 | 4.1 4.5 780 | 1600 1057
ctm.ok4 jo.4 | 4.2 4.7 1040 | 2140 1400

AVGOBS(P) = avg. no. of reads observing each write or snapshot
|W(P)| = total no. of snapshot and write variables

© 2014 Carnegie Mellon University

Related Work

Generate Verification Generate Verification
Condition by Encoding Condition per Scheduling
Dataflow between Reads round using prophecy
and Writes Using Lamport variables, and ensure that
Clocks output of one round equals
Nishant Sinha, Chao Input to the next
Wang: Staged concurrent - Akash Lal, Thomas W.
program analysis. Reps: Reducing Concurrent
SIGSOFT FSE 2010: 47- Analysis Under a Context
56 Bound to Sequential
Analysis. CAV 2008: 37-51

 Snapshotting combines both ideas

* Interplay between Logical Clocks and Prophecy Variables

 Both due to Lamport

Efficient Verification of Periodic Programs

Software Engineering Institute H Carnegie Mellon University ~ Sagar Chaki, October 24, 2014 21

© 2014 Carnegie Mellon University

Software Engineering Institute | Carnegie Mellon University © 2014 Carnegie Mellon University

Contact Information Slide Format

Sagar Chaki

Principal Researcher
SSD/CSC

Telephone: +1 412-268-1436
Email: chaki@sei.cmu.edu

Web
www.sel.cmu.edu
www.sei.cmu.edu/contact.cfm

——— Software Engineering Institute

U.S. Malil

Software Engineering Institute
Customer Relations

4500 Fifth Avenue

Pittsburgh, PA 15213-2612
USA

Customer Relations
Email: info@sei.cmu.edu

Telephone: +1 412-268-5800
SEI Phone: +1 412-268-5800
SEI Fax: +1 412-268-6257

Efficient Verification of Periodic Programs
Carnegie Mellon University ~ Sagar Chaki, October 24, 2014

© 2014 Carnegie Mellon University

23

