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1. Introduction 

1.1 Vision 

Our vision is the development of ultra-low-power data acquisition systems tuned to 

meet the extreme requirements of biosensing hardware operated solely from 

already-available sources, such as body heat from the user. Hardware capable of 

fulfilling the needs of electroencephalography (EEG) will not only provide the basis 

of “wear and forget” systems for neurological monitoring but also facilitate an 

entire class of maintenance-transparent acquisition systems. 

1.2 Rationale 

There is a strong need within the scientific and Defense community for developing 

“real-world neuroimaging” tools,1 which could provide the hardware substrates 

supporting the rapidly expanding work in developing optimized brain–computer 

interactive technologies (BCITs)2,3 in a fieldable format. At the moment, a major 

barrier is power consumption, where units require relatively large batteries—these 

are not only heavy but demand consistent charging and maintenance, dramatically 

decreasing actual usability in battlefield operations.   

Advances in the field of subthreshold-voltage (sub-Vt) integrated circuit (IC) 

design, where the total power of the system is dramatically reduced (range of 

microwatts), suggest the possibly of creating complete ICs for biosensing 

applications that can operate on power supplied from the environment.4 For 

example, Zhang et al.4 have demonstrated a complete system-on-a-chip (SoC) IC 

design that is sufficient for collecting electrocardiogram in a package consuming 

only 19 microwatts. Such a small level of power can, for example, be harvested via 

thermoelectric coupling requiring only a 1 °C temperature gradient (supplied by the 

human scalp at ambient room temperature), suggesting the potential for a constant, 

biological power source and indefinite operational time.  

While promising, to date the current approaches are not sufficient for use in 

measuring true brain-source signals with EEG, where the signal of interest is 

extremely small (1–10 µV), has a low signal-to-noise ratio (often <1), and falls 

within a much larger dynamic range (>800 mV).5 To overcome this challenge, EEG 

data acquisition (DAQ) systems typically require very high sensitivity (>90 dB), 

strong amplification of the target signal, and high bit-depth resolution of the analog-

to-digital conversion (ADC) to resolve the extremely small signal (ideally, 24 bits 

for research). However, these requirements greatly exceed what has been 
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achievable to date in a sub-Vt package (8-bit, 40–80 dB).4 As a result, a dramatically 

different sub-Vt IC design is necessary in order to leverage current technology for 

batteryless EEG applications. 

1.3 Objective 

Our primary objective at the US Army Research Laboratory (ARL) was to 

significantly advance the state of the art for neurophysiological-data monitoring by 

providing the framework for an extremely low-power, complete-SoC IC design 

capable of operation without the need for external power. Upon accomplishing this, 

the goal was development and component-level demonstration of a novel design 

concept that uses sub-Vt ICs.  

2. Approach 

2.1 Advanced Sub-Vt AFE Design for EEG Applications 

Prior work from Zhang and colleagues4 has demonstrated the foundation for the IC 

portion of this work. While their system represents a great technological 

achievement, the analog front end (AFE) of this previous design lacks the resolution 

and dynamic range necessary for EEG. Therefore, a key focus of this effort was to 

build off their system and develop a new AFE that significantly improves upon 

these deficiencies and enables accurate recording of EEG signals. 

Key Hypothesis: By using an adaptive, variable fidelity-on-demand approach to 

analog-to-digital conversion as part of the IC analog front end, substantial signal 

quality can be maintained while minimizing energy usage, enabling “batteryless” 

EEG when used in conjunction with sub-Vt optimized power-monitoring schemes 

within the integrated system. 

Classically, a high amplification and ADC resolution is necessary because the 

potential dynamic range of the voltage inputs is extremely large (± several 

millivolts) compared to the target fluctuations of brain-originated signals (single 

microvolts). This results in the vast majority of the dynamic range going unused 

except during extreme fluctuations. While this is a trivial problem for conventional 

high-resolution systems where power is readily available, it is a source of 

tremendous loss in applications where power is constrained (e.g., increasing power 

necessity per bit). An alternative, previously unexplored approach would be to 

aggressively adapt the resolution proportional to the signal on line constantly 

maximizing the power efficiency. 
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The proposed AFE is shown in Fig. 1. To accomplish this, a hybrid system is 

proposed, composed of several key components: per-channel amplifier chain, low-

power ADCs, and a hardware-accelerated digital signal processor (DSP) controller. 

The amplifier chain will consist of a differential low-noise amplifier (LNA) with 

digitally modulated, voltage-offset control and a variable-gain amplifier (VGA); 

this provides a combined gain of up to 70 dB (based on the work of Zhang et al.6). 

This would enable the system to account for external voltage offsets and very small 

fluctuations while minimizing the ADC’s dynamic-range requirements to reduce 

the total power consumed. All on-line adjustments are recorded as part of the data 

stream to enable accurate recreation of the measured signals. Multiple amplifier 

chains would be used, one per channel, and time division multiplexed into a single 

set of ADCs using a technique similar to that reported by Zhang et al.4 

 

Fig. 1 Block diagram of proposed EEG system 

A dual-ADC design is proposed as one method to deal with the signal dynamic 

range which is potentially large but, during most times, fairly restricted. Work 

under these efforts focuses primarily on the first (primary) ADC. This is designed 

as a 12-bit, successive approximation register (SAR) ADC, because it provides the 

lowest power-conversion energy at the cost of speed per bit.7 In most instances, it 

is expected this resolution, combined with the amplifier chain controls, will provide 

sufficient dynamic range for the EEG signals. In situations where additional 

dynamic range is required, a SAR ADC’s sampling rate would potentially become 

impractical. Therefore, a second ADC would also be available with a 20-bit, delta 

sigma (ΔΣ) ADC. The ΔΣ ADC is typically a more complex system, requiring 

careful design to achieve a low-power implementation, but will enable additional 

resolution without sacrificing sampling speeds.7 (Implementation of such a design 

is outside the scope and timetable of these efforts and will be addressed in future 

work.) The third component of the AFE is a hardware-accelerated DSP, which 
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serves 3 purposes. First, it will provide feedback control over the amplifier chain 

gain, allowing it to dynamically fluctuate on a sample-to-sample basis, providing 

appropriate coverage for the signal range as it expands and contracts. Second, it 

provides feedback to a VOC to dynamically subtract a baseline from the incoming 

signal; this has the net effect of keeping the signal “centered” near zero voltage. 

Finally, the DSP also provides an on-line selection of the appropriate ADC. These 

determinations will be based on a combination of factors including, but not limited 

to, the current power available to the system, prior recorded data, and resolution 

requirements for the current EEG application.  

2.2 Comparing Efficacy against Conventional Approaches 

Because circuit design and fabrication are time consuming and expensive, it is 

valuable to assess whether the proposed designs would, in fact, yield data that are 

generally “usable” for targeted, fieldable EEG applications. In order to assess the 

level of anticipated efficacy of the design proposed above, a simple, virtual model 

of the system was created using Matlab tools and evaluated using pre-existing data. 

Specifically, we leveraged data previously collected during a paradigm of 

simulated driving using a high-end, commercial off-the-shelf EEG system. These 

data were chosen because 1) the system has no onboard filtering, modification, or 

baseline correction of the original raw per-channel voltage; 2) the system collects 

a very wide (24 bit) dynamic range; and 3) other efforts have already developed 

classifiers for extracting target-neural events from the data.8 Because the primary 

question of concern was the degree to which a 12-bit ADC would suffice, the raw 

data (originally collected at 24-bit ADC) were run through a series of successively 

decreasing, simulated re-quantization steps—simulating different bit-rate ADCs—

in conjunction with VOC as described above. 

3. Results 

3.1 IC Design Performance 

Spice simulations were performed on the proposed topologies to validate the 

effectiveness of individual components in light of anticipated power consumptions. 

Overall, the implemented front-end design shows an input-referred noise of 1.77 

μVrms, comparable to other EEG acquisition systems, while using less than one-

third of the power. The most relevant statistics are highlighted in gray in the Table. 
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Table Comparison of the ARL design’s performance with 4 others, including common-

mode rejection ratio (CMRR) and power-supply rejection ratio (PSRR)  

This 

Work at 

ARL 

Supply 

(V) 

Power 

Consumption 

(μW) 

Input 

Referred 

Noise 

(μVrms) 

Noise-Power 

Product 

Input 

Impedance 

(MΩ) 

Gain 

(dB) 

CMRR 

(dB) 

PSRR 

(dB) 

0.75 0.26 1.77 .46 > 8 53–63 120 100 

Verma et 

al.9 1 3.5 1.3 4.55 > 700 60 60 – 

Denison 
et al. 10 1.8–3.3 1.8-3.3 0.95 1.71–3.13 > 8 

41, 
51.5 

80 100 

Harrison 

et al. 11 +–2.5 0.9 1.6 1.44 – 39.8 > 86 > 80 

Zhang et 

al. 6 1.2 6.4 0.46 2.94 > 4 40–74 80 60 

In addition, Fig. 2 shows an example of spectral sensitivity at 3 different amplifier-

gain settings (different colors); in this case, it is easy to see the potential expansion 

of the dynamic range (in dB) that could be covered. The shaded region denotes the 

typical frequency range for EEG and is reasonably flat except on the very edges.  

 
Fig. 2 Gain plots showing performances of LNA and VGA 

Additionally, the effect of the DSP-mediated VOC is shown in Fig 3. In this case, 

a 0.33-Hz waveform, representing long-term capacitive drift common in EEG, has 

been superimposed on top of a 10-Hz signal (show in red). Prior to utilization of 

the VOC, the total dynamic range of the signal covers more than 400 µV, 

necessitating a very wide dynamic range and potentially clipping an ADC. 

However, with the VOC implementation (in blue) the range is greatly restricted and 

remains close to zero voltage. In this case, the VGA can be relaxed substantially; 
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diminishing power consumption increases the minimum vertical voltage resolution 

of the ADC. The functional result is performance similar to an on-line filter but 

with the advantage of digital-level control and dynamic tunability.  

 
Fig. 3 Effects of VOC on dynamic range 

3.2 Efficacy with EEG Application 

The use of a 12-bit SAR ADC for digitization will inevitably result in decreased 

vertical resolution of the digitized signal, even in conjunction with the VOC/VGA 

modulation described above. Figure 4 shows results of an alpha-burst detection 

classifier described previously8 when using data successively degraded to simulate 

lower-bit-rate ADCs, so that the minimum data resolution (in microvolts) increases.  

 
Fig. 4 Alpha-burst classifier’s performance with increasing minimum resolution 
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Note that for both of the subject datasets tested, performance of the classifier 

remains relatively stable (with an unexpectedly small, but not significant, increase) 

up through a minimum resolution of approximately 16 µV. This suggests there is 

substantial room for degradation of the acquired signal before it becomes unusable 

for targeted applications and, more importantly, that this proposed design should 

work effectively in this particular case. 

4. Conclusions 

These efforts have demonstrated the initial feasibility of EEG data-acquisition 

system design using sub-Vt techniques and ultralow power-saving techniques. In 

this particular case we are able to show that the primary DAQ components can be 

created using less than 300 nanowatts per channel. At that consumption, it is very 

feasible to design an entire system capable of operating solely on locally harvested 

power. This is achieved by using sub-Vt design in combination with a novel “adapt-

on-demand” approach, which dramatically conserves power by using only 

minimum-necessary ADC resolution for that particular moment. Aside from 

performance validation of the design schematics, we have verified that our novel 

approach is still effective for alpha-burst detection, a target application of fieldable 

EEG used for detecting moments of mental fatigue or drowsiness. 

While promising, these initial efforts only open the door for substantial additional 

work. In particular, our initial attempts have focused only on the design of a single 

SAR ADC. Inclusion of a secondary delta-sigma ADC, as in the overall schematic, 

will dramatically improve overall performance while maximizing flexibility across 

applications. Additionally, while we have provided results verifying our design will 

work for a single, specific application (alpha-burst detection), there is a wide range 

of classification applications for which EEG would likely be used in the field. True 

verification will require modeling for each of several classes of uses, covering a 

range of applications for EEG. Such a heterogeneous approach will, in turn, enable 

our understanding of which statistical features of the signal are most important to 

consider in future iterations of low-power IC design.
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