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Oncolytic Virotherapy Targeting Lung Cancer Drug Resistance

1. INTRODUCTION

Lung cancer is the leading cause of cancer-related death in the US with an overall 5-year survival of
less than 15 % (1). In addition to surgery and radiotherapy, chemotherapy remains the major
treatment intervention option. The most widely used drug for lung cancer is cisplatin, often
administered in combination regiments with other small molecule therapies such as paclitaxel,
captothecin or gemcitabine (2). Despite initial positive responses to therapy, the majority of patients
develop resistance to chemotherapy, ultimately leading to relapse of the disease. The heterogenic
nature of drug-resistant cancers requires multimodal therapies for successful elimination of resistant
cells. Small molecule-based therapies frequently share common resistance mechanisms, and
second-line therapies that kill cells through novel mechanisms have a potential to overcome such
resistance mechanisms (3). Self-replicating biotherapeutics such as oncolytic viruses (OVs) can
eliminate tumors via both oncolysis and induction of specific tumor-targeted immune responses in the
host (4). Because viral oncolysis has a potential to induce tumor antigen release and induce
inflammatory cytokine production, it can adapt the tumor microenvironment to one that facilitates
tumor antigen uptake and thus the maturation of antigen presenting cells such as dendritic cells (5).
Direct cytopathic effect of an oncolytic virus can be enhanced via the tumor-specific delivery of
therapeutic genes or cancer-associated epitopes which, upon infection of tumor, cells, may act as
adjuvants and prime the host's immune system. Vesicular Stomatitis Virus (VSV), an enveloped,
negative-sense RNA virus of the family Rhaboviridae, has served as a prototype oncolytic virus — a
potent, non-human, non-pathogenic, replication competent oncolytic virus (6). In normal cells and
tissues, VSV multiplication is sensitive to the antiviral effects of type 1 interferons (IFN), and other
innate immune effectors. Malignant cells on the other hand acquire during their tumorigenic evolution
diminished responsiveness to IFN action and are specifically infected and killed by VSV (7). When
VSV was used as a highly immunogenic platform for gene delivery, it cured established prostate
tumors of the same histological type (8). Suboptimal vaccination, on the other hand, resulted in
therapy escape variants that were readily treated with a second vector delivery of a cDNA library
created from tumor tissues that escaped previous therapeutic intervention. Therefore, it is possible to
target a population of cancer cells that escaped previous therapeutic intervention using viral delivery

of cDNA from the same cell population. We hypothesize that the delivery of a tumor antigen library



derived from a drug resistant population will target that specific tumor cell population for elimination

by the immune system.

2. KEY WORDS
Lung cancer, vesicular stomatitis virus, oncolytic virotherapy, apoptosis, autophagy, mouse tumor

models, drug resistance

3. ACCOMPLISHMENTS

Aim1. Generate and characterize cisplatin-resistant KLN205 and LLC1 cells.

Our first goal was to generate and characterize LLC1 and LKN205 cisplatin-resistant cells.
Drug-resistant cells are typically generated by continuous exposure of tumor cells to sub-lethal doses
and such dose is increased until cells acquire a resistant phenotype. Because cisplatin is highly
mutagenic, it has an ability to quickly induce genetic changes in cancer cells usually resulting in
Darwinian selection and generation of cells that acquire a permanent resistant phenotype (9).

We initially exposed both KLN205 and LLC1 to increasing concentrations of cisplatin in order
to generate cisplatin-resistant cells. However, upon subcutaneous injection (above right flank) of
LLC1 cells in mice, a fast growth of lesions and quick appearance of ulceration (within 7 days of
tumor injection) were observed, and animals had to be humanely euthanized. Therefore, we
performed all subsequent experiments using KLN205 cells that, when injected subcutaneously in
mice, did not form ulcers in vivo in a short time period (2-3 weeks). Four month exposure of KLN205

cells to the vehicle (K-CPO) or to increasing concentrations of cisplatin, 0.5-3 uM for one set of cells
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Figure 1: Characterization of cisplatin-resistant cells. A) KLN205 cells were exposed to cisplatin for
4 months and assessed for sensitivity to increasing concentrations of the drug. B) KLN205 cells exposed
to the indicated concentrations of cisplatin were visualized using bright field microscopy and 400X
objective.




(K-CP3), and 1-6 uM for the other set (K-CP6), resulted in a maximum of 1.5 log difference in
sensitivity (at 25 uM cisplatin) between K-CP0O and K-CP6 cells (Figure 1A). Further increase in
cisplatin concentration did not result in increased resistance. Cells were then continuously passed
without the drug for 4 months and subsequent cytotoxicity tests confirmed generation of cisplatin-
resistant cell lines that did not revert to their original sensitivity. The two cell lines acquired different
phenotypes (Figure 1B) and growth rates; K-CP6 cells grow in clumps and have a lower growth rate
at 72 h — about 40% slower compared to K-CPO or K-CP3. We first tested oncolytic activity of VSV
against K-CP3 and K-CP6 cells in vitro by measuring VSV replication and induction of apoptosis.
Cells were exposed to low multiplicities of infection (MOIs) of VSV expressing green fluorescent

protein (GFP) and analyzed by flow cytometry and plaque assay for VSV replication and induction of
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Figure 2: VSV replication and induction of apoptosis in cisplatin-resistant cells. A) Annexin V staining
of K-CP0, K-CP3 or K-CP6 cells exposed to VSV; B) Quantification of VSV-GFP replication by flow
cytometry in the three cell lines indicated at the bottom; C) Cell survival upon exposure to VSV measured
as the number of annexin-negative cells at 24 h (left) or 48 h (right) post-infection; White bars indicate
untreated cells, light shaded MOI=0.0001, dark shaded MOI=0.001 and black bars indicate MOI=0.01; D)
Three cell lines were exposed to VSV for 72 h and cytotoxicity was measured with the SRB assay.




apoptosis (annexin V and 7AAD staining) at 24 and 48 h post-infection (Figure 2). VSV infection
induced an increase in annexin V positive cells as early as 24 h post-infection (Figure 2A) and VSV-
GFP replication was similar in all three cell lines (Figure 2B). The highest increase in annexin-positive
cells was observed in K-CP6 cells at 48 h (Figure 2C). Based on the results of SRB assay which
measures total cell survival, K-CP3 and K-CP6 cells are more sensitive to the cytopathic effect of
VSV. Taken together, our data indicate that VSV replicates and induces apoptosis in all three cell
lines, while K-CP3, KLN-CP6 appear to be more sensitive to oncolytic effect of VSV.

Our recent work indicated a role of autophagy in potentiating VSV oncolysis (10), so next we
examined several markers of autophagy, including p-Akt, Beclin- 1 (BECN), and microtubule-
associated light chain protein 1, LC3-I (Figure 3A). Immunoblotting analysis revealed increased levels
of LC3-1 and BECN, and decreased levels of p-Akt in K-CP6 cells (lanes 5-8) compared to K-CPO
cells (lanes 1-4), and such changes were observed both in cells infected (lanes 3, 4, 7, and 8) or

K-CPO K-CP6 (lanes 1, 2, 5, and 6) not with the
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positive K-CP3 and K-CP6, indicating that pharmacological inhibition of autophagy in these cell lines

has an inhibitory effect on VSV replication.

Aim 2. Test antitumor activity of VSV against cisplatin-resistant KLN205 cells in vivo.

Our next goal was to test VSV as a monotherapy against cisplatin resistant cells using
syngeneic mouse model that possesses complete immune system and allows for evaluation of
immune responses. Because of the lack of overlap between resistance mechanisms, we hypothesize
that VSV will be efficient in inducing apoptosis in cisplatin-resistant lung tumor cells by inducing
apoptotic cell death, vascular shutdown and inflammation.

To evaluate the antitumor effect of VSV against cisplatin-resistant cells in vivo, we utilized a
syngeneic subcutaneous (sc) lung tumor model. DBA/2 mice were injected with either KLN-CPO or
KLN-CP6 cells (0.5 x 10° cells) and randomized into four treatment groups: 1) K-CPO + vehicle, 2) K-
CPO + VSV, 3) K-CP6 + vehicle, and 4) K-CP6 + VSV. Three weeks after tumor innoculation, VSV (1
x 10° pfu) was administered three times intratumorally (treatments and procedures are described in
Figure 4A). We also injected VSV-naive K-CPO or K-CP6 tumors (n=3 for each) with VSV 48 h prior
to animal euthanasia for comparison. Tumor growth was measured three times per week with a
caliper and is represented as a volume increase relative to day 1 (Figure 4B). The growth rate of K-
CPO and K-CP6 cells was comparable and a statistically significant difference in tumor growth
(p<0.05) was observed at day 15 between vehicle- and VSV-injected tumors. Assessment of survival
based on Kaplan-Meier analysis also revealed increased survival in the VSV-treated groups. No VSV-
associated toxicity was observed and animal weight remained constant throughout the entire
experiment (data not shown). Altogether, these data indicate that intratumoral injection of VSV leads
to delayed growth of K-CP0O and K-CP6 cells in vivo.

We next examined cross sections of subcutaneously growing K-CP0O and K-CP6 tumors in
order to assess histopatological changes induced by VSV treatment. Upon termination of experiment,
tumors were excised and fixed in 4 % paraformaldehyde followed by paraffin embedding and H&E
staining. Tumors were encapsulated and gross examination of the stomach did not reveal any
obvious lesions; color and position of major organs were also within normal limits, indicating the
absence of adverse reactions to VSV injection. Cross sections were further examined for cell shape,
nuclear shape, mitotic figures, apoptosis, necrosis, and inflammation. In all four groups tumor masses
were densely cellular; cell borders were indistinct and up to 20 mitotic figures were observed per 400x
field, about 30-40% of which were irregular. The number of mitotic figures was decreased in the VSV-
injected tumors, and both VSV-injected and vehicle-injected K-CP6 tumors possessed a slightly lower

number of mitotic figures compared to K-CPO tumors (Figure 5A). Apoptosis in tumors was assessed
8



by TUNEL staining; K-CP6 tumors appeared to have a slightly higher number of TUNEL-positive
nuclei and no statistically significant differences were observed between vehicle- and VSV-injected
tumors (Figure 5B) in tumors that were harvested 2 weeks post-treatment. However, TUNEL staining
of tumors that were harvested 48 h post-VSV injection revealed ~3-4 fold increase in TUNEL-positive
nuclei compared to control, indicating induction of apoptosis in both K-CP0O and K-CP6 tumors by
VSV injection in vivo. Taken together, these data indicate that VSV treatment leads to a reduction of
mitotic bodies and induction of apoptosis that delays tumor growth in both K-CPO and K-CP6 tumors.
Further histological examination revealed almost complete absence of necrotic areas in the
VSV-injected tumors (Figure 5C). When necrotic regions were present in tumors, they usually
comprised 30-40% of the total tumor mass and displayed high levels of inflammation (tumor-
infiltrating lymphocytes). (Figure 5C and 5D). Tumors with high necrotic areas were also found to

contain higher number of blood vessels, based on the number of smaller non-stained areas that were
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Figure 4: Antitumor activity of VSV against cisplatin resistant tumors in vivo. A) Flowchart describing
the schedule and time points for the animal procedures. B) Oncolytic activity of VSV against K-CP0 or K-CP6
cells in DBA/2 mice (n=8) injected with respective tumor cells and treated as described in A). C) Estimation of
survival based on the Kaplan-Meier analysis. Top diagram represents survival of mice injected with K-CP0

cells and bottom diagram represents mice injected with K-CP6 cells. Respective treatments are indicated next
to the curves. * p<0.05




aligned with the endothelium which we identified as blood vessels. This indicates that VSV treatment
leads to a decrease in tumor necrosis and vascular shutdown.

The overall conclusion is that VSV delays tumor growth in cisplatin resistant cells to the same
extent as in cisplatin sensitive cells. The examined parameters were similar between K-CPO and K-
CP6 tumors but the difference in parameters examined were observed between VSV- and vehicle-
treated tumors.

Conclusions: VSV possesses oncolytic activity against cisplatin-resistant cancer cells which is
facilitated by upregulation of the autophagy pathway in such cells. The in vivo mechanism of VSV

antitumor activity is likely multimodal and includes direct tumor cell oncolysis, vascular shutdown and
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Figure 5: Histopatological characterization of K-CP0 and K-CP6 tumors injected with VSV. A)
Quantification of mitotic figures using bright-field microscopy. Respective treatments are indicated at the
bottom. B) Quantification of the number of TUNEL-positive cells. Two examples of images used for
TUNEL displayed on the right. Blue color spots are total nuclei while red spots indicate TUNEL-positive
nuclei. C) H&E staining of K-CP6 tumors treated with the vehicle (left) or VSV (right). White arrows
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a decrease in necrotic areas in tumors. Therefore, VSV-based therapeutic approaches could be

efficient in lung tumor patients that develop resistance to standard-of-care therapies.

4. IMPACT

Two new cell lines resistant to cisplatin and sensitive to oncolysis were generated; such cell
lines can be used in projects that will examine novel therapies against cisplatin resistant lung
tumor cells.

Intratumorally delivered VSV is efficient in inducing apoptosis in such resistant cells in vitro and
it delays tumor growth in vivo. Oncolytic viruses are inadequately exploited therapeutics and
our data indicate that VSV can be used in treatments of drug-resistant lung tumors.

Autophagy pathway facilitates VSV oncolysis of cisplatin-resistant cells. While it has been
known that drug-resistant cells occasionally up-regulate autophagy pathway for survival, this is

a novel role for autophagy pathway in facilitation of VSV replication in drug-resistant cells.

5. CHANGES/PROBLEMS

We were able to synthesize cDNA library from resistant cells. Unfortunately, due to the low yield

during the VSV rescue phase, we were unable to obtain sufficient number of VSV clones to generate

a library of drug-resistant clones. We tried both Maraba virus rescue protocol and Vaccinia virus

rescue protocol, but in each case we were unable to rescue substantial number of clones. We have

instead decided to examine whether autophagy contributes to VSV oncolysis in cisplatin-resistant

cells.

6. PRODUCTS

Review paper: “The use of oncolytic viruses to overcome lung cancer drug resistance” By
Beljanski V, Hiscott J. Curr Opin Virol. 2012 Oct;2(5):629-35

The concept that autophagy contributes to VSV oncolysis was also a theme of our recent
publication [Shulak L, Beljanski V, et al. J. Virol. 88(5):2927-40 (2014)] and was used as part of

preliminary data for NIH R21 grant that was scored top 6% after first submission.

7. PARTICIPANTS & OTHER COLLABORATING ORGANIZATIONS

Nothing to Report

8. SPECIAL REPORTING REQUIREMENTS

Nothing to Report
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The use of oncolytic viruses to overcome lung cancer drug

resistance
Vladimir Beljanski and John Hiscott

Intrinsic and acguired drug resistancs remaing a funcamaental
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Multidrug resistance in lung cancer
chemotherapy

Mulodmg resistance 15 the pnncipal mechantsm by which
cancers develop resistance to chemotherapeutic drugs, and
thus reprezents a major causs of chemaotherapy Tulure in
the cline [1]. Temors usuallv consist of mixed, geneucally
distinet populations of malignant cells, some of which can
be eradicated with chemotherapy, while drug resistant
populations remain therapy=fesistant [2]. The therapy=
resistant cell population contimues w grow, 1s typically
resistant o previously emploved cherapeuncs and contribe-
utes further to the heterogeneity of the tumor population
(Figure 1), Dug rezistance has been ohserved in both solid
and kermatological malignancies and a number of molecular
mechanisms such as overexpression of efflux transporters

ar antiapoptotc genes, changes in signaling pathwavs, and
loss of or mutations in apoprote genes, bave all been
described 23 conmnburing factors (reviewed in [3])

The poor overall survival ate in lung cancer patients
fermains & major challenge in the clinical management of
lung cancer and underscores the urgent need to develop
novel therapewnc approaches that overcome ntninsic
-;|T'_:|g resistance. While non=small cell |ung CANCET
(MECLC) cells are often resistant to drugs at the begin-
ning of the rreavment, smallcell lung cancer (SCLC) cells
vsually acguire resistance dunng treatment [4]. The
majority of patents ac the dme of diagnosis already
present a drg=resistant phenotyvpe, resulting in @ poor
S—vear prognosis that remains less than 13% for NSCLC
and 5% for SCLC [4], Numcrous studics shed light on
resistancs mechanisms, and 10 s now recognized that
therapy=resistant lung cancer cells: (1) overexpress meims=
brane transporters such as ARBC tansporters that function
as drug efflus pumps; (2) overexpress sulfur containing
]lTl_;-I_l;in.s ;rl-:] l:ll;]ll:idl;! 1|!'.;|.I: |;1i.::|,i 4] ',l.nl,'. inuu‘.i.vall; s::n:q"
molecules such as cisplatie; (3) upregulare DINA repair
envmes that reverse therapy-induced DNA lesions; and
{4) lose intracellular apoptosis=mechamisms leading to
prolomged survival even in the presence of cyvioloxic
therapies (reviewsd in [4]). In addivon, drog=specific
mechanisms mvolving mutaton of small melecule bind-
ing sites on target proteins have also been described [53] A
number of oneogenes that give nse o Jlung cancer de=
velopment have been identfied: EGFR (murations),
EMLA-ALK ({fusion), K-RAS (mutations), PIK3CA
{mutations), and MET (mutatons) (reviewed n 6]
T'his »:|iw.'.|:1.il}' of OnCogenes -::-:u::s]ﬂ'il:::'ll:n L'.r..-ti|;1'| of thesim
pies for lung cancer, and a successtul wreatment will
probably require a several chemotherspeunc agents to
be admanistered simultaneowsly, This diversity of resisi=
ance mechanizms highlights the need for therapeutic
approaches that will complement or even bypass ‘classi=
cal' small=moleculs based therapies.

OVs as chemotherapeutics

Development of immunotherapies is a rapidly matuning
feld of expenmental cancer research that has the potens=
tial w vield major breakrhrowghs in cancer weatment.
Opcolytc viruses (OWs) are  inadequately  exploied
immunotherapeuncs chat can be either selected or generi=
cally engineered to speciheally replicate in cancer cells
[7=4]. Tumor cells often display deregulated or defective
host anuviral response mechanisms — a “soecalled’
Achilles heel of cancer cells — that permits selecove
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tumor-specific viral replication, ulumately resultng in
cancer cell apoptosis, OWs can also stimulate the adaptive
IMMUEnG FESPOnse against tumor antigens, resulting in the
immune climination of mmor cells andfor anctumor
vaccination [10".11=13]. Finallv, OWs lack genotoxcity
[14] and offer potental for delivery of immuncmodulat=
inu; goncs, E1:'II-L;.fI1g. r|:|.|.'.|a.'!||:-|i:f.i|:Lg genes, ]|1'|a-ﬂ.31|:-|::-[-:|ti|.'
gencs and other therapeutc genes, that open numerous
possibilities  for  therapeutic  interventions  [15.14]
(Figure 2). Several OV vanations are currently being
evaluated in phase 2 and 3 clinical wials (reviewed in
[17]}, with haghly encouraging response rates of J0—70%
being reported [18°°].

O the eontrary, thempeutic management of complex
cancers with immunotheraples — including OVs — 15 a
formudable task, although research dunng the past decade
has wentihed relevant tumospecific antgens, delivery
vectors and  adjuvantsicombination  approaches  thag
bvpass the immunosuppressive environment of NSCLC
[19]. Lung cancer may also be an attractive target for OV

therapy, partly because of the possibilicy of intranasal
delivery of therapeutic viral particles [20], The majonty
of OVs evaleated in preclinical models of NSCLC were
atdenoviruses [21=23], but therapeutic efficacy with other
viruses such as herpes simplex viras [24]) coxsackievirus
[25], Newcastle disease virus [26], Seneca valley virus
27], reowvirus [28,29) has also been re |_:n||:|'[1:|.!. TrA0 M 15 an
OWahased anticancer vaccing, based on highly immuno=
genie, modified vacoinia virus vector expressing MUC]
antigen, together with IL=2 as an immuncadjuvant to
reverss suppression of T=cell response [30]. This geneti-
cally modified virus was evaluaced in open<label phase [k
clinical trials i MUCL=positive NSCLOC patients [517].
When combined with frse=line chemotherapy, TG4010
delaved advanced NSCLAC progression [19].

Combination of OVs and other anticancer
therapies

The real porential of oncolviic viruses may be fully
appreciated only when used in combination with other
therapeutic approaches such as chemotherapy, targeted
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therapy andfof radiation therapy. The combination of
oncolyic vaccines ngether with small molecule inhibia
tors or mmmune modulators has been studied lacgely as
means 1o facilitate virus replication and cell killing in
umors that are resigtant to viral oncolysis [32,33], and for
transient immunosuppression thar facilitaves viral deliva
erv by reducing the proteciive effect of neutralizing
antibodies [34.35], In additon, because they kill cancer
cells thiough virss=mediated oncolysis, OVs also have the
porential o eradicare drog-resistant populations, during
or after treatment with conventional therapeutics [36].

WVesicular stomariviz virus (VSV) iz an excellent protos=
rypical OV for several reasons: because VSV i3 nor a
human pathogen, most individuals do not possess

humoral antibodies against VEV [37]: VEV possesses a
broad host range because of the envelope (G glyeo-
protein and thus infects most cell tvpes; VSV replicates
exclusively in oyvtoplasm and thus does not have a
mutational capaciey or transforming abilivy, often a380¢i=
ated with integrating viral veceors [38]. Furthermore,
VEV 15 casily manipulated by melecular techniques that
permit therapeutic gene insertion [39] and rescee of
high titer infectious recombinant virus, VSV specifically
replicates in tumor cells wich acquired defects in anri-
viral interferon signaling pathways and about 75% of
tumar cell lines examined are susceptible to VSV onco=
Iysiz [20]. Tumor cells defective in Ras, p33 and c=Mye
signaling parhways are likewise susceprible m V&Y
infection and replication [40].
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[eapite the distincr advantages of VSV, a number of
promary tumor specimens and some cancer cell lines
remain resistant to oncolysis, Several groups. including
ours, have investigated various combinations of OVs with
small molecules w improve oncolvais [41%42%.23*]. For
example, OVs in combination with histone deacetylase
inhibnrors (HIs) such as vorinostat (SAHA) and MS=275,
or the mTOR inhibivor rapamycin —small molecules that
modulate gene expression and Immuns responscs —
dramatically enhance OV replication and tumaor cell lvsis
[33.43%]. An excellent example of such approach is the
combination of VAV and vorinostar in a hormone=refiace
tory prostate tumor model resistant o oncolvais; when
VSV was combined with vonnostat, V&V replication and
apoprotc cell death was increased in twmor cell lnes and
in munne models of prostace, colon and melanoma cancer
[43"°]. Simalarly, in primary tumor specimens resistant
WVEV infoction, addition of vornostat enhanced VSV
replication, and remarkably, this effect 15 cancer tssue=
specific [43%). Combination soracegies char increase viral
replication also help to circumvent the low bioavailabilivy
of systemically administered OVs, and addition of such
small molecules may improve pharmacoavailability of
OV [44].

Modulating immune responses with epigenstic mode-=
lators such as HIMs a5 not the only therapeunc combi-
nation that can be utilized o increase viral oncolvsiz, In
patients with primary chronic lvmphocytic leukemia
(CLLY, e wive prmary COLL samples are resistant o
various chemotherapies [45], including VBV oncolysis
[46]. Resistance w oncolvsis in CLL s pardy owing
the overexpression of the anti-apopotic Bel-2 protein that
binds to and insctivates prosapoptote proteins BADY and
BAX, and thus blocks intrinsic mitochondrnial dependent
apoprosis [47]. We hyporhesized thar therapies rargering
Bcl-2 could sensitize CLL cells to oncolyte VAV [48,49].
Indecd, Bel=2 antagonsts blocked heterodimertzation of
Bol=? and BAX, and the combination of Y8V and Bel=?
inhibirors resuleed in mitnchonrdrial dependent apoproais
in CLL cells, with a therapeutc index of 18 for this
combination themapy [49],

Another srrategy thar combines OV with small molecules,
termed “suicide gene therapy' [30], is the delivery of genes
encoding prodrug=conventing enzymes to cancer cells in
order o locally modilfy & nontoxic prodieg inte a pharmas
cologically acuve agenc This approach limits systemic
toxicity, and leads to increased local bioavailability and
increases local “bystander killing” of nonsinfected tumor
cells [31]. This straregy was studied using recombinant
VEV to deliver toxic enzymatic activities such as the HSV
thymidine kinase enzyme that phosphorylates the pro=
drug ganciclovir, or the human sodivm iodine sympomer
o tarmor celle, resulting in accumulaton of radicactive
indine at the wmor siee [38,52]. We investugared chis
synergistic approach by combining recombinant VSV

expressing the cymsine deaminase/uracil phosphoribosyle
transferase protein (VSV-C) and 3=fluorocvtosine (5FC)
pro=drug ina panel of cancer cell lines and found increased
apopotosis in bystander non=infected cells o ooitre [33],
These dara were further corraborated inan animal model of
syngencic T'SA mammary adenocarcinoma, where admin=
istration of WEV=C and 5FC led to increased animal survival
compared to animals created with single agentz, The option
of therapeutc gene nsemion intm the VAV vector thus
permits the ausmentation of viral biological activity with
speciic mechanisms o kill cells, maximize anticancer
activity, and re=ntroduce apoptosis=inducing genes that
are frequendy incapacicated in cancer cells [34].

Combination of OV-based therapies in lung
cancer treatment

Warinus combination straregics have been tested in lung
cancer models to evaluate both wild=tvpe and recombi=
nant OVs in combination with small melecule therapies,
ant even radiation therapy (55 56). The first genencally
engineered (MY that was evaluated in clinical tals was
ONYX=015, a human adenovirus with specific cvtolytic
effect in tumaor cells with nonfuncrional p53 [5T] fu creee,
ONYX5 showed synergistic effect (5—10<fald) wich
standard MSCLC chemotherapy i owo of the four
primary tumor specimens, when combined with low doses
ol cisplatin or pacliaxel [38], Anttumor activity in lung
and geveral other salid tumors was observed when two
genes that mediate cancer cell death (TNF-related apop-
tosis=inducing ligand [TRAIL] and IT=24} were simul=
aneously delivered o cancer colls wia tumo=zpecific
adenoviral vecror £1355% inan approach termed ‘dual gene
virotherapy' [59]. [L-24 15 an attractive gene for cancer
therapy as it negatvely regulates several oncogenic pathe=
ways, suppresses angiogenesis, and stmulates antoemor
immune reaponses, while TRALL binds o THFarelated
death receptors and induces caspase-8-dependent apop-
tosis, [6061] Adenoviral Z055 vector expressing [L=24
was alzo evaluared in combinavion with sandard che=
motherapeurics, cisplatin or doxorubicin, in wenografc
models of lung tumor and, compared to single oeatment
groups, the tumor growth of cosadministation group was
remarkably delayed [RO].

The syrergistic effect of Reovirus tvpe 3 Deaning strain
combined with standard cancer chemotherapies has been
evaluated in a panel of NSCLO cell lines [29]. In these
experiments, svnergism was only observed in drug=sen=
sitive cells when the virus was combined with cisplatin,
gemaitabine and vinblastune; the combination of Reovirus
with paclitaxel was synergistic in all cell lines, and oorre-
lated with increased PARP cleavage compared to other
co=treatments. Interestingly, increased virion production
was observed in cell lines treated with reovirus + paclis
tzxel, bur the increase in viten production was also
observed in reovirus + vinblastine without synergistic
effect. Addicional therapeutic benefit can be achieved

Casrrent Opinion in Virelogy 2012, 26305635

v sciencedinecl.com

16



by “arming’ virus with a fusogenic glveoprotein from
gibbon ape leukemaa virws (GALY), which should facili-
tate the spread of virus by inducing cell=to=cell fusions
[6E], Genetically engincered HEV, expressing veast cyiom
sine deamirase/uracil phospho-nbosylransferase fusion
protein o convert S=fucrocytosing o S=fluorouraci] and
ALY generated a highly potent oncolytic vimus that was
evaluated in combination with 3=fluorocyiosine in a nume-
ber of solid tumor models, including lung tumors [63].

Another highly promising approach in combating lung
cancer drg resstance 12w unlize highly immunogenic
OWVs to pome adapoive immunity upon viral delivery of
drug-resistance associated antigens, leading to enhanced
antitumor immunity [10°°,13], Recombinant VBV carry=
ing a mormal prostate ussue clXMNA Lbrary was wsed 10
treat prostate tumors of the same histological type [1077],
A suboptimal therapoutic dose resulted 1n accumulation
of therapy=resistant population that was eliminated with a
second VSV vector delivery of a clIMA Lhibrary creared
from tumors that escaped the first tumor vacoination,
Therefore, it 15 possible to target a population of cancer
cells thar excaped previcus thempoutic interventions
using viral delivery of cDIMNA tsolared from the therapy-
cacape cell population. Because the mechanisms of resis-
ance in lung cancer frequently include overexpression
and mutation of oncogenes (4], a highly immunogenic
viral platiorm thar delivers drug-resistance associaned
epitopes has the potential to prime anttumer Immuanity
and activate CDE+ T cells for lung tumor elimination,
|n|.i;r'1;s1:.ng|g,-._ R0 E1:'l;-l_:|.:.:!|:il.,::l.] dara are available for thesze
highly immunogenic virotherapies i combination wich
HDIs OVs and D combirations could induce complex
IMmune responses to virotherapies in cancer patients and
further examination of adaptive and innate immunc
responses o such cherapies are required.

Future prospects of OVs in lung cancer
treatment

Alchowgh the majorioy of pharmaceuticals currently used
in cancer treatment are small molecule drugs, the emer-
gence of immunotherapies including oncolytic vaccines is
having an increasingly important impact on the devel-
opment of cancer therapies. Several obstacles remain in
the development of oncolyvic virotherapies, the most
important of which include the optimazation of systemic
OV delivery and cthe stumulation of adaptive immunity
against tumor rather than viral antigens. Promising pro=
clinical and climacal studigs wich the TG40 cancer
vacting in combination with standard chemotherapy (lus-
trate the potential of oncolync vaccines in combination
with first or second line chemotherapies (Figure 1)
Finally, oncolytic specific targeting of drug-resistant can-
cers with cDINA libraries, coupled wich controlled oprime-
ipaticn of vigal replicavion wich HIMs, opens  the
possibilicy to fight drug resistance and modulate the
immune response in OVebased therapies,
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