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1.  Introduction 

Far-field radiation patterns are an essential part of antenna characterization. 
Usually, the process of measuring 2-dimensional (2-D) or 3-dimensional (3-D) 
radiation patterns is time consuming and expensive. For instance, a complete 3-D 
radiation pattern with a spatial resolution in θ and ϕ of 2° requires 16,200 
measurements. Measuring a complete 3-D radiation pattern with a resolution of 2° 
in both directions in an anechoic chamber can take up to 5 hours (h). The need for 
a process or algorithm that will reduce the number of samples required to 
reconstruct a far-field radiation pattern is thus identified. 

In the literature, several techniques to approximate radiation patterns can be found. 
Classical interpolation methods have been explored—such as the one used by 
Werner.1 He proposed a method to interpolate 3-D radiation patterns using a Model-
Based Parameter Estimation (MBPE) technique that reduces the computational 
time required to model radiation patterns. Another method was proposed by Mikas,2 
where he compared different mathematical interpolation methods to reconstruct 3-
D radiation patterns from the 2 principal cuts; however, an error analysis with 
respect to the true radiation pattern was not performed to evaluate the proposed 
interpolation method. 

Other approaches exist including interpolation and extrapolation methods that 
reduce the amount of time required to model radiation patterns by using computer 
software simulations.3 However, limited approaches have been investigated on the 
reduction of the number of experimental measurements for 2-D or 3-D radiation 
pattern reconstruction. For instance, Vasiliadis4 introduced a new technique for 
approximating 3-D radiation patterns by combining the 2 principal cuts. This 
method uses extrapolation to approximate 3-D radiation patterns. Lawrence5 
proposed a method that uses compressive sensing to reconstruct the antenna 
radiation pattern. However, the proposed method makes use of 2 parallel plates to 
perform the measurements and the measurements were performed by using random 
sensors, which makes the method difficult for real data measurements. 

In this report, an algorithm based on compressive sensing is proposed to perform 
the sensing and the compression of far-field radiation patterns. The reconstruction 
algorithm uses the inverse Discrete Fourier Transform (DFT) or inverse Discrete 
Cosine Transform (DCT) to recover the far-field radiation pattern. By using the 
proposed algorithm a complete reconstruction of either the 2-D or 3-D far-field 
radiation pattern is obtained—reducing the number of measurements and the time 
required to reconstruct a far-field radiation pattern. 
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2.  Compressive Sensing Theory 

Compressive sensing has been widely used to overcome sampling restrictions for a 
wide variety of applications.6–8 Compressive sensing is a method that is used to 
sample a signal-of-interest at rates that can be lower than that required by the 
Nyquist criterion and still able to reconstruct the complete signal.9 

Consider a signal x of size N × 1 that can be represented in terms of a basis matrix 
ψ of size N × N. Then x = ψs, where s is a vector of size N×1. The signal x is said 
to be sparse if K < N coefficients of the vector s are nonzero. In such case, the signal 
x can be compressed by using compressive sensing. 

The number of measurements required to reconstruct the signal x can be reduced 
by taking y = Ax = Aψs = θs measurements, where y is a vector of size M × 1, M 
is the number of measurements less than N, A is the matrix used to keep the basic 
functions associated with the measurements, and θ = Aψ. The approximation of the 
x signal in the sparse domain, sො is accomplished by solving the l1-minimization 
problem sො = min ‖ܛ‖ଵsuch that ી = 	sො y, with the lp-norm of a vector f defined as 

∑൫	୮=‖‖ หfห
୮ே

ୀଵ ൯
ଵ/୮

, where p ≥ 1. In the case that p = 0, the l0-norm is the number 

of nonzero elements in s. 

Compressive Sensing Applied to Far‐Field Radiation Patterns 

A signal is said to be compressible if we can find a basis representation of the 
measured signal—in this case the radiation pattern—that is sparse. A far-field 
radiation pattern is a representation of the intensity of the field with respect to θ and 
ϕ given by f(θ,ϕ). Consider a 2-D radiation pattern f(θ) with a fixed ϕ. In this case, 
the radiation pattern represents a cut of the 3-D radiation pattern. A basis 
representation of f(θ) in another domain where it is sparse is required to apply the 
reconstruction compressive sensing algorithm. In addition, designing the 
measurement matrix is a key factor in the radiation pattern recovery using 
compressive sensing. The measurement matrix used should follow the restricted 
isometry property (RIP) to ensure recovery.9 One measurement matrix that has been 
used in compressive sensing applications that follow the RIP is the random partial 
Fourier matrix.10–12 The random partial Fourier matrix is derived from the DFT 
given by 

 ݂ሺ݊ሻ ൌ ∑ ሺ݇ሻ݁ିଶగ/ேேିଵܨ
ୀ ,    (1) 

where n is the index of the radiation pattern angle, k is the index of the transform 
domain, and N is the total number of samples. 
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In the case of a measured far-field radiation pattern, f(θ) is a vector of size N × 1; 
therefore, the inverse DFT can be represented as an operator in matrix form such 
that x = Ts, where s is the transform domain that contains K < N nonzero values 
and T = TDFT or TDCT is the matrix representation of the inverse DFT given by 

ܶி் ൌ
ଵ

√ே

݁ଶగబబ/ே ⋯ ݁ଶగబಿషభ/ே

⋮ ⋱ ⋮
݁ଶగಿషభబ/ே ⋯ ݁ଶగಿషభಿషభ/ே

൩  . (2) 

Another transform that can be used as a basis function in compressive sensing is 
the DCT. The inverse DCT transform follows the RIP property, which guarantees 
recovery of the signal by using compressive sensing with enough uniformly random 
measurements.9 The inverse DCT can be performed by using a matrix TDCT defined 
as 

 

்ܶ ൌ
ଵ

√ே
൦

1 ⋯ 1
ݏܿ ቂሺଶబାଵሻభగ

ଶே
ቃ ⋱ ݏܿ ቂሺଶಿషభାଵሻభగ

ଶே
ቃ

ݏܿ ቂሺଶబାଵሻಿషభగ
ଶே

ቃ ⋯ ݏܿ ቂሺଶಿషభାଵሻಿషభగ
ଶே

ቃ

൪.   (3) 

 
The inverse DFT or inverse DCT matrix can be converted to a partial random 
matrix by randomly selecting the rows of the inverse DFT matrix or inverse DCT 
matrix.12,13 The random rows are created by using a uniform random distribution. 
The measurement of the radiation pattern is performed by using M number of 
measurements where M < N, given as a result of matrix M × N. As can be seen, the 
sensing of the radiation pattern is already incorporated into the compressive sensing 
algorithm, where only M samples are randomly measured. Ultimately, the 
measured samples are used as the input to the compressive sensing algorithm to 
reconstruct the radiation pattern with a minimal reconstruction error. 

For the case of 3-D radiation patterns, the goal is to reduce the number of samples 
in both the θ and ϕ directions. Assume that the matrix containing the 3-D radiation 
pattern information is N × L. A traditional 2-D compressive sensing algorithm 
converts the matrix into a long 1-dimensional (1-D) vector to perform the 
reconstruction. Although this may work for other applications, vectorizing the 
matrix will reduce the number of measurements only in 1 direction and add 
complexity to the reconstruction in the radiation pattern.9 A method where parallel 
compressive sensing is used to overcome vectorization limitations was proposed by 
Fang, where the reconstruction is performed by using compressive sensing column 
by column.14 However, by using this method, the reduction of the number of 
measurements is performed only in 1 direction. Therefore, a 2-step process is 
proposed, where random measurements are taken in both directions resulting in a 
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matrix M × P, where M < N and L < P, obtaining a reduction in both directions θ 
and ϕ. The 3-D radiation pattern reconstruction is performed first in the ϕ direction 
for each measured θ, where each 2-D cut is reconstructed using parallel 
compressive sensing for each row. Then, the 2-D cuts are reconstructed by using 
the columns of the matrix, resulting in a 3-D radiation pattern with size N × L  
(Fig. 1). 

 

 

Fig. 1 Compressive sensing algorithm for 3-D radiation patterns 

To evaluate the performance of the compressive sensing algorithm the root mean 
square error (RMSE) was used as 

ܧܵܯܴ  ൌ ටଵ

ே
∑ f െ fመே
ୀଵ  , (4) 

where fn is the simulated radiation pattern in HFSS and fመ is the reconstructed 
radiation pattern. 

3.  Evaluation of the Compressive Sensing Reconstruction 
Algorithm by Simulation 

The compressive sensing algorithm was evaluated using 3 antennas: the half-wave 
dipole, the Vivaldi, and the pyramidal horn. The Etotal far-field radiation patterns of 
the antennas were simulated in HFSS and exported to Matlab. The compressive 
sensing algorithm was applied for each radiation pattern. The half-wave dipole and 
the horn antennas were designed at a center frequency of  
1.35 GHz, the Vivaldi antenna was designed at a center frequency of 6 GHz. The 
radiation pattern for each antenna was simulated at a resolution of 2° in both the θ 
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and ϕ directions; therefore, 181 × 91 is considered the total number of samples to 
be reconstructed. 

3.1  Half‐Wave Dipole Antenna 

The 2-D radiation pattern of a half-wave dipole antenna was reconstructed by using 
compressive sensing. The compressive sensing approach was used to reconstruct 
the 2 principal cuts of the radiation pattern. Figure 2 shows the simulated radiation 
pattern for θ = 90° and the x random measurements used for reconstruction. 

 

Fig. 2 Random samples taken from the simulated 2-D radiation pattern of a vertical half-
wave dipole at θ = 90° 

Figure 3 shows the reconstructed and simulated radiation patterns. The inverse DFT 
matrix was used for the reconstruction. In this case, 5 random samples are required 
to reconstruct the 2-D radiation pattern, which is less than 3% of the total number 
of samples. The RMSE of the reconstructed radiation pattern is 1.6 × 10–5. The 
symmetry property and simplicity of the 2-D radiation pattern of the half-wave 
dipole make the compressive sensing reconstruction easier and faster. 
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Fig. 3 Reconstructed radiation pattern compared to the simulated radiation pattern of a 
vertical half-wave dipole at θ = 90° 

Figure 4 shows the simulated 2-D radiation pattern for ϕ = 0 and the samples used 
for reconstruction. 

 

Fig. 4 Random measurements taken from the simulated radiation pattern of a horizontal 
half-wave dipole at ϕ = 0° 
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The reconstructed radiation pattern using the inverse DFT matrix for the 
compressive sensing reconstruction algorithm is shown in Fig. 5. In this case 50 
samples were used to reconstruct the radiation pattern by using the compressive 
sensing algorithm—that is, 27% of the total number of samples with an RMSE of 
4.3 × 10–5. 

 

Fig. 5 Reconstructed radiation pattern compared to the simulated radiation pattern of a 
horizontal half-wave dipole at ϕ = 0° 

There is a tradeoff between the number of measurements required to obtain a 
reconstruction of the radiation pattern and the RMSE of that pattern. The sensing 
of the radiation pattern performs random measurements of the radiation pattern. To 
explore this relationship, a Montecarlo simulation was designed where the mean of 
the RMSE of reconstruction was calculated as the number of measurements M was 
increased. The experiment was repeated 1,000 times for each number of 
measurements and the RMSE averaged. Figure 6 shows the mean RMSE with 
respect to the normalized number of measurements when the inverse DFT and the 
inverse DCT were used. We can observe that the mean RMSE converges to zero 
faster when using the inverse DFT than by using the inverse DCT. 
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Fig. 6 Mean RMSE of the reconstructed radiation pattern for the horizontal half-wave 
dipole for ϕ = 0° 

3.2  Vivaldi Antenna 

The half-wave dipole has a simple radiation pattern that can be perfectly 
reconstructed by using the proposed compressive sensing algorithm. A more 
complicated radiation pattern was obtained by modeling the Vivaldi antenna. One 
of the principal cuts of the 2-D radiation pattern of the Vivaldi antenna was 
simulated in HFSS. The radiation pattern and the samples used for the compressive 
sensing reconstruction are shown in Fig. 7. 
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Fig. 7 Simulated radiation pattern and random samples used for reconstruction of the 
Vivaldi antenna 

The reconstructed radiation pattern is shown in Fig. 8. In this case the inverse DFT 
and 70 samples were used for reconstruction—that is, 38% of the total samples are 
required to obtain a reconstruction with an RMSE of 9.87 × 10–6.  
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Fig. 8 Simulated radiation pattern and reconstructed radiation pattern of the Vivaldi 
antenna 

The mean RMSE was calculated for a Montecarlo simulation of 1,000 realizations 
as the number of measurements was increasing. Figure 9 shows the comparison of 
the inverse DFT and the inverse DCT compressive sensing algorithms. As noted, 
the reconstruction obtained when using the inverse DFT converges to zero more 
quickly. However, more samples are required to obtain a good reconstruction 
compared to the half-wave dipole antenna.  
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Fig. 9 RMSE mean of the reconstructed radiation pattern for the Vivaldi antenna 

3.3  Pyramidal Horn Antenna 

A pyramidal horn antenna pattern was used to test the compressive sensing 
algorithm. The simulated radiation pattern and the random measurements taken are 
shown in Fig. 10. In this case 80 samples were used as the number of measurements, 
44% for the total data points. This yielded an RMSE of 4.74 × 10–6. 

 

Fig. 10 Simulated radiation pattern and measurements taken for the horn antenna 
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Figure 11 shows the simulated radiation pattern compared to the reconstructed 
radiation pattern. A close approximation of the radiation pattern was obtained for 
the horn antenna. 

 

Fig. 11 Simulated radiation pattern and reconstructed radiation pattern for the horn 
antenna 

The RMSE mean was calculated as the number of measurements was increased. A 
Montecarlo simulation of 1,000 trials was used to obtain the mean RMSE of the 
reconstructed radiation pattern with the inverse DFT and inverse DCT. The results 
are shown in Fig. 12. The 2 reconstruction basis matrices give similar results as the 
2 converge to zero in approximately the same manner. 
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Fig. 12 RMSE mean of the reconstructed radiation pattern for the horn antenna 

4.  Evaluation of the Compressive Sensing Reconstruction 
Algorithm by Experiment 

A pyramidal horn antenna (having the same dimensions as the horn antenna 
simulated in HFSS) was used to test the compressive sensing algorithm 
experimentally. The antenna frequency range is 1.12–1.70 GHz, and the transmitted 
frequency used was 1.35 GHz. To test the compressive sensing reconstruction 
algorithm, the radiation pattern was measured at a resolution of 2° in both the θ and 
ϕ directions. The radiation pattern of the antenna was measured in the anechoic 
chamber. The 2-D and 3-D radiation pattern measurements were used to test the 
compressive sensing algorithm in an empirical scenario. The measured 2-D 
radiation pattern and the random samples used for reconstruction are shown in  
Fig. 13. Note the lack of back-lobe measurement due to the presence of the 
supporting tower. 
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Fig. 13 2-D radiation pattern of  the pyramidal horn (anechoic chamber) antenna and 
measurements used for reconstruction 

To reconstruct the 2-D radiation pattern, 80 samples—that is, 46% of the total 
samples—with an RMSE of 9.28 × 10–4 were used (the same number of samples as 
used in the simulated radiation pattern of the horn antenna). The 2-D radiation 
pattern reconstruction and the measured radiation pattern are shown in Fig. 14. 
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Fig. 14 Anechoic chamber radiation pattern and reconstructed radiation pattern for the 
pyramidal horn antenna 

The mean RMSE was calculated for the 2-D reconstruction of the pyramidal horn 
antenna. The error between the reconstructed radiation pattern using compressive 
sensing (K = random measurements) and the measured radiation pattern (N = 
number of measurements) is shown in Fig. 15. The mean RMSE was obtained from 
a Montecarlo simulation of 1,000 realizations of the experiment. The compressive 
sensing reconstruction algorithm performs a similar reconstruction for both the 
inverse DFT matrix and the inverse DCT because both tend to converge to zero at 
about the same time. 
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Fig. 15 Mean RMSE of the reconstructed empirical radiation pattern for the pyramidal 
horn antenna 

Figure 16 shows the measured radiation pattern (anechoic chamber) and the random 
samples used for reconstruction by using compressive sensing. 

 

Fig. 16 The empirical 3-D radiation pattern and samples used for reconstruction for the 
pyramidal horn antenna 

The random samples were used to reconstruct the 3-D radiation pattern of the horn 
antenna. The 2-step process was used where 30 measurements were taken along θ 
and 70 measurements were taken along ϕ. Because the inverse DFT and the inverse 
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DCT provide similar results when reconstructing the radiation pattern of the horn 
antenna, only the inverse DFT was used for the 3-D reconstruction. 

A total of 2,100 samples were taken from a total of 16,200 samples considering 
resolution of 2° in both directions. The reconstructed 3-D radiation pattern is shown 
in Fig. 17. The reconstructed 3-D radiation pattern resembles the original radiation 
pattern. 

 

Fig. 17 Reconstructed 3-D empirical radiation pattern using the inverse DFT for the 
pyramidal horn antenna 

The 3-D radiation pattern reconstruction was evaluated by using the RMSE. A 
Montecarlo simulation was performed where the number of measurements along 
the θ was fixed to 30 as the number of measurements along ϕ was increased. The 
RMSE mean was calculated for each 2-D radiation pattern cut f(ϕ) of the 3-D 
pattern. The process was repeated 100 times to obtain the mean RMSE for each ϕ 
as the number of measurements increased. Figure 18 shows the results. As 
observed, the mean RMSE approaches zero after 0.4 normalized number of 
measurements. The mean RMSE is higher at the region where ϕ is close to zero. 
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Fig. 18 Mean RMSE of the reconstructed 3-D radiation pattern using the inverse DFT for 
the pyramidal horn antenna (anechoic chamber) 

5.  Conclusions 

A compressive sensing algorithm that performs the sensing and the compression of 
2-D or 3-D radiation patterns was presented. The 2-D radiation pattern of a half-
wave dipole can be recovered by using only 3% of the total number of samples. 
Directive antennas such as the Vivaldi and the horn antennas have more complex 
radiation patterns compared to the half-wave dipole. Therefore, the 2-D radiation 
patterns will need more measurements, and can be reconstructed by using less than 
44% of the total number of samples. The compression rate, or the number of 
random measurements required for a good reconstruction, depends on the radiation 
pattern structure. Two basis matrices—the inverse DFT and the inverse DCT—
were evaluated for the reconstruction of radiation patterns. From simulations, it can 
be concluded that both matrices perform similar reconstructions of the radiation 
patterns. 

The algorithm was evaluated empirically by measuring a pyramidal horn antenna, 
where 2-D and 3-D radiation patterns measured in the anechoic chamber were 
reconstructed by using the proposed reconstruction algorithm. The 2-D radiation 
pattern was reconstructed by using 44% of the total data, and the 3-D radiation 
pattern was reconstructed by using 13% of the total number of samples. The 
measurement of a 3-D radiation pattern takes more than 5 h in an anechoic chamber. 
By using the compressive sensing algorithm the 3-D radiation pattern can be 
reconstructed with measurements taking less than 0.65 h. The proposed 
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reconstruction algorithm can be used to reconstruct 2-D or 3-D radiation patterns; 
therefore, reducing the number of required measurements to reconstruct the 
radiation pattern and reducing the time required to take the measurements. 

A novel method to reconstruct measurements in an anechoic chamber was 
presented. The algorithm was tested with a measured 3-D radiation pattern. The 
implementation of the algorithm requires the implementation of a new 
measurement paradigm that will perform random measurements in the anechoic 
chamber. By using the proposed methodology, the time required to measure 
radiation patterns can be reduced by 1/5 of the total time without significant loss of 
accuracy. 
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List of Symbols, Abbreviations, and Acronyms 

1-D  1-Dimensional  

2-D  2-Dimensional 

3-D  3-Dimensional 

DCT  Discrete Cosine Transform 

DFT  Discrete Fourier Transform 

h  hour(s) 

HFSS  high-frequency structural simulator 

MBPE  Model-Based Parameter Estimation 

RIP  restricted isometry property 

RMSE  root mean square error 
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