
An Aspect-Oriented Approach to Assessing Fault
Tolerance

Jeffrey Cleveland, Joseph Loyall
Raytheon BBN Technologies

Cambridge, MA, USA
jeff.cleveland@alum.cs.umass.edu, jloyall@bbn.com

James Hanna
US Air Force Research Laboratory

Rome, NY, USA
james.hanna.4@us.af.mil

Abstract—Fault tolerance and survivability are important
aspects of many business-critical and mission-critical systems but
it is still difficult to assess how well fault tolerance techniques
work. Ensuring fault tolerance in military communication
systems is particularly important due to the inevitability of
hardware failure, data corruption, or service interruption and
the risk that cascading failures could jeopardize critical military
operations. In this paper, we present a fault tolerance assessment
framework designed for distributed systems that provides
automated injection of faults without changes to client or server
code and automated assessment of whether the injected faults are
tolerated. The framework applies aspect-oriented programming,
specifically AspectJ, to inject faults and weave in assessment
criteria. The framework supports both assessing the tolerance of
direct faults, such as crashes and corruption, like traditional
fault injectors, and conditional faults, which can be
probabilistically, randomly, or periodically injected at runtime.
This latter class of faults is not historically supported by fault
injectors, but enables the assessment of tolerance to many
important classes of faults threatening modern distributed
military communication systems, including timing faults,
resource exhaustion (e.g., denial-of-service), and integrity faults
that are traditionally difficult to tolerate and assess. Additionally,
the framework provides a centralized view for users enabling
them to monitor and script coordinated tests comprising
performance metrics and injected faults spanning services,
applications, and hosts.

Keywords—fault tolerance; assessment; testing; aspect-oriented
programming; survivability

I. INTRODUCTION
To be useful in mission-critical or safety-critical military

situations, modern software systems, such as those built around
Service-Oriented Architecture (SOA) or publish-subscribe
(pub-sub) paradigms, need to be tolerant of faults (whether due
to malicious intent or not). Fault tolerance techniques have
typically fallen into one or more of the following categories:

• Fault Prevention, which includes analysis and
correction of problems in software and hardware before
they lead to faults, as well as dynamic techniques such
as restarting or reorganizing at regular intervals (e.g.,
based on observed Mean Time To Failure).

• Fault Masking includes tolerating, preventing, or
neutralizing the effects of a failure. This often includes

redundancy so that a failure in one part of a system is
compensated for by redundant functionality in another
part of the system.

• Recovery, which includes failing over to a backup,
restarting functionality, or otherwise reacting to failure
detection with corrective action.

Among the traditional masking techniques are replication-
based approaches, which maintain copies of processes or
services so that as long as one replica is alive, the service is
available. Replication-based fault tolerance can consist of
active or passive techniques, which differ in the way
consistency in the state of replicas is handled.

Despite the importance of fault tolerance and the
techniques available to provide it, assessing the fault tolerance
and survivability of a system is still challenging for several
reasons. First, fault tolerance is often built into a system in a
special purpose manner (i.e., it is not an off-the-shelf
component that can be purchased or acquired). Second,
different fault tolerant techniques are more or less effective in
particular parts of a system and in particular deployments.
Finally, fault tolerance introduces a runtime cost, in terms of
extra time (latency) and resources used (memory, bandwidth,
and processing). This cost can negatively affect the
performance of a system disproportionately to the benefit of
the fault tolerance, if not designed and implemented
appropriately.

In this paper, we describe an approach to assessing a
system-under-test’s susceptibility to faults and ability to handle
faults. Our framework enables the injection of direct faults that
take effect immediately in a running system and conditional
faults that can occur either periodically, probabilistically, or
randomly during operation of a system when a condition
becomes true. Our prototype assessment framework supports
the injection of faults into software without modifying the
software and the automated detection of whether the fault is
handled or not, utilizing the following:

• An aspect-oriented programming (AOP) [13] approach
to specifying and weaving faults into existing code,
without requiring developer-provided code changes.

• An assertion feature for specifying and evaluating
whether an injected fault occurs or is handled by the
system being assessed.

This work was supported by the U.S. Air Force Research Laboratory
under Contract Number FA8750-10-C-0247.

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
OCT 2014 2. REPORT TYPE

3. DATES COVERED
 00-00-2014 to 00-00-2014

4. TITLE AND SUBTITLE
An Aspect-Oriented Approach to Assessing Fault Tolerance

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Raytheon BBN Technologies,10 Moulton Street,Cambridge,MA,02138

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
Military Communications Conference (MILCOM 2014), Baltimore, MD, October 6 - 8, 2014.

14. ABSTRACT
Fault tolerance and survivability are important aspects of many business-critical and mission-critical
systems but it is still difficult to assess how well fault tolerance techniques work. Ensuring fault tolerance in
military communication systems is particularly important due to the inevitability of hardware failure, data
corruption, or service interruption and the risk that cascading failures could jeopardize critical military
operations. In this paper, we present a fault tolerance assessment framework designed for distributed
systems that provides automated injection of faults without changes to client or server code and automated
assessment of whether the injected faults are tolerated. The framework applies aspect-oriented
programming specifically AspectJ, to inject faults and weave in assessment criteria. The framework
supports both assessing the tolerance of direct faults, such as crashes and corruption, like traditional fault
injectors, and conditional faults, which can be probabilistically, randomly, or periodically injected at
runtime. This latter class of faults is not historically supported by fault injectors, but enables the
assessment of tolerance to many important classes of faults threatening modern distributed military
communication systems, including timing faults resource exhaustion (e.g., denial-of-service), and integrity
faults that are traditionally difficult to tolerate and assess. Additionally the framework provides a
centralized view for users enabling them to monitor and script coordinated tests comprising performance
metrics and injected faults spanning services applications, and hosts.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

8

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

We use an AOP approach to assessing fault tolerance
because faults will often manifest as effects on a specific cross-
cutting concern and because AOP’s weaving feature enables
assessment of faults in places throughout the assessed system.
Our approach targets software fault tolerance and targets a
wide range of faults and assessment techniques. Other
techniques typically target only direct or probabilistic faults,
not conditional faults. Our prototype also provides support for
establishing criteria to automatically assess tolerance.

The rest of the paper describes our prototype assessment
framework and its application to an existing publish-subscribe
information middleware system. We begin, in Section II, by
describing aspect-oriented programming and its use in
assessing fault tolerance. Section III describes our approach to
automating assessment of fault tolerance. Section IV describes
the design and implementation of our current prototype.
Section V describes our application of the framework to the
assessment of a real system. Section VI describes some related
work. Finally, Section VII provides some concluding remarks.

II. USING AOP FOR FAULT TOLERANCE ASSESSMENT
Aspect-Oriented Programming is a programming approach

that enables the specification of cross-cutting aspects in high-
level languages that get woven into source code at compilation
or run time. In other words, while traditional languages, such
as Java, support constructing a program around a dominant
decomposition, such as the functional classes making up an
application’s business logic, aspects enable the separate
programming of other aspects of a program’s behavior – such
as logging, synchronization, or quality of service (QoS) – that
would have to be sprinkled throughout the functional classes.

An aspect weaver that works as a separate step of the
compilation process automatically inserts the aspect code in the
appropriate places throughout the functional application.

A. Overview of AOP
AOP offers an elegant approach to injecting faults and

assertions into existing code in all the places that fault
tolerance needs to be tested, without changing the original code
of the program. We utilized AspectJ, an aspect-oriented
extension to Java, which provides the following [12]:

• Upward compatibility – All legal Java programs are
legal AspectJ programs.

• Platform compatibility – All legal AspectJ programs
run on standard Java virtual machines.

• Tool compatibility – AspectJ works as an extension to
existing tools, including integrated development
environments (IDEs), documentation tools, and design
tools.

• Programmer compatibility – Programming with
AspectJ feels like a natural extension of programming
with Java.

The central concept in AspectJ is that of a join point, a
well-defined point in the program’s flow of execution, e.g., a
method call or variable access. AspectJ adds four new syntactic
constructs to Java that affect a program’s behavior at specific
join points:

• A point cut specifies a join point programmatically. For
example, a point cut can specify a method entry point
and its arguments, which syntactically represent the join
points associated with everywhere in the program’s
execution in which the method is called.

• Advice specifies code that is woven into a point cut and
is executed when a join point is reached. The advice can
be specified to be before, after, or around, which
specifies whether the advice is executed prior to the
ordinary functionality at the join point, after, or in place
of, respectively.

• An inter-type declaration allows the programmer to
modify a program's static structure, namely, the
members of its classes and the relationship between
classes.

• An aspect encapsulates the new constructs, similar to a
class encapsulating functional code.

B. Advantages of Using AOP for Fault Tolerance Assessment
There are several advantages that we gained by using an

AOP approach to specifying and executing the fault injection
and assertions associated with our assessment framework.
First, using AOP, and AspectJ in particular, enables the rapid
development of a library of faults for testing a system and
injection of those faults into an existing system. Because faults
often manifest as effects on a specific cross-cutting concern,
e.g., file-system calls from any object will fail if a disk fails,
aspect-oriented programming is a natural paradigm to utilize
for the fault injectors.

Second, we can weave the different kinds of faults needed
to fully assess fault tolerance into the different places in which
they can occur in a system. Currently, the framework supports
the following types of faults:

• Direct faults that take immediate effect when triggered.

• Conditional faults which, when triggered, can take
effect sometime in the future, repeatedly,
probabilistically, and randomly.

Third, using AOP means that the framework is extensible
to add new fault types, assertions, and injection points. The
current prototype supports injecting faults into a service or its
methods, a container, third party libraries, OS calls, a JVM, or
a network connection.

Fourth, metric collection and logging are canonical use
cases for AOP. Being able to observe system behavior in
response to fault injection is an integral part of assessing fault
tolerance.

Fifth, using AOP maintains a clear separation between the
production and the test code. The code to assess the fault
tolerance can be readily removed from the code that is
deployed into target environments simply by not weaving in
the aspects. This is a major advantage of being able to evaluate
the fault tolerance of a system under development while
eliminating the impact on the system’s runtime performance.

Finally, support for AOP is readily available through an
AspectJ library for Java and AspectJ plugins for build systems
such as Maven and IDEs such as Eclipse.

III. AUTOMATING FAULT TOLERANCE ASSESSMENT
The main goal of our prototype framework is to automate

the Fault Tolerance Assessment process, which includes the
following three key aspects:

• A means to automate the injection of faults.

• A means to automate the analysis of results.

• Support for maintaining a library of faults that serve as
tests.

With these three features, the assessment framework can be
used in a continuous-build like manner (described in more
detail in Section V.A). Our framework includes the notion of
an Experiment Template, which is used to document a fault
injection test and its assessment criteria, in a format that can be
stored, reused, and modified. The following sections describe
our approach to automating analysis and how we define the
behavior of a test and its analysis criteria in an Experiment
Template.

A. Assessing Tolerance to Injected Faults
To assess tolerance to injected faults, we measure system

utility at certain endpoints. The current prototype measures
utility at client endpoints, i.e., when messages are sent and
received, and includes metrics such as message throughput and
latency. Target values for these utility metrics should be based
on expected system use case. When a fault results in a system
falling outside of the acceptable range, the system can be seen
as not tolerating the fault. Fig. 1 shows an example in which an
injected fault manifests itself as an observable increase in
message latency.

An alternative approach, which we did not take, would be
to tie metrics to individual survivability techniques. For
example, consider assessing fault tolerance based on measuring
how long a service is down. This may accurately assess the
effectiveness of a monitor-and-restart approach (faster
recovery is better), but can be less useful to evaluate the fault
tolerance of a system using an active replication approach. In
this situation, the failure of a service (and it staying down) is
completely masked by another service (a replica) taking its
place, but not captured in a metric that simply measures how
long the failed service is down. The success of masking or
restart is measured by metrics looking for continued servicing
of the service’s clients.

Furthermore, tight coupling between survivability
techniques and assessment results in additional developer effort
for every technique implemented, i.e., developers have to add
new assessment behaviors every time the fault tolerant system
is modified. In our framework, assessment criteria are tied to
the continued operation of the system in the face of faults,
rather than to the particular techniques being employed to
achieve continued operation.

When a fault is injected, we expect it to manifest itself
within a certain time frame, i.e., the effect window. If system
behavior moves out of tolerance range during that window we
can say the system did not tolerate the fault.

B. Experiment Template
An Experiment Template defines the behavior of a test.

This includes a script describing the faults that are injected,
when they are injected, and a set of criteria that define if a test
passes or fails.

A Script consists of Actions, each of which consists of a
Fault Name, Fault Target, Fault Delay, and in the case of a
Conditional Fault, the condition that triggers the fault. The
Fault Name identifies the fault that will be injected. The Fault
Target is the name of the service, component, or other system
element into which the fault should be injected.

The Fault Delay is the period of time after a fault is injected
that the system waits before injecting the next fault. If a
criterion fails during this time frame, the most recently
triggered fault is identified as the cause.

Criteria define what is considered acceptable behavior
during a test, e.g., message throughput should not drop below a
given threshold. This includes an “On Fail” status which
determines what a criterion reports if its specified threshold is
crossed. This can either be a Warning, which will be reported
and the experiment continues, or a Failure, which ends the
experiment. We also include a Timeout specification, in
milliseconds, which represents the amount of time a criterion
will wait between receiving metric events before expiring and
failing. If system behavior is acceptable at the end of the effect
window, the framework can trigger the next fault.

The execution of an Experiment Template is an Experiment
Instance. The framework can launch multiple tests
(Experiments consisting of multiple Experiment Instances) and
log the results, to assess a system’s overall fault tolerance.

Fig. 1. Determining fault injection outcome.

IV. DESIGN AND IMPLEMENTATION
This section describes the design and implementation of

our prototype assessment framework, including the
mechanisms for triggering faults, monitoring system behavior,
assessing system behavior, and user interaction.

A. Fault Orchestrator and Controller
A Fault Orchestrator coordinates the injection of faults

during a controlled experiment. It uses Fault Controllers
associated with the places in which faults can be injected,
under direction of the Fault Orchestrator, as shown in Fig. 2.

 The Fault Controller serves as an adapter between Fault
Triggers and the Fault Orchestrator. These are added to target
classes, e.g., a high level service, using inter-type declaration,
and are initialized by a point cut and advice targeting the
service’s constructor. The @DirectFault and @FaultCondition
annotations (described in Section IV.C) allow the fault
controller to identify methods and fields to be identified at
runtime using reflection. The fault controller is then able to
directly trigger or modify the conditions under which the faults
are triggered. The Fault Controller registers a callback to itself
and the set of faults to which it has access with the Fault
Orchestrator.

The Fault Orchestrator is a centralized view of all the
distributed fault controllers and available faults within the
system. It provides a control interface that is used by our web-
based fault scripting tools to coordinate full system tests
(described in Section IV.D).

B. Event Collection
To enable assessing system behavior, metrics and other

system events are reported to a centralized location. We create
the reporting mechanisms using classic AOP techniques for
logging and metric collection and define several formats for
these reports to ease analysis. These types are:

• Metrics report monitored system behavior, e.g.,
throughput at a client.

• A Partial Metric reports a piece of system behavior that
needs to be combined with other partial metrics to be
reasoned about. For example, the publisher of a
message may report a partial metric containing an UID
and send time while a consumer may report a partial
metric containing a UID and arrival time. By combining
these partial metrics we are able to calculate message
loss or latency metrics.

• A Trigger indicates a fault was triggered and includes a
fault name, target, and time.

• A Report is a notice of a system action that provides
additional context to the user, e.g., a report may be sent
when certain types of exceptions are triggered.

These reports are transmitted as HTTP POST requests to
enable compatibility with not only our AOP-based metric
collection, but also compatibility with other tools that can be
used to monitor system behavior.

C. Fault Triggers
Fault Triggers are pieces of code that enable a fault to be

remotely injected. This includes both the trigger interface as
well as the fault’s logic. Our framework includes triggers for
direct faults and conditional faults.

Direct faults are implemented as public methods added to
the target class and inject the fault as soon as they are executed.
AspectJ’s support for inter-type declaration allows us to weave
these methods into the code after compilation. The methods are
annotated with @DirectFault which specifies a fault name and
description. By calling a method annotated with @DirectFault
the described fault will be injected. Fig. 3 shows a direct fault
that gracefully stops a service when it is injected. Notice that
the injected fault represents the effect regardless of the failure
that led to the fault (e.g., either an external hardware failure or
an internal software error).

Conditional Faults inject faults that take effect at a later
time based on whether a condition becomes true. Conditional
Faults have three components:

• A field of type FaultCondition is added to the target
class using inter-type declaration and is annotated with
@ConditionalFault (which includes the fault name and
description).

• A point cut which describes where in the program
execution the fault should be injected.

• Advice which is triggered when the join point described
by the point cut is reached.

The advice checks if the FaultCondition returns true. If it
does, then the specified fault code is triggered. If the

Fig. 2. Assessment system architecture.

Fig. 3. Example of a Direct Fault.

@DirectFault(name="Stop service",
description="Calls stop()")
public void BaseService.stopService(){
 this.stop();
}

FaultCondition does not return true, the program execution
proceeds as normal. By modifying the parameters in which a
FaultCondition will return true, a conditional fault can be
enabled or disabled. The current prototype supports the
following built-in fault conditions:

• DisabledFaultCondition, which always returns false.

• EnabledFaultCondition, which always returns true.

• ProbabilisticFaultCondition, which returns true a
(configurable) percentage of the time.

• QuantityFaultCondition, which returns true the first
(configurable) n times.

The code in Fig. 4 adds a condition to an InputChannel
class and a fault which adds one second of latency to reads
from that input channel.

D. Web Based Analysis Tools
Our prototype includes a Tomcat-based web application

with the following:

1. User interface,

2. Metric collection,

3. Executor for the experiment template,

4. Analysis tools.

The Web-based User Interface (UI) assists developers
trying to assess system survivability. It includes a Fault
Launcher window (Fig. 5(a)) that displays all of the currently
registered faults and an interface that allows a user to manually
trigger and enable specific faults.

The UI also includes an Event Log which contains a time-
based graph of all reports, events, and metrics received by the
framework and a detailed log of events (Fig. 5(b)).

 The prototype includes a Fault Model Database that
includes all the faults and targets that have been registered with
the Fault Orchestrator. These are accessible through a UI that
enables viewing and updating the contents of the database. The
contents of the database are used to auto-complete fields while
creating a new Fault Script.

The web-based UI also enables a user to display all of the
Experiment Templates; to execute, delete, or edit templates; or
to create new experiment templates. Another page of the web-
based UI allows the details of a given experiment template to
be displayed, along with a detailed history of executions of the
experiment, the template’s actions, and its criteria. This page Fig. 4. Example of a Conditional Fault.

@ConditionalFault(name="Add latency",
 description="Sleeps for 1 second before
reading from a channel")
public LockableCondition
 InputChannel.__fault002 = new
LockableCondition();
before(InputChannel pic) :
 execution(* InputChannel+.read(..)) &&
target(pic){
 if(pic.__fault002.isTrue()) {
 Thread.sleep(1000);
 }
}

Fig. 5. A Web interface that enables the user to (a) manually inject faults (left) and (b) observe system behavior (right).

also provides the ability to add new actions and criteria to the
template.

 The history of experiment executions includes the
following details:

• Whether a Warning was recorded.

• Whether a Failure occurred (i.e., an injected fault was
not tolerated).

• Start and end times for instances of experiment
executions.

• An event graph and table for events associated with
specific experiment instances.

• A summary of the faults that were injected during
experiment executions.

• A summary of criteria that were evaluated, i.e., to
evaluate whether a fault was tolerated.

V. APPLICATION OF THE ASSESSMENT FRAMEWORK
TO A PUB-SUB SYSTEM

This section provides a qualitative evaluation of
implementing and assessing fault injection using our
framework. We performed our evaluation based on a fault
model that we developed for an existing service-oriented
publish-subscribe information broker [7]. The fault model
defines specific and detailed software faults that can manifest
themselves in all components of the pub-sub software, but that
fall into the five broad categories shown in Fig. 6(a). Based on
this detailed fault model, we derived a set of detailed faults that
could be injected by the framework, which fall into the broad
categories shown in Fig. 6 (b).

 We used the framework to implement faults in each of
these and at the different localities in which they could
manifest themselves (e.g., in system service logic, containers,
third-party code, etc.). In all cases, we found our framework
able to support the implementation of faults from within our
fault model, as well as metrics and criteria capable of reflecting
the usage requirements of our target application. The following
sections provide some details of the specific faults and criteria
at the level a developer hoping to utilize our framework for a
new application would need.

A. Mapping Fault Categories to AOP based Injection
We implemented faults from each of the following

categories: crash faults, timing faults, value faults, and
omission faults (we have not yet addressed Byzantine faults).
In addition, we implemented faults with varying localities,
including at the service level, at the process level, and at the
node level.

We implemented crash faults at the service, container, and
node level. Each case was implemented as a direct fault. At the
service level, the aspect code calls specific pieces of the
service’s stop method. To cause a crash at the JVM level, the
aspect code calls System.exit. To cause a crash at the OS level,
a fault controller that runs with root privilege invokes a direct
fault that makes a system call to shutdown the OS.

We implemented the timing faults with conditional faults
affecting channels, a communication layer abstraction provided
by the pub-sub software. The conditional faults add a sleep
(periodically, probabilistically, or a certain number of times) to
write and read calls.

We implemented value faults at locations that the detailed
fault model described as susceptible to value faults, e.g., due to
incorrect inputs or errors in algorithms. We defined direct
faults that randomize and nullify the state of various services.
We also defined conditional faults that scramble data being
received over network connections.

We also defined omission faults at several locations. We
defined omission faults that emulate disk failures and result in
IO exceptions being thrown whenever attempts to read or write
certain file system paths were made. Finally, we defined faults
that simply drop information being read from or written to a
network resource.

As mentioned in Section III, our assessment framework
prototype is being used as part of a nightly build process for the
pub-sub system. The software is built and then an automated
test framework runs through the full set of faults covering the
fault model, using our prototype to inject each and assess
whether the system tolerates the fault.

B. Metric Collection and Criteria
For our evaluation, we monitored the assessment criteria at

the publication and subscription clients. At these endpoints, we
were able to instrument end-to-end latency, loss of
information, and throughput. These metrics were sufficient for
us to assess the tolerance (or not) of crash, timing, and
omission faults. In the case of value faults, we designed the
experiments so that the value faults, if not tolerated, would
affect the latency, loss, or throughput, so that we could utilize
the same metrics.

Latency and loss were both reported at each endpoint as
partial metrics. A piece of aspect advice inserts a UID in each
published message, and then publishes that UID and the
current time. When the subscriber receives the message it
publishes a partial metric containing the UID and the current

(a) Categories of software faults in a pub-sub information

broker

(b) Categories of injected faults derived from the fault model.

Fig. 6. Fault model and categories of faults used to evaluate the assessment
framework.

time. The framework uses these partial metrics to calculate
latency and to identify messages that are not received within a
specific time (the effect window) as being lost. To collect and
report throughput, the subscribing client simply reports the
number of messages it receives per second.

While we have described just a few of the metrics and
criteria that we used for fault tolerance assessment, our use of
AOP for our approach enables a much wider range.

VI. RELATED WORK

A. Fault Injection
There are several fault injection frameworks available

including research and commercial tools. Many of these inject
at lower levels, including Ferrari [10], which utilizes software
traps associated with memory accesses or timeouts, and
ORCHESTRA [4], which utilizes network level fault injection.

Our approach is targeted more toward the software fault
tolerance associated with software services and the failures that
might occur in software logic, corruption, misconfiguration,
and so forth. The Hadoop File System [8] includes a fault
injection framework built using AspectJ similar to that which
we describe in this paper. The main differences between our
framework and Hadoop fault injectors is that the Hadoop fault
injector only supports probabilistic faults, i.e., not direct or
other conditional faults, and our framework provides richer
support for establishing criteria and metrics, and user interfaces
supporting the assessment of fault tolerance.

Chaos Monkey [2] is a fault injection framework recently
released by Netflix, targeting services running in elastic cloud
settings. The difference between our approach and Chaos
Monkey is that Chaos Monkey only triggers crash faults and is
not capable of covering the ecosystem of potential faults.

Byteman [5] is an advice injection tool for Java that has
also been used for fault injection within Java applications.
Byteman interacts with a Java application via a JVM agent
capability and allows a user to interact with the system using
Event Condition Action rules written in the Byteman scripting
language. In contrast, our framework exploits the programmer
compatibility of AspectJ, resulting in fault injection code that
looks and feels like the Java code of the targeted application.
Byteman’s ECA rules include conditions that have to evaluate
to true before the rule action is executed, so that it supports a
form of conditional faults.

B. Fault Detection/Diagnosis
Research on fault detection and diagnosis in industrial

settings [3] rely on quantitative and qualitative model and
process history-based methods [17] and expert systems
approaches [9].

C. Aspect Oriented Programming
AOP has been used for other purposes beyond the fault

injection and assessment functionality that we are targeting in
this paper. Although logging is used as the common example
of AOP’s use, it has grown into wide usage for many cross-
cutting concerns, including access control and security

[15][18], storage management [11], and QoS management and
monitoring [6] in object- and component-oriented systems.

Techniques related to AOP have also emerged, although
none appear to have gained the traction and approached the
level of adoption. Two of the best known are Composition
Filters [1], which utilizes wrapping and interception, and
Subject-Oriented Programming or HyperSpaces [16], which
eliminates the dominant decomposition (i.e., the functional
concern) of AOP and treats everything as aspects that are
composed to create an application.

VII. CONCLUSIONS
We have developed a prototype framework for assessing

the survivability of distributed (and standalone) systems. Our
framework utilizes AspectJ to provide not only a technical
compatibility with target Java systems, but also programmer
and tool compatibility. The use of AspectJ enables the
collection of platform metrics and logging, which are canonical
examples of AOP. We implemented this fault injection and
metric collection within the context of a centralized Fault
Orchestrator which provides users a direct interface to the
assessment framework and a means of automating fault
injection behaviors. We have used the framework to assess the
fault tolerance of an existing distributed publish-subscribe
middleware system.

There are several directions for this work to progress in the
future. Immediate gain could be accomplished by integrating
this work with existing build and development tools. For
example, hooks between the Fault Orchestrator and an
automated build and continuous integration system such as
Jenkins or custom fault controllers would enable the triggering
of faults from test suites such as JUnit.

Another opportunity for future work is further automating
fault injection behaviors. In Pal et al [14], an automated means
of determining the relationships between network events
capable of compromising a running system is explored. Such
techniques could be utilized to better assess system
susceptibility to cascading faults.

REFERENCES
[1] M. Aksit, B. Tekinerdogan, and L. Bergmans, “Achieving adaptability

through separation and composition of concerns,” Special Issues in
Object-Oriented Programming. M. Muhlhauser (Ed.), (1996), 12-23.

[2] “Chaos Monkey released into the wild, http://techblog.netflix.com/-
2012/07/chaos-monkey-released-into-wild.html.

[3] L. Chiang, E. Russell, and R. Braatz, Fault Detection and Diagnosis in
Industrial Systems, Springer, 2001.

[4] S. Dawson, F. Jahanian, and T. Mitton, “ORCHESTRA: a probing and
fault injection environment for testing protocol implementations,” Proc.
IEEE International Computer Performance and Dependability
Symposium, Urbana-Champaign, Illinois, September 4-6, 1996.

[5] A. Dinn, “Flexible, dynamic injection of structured advice using
Byteman,” Proc. Tenth International Conference on Aspect-Oriented
Software Development, Porto de Galinhas, Brazil, ACM, March 21-25,
2011, 41-50.

[6] G. Duzan, J. Loyall, R. Schantz, R. Shapiro, and J. Zinky, “Building
adaptive distributed applications with middleware and aspects,” Proc.
International Conference on Aspect-Oriented Software Development
(AOSD ’04), Lancaster, UK, March 22-26, 2004.

[7] R. Grant, V. Combs, J. Hanna, B. Lipa, and J. Reilly, “Phoenix: SOA
based information management services,” Proc. SPIE Defense
Transformation and Net-Centric Systems Conference, Orlando, Florida,
April 2009.

[8] “Hadoop fault injection, http://hadoop.apache.org/hdfs/docs/r0.21.0/-
faultinject_framework.html

[9] J. House, W. Lee, and D. Shin, “Classification techniques for fault
detection and diagnosis of an air-handling unit,” ASHRAE Transactions:
Symposia (January 1999), 1067-1097.

[10] G. Kanawati, N. Kanawati, and J. Abraham, “FERRARI: a flexible
software-based fault and error injection system,” IEEE Trans. on
Computers, 44, 2 (1995), 248-260.

[11] D. Kaul, A. Gokhale, L. Dawson, A. Tackett, and K. McCauley,
“Applying aspect oriented programming to distributed storage metadata
management,” Proc. Workshop on Best Practices in Applying Aspect-
Oriented Software Development (BPOAOSD), Vancouver, British
Columbia, Canada, March 13, 2007.

[12] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W.
Griswold, “An overview of AspectJ,” Proc. ECOOP 2001—Object-
Oriented Programming (2001): 327-354.

[13] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.M.
Loingtier, and J. Irwin, “Aspect-oriented programming,” Proc.

ECOOP'97-Object-Oriented Programming, 11th European Conference,
LNCS 1241 (1997), 220-242.

[14] P. Pal, R. Schantz, A. Paulos, B. Benyo, D. Johnson, M. Hibler, and E.
Eide, “A3: an environment for self-adaptive diagnosis and immunization
of novel attacks,” Proc. Adaptive Host and Network Security Workshop,
IEEE International Conference on Self Adaptive and Self Organizing
Systems, Lyon, France, September 12-14, 2012.

[15] R. Sethi, “Aspect-oriented programming and security,” http://www.sym-
antec.com/connect/articles/aspect-oriented-programming-and-security,
November 2, 2010.

[16] P. Tarr, H. Ossher, W. Harrison, and S. Sutton, Jr., “N degrees of
separation: multi-dimensional separation of concerns,” Proc.
International Conference on Software Engineering (ICSE'99), Los
Angeles, CA, May, 1999.

[17] V. Venkatasubramanian, R. Rengaswamy, K. Yin, and S. Kavuri, “A
review of process fault detection and diagnosis,” Computers and
Chemical Engineering, 27, 3 (March 2003), 293-346.

[18] J. Viega, J. Bloch, and P. Chandra, “Applying aspect-oriented
programming to security,” Cutter IT Journal, 14, 2 (February 2001), 31-
39.

