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Abstract—Fault tolerance and survivability are important 
aspects of many business-critical and mission-critical systems but 
it is still difficult to assess how well fault tolerance techniques 
work. Ensuring fault tolerance in military communication 
systems is particularly important due to the inevitability of 
hardware failure, data corruption, or service interruption and 
the risk that cascading failures could jeopardize critical military 
operations. In this paper, we present a fault tolerance assessment 
framework designed for distributed systems that provides 
automated injection of faults without changes to client or server 
code and automated assessment of whether the injected faults are 
tolerated. The framework applies aspect-oriented programming, 
specifically AspectJ, to inject faults and weave in assessment 
criteria. The framework supports both assessing the tolerance of 
direct faults, such as crashes and corruption, like traditional 
fault injectors, and conditional faults, which can be 
probabilistically, randomly, or periodically injected at runtime. 
This latter class of faults is not historically supported by fault 
injectors, but enables the assessment of tolerance to many 
important classes of faults threatening modern distributed 
military communication systems, including timing faults, 
resource exhaustion (e.g., denial-of-service), and integrity faults 
that are traditionally difficult to tolerate and assess. Additionally, 
the framework provides a centralized view for users enabling 
them to monitor and script coordinated tests comprising 
performance metrics and injected faults spanning services, 
applications, and hosts. 

Keywords—fault tolerance; assessment; testing; aspect-oriented 
programming; survivability 

I. INTRODUCTION 
To be useful in mission-critical or safety-critical military 

situations, modern software systems, such as those built around 
Service-Oriented Architecture (SOA) or publish-subscribe 
(pub-sub) paradigms, need to be tolerant of faults (whether due 
to malicious intent or not). Fault tolerance techniques have 
typically fallen into one or more of the following categories: 

• Fault Prevention, which includes analysis and 
correction of problems in software and hardware before 
they lead to faults, as well as dynamic techniques such 
as restarting or reorganizing at regular intervals (e.g., 
based on observed Mean Time To Failure). 

• Fault Masking includes tolerating, preventing, or 
neutralizing the effects of a failure. This often includes 

redundancy so that a failure in one part of a system is 
compensated for by redundant functionality in another 
part of the system. 

• Recovery, which includes failing over to a backup, 
restarting functionality, or otherwise reacting to failure 
detection with corrective action. 

Among the traditional masking techniques are replication-
based approaches, which maintain copies of processes or 
services so that as long as one replica is alive, the service is 
available. Replication-based fault tolerance can consist of 
active or passive techniques, which differ in the way 
consistency in the state of replicas is handled. 

Despite the importance of fault tolerance and the 
techniques available to provide it, assessing the fault tolerance 
and survivability of a system is still challenging for several 
reasons. First, fault tolerance is often built into a system in a 
special purpose manner (i.e., it is not an off-the-shelf 
component that can be purchased or acquired). Second, 
different fault tolerant techniques are more or less effective in 
particular parts of a system and in particular deployments. 
Finally, fault tolerance introduces a runtime cost, in terms of 
extra time (latency) and resources used (memory, bandwidth, 
and processing). This cost can negatively affect the 
performance of a system disproportionately to the benefit of 
the fault tolerance, if not designed and implemented 
appropriately. 

In this paper, we describe an approach to assessing a 
system-under-test’s susceptibility to faults and ability to handle 
faults. Our framework enables the injection of direct faults that 
take effect immediately in a running system and conditional 
faults that can occur either periodically, probabilistically, or 
randomly during operation of a system when a condition 
becomes true. Our prototype assessment framework supports 
the injection of faults into software without modifying the 
software and the automated detection of whether the fault is 
handled or not, utilizing the following: 

• An aspect-oriented programming (AOP) [13] approach 
to specifying and weaving faults into existing code, 
without requiring developer-provided code changes. 

• An assertion feature for specifying and evaluating 
whether an injected fault occurs or is handled by the 
system being assessed. 

This work was supported by the U.S. Air Force Research Laboratory 
under Contract Number FA8750-10-C-0247. 
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We use an AOP approach to assessing fault tolerance 
because faults will often manifest as effects on a specific cross-
cutting concern and because AOP’s weaving feature enables 
assessment of faults in places throughout the assessed system. 
Our approach targets software fault tolerance and targets a 
wide range of faults and assessment techniques. Other 
techniques typically target only direct or probabilistic faults, 
not conditional faults. Our prototype also provides support for 
establishing criteria to automatically assess tolerance.  

The rest of the paper describes our prototype assessment 
framework and its application to an existing publish-subscribe 
information middleware system. We begin, in Section II, by 
describing aspect-oriented programming and its use in 
assessing fault tolerance. Section III describes our approach to 
automating assessment of fault tolerance. Section IV describes 
the design and implementation of our current prototype. 
Section V describes our application of the framework to the 
assessment of a real system. Section VI describes some related 
work. Finally, Section VII provides some concluding remarks. 

II. USING AOP FOR FAULT TOLERANCE ASSESSMENT 
Aspect-Oriented Programming is a programming approach 

that enables the specification of cross-cutting aspects in high-
level languages that get woven into source code at compilation 
or run time. In other words, while traditional languages, such 
as Java, support constructing a program around a dominant 
decomposition, such as the functional classes making up an 
application’s business logic, aspects enable the separate 
programming of other aspects of a program’s behavior – such 
as logging, synchronization, or quality of service (QoS) – that 
would have to be sprinkled throughout the functional classes.  

An aspect weaver that works as a separate step of the 
compilation process automatically inserts the aspect code in the 
appropriate places throughout the functional application. 

A. Overview of AOP 
AOP offers an elegant approach to injecting faults and 

assertions into existing code in all the places that fault 
tolerance needs to be tested, without changing the original code 
of the program. We utilized AspectJ, an aspect-oriented 
extension to Java, which provides the following [12]: 

• Upward compatibility – All legal Java programs are 
legal AspectJ programs. 

• Platform compatibility – All legal AspectJ programs 
run on standard Java virtual machines. 

• Tool compatibility – AspectJ works as an extension to 
existing tools, including integrated development 
environments (IDEs), documentation tools, and design 
tools. 

• Programmer compatibility – Programming with 
AspectJ feels like a natural extension of programming 
with Java. 

The central concept in AspectJ is that of a join point, a 
well-defined point in the program’s flow of execution, e.g., a 
method call or variable access. AspectJ adds four new syntactic 
constructs to Java that affect a program’s behavior at specific 
join points: 

• A point cut specifies a join point programmatically. For 
example, a point cut can specify a method entry point 
and its arguments, which syntactically represent the join 
points associated with everywhere in the program’s 
execution in which the method is called. 

• Advice specifies code that is woven into a point cut and 
is executed when a join point is reached. The advice can 
be specified to be before, after, or around, which 
specifies whether the advice is executed prior to the 
ordinary functionality at the join point, after, or in place 
of, respectively. 

• An inter-type declaration allows the programmer to 
modify a program's static structure, namely, the 
members of its classes and the relationship between 
classes.  

• An aspect encapsulates the new constructs, similar to a 
class encapsulating functional code. 

B. Advantages of Using AOP for Fault Tolerance Assessment 
There are several advantages that we gained by using an 

AOP approach to specifying and executing the fault injection 
and assertions associated with our assessment framework. 
First, using AOP, and AspectJ in particular, enables the rapid 
development of a library of faults for testing a system and 
injection of those faults into an existing system. Because faults 
often manifest as effects on a specific cross-cutting concern, 
e.g., file-system calls from any object will fail if a disk fails, 
aspect-oriented programming is a natural paradigm to utilize 
for the fault injectors. 

Second, we can weave the different kinds of faults needed 
to fully assess fault tolerance into the different places in which 
they can occur in a system. Currently, the framework supports 
the following types of faults: 

• Direct faults that take immediate effect when triggered. 

• Conditional faults which, when triggered, can take 
effect sometime in the future, repeatedly, 
probabilistically, and randomly. 

Third, using AOP means that the framework is extensible 
to add new fault types, assertions, and injection points. The 
current prototype supports injecting faults into a service or its 
methods, a container, third party libraries, OS calls, a JVM, or 
a network connection.  

Fourth, metric collection and logging are canonical use 
cases for AOP. Being able to observe system behavior in 
response to fault injection is an integral part of assessing fault 
tolerance. 



Fifth, using AOP maintains a clear separation between the 
production and the test code. The code to assess the fault 
tolerance can be readily removed from the code that is 
deployed into target environments simply by not weaving in 
the aspects. This is a major advantage of being able to evaluate 
the fault tolerance of a system under development while 
eliminating the impact on the system’s runtime performance. 

Finally, support for AOP is readily available through an 
AspectJ library for Java and AspectJ plugins for build systems 
such as Maven and IDEs such as Eclipse. 

III. AUTOMATING FAULT TOLERANCE ASSESSMENT 
The main goal of our prototype framework is to automate 

the Fault Tolerance Assessment process, which includes the 
following three key aspects: 

• A means to automate the injection of faults. 

• A means to automate the analysis of results. 

• Support for maintaining a library of faults that serve as 
tests. 

With these three features, the assessment framework can be 
used in a continuous-build like manner (described in more 
detail in Section V.A). Our framework includes the notion of 
an Experiment Template, which is used to document a fault 
injection test and its assessment criteria, in a format that can be 
stored, reused, and modified. The following sections describe 
our approach to automating analysis and how we define the 
behavior of a test and its analysis criteria in an Experiment 
Template. 

A. Assessing Tolerance to Injected Faults 
To assess tolerance to injected faults, we measure system 

utility at certain endpoints. The current prototype measures 
utility at client endpoints, i.e., when messages are sent and 
received, and includes metrics such as message throughput and 
latency. Target values for these utility metrics should be based 
on expected system use case. When a fault results in a system 
falling outside of the acceptable range, the system can be seen 
as not tolerating the fault. Fig. 1 shows an example in which an 
injected fault manifests itself as an observable increase in 
message latency. 

An alternative approach, which we did not take, would be 
to tie metrics to individual survivability techniques. For 
example, consider assessing fault tolerance based on measuring 
how long a service is down. This may accurately assess the 
effectiveness of a monitor-and-restart approach (faster 
recovery is better), but can be less useful to evaluate the fault 
tolerance of a system using an active replication approach. In 
this situation, the failure of a service (and it staying down) is 
completely masked by another service (a replica) taking its 
place, but not captured in a metric that simply measures how 
long the failed service is down. The success of masking or 
restart is measured by metrics looking for continued servicing 
of the service’s clients.  

Furthermore, tight coupling between survivability 
techniques and assessment results in additional developer effort 
for every technique implemented, i.e., developers have to add 
new assessment behaviors every time the fault tolerant system 
is modified. In our framework, assessment criteria are tied to 
the continued operation of the system in the face of faults, 
rather than to the particular techniques being employed to 
achieve continued operation. 

When a fault is injected, we expect it to manifest itself 
within a certain time frame, i.e., the effect window. If system 
behavior moves out of tolerance range during that window we 
can say the system did not tolerate the fault. 

B. Experiment Template 
An Experiment Template defines the behavior of a test. 

This includes a script describing the faults that are injected, 
when they are injected, and a set of criteria that define if a test 
passes or fails. 

A Script consists of Actions, each of which consists of a 
Fault Name, Fault Target, Fault Delay, and in the case of a 
Conditional Fault, the condition that triggers the fault. The 
Fault Name identifies the fault that will be injected. The Fault 
Target is the name of the service, component, or other system 
element into which the fault should be injected.  

The Fault Delay is the period of time after a fault is injected 
that the system waits before injecting the next fault. If a 
criterion fails during this time frame, the most recently 
triggered fault is identified as the cause. 

Criteria define what is considered acceptable behavior 
during a test, e.g., message throughput should not drop below a 
given threshold. This includes an “On Fail” status which 
determines what a criterion reports if its specified threshold is 
crossed. This can either be a Warning, which will be reported 
and the experiment continues, or a Failure, which ends the 
experiment. We also include a Timeout specification, in 
milliseconds, which represents the amount of time a criterion 
will wait between receiving metric events before expiring and 
failing. If system behavior is acceptable at the end of the effect 
window, the framework can trigger the next fault. 

The execution of an Experiment Template is an Experiment 
Instance. The framework can launch multiple tests 
(Experiments consisting of multiple Experiment Instances) and 
log the results, to assess a system’s overall fault tolerance. 

Fig. 1. Determining fault injection outcome. 



IV. DESIGN AND IMPLEMENTATION 
This section describes the design and implementation of 

our prototype assessment framework, including the 
mechanisms for triggering faults, monitoring system behavior, 
assessing system behavior, and user interaction. 

A. Fault Orchestrator and Controller 
A Fault Orchestrator coordinates the injection of faults 

during a controlled experiment. It uses Fault Controllers 
associated with the places in which faults can be injected, 
under direction of the Fault Orchestrator, as shown in Fig. 2. 

 The Fault Controller serves as an adapter between Fault 
Triggers and the Fault Orchestrator. These are added to target 
classes, e.g., a high level service, using inter-type declaration, 
and are initialized by a point cut and advice targeting the 
service’s constructor. The @DirectFault and @FaultCondition 
annotations (described in Section IV.C) allow the fault 
controller to identify methods and fields to be identified at 
runtime using reflection. The fault controller is then able to 
directly trigger or modify the conditions under which the faults 
are triggered. The Fault Controller registers a callback to itself 
and the set of faults to which it has access with the Fault 
Orchestrator.  

The Fault Orchestrator is a centralized view of all the 
distributed fault controllers and available faults within the 
system. It provides a control interface that is used by our web-
based fault scripting tools to coordinate full system tests 
(described in Section IV.D). 

B. Event Collection 
To enable assessing system behavior, metrics and other 

system events are reported to a centralized location. We create 
the reporting mechanisms using classic AOP techniques for 
logging and metric collection and define several formats for 
these reports to ease analysis. These types are: 

• Metrics report monitored system behavior, e.g., 
throughput at a client. 

• A Partial Metric reports a piece of system behavior that 
needs to be combined with other partial metrics to be 
reasoned about. For example, the publisher of a 
message may report a partial metric containing an UID 
and send time while a consumer may report a partial 
metric containing a UID and arrival time. By combining 
these partial metrics we are able to calculate message 
loss or latency metrics. 

• A Trigger indicates a fault was triggered and includes a 
fault name, target, and time. 

• A Report is a notice of a system action that provides 
additional context to the user, e.g., a report may be sent 
when certain types of exceptions are triggered. 

These reports are transmitted as HTTP POST requests to 
enable compatibility with not only our AOP-based metric 
collection, but also compatibility with other tools that can be 
used to monitor system behavior. 

C. Fault Triggers 
Fault Triggers are pieces of code that enable a fault to be 

remotely injected. This includes both the trigger interface as 
well as the fault’s logic. Our framework includes triggers for 
direct faults and conditional faults. 

Direct faults are implemented as public methods added to 
the target class and inject the fault as soon as they are executed. 
AspectJ’s support for inter-type declaration allows us to weave 
these methods into the code after compilation. The methods are 
annotated with @DirectFault which specifies a fault name and 
description. By calling a method annotated with @DirectFault 
the described fault will be injected. Fig. 3 shows a direct fault 
that gracefully stops a service when it is injected. Notice that 
the injected fault represents the effect regardless of the failure 
that led to the fault (e.g., either an external hardware failure or 
an internal software error).   

 

Conditional Faults inject faults that take effect at a later 
time based on whether a condition becomes true. Conditional 
Faults have three components: 

• A field of type FaultCondition is added to the target 
class using inter-type declaration and is annotated with 
@ConditionalFault (which includes the fault name and 
description). 

• A point cut which describes where in the program 
execution the fault should be injected. 

• Advice which is triggered when the join point described 
by the point cut is reached. 

The advice checks if the FaultCondition returns true. If it 
does, then the specified fault code is triggered. If the 

Fig. 2. Assessment system architecture. 

Fig. 3. Example of a Direct Fault. 

@DirectFault(name="Stop service", 
description="Calls stop()") 
public void BaseService.stopService(){ 
 this.stop();  
} 



FaultCondition does not return true, the program execution 
proceeds as normal. By modifying the parameters in which a 
FaultCondition will return true, a conditional fault can be 
enabled or disabled. The current prototype supports the 
following built-in fault conditions: 

• DisabledFaultCondition, which always returns false. 

• EnabledFaultCondition, which always returns true. 

• ProbabilisticFaultCondition, which returns true a 
(configurable) percentage of the time. 

• QuantityFaultCondition, which returns true the first 
(configurable) n times. 

The code in Fig. 4 adds a condition to an InputChannel 
class and a fault which adds one second of latency to reads 
from that input channel. 

D. Web Based Analysis Tools 
Our prototype includes a Tomcat-based web application 

with the following: 

1. User interface,  

2. Metric collection,  

3. Executor for the experiment template,  

4. Analysis tools. 

The Web-based User Interface (UI) assists developers 
trying to assess system survivability. It includes a Fault 
Launcher window (Fig. 5(a)) that displays all of the currently 
registered faults and an interface that allows a user to manually 
trigger and enable specific faults.  

The UI also includes an Event Log which contains a time-
based graph of all reports, events, and metrics received by the 
framework and a detailed log of events (Fig. 5(b)). 

 The prototype includes a Fault Model Database that 
includes all the faults and targets that have been registered with 
the Fault Orchestrator. These are accessible through a UI that 
enables viewing and updating the contents of the database. The 
contents of the database are used to auto-complete fields while 
creating a new Fault Script.   

The web-based UI also enables a user to display all of the 
Experiment Templates; to execute, delete, or edit templates; or 
to create new experiment templates. Another page of the web-
based UI allows the details of a given experiment template to 
be displayed, along with a detailed history of executions of the 
experiment, the template’s actions, and its criteria. This page Fig. 4. Example of a Conditional Fault. 

@ConditionalFault(name="Add latency", 
   description="Sleeps for 1 second before 
reading from a channel") 
public LockableCondition  
  InputChannel.__fault002 = new 
LockableCondition(); 
before(InputChannel pic) :  
  execution(* InputChannel+.read(..)) && 
target(pic){ 
    if( pic.__fault002.isTrue()) { 
      Thread.sleep(1000);  
    } 
} 

 
Fig. 5. A Web interface that enables the user to (a) manually inject faults (left) and (b) observe system behavior (right). 



also provides the ability to add new actions and criteria to the 
template.  

  The history of experiment executions includes the 
following details:  

• Whether a Warning was recorded. 

• Whether a Failure occurred (i.e., an injected fault was 
not tolerated). 

• Start and end times for instances of experiment 
executions. 

• An event graph and table for events associated with 
specific experiment instances. 

• A summary of the faults that were injected during 
experiment executions. 

• A summary of criteria that were evaluated, i.e., to 
evaluate whether a fault was tolerated. 

V. APPLICATION OF THE ASSESSMENT FRAMEWORK 
TO A PUB-SUB SYSTEM 

This section provides a qualitative evaluation of 
implementing and assessing fault injection using our 
framework. We performed our evaluation based on a fault 
model that we developed for an existing service-oriented 
publish-subscribe information broker [7]. The fault model 
defines specific and detailed software faults that can manifest 
themselves in all components of the pub-sub software, but that 
fall into the five broad categories shown in Fig. 6(a). Based on 
this detailed fault model, we derived a set of detailed faults that 
could be injected by the framework, which fall into the broad 
categories shown in Fig. 6 (b).  

 We used the framework to implement faults in each of 
these and at the different localities in which they could 
manifest themselves (e.g., in system service logic, containers, 
third-party code, etc.). In all cases, we found our framework 
able to support the implementation of faults from within our 
fault model, as well as metrics and criteria capable of reflecting 
the usage requirements of our target application. The following 
sections provide some details of the specific faults and criteria 
at the level a developer hoping to utilize our framework for a 
new application would need. 

A. Mapping Fault Categories to AOP based Injection 
We implemented faults from each of the following 

categories: crash faults, timing faults, value faults, and 
omission faults (we have not yet addressed Byzantine faults). 
In addition, we implemented faults with varying localities, 
including at the service level, at the process level, and at the 
node level.  

We implemented crash faults at the service, container, and 
node level. Each case was implemented as a direct fault. At the 
service level, the aspect code calls specific pieces of the 
service’s stop method. To cause a crash at the JVM level, the 
aspect code calls System.exit. To cause a crash at the OS level, 
a fault controller that runs with root privilege invokes a direct 
fault that makes a system call to shutdown the OS. 

We implemented the timing faults with conditional faults 
affecting channels, a communication layer abstraction provided 
by the pub-sub software. The conditional faults add a sleep 
(periodically, probabilistically, or a certain number of times) to 
write and read calls. 

We implemented value faults at locations that the detailed 
fault model described as susceptible to value faults, e.g., due to 
incorrect inputs or errors in algorithms. We defined direct 
faults that randomize and nullify the state of various services. 
We also defined conditional faults that scramble data being 
received over network connections.  

We also defined omission faults at several locations. We 
defined omission faults that emulate disk failures and result in 
IO exceptions being thrown whenever attempts to read or write 
certain file system paths were made. Finally, we defined faults 
that simply drop information being read from or written to a 
network resource.  

As mentioned in Section III, our assessment framework 
prototype is being used as part of a nightly build process for the 
pub-sub system. The software is built and then an automated 
test framework runs through the full set of faults covering the 
fault model, using our prototype to inject each and assess 
whether the system tolerates the fault. 

B. Metric Collection and Criteria 
For our evaluation, we monitored the assessment criteria at 

the publication and subscription clients. At these endpoints, we 
were able to instrument end-to-end latency, loss of 
information, and throughput. These metrics were sufficient for 
us to assess the tolerance (or not) of crash, timing, and 
omission faults. In the case of value faults, we designed the 
experiments so that the value faults, if not tolerated, would 
affect the latency, loss, or throughput, so that we could utilize 
the same metrics. 

Latency and loss were both reported at each endpoint as 
partial metrics. A piece of aspect advice inserts a UID in each 
published message, and then publishes that UID and the 
current time. When the subscriber receives the message it 
publishes a partial metric containing the UID and the current 

 
(a) Categories of software faults in a pub-sub information 

broker 

 
(b) Categories of injected faults derived from the fault model.

Fig. 6. Fault model and categories of faults used to evaluate the assessment 
framework. 



time. The framework uses these partial metrics to calculate 
latency and to identify messages that are not received within a 
specific time (the effect window) as being lost. To collect and 
report throughput, the subscribing client simply reports the 
number of messages it receives per second.  

While we have described just a few of the metrics and 
criteria that we used for fault tolerance assessment, our use of 
AOP for our approach enables a much wider range. 

VI. RELATED WORK 

A. Fault Injection 
There are several fault injection frameworks available 

including research and commercial tools. Many of these inject 
at lower levels, including Ferrari [10], which utilizes software 
traps associated with memory accesses or timeouts, and 
ORCHESTRA [4], which utilizes network level fault injection.  

Our approach is targeted more toward the software fault 
tolerance associated with software services and the failures that 
might occur in software logic, corruption, misconfiguration, 
and so forth. The Hadoop File System [8] includes a fault 
injection framework built using AspectJ similar to that which 
we describe in this paper. The main differences between our 
framework and Hadoop fault injectors is that the Hadoop fault 
injector only supports probabilistic faults, i.e., not direct or 
other conditional faults, and our framework provides richer 
support for establishing criteria and metrics, and user interfaces 
supporting the assessment of fault tolerance.  

Chaos Monkey [2] is a fault injection framework recently 
released by Netflix, targeting services running in elastic cloud 
settings. The difference between our approach and Chaos 
Monkey is that Chaos Monkey only triggers crash faults and is 
not capable of covering the ecosystem of potential faults. 

Byteman [5] is an advice injection tool for Java that has 
also been used for fault injection within Java applications. 
Byteman interacts with a Java application via a JVM agent 
capability and allows a user to interact with the system using 
Event Condition Action rules written in the Byteman scripting 
language. In contrast, our framework exploits the programmer 
compatibility of AspectJ, resulting in fault injection code that 
looks and feels like the Java code of the targeted application. 
Byteman’s ECA rules include conditions that have to evaluate 
to true before the rule action is executed, so that it supports a 
form of conditional faults.  

B. Fault Detection/Diagnosis 
Research on fault detection and diagnosis in industrial 

settings [3] rely on quantitative and qualitative model and 
process history-based methods [17] and expert systems 
approaches [9]. 

C. Aspect Oriented Programming 
AOP has been used for other purposes beyond the fault 

injection and assessment functionality that we are targeting in 
this paper. Although logging is used as the common example 
of AOP’s use, it has grown into wide usage for many cross-
cutting concerns, including access control and security 

[15][18], storage management [11], and QoS management and 
monitoring [6] in object- and component-oriented systems. 

Techniques related to AOP have also emerged, although 
none appear to have gained the traction and approached the 
level of adoption. Two of the best known are Composition 
Filters [1], which utilizes wrapping and interception, and 
Subject-Oriented Programming or HyperSpaces [16], which 
eliminates the dominant decomposition (i.e., the functional 
concern) of AOP and treats everything as aspects that are 
composed to create an application. 

VII. CONCLUSIONS 
We have developed a prototype framework for assessing 

the survivability of distributed (and standalone) systems. Our 
framework utilizes AspectJ to provide not only a technical 
compatibility with target Java systems, but also programmer 
and tool compatibility. The use of AspectJ enables the 
collection of platform metrics and logging, which are canonical 
examples of AOP. We implemented this fault injection and 
metric collection within the context of a centralized Fault 
Orchestrator which provides users a direct interface to the 
assessment framework and a means of automating fault 
injection behaviors. We have used the framework to assess the 
fault tolerance of an existing distributed publish-subscribe 
middleware system. 

There are several directions for this work to progress in the 
future. Immediate gain could be accomplished by integrating 
this work with existing build and development tools. For 
example, hooks between the Fault Orchestrator and an 
automated build and continuous integration system such as 
Jenkins or custom fault controllers would enable the triggering 
of faults from test suites such as JUnit.  

Another opportunity for future work is further automating 
fault injection behaviors. In Pal et al [14], an automated means 
of determining the relationships between network events 
capable of compromising a running system is explored. Such 
techniques could be utilized to better assess system 
susceptibility to cascading faults. 
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