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Dispersion engineering of high-Q silicon microresonators via thermal oxidation
Wei C. Jiang,1 Jidong Zhang,2 Nicholas G. Usechak,3 and Qiang Lin1, 2, a)

1)Institute of Optics, University of Rochester, Rochester, NY 14627, USA
2)Department of Electrical and Computer Engineering, University of Rochester, Rochester, NY 14627,
USA
3)Air Force Research Laboratory, Wright-Patterson AFB, OH 45433, USA

(Dated: 12 March 2014)

We propose and demonstrate a convenient technique for precisely engineering the group-velocity dispersion in
high-Q silicon microresonators. By accurately controlling surface-oxidation thickness we are able to precisely
manage a silicon microdisk resonator’s zero-dispersion wavelength while simultaneously improving the high
optical quality of the device, achieving optical Q’s close to a million. The demonstrated dispersion manage-
ment allows us to achieve parametric generation at precisely engineered emission wavelengths. This shows
great potential for application in integrated nonlinear silicon photonics and integrated quantum photonics.

Four-wave mixing (FWM), a parametric process medi-
ated by the χ(3) optical nonlinearity, has found many
applications ranging from optical signal processing1,2

and frequency metrology3,4 to photonic quantum-state
manipulation5–8. In particular, FWM in high-quality
(high-Q) microresonators, which benefit from dramatic
cavity enhancement, enables intriguing functionalities
such as ultralow-threshold parametric oscillation9–11,
octave-spanning frequency comb generation12–16, and
high-purity photon-pair generation17. However, FWM
relies critically on the media’s group-velocity dispersion
(GVD) to support phase matching among the interact-
ing optical waves2. This is even more crucial in high-Q
microcavities where the narrow linewidths of cavity res-
onances result in an extremely tight tolerance for quasi-
phase matching. In recent years significant efforts have
been devoted to design a variety of device structures for
engineering device dispersion18–29. Nevertheless, due to
GVD’s extreme sensitivity to device geometry, the real-
ization of a desired dispersion in practice is still a chal-
lenging problem. In this paper, we propose and demon-
strate a simple but powerful approach for precise dis-
persion engineering in high-Q silicon microresonators.
Among other applications this enables efficient paramet-
ric generation of correlated photon pairs for quantum-
photonic applications.

Silicon exhibits a large Kerr nonlinearity for which it
has attracted considerable interest in recent years30–37.
However, its high refractive index, although supporting
tight mode confinement, leads to a strong waveguide-
dispersion component making the GVD very sensitive to
device geometry. Indeed, as a consequence of the imper-
fections associated with nanofabrication (however small
they are) this leads to the creation of devices whose GVD
is difficult to control through e.g. mask design. Still, one
excellent property of silicon photonic devices is that their
device-layer thickness can be precisely controlled through
thermal oxidation. This technique is widely used to pro-
duce an ideal insulating layer as a doping barrier in mi-

a)Electronic mail: qiang.lin@rochester.edu.

croelectronic devices38. Here we show that thermal oxi-
dation can also be employed to accurately tune the de-
vice dispersion while simultaneously preserving, or even
improving, the optical quality of the device by reducing
sidewall roughnss39.
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FIG. 1. Simulated GVD curves for the TM2 mode of a silicon
microdisk with an original thickness h = 260 nm and radius
R = 4.5 µm for different oxidation thicknesses. Insets show
the cross section of a silicon microdisk edge with a conformal
thermally grown SiO2 overlayer, and simulated optical field
profile for the TM2 mode of the silicon microdisk.

The device structure investigated in this work is
a silicon microdisk resonator which supports high-Q
whispering-gallery optical modes. The GVD of a mi-
crodisk is dominantly determined by the disk thickness.
Thermal oxidation38 consumes silicon by a thickness of
0.44tox and grows a conformal SiO2 overlayer with a
thickness of tox covering the disk core (Fig. 1, inset). This
benefits the dispersion engineering in two ways. First, the
thickness reduction of the silicon core changes the waveg-
uide confinement, thus modifying the device dispersion.
Second, the addition of the oxide overlayer covering on
the top slightly adjusts the waveguide boundary, thus of-
fering a further modification of the device dispersion. As
the amount of thermal oxidation can be manipulated in a
precise manner by controlling the oxidation time, we can
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FIG. 2. (a) The normalized transmission spectrum of the microdisk with no oxidation scanned by two tunable lasers (indicated
as blue and green) from 1470 nm to 1570 nm. The TM2 mode family is indicated by marked FSRs. The inset shows detailed
transmission of a TM2 mode at 1532.2 nm with theoretical fitting in red. (b) Measured intrinsic optical Qs versus oxidation
thicknesses for the TM2 mode of silicon microdisks (in red dots). The upper inset shows an SEM picture of the fabricated
silicon microdisk with R = 4.5 µm on a silica pedestal, and the lower one shows the fitted cavity transmission with a doublet
splitting of the TM2 mode for the device with oxidation thickness of 12 nm.

very accurately engineer the device GVD. For example,
Fig. 1 shows the simulated GVD of the second-radial-
order transverse-magnetic (TM2) mode for a silicon mi-
crodisk of different oxidation thicknesses. With an orig-
inal thickness h = 260 nm and radius R = 4.5 µm with-
out any oxidation, the device exhibits a zero dispersion
wavelength (ZDWL) around 1535 nm. However, thermal
oxidation of the device consuming 1.76, 3.52, and 5.28
nm of the microdisk’s silicon (this corresponds to creat-
ing an oxide overlayer of 4, 8, and 12 nm), is able to shift
the ZDWL to 1522, 1507, and 1489 nm, respectively.

To demonstrate the proposed dispersion-engineering
scheme, we fabricated four sets of silicon microdisk res-
onators with radii R = 4.5 µm on a standard silicon-on-
insulator (SOI) wafer, with a top silicon layer thickness
of 260 nm and a buried-oxide thickness of 2 µm. The
microdisk pattern was defined by electron-beam lithog-
raphy with ZEP520A positive resist, and then transferred
to the 260-nm silicon layer by fluorine-based inductively-
coupled-plasma (ICP) reactive-ion-etching (RIE) using
C4F8/SF6. The etching parameters were optimized to
achieve a smooth device sidewall. Subsequently, the
buried-oxide layer is isotropically etched by using hy-
drofluoric (HF) acid to form a silica pedestal. A scan-
ning electron microscope (SEM) image of a fabricated
microdisk is shown in Fig. 2(b). Thermal dry oxidation
of silicon is then performed separately on three sets of mi-
crodisks at 900◦C in the O2 ambience for 6, 15, and 26
minutes, to create a conformal oxide overlayer of thick-
ness 4, 8, and 12 nm, respectively. The fourth set of
microdisks without oxidation are used as a reference.

To characterize the optical properties of the fabricated
microdisk resonators, a mode-hop-free continuous-wave
tunable laser is launched into the devices by near-field
evanescent coupling through a tapered optical fiber (typ-
ical diameter is about 1 µm), and the cavity transmission
spectrum is obtained by scanning the laser wavelength
between 1470 nm and 1570 nm, which is calibrated using
a Mach-Zehnder interferometer. Fig. 2(a) shows the nor-

malized optical transmission spectrum of the microdisk
resonator with no oxidation. Different mode families can
be identified by their free-spectral ranges (FSRs). For
the TM2 mode, a high optical quality is measured consis-
tently over the broad scanning spectral range. The inset
of Fig. 2(a) shows the detailed cavity transmission of a
TM2 mode at 1532.2 nm, indicating a measured intrinsic
optical quality of Qi = 6.2× 105. Moreover, we find that
the measured Qi increases with the oxidation thickness
as shown in Fig. 2(b). For example, a higher intrinsic
optical quality of Qi = 9.8 × 105 is achieved for the mi-
crodisk with the 12-nm conformal oxide overlayer, clearly
showing the advantage of the silicon thermal oxidation
treatment for improving the device sidewall quality.

In general, the dispersion of a microresonator can be
characterized by the frequency mismatch between adja-
cent FSRs ∆ν = νm+1 − 2νm + νm−1 for each cavity res-
onance frequency νm with mode number m. For a micro-
resonator cavity, the GVD parameter β2 is closely related
to ∆ν and given by

β2 = − ∆ν
ν3

FSR(2π)2R
, (1)

where νFSR = νm+1 − νm is the FSR of the resonator,
and R is the radius of the resonator.

Fig. 3 shows the measured ∆ν and the corresponding
GVD for the TM2 mode for each of the four microdisks
with different oxidation conditions. It shows clearly that
the GVD curve is tuned toward shorter wavelengths as
oxide thickness increases. Accordingly, the ZDWL is tai-
lored from 1532 nm (no oxidation) to 1515, 1499, and
1487 nm for thermally grown oxide thickness of 4, 8, and
12 nm, respectively. This corresponds to a ZDWL tun-
ing rate of ∼ 3− 4 nm per nanometer of silicon oxida-
tion which, to the best of our knowledge, is the most ac-
curate dispersion engineering demonstrated to date18–29.
In particular, the frequency mismatch ∆ν for certain cav-
ity modes can be tuned to be within the corresponding
cavity linewidth, which will ensure optimum quasi-phase
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FIG. 3. The measured (a) frequency mismatch ∆ν and (b)
the corresponding GVD parameter for the TM2 mode of the
microdisks with different oxidation thicknesses.

matching for FWM. For example, an oxidation thickness
of 8 nm is able to achieve a ∆ν of -0.17 GHz around
1498.6 nm for the third set of devices, which is much
smaller than the cavity linewidth of ∼ 0.5 GHz. In prac-
tice, since silicon thermal oxidation is able to provide
nanometer-scale thickness control on the device, it should
enable very precise dispersion control, e.g., to accurately
compensate the frequency mismatch at the desired cavity
resonance induced by fabrication imperfection.

The demonstrated approach for precise dispersion en-
gineering exhibits great potential for broad applications
of nonlinear parametric processes. To show the power of
this technique, we applied it to achieve highly efficient
photon-pair generation with precisely engineerable emis-
sion wavelengths based on cavity-enhanced spontaneous
four-wave mixing (SFWM). The experimental setup for
measuring SFWM in our microdisk resonators is shown
in Fig. 4(a). To suppress out-of-band laser noise, the
pump laser passes through a bandpass filter and a coarse
wavelength-division multiplexer (CWDM MUX) before
being coupled into the device via the tapered fiber. The
pump wavelength is launched at the cavity resonance
for the TM2 mode where the ZDWL is located. The
device output, which consists of the optical pump and
the generated signal and idler, is separated into individ-
ual channels by a CWDM demultiplexer (DEMUX). The
photoluminescence (PL) spectra of the signal and idler
are recorded at each transmission port of the DEMUX
for easy suppression of the pump wave. Fig. 4(b) and
(c) show the SFWM spectra for the microdisk without

oxidation (pumping at 1532.2 nm) and that with an ox-
idation thickness of 12 nm (pumping at 1486.9 nm), re-
spectively. They show clearly that, by precisely tailoring
the ZDWL via thermal oxidation, a flexible selection of
photon-pair emission wavelengths can be achieved. The
spectrum of each emitted photon mode is so sharp that
it is beyond the resolution of our spectrometer (∼0.135
nm), implying the high coherence of generated photons.
The amplitude difference between the signal and idler is
primarily due to different external coupling efficiencies
of cavity modes to the tapered fiber. When the pump
mode is critically coupled to the cavity, the signal at the
shorter wavelength is under-coupled while the idler at
longer wavelength is over-coupled, resulting in a higher
photon extraction efficiency for the idler for both cases.

In summary, we have proposed and demonstrated a
convenient and powerful CMOS-compatible technique
for the precise management of dispersion in microdisk
resonators via silicon thermal oxidation. The demon-
strated dispersion engineering of high-Q silicon microdisk
resonators shows that thermal oxidation not only pro-
vides precise control of the ZDWL, to achieve the phase-
matching for the parametric process, but also reduces the
sidewall roughness thereby improving the device’s optical
quality. Although we use the microdisk as an example,
the demonstrated technique can readily be applied for
any type of silicon waveguides/microresonators, such as
microrings, photonic crystals, etc. Such a highly accurate
dispersion management technique immediately allows us
to achieve SFWM with precisely engineerable emission
wavelengths, which shows great potential for application
in integrated silicon quantum photonics.
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