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PREFACE 
 
This report details the methodology and findings of an auxiliary research effort aimed at “data-
driven” prediction of fabric barrier properties conducted at the U.S. Army Natick Soldier 
Research, Development and Engineering Center (NSRDEC), as part of Task IV (Advanced 
Modeling for Fabric Systems) of the Integrated Protective Fabric System (IPFS) Project 
(BA07PRO102) being spearheaded by NSRDEC and sponsored by the Defense Threat 
Reduction Agency (DTRA).  The work described was done from January 2011 to December 
2013. It illustrates the promise of machine learning for property estimation and defines the scope 
for deploying “big data” tools upon small databases.   
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EXECUTIVE SUMMARY 
 
Discerning patterns in “big data” by data mining is a hot topic:  Google searches, credit scores, 
stock picking, election strategies, and mail sorting (recognition of hand-written zip codes) are but 
a few ubiquitous applications.  The underlying use of computer algorithms to “learn” by 
exposure to raw data and make useful recognitions and reliable predictions falls under the rubric 
“machine learning”.  Inspired by the applications of machine learning in pharmaceutical drug 
design and computational toxicology, the U.S. Army Natick Soldier Research, Development and 
Engineering Center (NSRDEC) conducted an exploratory research effort, to make data-driven 
prediction of barrier properties of chemical protective gear. This effort, completed in December 
2013, was a part of Task IV (Advanced Modeling for Fabric Systems) of the Integrated 
Protective Fabric System (IPFS) Project—a multi-organization, multi-university, multi-year 
program spearheaded by NSRDEC, under the aegis of the Defense Threat Reduction Agency 
(DTRA).  
 
Being an incubator for envisioned military technologies and a testing laboratory in the supply 
chain of military procurements, NSRDEC is often called upon to characterize and assess 
developmental and commercial concepts and materials.  This task invariably involves the 
estimation of some property or another. In the case of chemical protective gear, a metric of 
interest is how effective the material is at stopping or slowing down the intake of chemical 
warfare agents (CWAs) or non-traditional threat agents (NTAs).  Correspondingly, the property 
to estimate is the diffusivity or permeability of CWAs and NTAs in the barrier materials.   
 
Property estimation is not a trivial task.  Handling threat agents is harmful and hence is usually 
avoided by the use of simulants.  Regardless of whether a chemical is an agent or a simulant, 
resorting to experimental measurements in each and every case would be impractical and costly.  
Ab initio prediction from first principles is not the answer either, since a suitable theory may not 
exist for every system. 
 
An alternative to measurement or theory is data-driven property estimation: make use of old or 
new property databases (on common solvents, past agents, and simulants interacting with the 
barrier material under investigation or similar barriers) and, by generalizing from the known to 
the unknown, predict the performance of the query chemicals in that barrier material.  Such 
methods are formally known as quantitative structure activity relationships (QSAR) or 
quantitative structure property relationships (QSPR): given the query chemical’s formula, 
structure, or a few key measured or calculated features, QSAR/QSPR would yield a property 
estimate.   
 
Traditional QSAR employs linear regression of available data using correlations based on 
intuition.  For example, the Potts-Guy correlation yields a chemical’s skin permeability, given its 
molecular weight and octanol/water partition coefficient.  Lately, correlations have been 
supplemented or supplanted by techniques of pattern recognition via unstructured or structured 
learning such as Classification and Regression Trees (CART), Artificial Neural Networks 
(ANN), and Fuzzy Logic. Specific “big data” applications in data-driven property estimation 
abound in the field of cheminformatics—a combination of data mining and computational 
chemistry.   



 
ix 

Cheminformatics is routine in pharmaceutical drug discovery by virtual screening to find 
synthesizable chemicals that may mimic the pharmacologic activity of a synthetic or natural lead 
drug or known active.  Cheminformatics is also being increasingly used in computational 
toxicology—under a deluge of new industrial chemicals—to assess chemicals of unknown 
toxicity, by searching for analogs that have known toxicity profiles and making predictions based 
on the available data on the analogs to arrive at toxicity estimates for the query chemicals. 
It became of interest to probe whether the power of such machine learning techniques can be 
harnessed to the task of predicting barrier properties for military applications.  A small 
exploratory effort was launched, tasked with applying such data-driven methods to address 
CWA/NTA behavior in conditioned polymer films.  The sub-tasks were to develop: 

 Experimental methods to measure chemical permeation through barrier materials. 
 Computational-chemistry capabilities to calculate a variety of properties or “molecular 

descriptors” given only the formula of a chemical. 
 Data-driven algorithms to predict the permeation of chemicals through barrier materials. 

The products of these three sub-tasks were categorized as “data”, “descriptors”, and 
“predictions”, respectively. 
 
The “data” comprise a database of target properties, mainly diffusion coefficients for 23 selected 
solvents in a commercial butyl rubber sheet, estimated from desorption transients measured 
using the immersion technique. The analysis underlying this parameter estimation was quite 
involved and made use of mass transfer models of varying complexity, including a novel 
nonlinear model that accounts for the de-swelling of the rubber sheet as desorption proceeds. 
 
The target property was the dependent variable (commonly denoted as Y) for establishing or 
“training” the prediction technique.  The solvents constitute the “data chemicals” for which the 
target property (here, the diffusion coefficient) is known from the above measurements.  The 
other moiety of chemicals, for which the target property is unknown and has to be predicted, 
constitute the “query chemicals”.  
 
Training also required independent variables (denoted as X), namely molecular properties or 
“descriptors” of the data chemicals.  Descriptors—which can be thought of as the “personal 
identification numbers” of the chemicals—also needed to be calculated for the query chemicals.  
With only the molecular formulas as the input, the descriptors were calculated using commercial 
computational chemistry software.  First, the molecules were rendered as structures in machine-
readable formats using one type of software (Spartan®).  Next, the structures were input to 
another type (Sarchitect®) that calculates all the descriptors.   

Not all of the descriptors are pertinent to every target property.  That is, not all of the 1,000 or so 
molecular descriptors were used while training the network or in using the trained network to 
make predictions.  In order to avoid “the curse of dimensionality”, key descriptors had to be 
selected for each type of target, either manually (based on expert opinion) or automatically, via 
“filter” or “wrapper” algorithms.  Filters use set selection criteria; e.g., that the chosen 
descriptors be correlated highly with the targets, but weakly with one another.  Wrappers try 
various sets (or combinations) of descriptors and arrive at the optimal descriptor set iteratively 
based on feedback from the prediction errors that result from each set.  Both filters and wrappers 
were pursued in this work initially, but eventually the culling of key descriptors was left to 
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expert choice.  With some straightforward coding—using genetic algorithms, for instance—
descriptor selection can be automated as well. 

A well-known structured learning technique—Artificial Neural Networks, or ANN—was 
implemented for data-driven prediction, yielding the “predictions”. The network was trained 
using a select few of the molecular descriptors and the target properties of the data chemicals (in 
terms of a hidden function: Y = f(X)); the trained network was then used to make the 
“predictions” given the “descriptors” of the query chemicals.   
 
The structure of the project is shown in Figure ES-1, with the outputs highlighted in yellow.  
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Figure ES-1  Data-Driven Property Estimation--Overview 
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The goals of the effort were met, with varying degrees of success.  The results, in outline: 
 Desorption transients of 23 organic solvents from a commercial butyl rubber sheet were 

measured using the immersion method. They were then comprehensively analyzed to 
obtain integral diffusion coefficients based on the linear constant-thickness, “Crank’s 
Solution”, as well as on a novel nonlinear model that accounts for swelling, and to obtain 
the parameters for solubilities using Flory-Huggins, Hildebrand, and Hansen theories.   

 Using commercial computational chemistry software (Spartan®), machine-readable 
molecular structures in Structure-Data File (SDF) format were built for these organic 
solvents (“data chemicals”), as well as about 60 threat agents and simulants (“query 
chemicals”).   

 Using commercial computational chemistry software (Sarchitect®) and based on the 
molecular structures, about 1,000 constitutional, topological, and conformational 
properties (“molecular descriptors”) were calculated for all the data and query chemicals.   

 A machine learning technique—ANN, for regression—was implemented, by means of 
NSRDEC-developed Matlab® software and detailed probing studies, to provide data-
driven prediction of target properties that characterize how chemical threat agents would 
permeate protective barrier materials.  The predictions, while not perfect, are good 
enough to be on par with literature precedents for predicting aqueous solubility of 
pharmaceutical chemicals. 

 Besides numerical data, descriptors, and predictions, this work generated: 
o Protocols (for using commercial computational-chemistry software to render the 

structures and calculate the descriptors)  
o Tutorials (on ANN applied to property estimation) 
o Matlab® codes (one set of codes for extracting diffusivity estimates from 

desorption transients and another set that, after some modifications, can be used 
for predicting a host of other properties of interest besides diffusion coefficients).  
The codes have many options and features and a coding-style aimed at error 
avoidance, extensive commentary, and displays and provisions for comprehensive 
record-keeping. 

 
This work has brought out the power and promise of machine learning for property estimation 
and delineated the scope for deploying “big data” techniques on small databases: 

 Bayesian regulation ANN (BRANN) is ideal for small datasets since it avoids, unlike 
other neural network algorithms, the need for setting aside a portion of the training data 
for internal validation, thus reducing the data demand. 

 In QSAR or QSPR, prediction accuracy depends crucially on data clarity and coverage.  
That is, what the network is being fed as training target data must genuinely represent the 
phenomenon being investigated and not be obscured by spurious effects, imprecise 
measurements, or fitting-model inaccuracy, especially if the “data” are not directly 
measured quantities such as aqueous solubility, but are actually theory-based estimates of 
some parameter, e.g., diffusion coefficient, as in the present case.   

 Because structure-activity relations invariably involve nonlinearities that cannot always 
be linearized by merely taking logarithms, it is better to use the raw descriptors directly 
as independent variables, instead of linear combinations of the descriptors such as 
statistical principal components.   
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 The data chemicals should cover a broad range of the descriptors that are significant to 
the underlying phenomenon; for example, if molecular weight is a key descriptor, the 
weights of the molecules chosen must include at least one high value and one 
comparatively low value as in a two-level factorial design of experiments.  

 If the range of key descriptors in the training set is broad enough for the network to 
“learn” the dependence of the target property on the descriptors, similarity between data 
and query chemicals is less of a requirement. 

 The minimum number of data chemicals should equal or exceed the number of effective 
parameters (in the target-descriptor relationship), which, incidentally, may not be more 
than a few in macroscopic phenomena like permeation.  In fact, a posteriori estimates 
(that are an output of the algorithm used for training the network) put the number of 
effective parameters around five or six in the present cases. 

The last point brings out an important difference between standard data mining and QSAR.   
Standard “big data” involves pattern recognition by sifting through very large but subjective 
databases—faces, hand-writing, key strokes, stock prices, voting, and such.  Cheminformatics 
aimed at pharmaceutical drug discovery involves needle-in-the-haystack pattern recognition 
amidst elusive and complex biological phenomena.  In contrast, data-driven QSAR involves a 
clinical analysis of carefully curated data on relatively well-defined physicochemical systems.   

In sum, the training database for data-driven QSAR for physicochemical properties need not be 
big, in principle.  In practice, however, more data chemicals would be needed if the data are 
noisy or display less variance in a key descriptor; the phenomenon of “regression to the mean” 
should result in successful training and prediction with increasingly large databases.  That is, 
while a large database size does not guarantee prediction accuracy, with a large database the 
network may be able to avoid overfitting to the noise and detect the true patterns, i.e., capture the 
underlying generalities in the data without memorizing data idiosyncrasies.  However, since cost 
considerations drive down the number of data chemicals, data quality remains paramount. 

Data-driven methods can be used to predict not just permeation, but also many other 
physicochemical properties: solubilities, vapor pressures, partition coefficients, chemical 
degradation products, and, with additional effort, toxicity metrics.  That is, the prediction codes 
developed in this work are not restricted to the diffusivity database, but can be used to make 
predictions of other physicochemical or toxicity properties, with some modifications, given the 
appropriate databases.  Subject-matter expertise would be helpful in descriptor selection, 
however, i.e., in deciding which molecular features are important for the target property to be 
predicted.  With some additional coding descriptor selection can be automated as well.   

Despite the challenges of the original remit of the task, the effort has demonstrated and 
strengthened NSRDEC expertise in cheminformatics, a discipline that has much potential for 
addressing important DTRA objectives such as computational toxicology of NTAs. 
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DATA-DRIVEN PROPERTY ESTIMATION FOR 
PROTECTIVE CLOTHING 

 

CHAPTER 1 INTRODUCTION 
 
This report details an exploratory effort, completed in December 2013, for making data-driven 
prediction of barrier properties. This project was a part of Task IV (Advanced Modeling for 
Fabric Systems) of the Integrated Protective Fabric System (IPFS) Projecta multi-organization, 
multi-university, multi-year program being conducted by the U.S. Army Natick Soldier 
Research, Development and Engineering Center (NSRDEC) under the sponsorship of the 
Defense Threat Reduction Agency (DTRA).  
 
As an incubator for envisioned military technologies and as a testing laboratory aiding military 
procurements, NSRDEC is often called upon to characterize and assess developmental and 
vendor-proffered materials.  This task invariably involves property estimation. In the case of 
chemical protective gear, the property to estimate is the diffusivity or permeability of chemical 
warfare agents (CWAs) and non-traditional threat agents (NTAs) in the barrier materials.   
 
Property estimation is not a trivial task.  Handling threat agents is harmful and hence is usually 
avoided by the use of simulants.  With agents or simulants, resorting to experimental 
measurements in each and every case would be impractical and costly.  Prediction from first 
principles is not a panacea either, since a suitable theory may not exist for every system. 
 
An alternative to measurement or theory is data-driven property estimation: make use of old or 
new property databases (on common solvents, past agents, and simulants interacting with the 
barrier material under investigation) and predict the performance of known and new query 
chemicals in that barrier material.  Such methods are formally known as quantitative structure 
activity relationships (QSAR) or quantitative structure property relationships (QSPR). Given the 
query chemical’s formula or structure, QSAR/QSPR would yield a property estimate.   
 
Traditional QSAR employs linear regression of available data using correlations based on 
intuition.  Lately, however, correlations have been supplemented or supplanted by computer 
science techniques of qualitative and quantitative pattern recognition via unstructured or 
structured learning such as Classification and Regression Trees (CART), Artificial Neural 
Networks (ANN), and Fuzzy Logic.  Ubiquitous applications of such “big data” techniques 
include Google searches, credit scores, stock picking, election strategies, and recognition of 
(hand-written) zip codes.  Specific applications in data-driven property estimation abound in the 
field of cheminformatics—a combination of data mining and computational chemistry.   
 
Cheminformatics is routine in pharmaceutical drug discovery by virtual screening to find 
synthesizable chemicals that may mimic the pharmacologic activity of a synthetic or natural lead 
drug or known active.  Cheminformatics is also being increasingly used in computational 
toxicology—under a deluge of new industrial chemicals—to assess chemicals of unknown 
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toxicity by searching for analogs with known toxicity profiles and by making predictions based 
on the available data on the analogs to arrive at toxicity estimates for the query chemicals. 
It became of interest to probe whether the power of such machine-learning techniques can be 
harnessed to the task of predicting barrier properties for military applications.  The main goal of 
this effort was to apply such data-driven methods to address CWA/NTA behavior in conditioned 
polymer films.  The sub-tasks were to develop: 

 Experimental methods to measure chemical permeation through barrier materials. 
 Computational chemistry capabilities to calculate a variety of properties or “molecular 

descriptors” given only the formula of a chemical. 
 Data-driven algorithms to predict the permeation of chemicals through barrier materials. 

Correspondingly, this report is divided into three chapters in addition to the Introduction and 
Conclusions: Chapter 2, Data; Chapter 3, Descriptors; and Chapter 4, Predictions. 
 
Chapter 2 details the development of a database of target properties—diffusion coefficients, 
polymer solubility parameters, and solvent volume fractions—for 23 selected solvents in a 
commercial butyl rubber sheet, from desorption transients measured using the immersion 
technique.   (Future reports shall detail alternative measurement methods such as the drop 
volume technique.)  Such target properties constitute the dependent variables (commonly 
denoted as Y) for establishing or “training” the prediction technique.   
 
Chapter 3 details the development of the database of molecular descriptors for data and query 
chemicals. The molecular descriptors, namely molecular properties of the solvents which are the 
“data chemicals”, constitute the independent variables (denoted as X) required for training the 
prediction technique.  Descriptors also had to be calculated for the “query chemicals” for which 
the target properties were predicted using the trained method. With only the molecular formulas 
as the input, the descriptors were calculated using commercial computational chemistry software.  
 
Chapter 4 details how a well-known structured learning technique—ANN—was implemented, 
by means of in-house developed software and detailed probing studies, to provide data-driven 
prediction of target properties that characterize how CWAs would permeate in protective barrier 
materials.  The network is trained using data chemicals for which molecular descriptors as well 
as target properties are known (in terms of a hidden function: Y = f(X)); the trained network is 
then used to make predictions for query chemicals for which only the descriptors are known.   
 
The structure of the project is shown in Figure 1, with the outputs or deliverables highlighted in 
yellow. Besides numerical results (namely, diffusivity data, and predictions for a small set of 
data and query chemicals), the project’s outputs also included useful databases (of molecular 
structures in machine-readable formats and about 1,000 molecular descriptors for each 
chemical), protocols (for using commercial computational-chemistry software to render the 
structures and calculate the descriptors), a tutorial (on ANN), and Matlab® codes for estimating 
solubility and diffusivity parameters from desorption transients and, for predicting diffusion 
coefficients (and, after some modifications, a host of other properties of interest). 
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Figure 1  Data-Driven Property Estimation—Overview 
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CHAPTER 2 DATA 
 
2.1 BACKGROUND 
In order to evaluate the level of chemical protection provided by a material, it is necessary to 
predict the rate of permeation through it. Because of the hazards of working with CWAs even in 
a controlled laboratory environment, studies are usually conducted not directly on CWAs, but on 
less toxic chemicals similar to the CWAs in structure and physicochemical properties. With a 
large group of simulants or ordinary chemicals covering a wide range of functionalities and 
properties, a database can be established that will enable prediction of permeability of CWAs, 
using advanced statistics and computational chemistry.  Towards this goal, solubility and 
diffusion coefficients were estimated from the rates at which solvents desorb from butyl rubber.  
The underlying analyses and coding were invested with a great deal of intensity and attention 
since the resulting estimates constitute the “data” in data-driven prediction with the predictions 
being acutely sensitive to data quality, especially when the database is small.  Amidst the vast 
literature on diffusion in polymers (reviewed in Refs. 1-3), the literature search was focused on a 
few key topics: butyl rubber [4-8], parameter estimation [9-11], and swelling [12]. This chapter 
details development of a database of diffusion coefficients for 23 solvents in a commercial butyl 
rubber sheet, from desorption transients measured using the immersion technique. 

2.2 EXPERIMENTAL METHOD 

2.2.1 Materials 
The number of solvents had to be small to cut costs, but an attempt was made to choose solvents 
that are diverse in structure.  Butyl rubber was obtained from Midwest Rubber Sales as a large 
1/32-in thick sheet, which was cut into disks for testing approximately 5 cm in diameter and 0.7 
mm thick. (If necessary, the same measurements can be done on commercial glove materials.) In 
this report, as in the literature, the terms “disk”, “membrane”, and “film” are used 
interchangeably. The measurements were performed in screw-top jars with a layer of glass beads 
at the bottom to prevent the disk of butyl rubber from lying flat on the bottom of the jar, as 
shown in Figure 2, in order to maintain a uniform environment on both sides of the disk.  

 

Figure 2  Immersion Test Schematic 
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2.2.2 Measurements 
The jars were cleaned with isopropyl alcohol; the disks were rinsed in water, air-dried, weighed, 
and submerged in the solvent under study.  In order to avoid the errors associated with additives 
leaching out, measurements were made during desorption instead of absorption: 

1. First, a disk was submerged in the solvent and taken out daily to be weighed. This helped 
establish the duration required to reach saturation (2 to 20 days), indicated by the sample 
mass not increasing by more than 1% in a 24-h period.  

2. Second was the preparatory stage where multiple butyl rubber samples were submerged 
in the solvent inside individual jars for the duration determined in the first step.   

3. In the third and final stage of data collection, the samples were removed from the solvent 
and placed upright in short vials, exposing both sides of the sample to air. In this 
desorption stage, which typically lasted several days, and in some cases weeks, periodic 
measurements of the sample mass (or, loosely, “weight”) were made. 

A few other weights are also significant:  (the weight of the pristine disk, before any sorption 
or desorption),  (after the soaking step), and  (at the end of desorption).  Ideally, the 
ultimate weight at the end of desorption should be the same as the weight of the pristine disk.  In 
reality is invariably smaller than  because of additives leaching out during the soaking 
step.  Further,  is also subject to uncertainty when diffusion is very slow or the 
measurements are stopped prematurely; hence, may be an adjustable parameter besides D. 

2.3 DATA ANALYSIS AND THEORY 

2.3.1 Weights 
The amount of additives is set as the difference between and the measured or fitted . 

         (1a) 

The initial solvent loading is obtained from the weights after soaking and after complete 
desorption.  

 
 

        (1b)
 

Correspondingly, the weight of the polymer moiety is given by 

 
 

       (1c)
 

The solvent-to-polymer weight ratio or “Swelling Ratio” [5] is calculated as 

 
 

       (1d) 

Another ratio of interest: the solvent loading to the amount of additives.  

 
 

       (1e)
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2.3.2 Sorption 
Based on the solvent loading ratio , the polymer volume fraction is calculated as

         (2) 

The relevant solubility theory draws from two theoretical canons: polymer-solvent interactions 
originally developed by Flory and Huggins, and solubility parameters originally proposed by 
Hildebrand and developed further by Hansen.  Defining the energy parameter in terms of 
solubility parameters was an innovation due to Zellers, Hardy, et al. [6-8].  The sorption theory is 
amply detailed in Ref. 8.  Here, summarizing the final equation should suffice. 

        (3)
 

The left-hand side is calculated entirely based on the measured polymer fraction, .  The right-
hand side involves many fixed and adjustable parameters.  The coefficient  is calculated using 
the properties of the solvent (which can be found in handbooks) and the properties of the 
polymer (treated as adjustable parameters). 

          (4) 

The Flory-Huggins interaction parameter  comprises an energy part  that is a function of 
several adjustable parameters and an entropy part , which is by itself an adjustable parameter. 

          (5) 

SV  is the molar volume of the solvent, and A is the square of the “distance” between solvent and 
polymer in the space of solubility parameters. 
 

      2
hPhS

2
pPpS

2
dPdS baA      (6) 

 

The deltas are the solubility parameters.  The lower-case subscripts d, p, and h denote dispersion, 
polar, and hydrogen-bonding, respectively.  The subscripts S and P denote solvent and polymer.  
It is important to note that, in accordance with Ref. 8, “a” is set to 1 and “b” is fixed at 0.25.   

In summary, for each solvent, four input parameters (the three deltas and the molar volume) are 
looked up in a handbook [9].  These, along with the measured polymer fraction, are input to an 
interactive nonlinear least squares regression program (using the Levenberg-Marquardt 
algorithm) in Matlab®.  The program finds the best-fit estimates for the four adjustable 
parameters: the three deltas for the polymer and the entropy parameter.   

A pertinent discussion of units (of solubility, diffusivity, and permeability) is given in Appendix 
A. 
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2.3.3 Diffusion 
For analyzing the desorption transients to extract diffusion coefficients, the weights are 
normalized to yield the fractional uptakes as: 
 

 
 

        (7)
 

In desorption, the fractional uptake starts at unity and declines to zero with time.  Desorption 
transient data were first probed for diffusion anomalies, next fitted to a classic linear theory, and 
finally fitted to a numerical solution of a nonlinear model to account for (de-)swelling. 

2.3.4 Diffusion Anomalies 
In a standard classification [10 (Section 11.1)], diffusion in polymers falls into three types: Case 
I (Fickian), in which diffusion is slower than the relaxation of the membrane structure; Case II, 
where diffusion is fast and structure-relaxation is the rate determining step; and non-Fickian, 
with comparable diffusion and relaxation rates.  In a power-law fit (eq. 8), Case I and Case II 
systems are characterized by n = 0.5 and n = 1.0, respectively, and the non-Fickian by 
intermediate values of n.  The present data were subjected to this test, after modifying the power 
law to suit desorption, and restricting the fit to the initial stages of desorption (i.e., small times): 

         (8) 
 

2.3.5 Liner Diffusion Theory 
Regardless of diffusion anomalies, all desorption transients were first analyzed using the classic 
“Crank’s Solution”— for of 1-dimensional Fick’s law diffusion and linear Henry’s law sorption, 
omitting swelling and concentration dependences [10 (Eq. 4.23)], modified for desorption: 

     (9) 

 

 

Extracting the diffusion coefficient using this series in full or approximations thereof has evolved 
into an art form, comprehensively summarized by Balik [11].  Consult Ref. 11 for details of the 
various approximate and exact methods.  A précis is given in eq. 10 to 15:   
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      (10)  
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Short-Times Series: 

     (12)  

Long-Times: 

        (13)  

First Moment: 

         (14)  

Balik [11] introduced two effective combinations of the short- and long-times solutions.  Both 
combinations have the same form (Eq. 15) and the same dimensionless time (Eq. 16), and both 
are based on the same short-times solution (Eq. 17) and the same long-times solution (Eq. 18).   

Balik Solution for the Full Transient: 

      (15)    

Dimensionless Time:        (16)  

Small-Times Solution:        (17)  

Long-Times Solution:      (18)  

The Balik solutions differ in how the weighting term )x( is defined—using a Step function (Eq. 
19a) or a Fermi function (Eq. 19b).  

Weighting Term Using a Step Function To Combine f(x) and g(x): 

        (19a)  
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Weighting Term Using a Fermi Function To Combine f(x) and g(x): 

 (19b)  

 
2.3.6 Evaluating Film Thickness 
It is important to re-emphasize that Eq. 9 to 19—normally presented for sorption—have been 
modified to suit desorption.  Also, all the fits yield not “D” directly, but D/d2.  The D estimate is 
then calculated by multiplication with d2.  The “d” in these equations denotes the constant, full 
thickness of the disk (as opposed to half-thickness “h” used in a subsequent model that accounts 
for swelling).  Based on the insights gained from the latter model, this work incorporates an 
improvement over the literature in how “d”, even in the “constant-thickness” equations, is 
evaluated:  Traditionally, the Crank’s Solution and all the other estimates would be based on ddry, 
the thickness of the pristine membrane (consistent with ignoring the effects of swelling).  When 
swelling is significant, this approach can confound the D estimate significantly; e.g., by a factor 
of 12, when the thickness of the swollen membrane at the beginning of the desorption step can be 
3.5 times as large as ddry. 

Here, for each D/d2 estimate, a suitable average value of d is used instead of ddry.   
 
The thickness “d” is expressed as a function of the fractional uptake, assuming that swelling is 
solely a function of the solvent volume fraction (i.e., neglecting any volume change of mixing 
and omitting the polymer’s free volume).  The justification for this equation will become 
apparent in the context of the final result.  At this point, it is sufficient to note that  is the 
solvent volume fraction at the beginning of desorption. 

 

 (20) 
 
 
 
Instead of using the same thickness in every equation, a novel alternative was derived for 
keeping track of the change in thickness during the time-range of the desorption transient:  First, 
the terminal values of the thickness (at the start and at the end of the time-range that is covered 
by the fit) are evaluated by substituting the corresponding fractional uptakes in Eq. 20. Next, the 
effective thickness is set to be the average of the two terminal values, as in Eq. 21.   
 

    (21)  
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While the authors arrived at this ruse (Eq. 21) by intuition and trial and error, there may be a 
theoretical justification for it based on using the proper frame of reference when diffusion is 
accompanied by swelling, as noted rather cryptically in the context of Eq. 10.161 in Ref. 10. 

2.3.7 Evaluating End Weight  
As noted previously,  is subject to uncertainty, for instance when diffusion is very slow or 
the measurements are stopped prematurely.  Accordingly, the desorption transients are first fitted 
using Eq. 9, with  as an adjustable parameter besides D; the to be used in subsequent 
calculations is then interactively selected by the user from the following choices: fitW , FW , 

and the last two measured weights in the desorption transient.  In all the present cases, the 
experimentally measured weights were chosen, either the ultimate weight or the penultimate one 
(when the time gap between the last two data points far exceeded that between the others).  With 
the chosen , the data were re-fitted to the various models, with only the diffusion coefficient 
as the adjustable parameter. 

2.3.8 Accounting for Swelling 
The membrane thickness is assumed to be a constant in the Crank’s Solution and its variants 
described above.  This assumption is tenuous, especially in cases where the initial solvent 
loading is high.  Based on a model of Altinkaya et al [12], treating swelling as a moving-
boundary problem and omitting external mass transfer resistances, a numerical solution was 
developed in this work, specifically aimed at isothermal desorption under large solvent-activity 
differentials, which is detailed in the following subsections.  The present model is a simplified 
version of the one by Altinkaya. Both models treat swelling as a moving-boundary problem and 
omit external mass transfer resistances.  Key differences are: 

(1)  Here, heat transfer is assumed to be fast enough to keep the system isothermal, which is 
reasonable for liquid diffusants (unlike for gases/vapors).   

(2) Only one side of the film is open to mass transfer in the cited model; the other is 
impermeable.  Here, both sides are open; by symmetry, the problem needs to be solved 
for only half the film. 

(3) This model is tailor-made for desorption (but can be easily modified for sorption). 

2.3.8.1 Solvent Mass Balance  
 

        (22)   

2.3.8.2 Moving Boundary or Evolution of Film Thickness  
The following equation can be derived from the polymer- and solvent-fluxes and a jump 
boundary condition.  In essence, any change in film thickness is due to the polymer flux (equal 
and opposite to the solvent flux).  

 

 (23) 
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Upon rearrangement, this yields: 

   (24)   

2.3.8.3 Boundary Conditions 

Sorption Equilibrium at the Film-Solvent Interfaces: 

:        (25)   

 is specified indirectly through the Flory-Huggins equation:   

, where,      (26)   

 and,        (27)   

.          (28)   

The solvent concentration/activity in the film at the interfaces corresponds to the external 
solvent-vapor partial pressure.  For a pure liquid or saturated vapor, .  The proper 
experimental procedure is differential desorption, decreasing the solvent activity in many small 
steps from unit- to zero-activity, e.g., using a vacuum microbalance.  For integral single-step 
desorption, however, the external activity is reduced precipitously from  to  (and

).  While this poses theoretical difficulties (concentration dependent diffusion, 
violation of the thermodynamic reversibility condition that underlies Fick’s law, stiff differential 
equations, etc.) single-step desorption is the norm in practical situations such as drying. 

Symmetry condition at the Film Center: 

:         (29)   

2.3.8.4 Initial Conditions 

Solvent Loading (Uniform): 

:   where,   (30)  
 

Film (Half-) Thickness: 

:         (31)   
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2.3.8.5 Switching to Volume Fractions 
Equation 28 , verifiable by a units-check, permits a condensation of eq. 22, 24, 25, 

29, 30, and 31 into eq. 32, 33, 34, 35, 36, and 37, respectively: 

          (32)   

       (33)   

  : .       (34)   

  :         (35)   

:   where,    (36)   

  :         (37)   

Before solving, it is advisable to transform the moving-boundary into a pseudo fixed-boundary 
and to non-dimensionalize the equations. 

2.3.8.6 Moving-Boundary Transformation 
The “Landau Transformation”—of the moving-boundary to a fixed-boundary—consists of 
normalizing the distance coordinate “x” by the time-dependent film thickness.   

  or,         (38)    

This entails a change of the differentiation operators with respect to distance and time [13].  

  and  (39)    

The governing equations and the external boundary condition (Eqs. 32 to 35) change accordingly: 

        (40)   

          (41)  
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  : .       (42)   

  :         (43)   

2.3.8.7 Nondimensionalization 
Scaling can transform the actual variables (which differ by orders of magnitude) into 
dimensionless variables that are comparable in magnitude, thus avoiding ill-conditioned 
matrices.  Defining: 

         (44)
 

         (45)
 

        (46)
 

,          (47) 

 
the final equations can be listed as a partial differential equation (PDE) coupled with an ordinary 
differential equation (ODE)—Eq. 48c and Eq. 49, respectively—which have independent 
variables y and  and dependent variables  and : 
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Boundary Conditions: 

:  
 

       (50)   

:  .      (51)   

Initial Conditions: 

:          (52)   

:          (53)   

2.3.8.8 .Metrics Derived from Solutions 
For a desorption step that goes from time zero to time infinity, the film will have a constant 
solvent volume fraction throughout, both at the beginning and at the end. The initial value is 
and the final value is .  At times in between, there will be a solvent volume fraction profile: 

 

The dimensionless uptake (which will go from 1 to 0 as “t” spans 0 to ) can be expressed as: 

 
       

(54)
  

The film thickness transient is simply:
 

          (55) 

2.3.8.9 Expectations 
The equations are now ready to be solved, but it is instructive to pause and establish bounds on 
the anticipated results by means of an approximate analysis, beginning with the moving-
boundary equation.  It is appropriate to note that these particular bounds are novel, not disclosed 
in the prior art to the best of the authors’ knowledge.  For the sake of clarity, the bounds are 
developed by going back to the original equations (specifically, Eq. 23). 

     (56)

 

Integrating this equation and applying the initial condition for the film thickness results in:  

      (57)
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The integral on the right-hand side can be recognized as the cumulative polymer flux (i.e., the 
negative of the solvent flux), which should equal the cumulative reduction in solvent loading, 
which in turn is related to the uptake and film-thickness transients. 

  
 

(58)
 

Rearranging eq. 54, 
 

       
(59) 

Since , (60) 

 

           (61) 

 
This result has the correct limits, namely, since: 
 

         (62) 

 
Substitution of this limit in Eq. 61 yields: 
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The latter limit correctly implies that the polymer moiety of the film thickness stays constant.  

 (66) 

This is an important benchmark, or a “conservation test”, that the numerical solution must meet; 
that is, the thickness transient from the numerical solution should equal the thickness transient 
calculated algebraically by substituting the desorption-transient from the numerical solution into 
Eq. 61.  This operation is detailed in Eq. 67: 

   

  (67)

 
 
 

Conversely, the desorption-transient from the numerical solution should equal the result of 
substituting the thickness transient from that solution into the converse of Equation 67: 
 

 

 (68)

 
 
 

In the present case of single-step desorption with     

and        (69) 

 

 

.         (70)

 

After all the solvent desorbs, the film shrinkage equals the initial solvent volume fraction.   

This exercise also provides an approximate swelling model that can be used in parameter 
estimation: use the Crank’s Solution (Eq. 9), but update the film thickness as a function of time 
based on the changing uptake.  This approximation is outlined below. 

The linear case involves a series summation any given “t”, with a constant “h”: 

 (71)   

(Note: Eq. 71 is the same as Eq. 9, with the difference that h0 here is the half-thickness whereas d 
in Eq. 9 is the full thickness.)  When swelling is included, the series is still summed, but over a 
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fine time-grid, and the thickness is altered by substituting 
 
(from the previous time point) in 

Eq. 72 and substituting the resulting thickness in Eq. 73:    

 

      (72) 

	
Swelling	Approximation: 

      (73) 

2.3.8.10 Numerical Solution 
The coupled partial and ordinary differential equations were solved using the method of lines, as 
implemented in the Matlab® code “pdepe”, which is based on an algorithm put forward by Skeel 
and Berzins [14, 15].  The spatial derivatives were discretized using finite differences, and the 
resulting ODEs were solved using the Matlab® ODE solver ODE15s (which is designed to 
handle “stiff problems” that involve disparate scales in time or space).   

Significant work was involved in customizing the standard Matlab® solver to suit the peculiar 
source terms.  Also nonstandard, but apparently effective, was the innovative use of a routine for 
solving coupled PDEs to solve the present PDE-ODE couple.   

2.3.8.11 Using Numerical Solution for Parameter Estimation 
As is discussed later, the simple Crank’s Solution with a constant thickness (Eq. 9) cannot be 
expected to fit the data for high solvent/polymer ratio cases.  The ad hoc modification of the 
Crank’s Solution (adjusting thickness as a function of loading by Eq. 72, assuming that swelling is 
related to solvent volume fraction) can offer an excellent fit, but is theoretically unsound, yielding 
a D-estimate that is not physically meaningful.  It would be best to fit the data to the Altinkaya 
model that accounts for swelling exactly, but the numerical solution is too computer-time 
intensive to be called numerous times by the parameter-estimation algorithm. The breakthrough 
out of this impasse came as the following ruse: solve the numerical solution only once, and 
tabulate the results in dimensionless form—fractional uptake versus dimensionless time:   

        (74) 

The function-evaluation routine (which gets called by the parameter estimation routine many 
times, with different values for the parameter D at each iteration) first converts the experimental 
real times into

 
dimensionless times and evaluates the corresponding fractional uptake by 

interpolating the tabulated numerical solution.  These uptakes then constitute the "theoretical" 
desorption transient, which is compared with the experimental one, and the sum-of-squares of 
errors (SSE) is calculated; D is altered using the Levenberg-Marquardt algorithm until SSE is 
minimal.  This fitting-via-interpolation was first validated by applying it to the Crank’s Solution 
and the swelling approximation cases; it yielded D estimates that were identical to the estimates 
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in which the fractional uptakes were calculated afresh at each iteration while converging to the 
best fit using the model in question. 

2.4 RESULTS  

2.4.1 Sorption 
The solvent-to-additive and solvent-to-polymer ratios are summarized in Table 1. 
 

Table 1  Sorption Loading Ratios: 
Solvent to Additives and Solvent to Polymer 

SOLVENT S/A S/P 

Acetonitrile 0.96 0.05 
1Butanol 1.10 0.05 
2-Ethoxyethanol 1.36 0.04 
N,N-Dimethylformamide 4.48 0.06 
N,N-Dimethylacetamide 2.85 0.13 
Ethylene Glycol Butyl Ether 2.17 0.12 
1-Methyl-2-Pyrrolidinone 3.69 0.15 
Benzonitrile 2.78 0.19 
Benzaldehyde 45.10 0.50 
Ethyl Acetate 4.05 0.17 
1,2-Dichloroethane 4.54 0.24 
Butylamine 6.79 0.48 
Dichloromethane 13.96 0.86 
Benzene 10.14 0.78 
Hexane 15.88 0.78 
Heptane 17.40 0.80 
Tetrahydrofuran 19.76 1.26 
Triethylamine 23.49 1.01 
para Xylene 22.06 1.31 
Mesitylene 36.34 1.19 
Chloroform 94.55 2.37 
Trichloroethylene 43.60 2.93 
Tetrachloroethylene 90.26 3.30 

S/A = Solvent to additives   
S/P = Solvent to polymer 

 
The range of values for several solvents in the present butyl rubber sample is shown in Table 
2, along with the solubility parameters for the solvents.   

p
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Table 2  Sorption Equilibrium Properties 

 
The results of solubility-data regression are displayed in Figure 3.  The same analysis procedure 
was also applied to the data in Refs. 7 and 8.  The coefficients are compared in Table 3. 
 

SOLVENT  φ
P
  

 

(MPa0.5) (MPa0.5) 

 

(MPa0.5) 
VS 

(cm3/gmole)

Acetonitrile 0.932 15.3 18.0 6.10 52.2 
1-Butanol 0.926 16.0 5.7 15.80 91.5 
2-Ethoxyethanol 0.949 16.2 9.2 14.30 96.9 
N,N-Dimethylformamide 0.936 17.4 13.7 11.30 73.1 
N,N-Dimethylacetamide 0.855 16.8 11.5 10.20 92.7 
Ethylene Glycol Butyl Ether 0.858 16.0 5.1 12.30 131.3 
1-Methyl-2-Pyrollidinone 0.850 18.0 12.3 7.20 96.4 
Benzonitrile 0.808 17.4 9.0 3.30 103.0 
Benzaldehyde 0.645 19.4 7.4 5.30 101.8 
Ethyl Acetate 0.813 15.8 5.3 7.20 97.7 
1,2-Dichloroethane 0.786 19.0 7.4 4.10 78.8 
Butylamine 0.520 16.2 4.5 8.00 98.8 
Dichloromethane 0.537 18.2 6.3 6.10 64.1 
Benzene 0.450 18.4 0.0 2.00 88.8 
Hexane 0.391 14.9 0.0 0.00 130.8 
Heptane 0.410 15.3 0.0 0.00 146.5 
Tetrahydrofuran 0.357 16.8 5.7 8.00 81.1 
Triethylamine 0.362 17.8 0.4 1.00 138.6 
Para Xylene 0.343 17.8 0.0 2.66 122.6 
Mesitylene 0.338 18.0 0.0 0.60 138.5 
Chloroform 0.331 17.8 3.1 5.70 80.0 
Trichloroethylene 0.283 18.0 3.1 5.30 90.0 
Tetrachloroethylene 0.283 19.0 6.5 2.90 102.0 

dS pS hS
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Figure 3  Regression of Sorption Data 

 
Table 3  Comparison of Solubility Parameters 

DATA 
SOURCE (g/cm3) 

 

(MPa)0.5 

 

(MPa)0.5 

 
(MPa)0.5 

 
 

RMSE 

This work 1.225 17 ± 1.4 2.9 ± 1.8 4.8 ± 1.3 0.75 ± 0.25 0.976 0.116 

Butyl [7] 
1.263 19 ± 1.6 

(17.3) 
4.2 ± 2.5 

(4.3) 
3.8 ± 1.9 

(3.4) 
1.20 ± 0.45 0.925 0.336 

 “Best” [8] 
1.074 18 ± 1.5 

(18.13) 
2.7 ± 2.2 

(2.71) 
7.5 ± 1.8 

(7.55) 
1.20 ± 0.32

(1.23) 
0.961 

(0.961) 
0.217 

Note: The numbers in parentheses are the coefficients reported in Refs.. 7 and 8.  The numbers outside parentheses 
are estimates based on the raw data reported in these references. 

2.4.2 Diffusion 
 
2.4.2.1 Diffusion Anomalies 
Examples of the power-law fit are shown in Figure 4.  The slopes are listed in Table 4. 

  

p dP pP hP
S 2R
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Clockwise (from top left): 

 Testing the code with artificial “data” 
 A low-swelling solvent 
 A high-swelling solvent 

 
The slope should be: 

 0.5 for Case I (Fickian) 
 1.0 for Case II  
 Between 0.5 & 1 (non-Fickian) 

Figure 4  Probing for Anomalous Diffusion 
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Table 4  Power-Law Coefficients 

SOLVENT n (Eq. 8) 
Acetonitrile 0.74 
1Butanol 0.41 
2-Ethoxyethanol 0.48 
N,N-Dimethylformamide 0.45 
N,N-Dimethylacetamide 0.42 
Ethylene Glycol Butyl Ether 0.44 
1-Methyl-2-Pyrrolidinone 1.32 
Benzonitrile 0.58 
Benzaldehyde 0.72 
Ethyl Acetate 0.81 
1,2-Dichloroethane 0.70 
Butylamine 0.68 
Dichloromethane 0.60 
Benzene 0.76 
Hexane 0.67 
Heptane 0.74 
Tetrahydrofuran 0.49 
Triethylamine 0.83 
para Xylene 0.88 
Mesitylene 0.84 
Chloroform 0.76 
Trichloroethylene 0.80 
Tetrachloroethylene 0.75 

 
Towards sorting the sorption transients by visual inspection into pseudo-Fickian, sigmoid, and 
other shapes, examples from the present data are given in Figure 5. 
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Clockwise (from top left) 

 Testing the code with artificial “data” 
 A low-swelling solvent 
 A high-swelling solvent 

 
 

Figure 5  Another Probe of Anomalous Diffusion 
 
2.4.2.2 Film Thickness 
By way of keeping track of the changes in film thickness during the course of desorption, the 
thickness is calculated as a function of the fractional uptake (using Eq. 21).  The average “d” 
values corresponding to the different sections of the desorption transient, normalized by the dry 
membrane thickness, are listed in Table 5. 
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Table 5  Estimated Thicknesses for Different Time Ranges 
 

SOLVENT   

Acetonitrile 0.72 1.1 1.1 1.0 1.0 
1Butanol 0.69 1.1 1.1 1.0 1.0 
2-Ethoxyethanol 0.71 1.1 1.0 1.0 1.0 
N,N-Dimethylformamide 0.70 1.1 1.1 1.0 1.0 
N,N-Dimethylacetamide 0.69 1.2 1.2 1.1 1.0 
Ethylene Glycol Butyl Ether 0.69 1.2 1.1 1.1 1.0 
1-Methyl-2-Pyrrolidinone 0.71 1.2 1.2 1.1 1.0 
Benzonitrile 0.69 1.2 1.2 1.1 1.0 
Benzaldehyde 0.67 1.6 1.5 1.3 1.0 
Ethyl Acetate 0.76 1.2 1.2 1.2 1.1 
1,2-Dichloroethane 0.77 1.2 1.2 1.1 1.0 
Butylamine 0.71 1.8 1.5 1.4 1.1 
Dichloromethane 0.76 1.8 1.5 1.4 1.1 
Benzene 0.74 2.1 1.8 1.6 1.1 
Hexane 0.75 2.5 1.9 1.7 1.1 
Heptane 0.74 2.4 2.2 1.7 1.1 
Tetrahydrofuran 0.73 2.7 1.9 1.9 1.0 
Triethylamine 0.71 2.7 2.2 1.9 1.1 
para Xylene 0.74 2.9 2.7 1.9 1.3 
Mesitylene 0.72 2.7 2.6 1.9 1.4 
Chloroform 0.71 3.0 2.3 2.0 1.1 
Trichloroethylene 0.73 3.5 3.0 2.2 1.1 
Tetrachloroethylene 0.72 3.5 3.2 2.3 1.2 

Note: The values are based on the terminal uptakes (Eq. 21) of the time-range. 
 
2.4.2.3 Diffusion Coefficients 
Just as in the case of Figures 4 and 5, shown first in Figures 6 to 11 are demonstrations of the 
curve fitting, using test “data” artificially generated using the Crank’s Solution, Eq. 9.  Shown in 
the subsequent two plots in each figure are samples of the curve fitting using actual data, one for 
a low-swelling solvent and another for a high-swelling solvent.   

In Figures 6 and 7 are displayed the sorption and film-thickness transients, respectively, as a 
function of the dimensionless time.  As noted previously, these results are relied upon later in 
diffusivity estimation. 

dryd dryinitial dd dryshort dd dryhalf dd drylong dd
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Clockwise (from top left) 

 Testing the code with artificial “data” 
 A low-swelling solvent 
 A high-swelling solvent 

 

Figure 6  Calculated Dimensionless Desorption Transients 
 

 
Clockwise (from top left) 

 Testing the code with artificial “data” 
 A low-swelling solvent 
 A high-swelling solvent 

 

 

Figure 7  Calculated Film Thickness Transients 
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Shown in Figure 8 are generalized fits where the end-weight is also treated as an adjustable 
parameter, as well as the diffusion coefficient.  The resulting theoretical estimate offers an 
additional choice for the end-weight and serves as a check on the measured value. 

 

 
 
 
 
Clockwise (from top left) 

 Testing 
  the code with artificial “data” 
 A low-swelling solvent 
 A high-swelling solvent 

 
 

Figure 8  Treating End-Weight as a Parameter 
 

Shown in Figures 9 and 10 are the fits of selected time-ranges of the data—short and long, 
respectively.  These linear fits include the variations of keeping the intercepts floating or fixed.  
The corresponding diffusivity estimates are listed in Table 6.  Finally, shown in Figure 11 are the 
all-times fits (of the entire desorption transient) to the linear Crank’s Solution, as well as the 
nonlinear swelling model.  The fits to the two Balik approximations are indistinguishable from 
the Crank’s Solution fit and hence are not shown, for the sake of clarity.  The resulting 
diffusivity estimates are summarized in Table 7. 

 

W
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Clockwise (from top left) 

 Testing the code with artificial “data” 
 A low-swelling solvent 
 A high-swelling solvent 

 
 

Figure 9  Short-Times Fits 
 

 
 
 
 
Clockwise (from top left) 

 Testing the code with artificial “data” 
 A low-swelling solvent 
 A high-swelling solvent 

 
 

Figure 10  Long-Times Fits 
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Table 6  Diffusivity Estimates from Limited Time Ranges of the Data 

Units: m2/s * 1012 

SOLVENT 

HALF-
TIME 

SHORT-TIMES LONG-TIMES MOMENT

Eq. 10 

Floating 
Intercept 
Eq. 11 

Intercept = 1
 

Eq. 11 

Series 
 

Eq. 12 

Floating 
Intercept 
Eq. 13 

Intercept 
= ln(8/2) 
Eq. 13 Eq. 14 

Acetonitrile 0.186 0.175 0.091 0.091 0.249 0.216 0.272 

1Butanol 0.074 0.047 0.078 0.078 0.138 0.090 0.090 

2-Ethoxyethanol 0.103 0.093 0.098 0.099 0.178 0.119 0.119 

N,N-Dimethylformamide 0.091 0.108 0.113 0.113 0.129 0.090 0.100 

N,N-Dimethylacetamide 0.088 0.035 0.048 0.048 0.094 0.079 0.093 
Ethylene Glycol Butyl 
Ether 

0.113 0.095 0.129 0.130 0.112 0.101 0.122 

1-Methyl-2-
Pyrrolidinone 

0.093 0.007 0.002 0.002 0.093 0.077 0.094 

Benzonitrile 0.178 0.227 0.189 0.191 0.189 0.188 0.237 

Benzaldehyde 0.424 0.578 0.365 0.365 0.101 0.149 0.342 

Ethyl Acetate 8.340 6.670 3.300 3.300 9.880 8.080 14.950 

1,2-Dichloroethane 22.100 26.600 16.000 16.000 19.300 18.700 22.500 

Butylamine 76.900 122.400 72.300 72.300 32.900 35.900 64.100 

Dichloromethane 112.700 143.500 111.000 111.000 50.900 61.300 117.100 

Benzene 87.000 119.100 60.000 60.000 57.400 53.500 101.300 

Hexane 132.800 234.600 132.500 132.500 42.900 50.800 142.600 

Heptane 49.100 48.000 26.400 26.400 27.400 26.000 61.800 

Tetrahydrofuran 189.600 177.500 175.400 175.400 26.400 40.400 171.200 

Triethylamine 97.700 121.400 54.800 54.800 20.800 31.800 107.000 

para Xylene 14.200 3.300 1.300 1.300 17.400 12.200 20.600 

Mesitylene 8.940 1.040 0.480 0.480 14.810 9.560 14.320 

Chloroform 130.800 174.000 88.900 88.900 42.500 49.900 162.500 

Trichloroethylene 77.100 59.800 30.100 30.100 49.000 37.200 112.900 

Tetrachloroethylene 26.700 11.600 4.200 4.200 27.400 14.400 41.300 
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Clockwise (from top left) 
 Testing the code with artificial “data” 
 A low-swelling solvent 
 A high-swelling solvent 

 
 

Figure 11  All-Times Fits 
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Table 7  Diffusivity Estimates Based on Entire Desorption Transient 

Units: m2/s * 1012 

SOLVENT 

BALIK’S 
APPROXIMATIONS

CRANK’S 
SOLUTION 

NUMERICAL 
SOLUTION 

Dchosen 

Step, 
Eq. 19a 

Fermi, 
Eq. 19b 

Swelling, 
Approximate

Linear, 
Eq. 9 

With Swelling, 
Exact Estimate ± % 

Acetonitrile 0.189 0.189 0.186 0.189 0.196 0.196 12.26

1Butanol 0.080 0.080 0.078 0.081 0.083 0.083 2.86

2-Ethoxyethanol 0.113 0.113 0.111 0.113 0.115 0.115 2.10
N,N-
Dimethylformamide 

0.089 0.089 0.087 0.089 0.092 0.089 2.32

N,N-
Dimethylacetamide 

0.086 0.086 0.079 0.086 0.088 0.086 2.14

Ethylene Glycol 
Butyl Ether 

0.120 0.120 0.111 0.120 0.125 0.121 1.45

1-Methyl-2-
Pyrrolidinone 

0.086 0.086 0.080 0.086 0.089 0.086 2.35

Benzonitrile 0.223 0.223 0.197 0.223 0.230 0.230 2.46

Benzaldehyde 0.387 0.387 0.319 0.387 0.447 0.387 5.23

Ethyl Acetate 7.360 7.360 7.090 7.360 8.260 8.260 7.44

1,2-Dichloroethane 20.800 20.800 19.900 20.900 23.000 23.000 3.96

Butylamine 68.200 68.200 53.100 68.200 82.000 68.200 6.42

Dichloromethane 114.100 114.100 83.700 114.100 129.400 114.100 3.13

Benzene 89.400 89.400 60.600 89.500 105.000 105.000 5.94

Hexane 138.300 138.300 82.000 138.300 161.800 138.300 5.70

Heptane 50.700 50.700 29.900 50.700 59.300 59.300 4.67

Tetrahydrofuran 190.200 190.200 100.100 190.300 213.200 190.300 3.06

Triethylamine 103.300 103.300 52.700 103.400 111.900 111.900 7.82

para Xylene 14.100 14.100 7.700 14.100 17.300 17.300 6.37

Mesitylene 8.860 8.860 5.350 8.870 11.530 11.530 6.82

Chloroform 148.400 148.400 66.700 148.500 153.300 153.300 5.60

Trichloroethylene 88.300 88.300 35.400 88.400 94.000 94.000 3.83

Tetrachloroethylene 29.700 29.700 12.200 29.800 32.700 32.700 3.19

Column numbers  1 2 3 4 5 6 7 

 
2.5 DISCUSSION  

2.5.1 General Observations 
The solvent-to-additive and solvent-to-polymer ratios listed in Table 1 show that roughly half of 
the solvents tested are much more strongly absorbed by butyl rubber than the other half.  
(Incidentally, butyl rubber may not be a good protective barrier against these highly absorbing 
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solvents.)  Also striking is the observation that, for the weakly absorbing solvents, the solvent 
uptake is comparable to the amount of additives.  This observation supports the choice of 
measuring desorption (instead of sorption) transients; presumably, the additives would have 
leached out during the soaking step that precedes desorption, thus not confounding the 
measurements. 

As is apparent from the diffusion results discussed later, this division of the solvents (into low 
and high loadings) is matched by a division into whether the data are fitted well by constant-
thickness models.  Ideally, desorption measurements should be done in a differential manner, 
decreasing the external solvent activity in many small steps from unity to zero (e.g., by 
decreasing the external solvent vapor pressure gradually in a vacuum microbalance).  As noted 
previously, the precipitous reduction in the solvent activity at the surfaces poses theoretical 
difficulties such as concentration dependent diffusion and changes in thickness due to swelling. 
Hence, it renders questionable the use of the Crank’s Solution (based on Fick’s law diffusion 
with a constant diffusion coefficient and linear Henry’s law sorption).  The results are still 
useful, however, since integral single-step desorption is the norm in practical situations.  Also, 
much past work on sorption butyl rubber (e.g., Refs. 7 and 8) was also integral, with direct 
exposure of the membrane to liquid solvents (i.e., zero to unit activity). 
 
The average thicknesses (for various sections of the desorption transient) listed in Table 5 are 
quite different from the dry membrane thickness, especially for the high-swelling cases.  This 
highlights the perils of constant-thickness models and supports the use of average thicknesses. 

2.5.2 Solubility 
Shown in Table 3 are two separate comparisons of solubility parameter estimates:  

(1) The coefficients estimated using the present data analysis algorithm applied to the raw 
data from three different sources: this project, Ref. 7, and Ref. 8 (first, second, and third 
rows, respectively).  

(2) The coefficients estimated using the present algorithm and those reported in the literature 
based on alternative procedures: graphical [7] and least-squares [8] (second and third 
rows, respectively).   

Both comparisons are satisfactory, although the standard deviations of the parameters are 
troublingly large, pointing to the need for a better solubility theory.  Incidentally, the diffusivity 
estimates to be discussed next are totally independent of these solubility-parameter estimates. 

2.5.3 Diffusion Anomalies 
As noted previously, diffusion in polymers is Case I (Fickian), in which diffusion is slower than 
the relaxation of the membrane structure; Case II, where diffusion is fast and structure-relaxation 
is the rate determining step; or non-Fickian, with comparable diffusion and relaxation rates.  
Describing the amount absorbed at time t by the power law , Case I and Case II systems are 
characterized by n = 0.5 and n = 1.0, respectively.  Examples of the fit for the present study are 
shown in Figure 4.  The slopes for all cases are listed in Table 4.  Most of the cases are non-
Fickian.  Also, there is no clear example for Case II transport (n = 1), which is not surprising 
since such transport occurs in glassy polymers and the system here is rubbery.  With the other 
probe (Figure 5) of diffusion anomalies (namely, visual inspection of the sorption transients), 
some cases are pseudo-Fickian, and some are noticeably sigmoid. 

nKt
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2.5.4 Diffusion Coefficients 
As can be seen in the first plot in of each of Figures 9, 10, and 11, the curve-fitting algorithms 
per se “pass the test”, since all the estimation methods yield nearly identical estimates (as they 
should) when the underlying “data” are simulated using an exact solution.  Results for the 
experimental data (shown in the second and third plots in each of Figures 9, 10, and 11), 
however, display considerable variability depending on the time-region of the transient included 
in the fit; some comments are in order. The curve-fitting algorithms are not causing the 
variations in the estimates, as demonstrated with the test “data.” So, any variability has to do 
with data precision and model accuracy, within each sample and across solvents.  Also, even 
within one desorption transient for any solvent, not all data points can be expected to have the 
same precision or accuracy.  The long-time data suffer from diminishing marginal returns (i.e., 
less and less change in mass as desorption time increases), which manifest as an increase in the 
relative error of weighing as the weights become smaller.  Similarly, the small-time data will be 
sensitive to errors in time measurements.  In sum, solutions focusing on different time ranges 
will yield different estimates because some data points are more susceptible to experimental 
error than others.  These susceptibilities are magnified when the fitting (at short-times and long-
times) is done without fixing the intercepts in strict accordance with the corresponding 
approximate solutions.  These problems of imprecision in the data are further compounded when 
nonlinearities are manifest: swelling, change in sample dimensions, etc. 

For cases of low solvent-to-polymer ratio, based on the ability of the Crank’s Solution to fit the 
data, it is reasonable to conclude that the physics is quite linear.  For cases of high solvent-to-
polymer ratio, the Altinkaya model of accounting for (de-)swelling fits the data quite well.  
Unfortunately, the thickness was not measured along with the weight, during desorption.  Hence, 
other causes (for departures from the Crank’s Solution) may not be ruled out: e.g., concentration-
dependent diffusion coefficients, nonisothermality, or slow evaporation [10 (Section 4.3.6)].  

It is remarkable that, even when the fits are drastically different (as can be seen in the Figures 9, 
10, and 11), the D estimates from the constant-thickness Crank’s Solution are quite similar to the 
estimates based on the numerical solution of the Altinkaya model of swelling.  This agreement 
probably is due to the use (Eq. 21) of the average thickness (instead of the dry membrane 
thickness) to extract D from D/d2.  As alluded to previously in the context of Eq. 21, this 
robustness of the D estimates may have a theoretical justification, based on using the proper 
frame of reference when diffusion is accompanied by swelling [10 (Eq. 10.161)].  This point 
deserves further study. 

The plethora of approximate estimates is included for completeness; one of the all-times fits is 
chosen as the best diffusivity estimate from the Crank’s Solution or from the numerical solution 
of the Altinkaya model of swelling, whichever has the smaller root-mean-square (RMS) error.  
These Dchosen estimates and the corresponding 95% confidence limits are shown in the last two 
columns of Table 7.

  
2.5.5 Data Diversity 
As is described in Chapter 4, these diffusivity estimates were used as the target data (dependent 
variable) for training the neural network, along with the molecular descriptors of these solvents 
as the independent variables;  the network was then used to make data-driven target predictions 
for CWA and NTA molecules for which only structural information is available.  In this context, 
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it is of interest to ask: How diverse (or informative) is the diffusivity database?  A qualitative 
answer is displayed in Figure 12. 

 

Figure 12  Data Diversity in Perspective 

Adjacent bars of similar magnitude are given the same color in Figure 12, to highlight data 
“degeneracy”.  For example, the bottom four bars in yellow are nearly identical in size; in effect, 
four molecules condense into one.  In sum, even though the number of solvents is 23 and the 
diffusivity values range over a factor of 500, the number of distinct target data points shrinks to 
about 13. Also, there is a sizeable gap in the database, in going from ethyl acetate to 
benzaldehyde.  Such handicaps may detract from the accuracy of data-driven predictions and 
need to be mitigated with more comprehensive data.  
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CHAPTER 3 DESCRIPTORS 
 
3.1 BACKGROUND 
The “target” properties detailed in Chapter 2 constitute the dependent variables for establishing 
or “training” the technique for data-driven prediction of how CWAs permeate in protective 
barrier materials which is described in Chapter 4.  Training also requires independent variables, 
namely molecular properties (or “descriptors”) of the solvents which are the “data chemicals”.  
Descriptors also need to be calculated for the “query chemicals”, for which the target properties 
are going to be predicted using the trained method.  This chapter describes how to develop this 
database of descriptors for data and query chemicals, starting from molecular formulas, using 
commercial computational chemistry software (and Matlab® codes developed in-house to 
customize the descriptor database).  Descriptors can also be calculated using other software or 
imported from websites. 

3.2 METHODS DEVELOPMENT 

3.2.1 Molecular Descriptors 
It is understood that no molecule will be amenable to a single all-encompassing absolute 
definition, but any molecule can be characterized by a number of descriptors for each 
phenomenon of interest.  When all these finite sets for the enormous variety of phenomena are 
put together, even after allowing for overlaps, the compilation of molecular descriptors can begin 
to approach an infinite set.  Nevertheless, molecular descriptors lend themselves to compact 
classifications [16].  Sorted by the level of abstraction, descriptors fall in three classes:  

 Macroscopic properties such as molecular weight or the octanol/water partition 
coefficient, refractive index, molar refractivity, parachor, density, solubility, partition 
coefficient, dipole moment, chemical shift, chromatographic retention time, spectroscopic 
signal (or even complete spectra), rate constant, equilibrium constant, vapor pressure, 
boiling/freezing point, and acid dissociation constant.    

 Derived properties such as the surface distribution of electrostatic potential, the empirical 
absorbability index (a group-contribution index of carbon adsorption from aqueous 
solutions), or charge descriptors (calculated using quantum chemistry).     

 More abstract measures such as BCUT, topological indices, sub-structural fingerprints, 
and feature counts [17-23].   

Another pertinent classification is based on molecular dimensionality:  
 One-dimensional (1D) descriptors depend only on the formula (e.g., molecular weight). 
 2D descriptors depend on topology—the connectivity of bonds between the atoms (e.g., 

the Balaban Connectivity Index). 
 3D descriptors depend on stereochemistry and geometry (e.g., dipole moment). 
 4D descriptors take into account the conformational variability (e.g., the global flexibility 

index). 

The cited literature on molecular descriptors is highly evolved and amply details descriptor 
types, invariance, and degeneracy.  Hence, these details need not be repeated here.  It is 
instructive, however, to list a few considerations that pertain to data-driven predictions: 

 Descriptors need not be complex to be useful; e.g., molecular weights or volumes can be 
quite predictive of transport properties such as diffusion coefficients. 



 
35 

 Descriptors are “good” if small tweaks of the descriptors cause small changes in the 
targeted behavior, and “poor” if the elicited responses are large or abrupt [24].  Prediction 
methods such as ANN are not incapable of handling such highly nonlinear dependences, 
but the necessary training will require large numbers of neurons and, concomitantly, large 
databases of target properties and descriptors.  

 The ideal set of descriptors would be minimalist (offering sufficient representation with 
the fewest descriptors), would be fundamental instead of derivative, and would have little 
correlation among descriptors but a high correlation with the target property.  

 The descriptor database should be entirely theoretical or computational in origin, in order 
to include virtual or uncharacterized molecules. That is, computed descriptors—i.e., 
purely theoretical constructs such as topographic indices or physical properties calculated 
using theoretical or empirical equations—are preferable to measured properties, since 
measured descriptors may not be available for all the molecules in the database.   

While a comprehensive database may be set up and continually updated with theoretical indices 
as well as measured properties, the prediction method need not always use the entire database, 
but instead can use smaller, field-specific subsets of the database [18], with each search being 
restricted to a certain cluster of chemicals or class of descriptors culled via different chemical 
selection criteria.   

3.2.2 Machine-Readable Molecular Structures 
For calculating molecular descriptors, it is not enough to know just the molecular formulas.  The 
structures have to be rendered in a machine-readable format such as: 

 Simplified Molecular Input Line Entry Specification (SMILES) 
 SYBYL© Line Notation (SLN)  
 Structure-Data File (SDF) 

For most known chemicals, molecular structures can be found in public [25] or commercial [26] 
databases; format conversion (e.g., from SLN to SMILES) is also straightforward [27].  For 
envisioned, proprietary, or classified chemicals, however, such structures may be unavailable or 
inaccessible.  This is the case with some of the CWAs, simulants, and IPFS chemicals.  When 
machine-readable structures are inaccessible, the structures have to be built—using 
computational chemistry software such as Spartan® [28]. 

Spartan® is a versatile computational chemistry software tool that has many sophisticated 
capabilities. Here, however, only the simplest of these capabilities is invoked, namely 
Spartan®’s 3D molecular modeling tools to construct the molecules. It is easiest to build each 
molecule individually and then export the structures of a batch of molecules to the descriptor 
calculation software.  The first step is to build each molecule. To do this, Spartan® is opened 
from the desktop (Figure 13). A new molecule can be constructed by clicking on the “New” 
button, circled in red. This will bring up the Model Kit sidebar (Figure 14), which allows the 
construction of the molecule atom by atom. In the case of more complex molecules, highly 
interconnected aromatics, for example, it may be easier to build the molecule using the “Groups” 
or “Rings” buttons, which allow the rapid incorporation of functional groups into the molecule. 
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Figure 13  The Spartan GUI 

.  

Figure 14  Spartan Model Kit 

Once the molecule has been completed, the structure is saved, typically with the name of the 
molecule, in SDF. This process is repeated for as many molecules as is desired, and all are 
incorporated into one compilation file which can be easily exported to the descriptor-calculation 
software, Sarchitect® [29]. To do this, the first molecule in the group is opened; returning to the 
toolbar at the top of the screen and clicking “File > Append Molecule(s)…” permits more 
molecules to be added. In the example in Figure 15, 1-Butanethiol is the molecule which is 
already open. The other molecules are being added to the file. 
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Figure 15  Spartan File Processing 

Once this is complete, “Save As” yields a new (SDF) file, which is representative of the group 
(“GA Simulant Database”, for example).  The different molecules in the set can then be viewed 
by moving the slider or clicking the arrows at the bottom of the screen (Figure 16). The name at 
the top of the screen should change to match the molecule showing in the viewer. 

 

Figure 16  Spartan Examples 

The database of molecules can then be imported into Sarchitect®. 

3.2.3 Molecular Descriptors Calculation 
The commercial Sarchitect® software was used in this work, although, as mentioned previously, 
descriptors can be calculated—with varying degrees of rigor and flexibility—using other 
computational chemistry software, commercial or free.  Sarchitect Designer® is a commercial 
software platform for mining, modeling, and predicting drug-relevant properties of molecules.  
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In Sarchitect®, the user opens the SDF (or SMI) file (Figure 17) that was made in Spartan®, 
optimizes the structures, and calculates molecular descriptors. 

 

Figure 17  Sarchitect Initial Screen 
 

Sarchitect® is opened from the desktop by the user. A dialog box opens, asking if the user would 
like to open an existing project, import structures from files, import a file, or browse existing 
models.  The user selects “Import Structure(s) from Files” and chooses the SDF file made 
previously using Spartan®. (All options in the dialog box can be left at their default settings.)  
Alternatively, the user may choose an SMI file of structures in the SMILES format.  Then, the 
user would see a spreadsheet similar to the one in Figure 17, in the main working area.  The 
various side panels can be minimized using the little “pin” button, leaving only the “Navigator” 
and “Workflow” panels visible, as these are used most frequently. Every action which is 
performed using the Workflow panel is tracked in the Navigator panel such that at any time the 
user can look back at the database as it was in the previous step. All of the operations available in 
the Workflow panel on the right-hand side are also available from the top toolbar, but they are 
organized in a much more user-friendly manner. All the operations performed here are located in 
the Structures and Descriptors group under the Data Exploration tab. 

With the molecules loaded, the user can optimize the structures so as to reach the proper bond 
lengths, bond angles, and stereo-chemical orientations and the lowest energy configuration.  
Sarchitect® calculates descriptors only on optimized structures. So the user has to click the 
“Perform 3D Optimization” button.  (Structure optimization could also be done in Spartan®, in 
which case the optimization in Sarchitect® would simply converge more quickly.) 
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The dialog box shown in Figure 18 opens, and, barring any specific stereochemistry which needs 
to be maintained, the user should be able to click OK without changing any of the default 
settings. As can be seen in Figure 19, another column is added, containing 3D structures akin to 
the ones made in Spartan®. These structures, however, are optimal. Descriptors can then be 
calculated. 
 

 

Figure 18  Energy Optimization 
 

 

Figure 19  After Energy Optimization 
 
There are three different categories of molecular descriptors calculated by Sarchitect®: 
constitutional, topological, and conformational. These are useful for characterizing molecules in 
different ways. In most cases, it is appropriate to calculate all of the available descriptors and 
allow the prediction methods to be used in Matlab® to select and combine those descriptors as 
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appropriate.  To proceed, the user returns to the Workflow panel on the right-hand side and 
selects “Compute Descriptors”, directly underneath the “Perform 3D Optimization” button. 
Unless a subset of descriptors is being omitted, all groups should be checked (Figure 20); hitting 
the OK button results in the calculation of 1084 descriptors (Figure 21).  A similar procedure can 
be used for Molecular Access System (MACCS) descriptors.  In total, Sarchitect® yields 1250 
descriptors for each molecule. 

  

Figure 20  Descriptor Calculation 
 

 

Figure 21  Page of Descriptors 
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The descriptors range in complexity from the very simple (number of atoms in the molecule) to 
the complex and obscure (e.g., GETAWAY “Geometry, Topology, and Atom-Weights 
Assembly” descriptors which are based upon the Molecular Influence Matrix).   

Even though Sarchitect® can perform many types of statistical prediction (not just calculation of 
descriptors), the algorithms are set and not easily customized.  Accordingly, it is best to hand off 
the descriptor database at this point to Matlab®, in which the user can develop custom codes to 
implement the latest developments from the literature.   

To save the data for export, the user returns to the top toolbar and selects “File > Export to File > 
Data”. This brings up a “Save As” dialog box, permitting the results to be saved as a comma 
separated file (*.csv), which can then be read by a Matlab® code to sort the descriptors and save 
the different types in different sheets of an Excel workbook. In turn, the Excel sheets are read by 
another Matlab® code for making predictions.   

3.2.4 Formatting the Descriptor Database  
After transferring the *.csv file from the previous step to the directory in which the Matlab® 
code read_desc resides, it is straightforward to run the code and generate the *.xlsx file which, in 
turn, is read by the prediction codes described in Chapter 4.  It is important to note that the *.xlsx 
workbook thus created will have only the descriptors.  It is necessary for the user to copy and 
paste the column(s) of target properties (from the output Excel files described in Chapter 2) in 
the sheet named “Targets” in this work book.  The prediction code seeks only one target 
property, specifically the one in Column 2 (and ignores the properties in the subsequent 
columns).  Also, optionally, the user can copy and paste the structures in SMI format from the 
*.csv file into the sheet named “Structures” in the *.xlsx file. 

3.3 RESULTS AND DISCUSSION 
In summary, using commercial computational chemistry software (Spartan®), machine-readable 
molecular structures in SDF format were built for the 23 organic solvents (“data chemicals”), as 
well as about 60 threat agents and simulants (“query chemicals”).  Using another commercial 
computational chemistry software (Sarchitect®), these molecular structures were read in SDF 
format (and saved in SMILES format); about 1,000 constitutional, topological, and 
conformational properties (“molecular descriptors”) were calculated for all the data and query 
chemicals.  Finally, the resulting descriptor database was formatted further (to be the input for 
the analysis described in Chapter 4) by a Matlab® code developed by NSRDEC. 
  



 
42 

CHAPTER 4 PREDICTIONS 
 
4.1 BACKGROUND 
This chapter details the process for developing the methodology for training the data-driven 
prediction method—Artificial Neural Networks (ANN)—using the target properties (diffusion 
coefficients) detailed in Chapter 2 as dependent variables, the  descriptors of the data chemicals 
detailed in Chapter 3 as independent variables, and the molecular descriptors of the query 
chemicals (also detailed in Chapter 3) as inputs. It then presents and discusses the results of 
using the trained ANN to predict the target properties of the query chemicals.  

At the beginning of the project, other data-driven methods (e.g., Fuzzy Logic and Generalized 
Linear Regression) were also investigated, but eventually it was decided to focus exclusively on 
ANN, the most powerful of the lot.  For example, a neural network reduces to linear regression 
when the number of “hidden neurons” (or nonlinear terms) is set to zero. 

4.2 METHODS DEVELOPMENT 

4.2.1 Neural Networks 
Neural networks are highly developed in computer science and statistics, with applications in 
image processing, data mining, quantitative finance, algorithmic stock trading [30-35], and 
QSAR/QSPR [36-40]. 

ANN is essentially regression, but since the nonlinear chain of fitting equations stays hidden, it is 
more “black box” than regression with an explicit linear or nonlinear model.  The terms of ANN 
hence can be clarified by comparison with the familiar terms of standard regression (Table 8). 

Table 8  Comparison of Regression and Neural Networks 

LINEAR/NONLINEAR REGRESSION NEURAL NETWORK 
Dependent variable Target property 
Independent variables Descriptors 
Fitting, to evaluate the regression coefficients Training 
Applying the regression model Predicting 
Coefficients Weights 
Regularization (to avoid overfitting) Bayesian network 
Intercept Bias 

 
In the literature, this method is interchangeably denoted as neural networks, ANN, or simply, the 
network.   Instructional schematics are presented in Appendix B which touch on key neural 
network concepts (i.e., hidden layers, individual neurons, layers of neurons, and linear, log-sig, 
and tan-sig transfer functions) and the need for multiple network initializations, etc.  Expanding 
on such topics is beyond the scope of this report; more information about neural networks can be 
found in Refs. 30-40. 

4.2.2 Descriptor Sorting 
Using all the descriptors en bloc in the calculations is tantamount to losing valuable information, 
namely the qualitative differences between different types of descriptors.  Accordingly, as noted 
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in Chapter 3, the descriptors are sorted into constitutional, topological, conformational, and 
MACCS types and are stored in different sheets of an Excel workbook that form the input to the 
prediction code. In turn, the Excel sheets sort further within each type: binary (0 or 1) or analog 
(not confined to 0 or 1).  For predicting permeation, the analog constitutional descriptors were 
used.  Other targets may need other descriptor types; the codes provide various options. 

4.2.3 Descriptor Pruning 
While it is convenient that computational chemistry readily yields hundreds of descriptors, 
ironically the prediction algorithm cannot and need not use this plethora in full.  The folly of 
attempting to do so can be understood by recalling that the descriptors serve as independent 
variables, with each one associated with at least one parameter (coefficient or weight) in the 
fitting equation or network.  For all these parameters to be meaningful, it is desirable that the 
number of rows of target data points equals or exceeds the number of columns of descriptors.  
Not meeting this requirement can be a problem—namely, an under-determined system with too 
few degrees of freedom when the target database has only a limited number of rows (e.g., 20, as 
in the present case).  Also, a large matrix of descriptors will be computationally intensive to 
work with.   

The abundance of descriptors is thus a problem, a well-known one at that, called “the curse of 
dimensionality” [41].  The remedy of “dimensionality reduction” is likewise well-known and 
continues to be an evolving research area with no single panacea, but many useful approaches. 
The premise of the remedies is that not all the numerous descriptors are independent of (or more 
precisely, orthogonal to) one another, vary significantly across the rows of chemicals, nor are 
relevant to every target property.  The prediction code developed in this project incorporates 
several formal and informal dimensionality-reduction techniques, using built-in codes in the 
Matlab® statistical toolbox™ or Matlab® freeware suites: 

 Principal components [42, 43]: These are linear combinations of the descriptors arrived at 
after some statistical matrix operations on the original descriptors.  There are as many 
columns of principal components as there are columns of descriptors, but only the first 
few columns (ranked in decreasing order of variance across rows) are important. That is, 
along these few principal-component directions in the hyperspace of descriptors, the 
instances (in the present case, the chemicals) show the most variation from one another.  
These few principal components are retained and can be used in place of the original 
descriptors in training the network.  As might have been noticed, principal components 
have a curious flaw in that they are arrived at based only on the descriptor matrix, 
without any regard to the target data.  Thus, it is possible to have principal components 
that display a great variance across the rows of chemicals, but have little correlation with 
the target! 

 Probabilistic principal components [44]: These are the same as the principal components 
above, but are calculated in an indirect way that avoids the inversion of large matrices.  
This will be useful when dealing with large or incomplete databases. 

 Nonlinear principal components [45, 46]:  Since principal components are linear 
combinations of the raw descriptors, their use—while mitigating the problem of high 
dimensionality—can introduce another problem; namely, confounding of the target-to-
descriptor relations, when the relationships are nonlinear.  Using nonlinear principal 
components instead is better in principle.  In practice, however, their use in prediction is 
computationally intensive: first the hundreds of raw descriptors are condensed using an 
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auto-associative network [47] into a few nonlinear principal components that are then 
used as the dependent variables in another network to make the actual predictions.   

 Internal dimensionality reduction: As a remedy to the problem of computational intensity 
associated with nonlinear principal components, an alternative approach was developed: 
It involves two hidden layers instead of the usual single layer: the first layer does the 
dimensionality reduction, while the second layer does the prediction. This novel option is 
fully functional, and its utility is being explored.  

 A “filter” method to keep only the descriptors that are strongly correlated with the target, 
but are only weakly correlated with one another:  A filter is in effect a one-off up-front 
pruning.  There are also “wrapper” techniques that make predictions using descriptors 
filtered with one set of criteria and renew the predictions after altering the filter criteria in 
an iterative fashion, until the best possible predictions are found.  In the parlance of 
computer science, “wrappers utilize the learning machine of interest as a black box to 
score subsets of variable according to their predictive power; filters select subsets of 
variables as a pre-processing step, independently of the chosen predictor” [48].  The 
present code does not include wrappers (which were explored initially), but has a filter. 

 Expert choice: This involves choosing a few descriptors on a physicochemical basis as 
the ones most likely to determine the target property.  The advantage of this method, 
besides the savings in computer time, is that it does not confound any nonlinear 
relationships that may exist between the target property and individual descriptors.  The 
disadvantage is the need for experts to choose the descriptors!  A wrapper method can be 
developed that circumvents the need for such expertise—by arriving at the best set of 
descriptors automatically, by iteration, e.g., using a genetic algorithm [49].  

4.2.4 Avoiding Overfitting 
A peril of all regression—least squares as well as neural networks— is “overfitting”. A method 
may make excellent predictions for the chemicals on which it was trained, but poor ones for 
others.  Overfitting is especially acute when the number of instances (data chemicals) is small.  
The traditional remedy is to divide the data chemicals into training and validation sets and begin 
training the network using only the training set while monitoring the prediction-versus-data error 
for both training and validation sets.  The error for the training set will keep on dropping; the 
error for the validation set will also drop initially, but will begin to rise eventually.  The training 
stops at this point.  This “early stopping” is fine for large datasets, but not for datasets that are 
too small to begin with and hence not amenable to further division.   

Here, a better alternative was chosen: Bayesian regularization ANN (BRANN) [50-52] that uses 
the full training dataset but avoids overfitting by the use of a penalty function, just as “ridge 
regression” does for standard least-squares.  This alternative works well for datasets both small 
and large. The advantages of BRANNs as elaborated in Ref. 50, verbatim, are: 

 They obviate the validation procedure of normal regression methods and automatically 
address many needs of QSAR: choice of model (i.e., network layout), robustness, 
validation, and optimization of the layout. 

 They are difficult to over-train by virtue of a built-in criterion for stopping the training. 
 They are difficult to overfit because they converge to an effective number of parameters, 

even if the user specifies a starting layout that has an excessive number of hidden 
neurons.  (In the converged optimal network, multiple columns of descriptors end up 
sharing the same parameters/weights, thus making do with fewer effective parameters.) 
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 They are inherently insensitive to how elaborate the network layout is, as long as a 
minimal architecture has been provided. 

 Unlike ordinary neural networks, they need neither a validation set nor a test set, since 
they produce the best possible model most consistent with the data.  As a result, all the 
available data can be dedicated to model building (as opposed to setting aside a 
substantial number of rows for validation and testing as with the usual networks)—which 
is clearly a boon where data are scarce and expensive to acquire. 

In total, it is doubly fortunate that a switch to BRANN was made and that the Matlab® Neural 
Networks Toolbox™ has built-in routines that implement BRANN.  

4.2.5 Tailored Training 
Instead of using all the available data chemicals to train the neural network, the code has robust 
options for a “tailored training” approach, using only a subset of data chemicals that is most 
similar to the query chemical, and, for a controlled comparison, using another subset of the same 
size but with randomly chosen chemicals.  The similarity ranking can be done using a variety of 
distance measures (default: Euclidean distance).  This powerful option—while quite involved in 
terms of coding strategy—has not been of much use with the present system (since the target 
database is small to begin with), but may be useful when larger databases become available.     

4.2.6 Cross-Validation  
From the discussion so far, it should be clear that, using a network that is trained using the target 
data for the data chemicals (i.e., the 23 solvents for which log D data are available), predictions 
will be made for the query chemicals (i.e., the 53 CWA and IPFS chemicals for which there are 
no data and predictions are sought).  The ultimate validation of the predictions awaits the 
availability of experimental data for the query chemicals, but, in the meantime, a metric is 
needed to judge the networks.  Actually, such a metric is automatically generated in the process 
of making predictions for the data chemicals. That is, the data chemicals are also first treated as 
query chemicals: the information for one data/query chemical is excluded, and the network is 
trained with the remaining 22 data chemicals.  The metric consists in how well the prediction 
compares with the data for the set-aside data chemical.  The process is repeated to cover all the 
data chemicals, one at a time. 
 
This is known as leave-one-out “n-fold cross-validation” [53], with “n” being the total number of 
data chemicals: here, 23.  That is, set aside one of the data chemicals, train the network using the 
remaining 22 data chemicals, use the trained network to make a prediction for that one chemical 
which was left out, and repeat this 23 times, leaving one chemical out at a time.  For each of the 
23 training sets, in turn, the network is trained repeatedly (e.g., multiple initializations and 
multiple variations for the number of neurons in the hidden layer).  Such repetition is necessary 
to avoid the acceptance of a sub-optimal network.  The network resulting from each repetition is 
used to make predictions for the set-aside chemical. The best network is one that maximizes a 
merit measure, e.g., the ratio of the square of the training correlation coefficient (between data 
and predictions for the 22 chemicals included in the training) and the residual (i.e., difference 
between data and prediction using the trained network) for the set-aside data chemical.    
 
Cross-validation is an established statistical technique, and it offers a rigorous and conservative 
internal test of the model’s predictive capability.  It is worth repeating that cross-validation is a 



 
46 

much more severe test of a model than the all too common practice of fitting all the training data 
and omitting any validation, internal or external.  So, if the cross-validation predictions for the 
data chemicals are reasonable, then the predictions (now using all the training data) for the query 
chemicals would probably be acceptable. 
 
The code also permits a visual judgment of the prediction method by a straightforward 
comparison with the target data; the predictions that fall within certain bounds (e.g., target data ± 
5%) can be accepted as correct. That may seem like a high tolerance (± 5% in log D translates to 
an order-of-magnitude variation in D), but it is comparable with the judgment criterion of the 
solubility challenge [54, 55]: ± 0.5 log units. 

4.2.7  Code Probing  
As the prediction codes evolved into a rather complex and convoluted software package, it 
became of interest to pressure-test the coding and simultaneously improve the predictions.   
The prediction codes were first probed with simulated test “data,” with a priori knowledge of the 
exact dependence of the target property on the molecular descriptors.  Specifically, probes were 
conducted first with artificial, meaningless data (both noise free and with noise) and then with 
artificial, meaningful data that were noise free. This probing yielded several confirmations and 
insights.  
 
The first step in the probe was to calculate the “data” using an equation of no physical 
significance: 




3

1i

2
ivD .         (75) 

1v Number of rotatable bonds, 

2v Molecular weight, and  

3v Log (octanol/water partition coefficient). 

The calculated target data were then fed to a neural network—with and without added random 
noise—and trained with selected descriptors, specifically the same three descriptors that were 
used in Eq. 75 to calculate the targets.  If the method is logical and the coding is correct, the 
cross-validation predictions from the network should be error free.   
 
The results are presented in Figures 22 to 26. Each of those figures has two parts: a summary 
plot and a leave-one-out example: 

 Each point in the summary plot is the result of setting aside the datum for that chemical, 
training the neural network with the rest of the data chemicals (usually a total of 22, i.e., 
all the available data except the datum for the set-aside chemical), and using the trained 
network to make a prediction for the set-aside chemical.  The plot condenses the results 
from 23 separate neural networks (each of which, in turn, is the best among several 
initializations and variations of the numbers of neurons in the hidden layer.) 

 The leave-one-out plot is an example (usually for chemical #4) of the predictions in the 
summary plot.  That is, each prediction point in the summary plot is the result of a leave-
one-out prediction like the one displayed in the second plot in the pair. 
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Figure 22 shows the results from the probe using artificial, meaningless, noise-free data, and 
Figure 23 shows the results from the probe using artificial, meaningless data with noise. The 
other details used in each of those probes were: 

 “Data” calculated using an ad hoc equation 
 Predictions based on three expert-chosen raw descriptors (analog constitutional) 
 Training with all 22 non-query data chemicals; prediction for each set-aside chemical 

 

(a) Summary of cross-validation predictions 
100% of predictions are ±5% of targets; R2 = 0.997 

(b) Basis of a single point in the summary 
Chemical # 4; Prediction error = 0% 
100% of predictions are ±5% of targets; R2 = 1.0 
Target Variance 0.025; Skew -0.964; Kurtosis 5.43 
Best case: 10 hidden neurons; Initialization # 3 

Figure 22  Probe Using Artificial, Meaningless, Noise-Free Data 
Fit Based on Three Expert-Chosen Raw Descriptors: (a) Summary, (b) Basis 

(a) Summary of cross-validation predictions 
91% of predictions are ±5% of targets; R2 = 0.769 

(b) Basis of a single point in the summary 
Chemical # 4; Prediction error = -1% 
100% of predictions are ±5% of targets; R2 = 0.926 
Target Variance 0.026; Skew -0.835; Kurtosis 5.19 
Best case: 10 hidden neurons; Initialization # 3 

Figure 23  Probe Using Artificial, Meaningless, Noisy Data 
Fit Based on Three Expert-Chosen Raw Descriptors: (a) Summary, (b) Basis 
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Indeed, the prediction was perfect when the data were noise-free (Figure 22), but got worse as 
the data got noisier (Figure 23).  From these two cases and others (not shown) with higher noise 
levels, a good correlation was observed between training/prediction error and data noise; the flip-
side of this point is that, when the data were noisy, the neural network was unable to filter out the 
noise and capture the true data.  If the network were able to do this, the underlying noise-free 
data would have been recovered even when the network was presented with noisy data.  So, the 
network, somewhat like a spline fit, seemed to be tracking the errors as part of the data pattern.   
This is a troubling indicator of the dreaded “overfitting” which the BRANN is claimed to be 
immune to.  The noise levels in these tests (20% to 50% in D), however, were much higher than 
what would be encountered in practice. 

Then the BRANN was trained using principal components (which are linear combinations of 
many more descriptors than the few that were used in calculating the data), and a second probe  
using the same artificial, meaningless data was conducted. The fitting in this probe was based on 
five linear principal components and began with noise-free data, which were then made 
progressively noisier; all the other details were the same as those used in the first probe (Figures 
22 and 23). The predictions were quite good (Figure 24), but not perfect even when the data were 
noise-free.  The difficulty was compounded as the data got noisier. Also, principal components 
are linear combinations of descriptors and hence probably have trouble capturing these “data”, 
which are based on the squares of the descriptors.  (This point was probed by squaring all the 
descriptors before calculating the principal components. Squaring the descriptors did not help 
even though the target “data” were based on the squares of certain descriptors, since the principal 
components end up mixing in the squares of many other descriptors that were not connected with 
the targets.)  In sum, when the target-descriptors relation is nonlinear, raw descriptors are 
preferable to linear principal components. 

(a) Summary of cross-validation predictions 
96% of predictions are ±5% of targets; R2 = 0.886 

(b) Basis of a single point in the summary 
Chemical # 4; Prediction error = 0% 
100% of predictions are ±5% of targets; R2 = 0.984 
Target Variance 0.025; Skew -0.964; Kurtosis 5.43 
Best case: 10 hidden neurons; Initialization # 2 

Figure 24  Second Probe with Artificial, Meaningless, Noise-Free Data 
Fit Based on Five Principal Components: (a) Summary, (b) Basis 
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Next a second test using artificial data was conducted, but the “data” were calculated using a 
physically more meaningful equationthe logarithm of the octanol/water partition coefficient: 
 

MlogP = -1.041 + 1.244(CX)0.6 - 1.017(NO)0.9 + 0.406(PRX) - 0.145(UB)0.8 +  
0.511(HB) + 0.268(POL) - 2.215(AMP) + 0.912(ALK) -0.392(RNG) -3.684(QN) +  (76) 
0.474(NO2) + 1.582(NCS) + 0.773(BLM)          

 
It was calculated in Sarchitect® (the computational chemistry software used in Chapter 3 to 
calculate molecular descriptors) using the Moriguchi equation [Sarchitect documentation and 
56]. The model variables (which are also descriptors calculated in Sarchitect®) are number 
counts or frequencies (denoted by N) or presence/absence (denoted by B for binary: 1 or 0) of 
some molecular features. Their descriptions are listed here for completeness (even though they 
are just parameters in the present exercise): 

  
CX N Summation of weighted numbers of carbon and halogen atoms; the weights are: 0.5 

for F, 1.0 for C and Cl, 1.5 for Br, and 2.0 for I. 

NO N Total number of Ns and Os. 

PRX N Proximity effect of N/O: 2 for X-Y and 1 for X-A-Y (X, Y: N and/or O; A: C, S, or 
P; -: saturated or unsaturated bond) with a correction (-1) for -CON< and -SO2N< 

UB N Number of unsaturated bonds including semi-polar bonds such as N-oxides and 
sulfoxides, except those in NO2. 

HB B Binary variable for the presence of intramolecular hydrogen bond as ortho-OH and -
CO-R, -OH and -NH2, -NH2 and -COOH, or 8-OH/NH2 in quinolines, 5 or 8-
OH/NH2 in quinoxalines, etc. 

POL N Number of aromatic polar substituents (aromatic substituents excluding Ar-C(X)(Y)- 
and Ar-C(X)=C; X, Y: C and/or H). Upper limit = 4. 

AMP N Amphoteric property; a-aminoacid = 1, aminobenzoic acid = 0.5, pyridinecarboxylic 
acid = 0.5. 

ALK B Binary variable for alkane, alkene, cycloalkane, cycloalkene (hydrocarbons with 0 or 
1 double bond) or hydrocarbon chain with at least 7 carbon atoms. 

RNG B Binary variable for the presence of ring structures except benzene and its condensed 
rings (aromatic, heteroaromatic, and hydrocarbon rings). 

QN N Quaternary nitrogen >N+<: 1; N-oxide: 0.5. 

NO2 N Number of nitro groups. 

NCS N Isothiocyanate (-N=C=S): 1.0; thiocyanate (-S-C#N): 0.5. 

BLM B Binary variable for the presence of ß-lactam. 
  

The network was trained with the same 13 descriptors that were used in Eq. 76 to calculate the 
target’s octanol/water partition coefficients. The conditions used in the probe were:  

 “Data” calculated using an ad hoc equation using 13 descriptors 
 Predictions based on the same 13 raw descriptors 
 Training with all 21 non-query data chemicals; prediction for each set-aside chemical 
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The predictions were excellent (Figure 25). Then a second probe using the same artificial, 
meaningful, noise-free, data was conducted with five linear principal components instead of the 
raw descriptors, and the predictions were poor (Figure 26). (Chemical #1, acetylene, was too 
much of an outlier to be included in this test.) Again, it appears that when the target depends on 
the descriptors nonlinearly using raw descriptors is preferable to using linear principal 
components. 

(a) Cross-validation summary 
86% predictions are ±5% of targets; R2 = 0.995 

(b) Basis of a single point in the summary 
Chemical # 4; Prediction error = 0% 
100% of predictions are ±5% of targets; R2 = 1.0 
Target Variance 0.054; Skew -0.036; Kurtosis 1.8 
Best case: 10 hidden neurons; Initialization # 3 

Figure 25  Probe Using Artificial, Meaningful, Noise-Free Data 
Fit Based on 13 Raw Descriptors:  (a) Summary, (b) Basis 

 

(a) Cross-validation summary 
46% predictions are ±5% of targets; R2 = 0.641 

(b) Basis of a single point in the summary 
Chemical # 4; Prediction error = -21% 
57% of predictions are ±5% of targets; R2 = 0.896 
Target Variance 0.054; Skew -0.036; Kurtosis 1.8 
Best case: 10 hidden neurons; Initialization # 1 

Figure 26  Second Probe Using Artificial, Meaningful, Noise-Free Data 
Fit Based on Five Principal Components: (a) Summary, (b) Basis 
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4.2.8 Fine-Tuning Best Predictions 
Guided by the results for these test cases, the focus was shifted to the actual log D data.  The 
results of the probes using actual data are presented in Figures 27 to 29. Each of those figures has 
two parts as in Figures 22-26: a summary plot and a leave-one-out example. Initially, all 23 
solvents were included as data chemicals (based on five expert-chosen raw descriptors), but 
when all the leave-one-out predictions were examined, two solvents (#9: benzaldehyde and #17 
tetrahydrofuran) stood out (Figure 27).  Upon reflection, it was recognized that when either 
chemical was left out, the network trained rather well.  This suggests that both are outliers that 
detract from the training (although it is unclear why the training fit is fine when one or the other 
of these two outliers is still included in the fits shown in Figure 27).  Accordingly, without 
further ado, the two chemicals were dropped from the set of data chemicals, and the cross-
validation fitting was continued using five linear principal components with training of all 20 
non-query data chemicals and prediction for the each set-aside chemical (Figure 28). Next, five 
raw descriptors (number of oxygen atoms, number of rotatable bonds, van der Waals volumes, 
molecular weight, and octanol/water partition coefficient) were used instead of the principal 
components; they were chosen by expert intuition regarding the phenomenon in question, 
namely diffusion of guest molecules through a rubbery polymer. Even within this small set of 
descriptors, there may be some redundancy (e.g., a correlation between molar volumes and 
molecular weights).  Also, the inclusion of the partition coefficient (which is not a transport 
property, but instead an equilibrium property) may be questionable, but the awareness (that the 
diffusion coefficients here are lumped parameters that may be concentration dependent) 
prompted their inclusion.    
 

(a) Chemical # 9 set aside 
Chemical # 9; Prediction error = -5% 
100% of predictions are ±5% of targets; R2 = 1 
Target Variance 0.106; Skew -0.397; Kurtosis 1.37 
Best case: 10 hidden neurons; Initialization # 1 

(b) Chemical # 17 set aside 
Chemical # 17; Prediction error = 25% 
100% of predictions are ±5% of targets; R2 = 1 
Target Variance 0.109; Skew -0.238; Kurtosis 1.27 
Best case: 10 hidden neurons; Initialization # 2 

Figure 27  Probe Using Actual Data—Fit Based on Five Expert-Chosen Raw 
Descriptors: (a) Summary, (b) Basis 
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(a) Cross-validation summary 

48% of predictions are ±5% of targets; R2 = 0.347 
(b) Basis of a single point in the summary 

Chemical # 4; Prediction error = -3% 
45% of predictions are ±5% of targets; R2 = 0.594 
Target Variance 0.106; Skew -0.454; Kurtosis 1.44 
Best case: 3 hidden neurons; Initialization # 5 

Figure 28  Probe with Actual Data—Fit Based on Five Principal 
Components with Two Chemicals Excluded: (a) Summary, (b) Basis 

 
A key expectation from this study is that in using neural networks for QSAR, as long as the 
relationship between the target data and the molecular descriptors is not confounded (by data 
noise or the use of principal components instead of the raw descriptors for the training of the 
network), the training database need not be excessively large (unlike in the case of neural 
networks applied to pattern recognition—face, hand-writing, stock prices, etc.).  Further, 
similarity between data chemicals and query chemicals is less of a requirement than merely that 
the range of descriptors in the training set be broad enough for the network to “learn” the 
dependence of the target property on the descriptors.  The minimum number of data chemicals 
hence should just equal (or exceed slightly) the number of essential parameters (in the target-
descriptor relationship).  This “effective number” is usually unknown but cannot be more than a 
handful in macroscopic phenomena like permeation.  Of course, more data chemicals would be 
needed as the data become noisier (or display less variance in a key descriptor); assuming that 
the noise is Gaussian, the phenomenon of “regression to the mean” should result in successful 
training and prediction with increasingly large databases. 

These expectations were probed here, by re-visiting the test (where the “data” were calculated 
using an equation of no physical significance) and systematically reducing the number of data 
chemicals in the training set (randomly chosen from the full set of 23).  The predictions stayed 
excellent even when the number of data chemicals was as low as 7, but that number could not be 
set to the lower limit of 3, presumably because the chemicals are not distinct enough to provide 
adequate training with the minimal set.  It would be of interest to extend this exercise—of using 
fewer and fewer data chemicals—to predictions based on actual experimental data as well. 
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4.3 RESULTS 
 
The best set of predictions, for the data available at the time of testing, were obtained in the 
cross-validation using the five raw descriptors that were chosen based on physicochemical 
intuition. These predictions are plotted in Figure 29.  The results plotted in Figure 29a are also 
presented in Tables 9, 10, and 11 for data, CWA and simulant, and IPFS chemicals, respectively. 
Predictions may be improved with more uniform data, as suggested by the two distinct clusters 
that can be seen in the plot with a pronounced intervening gap (and as foreseen in the context of 
Figure 12 in Chapter 2).  
 

 

(a) Cross-validation summary 
67% of predictions are ±5% of targets; R2 = 0.715 

(b) Basis of a single point in the summary 
Chemical # 4; Prediction error = -2% 
85% of predictions are ±5% of targets; R2 = 0.938 
Target Variance 0.106; Skew -0.454; Kurtosis 1.44 
Best case: 3 hidden neurons; Initialization # 5 

Figure 29  Best Predictions with Actual Data—Fit  Based on Five Expert-
Chosen Raw Descriptors: (a) Summary, (b) Basis 
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Table 9  Best Predictions for Data Chemicals 

log10 (D (m2/s)) in butyl rubber 
CHEMICAL DATA PREDICTION 

acetonitrile -12.71 -12.71 
1-Butanol -13.08 -11.35 
2-ethoxyethanol -12.94 -11.55 
N-N-dimethylformamide -13.05 -13.34 
N-N-dimethylacetamide -13.07 -12.95 
ethylene glycol butyl ether -12.92 -14.18 
1-methyl-2-pyrolidinone -13.07 -12.44 
benzonitrile -12.64 -12.15 
ethyl acetate -11.08 -12.71 
1-2-Dichloroethane -10.64 -9.83 
butylamine -10.17 -10.39 
dichloromethane -9.94 -9.90 
benzene -9.98 -9.83 
hexane -9.86 -9.91 
heptane -10.23 -9.77 
triethylamine -9.95 -10.57 
Para Xylene -10.76 -10.78 
Mesitylene -10.94 -10.83 
Chloroform -9.81 -10.24 
trichloroethylene -10.03 -9.97 
tetrachloroethylene -10.49 -9.83 

Notes:  The data are from column 6 of Table 7, after division by 1012 and taking 
the common logarithm.  The predictions are “hands off” cross-validation 
predictions; i.e., the prediction for each chemical was obtained by excluding that 
chemical from the training set.	
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Table 10  Best Predictions for Query Chemicals: CWAs and Simulants 

log10 (D (m2/s)) in butyl rubber 
CHEMICAL PREDICTION 

Triethyl Phosphate -12.75 
Bis(2-ethylhexyl) phthalate -13.27 
Diethyl 4-nitrophenyl phosphate -12.92 
Diethyl ester phosphonic acid -12.99 
Diethyl ethyl phosphonate -12.73 
Diethyl Malonate -12.90 
Di-isopropyl fluorophosphate -12.70 
Di-isopropyl methyl phophonate -11.72 
Dimethyl methyl phosphonate -11.60 
Diphenyl chloro phosphate -11.38 
Dipropylene glycol monomethyl ether -13.13 
Ethanol -13.39 
Ethyl chloro acetate -12.84 
Sarin -10.76 
Soman -10.00 
Tabun -10.65 
Trimethyl phospate -12.79 
HD -12.80 
CEES-HM -11.39 
CEMS -10.64 
CEPS -9.97 
Diethyl Adipate -13.47 
DMA -12.90 
MS[ -9.84 
Diethyl Pimelate -12.96 
Lewsite -12.62 
Phenylarsine Oxide -12.97 
Lewsite Oxide -14.84 
VX -12.52 
Amiton -13.23 
BIS -12.57 
Bis(2-ethyl 1-hexyl) 2-ethyl 1-hexyl phosphonate -12.15 
DEP -12.70 
DEPPT -11.00 
DES -13.27 
Malathion -13.28 
Parathion -12.96 
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Table 11  Best Predictions for Query Chemicals: IPFS 

log10 (D (m2/s)) in butyl rubber 
CHEMICAL PREDICTION 

Molecule 2 -8.88 
Molecule 3 -8.92 
Molecule 4 -8.70 
Molecule 5 -9.34 
Molecule 6 -9.69 
Molecule 7 -8.97 
Molecule 8 -12.87 
Molecule 9 -13.08 
Molecule 10 -12.90 
Molecule 11 -12.85 
Molecule 12 -13.22 
Molecule 13 -12.94 
Molecule 14 -12.19 
Molecule 15 -12.33 
Molecule 16 -12.80 
Molecule 17 -12.85 

 
4.4 DISCUSSION 
With reference to the predictions and data in Table 9 for the solvents that are the data chemicals,  
the prediction accuracy seems up to par with the entries in the “solubility challenge” [54, 55], 
summarized in Table 12.  Any perceived inadequacy has to be viewed in perspective with the 
negligible prediction errors in the test cases which demonstrated the capability of the neural 
networks technique and the correctness of its implementation.  Also, the “log D data” here are 
not raw data (unlike aqueous solubility), but a parameter extracted from desorption 
measurements under complications such as swelling and concentration dependence.  The intense 
effort expended on diffusivity estimation (detailed in Chapter 2) is thus vindicated. 

 
Not surprisingly, data-driven techniques require a focus on the “data”.  That is, for QSPR, 
prediction accuracy depends crucially on data clarity and coverage.  What the network is being 
fed as target data must genuinely represent the phenomenon being investigated and not be too 
obscured by spurious effects, imprecise measurements, or fitting-model inaccuracy (if the “data” 
are actually estimates of some parameter, e.g., diffusion coefficient, as in the present case). Also, 
the target data points should cover a broad range of the descriptors that are significant to the 
underlying phenomenon. For example, if molecular weight is a key descriptor, the weights of the 
molecules chosen must include at least one high value and one comparatively low value (as in a 
two-level factorial design of experiments).  When these requirements are met and due care is 
invested into assembling the “data” in data-driven prediction (i.e., when data of minimal error 
are obtained for chemicals chosen using a “uniform coverage” design [57]), the ANN can “learn” 
well with no guidance from theory and make fairly accurate predictions.  With perfect data, the 
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number of data chemicals need not be much larger than the effective number of descriptors 
which pertain to the phenomenon being modeled.  Which descriptors are pertinent is usually 
unknown, but their number cannot be more than a handful in macroscopic phenomena like 
permeation.  In practice, however, it is better to have as large a database as is feasible, since data 
errors cannot be totally eliminated and a database of only a few chemicals may not span a 
significant range of the relevant descriptors.  The need for data quality is particularly important 
when the database is small.  While a large database size does not guarantee prediction accuracy, 
it is better to train with a large database than a small one when the data are fuzzy; with a large 
database, the network may be able to avoid overfitting to the noise and detect the true patterns, 
i.e., capture the underlying generalities in the data without memorizing data idiosyncrasies.  
However, as noted in Chapter 2, cost considerations restrict the database size to a small number 
of chemicals; going forward, databases will be restricted to even fewer than the 23 solvents in 
the present study.  That puts a premium on data quality. 

 
Table 12  A Sampling of Results from the Solubility Challenge 

FULL 32 28 MEASURED 28 24 4-OUTLIERS 24 

±0.5logS ±0.5logS R2 ±0.5logS R2 

% CORRECT %  CORRECT  % CORRECT  

46.9 39.3 0.313 45.8 0.581 
46.9 42.9 0.583 50.0 0.671 
34.4 32.1 0.174 37.5 0.470 
46.9 50.0 0.562 58.3 0.797 
46.9 42.9 0.620 50.0 0.793 
28.1 32.1 0.298 37.5 0.630 
40.6 42.9 0.357 50.0 0.659 
53.1 50.0 0.361 58.3 0.669 
50.0 53.6 0.366 62.5 0.663 
56.3 57.1 0.291 66.7 0.565 
53.1 50.0 0.290 58.3 0.499 
53.1 50.0 0.548 58.3 0.605 
40.6 39.3 0.221 45.8 0.592 
43.8 46.4 0.305 54.2 0.648 
21.9 21.4 0.144 25.0 0.459 
50.0 50.0 0.234 58.3 0.611 
34.4 32.1 0.509 37.5 0.777 
31.3 28.6 0.465 33.3 0.622 
34.4 32.1 0.444 37.5 0.799 

Source: Ref. 55, Table 2 
 

This discussion is tacitly about the prediction quality for the 20 or so solvents, since only for 
these “data chemicals” both experimentally determined diffusivities and data-driven cross-
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validation predictions are available for a specific butyl rubber sample.  The ultimate validation of 
the prediction method awaits the availability of experimentally determined diffusivities 
(preferably on the same membrane material) for the CWAs and the IPFS chemicals.  In this 
context, it is appropriate to close with a promising comparison:  For Di-isopropyl methyl 
phophonate (DIMP), the present estimate of 1.9 x 10-8 cm2/s (from the entry in Table 10: -11.72 
for the common logarithm of D in m2/s) is straddled by the experimentally determined values of 
7 x 10-8 cm2/s (from immersion data) and 9 x 10-9 cm2/s (from breakthrough data)  previously 
reported [58] for Neoprene disks (50% rubber, 30% carbon black, and 9% plasticizer).  
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CHAPTER 5 CONCLUSIONS 
 
The goals of the task were to develop: 

 Experimental methods to measure chemical permeation through barrier materials. 
 Computational-chemistry capabilities to calculate a variety of properties or “molecular 

descriptors” given only the formula of a chemical. 
 Data-driven algorithms to predict the permeation of chemicals through barrier materials. 

 

As detailed in the preceding chapters on “data,” “descriptors,” and “predictions,” these goals 
were met, with varying degrees of success.  In outline: 

 Desorption transients of 23 organic solvents from a commercial butyl rubber sheet were 
measured using the immersion method. They were then comprehensively analyzed to 
obtain integral diffusion coefficients based on the linear constant-thickness Crank’s 
Solution, as well as on a novel nonlinear model that accounts for swelling, and to obtain 
the parameters for solubilities using Flory-Huggins, Hildebrand, and Hansen theories.  
(Other measurement methods such as the “drop volume technique” can also be used to 
generate the diffusivity data.) 

 Using commercial computational chemistry software (Spartan®) machine-readable 
molecular structures in SDF format were built for these organic solvents (“data 
chemicals”) as well as about 60 threat agents and simulants (“query chemicals”).   

 Using commercial computational chemistry software (Sarchitect®), and based on the 
molecular structures, about 1,000 constitutional, topological, and conformational 
properties (“molecular descriptors”) were calculated for all the data and query chemicals.   

 A machine learning technique—ANN, for regression—was implemented by means of 
NSRDEC-developed Matlab® software and detailed probing studies, to provide data-
driven prediction of target properties that characterize how chemical threat agents would 
permeate protective barrier materials.  The network is trained using data chemicals for 
which descriptors, as well as target properties, are known and then used to make 
predictions for query chemicals for which only the descriptors are known.  The 
predictions, while not perfect, are good enough to be on par with literature precedents for 
predicting aqueous solubility of pharmaceutical chemicals. 

 Besides numerical data, descriptors, and predictions, this work has generated: 
o Protocols (for using commercial computational-chemistry software to render the 

structures and calculate the descriptors)  
o Tutorials (on ANN applied to property estimation) 
o Matlab® codes (one set of codes for extracting diffusivity estimates from 

desorption transients and another that, after some modifications, can be used for 
predicting a host of other properties of interest besides diffusion coefficients).  
The codes have many options and features, a coding-style aimed at error 
avoidance, extensive commentary and displays, and provisions for comprehensive 
record-keeping. 

This work has brought out the power and promise of machine learning for property estimation, 
and delineated the scope for deploying “big data” techniques on small databases: 

 BRANN is ideal for small datasets since it avoids the splitting of training data into 
training and validation sets, thus reducing the data demand. 
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 QSAR or QSPR, prediction accuracy depends crucially on data clarity and coverage.  
That is, what the network is being fed as training target data must genuinely represent the 
phenomenon being investigated and not be obscured by spurious effects, imprecise 
measurements, or fitting-model inaccuracy, especially if the “data” are not directly 
measured quantities such as aqueous solubility, but are actually theory-based estimates of 
some parameter, e.g., diffusion coefficient, as in the present case.   

 Because structure-activity relations may involve nonlinearities that cannot always be 
linearized by logarithms, it is better to use the raw descriptors directly as independent 
variables, instead of linear combinations of the descriptors such as principal components.   

 The data chemicals should cover a broad range of the descriptors that are significant to 
the underlying phenomenon; for example, if molecular weight is a key descriptor, the 
weights of the molecules chosen must include at least one high value and one 
comparatively low value as in a two-level factorial design of experiments.  

 Not all the molecular descriptors are used in the calculations, whether in training the 
network or in using the trained network to make predictions.  Only a select few key 
descriptors are used, in order to avoid “the curse of dimensionality”.  The culling of key 
descriptors was left to expert opinion in this work, but with some additional coding—
using genetic algorithms for instance—descriptor selection can be automated as well. 

 If the range of key descriptors in the training set is broad enough for the network to 
“learn” the dependence of the target property on the descriptors, similarity between data 
and query chemicals is less of a requirement. 

 The minimum number of data chemicals should equal or exceed the number of effective 
parameters (in the target-descriptor relationship), which may not be more than a few in 
macroscopic phenomena like permeation.  In fact, a posteriori estimates (that are a 
feature of the Bayesian regularization method used for training the network) put the 
number of effective parameters around five or six in the present cases. 

The last point brings out an important difference between standard data mining and QSAR.   
Standard “big data” involves pattern recognition by sifting through very large but subjective 
databases—faces, hand-writing, key strokes, stock prices, voting, and such.  Cheminformatics 
aimed at pharmaceutical drug discovery involves needle-in-the-haystack pattern recognition 
amidst elusive and complex biological phenomena.  In contrast, data-driven QSAR involves a 
clinical analysis of carefully collected data on simple physicochemical systems.   

In sum, the training database for data-driven QSAR need not be big, in principle.  In practice, 
however, more data chemicals would be needed if the data are noisy or display less variance in 
key descriptors.  While a large database size does not guarantee prediction accuracy, with a large 
database the network may be able to avoid overfitting to the noise and detect the true patterns.  
Also, the phenomenon of “regression to the mean” should result in successful training and 
prediction with increasingly large databases.  However, since cost considerations usually restrict 
the database size to a small number of data chemicals, data quality remains paramount. 

Data-driven methods can be used to predict not just permeation, but also many other 
physicochemical properties: solubilities, vapor pressures, partition coefficients, chemical 
degradation products, and, with additional effort, toxicity metrics.  That is, the prediction codes 
developed in this work are not restricted to the diffusivity database, but can be used to make 
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predictions of other physicochemical or toxicity properties, with some modifications, given the 
appropriate databases.  Subject-matter expertise would be helpful in descriptor selection, 
however, i.e., in deciding which molecular features are important for the target property to be 
predicted.  With some additional coding descriptor selection can be automated as well.   

Despite the challenges of the original remit of the task, the effort has demonstrated and 
strengthened NSRDEC expertise in cheminformatics, a discipline that has much potential for 
addressing important DTRA objectives such as computational toxicology of NTAs. 
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APPENDIX A 	
UNITS OF PERMEABILITY 

 

The conventions are different for the permeation of gases and liquids.  Also, the units are not SI. 

GASES   The Barrer (in honor of the late Professor R.M. Barrer, a pioneer in membrane science) 
is commonly used for gas permeability: 

P units: 1 Barrer = 10-10 cm3@STP / (cm . s. cmHg) = 10-10 cm3@STP . cm / (s . cm2 . cm-Hg)  

Experimentally P is determined by multiplying the observed permeation flux (which is 
permeation rate divided by membrane area) by the membrane thickness and dividing by the 
trans-membrane partial pressure difference of the permeant: 

 The term cm3 @STP / s refers to the molar trans-membrane permeation rate of the 
diffusing species converted from the permeation temperature and atmospheric pressure to 
the standard conditions of 0°C and 1 atm (divide by 22400 to get gram moles / s).  

 The cm refers to the membrane thickness. 
 The cm2 refers to membrane area. 
 The cm-Hg refers to the trans-membrane partial pressure as measured by a mercury 

barometer. 
 The 10-10 is just a dimensionless constant, necessary to handle the typical range of (low) 

gas permeabilities in polymers. 

Soubility, defined as the partition coefficient or Henry’s law slope (i.e. the ratio of solute 
concentration in the membrane and the solute partial pressure at equilibrium in the surrounding 
gas phase) yields the amount of solute (cm3@STP) per unit volume of membrane (cm3) per unit 
partial pressure (cmHg) 

S units = cm3@STP / (cm3. cm-Hg) 

Diffusivity has the familiar units:  D units = cm2 / s  

These units, as can be easily verified, obey the equation P = S * D.   

Note:  Permeance is not the same as permeability, but is the ratio of permeability and thickness. 

Thickness

tyPermeabili
PPermeance 

 


L

P
PermeanceP  Permeability 

Multiplying permeability by membrane area and partial pressure difference and dividing by 
membrane thickness should yield the permeation rate. 

LIQUIDS  The difference from gases has to do with how solubility of single component liquid 
permeants is reported: instead of the partition coefficient (a relative measure that compares the 
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solubility in the membrane with solubility or activity in the adjacent fluid), the absolute 
solubility in the membrane is used (since the fluid phase activity is 1). 

S units = Molar: mole / (cm3 of membrane) or Mass: g / (cm3 of membrane) 

D units = cm2 / s  P = S * D = mole / (cm * s) or g / (cm * s) 

For these experiments  
polymerg

solventg

W

WW

W

W
w 0

P

s
SP




   

where W is the weight at the end of the final immersion step and 0W  is the weight at the end of 
the desorption or “drying” step.  Multiplying this “weight fraction” or, more precisely, solvent-
to-polymer-weight ratio by the polymer density,  

polymercm

solventg
wmassS

3PSP    

Dividing by the solvent molecular weight, polymercm

solventmole

M
wS

3
W

PSP
mole




 

Putting it all together,  
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Dividing permeability by membrane thickness should give the mass or molar flux:  

g solvent / cm2 s or g solvent / cm2 s, respectively.  Multiplying the flux by the membrane area 
should give the permeation rate: g solvent / s or g solvent / s.   

ASTM results for gloves are reported as “rates,” which are actually mass fluxes in µg/(cm2 min). 
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Note: If the membrane thickness is reported in meters, the ASTM rate will be 

mincm

g

L

w*D
100.6

2
m

PSP5 
  

D = Diffusion coefficient (cm2/s) 

Lcm = Membrane thickness (cm) 

Lm = Membrane thickness (m) 

wSP = solubility 
polymerg

solventg

W

WW0






 

3P
cm

g
densitypolymer

 
Evans et al.* plotted the product of membrane thickness and permeation fluxes (with the product 
in the units of µg / m min).  For comparison with their Figure 2, the diffusivity and solubility 
results were combined as follows: 
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* K.M. Evans, W. Guo, and J. Hardy,  “Modeling Solubility Parameters and Permeation Data of Organic Solvents 
Versus Butyl Gloves from Four Manufacturers,” Journal of Applied Polymer Science, 109 (2008) 3867-3877. 
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APPENDIX B  
A TUTORIAL ON NEURAL NETWORKS  

 

Figure B-1 shows an in-silico prediction model. Figure B-2 is a schematic of the input and 
desired output for a neural network. Figures B-3 and B-4 are schematics of neural networks with 
one and two hidden layers, respectively. 

 

Figure B-1  In-Silico Predictions in Biology and Chemistry1 
 

Note:  Except for Figures B-9, B-12, B-13, B-14, and B-15, the rest of the schematics in this 
appendix are from Matlab® documentation2 and session screen-shots. 

	 	

                                                 
1 M. Cronin, “Quantitative Structure-Permeability Relationships—Useful or Useless?” School of Pharmacy and 
Chemistry, Liverpool John Moores University, PDF retrieved from an internet search: 
http://www.google.com/webhp?nord=1#nord=1&q=cronin+quantitative+structure+permeability+relationships, 
11/29/2013. 

 
2 M.H. Beale, M.T. Hagan, and H.P. Demuth, “Neural Network Toolbox™—User’s Guide,” Mathworks (2013), 
retrieved from   http://www.mathworks.com/help/pdf_doc/nnet/nnet_ug.pdf , 11/29/2013. 
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Figure B-2  Building a Neural Network 
	

 

Figure B-3  A Neural Network with One Hidden Layer 
 

 

Figure B-4  A Neural Network with Two Hidden Layers 
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Unlike a standard linear or nonlinear least squares regression (in which the fitting equation is 
explicit), neural networks use a hidden, highly nonlinear, fitting function that is made up of 
nonlinear elements (or neurons illustrated in Figures B-5 and B-6).  Notice that the neuron shown 
in Figure B-6 acts on every descriptor.  The descriptors are multiplied by appropriate weights, 
the results are summed (along with a bias or intercept), and, finally, the sum is put through a 
transfer function to produce the output of this neuron.	

 

Figure B-5  A Single Hidden Neuron 
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The operations of a single neuron illustrated in Figure B-5  are shown in Figure B-6 as repeated 
for each neuron in a layer of neurons.  For the first layer of neurons, the inputs are the 
descriptors; for subsequent layers of neurons, the inputs are the outputs of the preceding layer.  
The output from the very last layer constitutes the network’s prediction.  It may become apparent 
by now how the neural network is really fitting the data to a complicated quilt of equations. 	

 

Figure B-6  A Layer of Hidden Neurons 
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Notice that the output for the log-sigmoid transfer function shown in Figure B-7 can only be 
positive.  Hence, that transfer function is good for target properties that are always positive.  
Also, Figures B-7 and B-8 bring out another pertinent aspect of neural networks; namely, the 
network only deals with predictions that are bounded by 0 to 1 or -1 to +1.  Actual target data 
hence have to be suitably normalized using a min-max algorithm; a similar center-and-scale 
normalization is done for the descriptors.  After the fitting is done, the normalizations are of 
course reversed, rendering the predictions in the original scale of the data.	

 

Figure B-7 A Nonlinear Transfer Function with Only Positive Output Potential 
	
Notice that the output for the tan-sigmoid transfer function shown in Figure B-8 can be both 
negative and positive.  Hence that transfer function is good for target properties that are not 
always positive.	
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Figure B-8  A Nonlinear Transfer Function with Both Positive and Negative 
Output Potential 

	
Fitting with a neural network essentially consists of indirectly adjusting such scale parameter 
that, in turn, alters a single nonlinear term, namely a hidden neuron.  (The argument of the 
sigmoidal transfer function is a weighted sum of the inputs to this neuron, typically the 
descriptors.)  By combining several neurons, a neural network can in principle fit any nonlinear 
data.  The trick is not going overboard using too many neurons to get a perfect fit of the training 
set (in which case the network ends up simply memorizing every idiosyncrasy of the training 
data and not learning the general trends) and short-changing the generalization ability of the 
network, leading to poor fits for test sets.   

Figure B-9 is a plot of the sigmoid function σ(v) = 1/(1+exp(−v)) (red curve), commonly used in 
the hidden layer of a neural network. Included are σ(sv) for s = 1/2 (blue curve) and s = 10 
(purple curve). The scale parameter s controls the activation rate, and it can be seen that large s 
amounts to a hard activation at v = 0. Note that σ(s(v − v0)) shifts the activation threshold from 0 
to v0. 
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Figure B-9  Predictive Power of the Sigmoidal Transfer Function3 

A linear transfer function (Figure B-10) is typically used in the final, output layer of a neural 
network.  It can be discerned that if the network has only the output layer (and no hidden layers, 
i.e., no nonlinear elements) the resulting fit reduces to linear regression. 

 

Figure B-10  Linear Transfer Function 

                                                 
3 T. Hastie, R. Tibshirani, and J. Friedman, “The Elements of Statistical Learning—Data mining, Inference, and 
Prediction,” 2nd edition, Springer, 2009, Figure 11.3. 



 
78 

As shown in Figure B-11, converging to a local optimum (and hence failing to reach the global 
optimum) is a problem for nonlinear curve-fitting or optimization in general and for feed-
forward neural networks in particular. Hence, it is important to re-start the convergence from 
new starting points through repeated initializations and accept the best of the fits. 

 

Figure B-11  Convergence Traps due to Local Minima 
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Overfitting is a known problem in linear least squares fitting, illustrated in Figure B-12 with a 
polynomial fit.   M is the degree of the polynomial.  Low M entails “bias”; too high an M entails 
“variance”, i.e., overfitting. 

.

 

 

Figure B-12  Overfitting in Linear Regression4 
 
Overfitting is known in nonlinear neural networks also. In the example shown in Figure B-13, M 
is the number of hidden neurons.  M = 1 entails “bias” (i.e., an inadequate fit); M = 3 offers the 
optimal fit that captures the general trend without being side-tracked by the idiosyncrasies; M = 
10 is unacceptable because of “variance”, i.e., overfitting, with the fit faithfully going through 
every error-laden datum.  

                                                 
4 Source of background information on the topic “Overfitting in Linear Regression,” retrieved from 
http://www.google.com/webhp?nord=1#nord=1&q=lecture+3+linear+regression+machine+learning+cuny, 
11/29/2013. 
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Figure B-13  Overfitting in Neural Networks5 
 
The recipe for the “early stopping” approach to avoid overfitting (Figure B-14) is to set aside a 
portion of the target database for validation and the rest of the database for training and begin 
training the network using only the training set, while monitoring the prediction-versus-data 
error for both training and validation sets.  The error for the training set will keep on dropping; 
the error for the validation set will also drop initially but will begin to rise eventually.  Stop the 
training at this point. 

                                                 
5 Source of background information on the topic “Overfitting in Neural Networks,” retrieved from 
http://www.cedar.buffalo.edu/~srihari/CSE574/Chap5/Chap5.5-Regularization.pdf, slide 5, 11/29/2013. 
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Figure B-14  Early Stopping to Avoid Overfitting6 
 

By making the output the same as the input with an intermediate bottle-neck layer, 
dimensionality can be reduced while preserving nonlinearity.  Nonlinear principal components 
are extracted using such networks (Figure B-15).7   With the original set of descriptors as the 
input as well as the output of the network, the number of hidden neurons in and the outputs of the 
bottle-neck layer are the number and values of the nonlinear principal components, respectively. 

                                                 
6 Source of background information on the topic “Early Stopping to Avoid Overfitting in Neural Networks,” 
retrieved from http://www.willamette.edu/~gorr/classes/cs449/overfitting.html, 11/29/2013. 
 
7 “Curse of Dimensionality”, retrieved from http://en.wikipedia.org/wiki/Curse_of_Dimensionality, 11/29/2013. 
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Figure B-15  An Auto-Associative Neural Network 
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NOTATION 
 

sa
 

Solvent activity at the external film boundaries Unit-less 

0C
 

Initial concentration of solvent in the film Kg Mol / m3(film+solvent) 

sC
 

Concentration of solvent in the film Kg Mol / m3(film+solvent) 

seC
 

Concentration of solvent at the film’s external boundaries Kg Mol / m3(film+solvent) 

d Film thickness m 

D
 Solvent diffusion coefficient in film, normalized by Dref  Unit-less 

sD
 

Solvent diffusion coefficient in the film  
(solvent-polymer binary diffusion coefficient) 

m2/s 

h Film half-thickness m 

0h
 

Initial film half-thickness m 

0

t

M

M
 Solvent loading in the film at time t, relative to the initial 

loading 
Unit-less 

t time s 

sV
 

Molar volume of solvent  m3/ Kg Mol   

AW  Weight of additives
 

Kg 

FW
 

Weight of the pristine disk, before any sorption or 
desorption

Kg 

PW  Weight of polymer Kg 

SW  Weight of solvent Kg 

0W  Weight at the beginning of desorption, after the soaking 
step 

Kg 

W  Weight at the end of desorption Kg 

wSP  Solvent to polymer weight ratio Unit-less 

w SA  Solvent to additives weight ratio Unit-less 
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x Distance perpendicular to the film surface 
(measured from film center) 

m 

y Distance, normalized by the instantaneous film half-
thickness 

Unit-less 

dS  Solvent solubility parameter, dispersion MPa0.5

 

hS  Solvent solubility parameter, hydrogen bonding MPa0.5

 

pS  Solvent solubility parameter, polar MPa0.5

 

dP  Polymer solubility parameter, dispersion Unit-less 

hP  Polymer solubility parameter, hydrogen bonding Unit-less 

pP  Polymer solubility parameter, polar Kg / m3 

P  Polymer volume fraction
 

Unit-less 

s  Solvent volume fraction
 

Unit-less 

se  Solvent volume fraction in the film external boundaries
 

Unit-less 

0s  Solvent volume fraction at the beginning of desorption.
 

Unit-less 

P  Polymer density Kg / m3 

s  Solvent density Kg / m3 


 

Flory-Huggins solvent-polymer interaction parameter Unit-less 

H  Energy part of the Flory-Huggins interaction parameter Unit-less 

S  Entropy part of the Flory-Huggins interaction parameter Unit-less 

 Solvent volume fraction, normalized  Unit-less 

 Film thickness, normalized by its initial value Unit-less 

  Time, normalized by a characteristic diffusion time  Unit-less 
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ACRONYMS

  

ANN Artificial Neural Network 

BRANN Bayesian Regularization Neural Network 

BCUT Burden, Chemical Abstracts Service, and the University of Texas 

CART Classification and Regression Trees 

CAS Chemical Abstracts Service 

CWAs Chemical Warfare Agents 

ED Euclidean Distance 

GA Genetic Algorithm 

GETAWAY Geometry Topology and Atom-Weights Assembly 

IPFS Integrated Protective Fabric System 

MACCS Molecular Access System 

MSE Mean Square Error 

NSRDEC Natick Soldier Research Development and Engineering Center 

PCA Principal Components Analysis 

QSAR Quantitative Structure Activity Relations 

QSPR Quantitative Structure Property Relations 

RMSE Root Mean Square Error 

SMILES Simplified Molecular Input Line Entry Specification 

SLN SYBYL Line Notation 

SDF Structural Data File 

TC Tanimoto Coefficient 

WENDI Web Engine for Non-obvious Drug Information 

 

 




