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EXECUTIVE SUMMARY 

Background 

Fatigue due to sleep loss is a significant problem for the modern workforce (Rajaratnam 

& Arendt, 2001) and is the most frequently-cited contributing factor in Naval Aviation mishaps 

(Belland, 2012; Naval Safety Center, 2014).  Addressing well-founded concerns about 

insufficient sleep among military personnel, analeptics have been made available within each of 

the service branches, and guidelines have been developed regarding ideal sleeping conditions 

(Caldwell & Caldwell, 2005; Gore, Webb, & Hermes, 2010).  Regrettably, fatigue remains a 

problem, making it clear that better tools are necessary for fatigue prevention and detection.  In 

response to this need, computer models have been developed which can predict appropriate 

work/sleep cycles to minimize fatigue (e.g., Sleep, Activity Fatigue, and Task Effectiveness 

[SAFTE
™

], which is the basis for both FlyAwake
©

 and Fatigue Avoidance Scheduling Tool, 

FAST
™

), yet these models fail to take into account important individual differences in fatigue 

states and susceptibility to fatigue.  However, research has determined that there are significant 

individual differences with regard to fatigue (Killgore, Grugle, Reichardt, Killgore, & Balkin, 

2009; Van Dongen, Baynard, Maislin, & Dinges, 2004; Van Dongen, Caldwell, & Caldwell, 

2006), suggesting a strong need for an individualized assessment of readiness-to-fly. 

 

Purpose 

Research using an acute sleep loss scenario has established that the PMI FIT 2000 (PMI) 

as well as several measures from the Flight Fit battery can be effective tools for detecting fatigue 

due to sleep loss.  However, these tools need to be validated to ensure their accuracy for chronic 

sleep loss as well.  The present study was designed to address this need by reducing participants’ 

nightly time in bed to 4 hours for 4 consecutive days while evaluating performance on a variety 

of different tasks.  The PMI is an instrument designed to gauge physiologic state by measuring 

occulometric characteristics, such as saccadic velocity and pupil diameter.  The Flight Fit is a 

brief neuropsychological battery which evaluates abilities such as short-term memory and visual 

scanning.  Additionally, to determine which measures would be correlated with performance on 

the Psychomotor Vigilance Task (PVT), widely used to assess vigilance and attention, 

participants were tested on a flight simulator, X-Plane; voice analysis, variations in which can be 

used to monitor fatigue; the dual n-back task, which measures executive function; the Revised 

NEO Personality Inventory, which assesses personality traits such as neuroticism and 

extraversion; the Stanford Sleepiness Scale, a subjective assessment of fatigue; the Profile of 

Mood States (POMS), a tool to evaluate fluctuations in active mood state; and the University of 

Pennsylvania Smell Identification Test because previous work has found a relationship between 

extended time awake and a decrement in the ability to identify odors.   

 

Method 

The performance of 24 participants on the above tasks was observed over the course of 8 

days.  Participants were trained on each of the tasks during the first day of the study, baseline 

measures were taken during the second day of the study, and then 2 days later participants 

returned to the lab and remained there for 4 consecutive days.  During these 4 days, participants 

were limited to 4 hours of time in bed per 24 hours, and their performance in response to fatigue 

was evaluated five times per day.  It was hypothesized that participants’ performance on the 

PMI, an oculometric evaluation, and the Flight Fit, a cognitive performance measure, could be 

used to predict an individual’s susceptibility to fatigue, based on performance on the PVT.  
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Additionally, it was further hypothesized that other measurements such as performance on a 

flight simulator, voice analysis, executive function, mood, and odor identification, would 

correlate with performance on the PVT over the course of the study.    

 

Results 

Results of the initial repeated measures analyses of variance indicated that several 

measures (PMI Constriction Amplitude and total lapse time on the X-Plane flight simulator) 

were highly sensitive to troughs in the circadian cycle.  Conversely, PMI Pupil Diameter 

appeared to be more influenced by homeostatic drive, which is the pressure to sleep that 

gradually increases with continuous wakefulness.  Finally, there were a number of measures 

which were able to effectively track both the circadian and homeostatic processes over the period 

of sleep restriction including the Stanford Sleepiness Scale (SSS), components of the POMS and 

PVT, and PMI Saccadic Velocity. 

Subsequent analyses developed hierarchical linear models to identify which factors were 

able to predict fatigue at both the group and individual level, as measured using the lapse 

measure from the PVT.  Significance at the group level confirmed that changes in response to 

sleep loss were evident, whereas significance at the individual level revealed inter-individual 

variability in response to sleep restriction.  Results indicated that several factors were only 

significant at the group level (POMS Vigor-Activity and SSS), while others were only significant 

at the individual level (PMI Pupil Diameter, Constriction Latency, and Constriction Amplitude). 

The FAST performance estimates and flight simulator total lapse time, as well as POMS 

Fatigue/Inertia and Total Mood Disturbance, and PMI Saccadic Velocity, were significant at 

both group and individual levels in predicting PVT lapses over the course of the study.   

These five factors which were significant at both levels were further examined through a 

series of enter-method linear regression analyses to determine which combination might best 

predict changes in fatigue as measured by the number of PVT lapses.  In all of these analyses, 

FAST performance estimates alone predicted very little of the variance, though the algorithm 

was strengthened by the four other factors listed above.  Moreover, grouping the participants 

based on their rank (i.e., top 25%, middle 50%, or bottom 25%) for the personality facets 

Gregariousness and Activity led to an even better fit of the predictive algorithm.  Similar results 

were obtained by grouping the data based on time of test administration (0730, 1530, and 2330), 

with the strongest algorithm using data from the early morning test session. 

 

Discussion  
Taken together, these findings suggest that basic subjective, cognitive, and physiologic 

tasks are sensitive to changes in behavior and performance as fatigue increases, and the 

combination is essential both for optimal assessment and prediction of impairments due to sleep 

loss.  Additionally, these results supported previous work which concluded that, although there 

are some similarities, changes in response to chronic sleep restriction can be quite different from 

what is observed during total sleep deprivation.   
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INTRODUCTION 

 Military aviators encounter numerous dangers but one of the most prevalent threats is the 

effect of fatigue due to sleep loss.  Fatigue has been recognized as the number one aeromedical 

factor implicated in Naval Aviation flight mishaps (Naval Safety Center, 2014).  In addition to 

the commonly experienced impairments such as a decreased ability to focus attention, solve 

problems, and remember instructions, as well as increased stress, there are some decrements 

which may be of particular concern to pilots (Hartzler, 2014).  Specifically, pilots experiencing 

sleep loss exhibit visual neglect for both the peripheral and central fields (Kendall et al., 2006; 

Rogé et al., 2003) as well as increased risk-taking behavior (Killgore et al., 2006; Venkatraman 

et al., 2007) and confusion (Drury et al., 2012).  However, sustained or continuous operations in 

high tempo, wartime operations often result in significant sleep loss, consequently making 

fatigue inevitable.   

 

A large body of research has concluded that although everyone is susceptible to fatigue as 

a result of sleep loss, the degree to which fatigue hinders performance varies widely among 

individuals (e.g., Bliese, Wesensten, & Balkin, 2006; Killgore, Grugle, Reichardt, Killgore, & 

Balkin, 2009; Rupp, Wesensten, Bliese, & Balkin, 2009; Van Dongen, Baynard, Maislin, & 

Dinges, 2004; Van Dongen, Vitellaro, & Dinges, 2005), and that these differences are stable, 

substantial, and independent of each individual’s recent sleep history (Van Dongen & Belenky, 

2009).  Further, authors have concluded that sleep restriction may be used to reveal significant 

inter-individual differences in neurobehavioral functioning (Banks & Dinges, 2007), but caution 

that it should not be assumed that a fatigued participant who demonstrates impaired performance 

on one task will have a comparable impairment on all other tasks (Van Dongen, Baynard, 

Maislin, & Dinges, 2004).   

 

The inter-individual differences in fatigue susceptibility range from physical and 

observable traits to neurobehavioral characteristics.  For example, several studies have found that 

in response to chronic sleep restriction, young adults demonstrate poorer cognitive performance 

than do older adults, yet younger adults return to baseline quality performance more quickly 

(Bliese, Wesensten, & Balkin, 2006; Rupp, Wesensten, Bliese, & Balkin, 2009; Sato, Kawada, 

Ogawa, Aoki, & Suzuki, 1993).  Similar differences have also been found based on occupation 

(Caldwell et al., 2005) and personality traits (Killgore, Richards, Killgore, Kamimori, & Balkin, 

2007).  Inter-individual differences in susceptibility have also been noted for cortical arousal, 

with the performance of those demonstrating higher levels of both global arousal (Caldwell et al., 

2005; Killgore et al., 2007) and prefrontal activation (Killgore et al., 2009) typically being less 

impaired as a result of sleep loss than are participants demonstrating lower levels of activation.  

Finally, chronotype differences (i.e., morningness versus eveningness) have also been shown to 

influence susceptibility to fatigue, depending on the circadian phase position during which the 

individual’s performance is evaluated (Van Dongen & Dinges, 2005). 

 

Because individuals have proven to be poor judges of their own level of fatigue (Banks & 

Dinges, 2011; Van Dongen, Baynard, Maislin, & Dinges, 2004), tools have been developed 

which are designed to aid in determining when a pilot is too fatigued to fly safely.  Computer 

programs such as the FlyAwake
©

 and Fatigue Avoidance Scheduling Tool (FAST
™

) have been 

widely used in various military settings, incorporating information about recent sleep and work 

history to estimate a pilot’s readiness-to-fly.  Although these tools can be quickly and easily 
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used, they fail to take into consideration individual differences that may further influence a 

pilot’s susceptibility to the effects of sleep loss.  Further, research from Caldwell and colleagues 

(2005) indicated that those with lower levels of global activation as measured by a functional 

magnetic resonance imaging (fMRI) device tend to be more susceptible to the negative effects of 

sleep loss, but fMRI scans are far too expensive, complicated, and time-consuming to make them 

a practical readiness-to-fly assessment tool.  Thus, the validation of a simple yet effective tool to 

accurately evaluate and predict a pilot’s level of fatigue or general readiness to fly is still 

necessary. 

 

Previous research has attempted to validate the use of physiologic and cognitive measures 

in detecting impairment due to fatigue (Chandler, Arnold, Phillips, Lojewski, & Horning, 2010).  

Using a 25-hour continuous wakefulness paradigm, the study evaluated participants on 

occulometric (PMI FIT 2000) and cognitive (Flight Fit) measures in conjunction with 

performance on the Psychomotor Vigilance Task (PVT), flight simulation, and working memory.  

Results of this study revealed that fatigue could be effectively gauged using both the PMI FIT 

and Flight Fit measures.  Further, the authors concluded that these tools could also be used to 

distinguish between individual differences in susceptibility to fatigue more accurately than the 

Sleep, Activity, Fatigue, and Task Effectiveness (SAFTE
™

) model currently in use within the 

military services.   

 

Although the findings from the Chandler et al. (2010) experiment do support the usage of 

the PMI FIT 2000 and Flight Fit in assessing an individual’s susceptibility to fatigue and 

readiness-to-fly, that study was conducted with an acute sleep deprivation scenario, whereas 

fatigue associated with sustained operations is typically due to chronic sleep restriction 

(Caldwell, Chandler, & Hartzler, 2012).  Before the PMI FIT and Flight Fit tools can be 

recommended for military implementation, it is necessary to ensure that they are accurate in 

evaluating fatigue and individual differences in fatigue susceptibility for chronic as well as acute 

sleep loss.  Since individuals can differ widely in their susceptibility to fatigue due to sleep loss 

(Van Dongen, Baynard, Maislin, & Dinges, 2004; Van Dongen, Caldwell, & Caldwell, 2006), 

the validation of a tool which incorporates these individual differences would prevent those most 

susceptible to fatigue from being assigned duties at times when they should not be expected to 

perform at their best.  Conversely, the same information could be used to identify personnel who 

are most fatigue resistant and thereby predict who would perform best during late night or 

sustained operations. 

  

METHOD 

Participants 

 Twenty-nine participants from the Naval Aviation Preflight Indoctrination program were 

recruited for participation in the present experiment.  Five of these participants dropped out 

before completion of the study.  Descriptive statistics for the participants who completed the 

study are presented in Table 1.  To ensure participant safety, the study protocol was reviewed 

and approved by the Naval Aerospace Medical Research Laboratory (NAMRL) Institutional 

Review Board (IRB), in compliance with all applicable Federal regulations governing the 

protection of human subjects.   
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 No specific groups were excluded from participation in this study.  However, certain 

factors identified via a medical history form served to exclude individual participants due to their 

potential confounding effects (Killgore, Grugle, Reichart, Killgore, & Balkin, 2009).  These 

include excessive alcohol use within the previous 48 hours (>3 drinks), greater than 400mg of 

routine daily caffeine consumption, habitual use of tobacco products within the previous six 

months, and history of significant medical, neurological, psychiatric, or sleep-related problems.  

The scientific literature does not provide clear evidence of the risk to pregnant women from 

limited sleep restriction; however, as a precautionary measure, and due to possible confounding 

effects, pregnant women were excluded from participation.    

 

Table 1. Descriptive Statistics of Participants who Completed the Study 

 Age (years) Height (in)     Weight (lbs) 

 Mean SD Mean SD Mean SD 

Male (n = 21) 19.9 2.7 69.9 2.8 163.6 24.3 

Female (n = 3) 19.0 0.0 65.0 1.0 146.3 13.1 

Total  19.8 2.5 69.3 3.1 161.5 23.7 

 

Fatigue Assessments 

Revised NEO Personality Inventory.  The Revised NEO Personality Inventory (NEO-PI-

R) is a widely used instrument for the assessment of personality functioning (Costa & McCrae, 

1992).  The inventory consists of 240 items answered on a five-point scale, ranging from 

“strongly disagree” to “strongly agree”.  The five domains measured are Neuroticism, 

Extraversion, Openness to Experience, Agreeableness, and Conscientiousness.  Each domain is 

further subdivided into six facets that measure specific features of the primary personality factor.  

In their study, Killgore and colleagues (2007) determined that participants with higher 

Extraversion traits were more susceptible to fatigue in 77 hrs of wakefulness.  In particular, the 

facets Gregariousness (E2) and Activity (E4) were the most sensitive to individual differences in 

fatigue susceptibility and thus will be the primary measures used for the present study.  This 

inventory required approximately 40 minutes to complete and was only administered once during 

the Baseline Phase. 

 

Psychomotor Vigilance Task.  The Psychomotor Vigilance Task (PVT-192, Ambulatory 

Monitoring Inc., Ardsley, NY) is the gold standard instrument for assessment of reaction time 

and attention during periods of sleep loss (Balkin et al., 2004; Dinges et al., 1997).  The task is 

completed using a small, battery-powered, hand-held device with two buttons and a small screen 

displaying the stimulus, numbers counted up in milliseconds.  Participants are instructed to press 

the right button as soon as they notice numbers displayed on the screen.  The numbers on the 

screen continue to count up either until the participant responds or until 1 minute (60,000ms) has 

passed.  Lapses in performance are defined as any response time greater than 500ms.   

 

PMI FIT 2000.  The PMI FIT 2000 (PMI) uses eye-tracking and pupillometry to identify 

impaired physiological states due to fatigue and other factors, such as alcohol or drug use.  By 

comparing an individual’s present state as measured on four pupillometric variables (Saccadic 

Velocity, Pupil Diameter, Pupil Constriction Amplitude, and Pupil Constriction Latency) with 

the same individual’s baseline data, the system makes an evaluation of the individual’s level of 

impairment.  The system also compiles this data into a FIT Index, which is designed to be a 
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comprehensive estimate of the individual’s current state.  Each trial required approximately 30 

seconds to complete.  

 

Flight Simulation (X-Plane 9).  Simulated flight performance (FS) was measured using 

the X-Plane flight simulator (Laminar Research, Columbia, SC).  Since fatigue impairs basic 

attentional processes, participants were given a simple flight profile, with instructions to fly 

“straight and level” due North at 140 knots and at an altitude of 2,000ft.  Participants’ 

performance was quantified by their ability to adhere to these parameters. The test required 20 

minutes to complete. 

 

FlightFit.  The FlightFit (FF) neuropsychological test battery is an abbreviated version of 

the standard 30-minute CogniFit assessment battery.  The tests measure cognitive performance 

on various components of mental work load sensitive to the effects of fatigue.  The measures 

included a test of short term memory capacity, ability to focus attention, and visual scanning, as 

well as divided and shifting attention.  This test required 10 minutes to complete. 

 

Dual n-back.  The n-back (NB) task is a measure of executive functioning consisting of a 

computer-based test in which the participant is presented with a sequence of stimuli (shapes, 

letters, numbers, or sounds) one at a time and is then required to recall the n-th stimulus back 

from the currently presented stimulus. For example, in a two-back task, if the participant was 

presented with the number string 1, 3, 1, 7, 5, 4, 9, 2, 9, they would be required to indicate if the 

numbers highlighted in red (for the sake of illustration) match; that is, they were required to 

determine if the second number back matches the current number at every second progression. 

This protocol employed a form of the task called the dual n-back task, as described by Jaeggi, 

Buschkuehl, Jonides, and Perrig (2008).  In the dual n-back, participants are presented with a 

series of shapes and sounds simultaneously.  The specific n is adaptive and determined by the 

participant’s performance as they progress through each trial.  The task took approximately 20 

minutes to complete.  

 

Stanford Sleepiness Scale.  The Stanford Sleepiness Scale (SSS) was included to assess 

participants’ subjective sleepiness (Hoddes, Dement, & Zarcone, 1972).  The SSS asks 

participants to indicate their level of sleepiness on a seven-point scale, from “1 - Feeling active, 

vital, alert, or wide awake” to “7 - No longer fighting sleep, sleep onset soon; having dream-like 

thoughts”.  There is also a means to denote if the participant is asleep, with the score of “X”.  

The SSS is a widely used, easy-to-administer paper-and-pencil measure and has demonstrated 

excellent sensitivity to the effects of fatigue (Balkin et al., 2004).  Participants were asked to 

indicate their level of sleepiness once during both of the training and baseline days and 

completion took less than a minute.    

 

Profile of Mood States - Brief.  The Profile of Mood States (POMS) is an assessment of 

transient, fluctuating active mood states (McNair, Lorr, & Droppleman, 1981).  The survey was 

an abbreviated (30 items) version of the POMS standard (65 items).  The survey measures 

Tension-Anxiety, Depression-Dejection, Anger-Hostility, Vigor-Activity, Fatigue-Inertia, and 

Confusion-Bewilderment constructs.  Items are measured on a five-point scale from “1 - Not at 

all’ to “5 - Extremely.”  Additionally, the scores from these six factors are compounded to create 

the Total Mood Disturbance score.  This is calculated by subtracting the Vigor-Activity score 
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from the sum of the scores of the other five facets.  Each assessment requires approximately 5 

minutes to complete.   

 

Fatigue Avoidance Scheduling Tool.  The Fatigue Avoidance Scheduling Tool (FAST; 

Nova Scientific Corporation, Fairborn, OH) is a computer program which was designed to 

predict any changes in performance due to sleep loss.  This program was primarily intended to 

improve scheduling practices for operational aviation crews by taking into consideration the 

individual’s recent work and rest schedules, and then predicting the extent to which fatigue 

might impact future work performance.  Designed to reduce fatigue and fatigue-related errors 

and mishaps, predictions of effectiveness made by FAST are based on the Sleep, Activity, 

Fatigue, and Task Effectiveness (SAFTE
™

) model as well as results of numerous operational and 

laboratory findings (e.g., Hursh et al., 2004).  For the present study, predictions of performance 

were calculated based on participants’ individual sleep/wake patterns as recorded by the 

actigraph watch. 

 

University of Pennsylvania Smell Identification Test.  The University of Pennsylvania 

Smell Identification Test (UPSIT) consists of four self-administered booklets, each containing 10 

different ‘scratch & sniff’ microencapsulated odor strips (Doty et al., 1995).  A study by Killgore 

and colleagues (2010), determined that participants whose odor identification ability declined 

with continued wakefulness also demonstrated a decline in performance on executive 

functioning tasks while fatigued.  Participants were assigned all four of the 10 item booklets, for 

a total of 40 different odors to identify.  The test required approximately 15 minutes to complete, 

and was only administered at baseline and during the final test battery the following Thursday. 

 

Voice Analysis.  Voice analysis (VA) has shown promise in real-time fatigue monitoring 

(Greeley et al., 2007), especially for phrases involving hard “p” and “t” sounds. Participants were 

asked to read aloud five phrases commonly used by pilots. Exact phrases were: “I have the 

controls”; “Fuel: where is it supposed to be?”; “Requesting vectors”; “Traffic: high, low; factor, 

no factor”; and “Check gear, down and locked”.  Voice data was recorded and analyzed for 

systematic changes concurrent with the accumulation of sleep debt.  The task took approximately 

5 minutes to complete.  Owing to the nature of this data, the statistical analyses required to 

examine the data were very different from those used for the other measures included in this 

study and thus will be described in a separate report. 

 

Design 
 This experiment utilized a repeated measures design intended to further validate 

occulometric and cognitive individualized fatigue-detection technologies as potential readiness-

to-fly tools, and to assess a wide array of potential individual fatigue detection approaches.  Tests 

such as psychomotor vigilance, standardized flight simulator performance, personality and mood 

states, executive functioning, and odor identification were administered.  To ensure sufficient 

levels of sleep debt, participants were permitted 4 hours sleep within each 24hour period over the 

course of 4 days.  The experiment consisted of two phases, (1) the training/baseline phase and (2) 

the experimental, sleep restriction phase.  

 

Training/Baseline Phase.  Up to four volunteers were recruited from the Naval API 

student pool on the Thursday morning prior to each week of the study.  After informed consent 
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was obtained on Thursday, participants completed the training session which included practice 

on all of the above measures except for the NEO-PI-R, UPSIT and FAST.  Although data 

recorded this day was not included in any of the analyses, these test administrations were used to 

ensure that participants understood the instructions and were comfortable with the testing 

environment.  During this same visit to the lab, participants were also outfitted with actigraph 

watches, which were used to monitor participants’ sleep and wake patterns throughout the 

duration of the study.   

 

When participants returned to the lab on Friday, they completed the same test session 

again and this data was used as the baseline measure.  Participants also completed the NEO-PI-R 

and UPSIT on this day.  Each day required approximately 2.5 hours of participation, for a total of 

5 hours for this phase of the study.   

 

 Experimental/Sleep restriction phase.  Upon completion of the Friday afternoon baseline 

data collection, participants were released with instructions to sleep according to their normal 

schedules and report to the Bachelor Officers’ Quarters (BOQ) at 1600 Sunday evening.  

Participants were told to sleep from 0200 – 0600 hrs Monday morning and to then report to the 

Naval Aeromedical Research Laboratory (NAMRL) at 0700.  To ensure participant safety 

throughout the sleep restriction phase of the study and prevent them from needing to drive, 

participants were required to sleep five nights (Sunday through Thursday) in the BOQ, located 

two blocks from NAMRL onboard Naval Air Station Pensacola.  At the end of each 

experimental day, investigators debriefed the participants and escorted them back to the BOQ at 

approximately 0100.   

 

Compliance to sleep time and amount was gauged by actigraphy data and noncompliance 

(i.e., sleeping 30 minutes or more over the 4 hours they were instructed to sleep) resulted in the 

participant’s elimination from the experiment.  Evaluation of eligibility for continuation was 

conducted via actigraph inspection from 0700 – 0730 each morning of the experimental phase.  

Also, participants were reminded of the daily schedule for the sleep restriction phase of the study 

(having initially been briefed during the informed consent session Thursday morning).  

Beginning at 0730 Monday participants were assessed on PMI, PVT, FS, VA, FF, NB, SSS, and 

POMS.  

 

 Task 1. 1 trial of PMI (1 min) 

Task 2. 1 trial of PVT (10 min) 

 Task  3. 1 trial of FS (15 min) 

 Task  4. 1 trial of VA (5 min) 

 Task  5. 1 trial of FF (10 min) 

 Task  6. 1 trial of NB (20 min) 

 Task  7. 1 trial of SSS (1 min) 

 Task  8. 1 trial of POMS (5 min) 

 

Testing was conducted at 0730, 1130, 1530, 1930, and 2330 each day of the experiment 

and each session lasted approximately 65-70 minutes.  The testing blocks conducted at 0730, 

1530, and 2330 included all eight of the tasks listed above, whereas the POMS (#8) was 

excluded from the testing blocks conducted at 1130 and 1930.  Participants remained on the 
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premises between testing blocks, and were provided snacks, meals and beverages which did not 

interfere with or otherwise affect the experiment.  Upon completion of the final trial on 

Thursday, participants were debriefed and driven to the BOQ, with instructions to obtain 

adequate sleep prior to check out.  Late check-out provisions were prearranged with the BOQ.  A 

table displaying the testing and sleep schedule is shown below. 

 

Table 2.  Schedule for Sleep and Data Collection during the Experimental Phase  

 
 

ANALYSES & RESULTS 

Overview 

 The data were analyzed in three stages which were intended to examine both group and 

individual differences on a number of tasks in response to chronic sleep restriction.  To 

determine whether any of the measures captured significant change in performance during the 

sleep restriction phase, Stage 1 included a series of Repeated Measures Analyses of Variance 

(ANOVAs) to identify those variables which were significantly affected by chronic sleep 

restriction.  Any significant variables from the Stage 1 analyses were then included in Stage 2, a 

series of Hierarchical Linear Model (HLM) analyses which were conducted to tease apart 

Monday Tuesday Wednesday Thursday Friday

0100

0200

0300

0400

0500

0600

0700

0800

0900

1000

1100

1200

1300

1400

1500

1600

1700

1800

1900

2000

2100

2200

2300

2400

2330 - Test 

Session 20

Recovery 

Sleep

1130 - Test 

Session 17

1530 - Test 

Session 8

1530 - Test 

Session 13

1530 - Test 

Session 18

1930 - Test 

Session 9

1930 - Test 

Session 14

1930 - Test 

Session 19

1130 - Test 

Session 12

2330 - Test 

Session 15

1130 - Test 

Session 2

1530 - Test 

Session 3

1930 - Test 

Session 4

2330 - Test 

Session 5

1130 - Test 

Session 7

2330 - Test 

Session 10

Sleep 

Restriction 

Night 1

Sleep 

Restriction 

Night 2

Sleep 

Restriction 

Night 3

Sleep 

Restriction 

Night 4

0730 - Test 

Session 1

0730 - Test 

Session 6

0730 - Test 

Session 11

0730 - Test 

Session 16
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individual differences not evident in the group level analyses, as well as to predict performance 

deterioration due to fatigue.  For Stage 3, the significant predictor variables from Stage 2 were 

utilized in a series of enter-method linear regression analyses to develop predictive algorithms to 

estimate performance deterioration when fatigued.  The analyses for Stages 1 and 3 were 

performed using SPSS version 16.0 for Windows (SPSS Inc., Chicago, IL).  The analyses for 

Stage 2 were conducted using HLM version 6.02 for Windows (Scientific Software International, 

Inc., Skokie, IL).  For all three stages of analyses reported herein, a criterion for statistical 

significance was set to a value of p ≤ 0.05. 

 

Stage 1 

 Data collected during the test session on Friday were used to establish baseline and were 

included in the following analyses.  A series of repeated measures were conducted for each of 

the dependent variables collected over the baseline and subsequent 20 testing sessions (12 for the 

POMS) during the sleep restriction phase of the study.  

 

Psychomotor Vigilance Task (PVT).  Two variables from the PVT were analyzed:  

number of PVT lapses and mean SRRT, the mean reciprocal reaction time of the slowest 10% of 

responses.  Results revealed significant fatigue effects for lapses and mean SRRT, as depicted by 

Table 3 and Figures 1 and 2.  Specifically, over the course of the sleep restriction period of the 

study, the mean number of lapses increased and mean SRRT deteriorated.  Post-hoc analyses 

indicated that number of lapses at baseline was significantly different from that of Trials 3 – 20.  

However, results for the mean SRRT indicated that performance on all 20 trials was significantly 

different from that recorded during baseline testing.  Since the mean number of PVT lapses is 

known in the existing literature as a gold standard for measuring fatigue, this measure was 

included as the primary criterion variable in Stage 2 analyses. 

Table 3.  ANOVA results for PVT 

  

  

F df p ηp
2 

PVT Lapses†
 

  9.499 (4.934, 113.472) .000* 0.292 

Mean SRRT†   18.801 (7.913, 182.009) .000* 0.450 

*Significant at the .05 level 

†Greenhouse-Geisser correction used due to violation of sphericity 
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Additionally, two further analyses were conducted using PVT data to determine whether 

the data obtained in this study replicated the findings of Killgore and colleagues (2007) regarding 

increased fatigue susceptibility among participants who rate more highly on two of the NEO-PI-

R Extraversion facets (Table 4).  In the Killgore study, results indicated that after two 

consecutive nights of total sleep deprivation the Extraversion facets Gregariousness (E2) and 
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Figure 1.  Mean PVT lapses at each test trial across time.  Post-hoc analyses revealed 

significant differences between the baseline measure (B) and Trials 3 – 20.    

Figure 2.  Mean reciprocal reaction time of the slowest 10% of responses (mean SRRT) for 

the PVT at each test trial across time. Post-hoc analyses revealed significant differences 

between the baseline measure (B) and Trials 1 – 20. 
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Activity (E4) were the only measures which were significantly correlated with participants’ 

change in speed from baseline measures on the PVT.  For these analyses, the percent change in 

speed from baseline was calculated as the average reciprocal reaction time (i.e., 1 / RT) times 

100, then divided by the reciprocal of the baseline measure.  The same transformation utilized by 

Killgore et al. was used in the present study to compute change in speed scores, which employed 

a chronic sleep restriction design rather than total sleep deprivation.  For these analyses, neither 

the Gregariousness nor Activity facets predicted changes in PVT speed, though evident trends 

were similar to those reported by Killgore.  As demonstrated in Figure 3, participants who were 

ranked as being the most gregarious (i.e., in the upper 25% on the facet) appeared to have the 

greatest deterioration in performance across the period of sleep restriction.  Likewise, 

participants who were ranked in the highest 25% on the Activity facet also exhibited a growing 

impairment during the period of sleep loss to an extent greater than that of participants in the 

lower 25% and middle 50% of the facet (Figure 4). 
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Table 4.  ANOVA results for PVT 

  

  

F df p ηp
2 

PVT Speed + NEO-PI-R 

Gregariousness Rating† 
 1.368 (12.586, 132.153) .185 0.115 

PVT Speed + NEO-PI-R 

Activity Rating†  
 1.052 (12.603, 132.330) .406 0.091 

*Significant at the .05 level 

†Greenhouse-Geisser correction used due to violation of sphericity 

 

Figure 3.  Changes in PVT speed at each test trial across time with participants grouped by their NEO-

PI-R Gregariousness rating.  No significant between-subjects effects were evident. 
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PMI Fit 2000.  The PMI FIT collects data on four oculometric measures: Pupil 

Constriction Latency, Pupil Constriction Amplitude, Pupil Diameter, and Saccadic Velocity.  

These four components are also combined to produce the overall FIT Index.  Results from these 

measures are displayed in Table 5 and Figures 5 – 9 below.  As shown, all subcomponents of the 

FIT Index exhibited significant changes in response to fatigue, though changes in the actual FIT 

Index were not significant.  For the FIT Index, the average of the baseline measures was 

excluded from analysis because the mean value was more than 20 times greater than any of the 

mean scores recorded during the Experimental Phase (Figure 9). 

 

Table 5.  ANOVA results for PMI 

  

  

F df p ηp
2
 

Constriction Latency†  2.636 (9.926, 228.300) .005* 0.103 

Constriction Amplitude  2.666 (20, 460) .000* 0.104 

Pupil Diameter†  5.324 (8.642, 198.768) .000* 0.188 

Saccadic Velocity† 

 

3.871 (9.002, 207.052) .000* 0.144 

FIT Index†   1.657 (6.581, 138.211) .129 0.073 

*Significant at the .05 level 

†Greenhouse-Geisser correction used due to violation of sphericity 
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Figure 4.  Changes in PVT speed at each test trial across time with participants grouped by their NEO-

PI-R Activity rating.  No significant between-subjects effects were evident. 
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Post-hoc analyses revealed that for the subcomponent Pupil Constriction Latency, the 

average of the baseline measures was significantly different only from Trial 5.  Conversely, Pupil 

Constriction Amplitude demonstrated significant deviations from baseline for Trials 1 – 3, 6, 11, 

and 16 (Figure 6).   
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Figure 5.  Mean PMI Pupil Constriction Latency in milliseconds at each test trial across time.  

Post-hoc analyses revealed significant differences between the averages of the baseline 

measures (B) and Trial 5. 

Figure 6.  Mean PMI Pupil Constriction Amplitude in millimeters at each test trial across 

time. Post-hoc analyses revealed significant differences between the averages of the baseline 

measures (B) and Trials 1-3, 6, 11, and 16. 
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Additionally, two other subcomponents of the FIT demonstrated sensitivity to the effects 

of fatigue due to sleep restriction – Pupil Diameter and Saccadic Velocity.  Specifically, Pupil 

Diameter measurements during the baseline testing were significantly different from 

measurements recorded during Trials 3, 4, and 14 – 20 (Figure 7).  Additionally, post-hoc 

analyses indicated that Saccadic Velocity on the averaged baseline measures was significantly 

different from that seen on Trials 3, 5, 6, 8 – 12, 15 – 18 (Figure 8). 
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Figure 8.  Mean PMI Saccadic Velocity in millimeters per second at each test trial across 

time. Post-hoc analyses revealed significant differences between the average of the baseline 

measures (B) and Trials 3, 5, 6, 8 – 12, 15 – 18. 

Figure 7.  Mean PMI Pupil Diameter in millimeters at each test trial across time. Post-hoc 

analyses found significant differences between the average of the baseline measures (B) and 

Trials 3, 4, and 14 – 20.   
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Flight Simulator.  Deviations from the specified flight parameter goals for heading (due 

North), airspeed (140 knots), and altitude (2,000 ft) were calculated separately.  Lapse times for 

each parameter were calculated as the number of seconds during a simulator trial that subjects 

deviated from the flight goal by greater than one standard deviation (determined at baseline). 

Total lapse time was the sum of lapse times for each flight parameter for each testing session. 

The analysis revealed dramatic and significant effects of the time of testing on total lapse time 

suggesting that total lapse time is sensitive to fatigue effects (see Table 6 and Figure 10).  Post-

hoc analyses indicated that the Total Lapse Time during the baseline testing session was 

significantly less than that of any of the 20 subsequent test sessions.   

 

Table 6.  ANOVA for Flight Simulator Total Lapse Time† 

 F df p ηp
2
 

6.263 (7.903, 181.779) .000* 0.214 

*Significant at the .05 level 

†Greenhouse-Geisser correction used due to violation of sphericity 
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Figure 9.  Mean PMI Fit Index Scores at each test trial across time which revealed no 

significant change in score across the Experimental Phase. 
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 Flight Fit.  Each of the 9 subscales for the Flight Fit test were analyzed to identify any 

changes in performance during the course of the Experimental Phase, and a summary of the 

results are displayed in Table 7 and Figures 11 – 19.  For each of the subscales, data from four of 

the participants on Trial 12 was not recorded by the computer and thus this trial was removed 

from the analyses.   

 

Repeated measures analyses indicated that performance on three of the measures changed 

significantly over the course of the Experimental Phase: Raw Response Time; Visual Scanning 

Response Time; and Divided Attention Response Time.  Subsequent post-hoc analyses of these 

measures revealed significant differences between the baseline measure and trials recorded 

during the Experimental Phase.  For Raw Response Time this difference was only significant for 

Trial 1, whereas for both Visual Scanning Response Time and Divided Attention Response time, 

the difference was significant for Trials 2 – 20.  In general, the change observed among the 

response time measures indicates that, despite chronic sleep restriction, participants speed in 

completing the tasks increased.  Though the three measures listed above were significant for 

Stage 1 analyses, the results suggest that the changes were due to practice effects rather than 

increasing fatigue and thus were not included in subsequent analyses. 

 

Table 7.  ANOVA results for Flight Fit   

 F df p ηp
2
 

Raw Response Time 2.678 (19, 437) .000* 0.104 

Difference Score for Focus† 0.989 (10.10., 232.370) .454 0.041 

Visual Scanning Accuracy† 1.016 (9.036, 207.831) .429 0.042 

Visual Scanning Response Time† 5.609 (8.480, 195.034) .000* 0.196 

550

650

750

850

950

1,050

1,150

1,250

1,350

1,450
T
o

ta
l 
L

a
p

s
e

 T
im

e
 i
n

 F
li
g

h
t 

S
im

u
la

to
r 

(s
e

c
)

Trials

Figure 10.  Flight Simulator Total Lapse Time in seconds across time.  Post-hoc analyses 

revealed significant differences between the baseline test session (B) and Trials 1 – 20.  



20 
 

Divided Attention Accuracy† 1.330 (9.381, 196.999) .221 0.060 

Divided Attention Response 

Time† 
5.515 (7.604, 159.676) .000* 0.208 

Shifting Attention Accuracy† 1.226 (3.741, 86.036) .306 0.051 

Shifting Attention Response 

Time† 
1.828 (9.303, 195.372) .063 0.080 

Short Term Memory† 1.393 (8.022, 104.289) .208 0.097 

*Significant at the .05 level 

†Geisser-Greenhouse correction used due to violation of sphericity 
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Figure 11.  Flight Fit subscale, Raw Response Time in milliseconds across time.  Post-hoc 

analyses revealed significant differences between the average of the baseline measures (B) 

and Trial 1. 
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Figure 13.  Flight Fit subscale, percent correct on Visual Scanning task.  No significant 

effects of fatigue were detected. 

Figure 12.  Flight Fit subscale, difference between response times for a two-part task which 

required focus in the presence of distractors.  No significant effects of fatigue were detected. 
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Figure 14. Flight Fit subscale, response time in milliseconds (msec) on Visual Scanning task.  

Post-hoc analyses revealed significant differences between the average baseline measures (B) 

and Trials 2 – 20. 

Figure 15.  Flight Fit subscale, percent correct on Divided Attention task.  No significant 

effects of fatigue were detected. 
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Figure 16. Flight Fit subscale, response time on Divided Attention task.  Post-hoc analyses 

revealed significant differences between the average of the baseline measures (B) Trials 2 - 20. 

Figure 17.  Flight Fit subscale, percent correct on Attention Shifting task.  No significant effects 

of fatigue were detected. 
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Dual N-Back.  Results of the ANOVA for the dual n-back were significant (see Table 8), 

indicating a general improvement in performance throughout the course of the sleep restriction 

period.  Post-hoc analyses revealed that baseline performance was significantly poorer from that 

of all trials during the Experimental Phase, suggesting that, despite sleep restriction, practice 

effects were evident throughout the study (Figure 20).  Consequently, this measure was not 

included in any subsequent analyses. 
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Figure 18.  Flight Fit subscale, response time for Attention Shifting task. No significant effects of 

fatigue were detected. 

Figure 19.  Flight Fit subscale, number memorized on the Short Term Memory (STM) task.   

No significant effects of fatigue were detected.  
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 Table 8.  ANOVA for Dual n-Back† 

 F df p ηp
2
 

6.595 (7.027, 161.626) 0.000* 0.223 

*Significant at the .05 level 

†Greenhouse-Geisser correction used due to violation of sphericity 

  

 
 

 

 

 

Stanford Sleepiness Scale (SSS).  Results for the SSS scores indicate that there was a 

significant change in self-reported sleepiness with estimates gradually increasing across the 

Experimental Phase (see Table 9 and Figure 21).  Post-hoc analyses indicated that subjective 

sleepiness during the baseline testing was significantly different from that reported on all 20 of 

the subsequent trials.   

 

Table 9.  ANOVA results for Stanford Sleepiness Scale† 

F df p ηp
2 

10.723 (7.314, 160.919) 0.000* 0.328 

*Significant at the .05 level 

†Greenhouse-Geisser correction used due to violation of sphericity 
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Figure 20.  Dual N-back at each test trial across time.  Post-hoc analyses revealed significant 

differences between the average of the baseline measures (B) and all trials during the Experimental 

Phase. 
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Profile of Mood States (POMS).  Participants were only asked to complete this 

questionnaire three times a day during the Experimental Phase, at the end of the 0730, 1530, and 

2330 test sessions.  The POMS questionnaire evaluates participants on six different mood 

components:  Tension-Anxiety, Depression-Dejection, Anger-Hostility, Fatigue-Inertia, 

Confusion-Bewilderment, and Vigor-Activity.  Additionally, participants’ scores on these six 

components are used to calculate the Total Mood Disturbance rating by adding the values from 

the first five measures and then subtracting the score from the sixth.  Results of these analyses 

are detailed below in Table 10 and Figures 22 – 28.  Four of these measures, Tension-Anxiety, 

Depression-Dejection, Anger-Hostility, and Confusion-Bewilderment were not sensitive to any 

changes in fatigue levels as a result of sleep restriction.  However, results from the remaining 

three components (Fatigue-Inertia, Vigor-Activity, and Total Mood Disturbance) indicated that 

these measures were sensitive to the changes in emotional state during the sleep restriction 

period. 

 

Table 10.  ANOVA results for Profile of Mood States 

    F df p ηp
2
 

Tension-Anxiety† 0.594 (4.384, 100.823) 0.683 0.025 

Depression-Dejection† 0.946 (4.711, 108.354) 0.451 0.040 

Anger-Hostility† 1.701 (2.210, 50.822) 0.190 0.069 

Confusion-Bewilderment† 2.725 (2.877, 66.178) 0.053 0.106 

Vigor-Activity† 17.772 (3.655, 84.054) 0.000* 0.436 

Fatigue-Inertia† 17.603 (4.823, 110.920) 0.000* 0.434 
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Figure 21.  Stanford Sleepiness Scale at each test trial across time.  Post-hoc analyses revealed that 

participant responses to the questionnaire during baseline testing was significantly different than 

responses all trials during the sleep restriction period. 
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Total Mood Disturbance† 24.147 (4.957, 114.011) 0.000* 0.512 

*Significant at the .05 level 

†Greenhouse-Geisser correction used due to violation of sphericity 
   

 
 

 

 

 
 

Figure 22.  POMS Tension-Anxiety scores across the Experimental Phase.  No significant 

fatigue effects were detected. 

Figure 23.  POMS Depression-Dejection scores across the Experimental Phase.  No significant 

fatigue effects were detected. 
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Vigor-Activity changed significantly over the course of the Experimental Phase and 

tended to decrease overall (Figure 26), whereas Fatigue-Inertia (Figure 27) and Total Mood 

Disturbance (Figure 28) also changed significantly, but the subjective ratings for these states 

generally increased.  Thus, subjective assessments of vitality and cognitive clarity appear to be 

Figure 24.  POMS Anger-Hostility scores across the Experimental Phase.  No significant 

fatigue effects were detected. 

Figure 25.  POMS Confusion-Bewilderment scores across the Experimental Phase.  No 

significant fatigue effects were detected. 
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the most sensitive to increasing levels of fatigue during sleep restriction and these measures were 

included in the Stage 2 analyses.  Post-hoc analyses revealed significant differences between the 

baseline measure and some of the subsequent trials for all three of these components.  

Specifically, baseline scores on both Vigor-Activity and Total Mood Disturbance were 

significantly different from each of the 12 scores recorded during the sleep restriction phase, 

whereas baseline scores for Fatigue-Inertia differed significantly from Trials 3 – 20. 

 

 
 

 

 

 

Figure 26.  POMS Vigor-Activity scores across the Experimental Phase.  Significant fatigue 

effects were evident, with responses during the baseline testing session being significantly 

different from responses during all subsequent trials. 
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Figure 27.  POMS Fatigue-Inertia scores across the Experimental Phase.  Post-hoc analyses 

revealed that there was a significant difference between participants’ responses during baseline 

and their responses to Trials 3 – 20. 

Figure 28.  POMS Total Mood Disturbance scores across the Experimental Phase.  Post-hoc 

analyses revealed that there was a significant difference between participants’ responses 

during baseline and their responses on each of the trials during the sleep restriction period. 
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Fatigue Avoidance Scheduling Tool (FAST).  Participants’ predicted performance 

effectiveness changed significantly over the course of the study, as shown below in Table 11 and 

Figure 29.  Post-hoc analyses indicated that predicted effectiveness on Trial 1 was significantly 

different than that predicted for Trials 2 – 8 and 10 – 20.  During each day of the sleep restriction 

period, the lowest predicted level of performance effectiveness was observed at 2330, the last 

test session of the day.  Thus FAST recognized that participants’ effectiveness would be lowest 

during the 2330 test session and would gradually decrease across the sleep restriction period. 

 

Table 11.  ANOVA results for the Fatigue Avoidance Scheduling Tool 

F df p ηp
2 

101.167 (19, 437) 0.000* 0.815 

*Significant at the .05 level 

 

 
 

 

 

University of Pennsylvania Smell Identification Test (UPSIT).  Results for the UPSIT 

measure indicated that participants’ ability to identify the 40 test scents was not impaired (Figure 

30).  Specifically, participants actually demonstrated improved ability to identify the scents from 

the pre-test (M = 33.83, SD = 4.30) to the post-test (M = 34.08, SD = 3.41) which was completed 

after 4 days of sleep restriction, t(23) = -.319, p = .752 .  
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Figure 29.  Change in participants’ predicted effectiveness over the course of the study.  Predicted 

performance at Trial 1 was significantly different than for Trials 2 – 8 and 10 – 20.   
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 Stage 1 Summary.  During Stage 1, a series of repeated measures ANOVAs were 

conducted to detect any gradual increases in fatigue or performance impairment throughout the 

course of the study.  Despite repeated training sessions, several of the tasks indicated practice 

effects such that participants’ response time (e.g., Shifting Accuracy and Divided Attention 

measures of the Flight Fit test) and recall accuracy (Flight Fit Short Term Memory task and the 

dual n-back test) improved significantly over the course of the Experimental Phase.  Results such 

as these suggest that some cognitive performance measures are not sensitive to the effects of 

fatigue due to chronic sleep restriction.  Conversely, effects on many of the other measures 

replicated existing literature by revealing a gradual deterioration in performance over the course 

of the sleep loss period.  These changes included significant deviations from baseline on the 

subcomponents of the PMI FIT 2000 and some subscales of the POMS, as well as increased 

subjective sleepiness as measured by the SSS.  Further, FAST performance estimates closely 

followed the pattern of performance deterioration observed on tasks such as the PVT and flight 

simulator across the sleep restriction period.  

 

Additionally, comparison of the figures suggests that some of these measures were more 

sensitive to fatigue due to circadian influences whereas others appeared to be more sensitive to 

participants’ increasing sleep debt.  For example, Pupil Constriction Amplitude (Figures 6) 

revealed a significant response to troughs in the circadian cycle.  Conversely, other measures, 

such as Pupil Diameter (Figures 7) and total lapse time on the flight simulator (Figure 10) 

appeared to be more influenced by the homeostatic sleep drive, which is the pressure to sleep 

which gradually increases the longer someone has been awake.  Specifically, data from Pupil 

Constriction Amplitude revealed peaks for the evening testing sessions, whereas time-off-target 

on the flight simulator exhibited more peaks during the early morning test session, though both 

measures had increasing deviations from baseline which indicated worsening fatigue effects over 

the course of the Experimental Phase.  Further, subjective response measures such as the 

Stanford Sleepiness Scale (Figure 21) and several components of the POMS (Figures 26 – 28) 

appeared to effectively track the effects of both the circadian and homeostatic processes over the 

Figure 30.  Change in participants’ score on the University of Pennsylvania Smell 

Identification Test (UPSIT) from the baseline test to the final test before recovery sleep.   
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period of sleep restriction, with spikes in highly fatigue-related behavior during circadian 

troughs, as well as growing deviation from baseline indicating a general decline due to 

homeostatic processes.  However, these results should be interpreted with a measure of caution 

as these statements to which participants responded are subject to individual interpretation as 

well as intentional misreporting or deception. 

 

Taken as a whole, these findings indicate that no single tool should be expected to 

accurately evaluate an individual’s level of fatigue or readiness for duty.  Cognitive, subjective, 

and physiological assessments ought to be included to determine whether someone is too 

fatigued to perform adequately.  Further, as demonstrated above, different measures are sensitive 

to different cognitive processes, so while an individual may not appear to have any impairment 

on one measure, another task may reveal impairment for a different cognitive function, 

indicating that they should not be expected to perform their role in a mission safely.  It is also 

vital that any effective readiness for duty tool be sensitive to fluctuations in both circadian and 

homeostatic processes. 

 

The results of the Stage 1 analyses revealed several cognitive and physiologic decrements 

when fatigued due to sleep restriction.  Though this information is invaluable in assessing the 

severity of the fatigue experienced by participants and emphasizing the importance of proper 

sleep schedules, it does little to demonstrate any individual differences in fatigue susceptibility.  

In other words, the results from Stage 1 tell us only that participants on average experienced 

impairment due to the sleep restriction, and consequently mask any individuals who were more 

or less adversely affected.  To address this limitation of the ANOVA, a form of regression 

modeling was used in Stage 2 to identify differences at the individual level using the measures 

which were influenced by fatigue in Stage 1.  

 

Stage 2 

 Stage 2 of the analyses addresses the matter of determining which measures are sensitive 

to individual differences in fatigue susceptibility in response to chronic sleep restriction.  

Bivariate Hierarchical Linear Modeling (HLM), a form of regression modeling, was utilized for 

this phase of data analysis.  With this type of modeling, it is possible to “nest” data within 

participants to better identify individual differences.  Measures analyzed at this stage included 

total lapse time on the flight simulator, Stanford Sleepiness Scale (SSS) responses, predicted 

effectiveness from FAST, as well as components of the PMI FIT 2000 and Profile of Mood 

States (POMS).  The results of these analyses were used to develop the subsequent algorithms in 

Stage 3. 

 

Bivariate Hierarchical Linear Models.  Hierarchical Linear Modeling (HLM), also 

known as multilevel modeling, is useful in identifying common traits among different 

individuals.  The outcome of these analyses reveals how effectively each of the predictor 

variables (e.g., SSS, FAST, lapse time on the flight simulator, etc.) is able to predict the changes 

in the criterion variable, the average number of PVT lapses.  The number of lapses in attention 

on the PVT was selected as the criterion variable because this measure is recognized as a valid 

and highly reliable objective assessment of fatigue.  Predictor variables for these analyses were 

any measures from Stage 1 which were significantly influenced by fatigue.   
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All variables that showed signs of a significant bivariate relation at Level 1 or Level 2 

with mean number of PVT lapses are identified in Tables 12 and 13, respectively.  In a bivariate 

HLM, estimates of commonality are made between each of the predictor variables and the 

criterion variable on two levels.  Significance for Level 1 (fixed effects) for one of the predictor 

variables would indicate that when the data from all participants are collapsed into a group, that 

predictor variable accurately predicts the criterion variable.  For the present analyses, significant 

results for Level 1 analyses would mean that the selected predictor variable can be used to 

effectively predict changes in fatigue, as assessed by the PVT, during 4 days of sleep restriction.  

Further, significance for Level 2 (random effects) would indicate that there were significant 

individual differences in the predictions for the criterion variable.  In other words, significance 

for a given predictor at Level 2 would suggest that this predictor was sensitive to individual 

differences in susceptibility to the effects of fatigue in a chronic sleep restriction situation.  If no 

significant inter-individual variability was found (non-significance at Level 2), the predictor 

variable was re-analyzed excluding the random effects and the outcome of this analysis was 

reported for Level 1.   

 

Table 12.  Level 1 Bivariate HLMs Relation with PVT Lapses as the Outcome 

 

Equation t df p 

PMI Saccadic Velocity Y = P0 + P1 * (PMI_SV) + R -2.461 23 .022* 

PMI Pupil Diameter Y = P0 + P1 * (PMI_DIAM) + R -1.304 23 .205 

PMI Constriction Latency

 Y = P0 + P1 * (PMI_LAT) + R .837 23 .403 

PMI Constriction Amplitude

 Y = P0 + P1 * (PMI_AMP) + R 1.159 23 .247 

Flight Sim Total Lapse Time Y = P0 + P1 * (FS_TOTAL) + R 3.858 23 .001* 

Stanford Sleepiness Scale

 Y = P0 + P1 * (SSS) + R 6.136 23 .000* 

POMS Vigor/Anxiety

 Y = P0 + P1 * (POMS_V) + R -5.227 23 .000* 

POMS Fatigue/Inertia Y = P0 + P1 * (POMS_F) + R 3.056 23 .006* 

POMS Total Mood Disturbance 
Y = P0 + P1 * (POMS_TMD) + 

R 
3.555 23 .002* 

FAST Y = P0 + P1 * (FAST) + R -4.317 23 .000 

Note:  PMI_SV = Saccadic Velocity, PMI_DIAM = Diameter, PMI_AMP = Constriction 

Amplitude, PMI_LAT = Constriction Latency, FS_TOTAL = Flight Simulator Total Lapse Time, 

SSS = Stanford Sleepiness Scale, POMS_V-A = POMS Vigor-Activity, POMS_F-I = POMS 

Fatigue-Inertia, POMS_TMD = POMS Total Mood Disturbance, FAST = Fatigue Avoidance 

Scheduling Tool 

*Significant at the .05 level 

Results are from analyses which excluded random effects 
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Table 13.  Level 2 Bivariate HLMs Relation with PVT Lapses as the Outcome 

 

Equation χ2 df p 

PMI Saccadic Velocity 
P0 = B00 + R0 

P1 = B10 + R1 
45.076 23 .004* 

PMI Pupil Diameter 
P0 = B00 + R0 

P1 = B10 + R1 
74.931 23 .000* 

PMI Constriction Latency 
P0 = B00 + R0 

P1 = B10 + R1 
24.800 23 .360 

PMI Constriction Amplitude 
P0 = B00 + R0 

P1 = B10 + R1 
24.938 23 .353 

Flight Sim Total Lapse Time 
P0 = B00 + R0 

P1 = B10 + R1 
161.818 23 .000* 

Stanford Sleepiness Scale 
P0 = B00 + R0 

P1 = B10 + R1 
20.315 23 > .500 

POMS Vigor/Anxiety 
P0 = B00 + R0 

P1 = B10 + R1 
32.378 23 .071 

POMS Fatigue/Inertia 
P0 = B00 + R0 

P1 = B10 + R1 
55.971 23 .000* 

POMS Total Mood Disturbance 
P0 = B00 + R0 

P1 = B10 + R1 
53.418 23 .001* 

FAST 
P0 = B00 + R0 

P1 = B10 + R1 
59.898 23 .000* 

*Significant at the .05 level 

 

        

PMI Saccadic Velocity.  The equations for both Level 1 and Level 2 were significant for 

the PMI FIT component Saccadic Velocity.  Overall, participants who had the least variability in 

their number of PVT lapses also tended to have the least amount of variability in Saccadic 

Velocity as measured by the PMI (Figure 31), and this trend was most evident among those 

participants who had higher numbers of PVT lapses.    

 

PMI Pupil Diameter.  When included as a predictor variable, the PMI FIT component 

Pupil Diameter was not significant for the Level 1 analysis, but the results were significant for 

the Level 2 analyses.  Participants who had fewer lapses on the PVT, as well as less variability in 

their performance, also exhibited less change in pupil diameter (Figure 32) compared to 

participants who had greater variability in their PVT performance. 
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PMI Constriction Latency.  As observed with the Pupil Diameter analyses, the results for 

the PMI measure Constriction Latency were not significant for Level 1 but were significant for 

the Level 2 model.  These results are shown in Figure 33 and, in general, suggest that 

participants who had fewer lapses in attention on the PVT also had a shorter latency period for 

pupil constriction when compared to participants who had a greater number of lapses.   
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Figure 31.  Individual slopes for PVT Lapses in relation to 

Saccadic Velocity measured by the PMI in millimeters per second 

(group mean-centered values).  There was a significant group 
effect and significant individual differences, such that, lapses 

tended to increase as Saccadic Velocity increased though there 

were significant individual differences in this trend. 

Figure 34.  Individual slopes for PVT lapses in relation to Pupil 

Constriction Amplitude in millimeters (group mean-centered 
values).  There was no significant group effect but there were 

significant individual differences, such that participants with 

greater variability in their pupil constriction amplitude tended to 
have greater variability in their PVT lapses. 

Figure 32.  Individual slopes for PVT lapses in relation to 

responses to Pupil Diameter measured by the PMI in millimeters 

(group mean-centered values). There was no significant group 
effect, but there were significant individual differences, which 

showed, on average, participants who had little variance in 

diameter also exhibited fewer PVT lapses and less variance in 
their performance.  

 

Figure 33.  Individual slopes for PVT lapses in relation to Pupil 

Constriction Latency measured by the PMI in milliseconds (group 

mean-centered values). No differences were evident at the group 
level, but there were significant individual differences between 

PVT lapses and pupil constriction latency.  Specifically, 

participants with shorter pupil constriction latencies tended to 
have fewer PVT lapses than participants with longer constriction 

latencies. 
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PMI Constriction Amplitude.  The last of the four PMI component measures, Constriction 

Amplitude, was also not a significant predictor of PVT lapses at the group level during 4 days of 

chronic sleep restriction.  However, results for the analysis at the individual level were 

significant and are shown in Figure 34.  As a whole, participants who demonstrated greater 

variability in the number of PVT lapses also demonstrated greater variability in constriction 

amplitude. 

 

Flight Simulator Total Lapse Time.  The equation for Level 1 revealed that the total 

amount of time that participants’ attention lapsed during the flight simulation could accurately 

predict the number of lapses on the PVT.  Specifically, the total number of PVT lapses increased 

linearly as the number of lapses in the flight simulator increased.  Likewise, the equation for 

Level 2 was also significant.  Inspection of the inter-individual slope variability (Figure 35) 

indicates that, like Saccadic Velocity, those participants who demonstrated the least amount of 

variability in the number of lapses during the flight simulation also demonstrated the least 

amount of variability in the number of PVT lapses.     

 

   
 

 

               

 

 

   Stanford Sleepiness Scale (SSS).  The fixed effects for the Stanford Sleepiness Scale were 

significant, though the same was not true for the random effects (see Figure 36).  In other words, 

although participants’ responses to the SSS did change significantly as the number of PVT lapses 

changed, there was no significant difference between the individual slopes.  Since the Level 2 

equation using random effects was not significant, the value reported for Level 1 utilized a re-

estimation of the model without the random effects.  The lack of a significant random effects 

suggest that increases in sleepiness as measured using the SSS in relation to PVT lapses is best 

conceptualized at the group level. 

 

POMS Vigor-Activity.  The Level 1 equation for the Profile of Mood States component 

Vigor-Activity was significant, indicating that subjective assessments of energy levels may be 

predictive of lapses in attention at the group level (Figure 37).  However, analyses revealed that 
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Figure 35.  Individual slopes for PVT lapses in relation to the total 

time lapse during flight simulation in seconds.  There was a 
significant group effect as well as significant individual 

differences such that, on average, as total lapse time in the flight 

simulator increased, the number of PVT lapses also increased. 

Figure 36.  Individual slopes for PVT lapses in relation to 

responses to the Stanford Sleepiness Scale (group mean-centered 
values).  There was a significant group effect but there were no 

significant individual differences between the individual slopes, 

indicating that the relationship between PVT lapses and responses 

to the Stanford Sleepiness Scale were similar for all participants. 
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the Level 2 equation was not significant, and thus the results reported from Level 1 are taken 

from a re-estimation of the model excluding random effects.  The absence of significant 

individual differences in the predictive value of the POMS Vigor-Activity component suggests 

that most people may be fairly equally matched in terms of the extent to which subjective 

feelings relate to actual performance. 

 

                
 

 

 

 

 

 POMS Fatigue-Inertia.  For the Fatigue-Inertia component of the POMS, the model was 

significant for both Level 1 and Level 2.  At the group level, higher self-ratings for this measure 

of sleepiness and lethargy were related to a greater number of lapses in attention on the PVT.  

Additionally, the results of the Level 2 analysis indicated that there were significant individual 

differences in response to chronic sleep restriction.  As evident in Figure 38, participants who 

had a higher number of lapses on the PVT also tended to have greater variability in their 

performance on this task.  Further, these participants also tended to report higher levels of 

sleepiness than did participants who had fewer lapses in attention.    

 

POMS Total Mood Disturbance.  As the Total Mood Disturbance is a composite score 

reflecting the six subscales of the POMS, it is not surprising that the predictive value of this 

measure for the number of PVT lapses was significant at both the group and individual level.  In 

general, higher Total Mood Disturbance scores appear to be related to a greater number of lapses 

in attention (Figure 39).  Additionally, results from the Level 2 equation indicate that, as 

observed on the Fatigue-Inertia subscale, participants who had a higher number of lapses also 

demonstrated greater variability in their performance while reporting greater mood disturbance.  
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Figure 38. Individual slope of PVT lapses in relation to Fatigue 
and Inertia measured using the POMS (group mean-centered 

values). There was a significant group effect, as well as 

significant individual differences, such that, the greater the 
variability in the performance on the Fatigue and Inertia portion 

of the POMS, the greater the number of lapses on the PVT.  

Figure 37.  Individual slopes of PVT lapses in relation to Vigor- 
Activity measured by the POMS (group mean-centered values). 

There was a significant group effect, with vigor decreasing as the 

number of lapses on the PVT increased.  However, there were no 
significant individual differences.   



39 
 

     
 

 

 

 

 

Fatigue Avoidance Scheduling Tool (FAST).  Both Level 1 and Level 2 equations using 

the FAST were able to significantly predict the number of PVT lapses.  Specifically, the results 

for the Level 1 equation revealed that the deterioration in performance predicted by FAST 

corresponded to an increase in lapses as measured by the PVT.  Likewise, results for the Level 2 

equation revealed significant individual differences such that those participants who were 

predicted to have the least performance deficit according to FAST demonstrated the fewest 

number of lapses on the PVT (Figure 40). 

 

Stage 2 Summary.  Taken as a whole, the results from this series of analyses suggested 

that several of the subjective and objective measures included in this study may be useful in 

predicting lapses in attention at both the group and individual level during a period of chronic 

sleep restriction.  The significant subjective factors were two measures obtained from the POMS, 

Fatigue-Inertia and Total Mood Disturbance.  For these factors, greater fatigue or mood 

disturbance tended to predict a greater number of lapses on the PVT as well as increased 

variability in performance.  Because the Stanford Sleepiness Scale (SSS) is specifically designed 

to assess subjective fatigue levels, it is interesting that this measure was not a significant 

predictor of PVT lapses at the individual level.  One explanation for this may simply be the 

nature of the different measures.  Specifically, the Fatigue-Inertia score is based on the 

participants’ response to seven adjectives and Total Mood Disturbance is based on responses to 

65 different adjectives, but the SSS asks for participants to respond to a single statement.  This is 

not to suggest that the SSS is a poor measure of fatigue but simply that it may not be possible for 

a response to one statement to capture the variability in individual differences in response to 

chronic sleep restriction. 

 

The remaining measures which were significant predictors of PVT lapses at both the 

group and individual level were objective, and included one measure of performance and one 

physiologic assessment.  The performance measure was the total lapse time on the X-Plane flight 

simulator, which of all the neurobehavioral assessments participants in this study completed, was 
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Figure 40.  Individual slopes for PVT lapses in relation to 

predicted performances in FAST (group mean-centered values).  
There was a significant group effect as well as significant 

individual differences.  On average, participants who were 

predicted to have the greatest performance impairment according 

to FAST demonstrated the greatest number of PVT lapses. 

Figure 39.  Individual slopes for PVT lapses in relation to Total 

Mood Disturbance measured by the POMS (group mean-centered 
values). There was a significant group effect as well as significant 

individual differences, such that, on average, the higher the Total 

Mood Disturbance score, the greater the number of PVT lapses.  
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the only measure that was sensitive to the performance deterioration over the chronic sleep 

restriction period.  Finding that performance on this measure is strongly predictive of the total 

number of lapses on the PVT supports the use of a flight simulator as a more operationally-

relevant means of detecting fatigue.  These results suggest that lapse time on a flight simulator is 

not subject to the same practice effects which seemed to influence performance on other 

measures, such as those taken from the Flight Fit test battery, and thus may be a valuable tool in 

developing a readiness-to-perform assessment. 

 

The best objective, physiologic measure was part of the PMI oculometric assessment, 

Saccadic Velocity.  The PMI FIT typically takes less than a minute to complete and can be done 

with little to no oversight or supervision from research staff.  This finding replicates existing 

research concluding that sleep loss leads to reduced saccadic velocity, though the degree of this 

decrease in speed differs between individuals (Chandler, Arnold, Phillips, Lojewski, & Horning, 

2010; Rowland et al., 2005).  Conclusions from this previous research as well as the findings of 

the present study suggest that oculometric measures, such as those recorded by the PMI, might 

be time-efficient means of identifying individuals who are too fatigued to perform at the best of 

their abilities.  Moreover, combining these measures with other factors, such as lapse time on the 

flight simulator, would greatly strengthen their predictive efficacy. 

 

The final two predictive factors were both related to participants’ sleep and wake patterns 

over the course of the study – time (i.e., test session) and FAST-predicted effectiveness score.  

Significance at both the group and individual levels for the first of these measures, time, 

confirmed that the gradually increasing sleep debt participants experienced during the study was 

related to a growing performance impairment, but that there were strong individual differences in 

the severity of this impairment.  The results were similar for the FAST scores in that predictions 

of poorer performance corresponded to increased number of lapses on the PVT.  However, as 

noted previously, there were strong individual differences with some participants showing little 

to no change in performance whereas the performance of others deteriorated drastically.  These 

results suggest that a critical part of predicting performance during periods of insufficient sleep 

may be having a comprehensive picture of the individual’s sleep/wake patterns. 

 

Stage 3 
 Having identified which of the included factors had the greatest predictive value for 

performance impairments over 4 days of chronic sleep restriction, the final stage of these 

analyses was intended to develop predictive algorithms.  Specifically, five of the factors which 

were able to predict both group and individual changes in the number of lapses on the PVT were 

further examined through a series of enter-method linear regression analyses to determine 

whether combining these factors might improve their predictive value.  The first set of analyses 

included participants across all test sessions, whereas subsequent analyses constrained the data 

based on different factors, such as Extraversion facet scores on the NEO-PI-R and testing 

session, to determine whether selected measures might have greater predictive value under 

different conditions.  For all of these analyses, a regression was first done using data from the 

FAST performance estimates, followed by an analysis including all five of the predictive factors.  

If the model including all five factors explained less than 20% (i.e., R
2
 ≤ .20) of the variance, no 

further analyses were conducted.  If the five factors explained more than 20% of the variance, 

additional analyses were done to examine the predictive value of algorithms including the three 



41 
 

factors with the greatest beta coefficients.  In addition to the models described below, other 

analyses were conducted which examined the efficacy of models constrained by the other NEO-

PI-R scores, but none of these yielded models which satisfied the standard of 20% variance 

explained. 

 

 When all of the data were analyzed together, the model created using just the FAST 

performance estimates was significant, but it predicted little more than 1% of the variance (Table 

14).  The model was strengthened with the addition of the four other predictors – total lapse time 

on the flight simulator, PMI Saccadic Velocity, and POMS factors Fatigue/Inertia and Total 

Mood Disturbance – with total variance explained increasing to almost 12%.  This represents a 

clear improvement over using the FAST scores alone to predict impairments during chronic 

sleep restriction, but still offers very little towards predicting performance decrements. 

 

Table 14.  Linear Regression with FAST Performance Estimate as Primary Predictor of PVT 

Lapses. 

 
  

The second series of analyses was conducted in three phases, first analyzing data from 

those participants who were ranked in the lowest 25% on the NEO-PI-R Gregariousness facet 

(E2) of the Extraversion trait, followed by those ranked in the middle 50%, and finally those in 

the highest 25% (Table 15).  For all three groups, the results of the model which included only 

FAST were somewhat better than was observed previously, with the performance estimate 

predicting 1.5 – 4.1% of the variance.  Among participants in the middle 50% group, results 

including all five of the predictors were also similar, with this model still predicting less than 5% 

of the variance.  However, the most interesting models were found for the two extreme groups, 

those in the lowest and highest 25%.  For these groups, the model built using all five predictors 

accounted for nearly 68% and nearly 50% of the total variance, respectively.  Subsequent 

analyses determined that for participants who were ranked low on the Gregariousness facet, total 

lapse time on the flight simulator, PMI Saccadic Velocity, and Total Mood Disturbance on the 

POMS were the three most predictive factors.  The best three-predictor model for those ranking 

high on the Gregariousness facet also included total lapse time on the flight simulator and Total 

Mood Disturbance on the POMS, as well as the Fatigue/Inertia measure from the POMS.     

 

 

 

 

 

 

 

Equation R
2 D F df 1 df 2 p

FAST PVT_lapses = FAST * -.104 0.011 5.180 1 478 .023

FAST, FS_TotalLapse, 

PMI_SV, POMS_F/I, 

POMS_TMD

PVT_lapses = (FAST * .045) + (FS_TotalLapse 

* .183) + (PMI_SV * .005) + (POMS_F/I * -

.071) + (POMS_TMD * .313)

0.117 7.448 5 282 .000

Note: FAST = Fatiuge Avoidance Scheduling Tool; FS_TotalLapse = Flight Simulator Total Lapse Time; PMI_SV = PMI Saccadic 

Velocity; POMS_F/I = POMS Fatigue/Inertia; POMS_TMD = POMS Total Mood Disturbance
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Table 15.  Linear Regression with FAST Performance Estimate as Primary Predictor of PVT 

Lapses and Data Constrained by Gregariousness Facet (E2) of Extraversion Trait. 

 
 

Also examining a subcomponent of the Extraversion trait from the NEO-PI-R, the next 

series of analyses tested whether an individual’s rank on the Activity facet (E4) could predict 

their fatigue susceptibility to chronic sleep restriction.  As was observed with the Gregariousness 

facet (Table 16), Activity had the greatest predictive value for individuals in one of the two 

extreme categories rather than for participants in the middle 50% on the measure.  For the middle 

50%, FAST performance estimates predicted less than 3% of the variance in the number of PVT 

lapses, while adding in the other four factors improved this to 11.8%.  Conversely, for 

participants categorized in the lowest 25% of the Activity facet, FAST predicted a meaningful 

amount of the variance, a little more than 9%.  Additionally, including all five factors into the 

algorithm increased the predictive value to 37.3%.  Of the five factors, the most predictive for 

this group were PMI Saccadic Velocity and both the POMS Fatigue / Inertia and Total Mood 

Disturbance factors.  Although FAST alone had a lower predictive value when data was 

constrained to just participants in the higher 25% group (0.8%), the algorithm including all five 

factors was much more effective, predicting nearly 28% of the variance.  As observed with 

Equation R
2 D F df 1 df 2 p

FAST PVT_lapses = FAST * -.190 0.036 4.427 1 118 .083

FAST, FS_TotalLapse, 

PMI_SV, POMS_F/I, 

POMS_TMD

PVT_lapses = (FAST * .109) + (FS_TotalLapse 

* .400) + (PMI_SV * -.126) + (POMS_F/I * -

.196) + (POMS_TMD * .880)

0.679 27.886 5 66 .000

FS_TotalLapse, PMI_SV, 

POMS_TMD

PVT_lapses = (FS_TotalLapse * .384) + 

(PMI_SV * -.068) +  (POMS_TMD * .633)
0.653 42.746 3 68 .000

FAST PVT_lapses = FAST * -.202 0.041 10.115 1 238 .000

FAST, FS_TotalLapse, 

PMI_SV, POMS_F/I, 

POMS_TMD

PVT_lapses = (FAST * -.151) + 

(FS_TotalLapse * -.073) + (PMI_SV * -.124) + 

(POMS_F/I * .121) + (POMS_TMD * -.075)

0.044 1.282 5 138 .275

FAST PVT_lapses = FAST * .124 0.015 1.835 1 118 .178

FAST, FS_TotalLapse, 

PMI_SV, POMS_F/I, 

POMS_TMD

PVT_lapses = (FAST * .054) + (FS_TotalLapse 

* .622) + (PMI_SV * .021) + (POMS_F/I * -

.501) + (POMS_TMD * .337)

0.495 12.941 5 66 .000

FS_TotalLapse, 

POMS_F/I, POMS_TMD

PVT_lapses = (FS_TotalLapse * .638) + 

(POMS_F/I * -.499) + (POMS_TMD * .310)
0.493 21.999 3 68 .000

Participants Who Scored in the Lowest 25% on the Gregariousness Facet of the Extraversion Trait

Participants Who Scored in the Middle 50% on the Gregariousness Facet of the Extraversion Trait

Participants Who Scored in the Higest 25% on the Gregariousness Facet of the Extraversion Trait

Note: FAST = Fatiuge Avoidance Scheduling Tool; FS_TotalLapse = Flight Simulator Total Lapse Time; PMI_SV = PMI Saccadic 

Velocity; POMS_F/I = POMS Fatigue/Inertia; POMS_TMD = POMS Total Mood Disturbance
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participants ranked in the lowest 25%, for those in the highest 25% group according to their 

Activity facet rating, the three best predicting factors were Saccadic Velocity, POMS Fatigue / 

Inertia, and POMS Total Mood Disturbance. 

  

Table 16.  Linear Regression with FAST Performance Estimate as Primary Predictor of PVT 

Lapses and Data Constrained by Activity Facet of Extraversion Trait. 

 
 

The final series of predictive analyses constrained data based on test session, using only 

the testing times during which the POMS was administered – the first (0730), third (1530), and 

fifth (2330) sessions each day.  As evident in Table 17 below, the models created from FAST 

data collected during the 1530 and 2330 testing sessions failed to predict a meaningful portion of 

the variance, though  the models were somewhat improved with the addition of the other four 

predictors.  However, the results from data recorded during the earliest test sessions were much 

more promising, with FAST alone explaining almost 5% of the variance and the five combined 

predictors explaining 22.4% of the variance.  Further analyses confirmed that the three most 

effective predictors in the model were total lapse time on the flight simulator, PMI Saccadic 

Velocity, and POMS Total Mood Disturbance.   

 

Equation R
2 D F df 1 df 2 p

FAST PVT_lapses = FAST * -.303 0.092 11.895 1 118 .001

FAST, FS_TotalLapse, 

PMI_SV, POMS_F/I, 

POMS_TMD

PVT_lapses = (FAST * -.024) + 

(FS_TotalLapse * .017) + (PMI_SV * -.233) + 

(POMS_F/I * -.053) + (POMS_TMD * .666)

0.373 7.840 5 66 .000

PMI_SV, POMS_F/I, 

POMS_TMD

PVT_lapses = (PMI_SV * -.243) + (POMS_F/I 

* -.042) + (POMS_TMD * .633)
0.372 13.417 3 68 .000

FAST PVT_lapses = FAST * -.154 0.024 5.804 1 238 .017

FAST, FS_TotalLapse, 

PMI_SV, POMS_F/I, 

POMS_TMD

PVT_lapses = (FAST * .012) + (FS_TotalLapse 

* .199) + (PMI_SV * -.010) + (POMS_F/I * 

.098) + (POMS_TMD * .144)

0.118 3.695 5 138 .004

FAST PVT_lapses = FAST * .087 0.008 0.892 1 118 .347

FAST, FS_TotalLapse, 

PMI_SV, POMS_F/I, 

POMS_TMD

PVT_lapses = (FAST * .084) + (FS_TotalLapse 

* .204) + (PMI_SV * .287) + (POMS_F/I * -

.824) + (POMS_TMD * .782)

0.275 5.019 5 66 .001

PMI_SV, POMS_F/I, 

POMS_TMD

PVT_lapses = (PMI_SV * .302) + (POMS_F/I 

* -1.053) + (POMS_TMD * 1.007)
0.242 7.243 3 68 .000

Participants Who Scored in the Lowest 25% on the Activity Facet of the Extraversion Trait

Participants Who Scored in the Middle 50% on the Activity Facet of the Extraversion Trait

Participants Who Scored in the Higest 25% on the Activity Facet of the Extraversion Trait

Note: FAST = Fatiuge Avoidance Scheduling Tool; FS_TotalLapse = Flight Simulator Total Lapse Time; PMI_SV = PMI Saccadic 

Velocity; POMS_F/I = POMS Fatigue/Inertia; POMS_TMD = POMS Total Mood Disturbance
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Table 17.  Linear Regression with FAST Performance Estimate as Primary Predictor of PVT 

Lapses and Data Constrained by Testing Session. 

 
 

Stage 3 Summary.  The results of the above series of regression analyses indicate that the 

overall predictive ability of FAST to estimate performance impairments due to chronic sleep 

restriction is rather low.  This conclusion is in stark contrast to the results reported by Chandler, 

Arnold, Phillips, Lojewski, and Horning (2010) for a study involving total sleep deprivation.  

Specifically, during total sleep deprivation FAST scores were able to predict nearly 14% of the 

variance in PVT lapses, but in the present study these scores accounted for only 1.1% of the 

variance.  Moreover, even when constraining the data using different moderating factors such as 

personality facets, the predictive value of FAST never exceeded 10%.  Since chronic sleep 

restriction is more common than total sleep deprivation in operational environments (Caldwell, 

Chandler, & Hartzler, 2012), the results of the above analyses suggest that FAST performance 

estimates should not be used as the sole means of determining readiness for duty.    

 

The results of these regression analyses did reveal several factors which significantly 

improved the predictive value of the FAST.  Across all analyses, the three best predictive factors 

during chronic sleep restriction appear to be an individual’s scores on the POMS Fatigue/Inertia 

and Total Mood Disturbance scales, as well as their total lapse time on a flight simulator.  This 

finding suggests that scores such as these, as well as PVT performance, may be valuable tools to 

shift managers and schedulers in determining whether personnel are ready for duty.  Successful 

use of these types of algorithms could help to improve both mission efficacy and safety by 

identifying personnel who are best able to maintain performance under different operational 

conditions.   

Equation R
2 D F df 1 df 2 p

FAST PVT_lapses = FAST * .217 0.047 4.649 1 94 .034

FAST, FS_TotalLapse, 

PMI_SV, POMS_F/I, 

POMS_TMD

PVT_lapses = (FAST * -.020) + 

(FS_TotalLapse * .293) + (PMI_SV * -.023) + 

(POMS_F/I * .017) + (POMS_TMD * .271)

0.224 5.207 5 90 .000

FS_TotalLapse, PMI_SV, 

POMS_TMD

PVT_lapses = (FS_TotalLapse * .300) + 

(PMI_SV * -.019) + (POMS_TMD * .290)
0.224 8.846 3 92 .000

FAST PVT_lapses = FAST * -.034 0.001 0.110 1 94 .741

FAST, FS_TotalLapse, 

PMI_SV, POMS_F/I, 

POMS_TMD

PVT_lapses = (FAST * .083) + (FS_TotalLapse 

* -.043) + (PMI_SV * -.028) + (POMS_F/I * -

.125) + (POMS_TMD * .330)

0.165 3.545 5 90 .006

FAST PVT_lapses = FAST * .015 0.000 0.020 1 94 .887

FAST, FS_TotalLapse, 

PMI_SV, POMS_F/I, 

POMS_TMD

PVT_lapses = (FAST * -.010) + 

(FS_TotalLapse * .109) + (PMI_SV * .090) + 

(POMS_F/I * -.325) + (POMS_TMD * .396)

0.097 1.929 5 90 .097

Test Sessions Beginning at 1530

Test Sessions Beginning at 2330

Note: FAST = Fatiuge Avoidance Scheduling Tool; FS_TotalLapse = Flight Simulator Total Lapse Time; PMI_SV = PMI Saccadic 

Velocity; POMS_F/I = POMS Fatigue/Inertia; POMS_TMD = POMS Total Mood Disturbance

Test Sessions Beginning at 0730
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It is interesting that constraining the data prior to some of these analyses revealed major 

improvements to the original algorithm.  For example, when the data were constrained by either 

participants’ Gregariousness or Activity score on the NEO-PI-R, it was clear that the resulting 

algorithms were much stronger for participants ranked in the highest or lowest 25% of the facet.  

One possible explanation for this ties back to previous research which determined that these two 

Extraversion facets were related to fatigue susceptibility, with participants who scored higher on 

Extraversion traits also demonstrating greater susceptibility (Killgore et al., 2007).  Although this 

effect was not significant in the present study (see Table 4 above), the trend indicated that the 

same was true for individuals undergoing chronic sleep restriction, with people who are outgoing 

and socially active appearing to be more fatigue susceptible whereas introverts were more 

fatigue resistant (see Figures 3 and 4 above).  Thus it is possible that members of these respective 

groups may have had less inter-individual variability in response to sleep restriction, 

consequently making it easier for just a few significant factors to explain the majority of the 

variance.  Similar results were obtained by constraining the data by the time of the testing 

session.  Specifically, for the 0730 test session, almost 23% of the variance in the number of 

PVT lapses was accounted with just three factors, though the same was not true for the 1530 or 

2330 testing sessions.  This may be attributed to most or all participants succumbing to an early 

morning trough in the circadian cycle, which was further exacerbated by their growing sleep 

debt.  Taken together, these results add further support to the notion that consideration of 

individual differences, as well as circadian factors, is crucial to effective scheduling practices.   

 

GENERAL DISCUSSION 

 

General Summary 

 Though total sleep deprivation is more commonly studied, chronic sleep restriction is 

widely regarded as the most common form of sleep loss experienced by modern society (Lindsay 

& Dyche, 2012; May & Kline, 1987).  Despite countless studies identifying the many 

performance impairments which accompany either type of sleep loss, fatigue remains one of the 

most pervasive and potentially most devastating causes of human-factors related accidents and 

mishaps (Naval Safety Center, 2014).  Thus, the present study was intended to examine the 

efficacy of several cognitive and physiologic measures for predicting performance impairments 

due to chronic sleep restriction.  As a whole, the results of the present study support the idea that 

an effective fitness for duty screener could be developed by incorporating a variety of measures.  

Specifically, measures such as the Profile of Mood States (POMS) Fatigue-Inertia and Total 

Mood Disturbance scores, the total lapse time while on the flight simulator, as well as PMI 

Saccadic Velocity and Fatigue Avoidance Scheduling Tool (FAST) scores for predicted 

effectiveness, were sensitive not only to the group effects of fatigue but also to the individual 

differences in fatigue susceptibility.  Conversely, many of the cognitive measures such as Flight 

Fit’s Attention Shifting and Visual Scanning, as well as the dual n-back, indicated an 

improvement in participants’ performance across the duration of the study, masking any fatigue-

related effects.   

 

Comparing and Contrasting Chronic Sleep Restriction with Total Sleep Deprivation 

 The experiment reported herein is a follow-up to a total sleep deprivation (TSD) study 

completed by this laboratory (Chandler, Arnold, Phillips, Lojewski, & Horning, 2010).  In 

particular, the TSD study was also designed to test the efficacy of several instruments as 
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potential fatigue detection tools and determine whether they were sensitive to individual 

differences.  Results of that study revealed that only responses to the Stanford Sleepiness Scale, 

Flight Fit’s Shifting Accuracy, and Saccadic Velocity as measured by the PMI FIT 2000, were 

sensitive to individual differences.  Additionally, two reaction time measures (Flight Fit Raw RT 

and Divided Attention RT), as well as participants’ performance on a flight simulator, also 

indicated impaired performance as a result of 25 hours of continuous wakefulness, though these 

measures were not sensitive to individual differences.  Thus, although there are some similarities 

in participants’ responses to the two types of sleep loss, such as Saccadic Velocity, there appear 

to be more differences.  For example, participants’ performance on four of the Flight Fit tasks 

deteriorated significantly during TSD, whereas performance improved significantly for most of 

the same measures during chronic sleep restriction (CSR).   

 

On the surface, these conclusions might appear to be in contrast with the findings of 

Rupp, Wesensten, and Balkin (2012), which indicated that both TSD and CSR resulted in very 

similar performance impairments.  That is, Rupp and colleagues exposed participants to both 

TSD conditions (continuous wakefulness for 63 hours) as well as CSR (restricted to 3-hrstime-

in-bed for seven nights).  The authors reported that not only did the response to sleep loss appear 

to be a stable trait across both types of sleep insults, but that performance decrements were 

similar for both conditions.  For example, participants’ performance on the Running Memory 

task, a measure of working memory similar to the dual n-back used in the present study, was 

similar for both sleep loss conditions.   

 

An explanation for this difference in findings may be taken from a hypothesis put forth 

by Hursh and Van Dongen (2010) regarding the homeostatic set-point of sleep, suggesting that 

the similarity in performance decrements depends on the severity of the CSR.  Specifically, 

Hursh and Van Dongen explained that CSR of 3 hours or less per night will result in continuous 

accumulation of performance impairment which is similar to, but slower than that of TSD.  

However, when sleep is reduced to 4 – 6 hours per night, the rate of decline will be much more 

gradual, eventually resulting in depressed but steady performance.  The 4 hour mark which 

distinguishes the two levels of CSR has been termed the homeostatic “set-point”.  Taken 

together, the results of this research regarding TSD and CSR, as well as those obtained by Rupp 

and colleagues (2012) appear to lend credence to the set-point theory. 

 

Individual Differences in Assessing Fatigue 

As stated previously, fatigue due to sleep loss continues to be one of the foremost safety 

concerns in aviation, both for military and commercial operations.  As part of a growing concern 

regarding fatigue, increasing interest has also focused on individual differences in fatigue 

susceptibility.  These differences are static traits and may be related to a number of different 

factors, such as genetics, age, personality, and baseline neural activity.  Because current 

guidelines are often based upon averages taken from groups, some individuals may actually be 

much more resistant to fatigue, or much more susceptible to fatigue.  Failure to take these 

individual differences into consideration when establishing work schedules will likely lead to 

insufficient use of a given Warfighter’s ability to function at acceptable levels with inadequate 

sleep, or place another at risk when his or her performance deteriorates quickly.  Some of the 

measures used in this study may prove to be beneficial at not only assessing someone’s present 
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level of fatigue, but also to predict how susceptible a particular individual may be hours or even 

days into the future.  

  

Fatigue Prediction Using Physiologic and Cognitive Measures 

 As stated previously, the results of Stages 2 and 3 analyses revealed five measures which 

were sensitive to individual differences in fatigue susceptibility due to chronic sleep restriction 

and which may be used to predict future impairments.  These measures included subjective 

(POMS Fatigue / Inertia and Total Mood Disturbance) and objective (total lapse time in a flight 

simulator and PMI FIT Saccadic Velocity) factors, as well as predictive effectiveness scores 

from the FAST.  Taken together, these results suggest that the different types of factors should be 

used synergistically to develop a more accurate predictive algorithm which may better enable 

schedulers and commanders to determine whether a particular crew member is fit for duty.   

 

 Conversely, there were several measures which are highly sensitive to the performance 

impairments associated with total sleep deprivation but on which participants actually improved 

during chronic sleep restriction.  These measures include any tasks that are likely to have 

performance effects, such as those involving memory or cognitive throughput.  If the 

improvements had been confined to just the first few test sessions in the present study, it would 

have been easy to conclude that these conflicting results were simply due to practice effects 

which might have been prevented by including more training sessions.  However, performance 

on several measures, such as the Flight Fit Visual Scanning Response Time (Figure 15) and 

Divided Attention Response Time (Figure 17), indicated that participants continued to improve 

even into the final day of testing.  This suggests that even when obtaining sufficient sleep, 

participants would continue to improve their performance on these types of tests despite 

numerous administrations.  Thus, the best measures for assessing and predicting fatigue due to 

chronic sleep restriction appear to be saccadic velocity, detailed subjective assessments such as 

the POMS, and measures of alertness and attention such as lapses on a flight simulator or the 

PVT.   

 

Future Directions 

 The results of the study described herein provided a great deal of information not only 

about the manner in which restricting nightly time in bed to 4 hours influences cognitive and 

physiologic performance, but also how individuals vary in their degree of impairment.  These 

individual differences may be exploited to improve existing scheduling practices by offering 

personnel better estimates of when their performance will be most impaired.  However, before 

these types of predictive algorithms should be implemented in the field, further research is 

needed to determine which factors have the greatest predictive value at different levels of sleep 

loss.  For example, as discussed above, impairments evident with fewer than 3 hours of sleep per 

night are highly similar to that observed under total sleep deprivation, whereas obtaining 4 or 

more hours of sleep leads to different impairments and even allows for some improvements in 

performance.  Thus, subsequent studies should focus on identifying individual differences in 

fatigue susceptibility for participants receiving only 2 or 3 hours of sleep, as well as 5 or 6 hours 

of sleep, to determine which factors have the greatest predictive value for each level of sleep 

restriction.  Further, the most successful fatigue detection tool would likely incorporate a wide 

variety of measures, including subjective and objective factors.  Consequently, follow-up studies 
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should consider a wider variety of measures, such as more cognitive and physiologic 

assessments.  
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