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Introduction 
This project is designed to address the subject of mammary cancer development. The purpose of the project is 
to investigate molecular events occurring in the preclinical stages of mammary cancer; the results may lead to 
insights into cancer prevention in the future. Specifically, the project investigates the intersection between 
genome demethylation, retrotransposon transcriptional activity, and retrotransposon-driven transcription of 
cellular genes. Retrotransposon promoters are well recognized to function as alternative promoters for different 
cellular genes, generating chimeric transcripts that may or may not function in the same way as transcripts from 
the regular gene promoter. Transcriptional activation of retrotransposons is strongly linked with their CpG DNA 
methylation, and global genomic demethylation is one of the most common molecular changes in malignancies. 
This project tests the hypothesis that, in preclinical stages of tumor development, genomic demethylation leads 
to increased transcriptional activity of retrotransposons and this, in turn, leads to transcription of otherwise 
silent genes, potentially setting up molecular conditions that favor cancer development. Dr. Peaston’s lab 
developed a genetically engineered mouse model in which a specific mammary cell population is fluorescently 
marked upon initial exposure to an oncogene. The marked population can then be collected for integrated 
analysis of gene expression, promoter usage, and DNA methylation after shorter or longer exposure to the 
oncogene during different stages of preclinical cancer development. Our role as collaborating PI in this project 
is to provide support for genome-side methylation profiling and contribute to the final data analysis of the 
combined methylation, expression and CAGE (measure of transcription start sites) data.  

Body 
The relevant sections from the Statement of Work are shown in the table below with corresponding goals and 
results. While waiting on the shipments of DNA samples to begin processing them (see Dr. Peaston’s, 
collaborating PI, report for more information), we have worked on methodological improvements to streamline 
sample preparation and began to establish an analysis pipeline that can handle the three data types that will be 
produced in this proposal. This pipeline will greatly facilitate final analysis and interpretation of results for this 
project in year 2. These advancements and their importance to the project are described below. In particular we 
feel confident that the streamlined protocol and analysis tools for Methyl-MAPS that we have developed will 
easily allow us to complete all Methyl-MAPS analyses and final computational analyses outlined in the 
Statement of Work before the project end. 

Year 1: Items from Statement of Work Relevant to Edwards Lab. 
Months Goal Result 
1-3 
4-6 
7-9 
10-12 

4. 
9. 
5. 
8. 

• Set up schedule for formal monthly
electronic lab meeting between Peaston
lab and Edwards lab. And regularly
hold meetings.

• An informal schedule was set up for the first
year with a plan for regular meetings to
commence after the first DNA shipments are
sent

4-6 6. • Preliminary Methyl-MAPS analysis of 
pilot virgin samples 

• Awaiting initial DNA shipment, which should
occur shortly.

10-12 7. • Methyl-MAPS library preparation and
sequencing for replicate #1 uniparous
& triparous control and tumor-prone
(likely to continue to next quarter)

• Awaiting initial DNA shipment, which should
occur shortly.
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Improvements to Methyl-MAPS 
The improved Methyl-MAPS 
protocol is fundamentally the 
same method of methylation 
analysis as before, but with a 
few small modifications that 
reduce the amount of input 
material to less than 2.5 ug and 
speed the library construction 
process (Fig. 1). Methylation-
sensitive and methylation-
dependent endonucleases are 
used to completely digest the 
genome leaving unmethylated 
or methylated DNA 
compartments respectively. 
After digestion, paired-end 
sequencing libraries are built 
and paired-end sequencing is 
performed. Paired-end 
sequence tags are then 
computationally matched to the 
genome to determine regions 
that are methylated or not. Into 
our protocol we have 
incorporated the latest 
developments in paired-end 
library construction from Life-
Technologies Corp (User 
Guide for Mate-Paired Library 
Preparation on 5500 Series 
SOLiD Systems).  

Here we briefly describe the 
modifications made in the 
improved protocol. After 
enzymatic digestions we use 
SPRI beads to clean up the 
reactions. Testing revealed this 
method to take substantially 
less time then the standard 
method of phenol-cloroform extractions followed by ethanol precipitations with less loss of material. We 
subsequently use the SPRI beads to size select fragments only >600 bp. After size selection, fragments are end-
repaired and special adaptors are ligated to the ends. The solution is diluted out and heated to allow the sticky 
ends of the adapters to come together and self-hybridize thus circularizing each molecule, while leaving a nick 
on each side of the assembled adaptor. Tags are produced by a timed nick translation reaction at 5° C followed 
by T7/S1 nuclease digestion. Library fragments are A-tailed and sequencing adapters attached. The adapter-
ligated fragments are captured on streptavidin beads, purified and the final library is PCR amplified. The major 
changes were to three highly inefficient and time-consuming steps from the original version of the protocol. The 
first is the change from a gel-based size selection to a bead-based size selection, the second is the change from 
an intra-molecular circularization to an inter-molecular circularization and the third was a change from creating 

Figure 1 Comparison of the original and improved Methyl-MAPS library 
construction protocols. The original protocol uses EcoP15I, a type III restriction 
endonuclease that cleaves outwardly 25 bp to generate sequencing tags. The new 
protocol uses a much more efficient nick-translation tag generation step that 
leaves variably length tags, but whose tags are within the read lengths of current 
DNA sequencers (HiSeq and SOLiD). Other improvements are described in the 
text. The final assembled internal adaptor (red and blue) has the identical 
sequence in both protocols. B = Biotin.
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sequence tags using the type III restriction enzyme EcoP15I, which was highly inefficient, to the very efficient 
nick translation tag generation.   

We initially tested this new protocol with DNA from the breast cancer cell line T47D which we had analyzed 
using our old protocol. The initial results showed that we could reduce our input DNA requirement to 2.5 ug, 
without a decrease in library complexity (i.e. the number of unique DNA molecules in the library, as opposed to 
redundant molecules produced through PCR). In fact the complexity levels of this library were superior to those 
of any Methyl-MAPS library we have made, and suggests that we could potentially use even less material. We 
have already implemented a revised informatics pipeline that can handle the variably length tags. We found that 
the correlation coefficient between bisulfite-based Infinium bead array data for T47D cells and data from the 
new protocol improved substantially.  

Computational Pipeline Improvements 
We have also begun development of new computational tools to use RNA-seq and genome-wide methylation 
data to determine how hypomethylation in repeats and alternative- and tissue-specific promoters affects the 
transcriptome. Currently, the most common approach for characterizing methylation changes between two 
samples employs a sliding window to identify differentially methylated regions (DMRs)1,2. A gene with a 
hypermethylated DMR near its promoter is assumed to exhibit a decrease in expression, while a gene with a 
hypomethylated DMR should exhibit an increase in expression. In practice, the Pearson correlation coefficient 
between the methylation level of the DMR and the expression of its associated gene is typically no stronger than 
-0.43. It has been assumed that better anticorrelation is precluded due to noise from experimental error, mixed 
cellular populations, copy number variations, chromatin modifiers or other regulation events. Another 
possibility, however, is that contemporary analysis methods are not sophisticated enough to recognize 
correlations involving more complex methylation patterns. In particular, the DMR method has several 
limitations. Like most existing approaches, it distills large regions of high-resolution methylation information 
into a single aggregate 
value. Values beyond some 
threshold are assumed to 
affect their nearby genes 
equivalently. When both 
hyper- and hypomethylated 
DMRs are present near a 
promoter, the method 
attempts to associate the 
best DMR instead of 
considering the full pattern 
of variation. Fundamentally, 
the DMR method assumes 
that the patterns of 
methylation we will find in 
new datasets will be the 
same as the examples 
known from past 
experiments. Since this 
approach produces poor 
correlations with annotated 
genes, we felt that to 
examine alternative and 
retrotransposon promoters 
we would need a better 
approach. 

Figure 2  (a) Overview of the method. (b,c) Example methylation signatures from 
HMEC-HCC1954 BS-Seq data. Top panels show methylation and RNA-Seq 
expression data on the UCSC genome browser. Bottom panels show interpolated and 
smoothed methylation signatures (black curve) that are used to calculate the discrete 
Fréchet distance. Blue tick marks show locations of all CpG sites. Black dots mark 
experimentally measured differences in methylation between the two samples.  
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An outline of our new method is shown in Figure 2a. Below 
we demonstrate how this method works for annotated 
promoters, but the method can be easily adapted to the goals 
of this project by utilizing the CAGE data to annotate 
transcription start sites (TSSs), RNA-seq data to provide 
expression information, and Methyl-MAPS data for the high-
resolution genome-wide methylation profiles.  

Our method differs from other approaches by using the entire 
differential methylation profile in the vicinity of a gene’s 
promoter to discover how DNA methylation changes affect 
gene regulation (Fig. 2). We represent the differential 
methylation for a fixed area around each gene's TSS as a 
continuous curve, or signature, capturing the shape of the 
methylation changes. We then apply a curve similarity metric, 
the discrete Fréchet distance, to compare differential 
methylation signatures for all genes. Using an unsupervised 
clustering technique, we arrange the signatures according to 
their shapes and identify which clusters of signatures are 
significantly correlated with gene expression changes. 
Generalized patterns of differential methylation can be 
extrapolated from the resultant clusters. Since the approach is 
unsupervised, there is no need for any additional assumptions 
about the direction of the correlations. While designed for 
pattern discovery, the method is easily extended to identify a 
list of genes potentially regulated by methylation. These gene 
lists are of markedly higher quality and length than those 
generated by existing methods.  

We evaluated our technique on three datasets with high-
resolution methylation and RNA-Seq expression data. The 
first was whole-genome bisulfite sequencing (BS-Seq) data 
for normal human mammary epithelial cells (HMEC) and 
breast cancer cells (HCC1954)1 containing methylation levels 
at 84.7% of genomic CpGs with a coverage level of at least 
10 in each sample. To examine how the method performed on 
a lower coverage dataset, we examined BS-Seq data for H1 
embryonic stem cells and IMR90 fetal lung fibroblasts2. 
While the genomic coverage level of this data was high, the 
data was sparsely sampled at promoters: fewer than 40% of 
CpGs had coverage of at least 10. By including all CpGs with 
coverage as low as a single read, the data covered 93.5% of 
genomic CpGs. Expectedly, low coverage sites were 
extremely noisy. Lastly, we applied our method to Methyl-
MAPS data from MCF7 and T47D breast cancer cells to 
determine its performance analyzing data generated by the 
method used in this grant project. We limited our analysis to 
sites interrogated by both digests, which included 24.9% of 
genomic CpGs with coverage of at least 5. Clustering results 
from HMEC-HCC1954 data are shown in Figure 3. 

Figure 3  (a) Complete dendrogram for 
clustering 3,566 methylation signatures from 
HMEC-HCC1954 BS-seq data. Clusters 
highlighted in orange, magenta, and cyan indicate 
significant clusters with purity greater than 0.75, 
0.85, and 0.95, respectively. Sub-clusters 
featured in (b,c) are indicated with arrows. A 
heat map of expression data is plotted in bars 
alongside the dendrogram. (b) Sub-cluster 
showing a pattern of methylation increase across 
the TSS. Left side shows the complete cluster 
with boxes to indicate expression. Right is one 
sub-cluster of patterns. (c) Sub-cluster showing a 
pattern defined by decrease in methylation 3’ of 
the TSS. F.C. denotes expression fold change; 
green indicates down-regulation, red indicates 
up-regulation.  
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From the resulting sets of significant clusters, we sought to characterize the common features of the methylation 
signatures that may be responsible for the observed correlations with expression change. As expected, many 
clusters contained patterns with a strong spike of hyper- or hypomethylation across the TSS that negatively 
correlated with expression change (Fig. 3b). In addition to patterns with differential methylation across the TSS, 
our method identified multiple clusters in all three datasets characterized by a change in methylation 
downstream of the TSS (Fig. 3c). Meta-gene analysis of all genes in clusters associated with this pattern 
indicates that it operates within 3 kb of the TSS. This 3’ pattern occurs across several significant clusters due to 
variations in other parts of the differential methylation curves. Limiting HMEC-HCC1954 BS-Seq data to only 
sites probed by Methyl-MAPS showed the data reduction had no impact on the ability to detect each of the 
identified patterns. We were also able to detect all the same pattern types in Methyl-MAPS data as were found 
in BS-Seq data demonstrating that in Methyl-MAPS data there is little impact on one’s ability to detect patterns. 
As a negative control, we randomly scrambled the expression values for all genes in each dataset for 1000 
random permutations. Our technique identified a false significant cluster in 1.7-2.3% of experiments (depending 
on the dataset) in line with the imposed statistical controls. 

Gene List Generation 
Enumerating a list of genes for which expression and methylation changes are potentially linked is a primary 
interest of any genome-wide methylation profiling experiment. Our method as outlined above is tuned to 
discover patterns, and thus produces a conservative gene list potentially prone to false positives. To produce a 
better gene list, we execute our method on a set of overlapping 5kb windows centered at a range of locations 
around the TSS. We identify the set of genes identified as positives (i.e. changing in the same direction as the 
majority of their cluster) for each window. A final list is created of all genes that are identified for at least two 
windows. The resulting list is more comprehensive and less prone to false positives. Judging the quality of any 
gene list is difficult, since there is no gold standard dataset for which the relationship between methylation and 
expression is well-known for all genes. To determine the extent to which genes are falsely included due to the 
creation of errant clusters, we randomly scrambled the expression values in the HMEC-HCC1954 dendrogram. 
For 1000 such experiments using default clustering parameters, only seven experiments returned any false 
positive genes: six reported a single false positive and a seventh returned two. 

We compared the quality of the gene lists produced by our approach to lists constructed by two commonly used 
methods. For a DMR-based approach, regions of differential methylation are defined between two samples 
using a sliding window. DMRs are coupled to a particular gene using a distance cutoff 2,4. For a promoter-based 
approach, a fixed window around each gene’s TSS defines the gene’s promoter. If methylation changes 
substantially within this window, the gene is labeled as differentially methylated5,6. We optimized DMR- and 
promoter-based approaches for each dataset using 69,360 and 6,174 parameter choices, respectively, while 
using a single common set of parameters for our approach across all datasets. Since no experimental dataset 
exists for which the effect of methylation change on expression is known for every gene, we evaluated each list 
by examining the tradeoff between the total number of differentially expressed genes identified as potentially 
correlated versus the fraction of identified genes that are actually correlated in the predicted direction (Fig. 4). 
This tradeoff is somewhat analogous to comparing the rate of positives to the rate of false positives, while the 
false negative rate is necessarily unknown. On the basis of these criteria our approach clearly dominates over 
the DMR- and promoter-based methods. For instance, if you set the algorithm parameters such that 20% of 
differentially expressed genes have a correlated differential methylation event, then for HMEC-HCC1954 data 
by the DMR approach only 68% of the time will the methylation and expression be anti-correlated as expected. 
However, using our approach, at the same 20% level, 93% of the time will silencing patterns be associated with 
a decrease in expression and vice-a-versa. 

The optimal parameter choices for DMR- and promoter-based approaches varied widely between datasets and 
must be re-calibrated for each experiment. Such optimization is not necessary with our method, which performs 
well for a fixed set of parameters across all datasets. While our approach performs similarly well in low-
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coverage datasets, DMR- and promoter-based methods struggle (Fig. 4b). By downsampling the HMEC-
HCC1954 dataset, we determined that BS-Seq data obtained with an average coverage as low as 7 results in 
little loss in our method’s ability to identify genes. Methylation scores for 50% of CpGs can be removed from 
the data and 94.5% of genes can still be detected. These results indicate that our technique is quite robust even 
when much data is missing. 

Our findings suggest that the role of DNA methylation cannot be fully described by simply characterizing every 
gene as “methylated” or “unmethylated”. Using our new method, we have found and described a variety of 
methylation patterns that correlate with expression change. The true power of this method is in its ability to 
discover and separate distinct patterns without a priori knowledge about existing correlations, which cannot be 
accomplished with contemporary approaches. This allows us to realize the full potential of unbiased genome-
wide profiling of DNA methylation to reveal previously unknown information about methylation’s functional 
role. This ability will be especially important when examining regulatory elements within retroelements as will 
be performed in this work.  

One additional implication of these results also becomes clear. The simplified models used in prior approaches 
at best produce weak correlations. However, if one considers a more formal description of the underlying 
patterns of methylation changes, methylation and expression data are highly correlated. An initial manuscript on 
these findings has been submitted. This tool was designed to start from a list of expression data, corresponding 
transcription start sites (TSSs) and high-resolution genome-wide methylation data such as from Methyl-MAPS. 
Thus it fits perfectly into the framework of this proposal where we will have RNA-seq data for expression, 
CAGE data to mark the TSSs and Methyl-MAPS methylation data for each sample. The adaptations to 
accommodate these datasets to address the regulation of retrotransposons are straightforward and we will have 
an established pipeline in place and ready for the data as it is produced in year 2. 

Figure 4  Comparison of gene lists generated using our approach with those from optimized DMR and promoter-
centric methods for (a) HMEC-HCC1954 BS-Seq, (b) IMR90-H1 BS-Seq, and (c) MCF7-T47D Methyl-MAPS 
data. The plot shows the trade-off between the number of genes predicted to have differential expression based on 
their methylation (x-axis) and the quality of the predictions (y-axis). Points up and to the right indicate better 
performance; 50% quality is equivalent to random guessing. Only optimal parameter choices with an inverse 
correlation between methylation and expression are shown for DMR- and promoter-based approaches. Promoter-
based approaches were optimized across both all CpG sites (All Sites) and all significant CpG sites (All Sig. 
Sites). A single, default set of parameters was used for our method across all three datasets.  
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Key Research Accomplishments 
• Streamlined Methyl-MAPS protocol to use less input DNA and take less time to process samples
• Developed new computational tool to combine genome-wide expression and methylation data to output

a list of genes where methylation likely contributes to their silencing or activation.

Reportable Outcomes 
Manuscripts 
VanderKraats ND, Hiken JF, Decker KF, Edwards JR. (2012) “Discovery of DNA methylation patterns that 
strongly correlate with expression changes in genome-wide high-resolution methylation data.” Submitted. 

Abstracts 
VanderKraats ND, Hiken JF, Decker KF, Edwards JR. (2012) “Characterization of DNA methylation patterns 
that predict expression changes in genome-wide high-resolution methylation data.” Epigenetics & Chromatin 
Meeting at Cold Spring Harbor Laboratory, Cold Spring Harbor, NY. Sept. 11-15. 

Conclusions 
The streamlined Methyl-MAPS protocol and the computational analysis pipeline we have now established will 
be invaluable for pushing the project ahead. The primary task for my lab was to provide Methyl-MAPS 
genome-wide methylation profiling for tumor DNA from the uniparous and triparous female mice from Dr. 
Peaston’s mouse model. The tools we have in place will make this easy to accomplish in the upcoming year. 
The computational tools we have developed are designed to work with annotated genes as we have outlined, but 
can also be expanded to any transcriptional unit with a known TSS and known expression value. We will thus 
be able to integrate each of the datasets generated in this project (CAGE, RNA-seq and Methyl-MAPS) to 
address the hypothesis that, in preclinical stages of tumor development, genomic demethylation leads to 
increased transcriptional activity of retrotransposons and this, in turn, leads to transcription of otherwise silent 
genes, potentially setting up molecular conditions that favor cancer development. 
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