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Outline
• Background and motivation
• Baseline configuration and numerical approach
• Stability analysis for the baseline configuration

– Mean flow
– Acoustic instabilities
– N-factors

• How to improve the injector performance
• Shaping of injector

– Conical shapes
– Cylindrical shape

• Suction-blowing of zero mass injection
• Conclusions
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OBJECTIVE:  Delay transition from laminar to turbulent flow in the boundary 
layer of a slender hypersonic body by using nonequilibrium CO2

Transition in high Mach numbers 
occurs through the Mack mode –
amplification of acoustic waves 
traveling in the boundary layer

Molecular vibration and 
dissociation damp 

acoustic waves

At relevant conditions, CO2
absorbs most energy at the 
frequencies most strongly 

amplified by 2nd (Mack) mode

PROBLEM: In hypersonic flight, heating loads are typically a dominant design factor

Turbulent heat transfer rates can be about an order of magnitude higher than laminar rates at 
hypersonic Mach numbers

A reduction in heating loads by keeping the boundary layer laminar longer means less thermal 
protection needed and hence less weight to carry, or conversely more payload deliverable for a 

given thrust. 

Inject CO2 to delay transition in air flows of interest

Background: Delay Transition Using Non-
Equilibrium CO2 to Suppress the Second Mode
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Background
• For CO2 the broad sound absorption curve peak coincides with the amplification peaks

• This coincidence is most pronounced at enthalpies of ~10 MJ/kg

CO2

Plots from: Fujii, K., Hornung, H.G, “Experimental 
Investigation of High‐Enthalpy Effects on 
Attachment‐Line Boundary Layer Transition,” AIAA 
Journal, Vol. 41, No. 7, July 2003
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Baseline configuration
Free-stream parameters correspond to Run 2540* in GALCIT T5 shock tunnel

5-deg half-angle sharp cone with the injector

Gas is injected with the total mass flow rate ranging from 3 g/s to 13.5 g/s

*Parameters are determined using M, T, and  reported by Wagnild, R.M. et al. (AIAA-2010-1244) 
and perfect-gas model with Pr=0.72 and =1.4
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Numerical approach for mean flow

In-house Navier-Stokes code HSFlow*
• Perfect gas of Pr=0.72, =1.4
• Sutherland viscosity-temperature dependence
• Implicit second-order finite-volume method
• Shock-capturing scheme
• Third-order WENO for advection terms

*Egorov, I.V. et al., Theor. Comput. Fluid Dyn., Vol. 20, No. 1, 2006, pp. 41-54.

597×649 grid with 
• 50% clustering in the boundary layer
• Clustering near the injector
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For temporal problem:                  is complex, growth rate=

For spatial problem:                is complex, growth rate=

N-factors 

Stability analysis
Local-parallel stability computations

• Third-order Rungge-Kutta scheme for integration of stability
equation

• Gramm-Schmidt orthogonalization procedure
• Eigenvalues are calculated using a shooting/Newton-Raphson

procedure

*Egorov, I.V. et al., Theor. Comput. Fluid Dyn., Vol. 20, No. 1, 2006, pp. 41-54.

Disturbance~
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Mean-flow profiles
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We are dealing with acoustic instability
Temporal stability analysis at x=0.3
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Temporal instability in the relaxation region for 
baseline configuration

(injection rate 13.5 g/s)
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We are dealing with acoustic instability (cont’d)
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Injection affects N-factors of Mack 
second mode
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Perfect gas model captures basic 
trends
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• Negative slope may compensate the blowing effect on 
the displacement thickness 

• Injection of zero total mass addition may help to 
reduce the relaxation region

Suction 
of air

Blowing 
of CO2

How to improve the injector 
performance?

air

injected CO2
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Injector of conical shape

5-deg half-angle sharp cone with the injector having 
the slope =c-

x1 =128 mm

x2 = 169 mm

b=41 mm

b

r

new shape
c-

c=5
 b
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Mean-flow pressure for conical injectors
(injection rate 13.5 g/s)

=1

=3

Baseline (=0)

Injection 
region
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Mean-flow boundary layer thickness for 
conical injectors
(injection rate 13.5 g/s)
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Shaping =1 without injection
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Shaping =1 with injection of 13.5 g/s
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Shaping of =3 without injection

Effect of shaping is local and small
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Summary plot of N-factors for conical 
injectors (injection rate 13.5 g/s)

Shaping with =1o and 3
• Slightly destabilizes flow in the near-field relaxation region
• Stabilizes flow in the far-field relaxation region
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Injectors of cylindrical shape

128 mm

169 mm

41 mm
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injector surface

baseline shape – sharp cone
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Mean flow for cylindrical injector
(injection rate 13.5 g/s)

Pressure

Axial velocity near injectorInjection 
region
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N-factors for cylindrical injector
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Summary plot of N-factors for cylindrical injector
(various injection rates)
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Estimates of the injection effect on the 
transition onset
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Suction-blowing of zero mass addition
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Mean flow for suction-blowing system
(m+=6.75 g/s)

pressure

axial velocity

temperature

Injection 
region
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Wall pressure distribution for suction-blowing 
system   (m+=6.75 g/s)
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N-factors for suction-blowing system
(m+=6.75 g/s)
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Conclusions
• Injection induces a cold dead-flow layer in the downstream 

relaxation region 

• The near-wall flow behaves as a wave guide which can support 
several unstable modes of acoustic type
– The most unstable is the Mack second mode 

– The phase speeds of instability are close to those of slow acoustic waves 
in the free-stream

– Instability frequencies are several times smaller than in the no injection 
case 

– This may lead to dramatic increase of receptivity to free-stream noise
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Conclusions (cont’d)
• The eN computations for baseline configuration showed

– Injection leads to destabilization of the near-field region, stabilization of 
the mid-field relaxation region, and destabilization of the far-field 
relaxation region

– The level of these effects essentially depend on the injected mass flow 
rate 

• The injector shaping considered 
– Does not stabilize the near-field flow at sufficiently large injection rates  

• For relatively small injection rates the shaping produces a 
significant stabilization effect in the mid- and far-field relaxation 
regions

• The suction-blowing of zero mass addition destabilizes the flow 
in the whole relaxation region
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Backup
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Stability analysis (cont’d)

Blue lines: pres., =1.4 Pink lines: pres., =1.38

With small correction of , N-factors predicted by the perfect-
gas model are close to N-factors predicted by STABL* 

Run 2540 Run 2540

*Wagnild, R.M. et al. AIAA-2010-1244
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Mean flow for baseline configuration
(injection rate=13.5 g/s)

axial velocity

pressure

temperature

Injection 
region
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Mean flow near 
injection

baseline configuration
injection rate=13.5 g/s

axial velocity

pressure

temperature

x
Injection region
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It is not easy to convert temporal growth rates to 
spatial ones
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Spatial stability analysis in the relaxation region 
(injection rate=13.5 g/s, x=0.3)
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•Mode 0 (Mack second mode) is most unstable
• Its instability is observed at low phase speeds 
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Injector of conical shape

5-deg half-angle sharp cone with the injector having 
the slope =c-

x1 =128 mm

x2 = 169 mm

b=41 mm

b

r

new shape
c-

c=5
 b
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Mean-flow axial velocity for conical injectors
(injection rate 13.5 g/s)
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Baseline (=0)
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Shaping of =3 with injection 13.5 g/s
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Conical injector with =3 shaping
• Slightly destabilizes flow in the near-field relaxation region
• Stabilizes flow in the far-field relaxation region
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We are dealing with acoustic instability 
(cont’d)
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• Phase speeds of unstable modes are close to those of slow acoustic waves
• Resonant interaction can enhance receptivity to slow free-stream noise
• Instability is observed at low frequencies where free-stream noise is higher 

length scale=* eigenfunctions
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Maximal growth rates in the relaxation region 
(injection with 13.5 g/s)

• The most unstable mode is 
Mack second mode (mode 0)

• Unstable x-region decreases 
with the mode number

Further analysis is focused 
on the Mack second mode
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Maximal growth rates of Mack second 
mode
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In the relaxation region x>0.2 m
• High maximal growth rates
• Low frequencies
• Low phase speeds
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Injection affects growth rates and 
frequencies in the relaxation region
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T5: Run 4520
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Maximal growth rates are increased
Unstable region is
• narrowed down for x<0.6
• widened for x>0.6

Frequencies are decreased
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Maximal growth rates for cylindrical injector
(various injection rates)

0.1 0.2 0.3 0.4 0.5
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16
 m

ax

x

 baseline
 5 deg, 0 g/s
 5 deg, 0.1m0

 5 deg, 0.3m0

 5 deg, 0.5m0

 5 deg, 0.7m0

 5 deg, m0=13.5 g/s


