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Abstract
The National Institute of Standards and Technology (NIST)
2012 speaker recognition evaluation posed several new chal-
lenges including noisy data, varying test-sample length and
number of enrollment samples, and a new metric. Target speak-
ers were known during system development and could be used
for model training and score normalization. For the evaluation,
SRI International (SRI) submitted a system consisting of six
subsystems that use different low- and high-level features, some
specifically designed for noise robustness, fused at the score and
iVector levels. This paper presents SRI’s submission along with
a careful analysis of the approaches that provided gains for this
challenging evaluation including a multiclass voice-activity de-
tection system, the use of noisy data in system training, and the
fusion of subsystems using acoustic characterization metadata.
Index Terms: Speaker recognition, noise-robustness, PLDA,
iVector

1. Introduction
NIST’s 2012 speaker recognition evaluation posed several new
challenges: clean and noisy test samples of varying lengths, a
varying number of enrollment sessions, and knowledge of the
target speakers during development and the permission to use
them for system training and score normalization [12]. Further,
a new metric was introduced involving two operating points and
separate weighting of false alarms for test samples correspond-
ing to a target speaker or an unknown speaker.

SRI’s approach to tackle these challenges included: (1) a
careful design of a development set matching the evaluation
data description as closely as possible, which was used for
model training and system tuning and calibration; (2) a multi-
class, noise-robust voice-activity-detection (VAD) system with
cross-talk removal; (3) the use of metadata aimed at represent-
ing the acoustic characteristics found in the enrollment and test
samples; (4) a set of six features, some of them specifically de-
veloped for noise robustness; (5) the iVector fusion of these
feature-specific subsystems with metadata used in the fusion;
and (6) a final transformation of the scores to take advantage
of knowledge of the target speakers. The system design was
simple: all six features were modeled with an identical iVec-
tor/probabilistic linear discriminant analysis (PLDA) approach
with some small differences in its parameters.
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This paper presents an analysis of the explored approaches
and shows which of these approaches gave significant gains for
the evaluation data.

2. System Description
This section describes the development set; the VAD system;
the individual subsystems; and the fusion strategy used to build
the evaluation system.

2.1. Development Set

This year NIST released the list of target speakers more than
a month in advance of the evaluation. Target speakers were
most of the speakers available in the 2008 and 2010 evaluation
data, including a total of 1818 speakers with a large variance in
the number of available sessions. We chose to use these same
target speakers as enrollment speakers in our devset, holding
out 168 speakers to be used as “unknown test speakers” (that
is, speakers for which no target model is trained). Additionally,
200 speakers from the 2004 through 2006 evaluation data were
chosen as unknown test speakers. For each target speaker, up
to six sessions were kept for testing and the rest were used for
speaker enrollment.

No “summed” data was used for enrollment, testing, or
system training. SRE10 microphone data of 16kHz was used
with all other data sampled at 8kHz. Interview data was used
only when both the interviewee and interviewer recordings were
available and of the same length. This facilitated the use of
cross-talk removal by VAD as described later.

The evaluation set had around 10k male and 15k female
segments for model enrollment, and 8k male and 10k female
test segments. Test segments were cut to contain active speech
of random durations between 15 and 200 seconds. Up to five
cuts per segment were produced.

In addition to the original segments of the dataset, noise was
added to each segment to produce a noisy version of each. The
noise conditions were created from the clean data set through ar-
tificial degradation at different signal-to-noise ratio (SNR) lev-
els, using different samples of heating, ventilation, and air con-
ditioning (HVAC) noise taken from freely available online re-
sources and speech spectrum noise formed by summing hun-
dreds of telephone conversation sides for each noise sample.
The train and speaker enrollment portion of the development
set was duplicated and degraded to around a 6 or 15 dB signal
to noise ratio (SNR), randomly choosing one noise type, us-
ing a version of the publicly available tool FaNT modified to
account for the C-weighting specification. In contrast, test seg-
ments were duplicated twice by renoising at both 15dB and 6dB
SNR. Different noise signals were used for training, enrollment
and testing.

A large set of trials was developed under a number of con-
straints based on the evaluation plan provided by NIST. These
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constraints include same-gender trials; English-only and nor-
mal vocal effort test segments; and a preference for different-
number phone-call trials (trials were discarded if both numbers
were known and different). Trials were created by pairing every
target model against all test samples, creating a large number of
impostor trials and the largest possible number of target sam-
ples under the aforementioned constraints. Trials involving two
signals recorded during the same session (i.e., two different mi-
crophone recordings of the same interview) were excluded.

The total number of trials obtained was around 14,000 tar-
get and 20 million impostor male trials, and 19,000 target and
38 million impostor female trials. Around half of the impostor
trials were from unknown speakers.

Training data were extracted from Fisher 1 and 2, Switch-
board phase 2 and 3, and Switchboard cellphone phase 1 and 2,
along with all available Mixer speakers except the unknown test
speakers (target speakers are included in the training data). A
total of 11,971 speakers were used from the Fisher data; 1,950
from Switchboard data; and 2,937 from Mixer data, for a total
of 38k male and 51k female segments.

2.2. Voice-Activity Detection

We used a multi-class Gaussian mixture model (GMM)-based
VAD system including cross-talk removal for interview seg-
ments. The multi-class VAD involved first training speech/non-
speech GMMs for both clean and noisy classes using mel-
frequency cepstral coefficients (MFCCs) of 10 dimensions plus
energy and deltas, double deltas, and triple deltas. GMMs were
trained using data from the training part of the development data
set with bootstrapped annotations from our previous VAD ap-
proach involving a speech/non-speech hidden Markov model
(HMM) decoder and various duration constraints. All audio
used for VAD training and evaluation was first Wiener filtered.
VAD setup was tuned to optimize speaker recognition perfor-
mance on the development set described above.

Frame-level likelihoods were obtained from each of the
four GMMs and the log likelihood ratio of the speech versus
non-speech models was found. Finally, a median filter of 41
frames was used to smooth the obtained scores. Frames with a
smoothed score above 0.1 were declared speech.

For the interview recordings, we used a more complex al-
gorithm to suppress cross-talk due to interviewer speech. The
algorithm is the following: (1) segment the interviewee channel
as per the method described above; (2) segment the interviewer
channel with a stricter threshold of 2.1; and (3) remove seg-
ments found in (2) from segments found in (1). If more than
50% of the speech from (1) was removed, the threshold in step
(2) was revised to limit the cross-talk removal to 50%.

2.3. Subsystem Description

Six different subsystems are included in the system, corre-
sponding to different feature sets extracted from the speech. An
iVector/PLDA approach is used for modeling all features.

2.3.1. Features
The following is a description of the six sets of features used
in the subsystems. MDMC, PNCC, and MHEC are features
specifically designed to be robust under noisy conditions.
MFCC (Low-Level) These features use a 200-3300 Hz band-
width front end consisting of 24 Mel filters to compute 19 cep-
stral coefficients plus energy and their delta, and double delta
coefficients over windows of 20ms shifted by 10ms, producing
a 60-dimensional feature vector.

PLP (Low-Level) The perceptual linear prediction (PLP) fea-
tures use a 100-3760 Hz bandwidth front end consisting of 24
Mel filters to compute 12 cepstral coefficients plus energy and
their delta, double delta, and triple delta coefficients, producing
a 52 dimensional feature vector.
MDMC (Low-level) Medium duration modulation cepstral
(MDMC) features extract cepstra from amplitude modulation
spectrum by using a modified version of the algorithm described
in [1]. Audio was sampled every 10 ms using a 51.2 ms Ham-
ming window and analyzed by a 30 channel gammatone filter
bank spaced equally from 250 Hz to 3750 Hz in the ERB scale.
The AM power signal from each subband was power normal-
ized using 1/15th root, followed by DCT, after which only the
first 20 coefficients were retained with deltas and double deltas
appended.
PNCC (Low-level) Power-normalized cepstral coefficient
(PNCC) features use a frequency domain 30-channel gamma-
tone filter bank that analyzes the speech signal [2] at 10 ms
with a 25.6 ms Hamming window, where the filterbank cutoff
frequencies were at 133Hz and 4000Hz. Short-term spectral
powers were estimated by integrating the squared gammatone
responses, and the resultant was compressed using 1/15th root,
followed by DCT. The first 20 DCT coefficients were retained
with deltas and double deltas appended.
MHEC (Low-level) Mean Hilbert envelope coefficient
(MHEC) features [3] utilize a 24-channel gammatone filter bank
with cutoff frequencies at 300 Hz and 3400 Hz, where filter
bank energies were computed from the temporal envelope of the
squared magnitude of the analytical signal obtained through the
Hilbert transform. The estimated temporal envelope is low-pass
filtered with a 20 Hz cutoff frequency, which was then analyzed
using a 25 ms hamming window with a 10 ms frame rate. Log
compression was performed on the resulting followed by DCT
to generate 20 cepstral features. Deltas and double deltas were
then appended.
PROS (High-level) Prosodic features are extracted from over-
lapping uniform regions of a length of 20 frames shifted with
respect to each other by 5 frames. The feature vector is com-
posed of the coefficients of the Legendre polynomial approxi-
mation of order 5 of the pitch and energy signals over the region
[4]. Pitch and energy signals are obtained using the get f0 code
from the Snack [5] toolkit. The waveforms are preprocessed
with a bandpass filter (200 Hz to 3300 Hz).

2.3.2. Modeling
All subsystems included in our submission use the iVec-
tor/PLDA framework for modeling [6, 7]. The iVectors are
transformed using linear discriminant analysis (LDA) and log-
likelihood ratios for each trial are estimated using probabilistic
linear discriminant analysis (PLDA). All models were gender-
dependent.

Background models were trained using only 8k samples
from Mixer data, while the iVector extractor was trained using
every training session available in the training set. The LDA
and PLDA models were trained using all training data corre-
sponding to speakers who participated in at least six sessions
and any speaker data used in enrollment. Noisy data was used
in combination with the clean segments only in the LDA/PLDA
stage [8] and for enrollment.

With the exception of the PROS system, features obtained
after VAD were mean and variance normalized over the ut-
terance. For the five low-level systems, the feature vectors
were modeled by a 2048-component, gender-dependent GMM
with diagonal covariances. The dimension of the iVectors for



these systems was 600, further reduced to 150 by LDA. For the
high-level PROS system, the feature vectors were modeled by
a 1024-component gender-dependent GMM with diagonal co-
variances and the dimension of the iVectors was 200, further
reduced to 100 by LDA. Mean and length normalization were
performed on the iVectors after LDA.

2.4. System Fusion and Compound Score Transformation

Two system combination and calibration strategies are used: (1)
iVector fusion and (2) score-level fusion or calibration using
metadata. Fused scores are further transformed to account for
the given prior probability of the test sample coming from a
known target speaker.
iVector Fusion: The iVectors produced by individual systems
(after LDA) were concatenated, and the final vector was further
reduced to 150 dimensions via LDA. The fused iVectors were
modeled and scored using PLDA.
Score-level Fusion: For score-level fusion, the fused scores
were a linear combination of scores from individual systems
where weights and bias are learned using linear logistic regres-
sion. A single set of fusion parameters was learned on all devel-
opment data, both clean and noisy. This procedure is also used
for calibration of individual systems and iVector fusions.
Acoustic Characterization Metadata: Given that the NIST
SRE evaluation data was designed to contain many different
types of variabilities, with only a few of them available as labels,
we used our ‘universal audio characterization’ approach [9] to
generate metadata for the fusion. The system was trained to
predict the acoustic characteristics available in the training data
using the MFCC iVectors. To this end, training signals were
grouped into six classes: clean/low SNR/high SNR, for tele-
phone data and microphone data. A Gaussian model was trained
for each class with covariances tied across classes. Given an
acoustic sample, this system produced a six-dimensional vector
of posterior probabilities for each of the six classes. A single
metadata vector was obtained for each speaker model by av-
eraging the vectors from enrollment segments. During fusion,
the verification scores were obtained as a linear combination of
scores from the individual systems plus a value obtained from
evaluating the bilinear form qT1 Wq2, where W is a symmetric
matrix learned during training and q1 and q2 are the metadata
vectors corresponding to the enrollment segments and the test
segment [10].
Compound Scores: The scores resulting from fusion were fur-
ther transformed to account for the probability of test segments
coming from known target speakers. This probability is 0.5
for the core and extended test conditions. This was done using
Bayes’ rule to transform the raw likelihood ratios output by the
system into posterior probabilities using the prior probabilities
for the target speakers (assumed to be uniform across speakers)
and an unknown target class. These posteriors were finally con-
verted back into likelihood ratios. This procedure was proposed
by Niko Brummer in [11].

3. Results and Analysis
We show results on the SRE 2012 evaluation conditions 1
through 5 [12] in which test samples are restricted to: inter-
view speech (C1); telephone speech (C2); interview speech with
added noise (C3); telephone speech with added noise (C4); tele-
phone speech collected under noisy conditions (C5).

All results shown in this paper correspond to (1) pooled
gender trials; (2) the core training condition in which all avail-

able data for each target speaker is used for enrollment; (3) cal-
ibrated scores with parameters learned by linear logistic regres-
sion on the development set trials; (4) the extended test condi-
tion; and (5) compound scores as described in Section 2.4. The
C primary metric is used for all results. This metric (described
in detail in [12]) is an average of two costs given by a weighted
sum of miss and false-alarm error probabilities with the thresh-
olds given by the theoretically optimal thresholds assuming the
scores are proper likelihood ratios. Further, the false-alarm er-
rors are weighted differently depending on whether the test sam-
ple comes from a target speaker or not.

Note that NIST advised participants not to compare perfor-
mance across conditions but only within them. For example, C3
is significantly easier than C1 even though C1 is clean and C3 is
noisy, because C3 involves only tests of longer durations, while
C1 contains a mix of durations.

3.1. Effect of Voice-Activity Detection
The left plot in Figure 1 shows a comparison of the results on
the MFCC system when using the described VAD algorithm
with different sets of models from which the likelihood ratio
of speech versus non-speech are obtained: (1) one GMM for
speech and one for non-speech both trained only on clean data
(this VAD is called clean in the figure); (2) one GMM for speech
and one for non-speech both trained on clean and noisy data
(clean+noi); (3) two GMMs for speech and two for non-speech,
trained separately on clean and noisy data (clean&noi); and (4)
approach (3) without cross-talk removal (clean&noi noxtalk).
We see that the third approach provides the most robust solu-
tion.
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Figure 1: Use of noisy data for system training and enrollment
for the MFCC system. Left: Comparison of performance using
GMMs trained with different data for VAD (noise in PLDA and
enrollment is used for these experiments). Right: Comparison
of performance when adding noisy data in PLDA training and
enrollment (clean&noi VAD is used for these experiments).

3.2. Effect of Data Used for PLDA and Enrollment
The 2012 SRE was the first time that a variable number of en-
rollment samples was available for the target speakers within a
single evaluation condition. Under these conditions, the current
PLDA approach does not behave well. The reasons for this are
yet to be discovered, but the current solution is to simply take
the average of the enrollment iVectors and then use standard
PLDA to compute a score between this average iVector and the
test iVector. In our experiments, this approach leads to signif-



icant gains for the low-level systems and the score-level and
iVector fusions that range from 25% to 50% on all evaluation
conditions, except C3 where no consistent gains are observed.
The PROS system does not benefit from averaging enrollment
iVectors. We submitted three systems to the evaluation, two of
them using separate enrollment iVectors during PLDA scoring
and one using the average iVector. In the rest of this paper, we
only show results using the latter approach.

Three of the five common conditions in the evaluation con-
tained noisy data. Our development set included renoised data
with characteristics similar to those in the evaluation test data.
We explored the use of this data during PLDA training and as
additional enrollment data. The right plot in Figure 1 shows
three sets of results on the MFCC system: (1) no renoised data
in PLDA or enrollment, (2) renoised data in PLDA only, and (3)
renoised data in PLDA and enrollment. The figure shows gains
in the noisy conditions of up to 25% from adding noisy data in
PLDA training with no losses on the clean data. Adding noisy
data in enrollment does not lead to consistent gains. On the
other hand, gains from using noise in enrollment were consis-
tent and large for the system that uses separate iVectors for en-
rollment (not shown here). Based on those results, we decided
to use noise in enrollment for all evaluation systems. Results in
the next section use noisy data in both PLDA and enrollment.

3.3. Subsystem and Fusion Results
Figure 2 shows the results for the individual subsystems. The
figure shows that the PNCC system is the best system overall,
always better than the more standard MFCC system.
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Figure 2: Performance of individual systems and different sys-
tem fusion techniques. PROS performance is indicated on the
bars since showing it to scale would obscure the differences be-
tween the other systems.

Figure 2 also shows a comparison of fusion results: (1) the
score-level fusion of the six individual systems (Scfus); (2) the
iVector fusion of PLP, PNCC, MFCC and PROS systems cali-
brated using logistic regression as for all score-level fusions (iV-
fus); and (3) the fusion in (2) but with the addition of the acous-
tic characterization metadata during fusion (iVfus w/meta). The
selection of systems used in 1 and 2 was based on an exhaus-
tive search on the development set. We can see that the iVector
fusion is always better than the score-level fusion. Finally, the
use of metadata during fusion gives significant gains in all con-
ditions except C1. This was not the case in our development
set, where we saw gains of approximately 10% on the condi-
tion corresponding to C1. This might point to some difference

in the nature of the interview data in the evaluation versus the
development data that warrants further study.

The system we submitted to the evaluation was a score-level
fusion of all six individual systems plus the iVector fusion, cal-
ibrated using metadata. The addition of the individual systems
to the iVector fusion does not bring any consistent gains in the
evaluation conditions (the gain on the development set was only
marginal). We do not show these results in the figure, to reduce
clutter.

All results in this paper correspond to compound scores as
explained in Section 2.4. The gain obtained on the average Cpri-
mary from the use of this transform on the iVfus w/meta system
is 15%, being from 11 to 18% on the individual conditions.

An interesting question, given the variety of features avail-
able for fusion, is how much is the system gaining from each
feature. This is a hard question to answer since, for each num-
ber of systems being fused, several combinations give similar
performance. Table 1 shows, for n between 1 and 4, the n-way
iVector fusions (calibrated without metadata) for which the av-
erage Cprimary over the five evaluation conditions is within 2%
relative of the top n-way fusion. The five-way and six-way fu-
sions are not better than the four-way fusions and, hence, are not
shown in this table. Interestingly, a pattern arises where most n-
way fusions are formed by some top (n-1)-way fusion plus one
additional system. Both the PLP and the PROS systems are
necessary to reach the best performance of 0.183. These are
the systems that provide the most new information to the fusion
once two low-level systems are already present in the mix.

Table 1: Top n-way fusions along with the best average Cpri-
mary for each n (in parenthesis). The * indicates “the (n-1)-way
fusion in the same line”.

1-way 2-way 3-way 4-way
(0.227) (0.201) (0.189) (0.183)
PNCC *+MFCC *+PROS * + PLP

PLP+MDMC *+PROS * + MFCC
PLP+PNCC *+PROS * + MDMC
PLP+MHEC *+PROS * + MFCC

PLP+MFCC+PROS
PLP+MFCC+MDMC

4. Conclusions
We present a description of the system submitted to the 2013
NIST speaker recognition evaluation by SRI International. This
system was among the top performers in the evaluation. The
system includes several aspects that make it noise-robust. A
multi-class speech activity detection system trained with clean
and noisy data and the use of noisy data in PLDA result in gains
on noisy conditions of up to 20% and 25%, respectively. The
fusion of several systems based on low- and high-level features
improves performance on both clean and noisy data between 15
and 20% relative to the best individual subsystem — a system
based on power-normalized cepstral coefficients. The use of
metadata during fusion describing the acoustic characteristics
of the enrollment and test data gives additional gains in noisy
conditions.
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