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ABSTRACT 

Operational commanders and intelligence professionals are provided with a 

continually-increasing volume of data from numerous sources.  Effective utilization of 

this data can be hampered by difficulties in fusing different data streams for presentation, 

correlating related data from various sources and developing reliable summary and 

predictive products.  An opportunity presently exists to improve this situation through the 

incorporation of Semantic Web technologies into Department of Defense (DOD) 

systems. 

This report provides a didactic overview of Description Logics (DL) and their 

implementation in Semantic Web languages and technologies to include the mathematical 

properties supporting robust knowledge representation.  Subsequently, the algorithms for 

automated reasoning and inferencing with DLs are discussed.  Included in this discussion 

is a comparison of available Semantic Web applications for ontology development and 

realization or DL reasoning capabilities with real-world knowledge bases.  Finally, 

mechanisms for applying artificial intelligence techniques to ontological DL information 

are presented. 
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I. INTRODUCTION 

A. PROBLEM STATEMENT 
Traditional internet technologies, including the World Wide Web (WWW, W3), 

facilitate the access and presentation of networked data.  These technologies have 

obvious applications in both classified and unclassified government systems, and make 

volumes of potentially useful information available to operational commanders and 

decision-makers.  This information includes raw and annotated data from tactical, 

strategic, and national sensors; composed and analytic products derived from various data 

sources; and operational information about friendly assets, just to name a few. 

As the amount of available data explodes; however, it becomes more and more 

difficult to utilize it effectively.  Access to hyperlinked documents and web-accessible 

data repositories does not provide the end user any contextual background or insight into 

how the information relates to information from other sources.  Additionally, it can be 

difficult to separate useful information from digital clutter.  Search engines can locate 

information based on keywords, but they have no ability to tailor results according to an 

“understanding” of the encountered data. 

In this context, traditional distributed data storage has three significant 

shortcomings.  First, it is difficult to efficiently separate useful data from digital clutter—

imagine the difficulty in locating a specific contact of interest in hundreds of hours of 

unmanned air vehicle imagery over thousands of square miles.  A second issue is 

efficient data fusion.  Ideally, we would like to process data from multiple sources and 

locations so that redundant information is eliminated and related data is correlated.  

Finally, even after sorting through and fusing the data, we would like to be able to 

automatically draw conclusions and make predictions based on the available information. 

 

B. SEMANTIC WEB AND INFERENCING 
Semantic Web technologies provide not only access to data, but also access to 

contextual information that allows for its interpretation as well.  Specifically, the 

Semantic Web uses ontologies, taxonomies, data models, and other tools to describe 

content characteristics and relationships.  The mathematical rigor of Semantic Web 
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constructs provides for data discovery and utilization by networked applications and also 

allows for automated inferencing to derive new information and draw conclusions from 

distributed information. 

Realization of the Semantic Web has two crucial requirements.  The first is a set 

of standardized means of representing information.  Towards this end, the World Wide 

Web Consortium (W3C) has approved languages such as the Resource Description 

Format (RDF), its extension RDF Schema (RDF(S)), and Web Ontology Language 

(OWL) that will be discussed in this work.  The second essential element involves 

reasoning about represented data.  Formal logic, and specifically Description Logics 

(DL), has received significant research attention in support of this requirement (Rudolph, 

11). 

Traditional distributed technologies provide access to information as opposed to 

knowledge.  This means that data is accessible, displayable, and available for 

manipulation, but there is no basis for more than cursory understanding without human 

intervention and analysis.  Semantic Web technologies, on the other hand, express 

meaning along with the data by adding formal semantics (Daconta, et al., 03).  Formal 

semantics allow for the development of knowledge bases (KB) that utilize metadata to 

place information in context, describe relationships, make interpretations and draw 

conclusions in a mathematically rigorous way (Kashyap, 04).  This mathematical rigor, 

along with recognized standards allows for the expressed knowledge to be machine read 

and computationally processed in ways that support automation, integration and reuse of 

data. 

Representation of information in a form that effectively conveys knowledge 

requires more than simple markup of the data comprising the information.  It requires a 

model or language that is capable of representing strong semantics about the data.  

(Daconta, et al., 03) uses an “Ontology Spectrum” as depicted in Figure 1 to rank various 

data expression mechanisms relative to one another.  Traditional database techniques 

including Schemas, Entity-Relationship (ER) Models and Extended Entity-Relationship 

(EER) Models are on the lower end of this spectrum, while logical forms including 

Description Logic, First Order Logic, and Modal Logic are on the upper end. 
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Much of what we might think of as the Semantic Web technology, particularly the 

aspects that support automated reasoning and inferencing, are based on Description 

Logics (DL).  DLs provide significant expressive power and have been a focus of 

knowledge engineering research for some time.  In addition, there has been significant 

work in developing reasoning algorithms for working with DLs that can be proven to 

meet specific mathematical requirements (completeness, soundness, tractability, etc.). 

 

 
Figure 1. The ontology spectrum (Daconta, et al., 03) 

 

 
C. REPORT ORGANIZATION 

The remainder of this report will be organized into five sections.  Chapter II 

contains an overview of Description Logics (DL) and their use for knowledge 

representation.  Because DLs provide the mathematical foundation of Semantic Web 

technologies, understanding the Semantic Web is predicated on an understanding of DL 

capabilities and limitations.  Chapter III provides an overview of DL implementation 
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through existing Semantic Web technologies and includes a discussion of the use of 

metadata and ontologies, metadata frameworks and standards, ontology matching and 

data integration, and finally, implementation of inductive rules within ontologies.  In 

addition, a short survey of ontology development and maintenance tools is provided.  

Chapter IV covers standard reasoning with DLs.  This chapter provides a description of 

standard DL reasoning tasks and the prevalent algorithms by which they are conducted.  

Chapter V contains a discussion of machine learning as it relates to the Semantic Web 

with focus on machine learning algorithms that are appropriate for inferencing tasks that 

cannot be accomplished through standard DL reasoning techniques.  Finally, Chapter VI 

contains conclusions and recommendations. 
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II. DESCRIPTION LOGICS AND KNOWLEDGE 
REPRESENTATION 

A. DESCRIPTION LOGIC FUNDAMENTALS 
DLs are a family of logic-based knowledge representation systems that fall 

between Propositional Logic and First Order Logic (FOL) on the Ontology Spectrum of 

the (Daconta, et al., 03), meaning that they are more semantically expressive than 

Propositional Logic, but less so than FOL.  The advantages that DLs possess over FOLs 

involve the decidability and tractability of associated reasoning problems.  Reasoning 

with DLs can often be done more efficiently than with FOLs, and reasoning problems are 

much more likely to be computationally undecidable with FOLs than with DLs (Rudolph, 

11). 

DLs describe individuals within a domain of interest using concepts and roles, 

which describe groups of individuals and relationships between individuals, respectively.  

For instance, “Ship” might be a concept that includes individuals (literals) such as 

“Antietam”, “Sullivans”, and “Nimitz”, and “inBattleGroup” might be a role for 

declaring that a ship is assigned to a specific battlegroup.  DL statements, or axioms, take 

the form of unary and binary predicates.  A unary predicate is used to apply a concept to 

an individual.  A binary predicate, on the other hand, specifies that the individual 

corresponding to the first argument has the role relationship with the individual 

corresponding to the second argument.  For example, the predicate “Ship(Antietam)” 

applies the “Ship” role to the individual “Antietam” and the predicate 

“inBattleGroup(Antietam, CSG-3)” says that the individual “Antietam” has an 

“inBattleGroup” relationship with the individual “CSG-3”.  As a rule, DL roles are not 

reflexive, so the declaration of the example does not imply an “inBattleGroup(CSG-3, 

Antietam)” relationship.  Every name within a DL, then, is either a literal (individual), a 

unary predicate (named concept), or a binary predicate (named role) from FOL (Rudolph, 

11). 

DL axioms describing a particular domain are typically separated into three 

groups:  the Terminology Box (TBox) is used to define relationships between concepts, 

the Relational Box (RBox) is used to define properties of roles, and the Assertional Box 
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(ABox) makes assertions about individuals.  Together, the TBox and RBox define the 

intensional portion of a KB while the ABox comprises the extensional portion (Haarslev, 

06).  Only DLs that allow complex roles (i.e., those that include operations for combining 

and manipulating roles) require an RBox.  Not unexpectedly, those languages that do 

allow complex roles provide additional expressive power at the cost of increased 

reasoning complexity (Krötzsch, et al., 12). 

For this report, discussion will focus primarily on the TBox and ABox.  Adding 

an RBox does not fundamentally change the reasoning algorithms beyond accounting for 

the role operations available in the particular DL.  In practice (and in much of the 

literature), the TBox and RBox can be implemented and considered as a single entity 

(Baader, et al., 07). 

DLs provide operators that can be used to build complex concepts.  Specific DLs 

are characterized (and named) according to operations that are permitted.  The most 

commonly utilized DLs are those that fall in the Attributive Language (AL) family.  

Basic AL allows the definition of atomic concepts and roles and provides the operations 

described in Table 1 for complex concept description.  The AL does not allow for 

complex roles.  The basic AL operations can be informally described as follows: 

• The universal concept (⊤), or top concept, subsumes every concept in the 
domain, and the top concept describes all individuals within the domain. 

• The empty concept (⊥), or bottom concept, excludes every concept and 
individual of the domain. 

• Atomic negation (¬A) describes all individuals for which the concept is false. 

• Intersections (C ⊓ D) are used to describe all individuals to which both 
operand concepts apply. 

• Value restriction (∀r.C) describes all individuals that participate as the first 
argument of the specified role, r, with only individuals to which the concept 
specified by the operand (C) applies. 

• Limited existential quantification (∃r.⊤) describes all individuals that 
participate as the first argument in the specified role, r, with no restrictions on 
the other role participant. 
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Atom or Operator Description 

C, D Named (atomic) concept 

r, s Named (atomic) role 

⊤ Top (universal) concept 

⊥ Bottom (empty) concept 

¬A Atomic negation 

C ⊓ D Intersection 

∀r.C Value restriction 

∃r.⊤ Limited existential quantification 

Table 1. The AL description logic 
 

As an example, consider the following axioms of Table 2 which demonstrate 

simple application of AL operations where “Aircraft”, “Fighter” and “Weapon” are 

atomic concepts, and “payload” is an atomic role.  In these examples and their 

corresponding definitions, it is important to note that with AL, negation is only allowed 

for atomic concepts, and that existential is only universal (i.e., the operator describes all 

individuals that are participating in the role relationship with no restrictions on the other 

role participant). 

 

Axiom Description 

Weapon Describes all individuals to which the “Weapon” concept 
applies 

Aircraft ⊓ ¬Fighter Describes all Aircraft that are not Fighters 

Aircraft ⊓ ∃payload.⊤ Describes all Aircraft with a payload 

Aircraft ⊓ ∀payload.Weapon Describes all Aircraft with only a Weapon payload 

Aircraft ⊓ ∀payload.⊥ Describes all Aircraft with no payload 

Table 2. Example AL axioms using “Weapon”, “Aircraft”, and “Fighter” concepts 
and a “payload” role 

 

While AL is considered a minimally robust DL, its expressive power is fairly 

limited.  It does, however, form the basis for a family of languages that is used 
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extensively by Semantic Web technologies.  Specific AL extensions are specified by 

letters that identify the operations that they add to AL.  The most common extensions for 

complex concept definition are listed in Table 3 along with their identifying letter 

designations.  These extending operations can be informally described as follows: 

• Unions (C ⊔ D) are used to describe all individuals to which either operand 
concepts apply. 

• Full existential quantification (∃r.C) extends limited existential qualification 
of AL to describe individuals participating in the specified role with the 
second participant restricted to individuals described by a specific concept. 

• Unqualified cardinality restrictions (≥n.r and ≤n.r) describe all individuals that 
participate in at least (or at most) role relationships of the specific type (e.g., 
“≤5.commands” describes individuals participating in five or fewer 
“commands” relationships) without placing any restrictions on the role’s other 
participating individuals. 

• Qualified cardinality restrictions (≥n.r.C and ≤n.r.C) are similar to unqualified 
cardinality restrictions except they only restrict the numbers for role 
participants of the specified concept (e.g., “≤5.commands.Squadron” 
describes individuals participating in five or fewer “commands” relationships 
with individuals to which the “Squadron” concept applies). 

• Negation of arbitrary concepts (¬C) extends AL’s atomic negation beyond 
atomic concepts by allowing the negation of arbitrary concepts. 

• Nominals provide a mechanism for defining enumerated concepts in a 
shorthand fashion (e.g., “AirWing ≡ { SH-60R } ∪ { MH-60F } ∪ { EA-6B } 
∪ { E-2C } ∪ { C-2A } ∪ { FA-18C } ∪ { FA-18E } ∪ { FA-18F }” defines 
the “AirWing” concept as consisting of the eight enumerated individuals). 

In addition to extensions for more robust concept description, AL-family 

languages can include extensions for complex role definition as well.  Many of the 

operations previously defined for concepts can also be applied to roles—intersection, 

union, and negation, for instance—and the role operators of Table 4 are also included in 

many AL-family languages (the disjoint operator can be applied to concepts as well).  

The role operations of Table 4 can be informally described as follows: 

• Role inversion (r -) describes the reflection of the role to which it is applied 
(i.e., if r(a, b) then r -(b, a) ). 

• Role composition (r ∘ s) describes all individuals, a and c, where there exists 
an individual, b, that links the individuals a and c through roles, r and s (i.e., 
r(a, b) and s(b, c) hold for some individual, b). 
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• Role disjointedness (disjoint(r, s)) describes two roles as being mutually 
exclusive (i.e., if the first role holds for two individuals then the second role 
cannot hold for those same individuals). 

 

Operator Description Designation 

C ⊔ D Union U 

∃r.C Full existential quantification E 

≥n.r and ≤n.r Unqualified cardinality restrictions N 

≥n.r.C and ≤n.r.C Qualified cardinality restrictions Q 

¬(C) Negation of arbitrary concepts (complement) C 

Nominals Enumerated concepts O 

Table 3. Common AL extending operations for defining complex concepts 
 

Role Operator Description Definition Designation 

r - Role inverse { (a, b) | r (b, a) } I 

r ∘ s 
Role 

composition 
{ (a, c) | ∃j.( r(a, b) ⋀ s(b, c) ) } R 

disjoint( r, s ) Disjointedness 
( r(a, b) → ¬s(a, b) ) ⋀                     

( s(a, b) → ¬r(a, b) ) 
R 

Table 4. Common AL extending operations for defining complex roles 
 

The role operations of Table 4 are particularly significant extensions because they 

allow the definition of a number of important complex roles.  Equations 1 through 5 are 

templates for the respective definition of symmetric, asymmetric, transitive, reflexive, 

and areflexive roles. 

 

 r ≡ r -                              (Eq. 1) 

 disjoint(r, r -)                               (Eq. 2) 

 r ∘ r ⊑ r                (Eq. 3) 

 ⊤ ⊑ r.Self                (Eq. 4) 

 ⊤ ⊑ ¬r.Self                (Eq. 5) 
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A specific AL-family DL is specified by the letter(s) associated with the 

extension(s) that it includes.  For example, ALIEN is the AL extended to allow role 

inverses, full existential quantification, and unqualified cardinality restrictions. 

By convention, the ALC language also includes union, full existential 

qualification, and a few other capabilities that will be discussed later in this report 

(Schmidt-Schaub and Smolka, 91).  This language is among the more useful DLs and 

serves as the basis for what are termed expressive DLs.  Because they are among the 

more useful (and most commonly used) DLs, the DL naming convention uses the 

shorthand, S, to denote ALC languages (Rudolph, 11). 

There are a number of additional extensions that are utilized by typical Semantic 

Web applications that will not be specifically discussed here (Krötzsch, et al., 12).  In 

most cases, they add expressive power to the DL but do not fundamentally change the 

knowledge representation or inferencing paradigms. 

 

B. DESCRIPTION LOGIC AXIOMS 
1. Terminological and Role Axioms 

The TBox, denoted in equations as T, is used to define properties and definitions 

for concepts that will be applied to one or more domains of interest.  The TBox defines 

the relationships and terminology for the concepts and roles as a set of axioms.  There are 

two primary types of TBox relationships:  inclusion and equivalence.  Role and concept 

inclusion is mathematically defined using Equations 6 and 7, respectively, while role and 

concept equivalence is defined by Equations 8 and 9, respectively. 

  

 C ⊑ D → (C(a) → D(a))                          (Eq. 6) 

 r ⊑ s → (r(a, b) → s( a, b ))                                (Eq. 7) 

 C ≡ D → ((C(a) → D(a)) ⋀ (C(a) → D(a)))              (Eq. 8) 

                r ≡ s → ((r(a, b) → s(a, b)) ⋀ (s(a, b) → r(a, b)))             (Eq. 9) 

 

Axioms declaring equivalences between atomic concepts or roles and other 

concepts or roles are called definitions.  In the simple example of the Figure 2, an 
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equivalence relationship between the concept “Helicopter” and the complex concept of 

an “Aircraft” that is not “FixedWing” is explicitly defined.  “FixedWing”, on the other 

hand, is described as being included in the concept “Aircraft”, but any equivalences must 

be obtained through reasoning.  By these definitions, one can infer that any individual 

that is an “Aircraft” must also be a “Helicopter” or a “FixedWing” (but not both).  

“NavalUnit”, “AircraftCarrier”, “SurfaceUnit”, and “AirCapable” are similarly defined.  

If all definitions are acyclic, that is, it is not possible for a concept on the left hand side to 

use itself in its own definition, then definitions can be expanded so that only atomic 

concepts and roles appear on the right hand side (e.g., “AircraftCarrier ≡ (Ship ⊔ 

Submarine) ⊓ ∃operatedBy.Military ⊓ ∃operates.FixedWing”).  An acyclic TBox is said 

to be definitorial, because if we know what each base symbol is (i.e., those on the right 

sides of the expanded definitions) then the meaning of the name symbols (i.e., those on 

the left sides) is completely determined (Baader, et al., 07). 

 

 
Figure 2. TBox axioms describing naval force relationships 

 

FixedWing ⊑ Aircraft 
Helicopter ≡ Aircraft ⊓ ¬FixedWing 
NavalUnit ≡ (Ship ⊔ Submarine) ⊓ ∃operatedBy.Military 
AircraftCarrier ≡ NavalUnit ⊓ ∃operates.FixedWing 
SurfaceUnit ≡ NavalUnit ⊓ ¬AircraftCarrier 
AirCapable ≡ SurfaceUnit ⊓ ∃operates.Aircraft 
operatedBy ≡ operates- 
disjoint(operates, operatedBy) 

⊤ ⊑ operates.Self 
⊤ ⊑ commands.Self 
commands ∘ commands ⊑ commands 
disjoint(commands, commands-) 
commandedBy ≡ commands-  

supports ∘ supports ⊑ supports 
supports ∘ commandedBy ⊑ supports 
disjoint(∃operatedBy.Military, ∃operatedBy.Civilian)  
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The axioms of Figure 2 also include a number of complex role definitions 

describing some simple command relationship semantics.  The roles “operates” and 

“commands” are defined to be reflexive (all individuals command and operate 

themselves).  The “commands” role is also defined to be transitive (if an individual, a, 

commands an individual, b, then individual a also commands any individuals that 

individual b commands), and asymmetric (two individuals cannot command one 

another); and the roles “operatedBy” and “commandedBy” are defined as the inverses of 

the “operates” and “commands” roles, respectively, which implicitly confers the 

transitive and disjointedness properties associated with the “commands” role onto the 

“commandedBy” role.  The role “supports” is defined to be transitive as well, and the 

composition of the roles “supports” and “commandedBy” is included in the role 

“supports” (i.e., if an individual, a, supports an individual, b, and individual b is 

commanded by an individual, c, then individual a also supports individual c).  Finally, a 

“disjoint” axiom is included stating that an individual cannot be operated by both 

“Military” and “Civilian”. 

2. Interpretations 
Interpretations are the mathematical mechanism through which DLs are utilized, 

so it is important to understand the concept of interpretations in order to understand what 

can be inferred from a set of ABox axioms.  An interpretation is a mapping between a DL 

description and a specific domain of interest.  The domain of interest is simply the set of 

all individual entities with which we are concerned. 

An interpretation, I, formally consists of a domain of interpretation, ΔI, and an 

interpretation function.  The domain of interpretation is the set of individuals to which the 

DL description is being applied, and the interpretation function assigns a set   CI ⊆ ΔI to 

every atomic concept C, and a set rI ⊆ ΔI x ΔI to every atomic role r (Baader, et al., 07).  

Within any particular interpretation, then, each atomic concept will consist of a subset of 

members of the interpretation’s domain, while each atomic role will consist of a subset of 

the cross product of the domain of interest with itself.  The inductive definitions of Figure 

3 are used to intuitively map individuals to the complex concepts and roles defined in the 

TBox. 
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Based on this definition, an interpretation represents a full understanding of a 

domain of interest in the context of a set of TBox rules.  This is the case because the 

domain of interest is fully defined by ΔI, and the interpretation function represents a 

complete mapping of TBox concepts to the domain of interest (i.e., every individual in 

the domain of interest to which an atomic TBox concept or role applies is accounted for 

in the function).  This does not mean that an interpretation represents ground truth, as a 

potentially infinite number of interpretations can be applied to a single TBox.  An 

interpretation does not even have to be plausible (i.e., it can contain contradictions).  In 

fact, assessing interpretation plausibility is a foundational DL inferencing problem that 

has broad applicability. 

 

 
Figure 3. Inductive rules for mapping an interpretation to a TBox 

 

⊤I = ΔI 

⊥I = ∅ 
(¬A)I = ΔI \ AI 

(¬r)I = ΔI x ΔI \ rI  

(C ⊓ D)I = CI ∩ DI 

(C ⊔ D)I = CI ∪ DI 

(∀r.C)I = { a ∈ ΔI | ∀b.(a, b) ∈ rI → b ∈ CI } 

(∃r.⊤)I = { a ∈ ΔI | ∃b.(a, b) ∈ rI } 

(∃r.C)I = { a ∈ ΔI | ∃b.(a, b) ∈ rI ∧ b ∈ CI } 

(≥n.r)I = { a ∈ ΔI | |{ b | (a, b) ∈ rI }| ≥ n } 

(≤n.r)I = { a ∈ ΔI | |{ b | (a, b) ∈ rI }| ≤ n } 

disjoint(C, D) = (a ∈ CI → a ∉ DI) ⋀ (a ∈ DI → a ∉ CI) 

(r-) I = { (a, b) ∈ ΔI x ΔI | rI(b, a) } 

(r ∘ s) I = { (a, c) ∈ ΔI x ΔI | ∃j.(rI(a, b) ⋀ sI(b, c)) } 

disjoint(r, s)I = ((a, b) ∈ rI → (a, b) ∉ sI)) ⋀      
((a, b) ∈ sI → (a, b) ∉ rI)) 
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3. Assertional Axioms 

An ABox, denoted in equations as A, describes what is known about the state of 

the world by making assertions about individual named entities.  Assertions can be either 

concept assertions or role assertions and can utilize any operators allowed by the specific 

DL.  A concept assertion typically assigns a named entity to a concept, while a role 

assertion establishes a role relationship between two named entities.  In the example of 

Figure 4, a number of assertions are made including ones applying the concept “Ship” to 

“Nimitz”, “Princeton”, and “Minnow” and the role “operatedBy” to pairs “(Nimitz, 

Military)” and “(Princeton, Military)”. 

 

 
Figure 4. ABox axioms for use with the TBox of Figure 3 

 

We can use this ABox information to further develop and test interpretations 

where the domain of interest is made up of named entities from the ABox.  For an 

example, an interpretation satisfies a concept assertion, C(a), if and only if aI ∈ CI.  That 

is, if the interpretation applies the concept C to every element in ΔI corresponding to an 

individual for which an ABox asserts or implies C(a), then the interpretation satisfies the 

concept (satisfaction of role concepts works similarly).  An interpretation satisfies the 

Military(CSG-3) 
Ship( Nimitz ) 
Ship( Princeton ) 
Ship( Minnow ) 
Submarine( Virginia ) 
Aircraft( MH-60S ) 
FixedWing( FA-18F ) 
operatedBy( Nimitz, CSG-3 ) 
operatedBy( Princeton, CSG-3 ) 
operates( Nimitz, FA-18F ) 
operates( Nimitz, MH-60S ) 
operates( Princeton, MH-60S ) 
commands( CSG-3, Nimitz ) 
commands( Nimitz, Princeton ) 
supports( Virginia, Nimitz ) 
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ABox if it satisfies all of the concepts and roles contained in the ABox.  If the 

interpretation also satisfies the TBox then it amounts to a reasonable abstract view of the 

domain and is said to be a model for the ABox and TBox (Baader, et al., 07). 

It is appropriate at this juncture to bring up two additional points.  First, it is 

possible for the ABox and TBox to conflict.  For instance, an ABox assertion 

“SurfaceUnit(Nimitz)” would conflict with the TBox definition of the “SurfaceUnit” 

concept.  Second, multiple interpretations might qualify as models for the same 

ABox/TBox pair, and these interpretations may conflict with one another.  DLs describe 

only what is known, so anything missing is simply unknown and can be interpreted 

multiple ways.  In the example, an interpretation that includes the axiom             

“Minnow ⊑  ∃operatedBy.Civilian” satisfies the ABox, but one that includes a   

“Minnow ⊑  ∃operatedBy.Military” axiom also satisfies the ABox.  An interpretation 

including both axioms, however, does not satisfy the TBox because the 

“∃operatedBy.Civilian” and “∃operatedBy.Military” concepts are disjoint.  This is an 

example of open-world semantics (Baader, et al., 07).   Traditional databases, on the 

other hand, typically use closed-world semantics, meaning that any missing information 

is assumed to be false.  The use of open-world semantics is an important aspect of DL 

reasoning and its relevance to Semantic Web technologies will be made apparent later in 

Chapter IV. 

 

C. BASIC DESCRIPTION LOGIC REASONING 
The fundamental TBox reasoning tasks are satisfiability, subsumption, 

equivalence, disjointness, and classification.  Relying on the TBox mechanics described 

in the previous section, the notions of satisfiability, subsumption, equivalence, and 

disjointness can be described intuitively.  A concept is satisfiable if there exists at least 

one model interpretation with at least one entity to which the concept applies.  By 

extension, the entire TBox is satisfiable if a model interpretation exists in which every 

concept applies to at least one individual.  One concept subsumes another concept if the 

set of individuals to which subsumed concept applies is a subset of the set of individuals 

to which the subsuming concept applies for every model interpretation.  Two concepts 

are equivalent if the sets of individuals to which they apply are the same for every model 
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interpretation.  Finally, two concepts are disjoint if for every model interpretation, the 

intersection of the sets to which both concepts apply is empty.  Notice that the 

requirements for satisfiability are met by the existence of a single model interpretation, 

while subsumption, equivalence, and disjointness require that the requirements be met by 

every model interpretation.  Satisfiability, subsumption, equivalence, and disjointness can 

be more formally defined as follows: 

• Concept C is satisfiable if and only if there exists a model, I, for T for which 
CI is non-empty. 

• Concept C is subsumed by concept D (written as C ⊑
T
 D or T ⊨ C ⊆ D) if 

and only if CI ⊆ DI for every model interpretation, I, of T. 

• Concept C is equivalent to concept D (written as C ≡
T
 D or T ⊨ C ≡ D) if and 

only if CI = DI for every model interpretation, I, of T. 

• Concepts C and D are disjoint if and only if CI ∩ DI = ∅ for every model 
interpretation, I, of T. 

The final standard TBox reasoning task is classification, which determines the 

subsumption hierarchy of all contained concepts.  This can be a computationally complex 

operation (consisting of n2 subsumption checks for a TBox containing n defined 

concepts); however, it can be computed off-line with the results stored for later use.  

TBox classification is particularly useful for ontology design and visualization and is also 

the basis for many optimizations for other types of reasoning (Rudolph, 11). 

Any of the standard TBox reasoning tasks can be accomplished through either 

subsumption or satisfiability (Horrocks and Patel-Schneider, 08): 

• Concept C is satisfiable if and only if C ⋢
T
 ⊥. 

• C ≡
T
 D if and only if C ⊑

T
 D and D ⊑

T
 C. 

• C and D are disjoint if and only if (C ∩ D) ⊑
T ⊥. 

• C ⊑
T
 D if and only if (C ⊓ ¬D) is unsatisfiable. 

• C ≡
T
 D if and only if (C ⊓ ¬D) and (D ⊓ ¬C) are both unsatisfiable. 

• C and D are disjoint if and only if (C ⊓ D) is unsatisfiable. 
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This observation implies that if either satisfiability or subsumption is a decidable 

computational problem, then the entire set of TBox reasoning tasks are decidable.  The 

ability to use satisfiability as the basis for reasoning about the TBox is particularly 

noteworthy, because it is the basis for most implemented reasoning systems. 

The most fundamental form of ABox reasoning is consistency checking.  In lay 

terms, consistency simply means that the ABox is reasonable and does not contain any 

contradictions either inherently (e.g., asserting both C(a) and ¬C(a) ) or with the 

definitions of the TBox.  ABox consistency is proven by the existence of an interpretation 

that is a model for both the ABox and TBox.  As discussed previously, an acyclic TBox 

can be expanded so that all definition right hand sides contain only primitives.  We can 

use the definitions from this expanded TBox to generate an expanded ABox that contains 

only atomic concepts.  Taking this approach, consistency checking of the ABox is 

reduced to checking for inconsistencies in the expanded ABox (Baader, et al., 07).  

TBoxes with cycles cannot be expanded this way, so this method cannot be used with 

cyclic TBoxes.  Additionally, generating the expanded TBox can be computationally 

expensive making other approaches attractive even for some acyclic TBoxes. 

Possibly the most common ABox reasoning task is instance checking (or 

entailment), which is used to determine whether or not a specific assertion (concept or 

role) is satisfied by every model interpretation.  Additional reasoning tasks include 

retrieval, which identifies all individuals to which a concept applies; and realization, 

which is used to find the most specific concept of a set of concepts (i.e., most subsumed) 

that applies to an individual.  Consistency, entailment, retrieval, and realization can be 

more formally defined as follows: 

• A is consistent with T if and only if there exists a model interpretation, I, that 
satisfies both A and T. 

• A entails an assertion α (written as A ⊨ α) if and only if every model 
interpretation, I, satisfies assertion α. 

• Retrieval of concept C individuals returns the set of all individuals, a, where 
A ⊨ C(a) (i.e., all individuals, a, entailed by the concept C) . 
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• Given an individual, a, in A and a set of concepts, S, what is the most specific 
concept, C ∈ S, such that A ⊨ C(a) (i.e., the concept in S that most narrowly 
describes the individual, a, in all modeling interpretations). 

Just as all standard TBox reasoning discussed thusfar can be accomplished solely 

through reasoning about subsumption or satisfiability, all of the standard ABox reasoning 

tasks described above can be reduced to consistency checking as follows: 

• A ⊨ α if and only if A ∪ {¬C(a) } is inconsistent. 

• A naïve approach to retrieval (which can be optimized) tests every individual 
in A for entailment. 

• Realization is essentially a subsumption problem.  If a subsumption hierarchy 
has been obtained through TBox classification, realization amounts to finding 
the most specific concept that entails the individual. 

The fact that ABox reasoning can so frequently be reduced to consistency 

checking is important, and it facilitates the development of versatile algorithms that can 

be applied to numerous problems.  Algorithms often fall into one of three categories:  

structural subsumption, tableau algorithms, or reduction to known First-Order logic 

problems.  Simpler DLs can often use structural subsumption algorithms (Küsters and 

Molitor, 05).  Tableau Algorithms are more broadly applicable to more expressive DLs 

and are used in a number of Semantic Web reasoners (Baader and Sattler, 01).  

Additional approaches that have proven applicable to working with propositional and 

first-order logics have proven useful, as well, when DL inferencing can be reduced to 

known problems from other areas of artificial intelligence and knowledge management 

(Rudolph, 11). 

 

D. EXPRESSIVE DESCRIPTION LOGICS AND DESCRIPTION LOGIC 
EXTENSIONS 
1. Expressive Description Logics 
DLs that allow complex role definitions are considered expressive DLs.  These 

languages can include all of the concept operations of the AL-family languages (and 

must include all of those of AL), but provide additional extensions for defining 

relationships and rules for roles (Baader, et al., 07).  Thus, any language that utilizes an 
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RBox (even if it is implemented as part of the TBox) is considered an expressive DL.  

Expressive DLs are almost exclusively extensions of ALC (or S, for short), which by 

convention extend AL with arbitrary concept negation, union, and full existential 

quantification (Ortiz, 10). 

Many of today’s commonly used expressive DLs are sublanguages of the 

SROIQ language (Rudolph, 11).  Most importantly, this language is the basis for OWL, 

the W3C-approved standard for developing Semantic Web Ontologies, which will be 

discussed later in this work. 

As with other DLs of the AL family, the available operations are conveyed by the 

letters in the title.  In this case, ‘S’ means that it is an extension of ALC.  ‘R’ provides 

for limited complex role inclusion, meaning that roles can be composed for inclusion in 

other roles.  Specific restrictions to complex role definition are required to ensure 

decidability of reasoning problems.  The nature of these restrictions will be discussed 

shortly.  Also included in the ‘R’ designation is the ability to define reflexive and disjoint 

roles.  Of the remaining letters, ‘O’ means that nominals are allowed for the definition of 

enumerated concepts, ‘I’ provides for role inverses, and ‘Q’ means that the language 

supports qualified (and unqualified) cardinality restrictions. 

SROIQ is a powerful DL, but the expressive power greatly complicates 

reasoning.  Even with a simple DL such as AL, however, many reasoning tasks have 

been shown to be EXPTIME-hard (Baader, et al., 07).  Unrestricted role composition 

leads to undecidability for many of these tasks (Rudolph, 11).  Strict partial ordering of 

non-simple roles ensures decidability of reasoning problems with the SROIQ DL and 

ensures that the reasoning process will terminate.  A non-simple role, as formally defined 

in Figure 5, is one that includes a rule composition, another non-simple role, or is the 

inverse of a non-simple role. 

To determine whether or not a KB complies with strict partial ordering, all simple 

roles must first be ordered so that if an atomic role is ordered below another atomic role, 

then so is its inverse.  Based on this atomic role ordering, the compliance of a KB with 

 19 



strict partial ordering of complex roles requires each role inclusion axiom for non-simple 

roles to comply with one of the five forms described in Figure 5 (Horrocks, et al., 06). 

2. Description Logic Extensions 
DLs discussed thus far are highly expressive, but their ability to express certain 

types of knowledge is limited.  Specifically, only knowledge that is time-independent, 

objective, and certain can be expressed with standard AL-family DLs (Baader, et al., 

07).  It is possible, however, to implement extensions that can convey this sort of 

information without compromising decidability.  Two potential categories of extensions 

are those providing mechanisms for the description of concrete domains and uncertainty. 

 
Figure 5. Required complex SROIQ role restrictions for reasoning decidability 

 

Concrete domains provide a means of bounding data.  The most obvious concrete 

domains are numerical, but they can also be used to capture any bounded data for which 

relationships can be defined.  Allen’s Temporal Calculus for expressing temporal 

relationships (Allen, 83) and Regional Connection Calculus for expressing spatial 

relationships (Randell, et al., 92 and Bennett, 97) are two notable examples.  Concrete 

domains can be expressed extending the DL to include the following existential predicate 

Non-Simple Roles 
Role r is non-simple if 
• r1 ∘ … ∘ rn ⊑ r (if n > 1) or 
• s ⊑ r and s is non-simple or 
• r - is non-simple 
No other roles are non-simple 

Strict Partial Ordering 
For all named roles s and r 
• s ≺ r if and only if s - ≺ r and  
• All role inclusions are of one of 

the following forms: 
o r ∘ r ⊑ r 
o r - ⊑ r 
o s1 ∘ … ∘ sn ⊑ r 
o r ∘ s1 ∘ … ∘ sn ⊑ r 
o s1 ∘ … ∘ sn ∘ r  ⊑ r 
where r is a non-inverse role 
name and si ≺ r whenever is si 
non-simple 

 

Role Restrictions in SROIQ 
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restriction:  ∃(r1,…, rn).P.  In this definition, P is a range-restricting predicate and r1 

through rn is a chain of functional roles to which the restricting predicate is applied in 

order.  For instance, the declaration “AirContact ⊓ ∃(inArea.Restricted, 

isActive.Radar).overlapsWith” uses a predicate taken from Allen’s Interval Calculus to 

describe “AirContacts” that were found in a restricted area while emitting radar. 

Uncertainty, that is information that may or may not be true, is another concept 

that is not representable using typical DL operations.  Extensions have been proposed for 

expressive DLs that provide for the expression of role and concept uncertainty using 

probabilistic, fuzzy, and probabilistic knowledge. 

Probabilistic information is expressed through the addition of TBox rules for 

conditional probabilities of the form “P(C|D) = p” and ABox assertions of the form 

“P(C(a)) = p” and “P(r(a, b)) = p”.  Reasoning with probabilistic knowledge bases 

involves finding upper and lower probability bounds for each concept, which amounts to 

an optimization problem that can be solved with linear regression (Baader, et al., 07) or 

other techniques.  Fuzzy information describes the degree to which concepts and roles 

hold.  This requires redefining the typical Boolean operators from the set { 0, 1 } to the 

range [ 0, 1 ] and redefining the DL operators accordingly (e.g., conjunction is minimum, 

disjunction is maximum, etc.) (Straccia, 01).  Possibilistic DLs can be considered as 

falling between probabilistic and fuzzy approaches in that they are used to model 

uncertainty but use fuzzy set semantics (Baader, et al., 07).  A number of inductive 

reasoning techniques that will be discussed, in Chapter V, can also be used to effectively 

model uncertainty within a KB. 

A few additional extensions are worth mentioning briefly as well.  Modal logic 

provides for the specification of dynamic information such as belief, obligation, and other 

types of information that can change over time.  Temporal extensions are a special type 

of modal logic for capturing timing.  Finally, default values provide for the specification 

of non-monotonic knowledge; that is, concepts and implications that are usually true, but 

can be false in some cases (Baader, et al., 07).  Many of these extensions can also be 

captured by inductive reasoning algorithms to be discussed in Chapter V. 
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3. Trigger Rules 
A number of DL systems provide for the definition of inductive rules that can be 

used to extend KB.  These rules are implemented as trigger rules expressed as FOL 

implications of the form C → D.  Trigger rules are typically expressed as Horn clauses, 

which restrict the form of the consequent of the implication (D) to an atomic role or 

concept.  The antecedent of a trigger rule (C), on the other hand, can be comprised of an 

arbitrary number of disjunctive (possibly complex) concepts and roles.  A trigger rule 

expresses the notion that a specific conclusion can be asserted if certain facts are known.  

Thus, the statement C → D is saying that if the ABox contains assertions to support the 

application of the concept, C for an individual, a (i.e., the ABox entails C(a)), then the 

concept D also applies to that individual.  This provides a powerful  mechanism for 

inductively extending a knowledge base. 

Rules can be used to extend a knowledge base using the following inferencing 

algorithm which amounts to a three-state finite automaton: 

• Match rules—find all rules with left hand sides satisfied by contents of the 
ABox for which no assertion for the right hand side exists 

• Select rules—determine which rules to fire in a particular iteration of the 
algorithm. 

• Make assertions—for the selected rules, add an appropriate assertion matching 
the rule’s right hand side. 

This algorithm can be repeated until the first step returns no results.  The 

algorithm is guaranteed to complete because both the ABox and rule set are finite.  

Further, the results are deterministic regardless of the order of rule application.  Upon 

completion of the algorithm, the resultant knowledge base is referred to as the procedural 

extension of the original knowledge base. (Baader, et al., 07) 

Because of the open-world semantics of DLs, there is a subtle, but important issue 

regarding the implementation of DL trigger rules.  In FOL, an implication is equivalent to 

its contrapositive (i.e., A → B ≡ ¬B → ¬A).  This equivalence holds with open-world DL 

semantics, however we cannot assume ¬B to be true based on the absence of a positive 

assertion of B.  Therefore, we cannot conclude ¬A unless ¬B is entailed by the database.  

For this reason, trigger rules cannot be implemented as inclusions in the TBox (e.g., 
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Submarine ⊑ Military) although this might seem an intuitive implementation.  From a 

mathematical standpoint, trigger rules can be implemented by extending the DL with an 

epistemic concept operator as described in (Baader, et al., 07).  In practice, rule bases are 

typically implemented as an adjunct to the DL, so the intensional portion of KB is not 

directly impacted (Sing and Karwayun, 10). 
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III. SEMANTIC WEB IMPLEMENTATION 

A. METADATA 
1. Overview 
The explosion of web-accessible data has already been noted as a primary 

motivator for the development of Semantic Web technologies.  To paraphrase an early 

description of Semantic Web potential, goals of these technologies include bringing 

mathematically rigorous structure to previously disorganized data; providing unified 

access to distributed, heterogeneous data stores and services; facilitating seamless 

runtime interoperability between applications; and ultimately, improving the efficiency 

and productivity of human-computer interaction (Berners-Lee, et al., 01). 

Mathematically rigorous web data organization fosters information discovery and 

use, effectively making it possible for web-based agents to eliminate meaningless and 

irrelevant data in favor of more meaningful and important data.  Unified access requires 

that information be accessible to disparate applications that are not aware of its existence, 

much less its structure and format and semantics until runtime.  Essentially, a lingua 

franca of sorts for web applications will be necessary for applications to process and 

interpret data so that services and applications can operate together effectively.  In the 

end, Semantic Web technologies will allow applications to process more information 

without a human in the loop so that the human-computer interactive experience is more 

efficient and productive. 

These overarching goals have a number of implications for Semantic Web 

content.  First, Semantic Web content should be able to be understood by humans and 

automatically processed by machines.  Both of these goals are directly supported by self-

describing data—that is, data combined with meta-data describing what the data is, what 

units and formats are used, and the relationships between various data items.  All of these 

goals rely on standards that provide a well-defined vocabulary for creating metadata 

descriptions.  In practice, metadata frameworks for Semantic Web technologies allow for 

abstraction of content semantics from syntax and structure.  This allows applications to 

meaningfully process information without regard for storage, implementation, or display 

details.  (Kashyap, et al., 08) 
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Metadata is the fundamental underpinning of Semantic Web technologies—so 

much so that Semantic Web content can accurately be described as the data itself 

combined with the associated metadata.  Metadata can be divided into two primary 

categories:  content-independent metadata and content-based metadata.  Content-based 

metadata is typically categorized as either structural metadata or domain-specific 

metadata. 

Content-independent metadata is information about data that does not describe the 

data itself.  Examples might include a contact report number, a data store location (URI), 

or an intelligence summary author identifier.  This sort of metadata does not say anything 

about the actual data but can be useful in organizing, locating, and classifying data. 

Content-based metadata, on the other hand, describes some aspect of the actual 

data.  Structural metadata includes all content-based metadata that describes how the data 

is stored and organized.  Metadata of this type can be as simple as the size of a data 

record or file, but a more useful example might be metadata that describes the sections of 

an operation order to which portions of a data record apply.  Data of this sort is largely 

independent of the domain of the data itself.  Rather, it describes how the data record is 

arranged so that the various pieces can be parsed and applied to specific domains of 

interest. 

Domain-specific metadata, on the other hand, describes data in the context of a 

particular domain of interest.  Terminology and vocabulary are key aspects of this type of 

metadata, as it is this metadata that enables applications to actually locate and interpret 

relevant data.  Domain-specific metadata can be further subcategorized into two further 

sub-categories:  Intra-domain-specific metadata and inter-domain-specific metadata. 

Intra-domain-specific metadata captures relationships  and associations between 

data in a single domain.  As an example, consider an air contact report for a specific type 

of aircraft.  Intra-domain-specific metadata in the threat data domain might be used to 

categorize the contact according to the types of ordnance that it carries, missions that it 

executes, and the countries from which it operates. 

Inter-domain-specific metadata, on the other hand, captures relationships between 

data across two or more domains.  Continuing with the air contact report example, inter-

domain-specific metadata might be useful in correlating this particular contact with 
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intelligence assessments (i.e., inter-domain-specific metadata describing associations 

between the threat data domain and the intelligence domain to provide additional context 

between the contact report and the current operation). 

2. Metadata Frameworks 
A metadata framework is a formal mechanism for creating metadata; associating 

it with actual data; and manipulating, processing, and querying it (Kashyap, et al., 08).  In 

order to be useful, a metadata framework has a number of fairly well-vetted components:  

data model, semantics, serialization, and query language. 

The data model defines a collection of datatypes suitable for composing abstract 

views of web content.  Available datatypes might include strings, integers, single- and 

double-precision floating point numbers, URLs, and hyperlinks.  In addition to atomic 

datatypes, data models typically provide rules and mechanisms for defining complex data 

types or restrictions on existing data types.  For instance, the atomic integer type might be 

restricted to non-negative values to represent a count, or multiple atomic types might be 

combined to represent a geographic location (this would require range restrictions on the 

atomic data types as well). 

A metadata framework’s semantics provide the mathematical foundation for 

interpreting metadata.  Semantics for a metadata framework are typically described in 

terms of model-theoretic semantics (Marker, 07).  Because DLs form the basis of many 

metadata frameworks, the semantics of the frameworks are captured by the rules of the 

underlying DL. 

A serialization format provides a formal specification for how the metadata is 

encoded.  The most common serialization format for metadata frameworks is the 

eXtensible Markup Language (XML), but this is by convention, not necessity (XML is 

designed to be human understandable and machine processable, so it aligns well with 

Semantic Web goals). 

Finally, one or more query languages are usually available so that users (including 

applications) can process metadata.  The query language is the mechanism by which 

specific data is located within a document or data source. 

XML and the RDF have become well-established as the preeminent metadata 

frameworks for the Semantic Web (Berners-Lee, et al., 01). 
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a. Extensible Markup Language 
XML (Bray, et al., 08) stores both data and content-based metadata in a 

tree structure.  Each node in the tree is a named element that can have named attributes 

and child elements.  In addition, namespaces are frequently used to identify the 

vocabulary from which element and attribute names are drawn. 

The inclusion of metadata in the form of named elements, named 

attributes, and namespaces make XML documents self-describing to a point.  The 

structural requirements of the document and the actual nature of the relationships implied 

by the tree structure are not explicitly contained in the document, however. 

XML Schema (XML(S)) (Gao, et al., 12 and Peterson, et al., 12) provides 

a limited mechanism for conveying semantics of compliant XML documents.  The 

schema for an XML document defines its vocabulary and structure, and to a degree the 

relationships between elements.  The types of relationships and properties that can be 

implicitly conveyed by an XML schema are primarily limited to the “part of” relationship 

implied by the tree structure, the “refers to” relationship of the ID/IDREF construct, the 

“has characteristic of” property conveyed by attributes, and the semantics inherent in the 

vocabulary defined by a particular schema. 

Query capability is provided by XQuery (Boag, et al., 10) and XPath 

(Clark and DeRose, 99) as described in (Deutsch, et al., 99). 

The example XML document of Figure 6 provides a simplified contact 

report description.  The tree structure of the document is implied by the nesting of the 

individual elements.  All element and attribute names are in the “gccs” namespace, which 

in combination with the governing schema (not indicated in the figure) define the domain 

and vocabulary.  This particular report includes information about the report in the 

“gccs:ReportInfo” element.  The element’s structure makes it clear that the report 

information includes the unit making the report, the sensor source for the report, and the 

date and time of the report (using the “gccs:dtg” attribute).  The portion of the document 

relating to the contact itself is similarly encoded in the “gccs:ContactInfo” element. 
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Figure 6. Example XML document representing an air contact report 

 

The tree data structure of XML documents has a significant limitation in 

defining non-taxonomical relationships.  The example of the Figures 7 and 8 defines 

responsibilities for a single operation, represented by the XML-tree’s “opord:Operation” 

root element.  The name and commander of the operation are represented using the 

“opord:ID” and “opord:opcon” elements, respectively, while the elements of the 

operation are encoded within the “opord:Tasks” element as “opord:Task” children.  The 

subordinate units that will be assigned specific tasks are depicted under the 

“opord:Assigned” element as “opord:TaskUnit” elements, while the units that will be 

supporting the operation are included in the “opord:Supporting” element. 

The limitation of the tree data structure and the workaround mechanism 

become evident as individual units are assigned tasks.  Specifically, the 

“opord:assignedTo” and “opord:supporting” attributes of the “opord:TaskUnit” and 

“opord:SupportingUnit” elements indicate the relevant task and unit in a human-

understandable way, but given no other information there is no way to definitively 

associate the relevant element in a machine-processable way.  XML provides the ID and 

<?xml version="1.0" encoding="UTF-8" ?> 
<gccs:Contact gccs:ID=“1234”> 
   <gccs:ReportInfo gccs:dtg=“031345ZFEB13”> 
      <gccs:Unit>DDG-70<gccs:Unit> 
      <gccs:Source>AN/SPY-1D<gccs:Source> 
   </gccs:ReportInfo> 
   <gccs:ContactInfo> 
      <gccs:Location gccs:uncertainty=“1000m”> 
         <gccs:Latitude>39 52 21.3N</gccs:Latitude> 
         <gccs:Longitude>127 32 15.7E</gccs:Longitude> 
      </gccs:Location> 
      <gccs:AirContact> 
         <gccs:Altitude>15000</gccs:Altitude> 
         <gccs:Heading>210</gccs:Heading> 
         <gccs:Speed>350</gccs:Speed> 
      </gccs:AirContact> 
   </gccs:ContactInfo> 
</gccs:Contact> 
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IDREF datatypes to effectively extend the tree structure by which the data is encoded to a 

logical graph.  In the example, each “opord:Task”, “opord:TaskUnit”, and 

“opord:SupportingUnit” element is assigned a unique ID.  The “opord:assignedTo” and 

“opord:supporting” attributes use the IDREF datatype to reference the relevant element.  

In this way, complex relationships between the various elements can be captured in an 

unambiguous way. 

 

 
Figure 7. A simple XML-encoded task organization for a single operation 

 

Although XML has the capability of expressing significant semantics, 

particularly when the vocabulary and structure is governed by an XML schema, it is not 

without shortcomings.  Specifically, while it is possible to overcome the limitations of the 

tree structure of XML documents through the use of the ID and IDREF datatypes, this 

<?xml version="1.0" encoding="UTF-8" ?> 
<opord:Operation opord:opcon=“CTF1”>Op1</opord:Operation> 
   <opord:Tasks> 
      <opord:Task>Task1<opord:Task/> 
      <opord:Task>Task2<opord:Task/> 
   </opord:Tasks> 
   <opord:Assigned> 
      <opord:TaskUnit opord:ID=”TU1”  
                      opord:assignedTo=“Task1”/> 
      <opord:TaskUnit opord:ID=”TU2” 
                      opord:assignedTo=“Task2”> 
         <opord:Assigned> 
            <opord:TaskUnit opord:ID=”TU3” 
                            opord:assignedTo=“Task2”/> 
            <opord:TaskUnit opord:ID=”TU3” 
                            opord:assignedTo=“Task2”/> 
         </opord:Assigned> 
      </opord:TaskUnit> 
   </opord:Assigned> 
   <opord:Supporting> 
      <opord:SupportingUnit opord:ID=”SU1” 
                            opord:supporting=“TU4”/> 
   </opord:Supporting> 
</opord:Operation> 
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can quickly become cumbersome in practice.  Also, it is difficult or impossible to enforce 

relationships that might be obvious to humans.  For instance, in the example “TU4” is a 

subordinate of “TU2”, so “TU4” should be assigned only to tasks that have been assigned 

to “TU2”.  Unfortunately, there is no structural constraint that would prevent TU4’s 

assignment to a task associated with “TU1” or some other entity. 

 

 
Figure 8. Graphical depiction of the XML task organization of Figure 7 

 

Because of the issues noted (and others not discussed), XML on its own is 

not capable of expressing semantics with the mathematical rigor required of Semantic 

Web applications (Kashyap, et al., 08).  It does, however, provide an underlying encoding 

that can be used as the basis for more expressive frameworks (Berners-Lee, et al., 01). 

b. Resource Description Format 
Whereas XML encodes data in a tree structure, RDF utilizes a more 

generic graph structure.  Basic RDF components include resources, properties, and 

literals.  Resources are the things being described and are referred to in RDF documents 

using a URI.  A resource might be an individual data record or item, a subsection of a 

data record, or a collection of records (additional possibilities also exist).  Properties are 
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specific aspects, characteristics, attributes or relationships that are used to describe 

resources.  Literals are simply names that are used in RDF statements. 

An RDF statement can be thought of as a triple of the form                        

< subject, predicate, object >, where “subject” is a resource, “predicate” is a property that 

is being ascribed to that resource, and “object” is the value that is being ascribed.  The 

object of a statement can be either a literal or another resource. Underlying encoding of 

RDF data can take a number of forms (the W3C recommendation calls for an XML 

encoding), but a triples-based approach will be used here. 

As an example consider the previous contact report XML example.  This 

example might be encoded as an RDF graph using the RDF triples of Figure 9 resulting 

in the RDF graph depicted in Figure 10 (note:  shorthand is used for the URIs for clarity).   

This RDF description uses resources for the ship, the sensor, the report, the contact info, 

and the position; properties for associating characteristics to these objects; and literals for 

the concrete names and values. 

The (RDF(S)) (Brickley and Guha, 04) provides facilities in the “rdf” and 

“rdfs” namespaces to formally define vocabularies, classes, and relationships between 

classes.  Graphs defined in a document governed by an RDF schema must comply with 

the rules and structure defined in the schema in the same way that an XML document 

governed by an XML schema must comply with its constraints. 

While both XML(S) and RDF(S) are used to constrain the content of 

governed documents,  XML(S), is limited in its ability to convey formal semantics.  

RDF(S), on the other hand, provides a vocabulary that is more suited to describing 

relationships.  In particular, RDF(S) enables the specification of subclass and subproperty 

relationships, property domains and ranges (subject class and object class, respectively), 

and other useful characteristics. 
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Figure 9. A simple contact report depicted as an RDF graph 

 

 
Figure 10. RDF triples corresponding to the contact report graph of Figure 9 

 

The diagram of Figure 11 represents an RDF(S) description of 

rudimentary aircraft and ordnance relationships.  In this diagram, “Aircraft” and 

< shipURL, navalUnit, DDG-70 > 
< sensorURL, sensorType, SPY-1D > 
< reportURL, report, 1234 > 
< reportURL, reportBy, shipURL > 
< reportURL, source, SPY-1D > 
< reportURL, airContact, contactURL > 
< contactURL, location, positionURL > 
< positionURL, latitude, “32 52 21.3N” > 
< positionURL, longitude, “127 32 15.7E” > 
< positionURL, uncertainty, 1000 > 
< contactURL, altitude, 15000 > 
< contactURL, heading, 210 > 
< contactURL, speed, 350 > 
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“Munition” are defined as subclasses of “rdfs:Class” from the RDF(S) specification.  

“Fighter” and “Attack” are subclasses of “Aircraft”, and “FighterAttack” is a subclass of 

both “Fighter” and “Attack”.  Similar subclasses are depicted for the “Munition” class.  

Properties, “Airspeed”, “AirOrdnance”, and “GrndOrdnance”, are defined as instances of 

the RDF(S) type “rdf:Property”.  The domain (“rfds:domain”) classes for each property 

are depicted with red arrows, and range classes (“rdfs:range”) are depicted with green 

arrows.  In the example, the range for the “Airspeed” property is specified as a double 

precision floating point number from the XML(S) namespace (“xsd”). 

 

 
Figure 11. An RDF(S) graph describing aircraft/ordnance relationships 

 

The SPARQL Query Language for RDF (Klyne and Carroll, 08) is the 

most commonly utilized mechanism for requesting information retrieval from RDF 

graphs.  SPARQL bears a superficial resemblance to Structured Query Language (SQL); 

however, SPARQL is capable of significantly more robust queries than SQL.  SPARQL 
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uses a pattern matching paradigm that takes into account the relationships defined in the 

RDF document and governing RDF(S) schema (Kashyap, et al., 08).  For example, the 

SPARQL query “SELECT $ordnance WHERE { $acft Type “F-16”, $acft AirOrdnance 

$ordnance }” will return all of the air ordnance carried by F-16 aircraft (this example 

assumes that a “Type” property has been defined). 

Mechanisms are provided to allow for significantly more complex queries 

that return multiple values, place restrictions or conditions on the query, perform set 

operations, etc.  The subclass and subproperty relationship descriptions available with 

RDF(S) have also facilitated the extension of SPARQL to perform many reasoning tasks 

appropriate for DLs (e.g., entailment) (Patel-Schneider and Simeon, 02 and Hayes, 04). 

It is evident that RDF and RDF(S) provide a significantly richer 

mechanism for semantic expression than XML; however, they are still limited in their 

ability to express semantics.  They are not capable, for instance, of constraining or 

expressing cardinality or defining conjunctive classes (Horrocks, 08).  More generally, 

RDF, RDF(S), and SPARQL do not possess the semantic expressiveness of the basic 

expressive DL, ALC, or even the “minimally interesting” DL, AL.  They do, however, 

provide a framework that can be used as the basis for implementing the required 

expressiveness. 

 

B. ONTOLOGIES AND THE ONTOLOGY WEB LANGUAGE 
Metadata descriptions with the semantic expressiveness required for the Semantic 

Web are frequently described as ontologies.  In the context of knowledge representation, 

an ontology is “a specification of a conceptualization consisting of a collection of 

concepts, properties and interrelationships of properties” (Gruber, 93).  Ontologies for the 

Semantic Web define the terms of interest for a particular information domain and 

describe the relationships among them.  Semantic Web data described in terms of a 

specific ontology can therefore be processed alongside, compared to, and combined with 

other data described with the same ontology regardless of location, source, format, or 

composition (Horrocks, 08). 

An argument can be made that many model forms might reasonably be considered 

ontologies.  Database schemas, ER/EER Models, Unified Modeling Language (UML) 
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Models, XML schemas, and RDF schemas all define terminologies and describe 

relationships to one degree or another.  As discussed previously, however, even the most 

semantically rich of these modeling approaches are insufficient for realizing the goals of 

the Semantic Web.  These models can represent information and can be queried, but they 

do not support automated interpretation and reasoning required by Semantic Web 

applications. 

DLs, FOLs, and modal logics provide robust description capabilities and 

mathematically rigorous mechanisms for reasoning.  Of these, DLs have proven most 

applicable to Semantic Web applications.  FOLs and higher logics are highly expressive 

semantically, but reasoning problems are often undecidable (Baader, et al., 07).  

Description logics, on the other hand, provide both significant semantic expressiveness 

and decidable reasoning (Ortiz, 10). 

The Web Ontology Language (OWL) has emerged as the ontology definition 

mechanism of choice for Semantic Web content (Horrocks, 08).  OWL is a World Wide 

Web Consortium (W3C) recommendation for the specification of Semantic Web 

ontologies.  OWL allows for the definition of classes and subclasses, the association of 

specific properties with classes, and the definition of conjunctive classes by means of 

DL-based axioms.  OWL is an extension of RDF meaning that OWL ontologies can be 

used to extend existing RDF data stores.  Additionally, because OWL is an extension of 

RDF, SPARQL queries can be utilized to query OWL ontologies. 

The OWL 1 recommendation was released in 2004 and was based on the 

SHOIN DL (Horrocks, 08) which included the operations of the basic expressive DL, 

ALC, plus role hierarchy, role transitivity, role inverses, unqualified cardinality 

restrictions, and nominals (Baader, et al., 08).  OWL 1 included three profiles, OWL Lite, 

OWL DL, and OWL Full, of which OWL DL provided the most broadly applicable blend 

of expressiveness and decidability (Kashyap, et al., 08). 

The OWL 2 recommendation was released in 2008 as an extension of OWL 1 

(i.e., all OWL 1 ontologies are also valid OWL 2 ontologies).  OWL 2 fully implements 

SROIQ semantics described previously along with additional features for data typing 

(Horrocks, et al., 06 and W3C, 12). 
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The RDF(S) description presented earlier might be described by an OWL 

ontology as graphically depicted in Figure 12.  OWL, however, is capable of expressing 

significantly more complex semantics than this simple example.  Even here, one 

advantage of OWL might be evident.  Properties in this example are associated with 

classes rather than associating classes (resources) with properties using “rdfs:domain” 

and “rdfs:range”.  Association of properties with classes (and instances of classes) is a 

more semantically accurate representation than associating classes with properties which 

probably do not have instances outside of the context of specific class instances. 

 

 
Figure 12. Graphical depiction of an OWL ontology corresponding to the RDF(S) of 

Figure 11 
 

In addition to OWL 2 Full, the OWL 2 specification provides three profiles—

OWL 2 EL, OWL 2 RL, and OWL 2 QL—that restrict modeling features to improve 
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reasoning performance.  Algorithms designed specifically for reasoning with each of 

these profiles have been developed that execute in polynomial time (Krötszch, 12). 

OWL 2 EL derives its name from the EL family of DLs which provide only 

existential quantification.  This profile is particularly useful for large ontologies (i.e., 

those containing a large number of named classes and properties) (Motuk, et al., 12). 

OWL 2 RL has different rules for the left and right sides of inclusion axioms.  For 

instance, value restriction is not permitted on the right side of an axiom, while union is 

not allowed on the left side.  This profile is the most expressive of the three.  The RL 

acronym reflects that reasoning can be implemented using a standard rule language 

(Motuk, et al., 12). 

OWL 2 QL is the least expressive of the three profiles, but is useful for 

applications that work with large sets of instance data.  The OWL 2 QL profile includes 

most of the key features of UML and ER models that are often used with databases.  The 

QL name reflects that queries can be implemented using a standard query language 

(Motuk, et al., 12). 

OWL ontologies are commonly encoded with either an RDF/XML syntax or 

functional syntax.  Table 5 provides a number of example OWL statements in the 

RDF/XML encoding that demonstrate some commonly utilized OWL features.   These 

examples are not presented as complete or consistent documents (e.g., references may not 

refer to actual resources, examples may conflict with one another, etc.), and they should 

be interpreted here individually as excerpts from larger ontologies. These examples 

demonstrate only a small subset of the available OWL structures.  A complete description 

of OWL components, semantics, and encodings is available in (W3C, 12). 

It is worth noting that class and property definitions are not required to be 

contiguous, so class properties do not have to be contained within the “owl:Class” 

declaration and can use the “rdf:resource” attribute to extend existing classes and 

properties.  Also, the inclusion of both “owl” and “rdf” namespace items in the examples 

clearly demonstrate the relationship between OWL and RDF (i.e., that OWL is an 

extension of RDF). 
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Category Operation Examples 

Class 
Statements 

Definition <owl:Class rdf:ID=“Aircraft”/> 

Subclass 
<owl:Class rdf:ID=“Missile”> 
  <rdfs:subClassOf rdf:resource=“#Munition”/> 
</owl:Class> 

Equivalence 

<owl:Class rdf:ID=“AttackMunition”> 
  <owl:equivalentClass 
    rdf:resource=“#GroundMunition”/> 
</owl:Class> 

Disjointness 

<owl:AllDisjointClasses> 
  <owl:members 
    rdf:parseType=“Collection”> 
      <owl:Class  
        rdf:resource=“#FriendlyContact”/> 
      <owl:Class 
        rdf:resource=“#HostileContact”/> 
  </owl:members/> 
</owl:AllDisjointClasses> 

Instantiation <AirContact rdf:ID=“air1234”/> 

Set Operations 

Intersection 

<owl:Class rdf:ID=“FriendlyContact”> 
  <owl:intersectionOf 
    rdf:parseType=“Collection”> 
      <owl:Class rdf:resource=“#Contact”/> 
      <owl:Class rdf:resource=“#Friendly”/> 
  </owl:intersectionOf> 
</owl:Class> 

Union & 
Complement 

<owl:Class rdf:ID=“unknownContact”> 
  <owl:complementOf 
    rdf:parseType=“Collection”> 
      <owl:Class> 
        <owl:unionOf 
          rdf:parseType=“Collection”> 
            <owl:Class rdf:resource= 
                       “#FriendlyContact”/> 
            <owl:Class rdf:resource= 
                       “#HostileContact”/> 
        </owl:unionOf> 
      </owl:Class> 
    </owl:complementOf> 
</owl:Class> 

Enumeration 

<owl:Class rdf:ID=“NavalUnitType”> 
  <owl:oneOf rdf:parseType=“Collection”/> 
    <owl:Thing rdf:about=“#CVN”/> 
    <owl:Thing rdf:about=“#CVN”/> 
    <owl:Thing rdf:about=“#CVN”/> 
  </owl:oneOf> 
</owl:Class> 
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Simple 
Properties 

Definition 

<owl:ObjectProperty rdf:ID=“reportedBy”> 
  <rdfs:domain rdf:resource=“#ContactReport”/> 
  <rdfs:range rdf:resource=“#ReportingUnit”/> 
</owl:ObjectProperty> 

Subproperty 

<owl:ObjectProperty 
  rdf:ID=“#canDeliverGround”> 
    <rdfs:subPropertyOf 
      rdf:resource=“#canDeliver”/> 
    <rdfs:range rdf:resource=“#GroundOrdnance”/> 
</owl:ObjectProperty> 

Assertion 

<owl:PropertyAssertion> 
  <owl:sourceIndividual rdf:resource=“#air123”/> 
  <owl:assertionProperty 
    rdf:resource=“#airspeed”/> 
  <owl:targetValue 
    rdf:datatype=“$xsd;unsignedInteger”> 
      350</owl:targetValue> 
</owl:PropertyAssertion> 

Negative 
Assertion 

<owl:NegativePropertyAssertion> 
  <owl:sourceIndividual rdf:resource=“#HOPPER”/> 
  <owl:assertionProperty 
    rdf:resource=“#reporting”/> 
  <owl:targetValue rdf:resource=“#air123”/> 
</owl:NegativePropertyAssertion> 

Property 
Characteristics 

Transitive & 
Symmetric 

<owl:ObjectProperty rdf:ID=“isLinkedWith”> 
  <rdf:type 
    rdf:resource=“&owl;TransitiveProperty”/> 
  <rdf:type 
    rdf:resource=“&owl;SymmetricProperty”/> 
</owl:ObjectProperty> 

Inverse 
<owl:ObjectProperty rdf:ID=“reporting”> 
  <owl:inverseOf rdf:resource=“#reportedBy”/> 
</owl:ObjectProperty> 

Property 
Restrictions 

Membership 

<owl:Class rdf:resource=“#AttackAcft”> 
  <owl:Restriction> 
    <owl:onProperty rdf:resource=“#canDeliver”/> 
        <owl:allValuesFrom  
          rdf:resource=“#GroundOrdnance”/> * 
    </owl:Restriction> 
</owl:Class> 

Cardinality 
<owl:cardinality 
  rdf:datatype=“$xsd;nonNegativeInteger”> * 
    3</owl:cardinality> 

Assignment <owl:hasValue rdf:resource=“#air123”/> * 

Table 5. OWL statement exemplars in XML/RDF syntax 
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Table 6 provides a few examples of the relationship between statements in an 

OWL ontology and DLs.  These examples utilize the OWL 2 functional syntax, which 

aligns more closely with the DL syntax of previous sections. 

 

 Owl Syntax DL Syntax 

Axioms 
SubClassOf( C D ) C ⊑ D 

ClassAssertion( C a ) C( a ) 

ObjectPropertyAssertion( p a b ) p( a, b ) 

Class Expressions 

ObjectIntersectionOf( C D ) C ⊓ D 

ObjectUnionOf( C D ) C ⊔ D 

ObjectComplementOf( C ) ¬C 

owl:Thing ⊤ 

owl:Nothing ⊥ 

ObjectSomeValuesFrom( p C ) ∃p.C 

ObjectAllValuesFrom( p C ) ∀p.C 

ObjectInverseOf( p ) p
-
  

Table 6. Selected OWL statements in functional syntax and their DL equivalents 
(W3C, 12) 

 

C. ONTOLOGY DEVELOPMENT AND MANAGEMENT 
1. Ontology Development 
The discussion thus far might lead to one of two equally erroneous conclusions:  

that ontology definition is trivially easy, or that it is intractably difficult.  Not 

surprisingly, the truth lies somewhere in the middle.  Ontology development is, in fact, 

difficult and requires significant collaboration between domain subject matter experts and 

ontology implementers; however, authoring and management tools make the process 

manageable if used effectively. 

Prior to developing an ontology, a number of considerations must be taken into 

account (Vidya and Punitha, 12): 

• Level of detail:  To what level of detail must the concepts and relationships 
be defined?  What level of semantic description is required? 
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• Conceptual scope:  How broad or narrow is the domain to be described (e.g., 
joint operational planning versus strike planning).  Is the ontology a detailed 
component of an upper level ontology?  Are the way in which the concepts 
and relationships are described constrained in any way? 

• Instantiation:  Will the ontology itself include instantiated individuals?  
Historically, all ontologies include a terminological component and 
applications build (or add to) the assertional knowledge base.  It might be 
beneficial, however, to build assertional components directly into the 
ontology. 

• Specification language:  Numerous mechanisms for defining ontologies are 
available (particularly if the term is loosely applied to include taxonomies, 
thesauri, database schemas, etc.).  This work assumes that OWL ontologies 
will be utilized. 

Once high-level decisions requirements are determined and decisions made, 

ontologies are commonly developed in a stepped process along the lines of the following 

(Daconta, et al., 03): 

1. Acquire domain knowledge:  assemble information resources and expertise 
to formally describe the domain of interest. 

2. Organize the ontology:  identify the domain’s principle concrete concepts 
and properties, identify relationships, and create abstract organizational 
concepts and features. 

3. Flesh out the ontology:  add concepts, relations, and individuals to obtain the 
required level of detail. 

4. Check the ontology:  locate and correct syntactic errors, and logical and 
semantic inconsistencies.  This can be partially completed using reasoning 
techniques that check for consistency of an ontology.  This is also an 
appropriate time for domain subject matter experts to verify the ontology. 

5. Commit the ontology:  completed ontologies must be published and made 
available to the applications that will rely on them. 

In practice, this process will not progress as linearly as described, and might 

involve piecemeal development, correction, additional information gathering and 

consultation, etc.  Further, ontology definition can still be daunting even when following 

a systematic development process.  In fact, useful ontologies are often large enough that 

full human conceptualization, much less manual implementation, is impractical or 

impossible.  The SNOMED Clinical Terms ontology contains over 400,000 named 
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classes (Horrocks, et al., 08).  Fortunately, authoring tools are available that make 

ontology development and maintenance tractable. 

The following provides a short comparison of a number of commonly utilized 

tools for ontology development and maintenance.  This summary focuses on tools that 

support OWL ontology development and maintenance.  For a more complete comparison 

of the most ubiquitous tools, see (Kashyap, et al., 08), (Kapoor and Sharma, 10), and 

(Vidya and Punitha, 12). 

• Protégé 4.1 (4.2 in beta) (CBIR, 13):  Protégé is a free, open source software 
project implemented in Java and managed by the Stanford University Center 
for Biomedical Informatics Research.  Protégé is a standalone system that uses 
a plug-in architecture to support extension.  Protégé uses frames, first-order 
logic, and metaclasses (as opposed to a purely DL-based approach) for 
knowledge representation.  A Protégé-OWL extension is available for support 
of OWL ontologies.  It provides a built-in inference engine, consistency 
checking, and also supports selected external inference engines.  It does not 
include support for distributed ontology development. 

• OntoStudio (Semafora, 08):  OntoStudio is a powerful ontology modeling 
environment commercially developed by the German Company Semafora 
Systems.  It utilizes frames and first-order logic for knowledge representation, 
and plugins are available for inferencing, consistency checking, rule-based 
inference, and collaborative ontology development.  OntoStudio does not 
support external inference engines but its built-in inference engine provides 
consistency checking and other inferencing services. 

• Ontolingua Server (KSL, 13):  Ontolingua Server is a set of tools and 
services developed and maintained by the Stanford University Knowledge 
Systems, AI Laboratory (KSL) for building of shared ontologies between 
distributed groups.  Ontolingua utilizes the same knowledge representation 
mechanism as Protégé but utilizes a client-server model.  Ontolingua does not 
include a built-in inference engine, but consistency checking and limited 
support for external inference engines is provided. 

• ICOM (Franconi, 10):  The Intelligent Conceptual Modeling Tool (ICOM) is 
an open source tool for conceptual design of information systems maintained 
by the Free University of Bozen-Bolzano, Italy.  ICOM is based on an entity-
relationship model, but utilizes DL-based knowledge representation.  
Consistency checking is provided, but built-in inferencing relies on 
connectivity with the ICOM server.  ICOM does, however, support external 
inferencing engines. 

• IODE (Highfleet, 13):  The Integrated Ontology Development Environment 
(IODE) is a commercially produced modeling tool by Highfleet Semantic 
Technologies (previously Ontology Works) that was designed to support 
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ontology development for database applications.  IODE is a standalone system 
that represents knowledge using common logic (based on first-order logic) 
with extensions for temporal reasoning and quantification.  It includes a built-
in inference engine and consistency checking, but does not support external 
inference engines. 

• Visual Ontology Modeler (Sandpiper, 13):  Visual Ontology ModelerTM 2.0 
(VOM2) is a commercial product of Sandpiper Software for visual 
development of component-based ontologies.  VOM2 uses DLs for 
knowledge representation and includes fairly robust facilities for merging, 
version control, and life-cycle maintenance.  VOM2 does not include a built-
in inference engine, but supports multiple DL reasoners and rules engines. 

• TopBraid Composer (TopQuadrant, 11):  The TopBraidTM Composer is a 
product of TopQuadrant, Inc. that is implemented as a standalone Eclipse 
plugin (Eclipse is an open-source software integrated development 
environment).  TopBraid is designed as an enterprise-class modeling 
environment for developing Semantic Web ontologies and applications and 
represents OWL and RDF knowledge directly.  It provides built-in constraint 
and consistency checking but does not include a built-in inference engine.  It 
does, however, support multiple external inference engines. 

• NeOn Toolkit (Suárez-Figueroa, 12):  The NeOn Toolkit is an open source 
ontology engineering environment implemented as a standalone Eclipse 
plugin.  Knowledge representation relies on Frame Logic (an alternative to 
DLs for ontology definition), OWL, and RDF.  NeOn provides built-in 
constraint and consistency checking and includes a built-in inference engine.  
It also supports external inference engines. 

Given the inherent difficulties of the ontology development process, it is not 

surprising that automatic ontology development is an active area of ongoing research.  

Three general approaches have been proposed:  supervised machine learning, natural 

language processing, and statistical clustering. 

Supervised Machine learning employs (often manually generated) positive and 

negative examples to “train” the tool (i.e., tune the algorithmic parameters and 

thresholds).  The utility of machine learning approaches to automated ontology 

development is limited by the requirement for large numbers of training examples.  

Nevertheless, examples of automated and semi-automated machine-learning-based 

approaches to ontology development are available (Maedche, et al., 03 and Kashyap, et 

al., 08). 

Natural language processing (NLP) has also been used as the basis for automated 

ontology development.  This is not surprising in light of the direct application of DLs to 
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the field of NLP.  In particular, the Suggested Upper Merged Ontology (SUMO) has 

produced a mapping between WordNet parts of speech and SUMO classes (Pease, 04) 

that can be used to extract meaning and relationships from free-form text documents (Lin 

and Sandkuhl, 08). 

Statistical clustering and data mining have also been utilized to cull patterns and 

groupings from large volumes of data.  Although effective at identifying related entities 

and visualizing data, these approaches do not lend themselves to identifying the nature of 

relationships or generating labels for statistically-grouped entities (Kashyap, et al., 08). 

2. Ontology Matching and Merging 
Experiences in the development of Semantic Web technologies have clearly 

demonstrated a need for ontology matching and merging.  Development of ontologies in 

isolation has inevitably led to multiple ontologies being applied to a single domain, 

overlapping of domains, and definition of ontologies for different but related domains.  In 

all three cases, differences in terminology, level of detail, definition of concepts and 

relationships and other factors will occur.  In order to fully leverage ontologies’ 

knowledge representation, it must be possible to align differing ontologies to enable 

Semantic Web applications to utilize all available data. 

Figure 13 graphically depicts portions of ontologies, O1 and O2, which describe 

two overlapping domains.  O1 is an excerpt from a notional strike planning ontology and 

O2 is an excerpt from a notional flight scheduling ontology.  It might be obvious to a 

human observer that the elements “sp:FA-18E” and “sp:GBU-38” in O1 are equivalent to 

“ap:FA-18E” and “ap:GBU-38,” respectively, in O2.  It is also the case in this example 

that all individuals of the “ap:ATOEvent” class are also members of the “sp:StkElement” 

class (the reverse is not necessarily true).  Finally, relationships might also be inferred 

between the “sp:assignedAC”, “sp:weapon”, and “sp:loadWith” properties in O1 and the 

“ap:assignedUnit”, “ap:loadPlan”, and “ap:loadout” properties from O2, respectively. 

Taking advantage of these relationships effectively increases the size of an 

ontology and potentially improves the fidelity as well.  In the case of multiple ontologies 

in a single domain, additional classes, relationships and individuals are effectively added 

to both ontologies.  This is also the case with merging overlapping ontologies for the 

region of overlap, but the merge yields the additional benefit of making the relationships 
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between the two domains exploitable by applications as well.  Similarly, formally 

defining the relationships between two disparate but related domains enables Semantic 

Web applications to exploit those relationships and use knowledge from both domains. 

 

 
Figure 13. Independent ontologies applied to overlapping domains (potential overlaps 

indicated with dashed lines) 
 

The problem of ontology matching can be formally defined as follows:  given two 

ontologies O1 and O2, determine an alignment, A, defining correspondences between O1 

and O2 where A is a set of correspondences defined as 5-tuples of the form Aid = < id, e1, 

e2, n, r > (Shvaiko and Euzenat, 08).  The first tuple element, id, is a unique identifier for 

the specific correspondence.  Elements e1 and e2 are entities (classes, relationships, 

individuals, data values, etc.) from O1 and O2, respectively, to which the correspondence 

is being asserted.  The confidence in the alignment between entities e1 and e2 is specified 

by a value, n, in the [0, 1] range.  During the matching process, the confidence level is 

O1 = Strike Plan 

O2 = Flight Schedule 
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used by the matching algorithm to determine whether or not to actually apply the 

presumed relation based on the application’s requirements.  If the relation confidence 

reduces to a binary value (0 or 1), then 0-confidence correspondences can be eliminated 

and remaining correspondences can be specified as 4-tuples of the form Aid = < id, e1, e2, 

r > (Shvaiko and Euzenat, 13).  The specific relation between e1 and e2 that is being 

asserted is specified with the variable r.  Equivalence relationships are the most common 

assertions; however, any valid relation definable by the ontologies’ DL is permissible 

(e.g., more general (⊒), less general (⊑), disjoint (⊥), overlapping (⊓), etc.). 

Ontology matching is an area of significant ongoing research.  Matching 

techniques are typically placed into one of four categories:  terminological, structural, 

semantic, or extensional (Shvaiko and Euzenat, 13). 

erminological matching can be either string-based or linguistic.  String-based 

matching directly compares strings and substrings from the two ontologies.  Basic string 

comparison techniques include prefix/suffix checking (i.e., does one string start or end 

with the other), edit distance (number of changes required to “transform” one string into 

the other), n-gram testing (common sequences of n characters in both strings), 

tokenization, and other manipulations that provide metrics that can be compared from 

string to string.  Linguistic matching utilizes the linguistic characteristics of the entities 

being compared and leverages general or domain-specific knowledge contained in 

external thesauri, dictionaries or taxonomies (WordNet is a frequently utilized common 

knowledge source) to facilitate interpretation of individual names.  Linguistic matching 

techniques exploit known relationships and definitions associated with ontological terms 

to infer relationships between the entities with which they are associated. 

Structural matching analyzes the graph structures of portions of the ontologies to 

find similarly structured sections. Structural similarity between inner ontology nodes can 

be based on the similarity of their children, their leaves, their relations or some 

combination of the three.  Graph matching is typically encoded as an optimization 

problem where a match minimizes some dissimilarity measurement (Kashyap, et al., 08).  

Alternatively, approaches that compare graphs based on similar hierarchical (is-a, has-a) 

characteristics or predetermined anchors (i.e., matches that are known a priori) have been 

shown to be effective (Schvaiko and Euzenat, 13). 
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Semantic matching utilizes model-theoretic analysis to make comparisons.  These 

methods rely on DL- or rule-based reasoning, or other logical reasoning to deduce 

correspondences.  Although the mathematical foundations of these approaches are well 

vetted, they have only recently received significant attention in research and production 

systems for ontology matching. 

Extensional matching attempts to find relationships between instantiated instances 

of ontology classes.  These approaches can use many of the previous techniques to 

identify matching or related individuals in the two ontologies. 

A comparison of a few state-of-the-art ontology matching/merging systems is 

provided in Table 7.  A reasonable conclusion to be drawn from the comparison is that no 

single technique is likely to prove sufficient.  Rather, each of the depicted systems uses a 

number of techniques to achieve reasonable results.  Even so, ontology matching is not an 

error-free process:  benchmark testing documented in (Schvaiko and Euzenat, 13) yielded 

precision, recall, and F-measure results in the 0.8 to 0.95 range, however testing on 

difficult real-world problems yielded results in the 0.4 to 0.65 range.  For this reason, 

ontology matching is not yet a fully-automated process.  All of the systems summarized 

above generate recommended correspondences that can be either accepted or rejected by 

a human operator.  

A more thorough comparison of each system, including benchmark metrics is 

provided in (Schvaiko and Euzenat, 13). 

3. Data Integration 
Closely related to the issue of ontology matching and merging is the problem of 

data integration, which deals with actual utilization of web-accessible data by Semantic 

Web applications.  Data must frequently be drawn from databases and other types of 

archives that are not governed by any sort of ontology.  In order for these data sources to 

be used by Semantic Web applications, the data must first be integrated into an ontology.  

The three general approaches depicted in Figure 14 have been utilized for this purpose:  a 

single ontology approach, a multiple ontology approach, and a hybrid approach 

(Kashyap, et al., 08). 
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Figure 14. Ontology-based data integration techniques 

 

With the single ontology approach, a single domain ontology is used by the 

application to access multiple data stores.  This method has proven useful in cases where 

all of the data sources view the domain similarly.  Even so, differences in level of 

granularity can make the definition of a single ontology into which all of the data can be 

integrated difficult.  As the heterogeneity of the various data stores increases (i.e., the less 

they overlap) or the similarity of their views of the data decreases the definition of a 

single ontology for working with all of them becomes more difficult.  The tendency 

towards a prohibitively monolithic ontology can be partially overcome through 

modularity, however the difficulties cannot be completely eliminated in this manner. 

With a multiple ontology approach, a separate ontology is defined for each data 

source.  The advantage of this approach is that each ontology can be designed around the 

specific data sources to which it will apply.  In practice, however, differences in 

terminology and organization require significant ontology match/merge efforts to enable 

individual applications to utilize all of the data stores together. 

The hybrid ontology approach to data integration attempts to combine the 

advantages of the single and multiple ontology approaches.  With this approach, a single 

shared vocabulary (which might, itself, be defined as an ontology) is utilized for the 

application domain, and local ontologies based on the shared vocabulary are developed 

for specific data sources.  Because the shared vocabulary does not have to include all of 

the relationships and semantics of the individual data stores, it can be more easily defined 
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than can a single ontology.  On the other hand, availability of a common terminology 

eliminates the requirement for painstaking matching between the various local ontologies 

(the shared vocabulary makes merging implicit). 

 

D. RULE IMPLEMENTATION WITH SEMANTIC WEB ONTOLOGIES 
Recall from Chapter II on DLs that inductive trigger rules can be implemented as 

a DL extension.  These rules take the form of implications where the truth of a 

consequent clause is implied by the truth of an antecedent clause:  C → D.  In order to be 

useful, rules are typically constructed as Horn clauses, meaning that the consequent (D) 

consists of an atomic concept or role and the antecedent (C) is a disjunctive series (0 or 

more) of complex and/or atomic concepts and roles. 

 

System Terminological Structural Semantic Extensional 

Falcon I-SUB, Virtual 
documents 

Structural 
proximity, 
Clustering 

 Object similarity 

DSSim Tokenization, 
WordNet 

Leaf-based graph 
similarity 

Rule-based 
fuzzy inference  

RiMOM 
Edit distance, 

Vector distance, 
WordNet 

Similarity 
propagation  Vector distance 

ASMOV 
Tokenization, 

String equality, 
WordNet 

Iterative fixed-
point 

computation, 
Hierarchical 

Rule-based 
inference Object similarity 

Anchor-Flood 
Tokenization, 

String equality, 
WordNet 

Internal, external 
similarity, 
Anchors 

  

AgreementMaker 
Edit distance, 
Substrings, 
WordNet 

Descendant, 
sibling similarity   

Table 7. Ontology-matching tool comparison (Schvaiko and Euzenat, 13) 
 

Rules can be added to an ontology as an additional layer that effectively extends 

the semantic expressiveness of the ontology.  For instance, the trigger rule of the 

following expression asserts that if an individual, a, is operated by an individual, b, and 

individual b is in hostilities with a third individual, c, then individual a will attack 

individual c: 
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Country( a ) ⋀ Unit( b ) ⋀ Country( c ) ⋀  
operates( a, b ) ⋀ inHostilities( b, c ) → willAttack( a, c ) 

The relationship conveyed by this example is difficult or impossible to express with most 

DLs and is not possible with the SHOIN or SROIQ DLs implemented by OWL 1 and 

OWL 2, respectively. 

A number of relevant observations can be made regarding the utilization of Horn-

clause-based rules with ontologies.  First, rules can be thought of as an extension of an 

ontology framework that provides an additional expressive operation (Baader, et al., 07).  

Also, rules are applied to individuals to make new assertions about those individuals:  the 

rule itself is universally quantified (i.e., it applies to every set of applicable individuals), 

but it is only executed (i.e., assertions are only made) in cases where the antecedent 

conditions hold for specific individuals.  Further, since the knowledge base is finite, there 

are finite possible rule applications.  Thus, once every possible rule execution has been 

triggered, the knowledge base will have been deterministically expanded. 

The Semantic Web Rule Language (SWRL) (Horrocks, et al., 04) is a W3C 

member submission that extends OWL by adding Horn-like rules from the Rule Markup 

Language (RuleML).  Many of the ontology development and management tools 

previously discussed are capable of working with SWRL rules, as are most of the 

reasoning tools that will be discussed in Chapter 4. 
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IV. DESCRIPTION LOGIC INFERENCING 

A. DESCRIPTION LOGIC REASONING FOR ONTOLOGIES 
1. Overview 

a. Open-World versus Closed-World Semantics 
Formal reasoning with DLs is heavily influenced by their open-world 

semantics, so the distinction between open-world and closed-world semantics bears 

further discussion.  With the closed-world semantics of traditional databases (typically 

characterized by ER, EER, or UML models), missing information is treated as false.  The 

database schema, therefore, can be viewed as a set of constraints on the contained data.  

With the open-world semantics of ontologies, missing information is considered 

unknown.  The axioms of the ontology, therefore, can be viewed as inference rules for 

expanding the KB (Horrocks, 08). 

Consider the examples of Figure 15.  The simplified EER diagram on the 

left specifies that “MilitaryAcft” and “CivilianAcft” are both subtypes of the “Aircraft” 

supertype and that “Missile” and “Bomb” are subtypes of “Weapon”.  In order to add a 

record specifying that an individual aircraft, “FA-18_172396”, is armed with an “AIM-

120X”, it must already be known (i.e., present in the appropriate database tables) that 

“FA-18_172396” is an “Aircraft”, that it is a “MilitaryAcft”, and that “AIM-120X” is a 

“Weapon”. 

 

 
Figure 15. Closed-world (database) versus open-world (description logic) semantics 

 

Open-World Description Logic Semantics Closed-World Database Semantics 
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Similar relationships are depicted in the ontology diagram depicted on the 

right.  Specifically, “MilitaryAcft” and “CivilianAcft” are depicted as (disjoint) 

subclasses of “Aircraft”, and “Missile” and “Bomb” are depicted as (disjoint) subclasses 

of “Weapon”, and that an entity of the class “MilitaryAcft” can have an “armed” property 

associating it with entities of the “Weapon” class.  With open-world semantics, however, 

the KB does not need to include any information about “FA-18E_172396” prior to 

adding the assertion “armed( FA-18E_172396, AIM-120X )”.  Further, after inclusion of 

this assertion, the KB will also entail the following axioms whether they are explicitly 

asserted or not:  “MilitaryAcft(FA-18E_172396)”, “Aircraft( FA-18E_172396 )”, 

“¬CivilianAcft( FA-18E_172396 )”, and “Weapon( AIM-120X )”. 

In this case, with a single explicit assertion, we have implicitly increased 

the KB by five assertions whose entailment can be demonstrated through the reasoning 

techniques to be discussed.  Note, however, that this assertion does not provide a basis for 

concluding that “AIM-120X” is a member of either the “Missile” or “Bomb” class (both 

axioms are satisfiable by the updated KB, but neither is entailed). 

b. Reduction of Reasoning to Subsumption or Satisfiability 
As discussed previously, subsumption and satisfiability are among the 

most basic DL reasoning problems.  Extrapolating the definition from DLs to ontologies, 

subsumption can be defined as a relationship between two classes, A and B, where every 

individual of class A is also a member of class B (in this instance, B subsumes A).  Using 

the OWL term for this relationship, A is a subclass of B.  The DL definition of 

satisfiability can be applied to ontologies in similar fashion—a class is satisfiable if it is 

possible for an individual of the class to exist without violating the rules of the ontology. 

Table 8 summarized the reduction of the key DL reasoning tasks to either 

subsumption or satisfiability as depicted in (Baader, et al., 08).  The implication of these 

reductions is that if either satisfiability or subsumption can be computationally solved, 

then all of the problems reduceable to that task are also solvable.  Stated differently, 

reasoning about equivalence, subsumption, satisfiability, and disjointness can all be 

accomplished by reasoning about either subsumption or satisfiability.  In addition, TBox 

classification is determined through subsumption or satisfiability reasoning as well.  In 
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practice, this reduction of standard reasoning tasks to subsumption and satisfiability also 

provides the basis for reasoning with ABox axioms. 

 

Reasoning Task Reduction to Subsumption Reduction to Satisfiability 

Equivalence C ≡ D iff (C ⊑ D) and (D ⊑ C) C ≡ D iff (C ⊓ ¬D) and (D ⊓ ¬C) 
are both unsatisfiable 

Subsumption - C ⊑ D iff 
(C ⊓ ¬D) is unsatisfiable 

Satisfiability C is satisfiable iff C ⋢ ⊥ - 

Disjointedness C and D are disjoint iff 
(C ∩ D) ⊑ ⊥ 

C and D are disjoint iff 
(C ⊓ D) is unsatisfiable 

Table 8. Reduction of standard TBox reasoning tasks to subsumption or 
satisfiability 

 

Consistency checking (i.e., testing the ABox and TBox together for 

contradictions) can be accomplished by testing the ABox as a whole for satisfiability—

the ABox is consistent with the TBox if none of the ABox axioms introduce a 

contradiction.  Notice that consistency does not require that all TBox concepts be 

satisfiable, so it is possible for a consistent knowledge base to contain TBox concepts that 

are unsatisfiable (a TBox of this sort would be considered incoherent but satisfiable). 

Entailment, or instance checking, determines whether or not a particular 

assertion is true for every model interpretation of the KB (regardless of whether or not it 

is explicitly asserted with an ABox axiom).  Entailment of concept for a particular 

individual (i.e., A ⊨ C(x)) is easily checked by testing the satisfiability of ¬C(x).  If 

¬C(x) is unsatisfiable, then the ABox entails C(X). 

Retrieval of all named individuals entailed by a concept can be 

accomplished by testing for entailment of each named KB individual; however, for even 

moderately complex knowledge bases, computational complexity makes this approach 

impractical (Rudolph, 11).  Optimization can often be achieved, however, based on the 

structure of the ontology (e.g., subsumption preordering; disjoint, transitive, and reflexive 

relationships, etc.) (Ortiz, 10).  In addition, in many cases the underlying data storage can 

facilitate the process by retrieving or eliminating multiple named entities at once (e.g., 

relational databases or XML documents to which XPath queries can be applied). 
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The worst-case scenario for reasoning about realization for an individual 

requires entailment testing of the individual for each concept in the set, S, of concepts 

being checked followed by subsumption testing for each of the concepts entailing the 

individual.  If a previously determined TBox classification is available, however, 

realization testing only requires entailment tests of increasingly specialized concepts of S 

according to the preorder of the TBox. 

c. Conjunctive Query Answering 
Conjunctive Query (CQ) and Unions of Conjunctive Query (UCQ) 

answering are the most computationally expensive DL reasoning tasks.  These tasks 

require retrieval-like reasoning for complex combinations of concepts and roles that can 

be comprised of multiple concepts and roles containing multiple variables.  CQs and 

UCQs are commonly expressed as first-order logic or DL expressions or SPARQL 

queries. 

A conjunctive query is formally defined by Equation 10, where v is a set 

of non-distinguished variables for which only existence is being queried, x is a set of 

answer variables for which the actual values are queried, and φ is a set of KB concepts 

and roles utilizing only elements of x and v.  The answer to the query, q, is the set of 

answer variable tuples corresponding to query matches. 

 

q = ∃v.φ(x, v)              (Eq. 10) 

 

As an example, consider the example query of Figure 16 which utilizes a 

FOL expression to request retrieval of all individuals, x1, where individuals v2 and v3 

exist such that for specific individuals, x1, v2, and v3, where “Contact(x1)”, 

“reportedBy(v1, v2)”, “mission(v2, “DCA”)”, “tasks(v3, v2)” and “AirTaskingOrder(v3)” 

are all entailed.  In this example, x1 is the only answer variable, so the result of the query 

will be the set of all contacts that were reported by a unit that was tasked by an air tasking 

order to conduct a “DCA” mission. 

Although typically specified using FOL, a DL, or a query language (e.g., 

SPARQL), it is possible to express a CQ as a directed graph with nodes and arcs 

representing the query’s concepts and roles, respectively, as illustrated in Figure 16.  

 56 



Viewed in this manner, answering a query amounts to finding a homomorphic mapping 

from the query graph to subgraphs of KB (Ortiz and Šimkus, 12). 

 

 
Figure 16. An example Conjunctive Query expressed with first-order logic and the 

associated query graph 
 

Queries that contain no answer variables calculate a Boolean response 

based on the KB’s entailment of any specific (i.e., bound) instances of the non-

distinguished variables.  Queries that contain one or more answer variables are referred to 

as answer queries and return tuples for all specific answer-variable bindings that satisfy 

the query. 

In the most straightforward implementation, CQ and UCQ reasoning can 

be implemented by repeated testing of bindings of variables to ABox individuals and 

testing for entailment.  This requires nm entailment tests where n is the number of ABox 

individuals and m is the number of query variables.  Fortunately, optimizations taking 

advantage of TBox-defined relationships and query structure can significantly reduce the 

number of required checks (Ortiz, 10). 

The complexity and potential optimizations for CQ and UCQ reasoning 

are comparable to those of concept retrieval.  Both problems have at least 2-EXPTIME-

Complete complexity for many expressive DLs (Ortiz, 10).  However, computational 

requirements for concept retrieval grow linearly with the number of named individuals in 

q = ∃v2,v3.Contact(x1) ⋀ reportedBy(x1,v2) ⋀  mission(v2, “DCA”) 
⋀ tasks(v3, v2) ⋀ AirTaskingOrder(v3) 
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the ABox while requirements for CQ and UCQ answering grows exponentially based on 

the number of named individuals in the ABox and the number of variables in the query 

(3-EXPTIME-Complete).  Optimizations can eliminate large sections of the potential 

search space to make queries tractable, but CQ and UCQ remains an area of significant 

research interest. 

d. Decidability, Complexity, and Soundness, Completeness  
A few issues must be considered when assessing the suitability of a 

reasoning algorithm for a particular problem.  First, the problem must be decidable (i.e., 

an algorithm must exist that will deterministically solve the problem).  Although 

seemingly a trivial concern, subsumption and satisfiability are potentially undecidable 

with many expressive DLs.  In fact, decidability is an open question for many potential 

reasoning tasks with OWL 2 (W3C, 12). 

The second issue is complexity; that is, how many computational steps are 

required by the algorithm.  Early DL reasoning algorithms operated in polynomial time; 

however, these algorithms proved unsuitable for expressive DLs (Baader, et al., 07).  The 

ability to reason in polynomial time was the primary motivation behind the OWL 2 EL, 

RL, and QL profiles (Krötzch, 12).  Reasoning with OWL 2 Full ontologies typically 

requires algorithms with exponential complexity (W3C, 12). 

Soundness and completeness have to do with the reasoning algorithm 

itself.  An algorithm is sound if and only if every solution that it finds is correct, and an 

algorithm is complete if and only if it is guaranteed to find a solution if one exists 

(Baader, et al., 07). 

Given these requirements, tableau algorithms have been the most 

frequently utilized tools for ontology reasoning for production and research systems 

(Baader and Sattler, 01 and Rudolph, 11). 

2. Reasoning Algorithms 
a. Tableau Algorithms 
The first example of a tableau algorithm was described in (Schmidt-

Schaub and Smolka, 91) and has provided the basis for all subsequent tableau algorithms 

for expressive DLs.  The basic tableau algorithm is useful for reasoning about 

satisfiability and consistency with ontologies of the ALC family of DLs.  The algorithm 
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works by attempting to construct an interpretation that satisfies all of the ABox concepts 

and can be used to test the satisfiability of one or more concepts.  The basic tableau 

algorithm for determining the simultaneous satisfiability of one or more ALC concepts is 

depicted in Figure 17 and utilizes the substitution transformation table of Table 9. 

 

 
Figure 17. Basic tableau algorithm for satisfiability testing of ALC axioms 

 

ABox Axiom Condition Transformation Action 

A contains (C
1
 ⊓ C

2
)(x) 

but not C
1
(x) and C

2
(x) 

A′ := A ∪ { C
1
(x), C

2
(x) } 

A contains (C
1
 ⊔ C

2
)(x) 

but neither C
1
(x) nor C

2
(x) 

A′ := A ∪ { C
1
(x) } 

A″ := A ∪ { C
2
(x) } 

A contains (∃r.C)(x) 
but not C(z) and r(x, z) (for any z) 

A′ := A ∪ { C(y), r(x, y) } where y is an individual 
name not occurring in A 

A contains (∀r.C)(x) and r(x, y) 
but not C(y) 

A′ := A ∪  { C(y) } 

Table 9. ABox transformations for the ALC tableau algorithm 
 

The first step of the algorithm is to develop a set of candidate ABoxes 

containing a single element.  The initial candidate, A0, contains all axioms being tested 

Algorithm: 
1. Generate A0 as an ABox with all test axioms in Negation Normal Form 
2. S = { A0 } 
3. Repeat until either termination conditions hold 

1. Choose one concept from Ai for which a substitution table condition applies 
2. Perform the substitution table transformation to generate Ai′ (and Ai″) 
3. S = (S – Ai) ∪ { Ai′, Ai″ } 
 

Termination conditions: 
A0 is unsatisfiable: All Ai are closed (contain contradictions) 
A0 is satisfiable: Any Ai is open (contains no contradictions) and       

complete (no applicable substitution table transformations) 
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expressed in Negation Normal Form (NNF).  NNF requires that all named concepts be 

atomic and that negations be applied only to atomic concepts.  Conversion of axioms to 

NNF can be accomplished in linear time by re-expressing named complex concepts with 

their TBox definitions and applying de Morgan’s rules (or other transformations) to 

negated complex concepts (Baader and Sattler, 00). 

Any ABox in S that contains a contradiction (i.e., { P(x), ¬P(x) } ⊆ Ai for 

some concept P and individual x) is said to be closed, while an ABox that contains no 

contradictions is said to be open.  An ABox for which no condition from the substitution 

table can be applied is said to be complete. 

The algorithm is complete when one of two conditions is met.  If every 

element of S is closed, then the algorithm was unable to develop a modeling 

interpretation.  In practice, transformation results can be tested prior to adding them to S 

so that closed axioms can be discounted immediately.  Thus, an empty S indicates that 

every possible candidate ABox contained at least one contradiction.  In this case, the 

concept(s) being tested are unsatisfiable (or the ABox is inconsistent if A0 contained the 

entire KB). 

Alternatively, the algorithm is also complete when any element of S is 

both open and complete.  In this case, the candidate ABox has been fully expanded 

without generating a contradiction and represents an interpretation that models the KB 

with the addition of the tested axioms and the concept(s) being tested have been proven 

satisfiable (or the ABox has been shown to be consistent if A0 contained the entire 

knowledge base). 

This basic algorithm highlights two important points concerning tableau 

algorithms.  First, the transformation associated with existential quantification generates 

two ABoxes.  Thus, the algorithm can be viewed as generating trees with each action 

being applied to a leaf node to generate one or two children.  The depth of the tree is 

bounded by the size of A0 and the branching factor is bounded by the number of 

existential quantifications.  At any point in the algorithm’s execution, the tree’s leaves are 

represented by the ABoxes contained in S.  The second observation is that the action 
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associated with a value restriction condition instantiates a new hypothetical (anonymous) 

individual, which is allowed under the open-world semantics. 

While the ALC DL with which this particular algorithm works is far less 

expressive than OWL, it can be extended in a relatively straightforward way to work with 

more expressive DLs of the ALC family, including OWL’s SROIQ with rules similar to 

those of Table 10. 

 

ABox Axiom Condition Transformation Action 

A contains (≥nr)(x) but no names 
z

1
,…,z

n
 where r(x, z

i
) (1 ≤ I ≤ n) and      

z
i
 ≠ z

j
 (1 ≤ i < j ≤ n) 

A′ := A ∪ { r(x, y
i
) | 1 ≤ I ≤ n } ∪  

        { y
i
 ≠ y

j
 | 1 ≤ i < j ≤ n } 

A contains (≤nr)(x) and r(x, y
i
) for all        

i = 1 to n+1 but not y
i
 ≠ y

j
 for some          

i and j (1 ≤ i < j ≤ n+1) 

For y
i
 and y

j
 (1 ≤ i < j ≤ n) where y

i
 ≠ y

j
 is not 

in A, generate A
i,j

 by replacing each 
occurrence of y

i
 in A with y

j
 

A contains (≤nr.C)(x) and r(x, y) but 
neither C(y) nor ¬C(y) 

A′ := A ∪ { C(y) } 
A″ := A ∪ { ¬C(y) } 

A contains (∃r.C)(x) but not C(z) and   
s(x, z) (for any z, s is a sub-role of r) 

A′ := A ∪ { C(y), r(x, y) } where y is an 
individual name not occurring in A 

A contains (∀r.C)(x) and s(x, y)   
(where s is a sub-role of r) but not C(y) 

A′ := A ∪  { C(y) } 

A contains (∀s.C)(x) and r(x, y) and      
r is a transitive sub-role of s 

A′ := A ∪ { (∀r.C)(y) } 

A contains s
-
(x, y) and (∀r.C)(y) A′ := A ∪ { C(x) } 

Table 10. Tableau algorithm ABox transformations for ALC extensions 
 

The first two rules provide for unqualified cardinality restrictions (the 

ALCN DL).  The first rule accounts for greater-than rules by adding enough unique role 

instances to A  to meet the required minimum.  The second accounts for less-than rules 

by combining role instances that have not been explicitly declared unequal (i.e., replace  

“r(x, y1)” and “r(x, y2)” with a single occurrence of “r(x, y1)” unless A contains an axiom 

asserting “y1 ≠ y2”).  The method of checking A for closure must be augmented slightly 

to account for these new rules as well. 
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The third rule provides for qualified cardinality restrictions (the ALCQ 

DL) by adding “C(y)” to A′ and “¬C(y)” to A″ for all y in the qualified role with x that 

are not already identified in A as either C or ¬C. 

The fourth and fifth roles provide for role hierarchies (role/sub-role 

relationships) by modifying the existential quantification and value restriction rules of the 

original algorithm. 

Finally, the sixth and seventh rules provide for transitivity and inverse 

roles. 

In combination, these rules provide a basis for algorithmically reasoning 

with ontologies with SHIQ DL semantics and can be extended further to reason with 

SHOIQ ontologies expressible with OWL.  

b. Automata-Based Reasoning 
Automata-based reasoning for DLs has been a topic of significant recent 

research.  Automata-based approaches have limited implementation examples to date 

because of the requirement to generate a potentially exponentially large automaton 

(Calvanese, et al., 11).  Nevertheless, they have characteristics that may provide for 

improved performance for reasoning tasks for which tableau algorithms are demonstrably 

inefficient such as retrieval and conjunctive query answering (Ortiz, 10). 

Automata-based techniques are similar to tableau algorithms in that they 

conduct queries by verifying (or refuting) the existence of modeling interpretations that 

satisfy the reasoning task requirements (Rudolph, 11). 

Automata-based algorithms rely on KB forest interpretations that are 

constructed in accordance with the rules of Figure18.  This type of interpretation serves 

two purposes:  1) it limits counter-example search area (which is the mechanism used by 

both tableau and automata-based algorithms), and 2) automata techniques have been 

utilized successfully with infinite tree structures on problems closely related to DL 

reasoning (Ortiz, 10). 

The second component of automata-based reasoning systems is an 

alternating tree automata (ATA) that accepts or rejects KB trees (or more recently, a 

whole forest) (Ortiz and Šimkus, 12).  An ATA is a nondeterministic finite automaton 
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that accepts trees as input.  Nondeterminism allows the automata to resolve unions, 

intersections, cardinality restrictions, or other operations with potentially disjoint or 

parallel realizations.  In these instances, the algorithm branches to test all possible or 

necessary realizations (Glimm, et al., 08). 

All automata-based algorithms follow the same general procedure 

described in Figure 18.  First an ATA, A1, is developed that will accept forest 

interpretations that model the KB.  Second, a query-specific automaton, A2, is developed 

that will accept trees containing query matches.  The intersection of A1 and the 

complement of A2 provides an automaton that accepts counter-models to query 

entailment (i.e., it accepts trees that model KB for which the query is false).  Because 

query entailment requires that the query be true for every model of KB, the set of trees 

accepted by A1 ∩ ¬A2 will be empty if the query is entailed (Calvanese, et al., 09 and 

Calvanese, et al., 11). 

 

 
Figure 18.    Automata-based DL reasoning about query entailment 

 

Knowledge-Base Forest Interpretation 
Assign each a ∈ A as a root node 
Nodes, w and w′ are part of the 

interpretation if 
w is a child of w′ 
w′ is a child of w 
w or w′ is a root node, or 
(w, w′) ∈ rI (including transitivity) 

Alternating Tree Automaton (ATA) 
A = < Σ, Q, q0, k, δ > 

Σ is the input alphabet 
Q is a set of states 
q0 is the initial state 
k is the input tree branching 

factor 
δ is a transition function 

Basic Automata-Based Description Logic Reasoning Algorithm 
Develop distinct ATAs for KB and the query, q 

Develop an ATA, A1, that accepts forest interpretations modeling KB 
Develop an ATA, A2, that accepts trees that satisfy the query, q 

A1 ∩ ¬A2 is an ATA that accepts countermodels to query entailment 
Query entailment is reduced to an automaton emptiness test 

KB ⊨q if and only if L(A1 ∩ ¬A2) = ∅ 
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Automata-based algorithms have been utilized for many expressive DLs 

approaching the expressiveness of OWL 2.  (Calvanese, et al., 09) and (Calvanese, et al., 

11) propose automata-based algorithms for reasoning with the SRIQ, SROQ, and 

SROI DLs.  Algorithms for CQ reasoning with DLs more expressive than these are not 

available at present, and the question of whether or not CQ reasoning with full SHOIQ 

DL of OWL 1 or SROIQ of OWL 2 is computationally decidable is currently an open 

question (Rudolph, 11). 

c. Resolution-Based Reasoning 
Tableau algorithms and automata algorithms both reason about 

satisfiability by attempting to develop a model for the expression being tested (i.e., if a 

model exists, then the expression must be satisfiable).  Methods of this sort utilize model-

theoretic reasoning (Rudolph, 11).  Resolution, on the other hand, uses a proof-theoretic 

approach where the axioms of KB are converted to Clause Normalized Form (CNF) FOL 

clauses to which resolution calculus rules are applied.  A CNF FOL representation that is 

equivalent to a DL KB will have the following characteristics: 

• DL axiom elements are replaced with substitutions from Table 11 (and others 
not depicted) 

• Negations are applied only at the atom level 

• Existentially quantified variables are Skolemized (e.g., “∃armed.Sidewinder” 

will be replaced by “armed(x, f(x)) ⋀ Sidewinder(f(x))” 

• All other variables are implicitly universally quantified 

• Clauses are manipulated to eliminate embedded conjunctions 

• Conjunctive clauses are separated into distinct clauses 

Once the KB has been converted to CNF FOL clauses, the query is 

negated, converted to CNF clauses, and notionally added to the KB.  Unification rules are 

then iteratively applied until an inconsistency is discovered or all possible unifications 

have been tried.  Unifications are conducted by finding two clauses with complimentary 

atoms, at least one of which contains an unbound variable.  For example, the clauses 

“¬A(x) ⋁ B(z) ⋁ s(x, z)” and “C(a) ⋁ r(b, c) ⋁ ¬s(b, 5)” can be unified because the first 
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contains “s(x, z)” and the second contains “¬s(b, 5)”.  The unification rule relies on a 

unification pairs of { b/x, z/5 } as to yield the following addition to the KB:  “¬A(b) ⋁ 

B(5) ⋁ C(a) ⋁ r(b, c)”.  If an inconsistency is uncovered (i.e., KB includes clauses for 

both A(x) and ¬A(x)), then the original query, q, has been shown to be entailed (since  

KB ∪ { ¬q } is unsatisfiable). 

 

Axiom Term First Order Logic Clause 

⊤ or ⊥ True or False 

C or r C(x) or r(x, y) 

C(a) or r(a, b) C(a) or r(a, b) 

¬C or ¬r ¬C(x) or ¬r(x, y) 

C ⊑ D C(x) ⋁ ¬D(x) 

r ⊑ s r(x, y) ⋁ ¬s(x, y) 

C ⊓ D C(x) 
D(x) 

C ⊔ D C(x) ⋁ D(x) 

∃r.B r(x, f(x)) 
B(f(x)) 

∀r.B ¬r(x, y) ⋁ B(y) 
Table 11. First Order Logic substitutions for DL axioms 

 

Resolution-based algorithms have been described for DLs up to SHOIQ 

with specific restrictions applied to ensure termination and decidability (Motik and 

Sattler, 06 and Kazakov and Motik, 08). 

3. Inferencing with Inductive Rules  
As has been covered previously, inductive rules that extend a DL can allow for 

the expression of relationships that cannot be defined solely with DL.  Trigger rules 

consisting of an antecedent and a consequent can be used to add new facts to the 

database—if the antecedent of the rule is satisfied, then the consequent of the rule can be 

added to the KB.  Alternatively, rules can be viewed as augmenting satisfaction- and 

subsumption-based reasoning.  If the TBox includes a set of trigger rules, then all ABox 

axioms that are entailed by the ontology are implied by the rules and other TBox axioms 
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even if they are not explicitly stated as ABox axioms.  Reasoning about specific trigger 

rule goals, then, can be viewed a different form of entailment testing. 

Two general methods are used for rule-based inferencing.  Forward chaining is a 

data driven approach.  Forward chaining algorithms begin by identifying all rule 

antecedents that are matched by existing KB axioms.  This set of applicable rules is 

referred to as the conflict set.  Selected rules from the conflict set are fired to assert new 

axioms, and the process repeats until a specified goal is achieved, the rule matcher returns 

an empty conflict set, or a predetermined number of algorithm iterations has been 

executed.  Forward chaining is most applicable when the intent is to build the knowledge 

base out as much as possible rather than to determine whether or not a specific goal is 

entailed by the KB (although conflict resolution optimization can make forward chaining 

suitable for reasoning about specific goal entailment). 

Backward chaining is a goal-driven approach to reasoning.  These algorithms 

begin with a specific goal and attempt to find an inference chain that will support the 

addition of the goal to the KB.  The initial conflict set for a backward chaining algorithm, 

then, contains all rules for which the goal is the consequent.  A goal from the conflict set 

is selected and used as a sub-goal for a recursive call to the algorithm.  The recursive base 

case is reached when the goal is contained in the KB (success) or is not the consequent of 

any rules (failure).  Backward chaining can be naïvely implemented with a simple depth-

first or breadth-first strategy, but can be more efficiently implemented with directed 

search strategies such as A* search, means-ends analysis, or GraphPlan (Russell and 

Norvig, 10).  Not surprisingly, backward chaining algorithms are useful when the intent 

is to determine whether or not a specific goal is entailed by the KB.  From this 

standpoint, backward chaining is analogous to entailment checks discussed previously. 

A number of issues might be apparent in backward chaining.  First is the question 

of antecedent matching tractability.  Taken to the extreme, matching rule antecedents 

potentially requires conjunctive query answering for every rule in the KB.  In practice, 

this is unrealistic, so rule matches are often based on axioms that are explicitly included 

in the KB.  Additionally, the composition of rule antecedents can be restricted to improve 

matching performance and maintain decidability (Horrocks, et al., 04). 
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The second issue regards conflict resolution, which is of particular importance 

with forward chaining algorithms (but is relevant with backward chaining as well).  If the 

KB is large, the conflict set is likely to be large as well, making the algorithm’s 

performance highly dependent upon the order in which new axioms are added to the KB. 

The selection strategy can be hard-coded into the reasoner, or it can be included as part of 

the model. 

Decidability is a function of the DL itself and also of the language used to specify 

trigger rules.  Trigger rules are generally restricted Horn clauses with additional 

restrictions to the antecedent to make the rule matching process tractable.  Termination of 

both forward and backward chaining algorithms is guaranteed by the finite size of the KB 

(Baader, et al., 07). 

Finally, consistency of the KB is potentially more problematic if trigger rules are 

included.  The consistency check algorithms that have been discussed thus far do not 

account for trigger rules, so the possibility that a trigger rule will make an assertion that 

compromises the ontology’s consistency cannot be discounted. 

 

B. COMPARISON OF AVAILABLE SEMANTIC WEB REASONERS 
Both commercial and open source reasoners are available for use with OWL 

ontologies.  A few of the more popular and more capable ones are included in this 

comparison.  A tabular comparison is provided in Table 12. 

• Pellet (Sirin, et al., 07), a Java-based, open source reasoner for OWL 
ontologies, was the first reasoner to fully implement the full OWL 1 DL 
capability (the SHOIN DL) and has been extended to support OWL 2 
features (SROIQ DL).  It uses an optimized tableau algorithm for most 
reasoning tasks and an optimized “rolling up” technique (which, like tableau 
and automata algorithms, leverages an ontology’s tree model property) for 
conjunctive queries with non-distinguished variables.  In addition, Pellet 
includes support for multi-ontology reasoning and non-monotonic reasoning. 

• RacerPro (Haarslev, et al., 12) is a commercial product of Racer Systems 
GmbH & Co. KG for reasoning with the SHIQ subset of OWL 2.  It uses an 
optimized tableau algorithm for reasoning.  A robust proprietary language 
(nRQL) is used for specifying conjunctive queries and inductive rules 
(including facilities for defining when rules fire and under what circumstances 
they are active), and RacerPro also supports SPARQL queries and SWRL 
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rules.  In addition, RacerPro provides a number of interesting additions such 
as TBox and ABox retractions (i.e., non-monotonicity). 

• FaCT++ (Tsarkov and Horrocks, 06) is an open source reasoner providing full 
support for OWL 1 DL and partial support for OWL 2.  FaCT++ uses an 
optimized tableau algorithm for reasoning, but does not support rules and only 
supports a restricted set of conjunctive queries. 

• The Scaleable Highly Expressive Reasoner (SHER) (Dolby, et al., 09) is a 
commercial product of IBM developerWorks® that is built upon the 
functionality of the open source Pellet reasoner.  SHER is specifically 
designed to work with very large knowledge bases.  Efficiency is gained by 
reasoning with an in-memory summary of the complete ABox, through the 
use of polynomial-time algorithms for subsets of the full SHIN DL (e.g., 
EL+), and applying fast and sound (but not necessarily complete) reasoners to 
find obvious solutions quickly. 

• Jena (Apache, 13) is an open source Semantic Web framework with a Java 
Application Programming Interface (API) for working with RDF graphs.  
Although intended for RDF, Jena does provide support for OWL.  It does not 
fully support any specific DLs, however, and as a result, provides only limited 
reasoning capabilities.  It does provide rule support, but utilizes its own format 
and does not allow rules to be specified with SWRL. 

• The KAON2 reasoner (Motik, 08) and its commercial counterpart, Semafora 
Systems’ OntoBroker, are unique among the reasoners discussed here in that it 
utilizes a resolution-based algorithm for reasoning.  KION2 uses a client-
server system for maintaining ontologies and supports conjunctive queries 
specified in SPARQL and inductive rules specified in SWRL.  KAON2 also 
provides a Java API for program management, manipulation, and reasoning 
with ontologies. 

 

Reasoner DL Algorithm Entailment Consistency Rules CQs 

*Pellet SROIQ Tableau Yes Yes Yes Yes 

***RacerPro SHIQ Tableau Yes Yes Yes Yes 

*FaCT++ SROIQ Tableau Yes Yes No Partial 

***SHER SHIN Rules Yes Yes Yes Yes 

*Jena None Rules Partial Partial Yes No 

**KAON2 SHIQ Resolution Yes No Yes Yes 

*Open source product, **Free closed-source product, ***Commercial product 

Table 12. Comparison of commercial and open source DL reasoners 
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C. NON-STANDARD DESCRIPTION LOGIC REASONING TASKS 
With the exception of inductive rules, all of the reasoning tasks discussed thus far 

can be reduced to satisfaction checking.  These standard reasoning tasks are deductive in 

nature and draw logical conclusions from the KB itself.  Although inductive in nature, 

rule systems also provide a mechanism for drawing logical conclusions from the 

knowledge base.  In all of these cases, the reasoning conclusions are guaranteed to be 

entailed by KB.  On the other hand, it is sometimes desirable to make inferences from a 

KB base that are not fully entailed by the axioms contained in the KB. 

Induction is a process of drawing generalized conclusions from a KB’s assertional 

data or drawing conclusions about individuals or groups represented in KB that are not 

fully entailed.  Induction relies heavily on concepts of machine learning and data mining 

that will be discussed shortly.  This sort of reasoning is useful when decisions or 

conclusions need to be based on a preponderance of the evidence rather than on 

conclusive evidence.  Historically, Inductive Logic Programming (ILP) (Muggleton and 

Raedt, 94) has proven particularly applicable in the area of induction reasoning with 

ontologies (Rudolph, 11). 

Abduction, on the other hand, attempts to identify missing premises that if present 

would result in the entailment of desirable (or presumed) axioms.  Stated differently, if an 

axiom, α is not entailed by KB, what additional axioms, KB’, would result in α’s 

entailment were they added to KB.  Abductive reasoning services are useful when a 

desirable or suspected outcome is not entailed, and one wants to identify the missing 

information.  Abduction is also an intuitive application of ILP (Muggleton and Raedt, 

94). 

It is important to note that, unlike standard reasoning tasks, induction and 

abduction algorithms are not truth preserving.  That is, assertions may be added to KB 

that turn out to be false as more information is gathered. 
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V. MACHINE LEARNING AND THE SEMANTIC WEB 

A. OVERVIEW 
The most prominent areas of machine learning research relating to the Semantic 

Web concern the use of machine learning techniques to develop and maintain ontologies.  

Machine learning was identified early on as a means of facilitating the growth and 

development of the Semantic Web, with an early W3C white paper proposing five 

specific applications (Maedche, 01).  These can be roughly divided into the use of 

machine learning to build Semantic Web content from existing web data and the use of 

machine learning to improve and maintain existing Semantic Web content.  Ontology 

extraction and Metadata extraction fall into the first category, while ontology merging, 

ontology maintenance, and application management fall into the second. 

Ontology extraction from existing web data requires the analysis of existing 

structured and unstructured data to identify relationships and concepts.  Data can range 

from completely unstructured material such as written documents, images, and streaming 

data to highly structured data stores such as relational databases, taxonomies, and 

dictionaries. 

Extraction of relational metadata from existing web data involves the 

identification of characteristics of individuals and relationships between individuals.  

Metadata extraction might be viewed as a preliminary step in automated ontology 

development in that characteristics and relationships identified in this stage can be 

leveraged later. 

Merging and mapping ontologies involves identifying common concepts, roles, 

and individuals.  Although ontology matching might be viewed as simpler than 

developing an ontology from scratch, it is complicated by the fact that similar terms may 

be defined differently and common concepts and relationships can have overlapping but 

not identical meanings.  As pointed out previously, current automated ontology merging 

approaches provide recommendations, but do not typically merge concepts, roles, or 

individuals without the concurrence of a human supervisor. 

Maintaining ontologies by analyzing instance data involves the development of 

new TBox axioms from instance data contained in the ABox.  Commonly referred to as 
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ABox mining, this operation typically involves analyzing RDF statements to derive 

taxonomical classes and their relationships.  Metadata extraction and ABox mining 

together can be used as sequential steps in the larger ontology extraction process. 

 Finally, the use of machine learning for application maintenance has been 

proposed as a means of improving Semantic Web services through analysis of user 

activity. 

Despite its importance to the evolution of the Semantic Web, automated 

generation of Semantic Web content through machine learning is not as important to data 

fusion and correlation.  These tasks might, however, benefit from the application of 

machine learning techniques.  In particular, the inductive reasoning task is the assertion 

of new ABox axioms to capture presumed or predicted information.  The process 

amounts to drawing the most likely conclusions based on the available data, and is clearly 

analogous to traditional machine learning. 

When compared to the use of machine learning to build the Semantic Web, 

examples of existing Semantic Web data use in support of machine learning is less 

ubiquitous.  This is in part due to the fact that most of the web is still not yet semantically 

described.  Nevertheless, Semantic Web content has characteristics that are well-suited to 

its use in machine learning, and mining Semantic Web content is an active area of 

research (Tresp, et al., 08).  Specifically, semantic description of web data removes 

ambiguity, imposes structure, and captures background information.  All of these can be 

used by machine learning techniques that rely on interpretations of web content and 

organization of individual entities. 

Semantic Web content can be effectively applied to most machine learning 

techniques; however, there are a few techniques that have proven particularly relevant. 

 

B. INDUCTIVE LOGIC PROGRAMMING 
ILP combines aspects of propositional logic, inductive learning, and logic 

programming to derive inference rules (Tresp, et al., 08).  The idea is to apply 

propositional calculus to a KB in a way that derives new inductive rules from existing 

rules (the TBox) and evidence (the ABox) so that the rules fully explain the evidence. 
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The general premise of all inductive inference can be stated as follows:  given 

background knowledge, B, and evidence, E, where E does not contradict B (prior 

satisfiability) but B does not fully explain E (prior necessity), inductive inference 

attempts to find a hypothesis, H, such that adding the hypothesis to the background 

knowledge fully explains the evidence (posterior sufficiency) and maintains satisfiability 

of the knowledge base (posterior satisfiability) (Muggleton and Raedt, 94).  This can be 

expressed in terms of a KB consisting of a TBox, T, and an ABox, A, where the 

evidence, E, is a subset of the ABox (E ⊆ A) with the following expressions:  

• Prior satisfiability:  T ∪ E ⊭ ⊥ 

• Prior necessity:  T ⊭ E 

• Posterior satisfiability:  T ∪ E ∪ H ⊭ ⊥ 

• Posterior sufficiency:  T ∪ H ⊨ E 

The ILP algorithm works by iteratively applying transformation rules from a rule 

set, R, to conjunctions of clauses to make them more generalized or specialized.  A 

conjunction of clauses, G, is said to be more general than a conjunction of clauses, S, if 

and only if G entails S.  Conversely, G is said to be more specialized than S if and only if 

S entails G.  Rules are considered either deductive or inductive based on whether they 

perform a specialization or generalization role, respectively (Muggleton and Raedt, 94).  

As an example, consider the following rule for absorption (A and B are unbound 

variables for clauses, and p and q are unbound variables for atoms): 

        Absorption:  
        

p A B q A
p q B q A
← ∧ ←
← ∧ ←

 

This is an inductive rule that can be applied to any pair of clauses of the form      

“p ← q ⋀ B” and “q ← A” to yield two new clauses with forms “p ← A ⋀ B” and         

“q ← A”.  The reverse of the rule can applied deductively, to clauses of the form           

“p ← A ⋀ B” and “q ← A” to generate new clauses of the form “p ← q ⋀ B” and          

“q ← A” (this is essentially resolution). 
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It must be noted that inductive rules are not logically sound, meaning that they are 

a mechanism through which the truthfulness of a KB can be compromised.  Consider the 

preceding example.  If the KB contains a clause of the form “q ← C” in addition to        

“q ← A” (for the same q), then the antecedent of the added clause, “p ← q ⋀ B”, can be 

satisfied in cases where the antecedent of original clause, “p ← A ⋀ B”, is not (e.g.,    

“¬A ⋀ C” is entailed). 

The basic ILP algorithm as depicted in Figure19 works by maintaining a queue of 

candidate hypotheses, QH.  At each iteration of the algorithm, a single hypothesis is 

removed from QH and a set of applicable rules are chosen from R.  The rules are applied 

(either exhaustively or by some other criterion) to H to produce a new set of hypotheses, 

H1 through Hn.  Promising hypotheses are added to QH and the process is repeated until a 

specified completion criterion is reached.  Generated hypotheses are essentially children 

of previous hypotheses, so the ILP algorithm can be viewed as an extension of standard 

DL reasoning algorithms that leverage the tree-model property of ontologies to derive 

models for KB. 

 

 
Figure 19.    The Inductive Logic Programming algorithm (Muggleton and Raedt, 94) 

 

The algorithm contains a number of generic procedures (denoted with italics) that 

must be defined for the particular application.  The initial QH may contain a single 

hypothesis containing the ground truth TBox and ABox (or subsets), or it may contain 

QH := initialize 
repeat 
    H = dequeue( QH ) 
    choose( RH ⊆ R ) where RH = { ∀rk | rk to be applied to H } 
    apply rules r1, …, rk to H to yield H1, …, Hn 
    for each i = 1 to n 
        enqueue( Hi, QH ) 
    prune( QH ) 
until stop-criterion( QH ) satisfied 
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one or more hypotheses that include desirable or suspected axioms (i.e., abductive 

reasoning as previously defined). 

The set of inference rules, R, consists of an arbitrary set of inductive and 

deductive rules as described.  R can contain both domain-independent rules such as the 

absorption example and domain-specific rules containing information directly applicable 

to a certain KB. 

Rules are chosen based on applicability to the hypothesis being expanded and 

according to application-specific criteria.  It is not necessarily the case that all applicable 

rules will be selected in this step.  As an example, it is permissible to apply rules either 

deductively or inductively, but in most cases inductive application is preferred (deduction 

can be accomplished through standard DL reasoning techniques).  Additionally, 

exhaustive rule application will lead to exponential growth of QH, so the rule-selection 

heuristics must prioritize rules based on whether or not they make progress towards the 

desired end state and select rules for inclusion in RH accordingly.  

The makeup of QH requires consideration of similar issues.  The depicted 

algorithm uses the standard “enqueue” and “dequeue” terminology from the computer 

science field to represent the operations for adding and removing hypotheses from QH.  

In practice one or both of these operations must account for the likelihood that particular 

hypotheses will lead to the best solution.  Even with highly selective rule selection 

heuristics, traditional queue operations will result in an inefficient breadth-first search of 

hypotheses.   Efficiency can be improved by implementing QH as a priority queue 

ordered according to an evaluation metric.  The evaluation metric provides an assessment 

of each hypothesis based on its proximity to a solution and effectively implements the 

algorithm as a best-first search. 

The algorithm’s “prune” operation allows the removal of impossible hypotheses 

without further evaluation.  This step is required because rules from R are applied 

irrespective of the evidence—there is no requirement that the consequent of a rule 

maintain ABox consistency.  Because the final solution must meet the posterior 

satisfiability requirement, hypotheses that are inconsistent with the KB can be eliminated 

without further evaluation. 
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In addition to eliminating inconsistent hypotheses, the pruning function can be 

used to eliminate highly unlikely hypotheses.  As discussed earlier, the application of 

inductive rules introduces uncertainty—the likelihood of a new hypothesis is a function 

of the likelihood of its parent hypothesis and the uncertainty introduced by the inductive 

rule.  Each hypothesis, therefore, can be assessed according to its likelihood, and the 

unlikely ones can be eliminated without further evaluation (Muggleton and Raedt, 94).  

Bayesian approaches that probabilistically evaluate hypothesis likelihood based on the 

empirical probabilities contained in the KB and inductively deduced additions can be 

intuitively applied for this purpose.  It might also be the case that an oracle (i.e., a user or 

other arbiter) can be invoked to eliminate unsuitable hypotheses. 

Evidently, the stop-criterion function can be satisfied in one of two cases.  Either 

a hypothesis has been derived that meets both the posterior satisfiability and posterior 

sufficiency requirements, or QH contains no more hypotheses for evaluation.  In the first 

case, the inductively derived rules of the satisfying hypothesis can be added to the KB to 

“explain” the tested subset of the ABox (or they formulate the missing information in the 

case of abductive reasoning).  An empty QH, on the other hand, indicates that the KB 

does not contain enough information to explain the initial hypotheses, but it is important 

to recognize that this does not equate to a refutation of the initial hypotheses.  

Additionally, computational exigencies might necessitate the imposition of other stop 

criteria.  In most cases this will amount to restricting the algorithm to a predetermined 

number of iterations. 

ILP is a well-researched learning mechanism that is well suited to reasoning with 

DLs.  The most significant limiting factor is computational complexity that does not scale 

well and will limit its usefulness with large ontologies (Rettinger, et al., 12). 

 

C. FEATURE-BASED STATISTICAL LEARNING 
Feature-based statistical learning treats relationships in a KB as random variables 

where RDF triples are associated with probabilities equating to confidence levels (Trest, 

et al., 13).  Probabilities are computed based on statistical measurements on a 

representative population.  The population that is the subject of the algorithm is typically 

comprised of a set of tuples equating to a query response.  For instance, a particular 
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learning algorithm population from a command and control system might contain tuples 

of the form “< contactID, contactType, contactSource >”.  Individual members of the 

population set are called statistical units. 

Features of interest for each for the population include both independent (or 

explanatory) variables and dependent (or predicted) variables.  Independent variables are 

those that the learning algorithm will use to derive predictions.  Independent variables 

can include feature values that are used to define the population and any additional 

features.  Dependent variables are those whose values the algorithm will attempt to 

predict. (Trest, et al., 08) 

In the first two steps of the typical statistical learning algorithm (Figure 20), the 

KB is queried to retrieve tuples of the target population, P, and the set of all population 

members is sampled to yield a training set, S, of statistical units that are representative of 

the overall population.  The query-sample sequence of these steps presumes a distributed 

ontology of linked data where query retrieval takes the form of a web search.  With 

distributed source retrieval, identification of all population instances is unrealistic, but a 

representative sample can be obtained.  It is important, however, to minimize the effects 

of search engine bias. 

 

 
Figure 20.    Statistical learning algorithm for DL induction 

 

Following generation of the training set, a feature matrix, M, is constructed where 

each row corresponds to a statistical unit of the sample set and each column corresponds 

P = queryP( KB ) (population) 
S = sample( P ) (training set) 
M = featureMatrix( S ) (1 row per statistical unit, s ∈ S, 1 column per feature) 
for each i = 1 to count( rows ) 
 for each j = 1 to count( columns ) 

Mi,j = vi,j where KB ⊨ featurej( si, vi,j ) 
Mi,j = N/A (or 0) where KB ⊭ featurej( si, x ) for any x 

Derive a statistical model for M 
Apply model to all of KB  
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to a feature.  Matrix entries, therefore, correspond to feature values for specific statistical 

units.  It is often the case that statistical units do not have values for every feature.  In 

these cases a value of “N/A” or “0” can be entered into the matrix to signify a non-value. 

Following generation of matrix, M, analysis is conducted to derive a statistical 

model.  Strictly speaking, there are numerous machine learning paradigms that can be 

used for this task including case-based reasoning, neural networks, genetic algorithms, 

and many others.  It is usually the case, however, that the learning algorithm is used to 

generate a probabilistic Bayesian model for M.  Commonly utilized models include naïve 

Bayes models, hierarchical Bayesian models, and Bayesian networks (Trest, 08). 

When developing the statistical model of M, it is important to properly account 

for missing data.  Feature-based statistical learning sometimes imposes closed-world 

semantics on M in which missing values are assumed to be false or zero.  This approach 

does not work well with a sparse matrices (which is often the case), because treating 

missing values as false can unacceptably skew the results.  For this reason, missing 

values are often ignored during statistical analysis or assigned values that minimize their 

impact on the model. 

 

D. RELATIONAL MATRICES AND TENSORS 
Relational matrices and tensors can be viewed as an extension of the feature-

based statistical learning paradigm in that they represent characteristics of individuals as 

matrices of truth values.  The use of relational matrices as a machine learning mechanism 

is well-documented, and they have proven applicable to a large class of relational 

learning problems (Singh, 09).  Given this history, the applicability of relational matrices 

and tensors to learning with semantic graphs and ontologies is fairly obvious. 

The general idea is that a matrix is used to represent a single ontological 

relationship and all potential participants.  The rows and columns of the matrix represent 

individual entities that may participate in the relationship.  Matrix cells are assigned a 

value of “1” if the relationship exists (in row-column order) between the entities in the 

row and column and “0” otherwise. 

Each entity in a matrix is described by a small set of parameters that play the role 

of independent variables.  As a rule, if an entity is present in more than one matrix, the 
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same parameters will be used for every matrix.  The matrices themselves contain the 

dependent variables. 

Learning is conducted by decomposing the matrix using factorization functions to 

generate an approximation of the original matrix.  After matrix reconstruction, the 

contained values can be interpreted as confidence values that the relationship holds 

between the represented values (Rettinger, et al., 12).  (Singh, 09) provides an overview 

of factorization techniques that can be utilized with relational matrices with emphasis on 

scalability. 

Until recently, most applications of relational matrices to learning Semantic Web 

relationships focused on individual matrices (Trest, et al., 08).  More recently, work has 

expanded to the use of 3-dimensional tensors that are comprised of layered relationship 

matrices (Huang, et al., 13 and Rettinger, et al., 12).  These approaches have a number of 

potential advantages.  First, the tensor can be sliced in various ways to process the 

contents from different perspectives.  For instance, a frontal slice contains a matrix for a 

single relationship as previously described, while a horizontal slice describes all 

relationships as they relate to a single subject individual and lateral slices describe the 

relationships as they relate to a single predicate individual.  These multiple perspectives 

enable the consideration of all relationships simultaneously so that their interelationships 

can be captured (Huang, et al., 13). 

Relational matrices are among the most promising learning mechanisms for 

Semantic Web applications because of their scalability, which is a byproduct of the 

sparse nature of most tensors (Rettinger, 12). 

 

E. ADDITIONAL SEMANTIC WEB LEARNING TECHNIQUES 
ILP and feature-based learning (which includes relational matrices and tensors) 

are among the most important approaches to machine learning with Semantic Web 

content.  There are other approaches, however, that have shown promise and bear 

mentioning. 

Instance-based learning utilizes a feature vector to identify concepts applying to 

individuals.  The algorithm works by comparing the feature vector of an individual being 

tested to feature vectors associated with a particular class or concept (determined through 
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a training process).  If the comparison meets specified criteria, then the test individual is 

presumed to be a member of that class.  The most common comparison mechanisms use 

distance functions that take in numerical feature vectors for two individuals and a weight 

vector and compute a disimilarity measure between 0 and 1 (d’Amato, et al., 08).  The 

individuals characterized by the input feature vectors are determined to be members of 

the same class if the disimilarity measure is below a predetermined threshold.   

Instance-based learning is well-suited to testing whether or not a concept can be 

applied to an individual.  Not surprisingly, it is most widely used for instance checking 

and retrieval.  Although the application scope is limited, instance-based learning is more 

efficient than standard reasoning algorithms, so it remains popular for these tasks 

(Rettinger, et al., 12). 

Kernel functions are functional mappings from an input domain (individuals) to a 

feature space.  The function effectively partitions the feature space into regions such that 

application to an individual will map it to the region most appropriate for its 

classification.  Support Vector Machines are the most well-known kernel functions; 

however, kernel functions can be developed to support many well-known learning 

algorithms (Rettinger, et al., 12). 

The first kernel functions applied to Semantic Web content assessed the logical 

structure of the individual being tested and the semantics of the primitive concepts 

(Fanizzi and d’Amato, 07).  Logical structure kernel functions often resemble the 

similarity functions used with instance-based reasoning.  Kernels that work with a portion 

of the semantic network graph associated with the individual being tested are also 

popular.  These methods have the advantages of not requiring manual feature definition 

and of not being based on a priori assumptions about the data structure (Rettinger, et al., 

12). 

Relational Graphical Models (RGM) represent ontological statements with 

random variables and can be thought of as extensions of earlier models including 

Bayesian networks, Markov networks, dependency networks (Trest, et al., 08).  RGMs 

represent all possible links in an RDF graph as nodes (vertices), where the actual 

existence of the link is probabilistically expressed as a binary random variable.  

Connections (edges) in the graph represent interdependencies between the nodes. 
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Probabilistic Relational Models (PRM) are a form of RGM where nodes capture 

the probability distribution of object attributes and links represent relationships between 

objects.  Early PRMs required that the relationships between objects be known, but 

extensions have made it possible to utilize PRMs to consider cases where relationships 

are unknown (Getoor, et al., 07). 

Markov Logic Networks (MLNs) follow the pattern described above for defining 

nodes and links.  Probabilities are formulaically assigned based on the number of 

grounded inputs to the nodes (i.e., the confidence in the values upon which the 

relationships rely) and weights assigned to each formula (Trest, et al., 08).  MLN learning 

involves estimating the appropriate weights for each formula. 

Finally, Latent-Class RGMs attempt to incorporate hidden variables that may be 

present in an ontology.  These hidden variables are incorporated into a Bayesian network 

comprised of relationships specified by the KB.  Presumed latent variables are introduced 

for each entity as a parent of all nodes with which the entity is involved.  Because the 

links in the underlying Bayesian network are completely specified by the KB, training 

with Latent-Class RGMs amounts to determining weights for nodes corresponding to 

latent variables (Trest, et al., 08). 

The most significant drawback to RGMs is that they are not factorable into 

individual data points, meaning that the whole data set essentially comprises a single data 

point.  This can significantly complicate inferencing and learning (Rettinger, et al., 12). 
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VI. CONCLUSIONS AND RECOMMENDATIONS 

A. CONCLUSIONS 
The difference between information and knowledge is an important factor when 

considering solutions to the data fusion problem.  The amount of data available to 

operators and decision-makers has exploded in recent years, but increased data 

availability has not necessarily translated into more efficient operations or better 

decision-making.  The term “information overload” has become a cliché, but it accurately 

reflects the current state of affairs. 

What is required are means of automatically converting the abundance of 

information into an abundance of knowledge.  This includes mechanisms for 

computationally interpreting, categorizing, and correlating information to develop a 

knowledge base and using that knowledge base to draw conclusions, make predictions, 

and aid the decision-making process.  This is an area to which the Semantic Web 

technologies described in this report can be directly applicable. 

Description Logics (DL) provide the mathematical foundation for the Semantic 

Web.  A subset of First-Order Logic, DLs use concepts and roles to describe individuals 

and their relationships.  DLs provide operators for defining complex concept and role 

definitions that provide powerful expressive capabilities.  Additionally, because of their 

foundation in First-Order Logic, DLs provide a basis for making logical inferences on the 

knowledge bases that they define. 

Semantic Web technologies apply the mathematical rigor of DLs to the web.  The 

Semantic Web provides a framework that brings structure to web content, provides for 

unified access to data, and ultimately improves the efficiency of human/computer 

interactions.  It does this through a set of standards (or proposed standards) for defining 

and using ontologies.  The most significant of these are the Resource Description 

Framework (RDF) and the Web Ontology Language (OWL).  Taken together, RDF and 

OWL fully capture the semantics of the expressive DL, SROIQ, and can be used to 

describe web content in a semantically rich way. 

Among the most significant advantages of the Semantic Web is the ability to 

computationally reason about ontologies.  The most common ontological reasoning tasks 
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are satisfiability, subsumption, equivalence, disjointness, classification, consistency, 

instance checking, retrieval, and conjunctive query answering.  All of these can 

ultimately be reduced to a single task—satisfaction.  Tableau algorithms are among the 

most common algorithms for reasoning and are utilized by most well-developed 

production and research systems.  Automata-based algorithms, and resolution-based 

algorithms are also utilized, and other methods based on First-Order Logic have also been 

used in applications that are isomorphic to decidable First-Order Logic problems. 

Standard reasoning with ontologies (i.e., those tasks that can be reduced to 

satisfaction) are useful for identifying knowledge that is implicitly contained in the 

knowledge base.  They are not, applicable to the tasks of induction and abduction, 

however, because these reasoning tasks infer things that might be true from the ground 

truth of the knowledge base.  Machine learning is appropriate for this type of reasoning, 

and it is not surprising that a number of techniques from this field have been applied to 

the Semantic Web.  Among the most important of these are Inductive Logic 

Programming and relational matrices (with relational tensors providing a promising area 

for future research).  Instance-Based Learning, kernel functions, and relational graphs 

have also shown promise in Semantic Web applications. 

 

B. RECOMMENDATIONS FOR FUTURE WORK 
Effective utilization of Semantic Web technologies to support situational 

awareness and decision-making will be facilitated by efforts in a few specific areas.  

Vocabulary definition is among the most important.  The practical difficulty of ontology 

definition has been mentioned, but the process can be aided by agreement concerning 

terminology and definitions.  Implementation of Semantic Web technologies in the 

civilian sector has been hampered by a lack of coordination, parallel development, 

competing interests, and many more factors.  Semantic Web implementation for 

government use, on the other hand, is still in its infancy.  A number of efforts are already 

underway to define domain-specific vocabularies that can be leveraged for Semantic Web 

applications, and aligning these efforts will facilitate the development of a common 

vocabulary. 
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Ontology-development is the next logical step following vocabulary definition.  

As discussed previously, it is unlikely that a single ontology can be developed that will 

meet all requirements.  Rather, a more reasonable approach is to define ontologies that 

capture the semantics of specific data sources.  This will enable the development of 

reasonable ontologies that can be incorporated into distributed applications later.  The 

availability of a well-defined common vocabulary will facilitate future incorporation of 

disparate data sources into applications using the hybrid approach described in Chapter 

III. 

Once Semantic Web content is made available through the development of 

compatible ontologies for various data sources, application development will be a 

straightforward proposition.  Each application will be able to access and utilize 

appropriate data sources and maintain its own interpretation of the distributed knowledge 

base. 

Finally, formal product evaluation should be conducted to identify those most 

capable of supporting DOD knowledge management requirements.  A number of existing 

and forthcoming products are available that will potentially meet envisioned ontology 

development and maintenance requirements.  These products include well-vetted, state-

of-the-art algorithms that leverage decades of prior research in DL reasoning.  These 

products and the algorithms they implement are regularly updated as technology evolves.  

On the other hand, technologies that leverage Semantic Web content in abductive 

and inductive reasoning are not currently available in commercial systems.   These 

technologies are likely to be important components of future Semantic Web support for 

decision-aid systems, however.  Although many machine learning techniques can be 

applied to Semantic Web content, primary consideration must be given to scalability.  Of 

the techniques that have been the subject of significant research, relational matrices and 

tensors are the most likely to yield results in the near term.  Additionally, Instance-Based 

Reasoning should be explored for the applications to which it is well-suited.  Other 

approaches from (Rettinger, et al., 12) might prove useful at some point, but are less 

likely to provide significant benefit in the near term. 
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