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1. INTRODUCTION 
 

Specific induction of cell death in tumors is considered one of the most desired and effective anticancer 
therapies.  Effective strategies to activate the apoptotic pathway, or other death mechanisms, are currently 
being intensely pursued. A potent chemotherapy option is directly arming the cancer cells with executioner 
proteins or apoptotic-inducing proteins that are not targeted by anti-apoptotic maneuvers found in many tumors.  
In this proposal, we will develop a new method to treat breast cancer by using a native-protein delivery 
approach. This is a platform to deliver proteins in native forms into cells.  The key design feature of our 
strategy is to first encapsulate protein molecules in a thin layer of water soluble, positively charged, degradable 
polymer to form nanometer-sized nanocapsules. The nanocapsule shell facilitates uptake of the protein content 
into cells, and protects the protein both during in vivo circulation and endocytosis. To endow the nanocapsules 
biodegradability once entered the target cells, the polymer shell is crosslinked with redox-sensitive crosslinkers 
that can be reduced upon encountering the reducing environment of the cytoplasm. Our overall research 
objective is to thoroughly evaluate this delivery method as a potentially new therapeutic modality for breast 
cancer treatment. Three aims will be pursued in parallel and results from each aim will be used to guide the 
refinement of other aims and the overall research objective. 1) Delivering different target proteins to breast 
cancer cell lines using this approach, including the tumor specific apoptin; 2) Equipping the protein 
nanocapsules with specific cancer cell targeting ligands; 3) Examining the in vivo potency and 
pharmacokinetics of the nanocapsules. 

 
2. KEYWORDS 
 

Nanocapsules, Nanoparticles, Apoptin, Breast Cancer, Targeted Delivery, Nanomedicine, Nanogel, 
Redox-responsive, Apoptosis, p53 

 
3. ACCOMPLISHMENTS 
 
Background and Motivation  
 
Intracelluar delivery of recombinant proteins for cancer therapy     The most desirable cancer therapy is 
both potent and specific towards tumor cells (Atkins and Gershell, 2002; Gibbs, 2000). Many conventional 
small molecule chemotheraputics do not discriminate between cancerous and normal cells, cause undesirable 
damage to healthy tissues, and are therefore unable to be administered at high dosage. In contrast, 
cytoplasmic and nuclear proteins that selectively alter the signaling pathways in tumor cells, reactivate 
apoptosis and restore tissue homeostasis, can eradicate cancerous cells and delay tumor progression with 
less collateral damage to other tissues (Cotter, 2009; Evan and Vousden, 2001; Reed, 2003). Intracellular 
delivery of such proteins, including human tumor suppressors (such as p53) (Brown et al., 2009) and 
exogenous tumor-killing proteins (such as apoptin) (Backendorf et al., 2008), in their functional forms is 
attractive as a new anti-cancer therapy modality. 
 
Apoptin     Apoptin is a small protein (121 amino acids) from chicken anemia virus (CAV) that induces p53-
independent apoptosis in a tumor-specific way (Backendorf et al., 2008). In a variety of tumor cell lines, 
Apoptin becomes phosphorylated, enters the nucleus, and induces apoptosis (Danen-Van Oorschot et al., 
1997; Danen-Van Oorschot et al., 2003; Zhuang et al., 1995).  In sharp contrast, Apoptin is unphosphorylated 
in normal cells and stays in the cytoplasm. An important feature of Apoptin is that it can recognize early stages 
of oncogenesis and it can induce apoptosis.  Currently known Apoptin targets include DEDAF, Nur77, Nmi, 
and Hippi, some of which are p53-independent signaling proteins in the apoptotic pathway (Backendorf et al., 
2008). Due to its high selectivity and potency, Apoptin has become an attractive antitumor target for gene 
therapy approaches. For example, in a nude mouse model, injection of Apoptin-encoding adenoviruses to the 
site of breast carcinoma xenografts resulted in a significant reduction in tumor growth. Furthermore, Apoptin 
has been shown to be a safe agent, resulting in minimal toxicity and weight loss in mouse models.  
Recombinant Apoptin expressed by E. coli can induce rapid apoptosis in cancer cells when microinjected into 
tumor cells (Leliveld et al., 2003). In comparison, no apoptosis was observed in normal cells. Moreover, when 
fused to the HIV-TAT protein transduction domain, TAT-Apoptin was transduced efficiently into normal and 
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tumor cells. However, TAT-Apoptin remained in the cytoplasm and did not kill normal 6689 and 1BR3 
fibroblasts. In contrast, TAT-Apoptin migrated from the cytoplasm to the nucleus of Saos-2 and HSC-3 cancer 
cells resulting in apoptosis after 24 h (Guelen et al., 2004). These results indicate that recombinant Apoptin 
captures all of the essential functions and selectivity of the native protein. Therefore, Apoptin is an excellent 
target for expanding the applications of nanocapsules as a chemotherapy modality. 
 
p53 and its delivery   Virtually all human cancer cells have elaborate anti-apoptotic strategies to overcome 
apoptosis, which is a vital cellular mechanism to obstruct tumor progression (Cotter, 2009). The most 
commonly mutated gene in tumor cells is the tumor suppressor gene TP53, the protein product of which 
promotes apoptosis of aberrant cells through both transcription-dependent and independent mechanisms 
(Coles et al., 1992). In this manner, the genome guardian p53 is critically important in eliminating possible 
neoplastic cells incurred during DNA damage. About 50% of all the human tumors have mutant p53 proteins 
(Lacroix et al., 2006). Therefore, restoring p53 function can be a highly effective option for cancer treatment. 
Functional copies of p53 can not only resurrect the apoptotic circuitry, but also sensitize the tumor cells 
towards other various treatments (radio- and chemotherapy) (Blagosklonny, 2002). Different strategies 
pursuing this goal have been intensively investigated, including small molecules and peptides that overcome 
p53 mutations, as well as adenovirus/p53 gene delivery vectors (Friedler et al., 2002; Issaeva et al., 2004; 
Senzer et al., 2007; Vassilev et al., 2004). While restoring p53 functions in cancer cells has been a tantalizing 
approach towards combating cancer, the lack of effective delivery method has undermined its potential as an 
anti-cancer therapeutic. Intracellular protein delivery using stimuli-responsive nanomaterials has emerged as 
an attractive method to deliver various cargos to the cells of interest (Cho et al., 2012; Chorny et al., 2010; 
Giannotti et al., 2011; Hu et al., 2009; Lee et al., 2009; Liechty et al., 2009). In particular, water-soluble 
polymer-based nanocarriers that encapsulate the protein of interest to aid the penetration of cellular 
membrane, while capable of releasing the protein upon various cellular stimuli, have been demonstrated to be 
effective in functional delivery of proteins (Gu et al., 2011). Nanocarriers that can be triggered to release 
protein cargo in response to changes in temperature, light, pH, redox potential and enzymatic activities have 
been reported (Lee et al., 2009; Zhao et al., 2011). As a result, nanocapsules-mediated delivery of 
recombinant p53 to cancer cells may be a direct method of reactivating the apoptosis pathway and inducing 
programmed cell death.  
 
 
Specific Aim 1: Delivering Different Target Proteins to Breast Cancer Cell Line Using Protein 
Nanocapsules 
 
Synthesis and characterization of apoptin nanocapsules    In this study, we aimed to test the polymeric 
nanocapsule (NC) strategy for the functional delivery of recombinant maltose-binding-protein-fused apoptin 
(MBP-APO), in which the protein complex is noncovalently protected in a water-soluble polymer shell (Figure 
1a). MBP-APO (pI = 6.5) was first purified from E. coli extract using an amylose-affinity column. Dynamic light 
scattering (DLS) measurement revealed an average hydrodynamic radius of 36.1nm, consistent with the 
reported size for the recombinant MBP-APO complex (Leliveld et al., 2003). Transmission electron microscopy 
(TEM) analysis of MBP-APO showed similarly sized protein complexes (Fig. 1c and enlarged in Fig 1d). 
Interestingly, MBP-APO complexes appear to adopt a diskshaped structure despite the lack of defined 
secondary structure from the apoptin component. Since the apoptin portion of the protein can self-assemble 
into the ~40-mer complex, we propose a three dimensional arrangement of MBP-APO in which the C-terminal 
apoptin forms the central spoke of the wheel-like structure (Fig. 1a), with the larger MBP portion distributes 
around the apoptin. The planar arrangement allows the apoptin portion of the fusion protein to remain 
accessible to its protein partners, which may explain how the MBP-APO fusion retains essentially all of the 
observed functions of native apoptin. 

The reversible encapsulation strategy for producing apoptin NCs is shown in Fig. 1a. Following 
electrostatic deposition of the monomers acrylamide (1 in Fig. 1a) and N-(3-aminopropyl)methacrylamide (2), 
and the crosslinker N,N-bis(acryloyl)cystamine (3), at a molar ratio of 1.5:1:0.14, onto MBP-APO (1 mg) in 
carbonate buffer (5 mM, pH 9.0), in situ polymerization was initiated with the addition of free radical initiators 
and proceeded for 1 h. The molar ratio and the time of reaction reported were optimized to minimize protein 
aggregation and precipitation, as well as to maximize the solution stability of the resulting NCs (designated 
below as S-S APO NC). Excess monomers and cross-linkers were removed using ultrafiltration and S-S APO 
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NC was stored in PBS buffer (pH 7.4). DLS clearly showed increase in average diameter of the sample to 
∼75nm with a slightly positive-potential value of 2.8mV. TEM analysis of the S-S APO NC confirmed the nearly 
doubling in diameter of the spherical particle (Fig. 1e). Unexpectedly, the NCs displayed dark contrast upon 
uranyl acetate staining, which hints that the cores of the particles were very densely packed. As expected from 
the incorporation of redox-responsive cross-linker 3, the reduction of NCs size can be seen upon treatment of 
the reducing agent glutathione (GSH) (2 mM, 6 h, 37 ◦C). As shown in Fig. 1f, the densely packed NCs were 
completely dissociated into ∼30nm particles, confirming the reversible nature of the encapsulation process. As 
a control, we also synthesized nondegradable MBP-APO NCs (ND APO NC) using N,N-methylene 
bisacrylamide as the cross-linker with same monomer and protein concentrations under identical reaction 
conditions. Whereas similarly sized NCs were formed, no degradation of ND APO NC can be observed in the 
presence of GSH. 

 
Synthesis and characterization of p53 nanocapsules   The strategy for synthesis of p53 nanocapsule is 
shown in Figure 2a. Monomers and redox-sensitive crosslinkers can deposited at the surface of the target 
protein via van der Waals interactions, and can be polymerized in situ around the target protein to form a non-
covalent shell that encapsulates the protein. The monomer acrylamide (1) is used as a general building block 
of the water-soluble shell. The nanocapsules are crosslinked with N,N-bis(acryloyl)cystamine, which is 
designed to degrade in highly reducing environments such as the cytoplasm, thereby releasing the protein 
cargo intracellularly. To synthesize a near-neutral polymer shell that does not enter cells via positive charges, 
we first eliminated the use of positively charged monomers employed in previous designs. Instead, we chose 
N-(azidoethyl-decaethylene glycol)-acrylamide (2) as the second monomer (Figure 2a). The neutral 2 contains 
a terminal azido group that can be used as the reactive site for cross-coupling via copper-free click reaction. 
The ten ethylene glycol units serve as a water-soluble spacer at the surface of the nanocapsules, and provide 
flexibility to the conjugated targeting ligands. Through copolymerization of 1 and 2, the azido functionalities can 
be displayed on the surface of the nanocapsules for subsequent modification. Monomer 2 was readily 
prepared by reacting O-(2-aminoethyl)-O-(2-asidoethyl)nonaethylene glycol with acryloyl chloride. After 
purification and MS characterization of monomer 2, we first performed the in situ polymerization process using 
GFP as the cargo. Following one hour of polymerization during which the mole fraction of 2 was 1.5% of total 
monomers, uniformly sized nanocapsules were synthesized, with an electrostatic potential of ~0.9 mV, and an 
average size of 9.1 nm. To examine the structural integrity of the encapsulated proteins, we performed circular 

	
  
	
  
Figure 1: Degradable nanocapsules for apoptin delivery. (a &b) Schematic diagram of synthesis of degradable apoptin 
nanocapsules (S-S APO NC) and delivery into tumor cells to induce apoptosis; TEM images of (c) native MBP-APO; 
(d) enlarged image of MBP-APO; (e) S-S APO NC; and (f) degraded S-S APO NC after treatment with 2 mM GSH for 
6 h at 37 °C. 
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dichroism measurement on both free GFP and GFP-containing nanocapsules. As expected, no significant 
change to the secondary structure of GFP was observed upon encapsulation.  
 To verify the presence of azido groups on the surface of the nanocapsules, we performed the copper-
free reaction between dibenzylcyclooctyne TAMRA (DBCO TAMRA, 4) and the GFP nanocapsules prepared 
from monomers 1 and 2. As a control, nanocapsules synthesized from 1 alone were also mixed with 4. After 
overnight stirring at 4 °C, the reaction was subjected to repeated dialysis and ultracentrifugation to remove any 
unreacted 4. The conjugation of TAMRA to the protein nanocapsules was detected by fluorescence emission 
scan (Figure 2b). Whereas nanocapsules synthesized with both 1 and 2 exhibited the characteristic emission 
peak at 580 nm of TAMRA, the control sample with only 1 showed nearly no additional signal at the same 
wavelength compared to negative controls. Given the measured differences in hydrodynamic radius between 
the GFP nanocapsules (4.5 nm) and free GFP (2.5 nm), we estimate no more than three GFP can be packed 
into each nanocapsule. We previously established by experiments that more the nanocapsules prepared via 
the interfacial polymerization method contain a single copy of GFP. Taking together, the nanocapsules 
synthesized in this study should contain either one or two GFP molecules. The number of TAMRA molecules 
conjugated per nanocapsule was approximated by comparing of relative intensities of GFP and TAMRA 
fluorescence. Given the above estimation of one to two GFP per nanocapsule, we approximated that each 

nanocapsule was conjugated with four to eight TAMRA molecules through the click reaction with accessible 
azido functional groups.  
 
 After the establishment of nanocapsule synthesis using GFP as a model protein, we then applied this 
method to make p53 nanocapsules. Delivery of recombinant p53 poses significant challenges as the tetrameric 
complex can readily aggregate and lose activity under non-native condition. The three-dimensional structure of 
p53 is also not well resolved, and has been shown to be loosely organized, especially in the absence of DNA. 
Recombinant p53 was expressed in E. coli, purified from inclusion bodies and refolded as soluble tetrameric 
protein (Figure 2c). The in situ polymerization process using monomers 1 and 2, as well as crosslinker 3 was 
optimized to minimize aggregation and precipitation of the soluble p53. A final molar fraction of 1.5% of 2 was 
used in the monomers, while 5% 3 was added as crosslinkers. We found that p53 concentration must be kept 

	
  
Figure 2: Clickable nanocapsules. a) Schematic diagram of clickable, redox-sensitive protein nanocapsules, and the 
scheme of conjugation to DBCO TAMRA using copper-free click chemistry. b) Fluroscence spectra of GFP NC 
samples before and after copper-free click conjugation to DBCO TAMRA. c) SDS-PAGE of refolded p53 protein. d) 
The hydrodynamic size distribution of S-S p53 NC as measured by DLS. e) TEM image of S-S p53 NC. The scale bar 
represents 50 nm. f) ELISA assay measuring p53 released from S-S p53 NC and ND p53 NC after treatment with 2 
mM DTT over 90 min at 37 °C (n=2).  
 



	
   

at below 0.7 mg/mL and all steps must be performed in sodium bicarbonate containing buffer to avoid 
aggregation and precipitation. After encapsulation, the azido-functionalized nanocapsules (S-S p53 NC) were 
buffer-exchanged and concentrated in PBS. Successful encapsulation was monitored by both DLS and TEM 
as shown in Figure 2d and Figure 2e, respectively. The native p53 tetramer exhibited hydrodynamic diameter 
of 7.7 nm, in line with cryo-EM characterizations. Upon encapsulation, the average diameter increased to 
~27.5 nm with a zeta-potential of 0.6 mV, and the structural uniformity was observed by TEM. As a 
nondegradable control, p53-containing nanocapsules crosslinked with the N,N-methylene bisacrylamide was 
also prepared. The physical properties of the azido-functionalized nano-degradable p53 nanocapsules (ND 
p53 NC) were nearly identical to that of the S-S p53 NCs.  
 To examine the encapsulation effectiveness and redox-sensitive release of the p53 nanocapsules, we 
performed time-dependent ELISA analysis of p53 nanocapsules both in the presence and absence of the 
reducing agent DTT (Figure 2f). The ELISA assay employed here requires the p53 to bind to a specific, double 
stranded target oligonucleotide immobilized on strip well plates. Therefore, encapsulated p53 is physically 
shielded by the polymer layer and is thus unable to bind to oligonucleotide and to be recognized by the anti-
p53 antibody. As expected in the absence of DTT, no native p53 in the solution can be detected within the 
assay period, indicating the robustness of the polymer layer in both shielding and retaining the p53 cargo. In 
contrast, the S-S p53 NCs released p53 when 2 mM DTT was added to the nanocapsules, indicating 
degradation of the crossliner and release of p53 into the solution. The positive ELISA signal also signifies that 
the p53 protein subjected to encapsulation and release remained functional. The ND p53 NCs control did not 
release detectable p53 in the presence of 2 mM DTT, further confirming the redox-responsiveness of the S-S 
p53 NCs.  
 
Functional studies of apoptin nanocapsules in vitro   After the successful synthesis of apoptin 
nanocapsules, we examined the cellular uptake of the S-S APO NC and cellular localization of the cargo. If the 
unique tumor selectivity of MBP-APO is maintained following the encapsulation and release processes, we 
expect the delivered MBP-APO to either accumulate in the nuclei of the tumor cells, or to localize in the 
cytoplasm of noncancerous cells. Prior to the polymerization process, the MBP-APO protein was conjugated to 
amine-reactive rhodamine (Rho-APO). Subsequent encapsulation yielded similarly sized NCs as unlabeled S-
S APO NCs. Fluorescent microscopy showed all NCs readily penetrated the cell membrane and are present in 
the cytoplasm of MDA-MB-231 cells within 1 h. When the relative amounts of positively charged monomer 
were reduced in the NC shell, corresponding decreases in zeta-potentials of the NCs were measured by DLS, 
which led to decreases in cellular internalization. The cellular trafficking of the internalized S-S Rho-APO NCs 
in HeLa cells was investigated for 2 h by monitoring colocalization using fluorescent markers for early and late 
endosomes. Colocalization of Rho-APO with early endosomes was detected at the highest levels after 30 min 
and decreased at later time points. In contrast, colocalization of Rho-APO with late endosome remained low 
throughout the trafficking studies. Colocalization of Rho-APO with nuclei became evident after 2 h, indicating 
endosomal escape and nuclear entry of the released apoptin protein. These results suggested that S S Rho-
APO NCs were trafficked into early endosomes upon internalization and at least a significant portion of the 

	
  
Figure 3: (a) Confocal microscopy of cellular localization of Rho-APO encapsulated in S-S NC and ND NC 
to cancer cell lines HeLa and MCF-7, and noncancerous HFF. Nuclei were stained with DAPI (blue). (b-e) 
HeLa (b), MCF-7 (c), MDA-MB-231 (d), or HFF (e) cells were treated with various concentrations of S-S 
APO NC, ND APO NC, and native MBP-APO. Cell viability was measured by a XTT assay.   
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internalized NCs and the cargo can escape from the endosomal compartment. 
 

To analyze protein localization using confocal microscopy, two cancer cell lines HeLa and MCF-7, 
together with the noncancerous human foreskin fibroblast (HFF), were treated with either S-S Rho-APO NC or 
ND Rho-APO NC (Figure 3a). In the case of ND Rho-APO NCs, red fluorescence signals remained in the 
cytoplasm for all three cell lines, indicating the encapsulated Rho-APO proteins were well-shielded by the 
nondegradable polymer shell and the internal nuclear localization sequences were not accessible to the 
transport machinery. In stark contrast, when HeLa cells were treated with S-S Rho-APO NC, strong red 
fluorescence of rhodamine was present in the nuclei, resulting in intense pink color as a result of overlapping of 
rhodamine and DAPI fluorescence. Z-stacking analysis confirmed the Rho-APO to be localized inside of the 
nuclei. Similar results were observed with MCF-7 cells, although the fluorescence intensity was not as strong 
as in the HeLa cells. These results confirmed that the Rho-APO delivered can indeed be released in native 
forms inside the cytoplasm and enter the nuclei. More importantly, the tumor-specificity of delivered apoptin 
proteins toward cancer cell lines were demonstrated in the confocal analysis of noncancerous HFF cells 
treated with S-S Rho-APO NC, as all of the dye signals remained in the cytoplasm and no nuclear 
accumulation was observed. 

We then investigated whether the MBP-APO protein delivered still possesses its function to induce 
tumor-selective apoptosis. The potency and selectivity of S-S APO NC were tested on various cell lines 
including HeLa, MCF-7, MDA-MB-231, and HFF (Figures 3b-3e). MTS assay was used to measure cell viability 
48 h after addition of the protein and NC. For each cell line, ND APO NC and native MBP-APO were used as 
negative controls. When S-S APO NC was added to a final concentration of 200 nM, all three cancer cell lines 
had no viable cells, whereas ∼75% of the HFF had survived. The IC50 values were 80 and 30 nM for HeLa 
and MDA-MB-231, respectively. The IC50 for MCF-7 was higher at ∼110 nM, which may be due to the 
deficiency in the terminal executioner caspase 3 and reliance on other effector caspases for apoptosis. As 
expected, native MBP-APO and ND APO NC did not significantly decrease the viability of any cell lines tested, 
consistent with the inability to enter cells and release MBP-APO in cytoplasm, respectively. The IC50 values of 
S-S APO NC toward MDA-MB-231 increased as the surface charge of the NC became more neutral, 
suggesting more efficient internalization can improve S-S NCs cytotoxicity. The morphologies of MDA-MB-231 
and HFF cells were examined under various treatments. Only the S-S APO NC treated MDA-MB-231 cells 
exhibited blebbing and shrinkage, which are hallmarks of apoptotic cell death. Using TUNEL assay, S-S APO 
NC treated MDA-MB-231 also showed nuclear fragmentation associated with apoptosis, whereas cells treated 
with native MBP-APO and ND APO NC at the same concentration, as well as HFF treated with 200 nM S-S 
APO NC, had no sign of apoptosis. Collectively, these results demonstrated that the recombinant MBP-APO 
delivered by the degradable NCs retains the potency and selectivity. 
 
Specific Aim 2: Equipping Protein Nanocapsules with Specific Cancer Cell Targeting Ligands  
 
iRGD-conjugated Nanoparticles    As we are working on the design of targeting strategies for nanocapsules, 
new progress has emerged from the field. As we all know that one of major obstacle for nanoparticle-based 
drug delivery is the poor penetration of the targeted payload through the vascular wall and into the tumor 
parenchyma, especially in solid tumors, which have a high interstitial pressure (Heldin et al., 2004; Jain, 1999). 
To address this challenge, a tumor-penetrating peptide, iRGD, was identified and reported to increase vascular 
and tissue penetration in a tumor-specific and neuropilin-1-dependent manner, as compared to the 
conventional RGD peptides (Sugahara et al., 2009; Sugahara et al., 2010). Like conventional RGD peptides, 
iRGD homes to tumor sites by binding to αvβ3 and αvβ5 integrins, which are highly expressed in tumor 
endothelium (Mitra et al., 2005; Murphy et al., 2008; Sugahara et al., 2009), thus enhancing the therapeutic 
effect of antitumor drugs on suppressing tumor growth and/or metastasis. After binding, the iRGD peptide is 
thought to be proteolytically cleaved to produce CRGDK fragment, which favors binding to neuropilin-1 
receptor, thus facilitating the penetration of drugs into the tumor (Feron, 2010). Thus, we explored whether the 
iRGD peptide could improve the nanoparticle delivery. As a proof of concept, our work initially focused on the 
crosslinked multilamellar liposomal vesicle (cMLV)-based nanoparticles as a model system to test the assays 
and biological efficacy, which can be directly translated into nanocapsules. 

Preparation of liposomes was based on the conventional dehydration-rehydration method. All lipids 
were obtained from NOF Corporation (Japan). 1.5 µmol of lipids 1,2-dioleoyl-sn-glycero-3-phosphocholine 
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(DOPC), 1,2-dioleoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (DOPG), and maleimide-headgroup lipid 1,2-
dioleoyl-sn-glycero-3-phosphoeth-anolamine-N-[4-(p-maleimidophenyl) butyramide (MPB-PE) were mixed in 
chloroform to form a lipid composition with a molar ratio of DOPC:DOPG:MPB = 4:1:5, and the organic solvent 
in the lipid mixture was evaporated under argon gas, followed by additional drying under vacuum overnight to 
form dried thin lipid films. The resultant dried film was hydrated in 10 mM Bis-Tris propane at pH 7.0 with 
doxorubicin at a molar ratio of 0.2:1 (drugs:lipids) with vigorous vortexing every 10 min for 1 h and then applied 
with 4 cycles of 15-s sonication (Misonix Microson XL2000, Farmingdale, NY) on ice at 1 min intervals for each 
cycle. To induce divalent-triggered vesicle fusion, MgCl2 was added to make a final concentration of 10 mM. 
The resulting multilamellar vesicles were further crosslinked by addition of dithiothreitol (DTT, Sigma-Aldrich) at 
a final concentration of 1.5 mM for 1 h at 37°C. The resulting vesicles were collected by centrifugation at 
14,000 g for 4 min and then washed twice with PBS. For iRGD conjugation to cMLVs, the particles were 
incubated with 0.5 µmol of iRGD peptides (GenScript, Piscataway, NJ) for 1 h at 37°C. For pegylation of 
cMLVs, both unconjugated and iRGD-conjugated particles were further incubated with 0.5 µmol of 2 kDa PEG-
SH (Laysan Bio Inc., Arab, AL) for 1 h at 37°C. The particles were then centrifuged and washed twice with 
PBS. The final products were stored in PBS at 4°C. The hydrodynamic size and size distribution of iRGD-NPs 
were measured by dynamic light scattering (Wyatt Technology, Santa Barbara, CA). The hydrodynamic size of 
these targeted nanoparticles was measured by dynamic light scattering (DLS), and the result showed the 
mean diameter of iRGD-NPs to be ~230 ± 11.23 nm, which was similar to that of unconjugated cMLV (~220 ± 
6.98 nm). To examine whether iRGD peptides were conjugated to the surface of nanoparticles via the 
maleimide headgroups, fluorescent 1,1-dioctadecyl-3,3,3,3-tetramethylindodicarbocyanine (DiD)-labeled 
nanoparticles were used to visualize both unconjugated and conjugated particles. In addition, Alexa488 dye 
was utilized to label iRGD peptides through the amine group of lysine residues on iRGD peptides 
(CRGDKGPDC). The results showed that a significant colocalization of DiD-labeled iRGD-NPs with Alexa488-
labeled iRGD peptides was observed, while no Alexa488 signals were detected on unconjugated particles, 
suggesting that iRGD peptides were successfully conjugated to nanoparticles. 

 
Internalization and intracellular pathways of iRGD-cMLVs   We next investigated the entry mechanism and 
intracellular process of iRGD-NPs into tumor cells to determine whether iRGD peptides could change the 
pathway by which nanoparticles are endocytosed. Endocytosis is known as one of the main entry mechanisms 
for various nanoscale drug carriers (Dobson and Kell, 2008; Petros and DeSimone, 2010). Several studies 
have reported the involvement of clathrin- and caveolin-dependent pathways in nanoparticle-mediated 
endocytosis (Conner and Schmid, 2003; Le Roy and Wrana, 2005; Pelkmans and Helenius, 2002). Therefore, 
to investigate the role of clathrin- or caveolin-dependent endocytosis of iRGD-NPs, we visualized the individual 
fluorescent DiD-labeled NPs or iRGD-NPs with endocytic structures (clathrin or caveolin) after 15 min 
incubation at 37°C. As shown in Figure 4a, a significant colocalization of unconjugated nanoparticles with 
caveolin-1 signals was observed, while no colocalization between unconjugated nanoparticles and clathrin 
structures was detected, indicating that the caveolin pathway may be involved in the endocytosis. However, 
after 15 min incubation, iRGD-NPs were colocalized with clathrin structures, whereas, no significant 
colocalization between iRGD-NPs and caveolin-1 signals was observed (Figure 4b), suggesting that the 
endocytosis of iRGD-NPs could be clathrin-dependent. The quantification of iRGD-NPs and NPs colocalized 
with caveolin-1 or clathrin structures by analyzing more than 30 cells confirmed that the clathrin-mediated 
pathway could be involved in the entry of iRGD-NPs, while the endocytosis of NPs could be caveolin-1-
dependent (Figure 4c and 4d). The role of clathrin-dependent endocytosis of iRGD-NPs was further examined 
by drug-inhibition assays shown in Figure 2E. Chlorpromazine (CPZ) is known to block clathrin-mediated 
internalization by inhibiting clathrin polymerization (Wang et al., 1993), while filipin is a cholesterol-binding 
reagent that can disrupt caveolin-dependent internalization (Neufeld et al., 1996; Rothberg et al., 1992). As 
shown in Figure 4e, CPZ (10 µg/ml) significantly decreased the uptake of iRGD-NPs in HeLa cells, while no 
significant inhibitory effect on their uptake was observed when cells were pretreated with Filipin (10 µg/ml). 
However, pretreatment of cells with Filipin remarkably decreased the uptake of unconjugated nanoparticles (P 
< 0.01), whereas no inhibitory effect on their uptake was observed in CPZ-pretreated cells. Results from the 
inhibition assay further confirmed that iRGD-NP endocytosis is mediated by the clathrin-dependent pathway, 
while unconjugated particles enter cells via caveolin-dependent endocytosis. 

Once inside the cells, the intracellular fate of the endosomal contents has been considered as an 
important determinant of successful drug delivery (Bareford and Swaan, 2007). It was also proposed that 
nanoparticles might transport to the early endosomes in a GTPase Rb5-dependent manner and also proceed 
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through the conventional endocytic pathway (endosomes/lysosomes) (Carlsson et al., 1988; Christoforidis et 
al., 1999; Luzio et al., 1990), probably resulting in enzymatic destruction of lipid membrane for drug release in 
lysosomes (Bareford and Swaan, 2007). To further investigate the subsequent intracellular fate of iRGD-NPs, 
DiD-labeled iRGD-NPs were evaluated for their colocalization with the early endosome (EEA-1) (Pelkmans et 
al., 2001) and lysosome (Lamp-1) (Carlsson et al., 1988) markers at different incubation times at 37°C. Most 
iRGD-NPs were found in the EEA1+ early endosomes after incubation of 30 min, validating the involvement of 
early endosomes in the intracellular fate of targeted nanoparticles. In addition, after 2h incubation, a significant 
colocalization of iRGD-NPs with lysosomes was observed, suggesting that iRGD-NPs may transport to early 

endosomes and further travel to lysosomes for possible release of drug from liposomes and endocytic 
compartments to cytosol. When taken together, the results showed that iRGD-NPs enter tumor cells via 
clathrin-dependent and receptor-mediated endocytosis, followed by transport through early endosomes and 
lysosomes. 

	
  
 
Figure 4: Clathrin-mediated internalization of iRGD-NPs and caveolin-dependent endocytosis of NPs. (A, B) 
HeLa cells were incubated with DiD-labeled NP nanoparticles (red, A) or DiD-labeled iRGD-NPs particles 
(red, B) for 30 min at 4°C to synchronize internalization. The cells were then incubated at 37°C for 15 min, 
fixed, permeabilized, and immunostained with anti-clathrin (green) or anti-caveolin-1 antibody (green). The 
nucleus of cells was counterstained with DAPI. Scale bar represents 10 µm. (C, D) Quantification of NP and 
iRGD-NP particles colocalized with clathrin (C) or caveolin-1 signals (D) after 15 min of incubation. Overlap 
coefficients were calculated using Manders' overlap coefficients by viewing more than 30 cells of each 
sample using the Nikon NIS-Elements software. Error bars represent the standard deviation of the mean 
from analysis of multiple images (***: P < 0.005). (E) Inhibition of clathrin-dependent endocytosis by 
chlorpromazine (CPZ, 25 µg/ml) and caveolin-dependent internalization by Filipin (10 µg/ml). The uptake of 
DiD-labeled NP and DiD-labeled iRGD-NP nanoparticles was determined by measuring DiD fluorescence 
via flow cytometry. Error bars represent the standard deviation of the mean from triplicate experiments (* P 
< 0.05, ** P < 0.01). 
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Nanocapsules with LHRH peptide as targeting ligand   After the successful development of clickable 
nanocapsules, we then tested methods to conjugate cancer-targeting ligands. We first selected the luteinizing 
hormone releasing hormone (LHRH) peptide 5 (Figure 5a), which binds to LHRH receptors that are 
overexpressed in various hormonal related cancers, such as breast and prostate cancers (Nagy and Schally, 
2005). LHRH receptors are not expressed detectably in most visceral organs and have been targeted in the 
delivery of small molecules (Dharap et al., 2003; Dharap et al., 2005). The bifunctional dibenzocyclooctyne-
PEG4-N-hydroxysuccinimidyl ester (DBCO-PEG4-NHS ester, 6, Figure 5a) was chosen as the tether. The 
peptide 5 was first conjugated to the NHS terminus of 6 through the internal D-Lys designed to serve as a site 
for coupling. The adduct 7 was verified by LC-MS and purified by HPLC to homogeneity. Subsequently, 7 was 
added to the azido-functionalized GFP nanocapsules at a molar ratio of 15:1 and allowed to react overnight at 
4 °C. Following the click reaction, unreacted 7 was removed through ultrafiltration and the nanocapsules were 
dialyzed into PBS. To test the LHRH receptor mediated endocytosis of nanocapsules, we added the LHRH 
functionalized nanocapsules to MDA-MB-231 cells, which is known to overexpress the receptor (Harris et al., 
1991). As controls, we also added GFP nanocapsules that are i) positively charged and are expected to be 
internalized; ii) azido-functionalized but not conjugated to LHRH; and iii) do not contain azido groups. After 
overnight incubation, the internalization of nanocapsules was visualized by fluorescence microscopy. As can 
be seen from Figure 5c, the positively charged nanocapsules were well-internalized as expected. In contrast, 
the neutral nanocapsules, either with or without azido groups, were not internalized into cell at all. LHRH-
functionalized GFP nanocapsules, however, were efficiently internalized as can be seen from the GFP 
fluorescence in the cytoplasm. To quantify the extent of internalization through LHRH receptor, flow cytometry 
measurement was performed on samples. The level of internalization through LHRH receptor-mediated 
endocytosis is ~70% of that observed with positively charged nanocapsules. More importantly, azido-
functionalized nanocapsules with LHRH-conjugation did not exhibit noticeable internalization compared to no 
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treatment or native GFP controls. Trafficking experiments were performed for the LHRH-targeted GFP 
nanocapsules. Localization in the early endosomes was observed within 30 minutes, while release into the 
cytoplasm was detected at one and two hours after delivery. No significant localization of GFP in the late 
endosome was observed.  
 
 
 To further test the selectivity of the protein delivery, we added the LHRH-functionalized nanocapsules 
to several cell lines with varying expression levels of LHRH receptor. When added to cervical cancer cell line 
HeLa cells that have comparable levels of expression, the amount of internalization were similar to that of 
MDA-MB-231 (Figure 5b). No internalization was seen with the SK-OV-3, which is a LHRH receptor-negative 
ovarian cancer cell line (Figure 5g). We then examined the targeting and internalization of the LHRH-targeted 
GFP nanocapsules after exposing them in FBS containing DMEM media at 37 °C for 24 and 49 hrs. No 
attenuation in internalization was observed compared to untreated nanocapsules, suggesting the targeting 
mechanism remained intact and the nanocapsules were stable under serum-like conditions.  
 
Cytotoxicity of LHRH-conjugated p53 nanocapsules   To examine the effect of delivered p53 on cell 
viability, we performed cytotoxicity studies using the LHRH-functionalized nanocapsules. Two different 
versions of p53 were used, the wild type and the tumor selective “super” p53 variant. The super p53 has the 
gain of function point mutant S121F that has been shown to display more potent apoptotic activity. The 
mutation alters the specificity of p53 in binding its targets, and in particular, attenuates the activation of MDM2 
transcription associated with normal p53 overexpression. The decreased MDM2 feedback control therefore 
increases apoptosis induction. The S121F mutant kills tumor cells irrespective of p53 status but not wild-type 

	
  
Figure 5: (a) Scheme of LHRH S-S nanocapsule. Glp is cyclized glutamine; (b-g) Fluorescence microscopy images of 
cell lines treated with 400 nM GFP-containing nanocapsules. b) MDA-MB-231 treated with GFP nanocapsules 
synthesized from monomer alone; (c) MDA-MB-231 treated with positively charged GFP nanocapsules; (d) MDA-MB-
231 treated with GFP nanocapsules synthesized from monomers (no targeting ligand); (e) MDA-MB-231 treated with 
GFP nanocapsules synthesized from monomers and conjugated with LHRH peptide; (f) HeLa cells treated with 
nanocapsules in e; g) SK-OV-3 cells treated with nanocapsules in e. (h-j) Cytotoxicity of LHRH-conjugated 
nanocapsules towards cancer cell lines.  
 



	
   12 

mouse embryo fibroblasts. S-S S121F NCs were prepared in the same manner as S-S p53 NC and conjugated 
to LHRH peptides using the click chemistry. Physical characterization was performed to verify that the 
nanocapsules were nearly identical in properties. Both LHRH-conjugated nanocapsules were then added to 
different cancer cell lines and the cytotoxicity was measured using MTS assay after 48 hrs. As shown in 
Figures 5h-5j, LHRH-conjugated S-S p53 NCs showed high selectivity towards MDA-MB-231 cells that 
overexpress the LHRH receptor. Nearly no toxicity was observed towards either SK-OV-3 or HFF at 800 nM, 
the highest concentration assayed. The S121F containing nanocapsules showed potent cytotoxicity, with IC50 
at ~100 nM. In contrast, IC50 for the wild type p53 nanocapsules was ~300 nM. We confirmed observed cell 
death after delivery of S121F is indeed via apoptosis by using TUNEL assay. Negative controls were 
performed to ensure the observed toxicity is due to the combination of targeted delivery of p53 or tumor 
selective variant, including i) azido-functionalized S-S S121F NCs not conjugated to LHRH; ii) LHRH 
conjugated S-S GFP NCs; and iii) azido-functionalized GFP NCs not conjugated to LHRH. In all these controls, 
the cells remained unaffected by the addition of nanocapsules. These results therefore unequivocally confirm 
the targeted and functional delivery of p53 can be achieved using the encapsulation and conjugation 
strategies.  

 
 
Specific Aim 3: Examining the In Vivo Potency and Pharmacokinetics of the Nanocapsules  
 
In vivo potency of apoptin nanocapsules    We further examined the potency of S-S APO NC in a mouse 
xenograft model. Female athymic nude (nu/nu) mice were subcutaneously grafted on the back flank with 5x106 
MCF-7 breast cancer cells. When the tumor volume reached 100-200mm3 (day 0), mice were randomly 
separated into different groups and treated with intratumoral injection of PBS, MBP-APO, S-S APO NC. In 
addition, S-S NC with bovine serum albumin (S-S BSA NC) was added as a nonlethal protein cargo control to 
test the effects of the S-S NC polymer component on tumor cells in vivo. Tumors treated with saline, S-S BSA 
NC or native MBP-APO expanded rapidly and reached the maximum limit (> 2500mm3) within 12 days. In 
sharp contrast, tumor growth was significantly delayed when treated with S-S APO NC (Figure 6a). Fixed 
tumor tissues collected from each treatment group were examined for DNA fragmentation using in situ TUNEL 
assay. The images revealed the highest level of cell apoptosis for the tumor harvested from mice treated with 
S-S APO NC, correlating well with the significantly delayed tumor growth observed for this treatment group and 
confirming that tumor growth inhibition was indeed due to apoptin-mediated apoptosis (Figure 6b). Collectively, 
the xenograft study verified that the degradable NCs effectively delivered MBP-APO proteins to tumor cells in 
vivo, which was highly effective in limiting tumor progression. Upon further optimization of the 
pharmacokinetics of the S-S APO NC, these particles may be intravenously administered as an anticancer 

	
  
	
  
Figure 6: Treatment of apoptin nanocapsules resulted in tumor growth retardation. (a) Significant tumor 
inhibition was observed in mice treated by S-S APO NC. (b) Detection of apotosis in tumor tissues after 
treatment with different NCs.  
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therapy. 
 
Pharmacokinetics and Biodistribution of Nanoparticles by PET Imaging   For these tasks, we report our 
progress on utilizing positron emission tomography (PET) imaging to study in vivo biodistribution and 
pharmacokinetics of nanoparticles. We will still use the liposomal nanoparticles as the model system for testing 
the assays. For radiolabeling nanoparticles, amine-terminated PEG-SH was used for PEGylation of 
nanoparticles (UL and CML; UL: unilamellar nanoparticle; CML: crosslinked multilamellar nanoparticle), while 
DSPE-PEG-NH2 was used for PEGylation of DLLs (Doxil-like nanoparticle), in order to introduce amine groups 
onto liposomes for further reaction (Figure 7a). 64Cu was produced using the 64Ni(p,n)64Cu nuclear reaction and 
supplied in high specific activity as 64CuCl2 in 0.1 N HCl. The bifunctional chelator AmBaSar was synthesized 
as reported (Cai et al., 2010). AmBaSar was activated by EDC and SNHS. Typically, 5 mg of AmBaSar (11.1 
µmol) in 100 µL water and 1.9 mg of EDC (10 µmol) in 100 µL water were mixed together, and 0.1 N NaOH 
(150 µL) was added to adjust the pH to 4.0. SNHS (1.9 mg, 8.8 µmol) was then added to the stirring mixture on 
ice-bath, and 0.1 N NaOH was added to finalize the pH to 4.0. The reaction remained at 4 °C for 30 min. The 
theoretical concentration of active ester AmBaSar-OSSu was calculated to be 8.8 µmol. Then, 5–20 times 
AmBaSar-OSSu (based on molar ratios) were loaded to the liposomes of interest. The pH was adjusted to 8.5 
using borate buffer (1M, pH 8.5). The reaction remained at 4 °C overnight, after which the size-exclusion PD-
10 column was employed to afford the AmBaSar-conjugated liposomes in PBS buffer. AmBaSar-liposome was 
labeled with 64Cu by addition of 1–5 mCi of 64Cu (50–100 µg AmBaSar-liposome per mCi 64Cu) in 0.1 N 
phosphate buffer (pH 7.5), followed by 45 min incubation at 40 °C. 64Cu-AmBaSar-liposome was purified on a 
size exclusion PD-10 column using PBS as the elution solvent. Positron emission tomography (PET) imaging 
of the mice was performed using a microPET R4 rodent model scanner. The B16-F10 tumor-bearing C57/BL6 
mice were imaged in the prone position in the microPET scanner. The mice were injected with approximately 
100 µCi 64Cu-AmBaSar-liposome via the tail vein. For imaging, the mice were anaesthetized with 2% isoflurane 
and placed near the center of the field of view (FOV), where the highest resolution and sensitivity are obtained. 
Static scans were obtained at 1, 3, and 24h post-injection. The images were reconstructed by a two-
dimensional ordered subsets expectation maximum (2D-OSEM) algorithm. Time activity curves (TAC) of 
selected tissues were obtained by drawing regions of interest (ROI) over the tissue area. The counts per 
pixel/min obtained from the ROI were converted to counts per ml/min by using a calibration constant obtained 
from scanning a cylinder phantom in the microPET scanner. The ROI counts per ml/min were converted to 
counts per g/min, assuming a tissue density of 1 g/ml, and divided by the injected dose to obtain an image 
based on ROI-derived percent injected dose of 64Cu tracer retained per gram (%ID/g). For biodistribution, 
animals were sacrificed 24h post-injection; tissues and organs of interest were harvested and weighed. 
Radioactivity in each organ was measured using a gamma counter, and radioactivity uptake was expressed as 
percent injected dose per gram (%ID/g). Mean uptake (%ID/g) for each group of animals was calculated. 

As shown in Figure 7b, the PET images were obtained at several time points (1, 3, 24 h) after 
intravenous injection of 64Cu-AmBaSar-labeled ULs, DLLs, or CMLs. After 1 h of administration, radioactivity 
was present mainly in well-perfused organs, and accumulation in tumors was detected in DLLs and CMLs 
compared with ULs. Furthermore, the accumulation of DLLs and CMLs in tumors significantly increased after 3 
and 24 h of injection, whereas accumulation of ULs in the bladder was observed after 3 h of administration as 
a consequence of rapid degradation. In addition, the tumors and tissues of interest were then excised at 24 h 
post-injection and weighed, and accumulation levels of particles in the tumors and tissues were determined by 
measuring radioactivity (Figure 7c). This biodistribution assay revealed significantly higher accumulation of 
CMLs in tumors than that of ULs with the same lipid composition, suggesting that CMLs with improved vesicle 
stability could indeed enhance accumulation of drug carriers at the tumor site. 
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4. IMPACT  
 
 
We are able to deliver most milestones promised in the original proposal. We also believe that the 
entire work described in this report has significant impact on cancer research and cancer treatment. 
Before this work, this was no single method of intracellular protein delivery that could be used to 
deliver functional proteins into cells. As a result, while many proteins had been found to have potent 
and specific antitumor properties, there was no general method of administering them as part of 
anticancer therapy. However, upon completion of this project, we have demonstrated a general 
method of protein-based chemotherapy. Our work opens potential clinical routes to administer protein 

	
  
	
  
Figure 7: Biodistribution of drug carriers and accumulation of Dox in tumors. (a) Preparation of 64Cu-AmBaSar-labeled 
liposomes. (b) In vivo PET images of C57/BL6 mice bearing B16 tumors at 1, 3, and 24 h post-injection of 64Cu-
AmBaSar-labeled UL, DLL, or CML. (c) Biodistribution of liposomes in different tissues at 24 h after injection with 64Cu-
AmBaSar-labeled UL, DLL, or CML shown as percentage of injection dose per g of tissues (% ID/g).  
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drugs to breast cancer patients, without using the gene therapy approaches. Two target proteins, 
apoptin and p53, have been demonstrated to be effective to induce rapid apoptosis in breast tumor 
cells in vitro and in vivo, offering supporting evidence for further translational studies in clinic settings. 
Our targeting studies using iRGD and LHRH peptides conclude that they are promising targeting 
reagents that can be introduced to nanocapsules to further enhance breast cancer therapy. 
Therefore, we firmly believe the impact of our nanocapsule work is high and this innovative approach 
can help cure breast cancer.  
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nanocapsules containing the 2.4 MDa apoptin complexes. Recombinant apoptin is reversibly
encapsulated in a positively charged, water soluble polymer shell and is released in native
form in response to reducing conditions such as the cytoplasm. As characterized by confo-
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ntroduction

he most desirable anticancer therapy is both potent and
pecific toward tumor cells [1,2]. Many conventional small
olecule chemotherapeutics do not discriminate between

ancerous and normal cells, cause damage to healthy tis-
ues, and are therefore unable to be administered at high
osage. In contrast, cytoplasmic and nuclear proteins that
electively alter the signaling pathways in tumor cells,
eactivate apoptosis and restore tissue homeostasis, can
elay tumor progression with less collateral damage to other
issues [3—6]. Using stimuli-responsive nanocarriers for the
ntracellular delivery of such proteins, including human
umor suppressors [7] and exogenous tumor-killing proteins
8—10]), is attractive as a new anti-cancer therapy modal-
ty.

Apoptin is a 121-residue protein derived from chicken
nemia virus [9]. When transgenically expressed, apoptin
an induce p53-independent apoptosis in a variety of tumor
nd transformed cells [11,12], while leaving normal and
ntransformed cells unaffected [13]. Apoptin exists as a
lobular multimeric complex, composed of thirty to forty
ubunits, with no well-defined secondary structure [14].
hile the exact mechanism of the tumor selectivity is unre-

olved, apoptin is known to translocate to the nucleus
here tumor-specific phosphorylation at residue Thr108

akes place, leading to accumulation of apoptin in nucleus
nd activation of the apoptotic cascade in tumor cell [15].
n normal cells, apoptin is not phosphorylated at Thr108
nd is located mostly in the cytoplasm, where it aggre-
ates and undergoes degradation [16]. Because of the high
otency in inducing this exquisite tumor-selective apopto-
is, apoptin has been investigated widely as an anti-tumor
herapeutic option [9]. Different gene therapy approaches
ave been used to administer apoptin to mouse xenograft
umor models, in which significant reduction in tumor
izes and prolonged lifespan of mice have been observed
ithout compromising the overall health [17—19]. How-
ver, as with other gain-of-function therapy candidates,
n vivo gene delivery approaches using viral vectors may
ead to unwanted genetic modifications and elicit safety
oncerns [20]. While protein transduction domain (PTD)-
used apoptin has been delivered to cells [21,22], this
pproach suffers from inefficient release of the cargo from
ndosomes and instability of the unprotected protein [23].
evelopment of nanoparticle carriers to aid the functional
elivery of apoptin to tumor cells is therefore desirable
24].

We chose to work with recombinant maltose-binding-
rotein fused apoptin (MBP—APO) that can be solubly
xpressed from Escherichia coli, whereas native apoptin
orms inclusion bodies [14]. MBP—APO has been shown to
imilarly assemble into a multimeric protein complex, which
xhibits the essential functions and selectivity of native
poptin [14]. Nanoparticle-mediated delivery of functional
BP—APO poses unique challenges [25]. First, MBP—APO
reassembles into large complex with an average diam-
ter of ∼40 nm and molecular weight of ∼2.4 MDa [14].

o achieve nanocarrier sizes that are optimal for in vivo
dministration (∼100 nm) [26], a loading strategy that forms
ompact particles is desirable. Second, in order to maintain
he multimeric state of functional MBP—APO, the protein

i
N
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oading and releasing steps need to take place under very
ild, physiological conditions in the absence of surfac-

ants. Lastly, the nanocarrier must completely disassemble
nside the cell to release the MBP—APO in its native and
nobstructed form to ensure the correct spatial presenta-
ion of key residues within the apoptin portion, including
he nuclear localization/export signals, the phosphorylation
ite and other elements important for downstream signal-
ng.

In the current study, we selected a polymeric nanocap-
ule (NC) strategy for the functional delivery of MBP—APO,
n which the protein complex is noncovalently protected
n a water soluble polymer shell (Fig. 1). This slightly
ositively charged shell shields the MBP—APO from serum
roteases and surrounding environment, while enabling
ellular uptake of the polymer—protein complex through
ndocytosis [27]. The polymeric layer is weaved together
y redox-responsive cross-linkers containing disulfide bond
S S) that can be degraded once the NCs are exposed
o the reducing environment in cytoplasm [28]. No cova-
ent bonds are formed between the protein cargo and
he polymer shell, which ensures complete disassembly
f the capsule layer and release of native MBP—APO
nside the cell. Using this approach, we show that
BP—APO can be efficiently delivered to induce apo-
tosis in cancer cell lines selectively both in vitro and
n vivo.

aterials and methods

aterials

-(3-aminopropyl)methacrylamide hydrochloride was pur-
hased from Polymer Science, Inc. CellTiter 96® AQueous
ne Solution Cell Proliferation Assay (MTS) reagent
as purchased from Promega Corporation. APO-BrdUTM

UNEL Assay Kit was purchased from Invitrogen. In Situ
ell Death Detection Kit, POD; was purchased from
oche Applied Science. Female athymic nude (nu/nu)
ice, 6 weeks of age, were purchased from Charles
iver Laboratories (Wilmington, MA). All other chemi-
als were purchased from Sigma—Aldrich and used as
eceived.

rotein nanocapsule preparation

he concentration of protein was diluted to 1 mg/mL
ith 5 mM sodium bicarbonate buffer at pH 9. Then
00 mg/mL acrylamide (AAm) monomer was added to
mL of protein solution with stirring at 4 ◦C. After 10 min,

he second monomer, N-(3-aminopropyl)methacrylamide
APMAAm), was added while stirring. Different cross-
inkers, N,N′-methylene bisacrylamide for ND NC and
,N′-bis(acryloyl)cystamine for S S NC, were added
min after the addition of APMAAm. The polymer-

zation reaction was immediately initiated by adding
0 �L of ammonium persulfate (100 mg/mL, dissolved

n deoxygenated and deionized water) and 3 �L of
,N,N′,N′-tetramethylethylenediamine. The polymeriza-
ion reaction was allowed to proceed for 60 min. The
olar ratios of AAm/APMAAm/cross-linker used were
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Figure 1 Degradable nanocapsules for apoptin delivery. (a and b) Schematic diagram of synthesis of degradable apoptin nanocap-
sules (S S APO NC) and delivery into tumor cells to induce apoptosis; TEM images of (c) native MBP—APO; (d) enlarged image of
MBP—APO; (e) S S APO NC; and (f) degraded S S APO NC after treatment with 2 mM GSH for 6 h at 37 ◦C.
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.5:1:0.14, 2:1:0.14, 4:1:0.14, and 8:1:0.14. Buffer
xchange with phosphate-buffered saline (PBS) buffer
pH 7.4) was used to remove the remaining monomers
nd initiators. Rhodamine-labeled APO NCs was obtained
hrough encapsulation of MBP—APO modified with 5-
arboxy-X-rhodamine N-succinimidyl ester (mass ratio
MBP—APO:rhodamine) = 4:1).

haracterization of protein nanocapsules

he mean hydrodynamic size and �-potential of
C were determined by dynamic light scattering
DLS) in PBS buffer. Samples of NCs (0.05 mg/mL)
or TEM imaging were negatively stained with 2%
ranyl acetate in alcoholic solution (50% ethanol).
he lamella of stained sample was prepared on
arbon-coated electron microscopy grids (Ted Pella,
nc.).

ellular uptake and localization of nanocapsules

DA-MB-231, HeLa, MCF-7, and human foreskin fibroblast
HFF) cells (ATCC, Manassas, VA) were cultured in Dulbecco’s
odified Eagle’s media (DMEM) (Invitrogen) supplemented
ith 10% bovine growth serum (Hyclone, Logan, UT), 1.5 g/L

odium bicarbonate, 100 �g/mL streptomycin and 100 U/mL
enicillin, at 37 ◦C with 98% humidity and 5% CO2. To
isualize NCs uptake, MDA-MB-231 cells were seeded into 48-
ell plate, with a density of 10,000 cells/well in 250 �L of
edia with supplements. S S Rho—APO NC and ND Rho—APO
C were added to a final concentration of 20 nM. After
h and 24 h of incubation, cells were washed with PBS

wice, stained with DAPI Nucleic Acid Stain and imaged.
or internalization of S S Rho—APO NC with different �-
otentials, MDA-MB-231 cells were incubated with 20 nM
Cs for 2 h before nuclei staining. Markers for early and

ate endosomes were used for internalization trafficking
tudy. A concentration of 20 nM S S Rho—APO NCs was
dded to HeLa cells and incubated for 30 min, 60 min and
20 min under 37 ◦C. Cells were then fixed with 4% formalde-
yde, permeabilized with 0.1% Triton X-100, and stained
ith antibodies, mouse anti-EEA1 antibody against early
ndosomes and rabbit anti-CI-MPR antibody against late
ndosomes (Cell Signaling Technology, Inc.). Texas red goat
nti-mouse IgG and Alexa Fluor® 647 goat anti-rabbit IgG
Invitrogen) were added as the secondary antibody. To
etermine the cellular localization of the protein deliv-
red, confocal images were taken with HeLa, MCF-7, and
FF cells incubated with 20 nM of S S Rho—APO NC or ND
ho—APO NC at 37 ◦C for 24 h. Nuclei were then coun-
erstained with DAPI. The Z-stack images of cells were
maged at 0.4-�m intervals and analyzed by Nikon NIS
lement software. Fluorescent microscopy images were
cquired on a Yokogawa spinning-disk confocal scanner
ystem (Solamere Technology Group, Salt Lake City, UT)
sing a Nikon eclipse Ti-E microscope equipped with a
0×/1.49 Apo TIRF oil objective and a Cascade II: 512

MCCD camera (Photometrics, Tucson, AZ, USA). An AOTF
acousto-optical tunable filter) controlled laser-merge sys-
em (Solamere Technology Group Inc.) was used to provide
llumination power at each of the following laser lines:
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91 nm, 561 nm, and 640 nm solid state lasers (50 mW for
ach laser).

ytotoxicity assays

ifferent cancer cells lines, HeLa, MCF-7 and MDA-MB-231,
s well as noncancerous HFF, were seeded into 96-well
lates, each well containing 5000 cells in 100 �L of DMEM
ith supplements. Different concentrations of protein and
Cs were added into each well and the plates. After incuba-
ion of 48 h at 37 ◦C, the wells were washed with PBS solution
wice and 100 �L of fresh cell culture media with supple-
ents was added. Then 20 �L MTS solution (CellTiter 96®

Queous One Solution Cell Proliferation Assay) was added
nto each well and the plates were incubated for 3 h at 37 ◦C.
he absorbance of each well was read at 490 nm using a
icroplate reader (PowerWave X, Bio-tek Instruments, USA).
poptosis was detected using APO-BrdU Terminal Deoxynu-
leotidyl Transferase dUTP Nick End Labeling (TUNEL) assay
it. MDA-MB-231 and HFF cells were seeded at a density
f 100,000 cells/well into a 6-well plate in 2 mL of cell
ulture media with supplements. Proteins and NCs were
dded after cells covered 80% of bottom surface. After 24 h
f incubation, cells were fixed with 1% paraformaldehyde
n PBS, followed by the addition of DNA labeling solu-
ion containing terminal deoxynucleotidyl transferase and
romodeoxyuridine (BrdUrd). Cells were then stained with
lexa Fluor® 488 dye-labeled anti-BrdUrd antibody. Sam-
les were deposited onto slides, which were later stained
ith propidium iodide (PI) solution containing RNase A.

mages were obtained by fluorescent microscope (Zeiss,
bserver Z1) using appropriate filters for Alexa Fluor 488
nd PI.

n vivo studies with MCF-7 xenograft model

ll mice were housed in an animal facility at the Uni-
ersity of Southern California in accordance with institute
egulations. Female athymic nude (nu/nu) mice were sub-
utaneously grafted on the back flank with 5 × 106 MCF-7
umor cells. Afterwards, tumor size was monitored by a
ne caliper and the tumor volume was calculated as the
roduct of the two largest perpendicular diameters and the
ertical thickness (L × W × D, mm3). When the tumor vol-
me reached 100—200 mm3, mice were randomly separated
nto different groups. From day 0, mice were treated with
ntratumoral injection of native MBP—APO or S S APO NC
200 �g per mouse) every other day. PBS and S S BSA NC
ere included as the negative controls. When the tumor
olume exceeded 2500 mm3, the mice were euthanized by
O2 according animal protocol. The average of tumor vol-
mes was plotted as the tumor growth curve in respective
reated groups. For histology study, treated tumor sam-
les were collected and fixed in 4% paraformaldehyde, and
rocessed for staining using the In Situ Cell Death Detection
it. The stained tumor slides were observed under micro-
cope, and representative pictures were taken for analysis.

araformaldehyde-postfixed frozen tumor sections (5-�m
hick) were permeabilized with 0.1% triton X-100 and stained
ith TUNEL assay kit (In Situ Cell Death Detection Kit, POD;
oche Applied Science, Indianapolis, IN) in accordance with
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Degradable polymeric nanocapsule

the manufacturer’s instructions. DAPI was used for nuclear
counterstaining.

Results and discussion

Synthesis and characterization of apoptin
nanocapsules

MBP—APO (pI = 6.5) was first purified from E. coli extract
using an amylose-affinity column (Supplement 2 and
Supplement 8). Dynamic light scattering (DLS) measure-
ment revealed an average hydrodynamic radius of 36.1 nm
(Supplement 3), consistent with the reported size for the
recombinant MBP—APO complex [14]. Transmission electron
microscopy (TEM) analysis of MBP—APO showed similarly
sized protein complexes (Fig. 1c and enlarged in Fig 1d).
Interestingly, MBP—APO complexes appear to adopt a disk-
shaped structure despite the lack of defined secondary
structure from the apoptin component. Since the apoptin
portion of the protein can self-assemble into the ∼40-
mer complex, we propose a three dimensional arrangement
of MBP—APO in which the C-terminal apoptin forms the
central spoke of the wheel-like structure (Fig. 1a), with
the larger MBP portion distributes around the apoptin.
The planar arrangement allows the apoptin portion of
the fusion protein to remain accessible to its protein
partners, which may explain how the MBP—APO fusion
retains essentially all of the observed functions of native
apoptin.

The reversible encapsulation strategy for producing
apoptin NCs is shown in Fig. 1a. Following electrostatic
deposition of the monomers acrylamide (1 in Fig. 1a)
and N-(3-aminopropyl)methacrylamide (2), and the cross-
linker N,N′-bis(acryloyl)cystamine (3), at a molar ratio of
1.5:1:0.14, onto MBP—APO (1 mg) in carbonate buffer (5 mM,
pH 9.0), in situ polymerization was initiated with the
addition of free radical initiators and proceeded for 1 h.
The molar ratio and the time of reaction reported were
optimized to minimize protein aggregation and precipita-
tion, as well as to maximize the solution stability of the
resulting NCs (designated below as S S APO NC). Excess
monomers and cross-linkers were removed using ultrafiltra-
tion and S S APO NC was stored in PBS buffer (pH 7.4).
DLS clearly showed increase in average diameter of the
sample to ∼75 nm (Supplement 3) with a slightly positive
�-potential value of 2.8 mV (Supplement 1). TEM analy-
sis of the S S APO NC confirmed the nearly doubling in
diameter of the spherical particle (Fig. 1e). Unexpect-
edly, the NCs displayed dark contrast upon uranyl acetate
staining, which hints that the cores of the particles were
very densely packed. As expected from the incorpora-
tion of redox-responsive cross-linker 3, the reduction of
NCs size can be seen upon treatment of the reducing
agent glutathione (GSH) (2 mM, 6 h, 37 ◦C). As shown in
Fig. 1f, the densely packed NCs were completely dissoci-
ated into ∼30 nm particles, confirming the reversible nature
of the encapsulation process. As a control, we also syn-

thesized nondegradable MBP—APO NCs (ND APO NC) using
N,N′-methylene bisacrylamide as the cross-linker with same
monomer and protein concentrations under identical reac-
tion conditions. Whereas similarly sized NCs were formed, no
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egradation of ND APO NC can be observed in the presence
f GSH.

ellular uptake and localization of nanocapsules

e next examined the cellular uptake of the S S APO NC and
ellular localization of the cargo. If the unique tumor selec-
ivity of MBP—APO is maintained following the encapsulation
nd release processes, we expect the delivered MBP—APO
o either accumulate in the nuclei of the tumor cells, or to
ocalize in the cytoplasm of noncancerous cells. Prior to the
olymerization process, the MBP—APO protein was conju-
ated to amine-reactive rhodamine (Rho—APO) as described
n section ‘Protein nanocapsule preparation’. Subsequent
ncapsulation yielded similarly sized NCs as unlabeled S S
PO NCs. Fluorescent microscopy showed all NCs readily
enetrated the cell membrane and are present in the cyto-
lasm of MDA-MB-231 cells within 1 h (Supplement 4). When
he relative amounts of positively charged monomer 2 were
educed in the NC shell, corresponding decreases in �-
otentials of the NCs were measured by DLS, which led to
ecreases in cellular internalization (Supplement 5). The
ellular trafficking of the internalized S S Rho—APO NCs in
eLa cells was investigated for 2 h by monitoring colocaliza-
ion using fluorescent markers for early and late endosomes
Fig. 2a and Supplement 6). Colocalization of Rho—APO with
arly endosomes was detected at the highest levels after
0 min and decreased at later time points. In contrast,
olocalization of Rho—APO with late endosome remained
ow throughout the trafficking studies. Colocalization of
ho—APO with nuclei became evident after 2 h, indicating
ndosomal escape and nuclear entry of the released apoptin
rotein. These results suggested that S S Rho—APO NCs
ere trafficked into early endosomes upon internalization
nd at least a significant portion of the internalized NCs and
he cargo can escape from the endosomal compartment.

To analyze protein localization using confocal
icroscopy, two cancer cell lines HeLa and MCF-7,

ogether with the noncancerous human foreskin fibroblast
HFF), were treated with either S S Rho—APO NC or ND
ho—APO NC (Fig. 2b). In the case of ND Rho—APO NCs, red
uorescence signals remained in the cytoplasm for all three
ell lines, indicating the encapsulated Rho—APO proteins
ere well-shielded by the nondegradable polymer shell
nd the internal nuclear localization sequences were not
ccessible to the transport machinery. In stark contrast,
hen HeLa cells were treated with S S Rho—APO NC, strong

ed fluorescence of rhodamine was present in the nuclei,
esulting in intense pink color as a result of overlapping
f rhodamine and DAPI fluorescence. Z-stacking analysis
onfirmed the Rho—APO to be localized inside of the nuclei.
imilar results were observed with MCF-7 cells, although the
uorescence intensity was not as strong as in the HeLa cells.
hese results confirmed that the Rho—APO delivered can

ndeed be released in native forms inside the cytoplasm and
nter the nuclei. More importantly, the tumor-specificity of
elivered apoptin proteins toward cancer cell lines were

emonstrated in the confocal analysis of noncancerous HFF
ells treated with S S Rho—APO NC, as all of the dye signals
emained in the cytoplasm and no nuclear accumulation
as observed.
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Figure 2 Protein nanocapsule cellular trafficking and localization. (a) The trafficking of Rho—APO in S S NCs through endosomes.
HeLa cells were incubated with 20 nM S S Rho—APO NCs (red) at 37 ◦C for various time periods, 30, 60 and 120 min. Early endosomes
were detected by early endosome antigen 1 (EEA1, green). Late endosomes were detected by cation-independent mannose-6-
phosphate receptor (CI-MPR, blue). Nuclei were stained with DAPI and shown as purple. The scale bar represents 10 �m. The
percentage of fluorescence colocalization was quantified by calculating colocalization coefficients using Manders’ overlap coefficient
(>10 samples) and shown in each figure; (b) confocal microscopy of cellular localization of Rho—APO encapsulated in S S NC and
N FF. N
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D NC to cancer cell lines HeLa and MCF-7, and noncancerous H

umor-selective cytotoxicity of apoptin
anocapsules

e then investigated whether the MBP—APO protein deliv-
red still possesses its function to induce tumor-selective
poptosis. The potency and selectivity of S S APO NC were
ested on various cell lines including HeLa, MCF-7, MDA-MB-
31, and HFF (Fig. 3a—d). MTS assay was used to measure
ell viability 48 h after addition of the protein and NC. For
ach cell line, ND APO NC and native MBP—APO were used

s negative controls. When S S APO NC was added to a final
oncentration of 200 nM, all three cancer cell lines had no
iable cells, whereas ∼75% of the HFF had survived. The
C50 values were 80 and 30 nM for HeLa and MDA-MB-231,

c
w
N
a

uclei were stained with DAPI (blue). The scale bar is 20 �m.

espectively. The IC50 for MCF-7 was higher at ∼110 nM,
hich may be due to the deficiency in the terminal execu-

ioner caspase 3 and reliance on other effector caspases for
poptosis [29,30]. As expected, native MBP—APO and ND
PO NC did not significantly decrease the viability of any cell

ines tested, consistent with the inability to enter cells and
elease MBP—APO in cytoplasm, respectively. The IC50 values
f S S APO NC toward MDA-MB-231 increased as the surface
harge of the NC became more neutral (Supplement 5), sug-
esting more efficient internalization can improve S S NCs

ytotoxicity. The morphologies of MDA-MB-231 and HFF cells
ere examined under various treatments. Only the S S APO
C treated MDA-MB-231 cells exhibited blebbing and shrink-
ge, which are hallmarks of apoptotic cell death (Fig. 3e
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Figure 3 Cytotoxicity and apoptosis observed following nanocapsule delivery. (a) HeLa; (b) MCF-7; (c) MDA-MB-231; or (d) HFF
cells with treatment of different concentrations of S S APO NC, ND APO NC, and native MBP—APO. (e) Apoptosis induced by S S
APO NC determined by TUNEL assay. Images on the left are bright field microscopy images of MDA-MB-231 and HFF cells treated
for 24 h with 200 nM S S APO NC. The scale bar represents 50 �m. Images right of the dash line shows detection of apoptotic
fragmentation of the nucleosome after same treatment using APO-BrdUTM TUNEL assay kit. The scale bar represents 50 �m. Red
fluorescence represents the propidium-iodide (PI)-stained total DNA, and green fluorescence represents the Alexa Fluor 488-stained

The
do n

I

W
x
s
7

nick end label, the indicator of apoptotic DNA fragmentation.
Fluor 488-stained nick end label. (Note the bright field images
detached and collected for TUNEL assay after treatment.)

and Supplement 7). Using TUNEL assay, S S APO NC treated
MDA-MB-231 also showed nuclear fragmentation associated
with apoptosis, whereas cells treated with native MBP—APO
and ND APO NC at the same concentration (Supplement 7),
as well as HFF treated with 200 nM S S APO NC (Fig. 3e),
had no sign of apoptosis. Collectively, these results demon-

strated that the recombinant MBP—APO delivered by the
degradable NCs retains the potency and selectivity as
the transgenically expressed apoptin in previous studies
[9].

1
d
o
b

merged pictures combine the PI-stained nuclei and the Alexa
ot overlap with the fluorescent microscopy images; cells were

n vivo evaluation of apoptin nanocapsules

e further examined the potency of S S APO NC in a mouse
enograft model. Female athymic nude (nu/nu) mice were
ubcutaneously grafted on the back flank with 5 × 106 MCF-

breast cancer cells. When the tumor volume reached

00—200 mm3 (day 0), mice were randomly separated into
ifferent groups and treated with intratumoral injection
f PBS, MBP—APO, S S APO NC. In addition, S S NC with
ovine serum albumin (S S BSA NC) was added as a nonlethal
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Figure 4 Treatment of apoptin nanocapsules resulted in tumor growth retardation. (a) Significant tumor inhibition was observed
in the mice treated by S S APO NC. Female athymic nude mice were subcutaneously grafted with MCF-7 cells and treated with
intratumoral injection of MBP—APO (n = 4) or S S APO NC (n = 4) (200 �g/mouse) every other day. PBS (n = 3) and S S BSA NC
(n = 4) were included as negative controls. The average tumor volumes were plotted vs. time. Asterisks indicate injection days.
( h dif
fl ue).
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b) Detection of apoptosis in tumor tissues after treatment wit
uorescein-dUTP (green) for apoptosis and DAPI for nucleus (bl

rotein cargo control to test the effects of the S S NC poly-
er component on tumor cells in vivo. Tumors treated with

aline, S S BSA NC or native MBP—APO expanded rapidly and
eached the maximum limit (>2500 mm3) within 12 days.
n sharp contrast, tumor growth was significantly delayed
hen treated with S S APO NC (Fig. 4a). Fixed tumor tis-

ues collected from each treatment group were examined
or DNA fragmentation using in situ TUNEL assay. The images
evealed the highest level of cell apoptosis for the tumor

arvested from mice treated with S S APO NC, correlating
ell with the significantly delayed tumor growth observed

or this treatment group and confirming that tumor growth
nhibition was indeed due to apoptin-mediated apoptosis

W
o
p

ferent NCs. Cross-sections of MCF-7 tumors were stained with
The scale bars represent 50 �m.

Fig. 4b). Collectively, the xenograft study verified that the
egradable NCs effectively delivered MBP—APO proteins to
umor cells in vivo, which was highly effective in limiting
umor progression. Upon further optimization of the phar-
acokinetics of the S S APO NC, including surface derivati-

ation with active targeting ligands, these particles may be
ntravenously administered as an anticancer therapy [31].

onclusions
e were able to deliver the high molecular weight complex
f the tumor-selective MBP—APO using a redox-responsive
olymeric NC in vitro and in vivo. The choice and design
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of the sub-100 nm NC is well-suited for diverse protein tar-
gets because of its mild preparation conditions, reversible
encapsulation, efficient membrane penetration, and cyto-
plasmic release of the protein cargo. Our application here
further illustrates how intracellular protein delivery using
nanoscale system can provide new possibilities for achieving
selective anticancer therapy.
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ABSTRACT: Encapsulating anticancer protein therapeutics in nanocarriers is an attractive option to minimize active drug destruction, in-
crease local accumulation at disease site and decrease side effects to other tissues.  Tumor specific ligands can further facilitate in targeting the 
nanocarriers to the tumor cells and reduce nonspecific cellular internalization. Rationally designed non-covalent protein nanocapsules, incor-
porating copper-free “click chemistry” moiety, polyethylene glycol (PEG) unit, redox-sensitive crosslinker, and tumor specific targeting lig-
and, have been synthesized to selectively deliver intracellular protein therapeutics into tumor cells via receptor-mediated endocytosis. These 
nanocapsules can be conjugated to different targeting ligands of choice, such as anti-Her2 antibody single-chain variable fragment (scFv) and 
luteinizing hormone releasing hormone (LHRH) peptide, which result in specific and efficient accumulation within tumor cells overexpress-
ing corresponding receptors. LHRH-conjugated nanocapsules selectively delivered recombinant human tumor suppressor protein p53 and its 
tumor-selective super variant into targeted tumor cells, which led to reactivation of p53-mediated apoptosis. Our results validate a general 
approach for targeted protein delivery into tumor cells using cellular-responsive nanocarriers, opening up new opportunity for the develop-
ment of intracellular protein-based anticancer treatment. 

Virtually all human cancer cells have elaborate anti-apoptotic 
strategies to overcome apoptosis, which is a vital cellular mecha-
nism to obstruct tumor progression.1  The most commonly mutat-
ed gene in tumor cells is the tumor suppressor gene TP53, the pro-
tein product of which promotes apoptosis of aberrant cells through 
both transcription-dependent and independent mechanisms.2  In 
this manner, the genome guardian p53 is critically important in 
eliminating possible neoplastic cells incurred during DNA damage.  
About 50% of all the human tumors have mutant p53 proteins.3  
Therefore, restoring p53 function can be a highly effective option 
for cancer treatment.  Functional copies of p53 can not only resur-
rect the apoptotic circuitry, but also sensitize the tumor cells to-
wards other various treatments (radio- and chemotherapy).4  Dif-
ferent strategies pursuing this goal have been intensively investigat-
ed, including small molecules and peptides that overcome p53 
mutations, as well as adenovirus/p53 gene delivery vectors.5-8  
While restoring p53 functions in cancer cells has been a tantalizing 
approach towards combating cancer, the lack of effective delivery 
method has undermined its potential as an anti-cancer therapeutic.      

Intracellular protein delivery using stimuli-responsive nano-
materials has emerged as an attractive method to deliver various 
cargos to the cells of interest.9-18  In particular, water soluble poly-
mer-based nanocarriers that encapsulate the protein of interest to 
aid the penetration of cellular membrane, while capable of releasing 
the protein upon various cellular stimuli, have been demonstrated 
to be effective in functional delivery of proteins.19  Nanocarriers 
that can be triggered to release protein cargo in response to changes 

in temperature, light, pH, redox potential and enzymatic activities 
have been reported.9,20-23 As a result, nanocapsules-mediated deliv-
ery of recombinant p53 to cancer cells may be a direct method of 
reactivating the apoptosis pathway and inducing programmed cell 
death.  One critical limitation of previous protein-containing 
nanocapsule is that the polymer layer is synthesized from a positive-
ly charged monomer that enables nonselective entry across cellular 
membrane.  However, since the level of p53 is tightly regulated in 
normal cells, targeted delivery of p53 using functionalized 
nanocapsules that restricts entry to only cancer cells is highly desir-
able.  Hence, new nanocapsule encapsulation strategy that allows 
facile modification of the polymeric carrier is needed. 

To equip the nanocapsules with cancer-targeting ligands such 
as peptides and antibodies that can enable receptor mediated en-
docytosis, the surface of the nanocapsules must be decorated with 
reactive handles that facilitate aqueous-based conjugation chemis-
try.  The chemistry utilized must be nondenaturing to maintain the 
native form of protein cargo. This is especially important for p53 
delivery since the protein forms a tetrameric complex that is prone 
to aggregation and loss of function.24 The reaction must also be 
orthogonal to the nanocapsule synthesis chemistry and compatible 
with the designed degradation mechanism of the polymer capsule, 
such as disulfide mediated redox-sensitive degradation.  One of the 
most versatile reactions that are compatible with a protein-based 
cargo is the copper-free click chemistry that utilizes azides and aryl 
cyclooctynes.25-27 Click chemistry has been used for modification of 
nanoparticles for direct conjugation of ligands and 
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