

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
FEB 2015 2. REPORT TYPE

3. DATES COVERED
 00-01-2015 to 00-02-2015

4. TITLE AND SUBTITLE
CrossTalk, The Journal of Defense Software Engineering. Volume 28
Number 1. Jan/Feb 2015

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
517 SMXS/MXDED,6022 Fir Ave,Hill AFB,UT,84056-5820

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

44

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

2 CrossTalk—January/February 2015

TABLE OF CONTENTS CrossTalk
NAVAIR Jeff Schwalb
DHS Joe Jarzombek
309 SMXG Karl Rogers

Publisher Justin T. Hill
Article Coordinator Heather Giacalone
Managing Director David Erickson
Technical Program Lead Thayne M. Hill
Managing Editor Brandon Ellis
Associate Editor Colin Kelly
Art Director Kevin Kiernan

Phone 801-777-9828
E-mail Crosstalk.Articles@hill.af.mil
CrossTalk Online www.crosstalkonline.org

CrossTalk, The Journal of Defense Software Engineering
is co-sponsored by the U.S. Navy (USN); U.S. Air Force (USAF); and
the U.S. Department of Homeland Security (DHS). USN co-sponsor:
Naval Air Systems Command. USAF co-sponsor: Ogden-ALC 309
SMXG. DHS co-sponsor: Office of Cybersecurity and Communica-
tions in the National Protection and Programs Directorate.

The USAF Software Technology Support Center (STSC) is the
publisher of CrossTalk providing both editorial oversight and
technical review of the journal. CrossTalk’s mission is to encour-
age the engineering development of software to improve the reliabil-
ity, sustainability, and responsiveness of our warfighting capability.

Subscriptions: Visit <www.crosstalkonline.org/subscribe> to
receive an e-mail notification when each new issue is published
online or to subscribe to an RSS notification feed.

Article Submissions: We welcome articles of interest to the defense
software community. Articles must be approved by the CrossTalk
editorial board prior to publication. Please follow the Author Guide-
lines, available at <www.crosstalkonline.org/submission-guidelines>.
CrossTalk does not pay for submissions. Published articles
remain the property of the authors and may be submitted to other
publications. Security agency releases, clearances, and public af-
fairs office approvals are the sole responsibility of the authors and
their organizations.

Reprints: Permission to reprint or post articles must be requested
from the author or the copyright holder and coordinated with
CrossTalk.

Trademarks and Endorsements: CrossTalk is an authorized
publication for members of the DoD. Contents of CrossTalk are
not necessarily the official views of, or endorsed by, the U.S. govern-
ment, the DoD, the co-sponsors, or the STSC. All product names
referenced in this issue are trademarks of their companies.

CrossTalk Online Services:
For questions or concerns about crosstalkonline.org web content
or functionality contact the CrossTalk webmaster at
801-417-3000 or webmaster@luminpublishing.com.

Back Issues Available: Please phone or e-mail us to
see if back issues are available free of charge.

CrossTalk is published six times a year by the U.S. Air Force
STSC in concert with Lumin Publishing <luminpublishing.com>.
ISSN 2160-1577 (print); ISSN 2160-1593 (online)

Missed Expectations:
Where CS Students Fall Short in the Software Industry
Graduating computer science students do not always possess the necessary
knowledge to succeed in their careers after graduation.
by Alex Radermacher, Gursimran Walia, and Dean Knudson

Challenges in Academia in Producing Prepared IT Workforce
Producing well-educated students who are workforce-ready for cutting-edge
technology companies within four years of college study is proving to be an
increasingly tougher goal for academia.
by Nary Subramanian

Seeking Balance in Cyber Education
Few questions are more critical to the future of DoD and the nation than how
can we most effectively prepare future cyber warriors for their missions.
by Commander Michael Bilzor

Training the DoD Software Acquisition Professional
DAU is working with the IT Functional Leader to identify ways to train all of DoD
as needed to ensure we deliver software acquisition management training that
improves the IT acquisition outcomes for our warfighters.
by Robert P. Skertic

A Thinking Framework to Power Software Development
Team Performance
Essence is a new OMG software standard developed specifically for software
development practitioners and teams.
by Paul E. McMahon

Training Software Project Managers
The presumed goal of training software project managers is to equip them with
the knowledge and competencies that will help them to be successful.
by Lawrence Peters

Increase Team Cohesion by Playing Cooperative Video Games
Team building activities such as collaborative video gameplay requires a collec-
tive effort by players to achieve a common goal.
by Gregory S. Anderson and Spencer Hilton

9

4

14
19

22

33

28

Software Education Today

Departments

Cover Design by
Kent Bingham

 3 From the Publisher

 38 Open Forum by
 Tom DeMarco

 40 Upcoming Events

 42 BackTalk

CrossTalk—January/February 2015 3

FROM THE PUBLISHER

CrossTalk would like to thank 309 SMXG for sponsoring this issue.

From the dawn of the modern age, technological advances
and innovation have been sustained and further enhanced by
our educational systems. With the backdrop of globalization, ris-
ing economic pressures and emerging foreign powers, the need
for our education system to maintain a position of preeminence
in the fields of science and technology have become more
pressing than ever before. Educators, industrial leaders and gov-
ernmental officials often advance differing opinions on the most
effective way to ensure continuation of our country’s dominance
in a plethora of areas or suffer a real and palpable economic
and societal loss in mere decades. The current state of our aca-
demic institutions is especially pertinent to military departments
who must ensure a security and national defense posture, now
and into the future. As the pace of technological innovation
continues to increase, so has the perceived disconnect between
academia and industry in preparing our graduates for immediate
real-world integration in the science and technology industry. It
is for that reason that we have chosen to highlight the topic of
software education to begin the year. Here we will attempt to
highlight both the perceived challenges industry faces with re-
cent graduates as well as provide perspective into the difficulty
academia faces in adjusting to the rapid pace of technological
innovation in curriculum.

In this issue, we will explore the perceived need to further
align academic curriculums of our higher educational institutions
to face the needs of both research and development organiza-
tions as well as illustrate methods to allow those organizations
to be more productive through educational concepts. We begin
with an collaborative article focused on the software industry
entitled “Missed Expectations: Where CS Students Fall Short in
the Software Industry” illustrating a perceived lack of essential
skills and the need for further specialized training, as the author
highlights recommendations to educators and graduates. We
continue the discussion with Nary Subramanian’s article entitled
“Challenges in Academia in Producing Prepared IT Workforce”
discussing the difficulty that academia faces with allotments
for specific technical coursework associated with traditional
computer and information technology degrees. Nary explores a
perceived adequacy and potential misalignment of coursework
within college curriculums and suggests possible solutions.

Another pressing issue that frequently dominates nightly
newscasts is the emerging success of cyber-attacks within
both domestic and governmental systems. It is no surprise that
securing our systems from intrusions and vulnerabilities could
not be pressing. To that end, we have an excellent article from
Commander Michael Bilzor entitled “Seeking Balance in Cyber
Education” which discusses the need to balance and maximize

the potential of the education provided to our future technolo-
gists who will be protecting and safeguarding assets against
malicious intent.

Those of you that work within the DoD need no introduction
to the Defense Acquisition University (DAU) and the educational
role this institution provides to government professionals. The
article entitled “Training the Department of Defense Software
Acquisition Professional” examines the current state of educa-
tion provided to the software acquisition cadre and the discuss-
es the expansion of software within all DoD systems and career
fields and how the University will attempt to address these
future needs. Likewise, another software profession of critical
importance is that of the Program Manager. Lawrence Peters
offers an article entitled “Training Software Project Managers”
discussing perceived success criteria and the need to provide
this profession with the competencies to overcome potential
pitfalls through proper training.

Finally, we turn our attention to the fact that education must
be applied by individuals in real-world settings, arranged into
groups, working effectively together. Our last two articles ad-
dress the potential synergy attainable by the cohesion of teams
and applying standards to enhance performance. The article
entitled “Increase Team Cohesion by Playing Cooperative Video
Games” provides us results of a study that explores how col-
laborative team building activities can contribute to improved
performance. While the article entitled “A ‘Thinking Framework’
to Power Software Development Team Performance” provides
us a new comparative software standard applicable to software
development teams with insight into why many previous perfor-
mance improvement efforts may have failed.

As we begin the New Year, we are also beginning our 27th
year of CrossTalk publication as well. I would like to express
my sincere thanks to all of you who have made the continuation
and excellence of CrossTalk possible. To our Co-Sponsors,
thank you for providing your generous support and active
involvement, which makes our continued efforts possible. To the
authors, we appreciate your continued loyalty and for sharing
such valuable information to the software community. And finally,
to our readers, thank you for your contin¬ued subscriptions and
readership to which I sincerely hope we continue to exceed your
expectations.

From all of us at CrossTalk, we wish you the best for the
New Year!

Justin T. Hill
Publisher, CrossTalk

4 CrossTalk—January/February 2015

SOFTWARE EDUCATION TODAY

Alex Radermacher, North Dakota State University
Gursimran Walia, North Dakota State University
Dean Knudson, North Dakota State University
Abstract. Graduating computer science students do not always possess the
necessary knowledge to succeed in their careers after graduation. Interviews with
twenty-three managers and hiring personnel at different companies in the software
development industry highlight the struggles that recent graduates face when first
starting at those companies. Recent graduates lack essential skills in different areas
to pass an interview. Descriptions are provided about these different areas along with
recommendations for educators, industry managers, and recent graduates.

Missed Expectations
Where CS Students Fall Short
in the Software Industry

they had mentioned that the students who had applied had no
experience with regression testing and struggled to write unit
tests for a small piece of code during the interview.

We viewed this as an opportunity to improve our course and
wanted to see if some of the other companies that we had
worked with in the past were experiencing the same problem.
We also wanted to determine to what extent other research-
ers were reporting this problem and to see if there were any
commonalities in their findings. To do so, we conducted a review
of the literature in order to determine what areas, if any, were
commonly reported as areas where recent graduates fell short
of industry expectations [15]. We found multiple studies that
examined this problem and that there were several areas (span-
ning everything from software tools to problem solving ability
to personal skills and communication ability) that were reported
more frequently than others. Collectively, we refer to these dif-
ferent areas as knowledge deficiencies.

Although the literature review was helpful in determining
which knowledge deficiencies were most prevalent, much of
the prior literature contained little or no descriptive informa-
tion about the knowledge deficiencies. In order to gain a better
understanding of knowledge deficiencies, we decided to focus
our interviews on better understanding how recent graduates
struggle. We spoke with managers and hiring personal at dif-
ferent software companies that we had worked with previously.
Twenty-three respondents (20 from the United States and 3
from Europe) provided information about areas where new
hires struggled, along with which knowledge deficiencies that
specifically prevented recent graduates from being hired by the
company. Before describing the results of those interviews, we
will first briefly describe the study design.

1. Study Design:
The following sub-sections provide a short description of the

purpose of our research as well as the methodology that was
used to conduct our study.

Research Goals
As an initial step, we identified a list of goals to accomplish.

These were: identify the areas where recent graduates most
frequently struggle when starting the first job; identify any com-
mon shortcomings that prevent recent graduates from being
hired; and determine what issues hiring personnel screen for in
interviews, but is still common in newly hired, recent graduates.

Study Subjects
The participants in this study were 23 managers or hiring

personnel from software development companies predominantly
located in the United States, although 3 participants were from
Europe. The companies were involved in many different busi-
ness areas (e.g., aviation, agriculture etc.) and ranged in size
(from tens of employees to thousands). Most of the participants
had previously worked with in some capacity, usually as a spon-
sor for one of our capstone projects.

Study Instrument
We used a semi-structured interview as it provided a good

balance between the opportunity for participants to provide

Introduction and Background
One of the main goals for colleges and universities is to

prepare their students for their future careers and to ensure that
they are equipped with the knowledge and skills necessary to
succeed after they graduate. The goals of educators in comput-
ing fields are no different in this regard. With the growing body
of knowledge and vast variety of different jobs available to stu-
dents, it is not possible to teach them everything that they will
need to know for every potential job. However, there is evidence
that educators need to do a better job preparing students for
the workforce, especially when multiple sources have identified
the same gaps in students’ education [1, 2, 3].

Historically, there have been several educators who have eval-
uated how the recommended curriculum [4, 5] or the education
that computer science students were receiving compared to the
needs of the software industry. In 1996 Byrne, et al. conducted
interviews with 16 project managers at Irish software companies
to ask about their perceptions of how graduating students met
their expectations and how CS education could be improved [6].
Around the same time, Lethbridge surveyed over 100 software
developers at different companies about the skill level currently
needed for their jobs and where they perceived their skill level
to be when they had just graduated from college [7]. In a more
recent study, Begel, et al. conducted a case study at Microsoft
where they watched newly hired, recent graduates to determine
what parts of their job they struggled with and what other dif-
ficulties they experienced [8]. A large number of other research-
ers also reported similar findings [9, 10, 11, 12, 13].

Our students at North Dakota State University (NDSU) are
required to take a capstone project course before they can
graduate. In this course, students work with industry companies
on real-world projects that will be used by those companies [14].
The purpose of the course is to expose students to what software
development is like in industry and to help shape their expecta-
tions for their future. Because we work with industry companies,
we like to keep in touch and ask for feedback about our capstone
course. During one of our discussions with a company, they raised
concerns with us about some of the recent graduates from our
university who had applied for jobs at their company. Specifically,

CrossTalk—January/February 2015 5

SOFTWARE EDUCATION TODAY

Figure 1. Knowledge Deficiencies for Software Tools

information about knowledge deficiencies and for us to ask
follow-up questions to get additional details about the knowl-
edge deficiencies that were identified. Hand-written notes were
taken by the primary researcher during the interviews, and all
interviews were conducted in English. Interview participants
were asked two primary questions during the interview. The first
was whether or not there were any knowledge deficiencies that
prevented them from hiring a recent graduate. The second was
in which areas that newly hired recent graduates struggled, the
company felt as though the person’s college education should
have better prepared them.

2. Results
Following the interviews, responses were grouped into related

categories. Table I contains a list of the most frequently identi-
fied knowledge deficiencies and whether these were things that
companies identified during interviews to weed-out candidates
or whether they were only identified after a recent graduate be-
gan working for the company. In some cases (e.g. oral communi-
cation, testing, and problem solving) the company identified it as
something they looked out for in interviews, but still experienced
in their new hires. In those cases, it is counted in both catego-
ries, but is only counted once in the total.

the results are categorized based on the type of tool. Although
some of the managers we interviewed indicated that they asked
about tool knowledge during interviews, the limitations of inter-
views typically prevent a good assessment of a person’s abilities
in those regards, and as such knowledge deficiencies related to
tool usage were typically identified only after a recent graduate
began working for the company.

3. Discussion: Areas Where Recent Graduates
Frequently Struggle

Software Tools
A common response was that recent graduates did not

have previous exposure to many software development tools.
Configuration management tools, in particular, were identified
by over half of the respondents. Another common response was
that students lacked experience setting up and using tools in a
manner similar to an industry production environment. This was
particularly the case for Integrated Developer Environments and
other applications in the company’s toolchain. One respondent
reported that it could take up to six months for new employees
to reach the same degree of proficiency as other employees.
Other participants indicated that recent graduates only had a
minimal understanding of tools and one indicated that most had
never used version control software beyond committing code
to a repository and were incapable of merging or branching.
Multiple interviewees indicated that most students did not have
any exposure to continuous integration and regressing test-
ing software such as Jenkins or Team Foundation Server. Two
respondents reported that recent graduates lacked proficiency
with database management tools, one of whom said that stu-
dents could not even set up a new database.

Job Expectations
A lack of understanding of job expectations was the second

most common problem that recent graduates were reported to
experience on the job. One aspect of this noted by one inter-
viewee was that newly hired, recent graduates seemed to be
afraid of asking questions so as not to appear foolish. Instead,
they needed to understand that it was better to ask for help
than to waste time being stuck on what might be a simple
problem. Another response was that students experienced dif-
ficulties adapting to an eight hour work day after college where
their work was split up over smaller segments. Another related
response was that many recent graduates lacked motivation and
initiative and needed closer supervision in order to ensure that
they remained productive. Multiple participants also indicated
that recently graduated students were lacking in professional-
ism, including dressing inappropriately, texting on their phones
during meetings, or even issues related to personal hygiene.

Communication
Written communication, oral communication, and specifically

the ability to communicate with customers were all identified by
multiple respondents. One identified aspect of written com-
munication was that recent graduates tend to have problems
writing large memos or documents. In terms of communicat-
ing effectively with customers, one respondent indicated that

Knowledge Deficiency Interview Job Total
Software Tools 2 16 16
Project Experience 13 0 13
Oral Communication 9 2 10
Problem Solving 8 3 10
Work Expectations 0 8 8
Testing 2 6 7
Databases 1 6 7
Teamwork 2 5 7
Working with Customers 0 7 7
Written Communication 1 6 6
Coding Practices 4 2 6
Passion for Technology and
Work

4 2 6

Ability to See “The Big
Picture”

4 2 6

 Table 1. Knowledge Deficiencies in Recently
Graduated Students

Software tools of some type were reported by 16 of 23
people we interviewed. Fig. 1 breaks down the different types of
software tools that were identified. Although interviewees mostly
indicated a specific software tool (e.g. Jenkins, Subversion, etc.)

6 CrossTalk—January/February 2015

SOFTWARE EDUCATION TODAY

recent graduates tend to use too much technical jargon which
impacted their ability to gather requirements. Multiple interview-
ees indicated that recent graduates had issues communicating
with their bosses, such as informing their boss when they had
completed an assigned task. Five respondents reported issues
related to recent graduates communicating with team members.
One specifically reported that some recent graduates struggled
with successfully integrating with the rest of the team because
they had problems working with other people.

Software Testing
Five of the 6 interview respondents told us that the largest

problem related to testing was the inability of recent gradu-
ates to construct good unit tests. One interviewee noted that
recent graduates had a tendency to write redundant test cases
and that while testing, they had a tendency to introduce old or
further bugs into the software. Another responded that they had
to spend a considerable amount of time training recent gradu-
ates on using their test platform and writing good unit tests.
There were also four other respondents who had not identi-
fied problems related to testing itself, but had indicated that
recent graduates lacked exposure to continuous integration and
regression testing tools.

Databases
One respondent reported that recent graduates had a

poor understanding of the internal mechanics of databases,
which was difficult to pick up on the job and lead to unopti-
mized designs and poor performance. Two other responses
indicated that recent graduates had difficulty interacting with
databases and tying in the code meant to interface with the
database, with one noting that they often had difficulties
even creating and designing databases. Two responses
pointed to inexperience with database management system
(DBMS) tools, and one of those respondents stated that re-
cent graduates lacked even the most basic knowledge such
as setting up a new database.

Coding Practices
Two interviewed managers stated that comments from new

hires often tend to be of poor quality, if not entirely useless. They
noted that comments often offered no actual explanation of
what a segment of code was doing or that the comments were
unnecessary because they were obvious from the code itself.
Another two respondents said that recent graduates often did
not comment nearly enough and occasionally not at all. One
indicated that recent graduates were not familiar with following
a coding standard and frequently produced code that was not to
the company’s standard.

4. Areas Where Recent Graduates Fail in Interviews:

Project Experience
A lack of project experience was the most frequently identi-

fied problem that respondents indicated that recent graduates
expressed in interviews. Most of the interviewed managers
indicated that they wanted applicants to have some kind of ex-
perience working on a large, team project and for the applicant
to be able to describe their role with in the project and how it
was important to the project. Interviewees indicated that they re-
alized that recent graduates would not have a lot of experience,
but that having an internship, a co-op, or a senior-level capstone
project was typically sufficient. One interviewee indicated that it
was preferred if the applicant had worked individually on a large
project, but the others preferred team-based projects.

Oral Communication
Soft skills are generally cited as important, but one manager

indicated that communication ability was even more important
than technical abilities. Another stated that while could be over-
looked if an applicant had other good qualities, that the ability
of such a person to move up through the company would be
extremely limited. Several respondents stated that an inability to

articulate points and provide clear explanations during interviews
were what caused most recent graduates to be passed up dur-
ing the interview process.

Problem Solving
Several interviewees indicated that a lack of problem solving

ability in a candidate was the most likely reason not to hire that
person. One interviewee mentioned that it was common to give ap-
plicants small programming problems (e.g. develop an algorithm for
searching a tree depth-first) to evaluate their problem solving ability.
Another manager indicated that knowing the answer to a problem
was not always as important as demonstrating a good approach
to attempting to solve the problem. One interviewee indicated
that they typically asked increasingly difficult questions in order to
evaluate an applicant’s problem solving skills. Another stated that
they specifically looked for whether or not an applicant would ask
follow-up questions or clear up ambiguities in the problems.

Personal Qualities
When faced with several good applicants, some interviewees

said that they try to select candidates based on other personal
qualities. Several different qualities were given (e.g. leadership abil-
ity, being proactive, outgoing and friendly personality), but the most
common were an ability to see the big picture and being passion-
ate about technology or the position. One interviewee indicated that

There were five categories in which the knowledge deficiency was identified in newly
hired recent graduates, even after the company made an effort to identify them during
the interview process: oral communication, written communication, testing, problem
solving, and the ability to self-manage.”

“

CrossTalk—January/February 2015 7

SOFTWARE EDUCATION TODAY

it was important to find candidates who were passionate because
even if they were not the most skilled individuals, they would likely
make a strong effort to improve. Most respondents indicated that
these characteristics were not strictly necessary, but were important
factors when determining who to hire and in several cases they
made more of a difference than technical ability.

Technical Abilities
Testing ability, database knowledge, and mobile development

experience were all reported by interviewees as being necessary
skills. One of the interviewed managers indicated that having
experience with designing and interfacing with databases was
necessary due to the nature of the company’s work. Another
respondent indicated that as part of the interview process, ap-
plicants were asked questions about how they would test various
systems and were expected to be able to write unit tests for a
small piece of code as that would be the primary focus of their job
when starting out. Respondents from two companies indicated
that mobile development experience was increasingly important
to them as much of their company’s new work revolved around
developing applications for tablets and smart phones. Another
respondent stated that they asked applicants questions about
several Linux commands in order to ensure that they would have
the technical abilities necessary for working at the company.

Overlap Between Interviews and Jobs
Most of the managers with whom we spoke indicated that they

normally did a good job of screening out candidates who were
lacking in the areas that they evaluated candidates during inter-
views. Table 1 shows a rather strict dichotomy between knowl-
edge deficiencies identified during interviews and those identified
only after a recent graduate has begun working at the company.
However, there were five categories in which the knowledge de-
ficiency was identified in newly hired recent graduates, even after
the company made an effort to identify them during the interview
process: oral communication, written communication, testing,
problem solving, and the ability to self-manage.

5. Conclusion and Recommendations
Several researchers have previously identified various issues

that recently graduated computer science students struggle
with when starting their new jobs [1, 2, 16]. Our results provide
additional support for the existence of several of these knowl-
edge deficiencies including the use of configuration manage-
ment tools, communication skills, and testing ability. The results
from our interviews also provide additional qualitative informa-
tion for knowledge deficiency categories which were not always
well-defined in previous studies.

The results from our interviews also match several of the
results that we had uncovered in the literature [15]. This sug-
gests that several of these knowledge deficiencies have been
pervasive for some time and that this is an issue that needs to
be addressed. Although we do not have solutions for addressing
each and every knowledge deficiency, merely being aware of the
most pressing issues provides a good starting point for tackling
them. However, we do have some general recommendations for
academia, industry, and recent graduates.

Recommendations for Academia:
Although it is unreasonable to expect educators to produce

students who will be fully capable of starting any job without
further issue, there are multiple areas that are in obvious need
of some attention. The most glaring issue relates to the use
of software tools, particularly configuration management tools.
Many of these tools could be incorporated into appropriate ex-
isting courses (e.g., using DBMS tools in a database course, test
coverage tools in a testing course, etc.) without much hassle
and would provide students with earlier exposure to the types of
tools that they can expect to use in throughout their careers.

Another area that appears to be a problem is a lack of ability to
write unit tests. This is something that can be introduced in early
programming courses and reinforced throughout the curriculum.
The same also holds true for building communication skills, whether
that means students’ collaborative skills by including assignments
or projects where they work as part of a group, or their writing skills
by requiring them to write a technical report in addition to the code
that they produce. A required internship, industry co-op, or a proj-
ects course where students work with real customers would also
help them to acquire a better understanding of the work expecta-
tions of industry and provide them with valuable project experience.

Recommendations for Industry:
From our results, it appears as though most managers and

hiring personnel can reasonably screen candidates, but there is
also room for improvement. Asking applicants to actually write
code at a computer or demonstrate their knowledge of software
tools may help to alleviate some of the difficulties experienced
from hiring recent graduates who lack the necessary skills to
contribute to the company. It may also be useful to give appli-
cants a difficult problem that you do not expect them to be able
to solve, or one that does not contain sufficient information in
order to gauge how they respond to such situations.

Another solution is to identify the areas within your own
companies where newly hired, recent graduates struggle and
to develop an orientation program that is specifically designed
to tackle those problems, whether they are related to maintain-
ing professional conduct or developing training material for
the different software tools used at the company so that new
employees have a quick reference while first learning to work
with a new or different tool.

Recommendations for Recent Graduates:
The field of computing is growing every year as new technolo-

gies and ways of accessing information are developed. Even
developers who have been in the industry for decades constantly
need to acquire new skills and learn about new technologies. It is
unlikely that your education will have provided you with everything
you will need to know, hopefully it has equip you to continue
learning new skills and to refine the ones you already possess.

This research can serve as a good guide for preparing for
interviews and for brushing up on in any of the identified areas
where you might feel unprepared. It is also good to bear in mind
that when you are first starting, you will make mistakes and run
into problems that you will struggle to solve. Keep in mind that
sometimes it is better to ask for help than to struggle in silence.

8 CrossTalk—January/February 2015

SOFTWARE EDUCATION TODAY

ABOUT THE AUTHORS REFERENCES
Alex Radermacher is a software engineering
Ph.D. student at North Dakota State University.
His research interests include software devel-
opment processes and student learning.

Phone: 701-367-8965
E-mail: alex.radermacher@ndsu.edu

Gursimran S. Walia is an assistant professor
of Computer Science at North Dakota State
University. His main research interests include
empirical software engineering, human factors
in software engineering, and software quality.
He is a member of the IEEE Computer Society.

Phone: 701-231-8185
Email: gursimran.walia@ndsu.edu

Dean Knudson is an associate professor
of Computer Science at North Dakota State
University. He has over 35 years’ experience in
software development and management.

Phone: 701-231-5612
E-mail: dean.knudson@ndsu.edu

1. Begel, Andrew and Simon, Beth. Novice Software Developers, All Over Again. Proc.
 of the 4th International Workshop on Computing Education Research. Sydney, 2008.
2. Lethbridge, Timothy. “Priorities for the Education and Training of Software
 Engineers.” 53.1 Journal of Systems and Software (July 2000): 53-71.
3. Radermacher, Alex, et al. Investigating the Skill Gap between Graduating Students
 and Industry Expectations. Proc. of the 36th International Conference on Software
 Engineering. Hyderabad, 20014.
4. The Joint Task Force on Computing Curricula. “Computing Curricula 1991.” 4.6
 Communications of the ACM. (June 1991): 68-84.
5. The Joint Task Force on Computing Curricula. “Computing Curricula 2001.” 1.3
 Journal of Educational Resources in Computing (Sept. 2001): 1-236.
6. Byrne, Declan J. and Moore, Jeffrey L. “A Comparison Between the
 Recommendations of Computing Curriculum 1991 and the Views of Software
 Development Managers in Ireland.” 28.3 Computer Education (April 1997): 145-154.
7. Lethbridge, Timothy. A Survey of the Relevance of Computer Science and Software
 Engineering Education. Proc. of the 11th Conference on Software Engineering
 Education and Training. Atlanta, 1998.
8. Begel, Andrew and Simon, Beth. Struggles of New College Graduates in Their
 First Software Development Job. Proc. of the 39th SIGCSE Technical Symposium on
 Computer Science Education. Portland, 2008.
9. Carver, Jeffrey and Kraft, Nicholas. Evaluating the Testing Ability of Senior-Level
 Computer Science Students. Proc. 24th IEEE-CS Conference on Software
 Engineering Education and Training. Honolulu, 2011.
10. Loftus, Chris, et al. Can Graduating Students Design: Revisited. Proc. of the 42nd
 ACM Technical Symposium on Computer Science Education. Dallas, 2011.
11. McGill, Monica. Defining the Expectation Gap: A Comparison of Industry Needs and
 Existing Game Development Curriculum. Proc. of the 4th International Conference
 on Foundations of Digital Games. Orlando, 2009.
12. Scott, Elsje, et al. The Skills Gap Observed between IS Graduates and the Systems
 Development Industry - A South African Experience. Proc. of the 3rd Informing
 Science and IT Education Conference. Cork, 2002.
13. Surakka, Sami. What Subjects and Skills are Important for Software Developers?
 50.1 Communications of the ACM (Jan. 2007): 73-78.
14. Knudson, Dean and Radermacher, Alex. Software Engineering and Project
 Management in CS Projects vs. “Real-World” Projects: A Case Study. Proc. of the
 9th International Conference on Software Engineering and Applications. Cambridge, 2009.
15. Radermacher, Alex and Walia, Gursimran. Gaps between Industry Expectations and
 the Abilities of Graduates. Proc. of the 44th ACM Technical Symposium on Computer
 Science Education. Denver, 2013.
16. Tesch, Debbie, et al. “An Examination of Employers’ Perceptions and Expectations
 of IS Entry-Level Personal and Interpersonal Skills.” 6.1 Information Systems
 Education Journal (Jan. 2008): 3-16.

CrossTalk—January/February 2015 9

SOFTWARE EDUCATION TODAY

Nary Subramanian, University of Texas at Tyler

Abstract. A frequent question practitioner asks an academician is “Why don’t
educational institutions prepare students better for work in the IT area?” Often cited
problems with current graduates from Computer Science, Computer Information
Systems, and other IT disciplines, include lack of awareness of latest developments in
the field, lack of knowledge of applying systematic process to solving problems, and
a general unpreparedness to cooperatively work in teams. These issues are pertinent
in an increasingly interconnected world where new technologies are emerging at a
fast pace: big data analytics, computer security, cloud computing, and mobile comput-
ing, are but a few of the latest developments. While it may be appropriate for industry
to demand properly prepared students who are work-ready from day one, it may be
an eye-opening experience for most practitioners to know the problems faced on
the other side of the fence, namely, at educational institutions. In Texas, for example,
less than 25% students graduate in four years and less than 50% graduate in six.
Typical course-load for a degree in Computer Science area is about 120 hours with
about 60 hours dedicated to state mandated, college- and department-specific core
courses; this leaves about 60 hours (roughly, 20 courses) to complete the discipline-
specific requirements. If we consider the normal course sequence in the degree plan
consisting of traditional courses such as programming, software development, and
database design at the most only about four courses are left in the plan that can be
considered for electives. Assuming students are ready to take an elective in a topic
such as SCADA security, the next problem is the lack of appropriate labs and text-
books to teach such courses at the undergraduate level. Another issue that needs to
be considered is the availability of faculty members to teach new courses in a man-
ner that not only retains students’ interest but also increases enrollment. Therefore,
producing well-educated students who are workforce-ready for cutting-edge technol-
ogy companies within four years of college study is proving to be an increasingly
tougher goal for the academia. This article considers this issue and suggests possible
solutions to this perceived problem.

Challenges in Academia
in Producing Prepared
IT Workforce

and soft skills - lack of knowledge of latest technologies, poor
problem solving ability, and inability to work cooperatively in
teams [2]. Industry people expect, perhaps rightly so, that prod-
ucts of four-year degree programs from Universities be ready
to contribute effectively right from day one. However, consider-
ing the dynamic growth of the IT industry, many employers seem
to have been disappointed in this expectation as indicated by
the survey [2]. These issues are relevant in an increasingly inter-
connected world where new technologies are emerging at a fast
pace: big data analytics, cloud computing, game development,
social networking, and mobile computing, are but a few
of the latest developments.

In this article, I wish to point out the issues on the “other” side:
the academic side, a view that is usually not very clear from the
outside world. Major reasons that I consider contributing to this
observation from industry practitioners can be categorized in
three headings: poor four-year graduation rate, low discipline-spe-
cific course load, and lack of academic infrastructure for modern
electives. I also suggest some remedial measures that can help
improve situation many of which require industry participation. In
this article I discuss mainly from the CS perspective though simi-
lar arguments may be made for other computing disciplines.

Poor 4-year Graduation Rate
Typical four-year graduation rates are low in US universities.

As per the National Center for Education Statistics [3], for the
year 2006 cohort, only 39% graduated within four years while
only about 59% graduated within six years. However, data varies
from state to state: in Texas, for example, the four-year gradua-
tion rate is less than 25% while six-year graduation rate is less
than 50%. In engineering disciplines, the graduation rates are
slightly higher at about 35% while the six-year rate is about
75% [4, 5]. This means out of every 100 incoming freshmen
only about 35 are available for industries to hire at the end of
four years. In fact, in 2011 about 11,000 undergraduate CS
degrees were awarded in the US [6] and given a growth in
enrollment of about 10% per year (based on [6]), I estimate the
number of students in the incoming freshmen cohort for CS
should have been about 26,000 in 2007 – about 42% four-
year graduation rate. This means more than half the enrolled
students failed to complete their degrees within the expected
period of four years. There are several reasons for this: changed
majors, funding problems, family issues, job issues, lack of pre-
requisites, or simply failed classes.

What does this mean for an employer? When students do
not complete the curriculum within the expected duration, they
graduate with obsolete skills: they may have forgotten concepts
learnt during the sophomore Data Structures class or even the
freshman programming class (for example, in the survey [2], em-
ployers state that one of the reasons for the skills gap is the fast
pace of change in the IT industry). In junior and senior classes,
a student graduating late may not remember the basics studied
in the pre-requisite class some years earlier – this requires the
student to study harder to keep up with the class. Therefore, the
employer is likely to find a student taking longer to graduate not
as good as a student who graduates on time. In fact one study
has concluded that students graduating late tend to take the job
they get – not necessarily the job they want! [7]

Introduction
Undergraduate education builds a nation’s workforce. This is

especially true in IT related fields such as Computer Science (CS),
Computer Information Systems (CIS), Information Technology (IT)
or Management Information System (MIS). Students graduating
with B.S. are employed by (and increasingly are also employing)
leading technology companies such as Google, Apple, Microsoft,
public, and government agencies. They form the foundation that
helps develop cutting-edge technologies that require and provide
jobs to millions of people around the globe. In fact, CEO’s of
several technology firms are graduates from four-year degree
programs such as, for example, Jeff Bezos of Amazon, Mark
Zuckerberg of Facebook, and Tim Cook of Apple [1].

However, recently I have been asked by practitioners at
several workshops and conferences, “Why do not educational
institutions prepare students better for work in the IT area?” In
a recent survey by CompTIA, 93% of employers indicated there
exists a skills gap in the IT workforce that included both hard

10 CrossTalk—January/February 2015

SOFTWARE EDUCATION TODAY

Low Discipline-specific Course Load
Typical course-load for a four-year CS program in Texas (for

example, [8]) includes up to 48 hours of state-mandated core,
42 - 51 hours of required courses, 9 - 12 hours of CS electives,
and 21-28 hours of other electives and pre-requisites, for a total
of 120 - 130 credit hours of courses. This means that only about
60 hours (or roughly, 20 three-hour courses) are dedicated to
CS in which programming fundamentals, algorithms, computer
organization, operating systems, database management systems,
networking, and software development all need to be fit in a
proper sequence over the period of four years. CS electives are
usually department-specific and application oriented: they include
options that cover latest developments such as computer security,
e-commerce, mobile programming, bio-informatics, and the like.
However, for some of these electives students usually do not have
the necessary pre-requisites (“pre-reqs”) and it becomes their
responsibility to learn the pre-req along with the course material.
For example, for a decent Computer Security class advanced math
helps, for e-commerce advanced database concepts help, for iOS
programming knowledge of Objective C (or, now, Swift) helps, and
for bio-informatics a working knowledge of genetics helps. If such
pre-reqs could be somehow built into the main CS curriculum, then
students are more likely to graduate with a deeper understanding
of the subject and its application areas (of course, students may
optionally pursue a Master’s degree – however, there are cost and
time penalties, and this is discussed later).

In this regard it should be pointed out that there is an up-
per limit on the number of credit hours a student can take and
still pay the lower in-state tuition fees. For example, in Texas, an
undergraduate student enrolled after 2006 can take only 30
additional hours beyond what is required for degree completion
and still pay tuition at the resident rate; any hours taken in excess
of these 30 hours will attract fees at the non-resident rate, which
is, in many cases, at least twice that of the resident rate. This rule
prompts students to complete their degrees as quickly as possible
in terms of credit hours – therefore taking electives becomes
an expensive option. These excess hours include any courses
repeated due to failing grades or for grade replacement.

Another factor to remember is that not all electives are of-
fered all the time. Based on departmental requirements such
as faculty availability, course schedules, and student enrollment,
some electives may not be offered on a regular basis. Also, if an
elective is offered but there is not sufficient student enrollment,
which is usually between 10 and 15 students based on the level
of the course, the course may be cancelled at the discretion of
the department. So electives may not be the right way to expect
students to acquire knowledge of the latest developments in CS.

Lack of Academic Infrastructure for
Cutting-edge Electives

I have been asked by industry practitioners as to why we are
not teaching distributed control systems and SCADA (supervisory
control and data acquisition systems) to our students. The control
system industry has become extensively computerized and net-
worked with several overlapping fields of knowledge and finding a
student trained in these concepts has become increasingly difficult.
SCADA is but one such emerging area; there are others such as

cloud computing, big data analytics, and health informatics, where
deep interdisciplinary knowledge is required of graduates. In fact,
emerging industry paradigm seems to be the convergence of IT
and OT (operations technology) – OT is the technology used for
the core business processes including manufacturing, customer-
service, and product development. Unfortunately, there are several
problems that academia faces when trying to incorporate such
modern industry requirements into the curriculum.

First of all, we need excellent laboratory facilities for teaching
courses in these areas. Simulators may be used for teaching
cloud computing concepts and Hadoop has been used to teach
big-data analysis: for proper operation of both these systems we
need trained IT personnel who can maintain both the hardware
and software for optimum use of such systems. However, for
SCADA we need expensive hardware/software kits and well
trained lab administrators to run such systems (for example, we
have such a lab at UT Tyler [9]). Likewise, for health informatics
we need to be able to simulate or emulate confidential health
records and their use in medical practice.

Second problem relates to useful academic textbooks in
these areas (this was a problem while teaching mobile comput-
ing in its early days as well [10]). While several industry refer-
ences exist, not all of these can be easily used in the classroom
since most such text books assume minimum knowledge in
their readers which is always not the case. In SCADA design, for
example, ladder diagrams are used by professionals but most
academic curriculum in CS and Electrical Engineering have
never taught these concepts for last many years!

Thirdly, we need well-trained faculty members to teach such
courses. While industry practitioners may be called for guest
lectures, it may not be fair to expect them to also teach such
classes with the rigor required. With the availability of free
webinars conducted by industry experts as well as MOOC (Mas-
sive Open Online Course) classes that are conducted by both
academic and industry experts, current faculty could use these
resources to prepare themselves to teach modern courses.
Another option we considered at UT Tyler was the Professor-in-
Residence where a faculty member spends a month or more in
the summer working at a local company. Professor-in-Residence
could be voluntary or paid; however, this experience will help
reduce the barrier between industry and academia and hopefully
prepare the faculty to become a better teacher.

Some Suggestions for Improving the Situation
One thought that may arise in the minds of the readers is the

need for the state mandated core in CS curriculum – that is, can
we not use the time spent on the core on CS subjects? In fact
this is the approach followed in many other parts of the world
where bulk (90% or more) of the CS curriculum consists of only
CS-related courses. However, it is widely acknowledged that
exposure to the humanities, arts, and social sciences is essen-
tial to improving soft skills such as communication with peers,
respect and understanding for other points of view, and being
creative and innovative at work [11]. Therefore, the liberal arts
core is essential to developing a well-rounded graduate in CS.

There are other possibilities to improve student’s learning experi-
ence within the four-year curriculum and they are discussed below.

CrossTalk—January/February 2015 11

SOFTWARE EDUCATION TODAY

Internship and Cooperative Experience
Many universities actively encourage their students to par-

ticipate in internship and cooperative programs. Such programs
involve students working for a company and learning specific
skills that complement their academic experience. Examples in-
clude website development, single sign-on using active directory,
SAP configuration, system administration, firewall configuration,
programming using C#, Java, and C++, and the like. Internship
and cooperative programs may be done concurrently with other
courses during Fall and Spring semesters or exclusively during
summer or even during regular semesters. Several programs are
paid and may be located far from the parent University and, very
often, also give academic credits to the students. In fact, some
Universities have student services departments that provide
active guidance to students for such programs. Thus, students
participating in internship and cooperative experiences are
usually more knowledgeable about the work environment in IT,
perform better in class, and are usually more prepared to enter
the workforce after graduation.

Meaningful Capstone Projects
Several CS programs require their seniors to participate in

a capstone project. Typically this provides an opportunity to
experience almost first-hand the typical IT job environment.
If these capstone projects are conducted in their true spirit,
many valuable job skills such as project management and
collaborative skills can be learnt from them. Such projects
become more meaningful if they are conducted with industry
partners since the latter can not only mentor student groups
but also possibly provide them employment or at least refer-
ences upon graduation. At UT Tyler, we have been conducting
these projects with interdisciplinary teams composed of both
CS and CIS students where each team does a significant proj-
ect for a local industry partner. Each team manages its project
and works cooperatively to achieve objectives of the industry
client. We found that this experience has helped develop
well-rounded graduates with skills beyond that taught in the
classroom that can be readily applied in practice. However, this
requires close collaboration between educational institutions
and industry that in turn requires open-minded faculty mem-
bers and industry partners willing to appreciate each other’s
capabilities and constraints.

Industry Sponsorship of Education
Another possibility that exists is industry sponsoring their em-

ployees for undergraduate education on either full-time or part-
time basis. Armed forces provides this option as does National
Security Agency [12] though in the latter model the student
studies at a University of his or her choice with a commitment to
work at NSA subsequent to graduation. Many private employ-
ers have similar education sponsorship scheme for their current
employees; perhaps they can follow the NSA model and hire
incoming freshmen with the commitment that students work
at the company during summers and join the company upon
graduation. Such a scheme will not only produce well-educated
employees but also employees who are already knowledgeable
in the skills and technology that the company requires.

Another way in which industry can get latest tools in the
hands of students is to sponsor equipment for labs – hardware
and software that companies make can be supplied to labs in
colleges and universities. Faculty members can integrate such
equipment into appropriate coursework. For example, SPEA
America donated semiconductor-testing equipment to UT Tyler
[13] and this donation helped establish a center that benefitted
both faculty and students.

Increase Course Load with MOOC/online Classes
Another option is to increase the number of courses required

to obtain a CS major degree – in fact, in many other countries
the liberal arts core is not required and the curriculum consists
mostly of CS courses. But here we hit another hurdle – some-
times the maximum course loads are mandated by the state. For
example, in Texas, 120-hour limit has been imposed by the state
and at UT Tyler we had to redesign our curriculum from 127
hours a few years back to 120 hours now. However, there are
many programs that are ABET accredited [14] which mandates
them to satisfy minimum set of requirements – such CS programs
are given exemptions and usually have 6-10 hours more than
the state mandate. However, industry has not always insisted on
ABET accreditation for CS programs (in fact, there are only 18
ABET accredited CS programs in Texas [15] out of more than
100 programs offering this degree) and the extra expense on the
additional courses could be a burden for many students.

Expenses for the additional courses can be offset by taking
online courses offered by several junior colleges and universi-
ties. There are also MOOC courses from sites such as Coursera
[16] and Udacity [17] that students can enroll for free and
improve their skillset and knowledge. Such courses may be
taken in the summer months when students are not enrolled in
normal classes. Universities are exploring ways to provide credit
for such online coursework, although much work still remains to
be done to make this process smooth and reliable.

Summer Research Experience for Undergraduates
A valuable opportunity exists in the summer months for

exposing undergraduate students to the latest developments
in the field of CS – the summer research experience program
conducted by several universities often funded by major federal
agencies. During this summer program, undergraduate students
work alongside graduate students on cutting-edge research
under the supervision of a faculty member. Such programs can
serve as platforms for introducing, analyzing, and evaluating
latest developments in the field and getting students interested
in them. Sometimes industry partners are also involved in such
research programs in which case students are exposed to the
latest developments in both academia and practice. Such re-
search experience could lead to co-authored papers, conference
attendance, and patent applications, all of which serve to widen
the knowledge horizon of students.

Study Abroad
Another option that students at US Universities have to

expand their horizon is the study abroad programs. Study abroad
programs offer students the opportunity to study a subject of

12 CrossTalk—January/February 2015

SOFTWARE EDUCATION TODAY

their choice at an educational institution abroad and get credit
for those courses transferred to their primary institution in the
US. Students opting to study in non-English speaking countries
either already know or learn the language before going abroad.
However, students going abroad typically return with a broader
understanding of the world and tend to be more understand-
ing employees. Also, some universities abroad offer specialized
courses that can be taken by study abroad program students
and many of the courses may be offered in English itself.
However, study abroad experience may be intensive in sum-
mers, can be expensive, and not all credits may be transferred
to the parent University.

Encouraging Graduate Education
Currently very few of undergraduates go on to join grad

school immediately after graduation – one estimate puts this
number between 10% and 30% [18]. By joining grad school for
earning an M.S. or Ph.D. degrees, students get to specialize in
a field of their choice and become more useful to work in the in-
dustry. In fact graduate education is considered key to improve
US competitiveness and innovation [19]. However, there are
many issues to consider: typically this means students have to
pay more to obtain a graduate degree; in many cases, graduate
degree does not automatically mean better pay; students lose
out on time to obtain valuable experience; sometimes industry
does not require PhD or even MS students. For some grad
programs field or work experience is preferred – such as for ex-
ample, cyber forensics. Therefore, while grad programs may not
be the first choice for many graduating seniors this may provide
an avenue for some of them to acquire advanced knowledge
required by the IT industry.

Closer Industry-Academia Relationship
At national and professional levels industry already has

a say in academia through ABET accreditation and Profes-
sional Engineer (PE) exams [20]. ABET evaluates computing
disciplines (CS, CIS, and IT) through its Computing Accredita-
tion Commission (CAC) and if the programs satisfy minimum
requirements they receive ABET accreditation. PE exam has
been started recently for software engineering that assures the
hiring company that the person possessing this certification
satisfies minimum industry requirements. Therefore, industry
input already has an impact on curriculum. However, industry
practitioners can participate even more in the functioning of lo-
cal colleges and universities by volunteering to become a mem-
ber Industry Advisory Boards that most computing departments
institute, attending senior design/capstone project presenta-
tions and providing feedback, delivering guest lectures, inviting
faculty and students to visit their offices/factories, participat-
ing in career fairs, visiting colleges/universities on open days,
and the like. Such involvement will not only provide an insight
into the problems, if any, faced by local academia but also
provides opportunities to interact with administration officials,
faculty members, and students. These sessions can be used to
observe, advise, and recommend to colleges/universities ideas
for possible improvements.

Another form of industry-academia partnership is service-
learning (SL) [21]. SL is an experiential learning wherein stu-
dents learn by performing some service to a community client
as part of course requirements and their learning is assessed
by the instructor by means of reflection assignments. Within IT
field, several of the initiatives suggested earlier including intern-
ships, cooperative education, capstone projects, and summer
research experience could all be considered examples of SL. In
order for SL to be more widely adopted in computing programs,
industry may need to be more closely involved – for example,
database classes may do a project for a company and network-
ing classes may actually participate in creating new or trouble-
shooting existing networks in a company. At UT Tyler we have
established the Center for Teaching Excellence and Innovation
where SL is an essential component [22].

Conclusion
Industry seems to find several graduating seniors in the

computing sciences field lacking in skills that will make them
immediately productive in the industry. Typical problem areas
seem to be the lack of awareness of latest developments
in the field, lack of knowledge of applying a systematic
process to solve problems, and a general inability to work
cooperatively in teams. This article has explored this issue
from an academic standpoint and discusses the constraints
faced by the academic community in preparing its undergradu-
ate students – these constraints can be categorized under poor
four-year graduation rate, low discipline-specific course load,
and lack of academic infrastructure for modern electives.
These categories reflect the fact that only about 42% of
freshmen graduate from computing programs in four years,
that there are only about 20 courses or less in which to teach
the core topics in CS, and that there are not enough labs,
books, and faculty members to teach modern electives.

There are several avenues for improving the situation and
these include internship and cooperative education experi-
ences, meaningful capstone projects, industry sponsorship of
undergraduate education, increase course load with MOOC and
online classes, summer research experience for undergradu-
ates, study abroad programs, and encouraging graduate educa-
tion. The article discusses the pros and cons of these options.
However, many of these initiatives require a closer cooperation
between academia and industry and hopefully this helps reduce
the skills-gap that industry seems to face with graduates from
four-year programs in the United States.

Another issue that the IT industry faces is sufficient diversity
in the workforce, which as per recent media reports, is lacking
in terms of women and minority employment [23]. However, this
problem exists in academia too, especially in the engineering
and computer science disciplines where women and minority
participation is low [24]. At UT Tyler, we conduct science camps
for high-school girl students in the summer to encourage them
to pursue STEM (science, technology, engineering, and math)
careers. Another issue to consider is that a significant num-
ber (12% in 2012 as per [24]) of undergraduate students in
Computer Science are part-time – such students usually take

CrossTalk—January/February 2015 13

SOFTWARE EDUCATION TODAY

longer to graduate [25]. Also many part-time students are trying
improving their skills in their quest for lifelong learning and it is
hoped that industry supports their endeavor [26]. However, it
has been this author’s experience that part-time students often
contribute to a more mature discussion in the classroom.

In this article I have tried to answer the question that has
been asked frequently by people in industry: “Why do not
educational institutions prepare students better for work in the
IT area?” There are several challenges that academia faces in
trying to ensure all their “products” satisfy all industry expec-
tations at the time of graduation and I have discussed many
of these problems from the point-of-view of an educator and
provided some directions in which industry could actively help in
remedying this situation. Hopefully, the expectation gap steadily
reduces in the future and students in the IT area find the transi-
tion to industry more seamless and enjoyable.

Acknowledgements
I thank the reviewer of the original version of this article for

providing valuable feedback that helped to significantly improve
the quality of this article.

ABOUT THE AUTHOR

REFERENCES

Nary (Narayanan) Subramanian is
currently an Associate Professor of
Computer Science at The University of
Texas at Tyler, Tyler, Texas. Dr. Subramani-
an received his Ph.D. in Computer Science
from The University of Texas at Dallas.
His specialization is software engineering
with particular focus on software archi-
tectures and requirements engineering.
He co-founded the International Work-
shop on System/Software Architectures
(IWSSA) and served as a co-chair for
seven years between 2002 and 2011. He
established and directed the Center for
Petroleum Security Research at UT Tyler.
He is a Fellow of Service Learning at UT
Tyler’s Center for Teaching Excellence
and Innovation. He has over fifteen years’
experience in industry in engineering,
sales, and management. He is a member
of the IEEE. His research interests include
software engineering, system engineering,
and security engineering.

Phone: 903-566-7309
E-mail: nsubramanian@uttyler.edu

1. Gene Marks, “Why Do Nerds Become Successful CEOs?”, February 10, 2014,
 available at http://www.forbes.com/sites/quickerbettertech/2014/02/10/why-do-
 nerds-become-successful-ceos/
2. CompTIA, “State of IT Skills Gap: Full Report”, February 2012, available at
 http://www.wired.com/wp-content/uploads/blogs/wiredenterprise/wp-content/
 uploads/2012/03/Report_-_CompTIA_IT_Skills_Gap_study_-_Full_Report.sflb_.
 pdf
3. http://nces.ed.gov/programs/digest/d13/tables/dt13_326.10.asp viewed on August
 5th, 2014.
4. http://www.utexas.edu/graduation-rates/documents/GRAD-REPORT.pdf
5. http://dars.tamu.edu/dars/files/ee/ee2a3d0b-38cf-4a0b-addc-847d802aee7b.pdf
6. http://cra.org/uploads/documents/resources/taulbee/CS_Degree_and_Enroll
 ment_Trends_2010-11.pdf
7. Carmen Aina and Giorgia Casalone, “Does time-to-degree matter? The effect of
 delayed graduation on employment and wages”, AlmaLaurea Working Papers, No.
 38, September 2011, available at http://www2.almalaurea.it/universita/pubblica
 zioni/wp/pdf/wp38.pdf
8. https://www.uttyler.edu/catalog/degreeplans/files/COSCBS.pdf
9. https://www.uttyler.edu/cpsr
10. S. K. S. Gupta and P. K. Srimani, “Experience in Teaching a Graduate Course in
 Mobile Computing”, 30th Annual Conference on Frontiers in Education, October,
 2000, pp. S1C6-S1C11 (Vol. 2).
11. Charles M. Vest, “Educating Engineers for 2020 and Beyond”, National Academy of
 Engineering, http://engineeringchallenges.org/cms/7126/7639.aspx viewed on
 August 14th, 2014.
12. http://www.nsa.gov/careers/opportunities_4_u/students/stokes.shtml
13. http://technews.tmcnet.com/business-video/news/2010/10/05/5049852.htm
14. http://www.abet.org
15. http://main.abet.org/aps/Accreditedprogramsearch.aspx
16. http://www.coursera.org
17. http://www.udacity.com
18. http://www.idealist.org/info/GradEducation/Resources/Preparing/ReasonsToWait
19. http://www.cpec.ca.gov/CompleteReports/ExternalDocuments/GR_GradEdAm
 Comp_0407.pdf
20. http://ncees.org/exams/pe-exam/
21. Barbara Jacoby, Service Learning in Higher Education: Concepts and Practices,
 Jossey-Bass, 1996
22. http://www.uttyler.edu/ctei
23. Elizabeth Weise, “Tech: Where the women and minorities aren’t”, USA Today, August
 15, 2014, available at http://www.usatoday.com/story/tech/2014/05/29/silicon-
 valley-tech-diversity-hiring-women-minorities/9735713/
24. Brian L. Yoder, “Engineering by the Numbers”, available at http://www.asee.org/
 papers-and-publications/publications/11-47.pdf
25. Jonathan Dame, “Part-time students least likely to graduate on time”, USA
 Today, December 21, 2013, available at http://www.usatoday.com/story/news/na
 tion/2013/12/21/part-time-students-graduation-rate/4156239/
26. David Kember, et al., “How students cope with part-time study”, Active Learning in
 Higher Education, Vol. 6, Issue 3, 2005, pp. 230 – 242.

14 CrossTalk—January/February 2015

SOFTWARE EDUCATION TODAY

Commander Michael Bilzor, USN, PhD, U.S. Naval Academy

Abstract. The future cyber warriors of the U.S. and the Department of Defense
are being groomed at our nation’s universities right now. As they are imbued with
the fundamentals of computer network attack and defense, the war rages on in
cyberspace. Few questions are more critical to the future of DoD and the nation
than how we can most effectively prepare these men and women for their mission.
There are pitfalls in gravitating to extremes as we in academia chart their course.
In the paragraphs that follow, we advocate for a balanced approach that maximizes
educational value, in order to prepare those future cyber warriors for the battles that
lay ahead of them.

Seeking Balance in
Cyber Education

Theory vs. Application

• The Biba model, published in 1975, did for integrity what
BLP did for confidentiality [2]. The Biba model associates
subjects and objects with integrity labels, with similar rules:
a subject cannot write data to an object at a higher integrity
level (“no write up”), a subject may not read data from an ob-
ject at a lower integrity label (“no read down”), and a subject
may not request a service from a subject of higher integrity.

• First introduced in 1983, the Kemmerer Shared Resource
Matrix Methodology demonstrated the requirements for covert
channels to exist in a computer system, and developed code-
analysis techniques for identifying them [3].

• The Clark-Wilson model, introduced in 1987, outlined an
approach where data integrity is preserved through a well-
defined series of transactions [4].

What do these important theoretical security models have
in common with the modern, commercially-available operating
systems most widely used by DoD? Unfortunately, nothing. Of
the vulnerabilities reported on the national vulnerability data-
base for this year, how many refer to incorrect application of
one of the formal security models listed above? None [5]. Why
not? Because modern, general-purpose, commercially-available
operating systems and applications used by DoD, even on clas-
sified systems, have not been implemented based on formal se-
curity models. The commercial market does not require formal
security models, and the modern commercial code base is too
complex and too rapidly evolving for this to be practical today.

It is true that some computer systems have been developed
with provable security in mind. For example, seL4 is a microkernel
whose security properties have been formally verified, but its com-
plexity (8,700 lines of C code and 600 lines of assembler) pales in
comparison to that of a full-blown commercial operating system, at
tens of millions of lines of code [6]. Even a browser application can
run into the millions of lines of code [7], and the overall complexity
of a computer system is cumulative in the complexity of its compo-
nents (software and hardware).

Returning to our example, a security failure of a computer
system does not generally reflect a failure in the security theory,
or an incorrect application of the security theory. Rather, a security
failure of a computer system most often results from human error
regarding implementation of a technology specific to that system.
Understanding most modern computer security failures requires

Fig 1: Illustration of BLP Formal Security Model

“A man must know how to choose the mean
and avoid the extremes on either side, as far as
possible” attributed to Socrates

An important aspect of any educational program is the balance
between teaching theory and application. Some refer to this as
“training vs. education.” If students receive all theory and no appli-
cation, they will be challenged to apply the theory to contemporary
computer systems and networks. If students are only taught spe-
cific applications, they will be able to use today’s systems, but will
have difficulty adapting to new situations, tools, and technologies.

This tension is felt in traditional computer science, as it is in
many engineering and scientific disciplines. In the field of
cyber security, however, the inherent complexity of systems
makes the divergence between theory and application more
profound compared to traditional academic disciplines, and it
is therefore more challenging to strike a proper educational
balance between the two.

To illustrate the contrast, first consider a traditional discipline
like material science. Mechanical engineers learn how materi-
als fail by studying and measuring stress and strain, hardness
and ductility, etc. They reinforce their theoretical understanding
by breaking materials in the lab. When a bridge support or an
aircraft bulkhead fails, they can appeal directly to the theory
observed in the lab for confirmation.

Now let us consider the security failure of a cyber system. Many
of the theoretical underpinnings of secure computer systems were
established as early as the 1970s. Take a stroll down memory lane:

• The Bell-LaPadula (BLP) model for multi-level security,
first outlined in 1973 [1]. In this model, subjects access
objects; both subjects and objects have associated security
labels. To preserve confidentiality, access is determined ac-
cording to three rules: a subject may not read data at a higher
security level (no read up, or “simple security”), a subject may
not write data to a lower security level (no write down, or the
“•-property”), and a subject that can both read and write must
do so only at the same security level (the “strong •-property”).

CrossTalk—January/February 2015 15

SOFTWARE EDUCATION TODAY

not an understanding of traditional theoretical security models,
but an understanding of the implementation details particular to a
system, whether it is an operating system, a software application, or
a piece of hardware. Unlike the mechanical engineer in our earlier
example, the computer security engineer is more likely not relying
on the basic theory to find the failure in the implementation.

Security theories outlined in BLP, Biba, and other models
are covered by most university programs, and in some general
certification programs like CISSP, as important background.
Many undergraduate and graduate programs in Computer
Science (CS), Information Technology (IT), and Information
Systems (IS) do treat both the theoretical and applied aspects
of security, but they often do so independently, without strongly
connecting the two. This occurs in part because, compared to
traditional science and engineering fields, theoretical models of
computer security diverge further from their actual implementa-
tions, in real-world systems. Security is addressed in CS, IT, and
IS curricula, but often in a way that leaves theory and application
divorced. This leads to the challenge, in academia, of how best
to effectively bridge the resulting gap.

use only these three pillars. In our course, we add the pillars of
authentication and non-repudiation. Others include additional
pillars, as well [8,9]. Here again, the educational challenge is the
gap between the principles or pillars and the tools and tech-
niques needed to implement them. Without specific instructions
explaining how a particular pillar or principal is applied to a
specific network, host, or application, students do not find the
application intuitively obvious, in our experience.

Alternatively, some organizations define their approach to cyber
security at a more granular level, as in the following two examples.

NSA’s Information Assurance Division outlines its Top 10
Mitigation Strategies [10]:

• Application Whitelisting
• Control Administrative Privileges
• Limiting Workstation-to-Workstation Communication
• Antivirus File Reputation Services
• Anti-Exploitation
• Host Intrusion Prevention Systems
• Secure Baseline Configuration
• Web Domain Name System Reputation
• Take Advantage of Software Improvements
• Segregate Networks and Functions
The SANS Institute enumerates its 20 Critical Controls as a

guide to securing a computer network [11]:
• Inventory of Authorized and Unauthorized Devices
• Inventory of Authorized and Unauthorized Software
• Secure Configurations for Hardware and Software on

 Mobile Devices, Laptops, Workstations, and Servers
• Continuous Vulnerability Assessment and Remediation
• Malware Defenses
• Application Software Security
• Wireless Access Control
• Data Recovery Capability
• Security Skills Assessment and Appropriate Training

 to Fill Gaps
• Secure Configurations for Network Devices such as

 Firewalls, Routers, and Switches
• Limitation and Control of Network Ports, Protocols,

 and Services
• Controlled Use of Administrative Privileges
• Boundary Defense
• Maintenance, Monitoring, and Analysis of Audit Logs
• Controlled Access Based on the Need to Know
• Account Monitoring and Control
• Data Protection
• Incident Response and Management
• Secure Network Engineering
• Penetration Tests and Red Team Exercises
Teaching cyber security based only on enumerated lists like

these requires teaching technology-specific, application-specific,
and even tool-specific content. For example, tools like Micro-
soft’s Active Directory and Group Policy, EMET, and Applocker
can be used to support the controls above, but they might not
be the principal tools of the trade in 10 or 20 years.

Principles are enduring, but applications and tools tend to
change over time. In order to ensure that a cyber security edu-
cation is not perishable, it should not focus too heavily on the
applications and tools. There is a natural aversion in academia

“Fly the Middle Course” -- Daedalus to Icarus,
in Cretan mythology

Principles and Pillars vs. Applications and Tools

If the talented software engineers developing Windows, Linux,
and OS X are not deriving their code directly from theoretical secu-
rity models and applying formal proofs of correctness, at what level
of abstraction can cyber security be applied to such systems?

Many experts in the field have enumerated principles --
understandable general statements about properties that can
be applied to computer systems, networks, and software. For
example, in our Introduction to Cyber Security Course, given to
all U.S. Naval Academy midshipmen fourth class (freshmen), we
outline three commonly-used principles of cyber defense: the
Principle of Least Privilege, Defense in Depth, and Vigilance,
and ask the students to implement them in a variety of ways
during hands-on labs. [8]

Many organizations frame Cyber Security or Information As-
surance in terms of pillars, fundamental properties that must be
preserved by a computer network. Three of the most often used
are confidentiality, integrity, and availability. Some institutions

16 CrossTalk—January/February 2015

SOFTWARE EDUCATION TODAY

to “teaching the tools”, since students may learn the tool but
not understand the theory. The solution is not to avoid tools
altogether, but to employ them as facilitators of understanding,
and connect them to the great principles.

To ensure that an academic program is contemporary and rel-
evant, educators should not omit entirely the cutting-edge tools
and technologies of the day. Here again, a balanced approach,
containing appropriate quantities of each, may be the most suit-
able way. In a way, too, enumerated principles and pillars, even
if not formally defined themselves (like BLP, Biba, or Clark-Wil-
son), can act as an informal bridge between enduring security
theory and the security tools and practices of the day.

Let’s Get (Cyber) Physical
The classic example of exploiting a cyber vulnerability to

conduct a physical attack is of course Stuxnet [16], but there
are other examples of how the effects of cyber attacks can be
felt in the physical domain:

• In 2000, a disgruntled contractor, after being turned
down for a job with the local government, gained control of
the Maroochy Water Services system in Queensland, Australia
[17]. Using only a laptop and a radio transmitter, the attacker
was able to control 142 pumping stations for three months,
“releasing over one million liters of untreated sewage into a
stormwater drain that flowed into local waterways.”

• The “Aurora Test,” conducted by Idaho National Labs,
despite some artificialities, illustrated how a large electrical
generator could be destroyed, via a network connection, sim-
ply using cleverly-timed inputs from its SCADA controller [18].

• Although there are no published instances to date of a
cyber attack causing a widespread critical infrastructure outage,
academic research has illustrated the feasibility of such an attack.
In research published in 2004, Albert et al. used a graph-based
model of the North American power grid to show how success-
ful attacks against a small number of distribution or generation
nodes could have cascading effects on the rest of the grid [19].
A 2009 paper by Jian-Wei Wang and Li-Li Rong, examining the
western U.S. power grid, also illustrated ways that critical infra-
structure topologies can be vulnerable to attack [20].

Cyber attacks can also target information about military
hardware, information that could be used to compromise
those systems later on the battlefield:

• According to the U.S. government, “ the owner of a Chi-
nese aviation technology company with an office in Canada,
conspired with two unidentified individuals in China to break
into the computer networks of U.S. companies to get informa-
tion related to military projects.” The man’s co-conspirators
allegedly “claimed to have stolen 65 gigabytes of data from
Boeing related to the C-17 military cargo plane” and “sought
data related to other aircraft, including Lockheed Martin
Corp.’s F-22 and F-35 fighter jets.” [21]

• 2014 Media reports indicated a breach of three differ-
ent Israeli defense companies, apparently resulting in the
exfiltration of proprietary information about Arrow III missiles
and Israeli UAVs [22].

However, it is important to note that, in general, as illustrated
in the examples above, when a cyber attack involves a CPS, the
vulnerability and the compromise take place in the computer
system, while the effects are transmitted to the physical system
through a PLC or a similar mechanism. An understanding of
the interconnect and the physical system is important, but the
fundamental security breakdown generally does not occur
in the physical system, but in the cyber portion; the physical
system’s actions are usually just a manifestation of the compro-
mise to the cyber portion.

While important, real-world compromises of CPS have been
the exception, rather than the norm. For DoD, the most signifi-
cant impact of real-world cyber warfare to date has been the
compromise of important information, rather than the manifes-
tation of a cyber attack on a physical system.

“I have always sought for the middle ground.”
—James Madison

Computer Science vs. Cyber Operations

Another important schism in the education of our future cyber
warriors is in the relationship between cyber security and the
disciplines of computer science and information technology.
Some commonality is generally acknowledged, but the degree
and nature of the overlap is often debated.

Let’s Get Interdisciplinary
A key difference, for many, is the assertion that cyber security

is more of an interdisciplinary field of study, compared to tradi-
tional computer science or information technology. The Depart-
ment of Defense, in particular, has acknowledged the impact of
cyber-physical systems (CPS) on the future of warfare, which
necessarily reaches beyond the traditional computing fields.

There are of course many legal, social, and ethical aspects of
cyber security not traditionally covered by computer science degree
programs. For example, DoD cyber operators should be familiar
with the constructs of Title 10, the section of the U.S. code that
clarifies military roles and authorities, and Title 50, which outlines
intelligence roles and authorities, since these frequently overlap
in the conduct of real-world cyber operations [12]. As another
example, it is important to discuss in an educational setting the
social, ethical, and legal aspects of insider leaks like the Man-
ning and Snowden incidents, as well as the societal perception of
government cyber programs, like those covered in media reports
surrounding the Snowden affair [13,14]. In addition, an educational
program in cyber operations would be remiss to omit topics like
social engineering and activist hacking [15], or “hacktivism.”

CrossTalk—January/February 2015 17

SOFTWARE EDUCATION TODAY

Mandatory Content CS / IT CE / SE Other
Low-level Programming Languages X
Software Reverse Engineering X
Operating System Theory X
Networking X X
Cellular and Mobile Communications X X
Discrete Math X
Overview of Cyber Defense X
Security Fundamental Principles X
Vulnerabilities X
Legal X

Optional Content (60% minimum) CS / IT CE / SE Other
Programmable Logic Languages X
FPGA Design X
Wireless Security X X
Virtualization X
Large-scale Distributed Systems X
Risk Management of Information Systems X
Computer Architecture X X
Microcontroller Design X
Software Security Analysis X
Secure Software Development X
Embedded Systems X X
Forensics X X
Systems Programming X
Applied Cryptography X
SCADA Systems X
HCI / Usable Security X
Offensive Cyber Operations X
Hardware Reverse Engineering X

	
 Table 1: Topics required for certification as an NSA Center of Academic
Excellence in Cyber Operations, and where those topics are most commonly
covered in traditional university curricula.

Foundational Skills
Therefore, a cyber security education, while interdisciplinary

in scope, should also include a great deal of the fundamentals
traditionally taught in computer science and information technol-
ogy programs, such as networks, programming and scripting,
and operating systems.

When we analyze the skills commonly thought of as
supporting cyber security, many rely on a strong foundation
in computer science. For example, we can examine NSA’s
syllabus components for its latest certification criteria as a
Center of Academic Excellence in Cyber Operations [23],
along with the topics’ relationship to fundamental instructional
areas in computer science, as well as closely related
engineering fields. In Table 1, the first column lists the Cyber
Operations content -- first required topics, then optional, of
which 60% must be included in the academic program.
The next columns indicate, respectively, whether the content
referenced is traditionally taught in curricula for computer
science and information technology (CS/IT), electrical and
computer engineering or systems engineering (CE/SE), or
some other department, respectively.

The NSA CAE criteria for Cyber Operations supplies just one
example definition of the educational topics supporting cyber
security, and others may differ slightly. However, we can con-
clude that, although the field encompasses topics from multiple
disciplines, the preponderance of those derive from traditional
areas of computer science and information technology. Over-
emphasizing the interdisciplinary aspects, therefore, risks giving
short shrift to some of the core computing fundamentals.

CALL FOR ARTICLES
If your experience or research has produced information that could be useful
to others, CrossTalk can get the word out. We are specifically looking for
articles on software-related topics to supplement upcoming theme issues.
Below is the submittal schedule for the areas of emphasis we are looking for:

Data Mining in Metrics?
Jul/JAug 2015 Issue

Submission Deadline: Feb 10, 2015

Supply Chain Assurance
Sep/Oct 2015 Issue

Submission Deadline: Apr 10, 2015

Fusing IT and Real-Time Tactical
Nov/Dec 2015 Issue

Submission Deadline: Jun 10, 2015

Please follow the Author Guidelines for CrossTalk, available on
the Internet at <www.crosstalkonline.org/submission-guidelines>.
We accept article submissions on software-related topics at any time,
along with Letters to the Editor and BackTalk. To see a list of themes for
upcoming issues or to learn more about the types of articles we’re looking
for visit <www.crosstalkonline.org/theme-calendar>.

18 CrossTalk—January/February 2015

SOFTWARE EDUCATION TODAY

1. Bell, D. Elliott, and Leonard J. LaPadula. Secure computer systems: Mathematical
 foundations. No. MTR-2547-VOL-1. MITRE CORP BEDFORD MA, 1973.
2. Biba, Kenneth J. Integrity considerations for secure computer systems. No. MTR-
 3153-REV-1. MITRE CORP BEDFORD MA, 1977.
3. Kemmerer, Richard A. “Shared resource matrix methodology: An approach to
 identifying storage and timing channels.” ACM Transactions on Computer Systems
 (TOCS) 1.3 (1983): 256-277.
4. Clark, David D., and David R. Wilson. “A comparison of commercial and military
 computer security policies.” 2012 IEEE Symposium on Security and Privacy. IEEE
 Computer Society, 1987.
5. “NVD - Home.” NVD - Home. NIST, n.d. Web. 08 Aug. 2014.
 <http://nvd.nist.gov/home.cfm>.
6. Klein, Gerwin, et al. “seL4: Formal verification of an OS kernel.” Proceedings of the
 ACM SIGOPS 22nd symposium on Operating systems principles. ACM, 2009.
7. R., Maxwell. “Lines of Code: How Our Favorite Apps Stack up against the Rest of
 Tech.” Phone Arena. PhoneArena.com, 12 Nov. 2013. Web. 08 Aug. 2014.
8. Various. “SI110: Introduction to Cyber Security, Technical Foundations.” SI110:
 Introduction to Cyber Security, Technical Foundations. U.S. Naval Academy, n.d.
 Web. 08 Aug. 2014. <http://www.usna.edu/CS/si110/index.html>.
9. Various. “Information Assurance.” Wikipedia. Wikimedia Foundation, 22 July 2014.
 Web. 10 Aug. 2014.
10. Various. “IA Guidance” Information Assurance Guidance. NSA, 15 Jan. 2009. Web.
 08 Aug. 2014. <http://www.nsa.gov/ia/mitigation_guidance/>.
11. Various. “Critical Security Controls.” SANS Institute -. SANS Institute, n.d. Web. 08
 Aug. 2014. <https://www.sans.org/critical-security-controls/>.
12. Wall, Andru E. “Demystifying the title 10 - title 50 debate: Distinguishing military
 operations, intelligence activities & covert action.” (2011).
13. Gellman, Barton. “Edward Snowden, after Months of NSA Revelations, Says His
 Mission’s Accomplished.” Washington Post. The Washington Post, 23 Dec. 2013.
 Web. 10 Aug. 2014.
14. Fishman, Steve. “Bradley Manning’s Army of One.” NYMag.com. New York Magazine,
 3 July 2011. Web. 10 Aug. 2014.
15. Times, High. “Anonymous Unmasked.” The Huffington Post. TheHuffingtonPost.com,
 01 Apr. 2014. Web. 10 Aug. 2014.
16. Mittal, Pawan. “How Digital Detectives Deciphered Stuxnet, the Most Menacing
 Malware in History | Threat Level | WIRED.” Wired.com. Conde Nast Digital,
 09 July 0011. Web. 10 Aug. 2014.
17. Slay, Jill, and Michael Miller. Lessons learned from the maroochy water breach.
 Springer US, 2007.
18. Zeller, Mark. “Myth or reality—Does the Aurora vulnerability pose a risk to my
 generator?.” Protective Relay Engineers, 2011 64th Annual Conference for. IEEE,
 2011.
19. Albert, Réka, István Albert, and Gary L. Nakarado. “Structural vulnerability of the
 North American power grid.” Physical review E 69.2 (2004): 025103.
20. Wei, Dong, et al. “An integrated security system of protecting smart grid against
 cyber attacks.” Innovative Smart Grid Technologies (ISGT), 2010. IEEE, 2010.
21. Pettersson, Edvard. “Chinese Man Charged in Plot to Steal U.S. Military
 Data.” Bloomberg.com. Bloomberg, 12 July 2014. Web. 08 Aug. 2014.
22. Krebs, Brian V. “Krebs on Security.” Krebs on Security RSS. Krebs on Security,
 14 July 2014. Web. 08 Aug. 2014.
23. Various. “NSA CAE CO” Academic Requirements for Designation as a Center of
 Academic Excellence in Cyber Operations. NSA, 12 Jan. 2012. Web. 08 Aug. 2014.
 <http://www.nsa.gov/academia/nat_cae_cyber_ops/nat_cae_co_requirements.shtml>.

REFERENCES

ABOUT THE AUTHOR
Commander Michael Bilzor, USN, PhD,
is a Permanent Military Professor at the
U.S. Naval Academy. As a Naval Flight
Officer, he accrued more than 2,000 flight
hours in the F-14 Tomcat and F/A-18F
Super Hornet and flew combat missions in
Iraq. At the Naval Academy, he served as
course coordinator from 2013-2014
for the school’s Introduction to Cyber
Security class, taken by all midshipmen
in their first year. Commander Bilzor has
coached the midshipmen cyber competi-
tion team the last two years. His research
interests are focused in cyber security,
and he is currently associate chair of the
Computer Science department.

572M Holloway Rd., Michelson 346
Stop 9F, Computer Science Dept.
U.S. Naval Academy
Annapolis, MD 21401-5002
Phone: 410-293-6802
Fax: 410-293-2686
E-mail: bilzor@usna.edu
Web: http://www.usna.edu/Users/cs/
bilzor/

Summary and Conclusions
In any discussion of an academic curriculum, the theory

must be the foundation. However, in the modern field of cyber
security, never has there been such a divergence between the
traditional theories and the hands-on application. We bridge the
gap to some degree with principles and pillars, which express
concepts in an understandable way, but still require software
tools and application-specific knowledge to implement. As a re-
sult, the maximally effective cyber education should be exclusive
of neither, but seek a middle ground. Similarly, in the drive to
include interdisciplinary studies in the realm of cyber operations,
due to their real-world effects and connection to physical sys-
tems, we should not do so to the detriment of computer science
and information technology, which form the foundation on which
cyber attack and defense are built. Our future cyber warriors will
be best prepared if we seek balance and find the middle way.

CrossTalk—January/February 2015 19

SOFTWARE EDUCATION TODAY

Robert P. Skertic, Defense Acquisition University

Abstract. Defense Acquisition University (DAU) is the department’s premier
software acquisition training institution. Software applications are now the primary
method of providing warfighter capability in all of our programs. Education about how
to do software acquisition management of the requirements, design, development,
deployment, operations, maintenance and disposal of software applications is a key
factor to providing operationally effective, efficient and timely capabilities for our warf-
ighters. DAU educates our DoD Acquisition professionals with the evidence-based
best practices, lessons learned and DoD policy mandates that allow our warfight-
ers to receive highly capable and reliable software-based capabilities. This article
describes where DAU is at with software acquisition training, where we are headed
in the next couple of years and the long term realization that software now impacts
all systems and all career fields. This article will help the reader understand the cur-
rent DAU training model and how DAU is working with the IT Functional Leader to
identify ways to train all of DoD as needed to ensure we deliver software acquisition
management training that improves the IT acquisition outcomes for our warfighters.

Training the DoD
Software Acquisition
Professional

The DAU IT career field includes Program Managers, Project
Managers, IT Specialists in Policy and Planning, Enterprise Ar-
chitects, Cybersecurity Specialists, Systems Analysts, Application
Software Developers, Operating Systems administrators, Network
Services Technicians, Data Managers, Internet/Web Managers,
System Administrators and Customer Support personnel.

Currently, DAU’s IT portfolio includes mandatory Defense
Acquisition Workforce Improvement Act (DAWIA) training,
Continuous Learning Modules (CLMs), Mission Assistance and
Knowledge Sharing via the Acquisition Community Connec-
tion (ACC) Communities of Practice (COP) for IT and Software
Acquisition Management (SAM).

Training Courses
Today, IT acquisition management training is primarily fo-

cused on four DAWIA courses:
1. Basic Information Systems Acquisition (Information

Resource Management (IRM)), IRM101 (Level 1). This is a
distance learning course (online course). This course focuses
on describing and defining the basic terms of IT. All types of
students take this course from the IT career field to other career
fields like the Program Management (PM) career field. This
course is scheduled to be completed within 60 days.

2. Intermediate Systems Acquisition, IRM202 (Level 2). This
is a hands-on classroom experience. This course focuses on a
working level experience in the typical acquisition environment,
a DoD program office. This is the foundation course for the IT
curriculum. This course helps the IT decision-makers identify the
evidence-based best practices, lessons learned, rules of thumb
and use them via classroom exercises and practicums (role
playing in the program office environment). All IT career field
supervisors and practitioners must take this course to achieve
Level 2 education requirements. This is a two week or 10 day
classroom experience.

3. Advanced Systems Acquisition, IRM304 (Level 3 First
Course). This is a classroom graduate-level experience. This
course focuses on the IRM type experience including CIO, PEO
level, and Milestone Decision Authority (MDA) IT level decision-
making experience. This course uses cases studies and some
subject matter expert guest speakers to help the students
understand the decisions needed to be made to ensure the
enterprise IT decisions are being made correctly and why they
were made for each program. This course is focused on the IT
career field supervisors and PEO/MDA level practitioners. All IT
career field personnel must take this course to achieve Level 3
education requirements.

4. Advanced Software Acquisition Management, SAM301
(Level 3 Final Course). This is a classroom graduate-level expe-
rience. This course focuses on the SAM type experience (PM
and PMO software design and development decision-making
experience). Using a sound problem-solving model, students
practice making management decisions that a typical software
program office has to make to be successful. This course
includes a balanced number of subject matter expert guest
speakers to help keep pace with the ever-changing software
acquisition environment. This course is focused on the IT career
field supervisors and program level practitioners. All IT career

Introduction
Software applications have become the primary method to

provide warfighter capability for most of DoD’s systems. DAU is
the department’s premier software acquisition training institu-
tion. This article describes where DAU is at with software ac-
quisition training and where it is headed. Because of the growth
of software acquisition, all systems and all career fields need
to know some aspect of software acquisition. DAU’s goal is to
ensure successful software acquisitions across the department
for all DoD stakeholders. DAU is working with the IT Functional
Leader to identify ways to train all of DoD as needed to ensure
we deliver the proper Software Acquisition Management (SAM)
training to the DoD workforce. DAU’s goal is to improve IT
acquisition outcomes for our warfighters.

Background
IT acquisition management training includes hardware and

software acquisition. Software acquisition education includes
how to manage the requirements, design, development, deploy-
ment, operations, maintenance and disposal of software ap-
plications. Proper IT (software) acquisition management is a key
factor to providing operationally effective, efficient and timely
capabilities for our warfighters.

The mission of DAU is to provide a global learning envi-
ronment to develop qualified acquisition, requirements and
contingency professionals who deliver and sustain effective and
affordable warfighting capabilities. DAU’s vision is to enable the
entire Defense Acquisition Workforce to achieve better acquisi-
tion outcomes for our warfighters.

20 CrossTalk—January/February 2015

SOFTWARE EDUCATION TODAY

field personnel must take this course to achieve Level 3 educa-
tion requirements. SAM101 has been retired since the content
from SAM101 was merged with IRM101 a few years ago. The
basics of DoD acquisition courses (ACQ101, ACQ201A and
ACQ201B) are pre-requisites for all IT courses.

Why IRM and SAM?
Years ago, there were separate SAM and IRM courses at

each level. However, with the Services request to decrease
training time and increase work time, the level 1 courses of
SAM101 and IRM101 were merged into IRM101 and level 2
courses of SAM201 and IRM201 have been merged into one
course called IRM202.

The accepted difference between IRM and SAM courses is
that IRM is focused on the strategic planning and managing of
the acquisition of IT at the system-of-systems level, enterprise
IT Policy management issues and Enterprise Architecture levels.
These are things that the MDA manages. Whereas, SAM is
focused on the detailed planning, managing, designing, devel-
oping, deploying, operating and maintaining of the software
products being acquired. SAM is tactically focused on the solution
architecture, the software architecture being used between and
by all five domains of DoD software systems (Weapons, C4ISR,
Defense Business Systems, Modeling and Simulation, Infrastruc-
ture Systems and Services). These are the software applications
and interfaces that DoD program managers manage.

Current IRM curriculum is based on the Clinger-Cohen
Act (CCA), Title 40, Subtitle III, 1996 plus the latest NDAA
IT management initiatives from 2011 (TITLE VIII on Acquisi-
tion Process for IT), DoDI 5000.02, Operation of the Defense
Acquisition System, Defense Acquisition Guidebook, Chapter 7
(not updated yet with the latest DoDI 5000.02), DoDI 8500.01,
Cybersecurity and DoDI 8510.01, Risk Management Framework
for DoD Information Technology (IT), which explains how to
certify and accredit IT Systems for authority to operate.

Current SAM curriculum is based on NDAA software initia-
tives from 2003 (Section 804 SW Improvements), 2007 (Sec-
tion 853 SW Development emphasis for PMs), 2009 (Section
144 Open Arch, Section 803 SW Reuse), 2011 (Section 241
Software Assurance), DoDI 5000.02, Operation of the Defense
Acquisition System, Defense Acquisition Guidebook, Chapter
4 (not updated yet with the latest DoDI 5000.02), and DoDI
8510.01, Risk Management Framework for DoD IT, which
describes how to identify the software controls required to be
designed in to secure software applications.

DAU also produces online CLM courses that specialize in one
functional area. Continuous Learning modules for Engineering
(CLE) are where most of the IT CLMs exist. The current IT CLM
portfolio includes: CLE010 on Privacy Protection, CLE012 on
Open Systems Architecture (OSA), CLE016 on Outcome-based
Performance Measures, CLE022 on Anti-Tamper, CLE041 on
Software Reuse, CLE060 on Software Measurement, CLE063 on
CMMI, CLE068 on Intellectual Property Rights (Data Rights for
commercial built software applications), CLE074 on Cybersecurity
(March 2015 deployment), and CLL (Logistics)056 on Software
Sustainment. Some of these courses are pre-requisites for our
DAWIA courses.

Mission Assistance
DAU provides program office mission assistance to help DoD

programs at their point of need. If you have current acquisition
challenges, DAU can provide assistance. DAU has regional As-
sociate Deans for Outreach and Mission Assistance (ADOMA)
that lead the mission assistance efforts across the country.

Knowledge Sharing
DAU has established an ACC website including Communities

of Practice (COP). Information Technology has two COPs based
on the definitions above. The IRM COP is called the IT COP. The
IRM or IT COP focuses on the CIO/PEO/MDA level of knowledge.
This is the enterprise IT level of knowledge topics. The SAM COP is
called the Software Acquisition Management COP. The SAM COP
is the software architecture, software design, software development
and management level of knowledge topics.

Organization

DAU has placed software acquisition training within the
Engineering and Technology departments across the five DAU
campuses (located in five regions: West, South, Midwest, Capital
and Northeast and Mid-Atlantic campuses). The Learning Capa-
bilities Integration Center, oversees the curriculum development
for all DoD career fields.

Upcoming Changes in IT Curriculum
IT technology is changing at a very fast rate compared to

DoD’s ability to field programs. Law and policy changes are
occurring annually as the federal government learns more about
how best to manage IT. Basic IT (Software) acquisition man-
agement now touches just about every DoD career field from
Program Management to Systems Engineering, to Logistics, to
Contracting, to Test and Evaluation, to Science and Technology,
etc… Software applications are now the primary method of
providing warfighter capability in all of our programs.

Currently, DAU has just updated all of the IT DAWIA train-
ing courses with the latest DoDI 5000.02 (Operation of the
Defense Acquisition System) and DoDI 8510.01 (Risk Manage-
ment Framework for DoD IT).

The DoD IT Functional Leader has identified 41 IT competen-
cies which need to be trained to the IT career field workforce.
DAU is in the process of fully understanding what needs to be
trained within each competency. DAU is establishing the “to be”
IT training architecture. DAU will then update the DAWIA training
courses with the applicable content from the 41 IT competencies.

Looking to the Future
Because software has taken over the functionality of most of

our DoD systems, it is vital that all career fields have an under-
standing about how best to manage IT within their functional
area. In addition, continued software technology advancements
are causing the IT content to increase. For example, with the
adoption of the DoD Cloud, we are now able to share informa-
tion across domains anywhere in the world securely (Cyber-
security). The IT content footprint continues to increase but
our current DAU courseware and time to cover the topics has
stayed constant. DAU, under the direction of the IT Functional
Leader, is re-thinking how to get the increased IT acquisition

CrossTalk—January/February 2015 21

SOFTWARE EDUCATION TODAY

content out to our IT career field students and
how to better insert IT acquisition management
across all career fields.

Conclusion
In conclusion, DAU provides the basic

evidence-based best practices, lessons learned
and DoD Policies/Guidance IT training for all
IT career field positions (IT PMs, IT Special-
ists). Under the direction of the IT Functional
Leader, DAU is looking at providing IT training
to the other career fields like Program Manag-
ers, Systems Engineers, Contracting, Logistics,
Business/Cost Estimating/Financial, Test &
Evaluation, Production Quality Manufacturing
and Joint and Service Program Management
Offices. This training will help all DoD stake-
holders to understand what it takes to acquire
software-based products in the most efficient
way providing reliable, quality IT capability for
our warfighters! Come to DAU to learn more.

ABOUT THE AUTHOR

Professor Skertic is the Performance Learning
Director for Information Technology for the Defense
Acquisition University. He has held this role since
April 2014. Prior to taking this position, Professor
Skertic was the Acting Department Chair for the
Capital and Northeast Region’s Technology and
Engineering Division (NE-ET). From 2011 to 2012,
Professor Skertic served as the Deputy, NE-ET. From
2002 to 2011, Professor Skertic was the Software
and Information Technology functional lead for the
Defense Acquisition University (DAU). In this role, he
worked with his peers in attempting to keep up to
date with the latest trends and DoD initiatives involv-
ing architecture and software acquisition manage-
ment while teaching DAWIA and Mission Assistance
courses on IT and Systems Engineering.

Professor Skertic is a retired Army Lieutenant
Colonel. Professor Skertic was commissioned in the
Field Artillery. While on active duty, Professor Skertic
served as a Product Manager (PM) of the Army’s
first database on fitness and the establishment of
the Army physical fitness standards from 1982 to
2001. He then became the PM for the automa-
tion of the separation and bonus systems (finance).
From there he became the Technical Director for
the Army’s Global Command and Control System

(GCCS) program and ended his career on the Army
Staff as the Army’s Software Architect for Task
Force XXI and the digitization of the 4th Infantry
Division, Ft Hood, TX (i.e., Blue Force Tracking). He
was a member of the Army’s Acquisition Corps. He
was the Army’s representative to establishment of
DISA’s Common Operational Environment (COE)
and the creation of the Global Command and Control
System (GCCS).

Upon retiring in 1999, Professor Skertic went
to work for INRI (eventually bought by Logicon
and Northrop Grumman Information Technology)
where he served as the contractor Deputy Program
Manager for the Marine Corps Systems Command’s
Systems Engineering and Integration (SEI) Division.
During this timeframe he helped the Marine’s better
understand the Army’s tactical and theater software
command and control architectures.

Professor Skertic holds a Bachelors of Science
Degree in Engineering from the United States
Military Academy at West Point and a Masters of
Science Degree in Computer Science from the Uni-
versity of Southern California.

Phone: 703-805-5281
E-mail: Robert.Skertic@dau.mil

22 CrossTalk—January/February 2015

SOFTWARE EDUCATION TODAY

Paul E. McMahon, PEM Systems

Abstract. Essence is a new Object Management Group (OMG) software stan-
dard [1, 2, 3] developed specifically for software development practitioners and
teams. This article explains specific features of Essence that could help software
teams improve performance in ways previous frameworks, including the CMMI®,
Lean Six Sigma, and Scrum, have fallen short. The article also provides insight
into why many performance improvement efforts fail, and how Essence-- or a
framework with characteristics similar to Essence-- could provide the help orga-
nizations need to hit performance targets more consistently.

A “Thinking Framework”
to Power Software
Development Team
Performance

Essence: What it Is
Essence is a “thinking framework.” Just saying this should

start you thinking about performance differently from the way
many view it when using frameworks such as the CMMI, Lean
Six Sigma, and Scrum.

This is not meant to imply everything we have been doing
in the past to improve performance is wrong. The vast majority
of improvement approaches have strengths, and have helped
organizations get better. However, there exists significant evi-
dence indicating most improvement projects fail to achieve their
goal [4, 5, 6].

Why are we facing this problem?
It is my contention, based on my forty years of working in the

software industry, that the problem is not with the frameworks,
tools, or practices organizations are using, but rather with the
way organizations are going about deploying practice guidance
and practice improvements. This is where a framework such as
Essence can help.

Essence: What it Is Not
Essence is not a new method, or a new set of practices. It is

not in competition with any of the popular frameworks or meth-
ods including CMMI, Lean Six Sigma, Scrum, or Kanban. It is
a framework that can help organizations achieve performance
goals by helping practitioners and teams implement whatever
approach they are already using more effectively and efficiently.
Today Essence is being tested in University field studies [7, 8]
to determine the degree to which it can help teams work more
effectively than using other popular approaches alone.

What Do We Mean By A “Thinking Framework”
and How Can Essence Power Other Software
Development Approaches?

By thinking framework we mean a framework that can help
software practitioners and teams think through the tough prob-
lems they face by helping them ask the right questions, and
find the optimum solutions based on their specific situation.

The reason this framework can work with whatever your
team is currently doing is because it contains no practices that
might conflict with your current approach, and it brings higher
visibility to how well a team is implementing essentials that
have been proven to exist on all software development endeav-
ors. More importantly, when projects fail to meet performance
goals the root cause can usually be traced to poor implementa-
tion of one or more of the essentials.

Why Software Development Endeavors Get in Trouble
Anyone who has been involved in the business of software

development for any length of time can tell you the primary
reason most software development endeavors get in trouble
is because they fail to adequately address things most of us
know are essential, and even when they recognize this failure
they then fail to take timely corrective action.

Why—When We Understand the Problem—Can’t
We Effectively Implement the Solution?

We have known for some time how to solve this problem.
We know that empowering development teams is a critical part
of the solution as the team is best equipped to observe issues
early, and take timely action. But exactly how an organization
should go about empowering its development teams is hotly
debated today--largely due to fear of lost control.

Why Do We Need Another Framework to Help
Empower Teams?

The CMMI [9] and Lean Six Sigma [10] are useful improve-
ment frameworks, but they are intended to be applied by
trained process professionals, not software practitioners and
development teams. Therefore they do little to help empower
development teams to solve the common challenges faced
each day on the job.

A popular framework commonly used today by practitioners
and development teams is Scrum [11]. Scrum provides an effec-
tive framework to encourage teams to raise issues, solve issues,
and keep their progress visible in a timely fashion, but Scrum
provides little help to teams with respect to where they should
look for issues, and how to accurately assess where the team
really is with respect to addressing issues and achieving its goal.

Furthermore, while Scrum, and Agile methods in general,
have been extremely popular, there is considerable literature
available that indicates many organizations are continuing to
fail when using Agile approaches alone.

Scott Ambler stated, based on a Dr. Dobbs State of the IT
Union survey conducted in November, 2009, that only 11% of
respondents indicated that their existing governance strat-
egy works well with agile teams. Ambler said that this is an

CrossTalk—January/February 2015 23

SOFTWARE EDUCATION TODAY

indication that their organization is likely to apply traditional
governance strategies (e.g. command and control) and that this
strategy will not work with agile teams [12].

Another reason cited for these failures [13] is:
“trying to force a strict agile approach when it is not appropri-

ate for every environment.”
These facts leads us to ask two questions:
“How can we help our software teams determine the right level

of agility for their specific project?” and, “How can we help our se-
nior management move to the right governance strategy to best
support their software teams and their organizational objectives?”

How a Framework, Such as Essence, Can Help
Essence is not an alternative to Scrum, or any other method,

set of practices, or improvement framework. It is not another
methodology. It was intentionally developed to be agnostic to
specific practices and methods. It is a framework intended
to be used with whatever practices, method and lifecycle an
organization chooses to use and it can help teams ask the right
questions and take the right actions leading to the right balance
of agility and control given their specific situation.

This framework was developed by volunteers representing a
wide range of software experiences and cultures including peo-
ple from industry, academia and research in countries around
the world [3]. The framework is not just a theory, but is based
on what has proven to be essential to effective and efficient
software engineering. Most important to the issues being raised
in this paper, it has the potential to help senior management and
software development teams work together to implement an ap-
propriate agile governance strategy as recommended by Ambler.

To give you a real example demonstrating how the Essence
framework can help with the challenge we face, at Carnegie-
Mellon West in a recent field study [8] where students were
asked to try Essence, the following was reported:

“While most styles of Agile retrospectives tend to focus on
known issues, Essence reflections tend to make unknown is-
sues apparent by covering the project holistically and reminding
participants of critical areas that might be overlooked. These
differences make Essence reflections and Agile retrospectives
complementary. This is illustrated by the following student quote:

‘Though the team was holding retrospectives every week
already, having Essence discussions be a part of it allowed the
team to touch on important aspects of the project; aspects
which would otherwise be ignored’.”

This finding about Essence, based on student feedback from
a field study, demonstrates its potential to improve a team’s
understanding of unknown issues, or risks. Identifying risks is
a critical first step necessary for teams to take action early to
eliminate risks. This is a similar observation that was made by
a senior experienced engineer in a major US DoD organization
when first exposed to the Essence framework [6].

According to the Carnegie-Mellon Software Engineering Insti-
tute 60-80% of the cost of software development is in rework
[14]. Rework is often caused by issues that were unknown to
the team when the work was originally done. Rework is prevent-
able by reducing unknowns early. Therefore anything we can do

to reduce or eliminate risks can potentially reduce the cost of
software development by 60-80%.

Key Elements Inside the Essence Framework
Key elements inside the Essence framework that I want to

focus on in this article are Alphas, Alpha States, and Alpha State
Checklists. Alphas are the essential things teams work with.
There are seven Alphas inside the framework including Oppor-
tunity, Stakeholders, Requirements, Software System, Work, Way
of Working and Team. Refer to Figure 1.1

What Alphas Are, and Are Not
Alphas are ultimately about helping your team more ac-

curately assess where they are and where they need to focus
their effort next for project success. Some have struggled with
the Alpha notion. Alphas are not abstract work products. Alphas
always exist regardless of the degree of concrete work products
supporting their existence.

The reason this is important is because when we focus
on concrete work products alone we can miss essentials for
software endeavor success. Over-focus on work products and
missing the real goal is one of the problems commonly observed
in the way past improvement models have been applied causing
organizations to fall short of their performance goals [6].

How Essence States Can Help Accurate
Progress Assessment Regardless of Lifecycle
and Practice Choices

The Essence Alphas have states and checklists that can help
teams assess where they currently are and where they need to
focus their effort next. This includes projects using incremental,
agile or waterfall lifecycles. As an example let us look at the
Work Alpha.

Two of the states within the Work Alpha are Work Prepared
and Work Started. The Alpha States and Checklists can be rep-
resented on cards. An example of these two Alpha States with a
subset of checklists is shown in Figure 2.

Figure 1 Seven Alphas inside the Essence framework

24 CrossTalk—January/February 2015

SOFTWARE EDUCATION TODAY

The Checklist shown for the Work Prepared State is:
• The work is broken down sufficiently for productive work

 to start
The three checklists shown for the Work Started State are:
• Development work has been started
• Work progress is monitored
• The work is being broken down into actionable work items

 with clear definitions of done
One of the reasons why projects often fail to maintain their

schedule commitments regardless of lifecycle or practice
choices is due to inadequate work break-down and estima-
tion before the work begins. When the work is not adequately
broken down and estimated unrealistic schedule estimates often
occur leading to poor schedule performance.

If you look closely at the way these checklists are worded in these
two states you can see how a team can effectively use the check-
lists to assess the work break down status on any project including
an agile project, an incremental project or a waterfall project.

For example, if your team is using Scrum and the planning
poker practice [15] they could conclude that “the work is broken
down sufficiently for productive work to start” as long as back-
log items [11] have been selected and the team has reached
consensus on the estimates for each backlog item for the first
Sprint [11] using their planning poker estimation technique.

As the project proceeds, as long as they are holding their
daily standups [11] to monitor work progress, and at the start of
subsequent Sprints, backlog items are selected, broken down
and estimated by the team, the team could conclude they are
meeting all three checklist items under work Started.

On the other hand, a team that is using a waterfall lifecycle
might conclude they have not passed the work Prepared state if
only part of the work has been broken down because they might
deem that insufficient given their lifecycle choice. This example
demonstrates how a team can use the Essence framework to
more accurately assess if the work is sufficiently broken down
and estimated regardless of lifecycle choice.

If the work is not adequately broken down the team can raise
this issue and make it a priority to solve the problem before it
leads to more serious issues later in the project. Today, on many
projects, including those that use other popular frameworks and

methods it is too easy to let this type of “small issue” slip by, and
lead to a “big issue” downstream.

Experienced practitioners have known for a long time that
small issues not handled early are often the cause of big issues
downstream, but knowing this has not helped. One possible rea-
son is because we have not given our practitioners and teams a
framework that gives them solid evidence that actions need to
be taken to resolve issues at an appropriate time.

How Essence Checklists Are Different and Can
Help Teams Assess Progress More Accurately and
Take Action at an Appropriate Time

Let us now look at an example demonstrating how Essence
checklists are different from traditional checklists and how they
can help team performance.

Traditional checklists are what I refer to as “existence checks”
[6]. Examples include:

• Do you have a plan?
• Do you have a design document?
• Did you conduct a peer review?
Existence checklists are easy to use because the answer is

a simple yes or no that requires little discussion. But existence
checklists can lead to a checklist mentality, and they do not help
with questions related to how well the team is performing or
how much of a certain activity the team should be doing. Exis-
tence checklists are what many quality organizations use today
and they are common among organizations that use the CMMI
model. One reason for this is because existence checklists are
easy for external appraisers to use, or external quality audit
personnel who are not intimately familiar with the project they
are auditing.

But existence checks do little to help teams assess where
they are in terms of how much effort is still required to get the
job done on a specific project. Following is an example demon-
strating how Essence checklists go beyond existence checks
helping teams improve performance by improving their progress
assessment and improving their decisions on where they need
to focus their attention next.

Example: Checklist item Requirements Alpha Co-
herent State

A checklist item for the Requirements Alpha Coherent state is:
• Conflicts are identified and attended to
Just verifying that a requirements document exists would

not be sufficient to verify that this checklist item is met. This
checklist item is asking us whether or not we have conflicting
requirements and if we do are they being addressed? Often the
real pain that teams face originates from conflicting require-
ments that they do not know how to handle, and it is these types
of problem areas that often lead to latent defects and extended
integration schedules.

Because Essence contains states and checklists as a stable
reference it provides a degree of assurance that progress is as-
sessed more objectively and accurately-- and appropriate con-
trol is maintained. Furthermore, because the Essence states and
checklists are agnostic to a team’s lifecycle and practice choices
it can help power whatever approach your team chooses to use.

Figure 2 Work Alpha Prepared and Started States

CrossTalk—January/February 2015 25

SOFTWARE EDUCATION TODAY

Not Checklists an External Auditor Can Easily Apply
Many of the Essence checklists are not checklists an external

auditor can easily apply by looking at a project from the outside.
You need to be intimately involved in the project to answer hon-
estly the questions that many of the Essence checklists lead you
to ask. This is one reason why this framework is for software
teams and why practitioners need to be more actively involved
when making key decisions that help to steer a successful high
performance project.

Traditional checklists lead us to simple yes/no answers that
require little discussion, and fail to provide an accurate status of
the project. Many of the Essence checklists lead us to deeper
questions, and deeper analysis– the kind that gets to the real
issues that ultimately affect project performance.

Example Of a Team Using Essence to Assess and
Solve a Difficult Situation

The SEMAT2 volunteers have been working on an Essence
User Guide that will be made available from the SEMAT web
site [16] to help guide teams with options they have to apply the
framework. One of the scenarios from the User Guide3 provides
an example of how a team could use the Essence framework to
assess a difficult situation.

In this scenario the team realizes they have a problem with a
resistant stakeholder. The scenario demonstrates how a team
can use the alpha states and their checklists to drill down and
solve a specific problem.

Since the team knows they are having trouble with a stake-
holder they first assess where they are with respect to the
Stakeholder Alpha. Their discussion leads to team agreement
that they have achieved the first state, stakeholders Recognized,
but they have not achieved the second state, stakeholders
Represented. They agree their next step is to get a stakeholder
representative appointed.

The next step is to get the stakeholder Involved and they do
this by interviewing him trying to find out what is behind the
resistance. They learn through the interview that he does not
see the value of the new system, which leads to the Opportunity
Alpha and the Value Established state. This in turn leads to the
Software System Demonstrable state once the team recognizes
they need to conduct a demonstration to help the stakeholder
see the value. Refer to Figure 3.

What you learn through this scenario is how the discussion
leads through a sequence of alphas helping the team figure out
the next action to solve the problem. This scenario demonstrates
how a team can conduct their own root cause analysis and
figure out the right actions to solve a problem in a timely way.

When a group of students at Carnegie-Mellon West that used
Essence in an early field study [7] were asked if Essence’s monitor-
ing and steering approach had value to a project team, 90% of the
students said that following the approach was worth their time, and
80% said they would use the approach again on their next project.

Lean Six Sigma provides a powerful tool kit to help organiza-
tions conduct root cause analysis, and take action to improve.
But to use this tool kit often requires the expertise of a Lean Six
Sigma Black Belt which requires hundreds of hours of study to
reach the required proficiency level. Like the CMMI, Lean Six
Sigma is a tool kit for process professionals, whereas the Es-
sence framework is for development teams to help them solve
their problems themselves in a timely way.

What’s Different About the Essence Approach?
I stated in the beginning of this article that the reason many

organizations are falling short of their performance goals is not
because of their choice of practices or tools, but rather because
of the way they are going about deploying their practice guid-
ance and practice improvements.

Fundamental to the Essence approach is-- rather than mak-
ing radical changes to whatever you are doing today-- to make
changes in small steps based on where your development
teams need the most help right now.

How often do we hear our practitioners say:
“My company processes do not help me with the real prob-

lems I face each day on the job.”
It is my contention that the cause of this problem is the fact

that too many organizations are focusing their guidance and
improvement efforts in the wrong area. We spend too much ef-
fort trying to tell our teams what to do in situations they already
know how to handle, and too little effort helping them with the
common but difficult situations where they need help the most.
Instead of just telling our development teams what they should
be doing, we should be listening more for where they need help,
and then focusing our improvement efforts accordingly. This is
an area where the Essence pattern notion could help. [6]

Figure 3 Digging for a Root Cause and Solution Using Essence States and Checklists

26 CrossTalk—January/February 2015

SOFTWARE EDUCATION TODAY

What is an Essence pattern?
A Pattern in the Essence system is defined as, “an ar-

rangement of the other language elements (e.g. alphas, alpha
states,...) into meaningful structures.”

You can think of a pattern as a simple mechanism to deploy a
small slice of useful information that can help your teams with a
specific challenge. Following is a simple example [6].

The Dictated Schedule Pattern
Project Lead speaking to her team:
“Management has dictated we will not slip schedule so do

whatever it takes to get the job done.”
A developer responds:
“I will skip my design review, and much of the testing I

planned to do because I do not see any options.”
A second developer replies:
“We could focus the design review and testing just on the

areas where we have seen problems in the past.”
What would you do, if faced with the same dilemma? Are

there other options?

Using Patterns To Help Empower Your Develop-
ment Teams To Make Better Decisions

When I help companies that want to move decision-making
deeper into the organization I encourage them to write their
processes in a way that supports practitioner decision-making.
One way to do this is by providing criteria and options in their
processes. Now let us look at this scenario from the Essence
framework perspective.

The Dictated Schedule Pattern From the Essence
Framework Perspective

The dictated schedule scenario relevant alphas are Work and
Way of Working. Refer to figure 4.

Work is defined as: Activity involving mental or physical effort
done in order to achieve a result. And Way of working is defined
as: The tailored set of practices and tools used by a team to
guide and support their work.

Now let us assume the team had assessed the project to
have achieved the following states (Refer to Figure 5):

• Work Under Control
• Way of Working In Place.

Figure 4 Work and Way of Working Alphas

Based on the checklists, these states imply that:
• the work is going well,
• risks are being managed, and
• all members of the team are using the way of working.
Now think about those checklists again, given the current scenario.
Will we introduced new risks if we follow the suggestion of

the second developer?
Is the suggestion to focus the testing and review just on ar-

eas where the team has observed problems in the past allowed
within their agreed way of working?

The answers to these questions depend on each project’s
specific situation, and your team’s agreed way of working. Note,
this is an example demonstrating how a team could fall back, and
how the Essence framework when applied by a development
team as part of their progress assessment tool-set can help a
team assess progress more accurately helping them take the
timely actions needed to keep their software endeavor on course.

Current Status and Next Steps
The Essence standard is still young having been adopted by

the OMG in June, 2014. Some early adopters including Muni-
chRe, the world’s leading Reinsurance Company, and Fujitsu
Services which used an early version of the framework have
reported encouraging results [2].

There is also effort going on in multiple Universities around
the world to integrate the Essence framework into existing
software engineering curriculum including at the Universidad
Nacional de Colombia where Dr. Carlos Maria Zapata has de-
veloped and is currently delivering the first full course based on
SEMAT and the Essence framework.

Figure 5 Work Under Control State and Way of Working
In Place State

CrossTalk—January/February 2015 27

SOFTWARE EDUCATION TODAY

The next critical step for Essence is to gather more case
study information and hard data to help us better assess the
value this new standard can bring to power software develop-
ment team performance.

Disclaimer:
CMMI® is registered in the U.S. Patent and Trademark Office

by Carnegie Mellon University.

ABOUT THE AUTHOR
Paul E. McMahon, Principal, PEM
Systems has been an independent
consultant since 1997. He has published
more than 45 articles and multiple books
including “15 Fundamentals for Higher
Performance in Software Development.”
Paul is a Certified Scrum Master and a
Certified Lean Six Sigma Black Belt. His
insights reflect 24 years of industry expe-
rience, and 17 years of consulting/coach-
ing experience. Paul has been a leader in
the SEMAT initiative since 2010.

Phone: 607-798-7740
E-mail: pemcmahon1@gmail.com

1. OMG Essence Specification, <http://www.omg.org/spec/Essence/Current>
2. Jacobson, Ivar, Ng Pan-Wei, McMahon, Paul, Spence, Ian, Lidman, Svante,
 The Essence of Software Engineering: The SEMAT kernel, Oct, 2012, ACMQueue,
 <http://queue.acm.org/detail.cfm?id=2389616>
3. Jacobson, Ivar, Ng Pan-Wei, McMahon, Paul, Spence, Ian, Lidman, Svante, The
 Essence of Software Engineering: Applying the SEMAT kernel, Addison-Wesley,
 Jan,2013
4. Glazer, Hillel, CMMI Failure Modes and Solutions – Paving the Path for Agile &
 CMMI Interoperability
 <http://prezi.com/vttomwejpe83/cmmi-failure-modes-and-solutions-paving-the-
 pathfor-agile-cmmi-interoperability/>
5. Wall Street Journal, Where Process Improvement Projects Often Go Wrong
 <http://online.wsj.com/news/articles/SB10001424052748703298004574457471313938130>
6. McMahon, Paul, 15 Fundamentals for Higher Performance in Software Development,
 PEM Systems, July, 2014, <https://leanpub.com/15fundamentals>
7. Peraire, Cecile, Sedano, Todd, State-based Monitoring and Goal-driven Project
 Steering: Field Study of the SEMAT Essence Framework, International Conference
 on Software Engineering (ICSE 2014), Hyderabad, India, June 2014,
 <http://works.bepress.com/cecile-peraire/1/>
8. Peraire, Cecile, Sedano, Todd, Essence Reflection Meetings: Field Study,
 International Conference on Evaluation and Assessment in Software Engineering
 (EASE 2014), London, UK, May 2014, <http://works.bepress.com/cecile_peraire/31/>
9. Chrissis, Mary Beth, Konrad, Mike, Shrum, Sandy, CMMI for Development:
 Guidelines for Process Integration and Product Improvement, V1.3, Third Edition,
 Addison-Wesley, 2011
10. George, Mike, Rowlands, Dave, Kastle, Bill, What is Lean Six Sigma?, McGraw-Hill,
 2004
11. Schwaber, Ken, Sutherland, Jeff, The Scrum Guide, The Definitive Guide to Scrum:
 The Rules of the Game, July, 2011
12. Ambler, Scott, Lines, Mark, Disciplined Agile Delivery, IBM Press, 2012
13. Stafford, Jan, What’s Behind the Backlash Against Agile?
 <http://searchsoftwarequality.techtarget.com/feature/Agile-development-Whats-
 behind-the-backlash-against-Agile>
14. <http://www.cmu.edu/govrel/PDFs/2011-briefing-book/2.9-software-engineering-2011.pdf>
15. Cohn, Mike, Agile Estimating and Planning, Prentice-Hall, 2006
16. SEMAT Web Site, <www.semat.org>

REFERENCES

NOTES

1. The Essence figures in this document are provided courtesy of SEMAT Incorporated
2. SEMAT stands for Software Engineering Method and Theory. SEMAT is the world-
 wide group of volunteers that developed the Essence framework. For more
 information about SEMAT refer to <www.semat.org>.
3. I would like to thank the following SEMAT volunteers for their contributions on
 this scenario: Dr. Cecile Peraire, Dr. Mira Kajko-Mattsson, Winifred Menezes, Barry
 Myburgh, and Dr. Robert Palank.

28 CrossTalk—January/February 2015

SOFTWARE EDUCATION TODAY

Lawrence Peters, Software Consultants International Limited

Abstract. The presumed goal of training software project managers is to equip
them with the knowledge and competencies that will help them to be successful.
These will not guarantee success but make success more likely. Over the years, the
notion of success has expanded greatly from simply meeting requirements, delivering
on time and not exceeding the budget to include a plethora of other success criteria.
In fact, what success is often changes many times during the project. This and
many other facets of software project management frustrate and perplex untrained
software project managers since most enter into this role untrained [1]. This article
presents what anecdotal and experimental evidence has shown software project
managers need to know that can be conveyed via training programs. Today’s soft-
ware project manager can also benefit from this information to overcome many of
the misperceptions about nearly everything regarding software project management.

Training Software
Project Managers

Targeted Issue
Software Engineering Education Issue - The importance of

adequate management of software projects is slowly becoming
more apparent. Most current software project managers and those
seeking to become software project managers have either been
inadequately trained to address today’s software engineering is-
sues or have not been trained at all. This article examines what we
now know is needed to successfully manage software engineering
projects and how education can help transfer this information.

Introduction
Software project management represents a paradox within

the software engineering community. It has been described as
being more vital to software project success than all other fac-
tors combined [2], yet there are still no conferences or journals
devoted to this topic. In fact, international conferences on
software engineering rarely list software project management
as a topic in the call for papers topic list. Finally, we are slowly
realizing what other knowledge work related professions have
known for a long time – project managers are not born, they are
made – through education. The problem is, there is no general
agreement on what knowledge and skills a software project
manager needs in order to be successful. In fact, we have yet
to agree on just what success in software engineering is. This
article examines what software engineering project managers
need to know, what skills they must possess and how these
may be acquired through education. The resources cited are not
restricted to software engineering alone as there is a lack of
research in this subject.

The Nature of Software Engineers
Some years ago, psychologists sought to answer the follow-

ing question, “What is it about software development that has at-
tracted so many people from such a broad range of disciplines?

They found that most software engineers shared two unique
(taken in combination) psychological characteristics [3]:

1. High Growth Needs Strength - A desire to solve
challenging problems.

2. Low Social Needs Strength - A strong tendency to work alone.

To summarize, these people are attracted by software devel-
opment because they want to deal with significant, technically
challenging problems and not have to deal with other people.
Unfortunately, the scale and complexity of today’s software
development efforts requires that teams of software engineers
build and maintain them. Since software project managers are
drawn from the ranks of the software engineering teams, they
also display the psychological profile of most software engineers
and tend not to have great “people skills.” This works against
them in a management role [4].

What Software Project Managers Do
Without doing any research, it is difficult to figure out just

what software project managers do. The model we will work
from proposes that software project managers are responsible
for performing 5 basic functions [4] often in parallel, executed in
concert with their team:

Scheduling – Laying out a list of milestones and dates con-
sistent with the contract. Contrary to what you may have read
[5], scheduling and planning are not the same activity.

Planning – Detailing the tasks and subtasks that must be
successfully executed in order to proceed from one milestone
to the next. This is an ongoing process throughout the project to
adapt to unforeseen problems.

Controlling – Monitoring the project’s progress, taking ac-
tion to recover deviations from the project plan, as necessary.

Staffing – Acquiring the human resources needed to suc-
cessfully execute the project plan.

Motivating – Creating and maintaining a physical and
psychological environment that ensures the development team
works at its full potential.

PLANNING

CONTROLLING

SCHEDULING MOTIVATINGSTAFFING

	

Figure 1: Software Project Manager Activities

CrossTalk—January/February 2015 29

SOFTWARE EDUCATION TODAY

Figure 1 shows the relationship among these activities. The
relationship among these functions is shown in Figure 1. If
those topics appear distant from programming, it is because the
software project manager is more like the manager in baseball,
not a player. Before heading into software project management,
a software engineer needs to consider whether or not they are
ready to move into this very different domain.

Where Do We Get Software Project Managers From?
Several decades ago, a very successful CEO (Robert

Townsend) wrote a book detailing what needed to be done to
improve how companies functioned [6]. One of the points he
made seems to have been ignored by the software engineering
industry [1]. What Townsend was trying to communicate was the
fallacious belief that the most capable person in a team should
become its manager. For example, we have a team of 5 people.
Someone has to be responsible for meeting with the client,
preparing status reports and assigning responsibility for specific
development tasks to team members with their concurrence. If
software project management duties are assigned to the most
skilled software engineer, the productivity of the group is re-
duced because this highly skilled person has little or no time to
do programming. Besides, management tasks and development
tasks require very different mindsets. Worse, it is likely that this
highly skilled person will not be empathetic to less skilled team
members and help them improve their skills, help them solve
difficult programming issues, and so forth.

A Few Misconceptions Seen as Self-Evident
Truths by Many Software Project Managers

People work for money – Money ranks as 5th in impor-
tance [7] (see Table 1). But more importantly those who have
studied why we work [8, 9, 10] have concluded we work for
self-esteem, fulfillment and other reasons, not just for money.
We have a paradox here in that the most expensive reward (sal-
ary) is the least appreciated while the most appreciated reward
(a simple “Thank You”) is the least expensive.

If we get behind, we can catch up – using Earned Value
Management, if the project is 15% complete and behind sched-
ule, based on a study of 700 DoD contracts, the chances of
getting the project back on plan are nil [11].

Putting Pressure on the Team will Improve Produc-
tivity – Presumably the knowledge and experience the team
brings to the project are what are needed to do the job. It has
been shown that pressure to perform causes the team to break
up into individual problem solvers effectively destroying the col-
lective intellectual power of the group [12].

To Avoid Getting Behind, we will start with a bigger
team – This is done to avoid adding people to a late project but
it is surprisingly ineffective [13].

Offer some big reward, that will get them working – It
has been shown that if the reward is big enough, people will
cheat to get it [14].

Break up successful teams to other groups to spread
the knowledge – The most successful software company(s) in
the world do not do this but keep teams intact as much as pos-
sible and work to help other teams to learn to be successful [15].

Software engineers Do not really need to be reviewed,
they know how they are doing – Evaluating the performance
of software engineers using the usual “one size fits all” human
resource system is inappropriate for most high technology work-
ers [1, 4]. A better approach is to tie evaluations to an individual’s
contribution to achieving corporate or group strategy [4, 16].

We can accurately predict the future – Nobody has been
successful at this but now we know why we fail to accurately
estimate software projects and how to correct for our over opti-
mism and failure to fully recognize risk [16, 17].

Treat everyone the same – This century may mark the
highest occurrence of multi-generational teams since we were
an agrarian society. In addition, both in-house and outsourced
projects will involve multiple cultures. Being aware of and
responding to the issues of the value systems of these vari-
ous groups will require knowledge and diplomacy. Due to the
worldwide financial crisis, these are issues all software project
managers must address [18].

The preceding represent both misinformation and some antipat-
terns. An antipattern is a solution to a problem that actually makes
matters worse. More than 95 of these have been identified, catego-
rized and published [19] and the list continues to grow.

What Do Software Project Managers Need
to be Taught?

One way to answer this question is to look at what successful
software projects have in common, then glean from that what
we need to provide to current and prospective software project
managers. A study of nearly 600 software projects worldwide
that were reported to have been successful found a number of
common “success oriented” factors [20]. These factors did not
guarantee success but made it more likely (Table 2).

In examining Table 2, you might conclude that you could
have guessed at some of the items without the benefit of a
disciplined literature search worldwide. But there are a couple
of items you may find need further explanation. One is the term,
“Competent project manager.” The knowledge and competen-
cies that constitute a competent software project manager is
what this article is about. At the present time, we do not know
whether or not a software project manager is competent until

Factor Manager’s

Importance Rank

Non-Manager’s

Importance Rank

Salary 1 5

Job Security 2 4

Promotion/Growth Opportunities 3 7

Working Conditions 4 9

Interesting/Challenging Work 5 6

Personal Loyalty to Workers 6 8

Tactful Discipline 7 10

Appreciation for Work Done 8 1

Help with Personal Problems 9 3

Being in on Things 10 2

	
 Table 1: Relative Importance of Project Factors

30 CrossTalk—January/February 2015

SOFTWARE EDUCATION TODAY

it is too late – the project has either been successful or failed.
The other item that may seem curious occurs on the output
side of Table 2, “Job satisfaction.” It turns out that if software
engineers do not find the work they are doing to be profession-
ally satisfying, challenging and so forth, their productivity is low.
Presumably, successful software projects result in large part
from having a productive development team [16].

the use of earned value management, the most likely answer
will be, “OK.” If you have ever sat in on a project status meeting
and wondered what metric was used to determine “OK” when
you had heard rumors that things were not OK, you know some
objective method needed to be applied.

Analysis of the content those university programs that offer
software project management, whether it is required or optional,
reveals that they are focused on programming issues, Agile, soft-
ware tools and a general condemnation of the Waterfall Lifecycle.

Is Software Project Management Important?
The software engineering industry has spent more than a

half century developing dozens of new methods, and tech-
niques all directed at solving, “the software problem.” What
effect has all this had – an abysmal one [21]. Programming
productivity has improved in a linear way by less than one
source line per person month per year from 1960 to 2000.
But facets of our profession continue to annoy customers.
These facets are uncertainty of delivery date, cost, quality,
ease of use, maintainability, communication and so forth.
Remember, the software project manager is the biggest
single factor in determining project success – bigger than all
other factors combined [2]. One would think that with such
importance, software project management would be the last
subject we would choose to be optional.

What Software Project Managers Need to Know
For those who feel they would like to manage a software project

here is a short list of skills you will need and some you won’t.

Needed
Interpersonal skills – the ability to connect with each mem-

ber of your team as a friend and colleague, a servant – leader
who team members view as having their best interests at heart.

Communication skills – both in written expression (e.g.
written reports) and presentations (e.g. PowerPoint or other
format in front of an audience).

Basic Cost Accounting – if you do not know the 3 to 5
most common factors that make a $75,000 per year software
engineer cost your project $120,000 or more per year, you do
not have these.

Negotiating, motivating, evaluating personnel - the list
goes on and on but notice the absence of programming skills.

Mentoring – work to improve the performance of team mem-
bers and the team as well as creating your own replacement.

Encouraging Prosocial behavior – simply thanking the
team and individual members helps to overcome independent
tendencies to form an effective team [22].

Sensitivity to Cultural and Generational differences
More than at any time in the history of the United States and
some other developed countries, multiple generations are having
to work together. The differences between the value systems
of different generations can cause frictions within the team.
Similar comments apply to cultural differences due to the world
wide influence of software engineering in nearly every aspect of
people’s lives.

Input Factor Brief Description

Clearly stated requirements Clear and well understood requirements

Involved users Active and continuous participation of users during the

development process

Engaged, competent project manager A project manager with the required management and

leadership skills, able to share the project’s vision

Project planned and scheduled A project plan and schedule developed with stakeholder

participation to achieve user goals

Engaged, skilled team members Competent team members with domain and technical

knowledge, as well as positive attitude about the project

Teamwork and communication encouraged Development team with compatible personalities who enjoy

working in a team environment and have a cooperative and

mutually responsive relationship

Output Factor Brief Description

Schedule and budget estimate maintained Finishing the project within estimated budget and timeliness of

delivery

Customer and user needs satisfied Making easy-to-use, user friendly systems that meet

requirements

Job satisfaction experienced on development

team

The development team has a sense of accomplishment that

sufficient quality and functionality were delivered and that they

were given enough freedom and independence to be successful

Product quality, functionality and performance

meet high standards

The working product reflects the desired scope and overall

quality

	

Who Will Teach Them?
This issue presents us with a dilemma. Most successful

software project managers are very busy with little spare time
to contribute to the educational system(s) in their area. Besides,
the fact that the word “management” would appear in the title
of the software project management course can and has set off
a turf war between the software engineering department and
business administration departments in many universities. Pro-
fessional development courses or extension courses help but
content, quality and instructor qualifications come into play. For
example, has the prospective instructor ever been a software
project manager? Some very famous people lecturing on this
subject have never managed a software project.

What Kind of a Job Are We Doing Now?
Not a very good one. Training in software project manage-

ment if offered at all at the bachelor, master or doctorate level
as part of a degree in software engineering is often optional –
should not it be required? Why? Even if the software engineer
never goes into management, he/she is going to be asked
how long a task will take, what confidence level they have in
the estimate, what they will need and so forth. Without train-
ing in planning and scheduling the answer to such queries can
be problematic. During the execution of the plan, the issue of
the status of the work will also come up. Without training in

Table 2: Input and Output Factors of Successful Projects [20]

SOFTWARE EDUCATION TODAY

CrossTalk—January/February 2015 31

Self-confidence – consistently hire people smarter and more
knowledgeable than you. The productivity of the team will reflect
your skill in spotting talent and your job will become easier.

Not Needed
Programming, being quick to anger at failure, tending to fix

the blame rather than the problem, embarrassing a team mem-
ber in front of their colleagues because they made a mistake.
This may be a sudden reaction to bad news but it can have
negative consequences that go beyond the team member being
chastised. Other team members may see this as an indica-
tion that trying something new or difficult should be avoided.
Regardless, this reduces team productivity.

What Would a Curriculum for Software Project
Managers Look Like?

More than 30 years ago I wrote the first M.S. in Software En-
gineering curriculum published by the Association for Comput-
ing Machinery [23]. It was adopted and implemented by Seattle
University. Since that time, with the exception of software engi-
neering, the engineering profession in general has incorporated
personnel issues into management [24] training as well as the
nature of management itself [25]. What is becoming apparent is
that the nature of management in general and software project
management in particular has changed dramatically since that
original curriculum development.

So what would a curriculum look like to train software project
managers? A lot different from the ones I found on the inter-
net which emphasized specific lifecycles blaming the waterfall
lifecycle for everything from athlete’s foot to zits, programming
methods (e.g. Agile) and programming languages. But that is
to be expected. We tend to teach what we know, what we have
experience with and so forth. In the hope that this will help the
professors of today and tomorrow, here are some suggestions
and subjects that need to be incorporated into software project
management curricula:

Suggestions –
Require that all students, regardless of whether they are at

the B.S., M.S. or PhD level take and pass at least an introduction
to software project management in order to receive their de-
gree. This is already the case in Europe as part of the European
Master on Software Engineering (EMSE) program.

Eliminate any discussion of programming languages, meth-
ods, software tools and so forth from the software project
management class(s).

Seek out software professionals, software project managers
and key stakeholders in your area to determine what training
software project managers appear to be lacking.

Form a review committee from the people in item 2 to review
and critique the content of the software project management
course(s).

Prepare a presentation containing an overview of the course
and deliver it in person at major employers as well as publicly to
ensure sufficient enrollment to fund the class.

Here are Some Things You Can Do
Look at what your local university(s) offer in the way of

software project management classes – not just the course
titles but their content as well. Ask yourself if someone had the
knowledge imparted by these classes, would they be more likely
to be successful? If the answer is no, identify what topics should
be added, which should be dropped from the course(s) and
speak with the college or university focal point for these classes.
Be sure to emphasize the increased attendance and revenue
that could result from these changes. Also, enlist the help of col-
leagues from other firms to bring about the required changes. If
the university senses there exists an area wide market, they may
be more amenable to change.

Closing Comments
Decades ago, we began training software engineers in a

broad range of methods and techniques directed at both im-
proving the quality and quantity of software systems. Though the
progress may seem slow, it is progress. If we do the same for
software project management, the benefits will likely accelerate
the pace of improvement far beyond what we have seen so far.

Disclaimer :
(Portions of this article contain excerpts from the Kindle eB-

ook, “Managing Software Projects: On the Edge of Chaos, From
Antipatterns to Success”)

ABOUT THE AUTHOR
Dr. Lawrence (Larry) Peters has 4 de-
cades experience in software engineering
as a software engineer, project manager,
consultant, and educator (he currently
teaches Software Project Management
in Spain via Skype). He has worked on
many defense systems. His clients have
included many Fortune 100 companies,
the US DoD, and the Canadian Defense
Establishment. He has a B.S. in Phys-
ics, an M.S. in Engineering and a PhD in
Engineering Management. He created the
first Software Engineering laboratory for
the Canadian Air Force, written 4 books
and published several papers.

E-mail: ljpeters42@gmail.com

32 CrossTalk—January/February 2015

SOFTWARE EDUCATION TODAY

1. Katz, R., “Motivating Technical Professionals Today,” IEEE Engineering Management
 Review, Volume 41, Number 1, March, 2013, pp. 28-37.
2. Weinberg, G., Quality Software Management, Volume 3: Congruent Action, Dorset
 House Publishing, New York, NY, pp. 15-16
3. Couger, D. J. and Zawacki, R. A., Motivating and Managing Computer Personnel,
 Wiley-Interscience, New York, N. Y., 1980.
4. Peters, L. J., Getting Results from Software Development Teams, Microsoft Press
 Best Practices Series, Redmond, Washington, 2008
5. McConnell, S., The Software Manager’s Toolkit, IEEE Software, From the Editor
 column, July/August, 2000
6. Townsend, R., Up the Organization: How to Stop the Corporation from Stifling People
 and Strangling Profits, Josey-Bass, 2007
7. National Study of the Changing Workforce, Published by the Families and Work
 Institute, New York, NY, 1993.
8. Herzberg, F., Work and the Nature of Man, The World Publishing Co. , Cleveland, Ohio, 1966
9. Maslow, A. H., The Farther Reaches of Human Nature, Viking Press, New York, N. Y., 1971
10. McClelland, D. C., The Achieving Society, Van Nostrand Reinhold, Princeton, N. J., 1961
11. Fleming, Q. W. and Koppelman, J. M., Earned Value Project Management - 4th
 Edition, Project Management Institute, Newtown Square, Pennsylvania, 2010.
12. Gardner, H.K., “Performance Pressure as a Double Edged Sword: Enhancing Team
 Motivation While Undermining the Use of Team Knowledge,” Harvard Business
 School, Working Paper 09-126, 2012.
13. Staats, B. R., Milkman, K. L., and Fox, C. R., The Team Sizing Fallacy: Underestimating
 The Declining Efficiency of Larger Teams, Forthcoming article in Organizational
 Behavior and Human Decision Processes.

REFERENCES
14. Gino, F. and Ariely, D., The Dark Side of Creativity: Original Thinkers Can be More
 Dishonest, Harvard Business School Working Paper 11-064, 2011.
15. Huckman, R. and Staats, B., The Hidden Benefits of Keeping Teams Intact, Harvard
 Business Review, December, 2013.
16. Peters, L. J., Managing Software Projects: On the Edge of Chaos, From Antipatterns
 to Success, Kindle eBook, Software Consultants International Limited, 2014.
17. Flyvberg, B., From Nobel Prize to Project Management: Getting Risks Right, Project
 Management Journal, August, 2006, pp. 5 – 15
18. Aiman-Smith,L., Bergey, P., Cantwell, A.R., Doran, M., “The Coming Knowledge and
 Capability Shortage,” Research-Technology Management, Vol. 49, No. 4, July-
 August, 2006.
19. LaPlante, P. A. and Neill, C. J., Antipatterns: Identification, Refactoring and Management,
 Boca Raton, Florida, Taylor and Francis, 2005.
20. Ghazi, P., Moreno, A. M. and Peters, L. J., Looking for the Holy Grail of Software
 Development, IEEE Software, Jan/Feb, 2014, pp. 92-94.
21. Jensen, R., Don’t Forget About Good Management, CrossTalk, August, 2000, pp. 30.
22. Grant, A. and Gino, F., A Little Thanks Goes a Long Way: Explaining Why Gratitude
 Expressions Motivate Prosocial Behavior, Journal of Personality and Social Psychology,
 Volume 98, Number 6, pp. 946-955, 2010.
23. Peters, L. J. and Stucki, L., A Software Engineering Graduate Curriculum, ACM 1978
 Annual Conference Proceedings, ACM New York, NY, pp. 63-67.
24. Thamhain, H. J., Changing Dynamics of Team Leadership in Global Project Environments,
American Journal of Industrial and Business Management, 2013, Number 3, pp. 146-156, 2013.
25. Thomas, J. and Mengel, T., Preparing project managers to deal with complexity –
 Advanced project management education, International Journal of Project
 Management, Volume 26, pp. 304 – 315, 2008.

The Software Maintenance Group at Hill Air Force Base is recruiting civilians (U.S. Citizenship Required).
Benefits include paid vacation, health care plans, matching retirement fund, tuition assistance, and

time paid for fitness activities. Become part of the best and brightest!
Hill Air Force Base is located close to the Wasatch and Uinta
mountains with many recreational opportunities available.

Send resumes to:
309SMXG.SODO@hill.af.mil

or call (801) 777-9828www.facebook.com/309SoftwareMaintenanceGroup

Electrical Engineers and Computer Scientists
Be on the Cutting Edge of Software Development

SOFTWARE EDUCATION TODAY

CrossTalk—January/February 2015 33

Gregory S. Anderson, Brigham Young University
Spencer Hilton, Weber State University

Abstract. Team building activities such as collaborative video gameplay requires
a collective effort by players to achieve a common goal. In a business environ-
ment, increasing cohesion can improve performance while in a military environment,
increasing cohesion can affect morale and combat efficiency. This study measured
group and individual cohesion factors with the result revealing that playing a coopera-
tive video game with a minimal time and financial commitment makes it a viable team
building activity to increase team cohesion.

Increase Team Cohesion
by Playing Cooperative
Video Games

Teamwork
Teams have become increasingly important within an organi-

zation [1][2] and can only be effective to the extent that team
members work cooperatively with each other [3]. Whether it
is a software engineering team, a military unit, an acquisition
workforce, a sports team, or any organization in which a group
of people cooperative to achieve a goal, effective teams are
critical in order to achieve success. In order to cooperate, there
needs to be a task aligned with a common goal and team mem-
bers must feel connected to one another having some type of
team building activity that promotes interaction [4]. Newman
said that team building promotes “an increased sense of unity
and cohesiveness and enable the team to function together
effectively” [5]. Research has shown that cohesion is linked to
team performance [6][7][8] and is considered one of the most
important small group variables [9] with cohesion-performance
being driven by goal or task commitment [10].

Team building requires group goals to be defined and tasks
identified [11]. As team members struggle to define roles and
requirements for the project, the group needs open commu-
nication to build trust. As the team works towards a common
objective, the members develop social relations. When team
members demonstrate a level of respect for peers, the founda-
tion is laid to begin having a successful team and the group
functions as a unified unit [12][13].

Team cohesion has long been considered by military
psychologists to be a significant factor in small-groups [14].
The military contends that cohesive groups are more effective
in combat situations, thus providing an advantage over their
opponents [15]. Laurel Oliver said “the military maintains that
cohesive groups engender effectiveness in combat situations”
[16]. Tziner and Vardi said “a non-cohesive unit could lead to
fatalities in artillery and tank crews” [17].

Team unity can be accomplished through a variety of team
building activities [18] that improve a group member’s knowl-
edge about effective communication, group problem solving
and teamwork, self-esteem, and organizational commitment. A
common team building activity is the use of outdoor manage-

ment education (OME) [19]. OMEs involve a wilderness experi-
ence often using rope and challenge courses. However, OMEs
can be costly and time consuming. This article explores the less
expensive and time-consuming alternative of team building by
playing collaborative video games.

Pros and Cons of Video Games
The U.S. military is recognizing the advantages of using

video game simulation in combat training by creating a virtual
environment that more closely mimics reality, with realistic
threats and having the ability to represent human interaction
[20]. Simulations are life-like video games [21] and are helping
soldiers from all over the world sharpen their fighting skills and
prepare them for the forth-coming battlefield mental stress
[22]. They are also bridging the gap between classrooms and
real job skills and improving the learning process [23]

In the military, researchers have shown that there is a correla-
tion between cohesion, morale, and combat efficiency [24]. Military
cohesion has been defined as “the bonding together of members
of an organization/unit in such a way as to sustain their will and
commitment to each other, their unit, and the mission” [25]. Freder-
ick Manning defines morale as “a function of cohesion and esprit
de corps,” and says it is necessary in combat since unit members
rely upon each other in order to survive and succeed [26].

Until recently, video game studies might have been consid-
ered laughable [27], but an increasing number of studies are
being investigated to determine the pros and cons of playing
video games. As seen in Table 1, video games are a popular
form of entertainment, but they are also a powerful learning
tool [28] and are shaping the way we learn. Prensky said “Ever
since Pong arrived in 1974, our kids have been adjusting or
programming their brains to the speed, interactivity, and other
factors in computer and video games, much as their parents the
boomers reprogrammed their brains to accommodate TV” [29].

Effect Description

Cognitive
Performance

Cooperative Play

Entertainment

Socially

Therapeutic

Video game play can improve short-term working memory, visual
attention, mathematical decision making, and auditory perception.

Participants must work together to win the game.

Enjoyment of play.

Playing video games can help players relax, vent frustration, distract pain

and help learn.

Pediatrician Dr. Benjamin Spock expressed the opinion that “The
best that can be said of them is that they may help promote eye-
hand coordination in children. The worst that can be said is that
they sanction, and even promote aggression and violent responses
to conflict. But what can be said with much greater certainty is this:
most computer games are a colossal waste of time” [30].

Table 1. Positive effects of video games

Effect Description

Addiction

Aggressive
Behavior

Physical Health

Risks

Social Health
Risks

Players may become game dependent.

There are theories that playing violent video games may be tied to
aggressive behavior.

Some video games could cause seizures.

Players may become socially dependent upon game play and be socially
isolated.

Table 2. Negative effects of video games

34 CrossTalk—January/February 2015

SOFTWARE EDUCATION TODAY

Some of the negative effects have been identified in Table 2.
However, in his book “Everything Bad is Good for You”, Steven

Johnson made the argument, “The most debased forms of mass
diversion – video games and violent television dramas and juve-
nile sitcoms – turn out to be nutritional after all” [30]. In 2003,
James Paul Gee, a noted psycholinguistics researcher, said that
video games are inherently social and that they have the poten-
tial to lead to active and critical learning. He went on to say that
the real potential of games is “to get people to think, value, and
act in new ways” [31].

The popularity of video gaming not only is perceived as a
popular form of entertainment but is being researched as a tool
for improving organizational training results. All teams are dif-
ferent and therefore a myriad of instructional strategies should
be researched and implemented [32]. As organizations struggle
to compete in a global economy the development of intellectual
capital has become their most valuable asset [33]. Develop-
ing capital such as organization’s workers involves the use of
training to unleash the potential of human expertise [34] and
improving the adult workforce.

In December of 2010, the Defense Acquisition University
(DAU), a corporate university for the Defense Acquisition Work-
force, launched the Department of Defense casual games site. Dr.
Alicia Sanchez, Game Czar for DAU, said that the rationale for the
site was a place for employees to play games that were related to
the core competencies central to Acquisition jobs [35].

Full Spectrum Warrior is a video game based upon a U.S.
Army simulation requiring the player to think like a professional
solider in order to survive [36]. Prensky said “the US Military
uses more than 50 different video and computer games to
teach everything from doctrine, to strategy and tactics” [37].
Games such as America’s Army offers a virtual basic training to
develop, train, and educate U.S. Army soldiers. In 2011, game
designer and author Jane McGonigal said, “Those who deem
them [video games] unworthy of their time and attention will not
know how to leverage the power of games in their communi-
ties, in their businesses, in their own lives” [38]. Video games
are here to stay, and one must harness the power of the game
play for the benefit of society. This paper demonstrates that one
benefit of collaborative video games is increased team cohesion.

Measuring Cohesion
In order to measure team cohesion, one must first understand

the correlated cohesion constructs. The Group Environment
Questionnaire (GEQ) was used in this study to assess the level of
cohesion achieved within a group. Researchers Albert Carron and
Lawrence Brawley created the GEQ based upon assumptions
that cohesion can be evaluated through perceptions of indi-
vidual group members. The test identifies four constructs related
through different task and social interactions as viewed through
the eyes of the individuals about themselves and their team. The
authors clarify that the model is a framework that serves as a
guideline and should be used in its original content. However, as
necessary, revisions are acceptable, including changes to words,
the deletion of non-pertinent questions, and the addition of items
that are more culturally meaningful to the study.

The GEQ is an 18-item questionnaire based upon Carron’s
conceptual model of cohesion representing four constructs.
The model divides cohesion into two categories: group integra-
tion and interpersonal attractions to the group. The model then
subdivides the two categories into 4 sub-scales by assessing
the Group Integration-Task (GI-T), Group Integration-Social
(GI-S), Individual Attractions to the Group-Task (ATG-T), and the
Individual Attractions to the Group-Social (ATG-S). The GI-T and
GI-S sub-scales represent the “us”, “our” and “we” perceptions
while the ATG-T and ATG-S sub-scales represent the “I”, “my”,
and “me” perceptions.

Four test questions refer to ATG-T, five questions assess
ATG-S, five questions assess GI-T, and four questions assess
GI-S. Responses are in the form of a 9-point Likert scale based
on strongly disagree (1) and strongly agree (9) with the higher
score reflecting stronger perceptions of cohesiveness. Some
items on the questionnaire were slightly modified as suggested
by the instrument authors to represent the culture of this study.
Since team cohesion is a multidimensional construct, all four
components of team cohesion do not need to be present in
order to show a degree of change in cohesion.

The instrument is based upon three fundamental assumptions:
1) Cohesion can be evaluated through the perception of group
members; 2) The group satisfies personal needs and objectives,
and 3) A group’s concern to the group and members by focus-
ing on task and social factors helping to create unity. As shown
in Figure 1, the GEQ model identified four correlated constructs
representing the task and social orientations as perceived
through the group member about his/herself and about the team.

The “GI” represents group integration and “ATG” represents
“attraction to the group.” The “S” represents the social relation-
ships within the group and how an individual views the group
as a social aspect. The “T” identifies the individual’s perception
towards achieving a specific goal or objective [39]. The GI-T
and GI-S represent the “us”, “our”, and “we” individual percep-
tions of the group such as the closeness, similarity and bonding.
The ATG-T and ATG-S represent the “I”, “my”, and “me” individual
perceptions of self and the motives to remain in the group.

Group	

Cohesion

Individual	

Attractions	

to	
 the	

Group

Group	

Integration

Task	

(ATG-­‐T)

Social	

(ATG-­‐S)

Task	

(GI-­‐T)

Social	

(GI-­‐S)

	

Figure 1. Factors defining cohesion

SOFTWARE EDUCATION TODAY

CrossTalk—January/February 2015 35

Although OMEs have been used in the past to increase team co-
hesion, this research shows that playing collaborative video games
can also increase the cohesive sub-scale factors ATG-T, ATG-S,
GI-T, and GI-S, thus resulting in a higher level of team cohesion.

Research and Methodology
This study introduces the use of cooperative video games

as a tool to mimic the OME environment. The participant is
removed from the worries of society by being immersed into
video game world. The goal of the video game player is to work
with team members to win the video game. The risk involved,
when losing, is a state of emotional discouragement for having
not succeeded. By using a cooperative video game, a single
participant cannot win the game for the team. All members must
cooperate, communicate, problem solve, and be committed to
the team in order to have a chance at winning. When members
do well, their self-esteem is buoyed.

With the environment resembling the OME, this study
implemented a quantitative approach using a pretest/posttest
design. Teams were randomly formed and assigned a length of
intervention of either one or three weeks of game play with the
intervention length ranging from one hour to six hours to play
a collaborative video game. Like other forms of entertainment,
video games were classified into genres. Although not com-
pletely standardized, a commonality has been identified from
which new video game developers must consider while design-
ing a game to be released [40] the genres (see Table 3) identify
the style of game play [41].

The collaborative video game selected for this research was
Halo 3. It was designed by Microsoft’s Bungie Game Studio and
has an ESRB rating of mature for blood and gore, violence and
mild language. Halo 3 is an action game genre and is a first per-
son shooter. One to four players participate on one of four teams
thus creating a cooperative environment where team members
must defend and protect each other against the enemy. If desired,
four teams of four players can participate at one time playing
against the other teams. Each team uses an Xbox 360 console
networked to other consoles and competes against other teams
for a specified number of rounds. A round is identified as the
number of enemies killed. Players return to Earth to save mankind
from the Covenant, an evil alien force. The multiplayer mode
should be “slayer” which allows up to four teams of four players
each to “rack up” a certain number of kills. The number of kills for
each round should be at least twenty-five. The win/loss records
were not kept. The teams selected for this study were similar in
context and played as many rounds as possible within the one
to two hour block time. Game play continued until the team’s
randomly assigned intervention schedule was completed.

Table 4 summarizes the descriptive statistics of the demo-
graphic and covariate variables tested in the analysis.

The 18-item GEQ was administered as a pretest to assess the
participant’s perceptions of group integration and interpersonal
attractions to the group. The model is subdivided into two catego-
ries (Table 4) assessing the Group Integration-Task (GI-T), Group
Integration-Social (GI-S), Individual Attractions to the Group-Task
(ATG-T), and the Individual Attractions to the Group-Social (ATG-
S). The participant responses are in the form of a 9-point Likert

scale based on strongly disagree (1) and strongly agree (9) with
the higher score reflecting stronger perceptions of cohesiveness.

The one-week study consisted of one hour of cooperative
game play for that day. The three-week study consisted of two
hours of cooperative game play each week for three weeks,
totaling six hours of intervention. At completion of the study a
posttest was administered using the modified GEQ survey.

Results
The results of this study confirmed that playing collaborative

video games increased team cohesion in every GEQ cohesive
factor. Whether the groups played one hour or six hours, there
was still an increase in team cohesion. This implies that playing
collaborative video games as a group could potentially be a less
costly and time consuming team building activity for a positive
change in cohesion in an environment where teams are used. Figure 1. Factors defining cohesion

Genre Description

Action Involves fast action and good hand-eye coordination.

Adventure Exploration.

Arcade Mimics early arcade games.

Combat Fighting.

Driving Simulated driving and racing.

First-Person Shooter (FPS) Action genre from a first person perspective.

Multiplayer Supports more than one game player simultaneously.

Puzzle Solving problems, mazes, and puzzles.

Role Playing Game (RPG) Storyline stressed over action.

Simulation Mimics reality.

Sports Traditional sports.

Strategy Planning and resource management.

Third-Person Shooter (TPS) Action genre from a perspective above and/or behind the player.

Trivia Intellectual testing knowledge.

 Table 3. Video Game Genres

Variable Statistic
Age >= 18 and <= 29 (n=56)

Gender

Female = 13% and Male = 87%

Group 1 Subjects (n=29) 25 Male; 4 Female

Group 1 Average hours/week playing video games

10 hours

Group 2 Subjects

(n=27) 24 Male; 3 Female

Group 2 Average hours/week playing video games 16.11 hours

Table 4. Descriptive statistics

Sub-Scale Description

Interpersonal Attraction to the Group ATG-T (task)

Interpersonal Attraction to the Group ATG-S (social)

Group Integration GI-T (task)

Group Integration GI-S (social)

Individual’s feelings about personal involvement in the group’s
task, productivity, goals, and objectives.

Individual’s feelings about personal acceptance and social
interactions within the group.

Individual’s feelings about the closeness, similarity, and
bonding within the team based upon group’s task (playing
Halo).

Individual’s feelings about the closeness, similarity, and
bonding within the team based upon the group’s social unit.

Table 5. Cohesive sub-scales

36 CrossTalk—January/February 2015

SOFTWARE EDUCATION TODAY

The results demonstrated support for the hypotheses in that
cohesion was positively affected by playing collaborative video
games (See Table 6).

The six hours of video game play did produce slightly higher
cohesion (see Table 7) but the increase was marginal. The
ATG-T and ATG-S, which measured the individual attraction to
the task and social aspect, had slight increases in the gain score
percentages. But one must consider whether or not the amount
of game play to achieve that gain justified the intervention time.

improving morale and combat efficiency, and potentially increasing
the rate of soldier survival and operation success.

Whether the organization is striving to improve performance
or to improve soldier survival and operational success, this study
concludes that it can be beneficial to have teams play collabora-
tive video games even for as little as one hour to increase team
cohesion. However, this is just scratching the “tip of the iceberg.”
Further studies are in the process that measure team cohesion
after video gaming and after other endeavors to see whether
the team cohesion obtained in video gaming actually transfers
to the follow-on endeavor.

H1: There was a difference in the team cohesion factor ATG-T based upon the
intervention.

Supported

H2: There was a difference in the team cohesion factor ATG-S based upon the
intervention.

Supported

H3: There was a difference in the team cohesion factor GI-T based upon the intervention.

Supported

H4: There was a difference in the team cohesion factor GI-S based upon the intervention.

Supported

 Table 6. Summary of Hypotheses and Results

 Group 1 – One Hour of Video Game Play Intervention
 ATG-T ATG-S GI-T GI-S

 Mean
Std
Dev Mean Std Dev Mean Std Dev Mean

Std
Dev

Pretest 6.62 1.30 4.86 1.04 5.48 0.90 5.00 0.86
Posttest 7.53 1.42 5.85 1.04 6.57 0.94 5.60 1.32

Positive Gain 0.91 38% 0.99 24% 1.09 31% 0.60 15%

 Group 2 – Six Hours of Video Game Play Intervention
 ATG-T ATG-S GI-T GI-S

 Mean
Std
Dev Mean Std Dev Mean Std Dev Mean

Std
Dev

Pretest 6.19 1.15 4.88 1.29 5.10 0.59 5.19 0.76
Posttest 7.38 1.45 5.98 1.36 6.30 0.91 5.63 1.03

Positive Gain 1.19 42% 1.10 27% 1.20 31% 0.44 12%
 Table 7. Group 1 & 2 Pretest and Posttest Means and Gain Scores.

The one hour of video game actually received the same level
of increase for the GI-T cohesive factor and scored a greater
increase on the GI-S, meaning that if the ultimate goal was to
increase the group member’s perception of closeness, similarity,
and bonding with the group, then only one hour of game play
needs to be implemented to achieve the organization’s goal.

Conclusion
Today’s global economy requires that organizations constantly

seek for ways to improve and to surpass their competition. A
variety of strategies could be implemented to improve different
aspects of the organization. If team cohesion could be strength-
ened, the result will likely be improved team performance.
Organizations continue to search for mechanisms to improve
teamwork by finding and implementing new methods for ef-
fectively accomplishing a task and increasing social capacities
for individuals to handle problems. Strategies for improvement
include making a team more cohesive so that the members are
more committed, thus increasing productivity and performance.

In the military, unit cohesion is essential for a strong military
force. In fact, it means more than being liked by others; it is a will-
ingness to die for someone else. As there is a correlation between
cohesion, morale, and combat efficiency, playing collaborative video
games can increase team cohesion. This can result in military units

ABOUT THE AUTHORS
Gregory S. Anderson is an Associ-
ate Professor in Information Systems at
Brigham Young University. Pre-academia,
he has more than 15 years of industry
software development experience. Prior to
BYU, he was Chair of Computer Science
for 8 years at Weber State University. He
has a Ph.D. in Technology Management
from Indiana State University, an MBA
from University of Colorado – Colorado
Springs, and a BA in Computer Science
from Weber State University.

Brigham Young University
Marriott School of Business
Provo, UT 84404
Phone: 801-747-9787
E-mail: profganderson@byu.edu

Spencer Hilton is an Assistant Professor
in the Computer Science Department at
Weber State University. He holds an MBA,
as well as a BA in Communication and
a BS in Computer Science, from Weber
State University. Prior to teaching, Spencer
worked as a Software Engineer and Busi-
ness Intelligence Analyst.

Weber State University
Department of Computer Science
Ogden, UT, 84408
Phone: 801-626-7929
E-mail: spencerhilton@weber.edu

SOFTWARE EDUCATION TODAY

CrossTalk—January/February 2015 37

REFERENCES
1. Johnson, Tristan E, et al. “Measuring Sharedness of Team-Related Knowledge:
 Design and Validation of a Shared Mental Model Instrument.” Human Resource
 Developtment Interational 10.4 (2007): 437-454.
2. Salas, Eduardo, Nancy J Cooke and Michael A Rosen. “On Teams, Teamwork, and
 Team Performance: Discoveries and Developments.” Human Factors: The Journal of
 the Human Factors and Ergonomics Society 50.3 (2008): 540-547.
3. Stewart, Greg L, et al. Team Work and Group Dyamics. Wiley, 1999.
4. Johnson, D W and F P Johnson. Joining Together: Group Theory and Group Skills.
 6th. Prentice-Hall, 1997.
5. Newman, Betsy. “Expediency as benefactor: How team building saves time and gets
 the job done.” Training & Development Journal 38.2 (1984): 26-30.
6. Ahronson, Arni and James E Cameron. “The nature and consequences of group
 cohesion in a military sample.” Military Psychology 19.1 (2007): 9-25.
7. Senecal, Julie, Todd M Loughead and Gordon A Bloom. “A Season-Long Team
 Building Intervention: Examining the Effect of Team Goal Setting on Cohesion.”
 Journal of Sport & Exercise Psychology 30.2 (2008): 186-199.
8. Carron, Albert V, Lawrence R Brawley and W Neil Widmeyer. Group Environment
 Questionnaire Test Manual. Morgantown: Fitness Information Technology, Inc., 2002.
9. Lott, Albert J and Bernice E Lott. “Group cohesiveness as interpersonal attraction:
 A review of relationships with antecedent and consequent variables.” Psychological
 Bulletin 64.4 (1965): 259-309.
10. Mullen, Brian and Carolyn Copper. “The relation between group cohesiveness and
 performance: An integration.” Psychological Bulletin 115.2 (1994): 210-227.
11. Levi, Daniel. Group Dynamics for Teams. Thousand Oaks: Sage Publications, Inc., 2007.
12. Tuckman, Bruce W and Mary Ann C Jensen. “Stages of Small-Group Development
 Revisited.” Group Organization Management 2.4 (1977): 419-427.
13. Levi, Daniel. Group Dynamics for Teams. Thousand Oaks: Sage Publications, Inc., 2007.
14. Dion, Kenneth L. “Group cohesion: From “field of forces” to multidimensional
 construct.” Group Dynamics: Theory, Research, and Practice 4.1 (2000): 7-26.
15. Ahronson, Arni and James E Cameron. “The nature and consequences of group
 cohesion in a military sample.” Military Psychology 19.1 (2007): 9-25.
16. Oliver, Laurel W, et al. “A quantitative integration of the military cohesion literature.”
 Military Psychology 11.1 (1999): 57-83.
17. Tziner, Aharon and Yoav Vardi. “Ability as a moderator between cohesiveness and
 tank crews performance.” Journal of Occupational Behaviour 4.2 (1983): 137-143.
18. Senecal, Julie, Todd M Loughead and Gordon A Bloom. “A Season-Long Team
 Building Intervention: Examining the Effect of Team Goal Setting on Cohesion.”
 Journal of Sport & Exercise Psychology 30.2 (2008): 186-199.
19. McEvoy, Glenn M. “Organizational change and outdoor management education.”
 Human Resource Management 36.2 (1997): 235-250.
20. Sottilare, Robert A. “Improving Soldier Learning and Performance Through
 Simulation and Training Technologies.” Army AL&T May - June 2005: 31-35.

21. Mitchell, Rebecca and DeBay Dennis. “Get Real: Augmented Reality for the
 Classroom.” Learning & Leading with Technology 40.2 (2012): 16-21.
22. Mitrea, Ioan. “Learning Through Strategic Computer Games in Military Training.”
 eLearning and Software for Education. 2013. 382-385.
23. Aldrich, Clark. Simulations and the Future of Learning: An Innovative (and Perhaps
 Revolutionary) Approach to e-Learning. Pfieffer, 2003.
24. Stewart, Nora K. “Military Cohesion,” in War. Ed. Lawrence Freedman. Oxford:
 Oxford University Press, 1994.
25. Henderson, William Darryl. Cohesion: The Human Element in Combat. University
 Press of the Pacific, 2002.
26. Gal, Reuven and Frederick J Manning. “Morale and Its Components: A Cross-National
 Comparison.” Journal of Applied Social Psychology 17 (1987): 369-391.
27. Adams, Ernest. Break Into the Game Industry: How to Get a Job Making Video
 Games. Emeryville: McGraw Hill Professional, 2003.
28. Prensky, Marc. “Computer Games and Learning: Digital Game-Based Learning.”
 Handbook of Computer Game Studies 2005: 98-122.
29. Prensky, Marc. “Digital Game Based Learning: Computers in Entertainment (CIE).”
 Theoretical and Practical Computer Applications in Entertainment 1.1 (2003):
30. Johnson, Steven. Everything Bad is Good For You: How Today’s Culture is Actually
 Making Us Smarter. Riverhead Trade, 2006.
31. Gee, James Paul. What Video Games Have to Teach Us about Learning and Literacy.
 New York: Palgrave Macmillan, 2003.
32. Salas, E., Burke, C., & Cannon-Bowers, J. What We Know About Designing and
 Delivering Team Training. In Kurt Kraiger (Eds.), Creating, Implementing, and
 Managing Effective Training and Development (pp. 234-259). San Francisco, CA:
 Jossey-Bass. (2002).
33. Marquardt, B., Berger, N., & Loan. P. HRD in the Age of Globalization. New York, NY:
 Basic Books. (2004).
34. Swanson, R. & Holton III, E. Foundations of Human Resource Development. San
 Francisco, CA: Berrett-Koehler Publishers. (2001)
35. Sanchez, Alicia. DOD Launches Casual Gaming Site. 1 December 2010.
 <http://science.dodlive.mil/2010/12/01/dod-launches-casual-gaming-site/>.
36. Shaffer, David Williamson, et al. “Video Games and the Future of Learning.” WCER
 Working Paper (2005).
37. Prensky, Marc. “Digital Game Based Learning: Computers in Entertainment (CIE).”
 Theoretical and Practical Computer Applications in Entertainment 1.1 (2003):
38. McGonigal, J. Reality is Broken. New York, NY: Penguin Books. . (2011).
39. Smith, Joseph W. “The Effect of an Intervention Program on Cohesion with Ninth Grade
 Female Basketall Teams.” Master of Science Thesis. Oregon State University, 1996.
40. Adams, E. Break into the Game Industry. Emeryville, CA: McGraw-Hill. (2003).
41. Bergeron, B. Developing serious games. Hingham, MA: Charles River Media. (2006).

38 CrossTalk—January/February 2015

OPEN FORUM

Tom DeMarco, Atlantic Systems Guild

Risk Management
for Dummies
An Open Forum Article

bag to come onto the carrousel (damn these inefficient baggage
handlers). You rush out onto the curb and to your dismay see
that there is a long line for taxis. You let the starter know in no
uncertain terms that this is completely unacceptable. When you
finally get into a cab it is after 10 a.m. The driver pulls out and is
immediately caught up in traffic on La Cienega. The on-ramp to
the 405 is jammed and he seems inclined to wait it out, so you
tell him angrily to find another way. The guy agrees but doesn’t
seem to feel your urgency. It’s nearly 10:20 a.m. by the time he
gets onto the freeway. Traffic is moving at a snail’s pace. You
can’t take your eyes off your watch. 10:25 a.m., 10:30 a.m. “This
is a damn important meeting,” you tell the driver. “I mean really
important. You’ve got to get me there by 11 a.m. I’m absolutely
counting on you.” He just shrugs. Traffic grinds to a halt. “Well do
something,” you tell him, “and make it fast. Time is a wasting.” He
pulls off and gets immediately stuck in local traffic. You scream
at him, “My meeting, dammit! It starts in fifteen minutes and you
have got us nowhere. This is just totally irresponsible on your
part.” By the time you arrive it is 11:40 a.m. The client has left and
everyone is furious at you. But of course it’s not really your fault,
you explain: “The airline, the baggage handlers, the cabbie, the
traffic …”

What’s wrong with this picture? You did everything by the book:
applied pressure, expressed your annoyance at substandard per-
formance, told off everyone who was messing up your schedule.

What’s wrong is that you started too late. You could have flown
in the night before, put up at the pleasant little hotel in walking
distance from the Glendale office, had a leisurely breakfast and
sauntered into the office a full hour before the meeting was to
begin.

In what follows, I’m going to use an elaborate
analogy to make a point about risk management
of software projects.

Proceed with caution here: if the analogy works
according to my nefarious plan, you’re probably
going to have to think very differently about how
you manage risks on your next project.

If that thought worries you, you might want to
stop reading here.

Here’s the analogy: You are on temporary assignment in San
Francisco, working for a boss who spends most of her time in
the Los Angeles office. She calls you early in the week and says
there is a must-attend meeting scheduled for Friday in LA. She’ll
be there, as will her boss, the CEO, as well as the CEO of your
company’s biggest client. And you’re the show. You’re going to
have to put on a whiz-bang presentation of your new software
suite, something that will knock their socks off, and secure a
whole line of new and highly profitable business for the com-
pany. The best of it is that both you and she know you can do it,
it’s going to be a “piece of cake.”

The meeting is scheduled for 11 a.m. Friday. There is an 8
a.m. flight from SFO Friday morning that gets in around 9 a.m.,
so you figure that will give you plenty of time to get to the office,
even though it’s twenty miles off in deepest, darkest Glendale.
The flight is actually a little late getting in (damn these airlines
and inefficient air traffic controllers!). You give the flight at-
tendant a real piece of your mind. And it takes forever for your

CrossTalk—January/February 2015 39

OPEN FORUM

ABOUT THE AUTHOR
Tom DeMarco is a Principal of the Atlantic
Systems Guild, a New York and London-based
consulting practice. He is the author of thirteen
books, most of them about the high tech work-
place and its denizens, but also including two
mainstream novels and a collection of short
stories. His most recent business book is about
organizational culture. It’s called Adrenaline
Junkies and Template Zombies — Patterns of
Organizational Behavior, published by Wiley in
the US and Hanser Verlag in Europe. A third
edition of his classic work, Peopleware: Pro-
ductive Projects and Teams (with co-author Tim
Lister) will come out in July, 2013. His most
recent work of fiction is a bit of science fiction:
Andronescu’s Paradox.

Phone: 207-236-4735
E-mail: tdemarco@systemsguild.com

I’ve spent much of the last thirty years looking at and counsel-
ing software projects that were in trouble. The trouble they were
in varied from project to project, at least the causes varied. What
was the same in all the projects was that they were late. My cli-
ents wanted to know what to do to put them back on schedule,
but they usually knew in their hearts that that was no longer in
the cards. Their fallback position was they wanted to know what
had made the projects so late. I would do my best to lay out the
causes. But now, looking back at all of them as a whole, I can
see that the real reason they were late finishing was that they
started too late. All of them.

Can I really assert that the reason projects finish late is that
they started late? All late projects? Isn’t it at least possible that
some of them made mistakes along the way, frittered away es-
sential time, or lost effectiveness in mid course, and thus caused
lateness in what was otherwise a perfectly doable project? Well,
I guess that is possible; it’s just that I’ve never seen it happen.

An elementary school that I pass on a walk into town has a
marquis in front that reads, “Want to avoid being late? Be early.”
But Tom, you might object, We’re trying to be early, that’s what
governs the methods and approaches we use. And my answer
would be, Yes, but how early are you trying to be? Are you trying
to be months early, or are you only trying to be minutes early?
A project that must be done by January two years from now
needs to be run on a plan that gives it a highly realistic better
than 50-50 chance of being completely done six months before
that. Anything else and you’re not doing risk management. A
project that starts too late to finish really early is one on which
no meaningful risk management is possible. Your best tactic is
to cross your fingers.

Want to avoid being late? Be early. “

“

40 CrossTalk—January/February 2015

COMING EVENTS

CrossTalk—January/February 2015 41

COMIING EVENTS

COMSNETS 2015
7th International Conference on COMmunication
Systems & NETworkS
Bangalore, India
6-10 January
http://www.comsnets.org

15th System-of-Systems Engineering Workshop
El Paso, Texas
27-30 January, 2015
http://www.itea.org/share/conferences-and-workshops

2015 International Symposium on Code Generation
and Optimization
San Francisco, CA
7-11 February, 2015
http://cgo.org/cgo2015

20th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming
San Francisco, CA
7-11 February, 2015
http://ppopp15.soe.ucsc.edu

3rd International Conference on Model-Driven
Engineering and Software Development
Angers, Loire Valley, France
9-11 February, 2015
http://www.modelsward.org/

HotMobile 2015: the 16th International Workshop
on Mobile Computing Systems and Applications
Santa Fe, New Mexico
12-13 February, 2015
http://www.hotmobile.org/2015

International Conference on Computing, Networking
and Communications (ICNC 2015)
Anaheim, Ca
16-19 February, 2015
http://www.conf-icnc.org/2015

International Conference on Software Quality
Long Beach, CA
9-11 Mar, 2015
http://asq-icsq.org/index.html

ETAPS 2015 - 18th European Joint Conferences on
Theory and Practice of Software
London, United Kingdom
11-19 April, 2015
http://www.etaps.org/2015/

WICSA 2015 — 12th IEEE Conference on Software
Architecture
Montreal, QC, Canada
20-24 April 2015
http://www.computer.org/portal/web/conferences/calendar

Upcoming Events
Visit <http://www.crosstalkonline.org/events> for an up-to-date list of events.

42 CrossTalk—January/February 2015

Back in 1983, I found it impossible to “train” software engi-
neers. I suppose there are some skills appropriate to software
engineering, but coding in Ada (or any language) is a tiny, tiny
part of “software engineering.” Coding might be easy. Software
Engineering is hard. It’s more about education – the theory.

In 1986, I was lucky enough to get an assignment at the
USAF academy. I officially moved from “training” to “education”
- different type of students, different goals. While I expected
my students to be able to code, I was more concerned that
they appreciated the differences between a binary tree, a 2-3
tree, a red-black tree, ….. you get the idea. Since 1986, I have
been involved in education almost continually (except for a
12-year break as a consultant. Which is where I myself learned
a lot. But I still taught college part-time.)

 I am currently teaching college again – and don’t ever plan
to quit. I seem to be a good professor – my students appear
not to dislike me too much, and based on tests and projects,
my students seem to learn a bit, too.

But what do they learn? That’s the dilemma. We follow an
ABET-approved curriculum, and we collect enough metrics to
ensure that we are meeting our outcomes and objectives. We
have about 43 semester hours of computer-science related
material plus the required fine arts, natural and physical
sciences, math, English, political science, writing and

I seem to be a perfect fit for the BackTalk column in this issue.
Way back in 1977, I was a (oh so) young Sgt. in the AF, assigned
to Keesler AFB. The section I was assigned to teach was the “Intro
to Computer Processing” course. We used a Hughes 407L (feel
free to Google it – it was old even then). For the next three years, I
taught “technical training.” I returned to Keesler again in 1983 and
taught another three years – this time teaching Ada in the STARS
program (Software Technology for Adaptable, Reliable Systems).
We were supposed to be conducting “training” – but I am afraid
that we ventured into the educational arena.

What’s the difference? It’s a HUGE difference. Education
involves teaching theory and history. It’s all about improving your
knowledge and making you more intelligent. A crucial difference
is that education is not about a job skill. It’s often said that an
educated person is more employable, but education is not about
just getting a job. Training, on the other hand, is about a “skill.” Its
sole purpose is to transfer practical information and skills to make
you more employable. A skill teaches you repeatable tasks that you
master to learn your craft. Education is about thinking.

BACKTALK

Bridging
the Gap:
Software Engineering Education and Training

CrossTalk—January/February 2015 43

BACKTALK

speaking skills, etc. A typical, well-rounded college education.
Not training, education.

Education. That’s what a college/university does. I like to think
I produce Computer Scientists and Information Technologists
that rank right up there with the best of them. So, after four
years of nurturing critical thinking skills in such areas as data
structures, operating systems, software engineering, information
security, discrete math and analysis of algorithms, we’ve done
what we are supposed to do in terms of education. Our students
proudly walk across the stage, wave their diplomas to adoring
and proud family, and…well, now it’s YOUR job to train them.
In the Air Force, we called it “On the Job Training” (OJT). They
need LOTS of OJT.

Here’s why – most students consider 1,000 lines of code a
“large” program. They write a program, run it under a single set
of test conditions one time, and receive a grade. No realistic
configuration management is needed, nor risk management
either. They have seldom reused code, nor had to worry much
about interfacing with legacy systems. They typically get all of
their requirements on a single sheet of paper (sometimes it’s
actually two-sided!) They probably know Java and C++. Never
had serious user interaction, other than an occasional interac-
tion with a professor. I’m not saying this is bad – let’s face it, it’s
about all you can do during a four-year college career. We do
the education (and we do it well). You take our educated gradu-
ates, add some training, and make productive developers out of
them.

So – how are you doing with my bright young crop of edu-
cated computer scientists after you hire them? How do you
facilitate converting their knowledge and intelligence into usable
software development skills? Do you give them a mentor? I

mean, not just assign them to a supervisor – but really assign
them a effective mentor? One who still feels the excitement and
joy of developing software? One who know some of the latest
tools and techniques? Do they have time in their schedule to
talk with their mentor weekly (daily would be better)? Does the
mentor have good people skills? Are there weekly or monthly
“brown bags” for them to learn new skills (or sharper the ones
they already have)?

How about their working environment? Do they work as part
of a team? Experience has shown again and again that working
with a peer in developing software is one of the best ways to
bring new developers “up to speed.” Except for rare group proj-
ects – this is not a skill or environment that they have learned
during school. In fact, more colleges and universities discourage
group work – it’s much harder to assign a grade unless each
student shows me how well they individually have mastered the
theory.

Do you have a way to help them deal with not only the frus-
tration of incomplete requirements and users who don’t even
seem to know what they want? Trust me – I stay in contact with
a lot of my former students –incomplete requirement issues
seem to bother many of them a lot.

I hope I speak for the educators out there – we’re doing the
best we can. We are working to educate our students. Once
they graduate – it’s your job start their training and expand
their job skills. Determine what you want your developers to be
capable of – and see what education they are bringing to the
job. These new developers want to bridge the gap between
their education and the job skills you require – it’s up to you to
facilitate their training. Different people will have different back-
grounds. Design your mentorship/ training programs accordingly
– one size does not fit all.

David A. Cook
Stephen F. Austin State University
cookda@sfasu.edu

CrossTalk thanks the
above organizations for
providing their support.

Exciting
and Stable
Workloads:
 �Joint Mission Planning System
 �Battle Control System-Fixed
 �Satellite Technology
 �Expeditionary Fighting Vehicle
 �F-16, F-22, F-35, New Workloads
Coming Soon
 �Ground Theater
Air Control System
 �Human Engineering
Development

Employee
Benefits:
 �Health Care Packages
 �10 Paid Holidays
 �Paid Sick Leave
 �Exercise Time
 �Career Coaching
 �Tuition Assistance
 �Retirement Savings Plans
 �Leadership Training

Location,
Location,
Location:
 �25 minutes from Salt Lake City
 �Utah Jazz Basketball
 �Three Minor League
Baseball Teams
 �One Hour from 12 Ski Resorts
 �Minutes from Hunting, Fishing,
Water Skiing, ATV Trails, Hiking

Contact Us:
Email:

309SMXG.SODO@hill.af.mil
Phone: (801) 777-9828

www.facebook.com/309SoftwareMaintenanceGroup

	Front Cover
	Table of Contents
	From the Publisher
	Missed Expectations
	Challenges in Academia in Producing Prepared IT Workforce
	Seeking Balance in Cyber Education
	Training the DoD Software Acquisition Professional
	A Thinking Framework to Power Software Development Team Performance
	Increase Team Cohesion by Playing Cooperative Video Games
	Risk Management for Dummies
	Coming Events
	BackTalk
	Back Cover

