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Abstract

In this paper, we present a gradient boosting algorithm for tree-shaped conditional
random fields (CRF). Conditional random fields are an important class of model-
s for accurate structured prediction, but effective design of the feature functions
is a major challenge when applying CRF models to real world data. Gradient
boosting, which can induce and select functions, is a natural candidate solution
for the problem. However, it is non-trivial to derive gradient boosting algorithms
for CRFs, due to the dense Hessian matrices introduced by variable dependen-
cies. We address this challenge by deriving a Markov Chain mixing rate bound to
quantify the dependencies, and introduce a gradient boosting algorithm that itera-
tively optimizes an adaptive upper bound of the objective function. The resulting
algorithm induces and selects features for CRFs via functional space optimiza-
tion, with provable convergence guarantees. Experimental results on three real
world datasets demonstrate that the mixing rate based upper bound is effective for
training CRFs with non-linear potentials.

1 Introduction

Many problems in machine learning involve structured prediction, i.e. predicting a group of outputs
that depends on each other. Conditional random fields [9] are among the most successful solutions
to these problem. Variants of tree-shaped conditional random fields have been proposed and widely
applied to structured prediction problems in domains such as natural language processing [9, 16],
computer vision [7, 15] and bio-informatics [21]. As opposed to classification models that assume
independent output variables, CRF models capture the dependency pattern between output and input
via potential functions. Potential functions are usually defined using a linear combination of care-
fully engineered features of the input and the output variables. These feature functions are crucial
for learning accurate models. Thus, it is important to ask whether we can induce arbitrary poten-
tial functions automatically (via functional space optimization), instead of manually crafting them
and/or restricting them to linear combinations.

Gradient boosting [4], which performs additive training in functional spaces, is a natural candidate
for this problem. Effective gradient boosting algorithms, such as LogitBoost and its variants [5, 11,
17], have been proposed for inducing feature functions for (independent) multi-class classification
problems. The key ingredient in these methods is the effective use of second order information
via diagonal approximation of Hessian matrices. Unfortunately, it is non-trivial to develop such
boosting methods for CRFs, since variable interdependencies introduce dense Hessian matrices that
make gradient boosting infeasible due to the computational complexity. Instead, existing boosting
approaches either optimize approximate objectives [20, 12] or only take first order information into
account when optimizing exact likelihood [1]. Unfortunately, the convergence of this method is
guaranteed only with small step sizes.

In this paper, we present a novel gradient boosting algorithm for inducing non-linear feature func-
tions for tree-shaped CRFs. The CRF training is performed via iteratively optimizing adaptive upper



bounds of the loss function, to address the challenge of dense Hessians. The adaptive bounds, which
are derived using Markov Chain mixing rates, measure the dependency between variables, and ac-
cordingly control the conservativeness of the updates. The resulting gradient boosting algorithm,
which can be viewed as generalization of LogitBoost to structure prediction problems, optimizes
the CRF objective with provable convergence guarantees. Experimental results on three real world
datasets demonstrate the effectiveness and efficiency of our bound and the proposed algorithm.

2 Overview of Method

Model Formalization Given input x, a CRF model describes a distribution over the outputs as

exp(®(y, ))
>y exp(@(Y, 7))
where ) is the set of possible output combinations, and ®(y, ) captures the dependency between

the input and output variables. The model ¢ usually factorizes as a sum of unary and pairwise (edge)
potential functions ¢; between individual output variables, which can be expressed as follows:

P(ylz) = (1)

O(y,x) = > ¢i(x)pi(y), i € F,pui € NUE subjectto ¢; = ¢, for (i,5) €C,  (2)
=1

where N = {1(y, = k)},€ = {1(ys = k1,y: = ko)} are the sets of indicator functions of each
node and edge state. Each p; corresponds to a event y; = k or ys = k1,y: = ko (depending on
whether ¢, is node or edge potential). We use p as short hand for p(y) and view it as a vector of
random variables. The family of all possible node and edge potential functions is F = F,, U Fo,
whose size could be infinite. C represents equivalence classes in different parts of the model that we
use to capture parameter sharing, which is common in most applications of CRFs. In standard linear-
chain CRFs with linear potentials, F contains linear functions of x, and C can be used to constrain
the node and edge potential functions in different position to be the same. On the other hand,
LogitBoost considers arbitrary F, however constrains the model to contain only node potentials
(there are no edge potentials). In this paper we are interested in arbitrary function families F, and
focus on tree-shaped £ that allow exact inference of marginals.

Training Objective Using functions ¢ in Eq.(2) as the model parameters allows us to induce poten-
tial functions automatically through functional space optimization. In particular, we generalize the
standard CRF objective over training data D = {(y, z)} to the following:

Lg)= > Iy, z.0)+ > Q) =— > WmPylz)+ > Qs). 3)

y,x€D c y,z€D c

Here [ is the negative log-likelihood function over each data point. »_ €Q(¢.) is a regularization
term that measures the complexity of the learned function, defined as a sum over the equivalence
class defined by C. In standard CRFs, for example, 2 is often the square of Lo norm of the parameter
vector. This generalized objective function encourages us to select predictive (i.e. optimizes [) and
simple (i.e. optimizes ) functions as potentials of a CRF.

Challenges for Function Learning Since the model parameters in this formulation are functions,
Eq.(3) cannot be directly optimized using traditional optimization techniques. Instead, we train
the model additively: at each iteration ¢, our proposed algorithm first searches over the functional
space F to find functions § = [6;, 89, ,0,,] that optimize the objective function L(¢*) + §),
and then adds them to the current model ¢(**1) « ¢(*) + §. However, due to the complex nature
of the objective function, directly performing such a brute-force search requires a large amount of
computation and is thus infeasible. In the same spirit as LogitBoost [5, 11] for multi-class prediction,
we consider the second order Taylor expansion of the negative log-likelihood I(y, x, ¢):

Uy 2,6 +8) = 1,7, 6) + 67 Gly,2) + 36" Hly, )5 @

The gradient G and Hessian H in Eq.(4) are given by the following equation, where p; and p;; are
short hand notations for p; £ P(u; = 1|z), p;j £ P(uip; = 1|z):

G; = 1i(y) —pi, Hij =pij — pip;- )



Note that Eq.(5) holds for all ¢, j pairs, including two special cases: (1) H;; = p;(1 — p;) when
1 = j, and (2) H;; = —p;p; when p; and p; are mutual events. Intuitively, H;; measures the
correlation between two events, and is nonzero due to the dependencies in the CRF model. These
dense elements of the Hessian make direct optimization of Eq. (4) still very costly. An existing
approach to functional optimization for CRFs, presented in [1], resorts to first order approximation
to the loss, and can only guarantee convergence when the step size is small. An alternative is to
iteratively update one §; for i € {1,--- ,m} at a time. This approach would require m inference
steps per iteration, and is simply not applicable when the constraint C exists.

Our Approach In this paper, we consider an upper bound of Eq. (4) instead. The intuition behind
this approach, which will be formalized in following sections, is as follows: each variable in the
CRF depends weakly on variables that are “far” from it. This motivates the use of a diagonal upper
bound of the Hessian to construct loss functions, given by the following Lemma.

Lemma 2.1. Let U be a index set of potential functions we want to update, and let y be a function
that satisfies the following inequality

7i(y, 2)Hy (y, ) > Z |H;;(y, z)| (6)
jeu

Then for 6 € {[61,02,- - ,0m] | 6; = O fori ¢ U}, the following inequality holds,

€U

The detailed proof of the lemma is given in supplementary material. For a given -y that satisfies the
condition, we can iteratively optimize L(¢, §), which is an upper bound of L(¢), defined by

L(¢,6) = L&)+ D> (D Gi(y,x»&i(y,w)%( D iy, o) Hi )87 (y, 2) + Qdi+8:) — i) (8)

i€l xz,yeD z,y€D

L(¢, 8) is composed of |2/| independent loss functions with a regularization term, and can be used

to guide the common function search (such as regression tree learning). Iteratively optimizing L will
result in a gradient boosting algorithm that ensures the convergence of L(¢) (Proof in Section 4).
Furthermore, the form of L allows the search of 0; fori € U to be done in parallel for each equivalent
class defined by C, which gives us further computational benefits. In the next two sections, we will
discuss how we can efficiently estimate v when I/ is the index set of all node potentials, and when it
is the index set of all edge potentials, using a mixing rate of Markov chain.

3 Upper Bound Derivation using a Markov Chain Mixing Rate

In this section, we will discuss how we can estimate v when U is the index set of all node potentials,
and the index set of all edge potentials. Conceptually, the choice of « should be related to the inter-
dependency of variables in the current model. When the variables in the model are independent from
each other, v should be small, and when the variables in the model have strong dependencies, ~y
should become larger. We want to quantitatively measure the dependencies in the CRF. Specifically,
we will connect the dependency level to the mixing rate of a Markov chain defined by the conditional
distribution of outputs on input P(y|x). To begin with, we re-express the right side of Eq. (6) using
total variation distance, defined by ||P — Q| = £ >°, |P(2) — Q(x)|.

Lemma 3.1. Let U correspond to the set of all node potentials U = {j|¢; € N}, assuming index i
corresponds to the event yy = k (i.e. p; = 1(y = k)), then

ST IHG = 200 S 1Pl s = 1) — P(yal2) ©)
Jjeu s
Lemma 3.2. Let U correspond to the set of all edge potentials U = {j|¢; € E}, then
SO =20 S 1P el i = 1) — Ply o)
Jjeu (s,v)e€

Note that we abuse the notation slightly here, by using & to indicate the index set of edges in CRF.



The proof is a re-arrangement of terms, and is provided in the supplementary material. Intuitively,
the total variation terms in Lemma 3.1 and 3.2 measure how dependent y, is on the event y; = k.
When y;, is only weakly dependent on ¥, the distance will be small. The complexity of calculating
Eq. (9) for all ¢ is quadratic in the number of nodes, which is too expensive to be calculated directly
for most applications. We need an algorithm that scales linearly with the number of nodes.

Total variation distance allows us to approach the problem in terms of dependencies between vari-
ables. Intuitively, we expect the dependencies between y, and y; to become smaller as we change s
to get away from ¢. We formally state this in the following theorem:

Theorem 3.1. Mixing rate bound for Markov chain in CRF
Assume y, ys and y,, form a Markov chain y; — ys — Y, conditioned on z, i.e. P(yy|ys, ys, ) =

P(yy|ys, z) holds. Define d(s,t, k) = ||P(ys|z,y: = k) — P(ys|z)||to. Then, the total variation
d(v,t, k) can be bounded by

d(v,t, k) <[1-— Zmin P(yy, = jlys = i,2)|d(s, t, k) & agpd(s, t, k). (10)
j 3
Proof. Define notation: M;; £ P(y, = jlys = i,x),Q; = min; M,;, then

2d(v, 1, k) =3 [P(yo = jlys = k@) = Plyo = jlo)|
:Z | ZMijP(ys =ilye = k,z) — ZMijP(ys = ilz)|
—Z | Z Mi; — Q) [P(ys = ilys = k,z) — P(ys = ila)]]
<ZZ Mi; — Q)| P(ys = ilys = k,x) — P(ys = i|z)|

:Z (1= Q))IPys = ilys = k, ) — P(ys = ila)] = 2a,0d(s, ¢, k) O
% J

The derivation of Theorem 3.1 is inspired, in spirit, by the mixing rate bounds of time homogeneous
Markov Chains [10]'. Intuitively, Theorem 3.1 shows the dependency decays exponentially as s
moves away from ¢. The following corollary holds as the direct consequence of the theorem.

Corollary 3.1. Let ¢ = [¢(1),¢(2),---q(n)] be the path sequence in £ from t to s (i.e. q(1) =
t,q(n) = s) then we can bound d(t, s, k) using d(t, t, k) times the decay ratio o along the path,

n—1

d(S,t,k) S H aq(i),q(iﬂ)d(t,t,k). (11)

In the case when £ is a chain, Corollary 3.1 simplifies to d(s, ¢, k) < HZ; ap h+1d(t, t, k) when

s>t,and d(s,t, k) < HZ:S“ ap n—1d(t, t, k) when s < ¢. An important property of Theorem 3.1
is that the position specific mixing rate a, can be computed efficiently (complexity analysis in
Sec 4). We still need to calculate d(¢, ¢, k), which is given by the following Lemma

Lemma 3.3. Let M correspond to the index set of u; such that ji;, ji; are mutual to each other (i.e.
pipt; = 0 fori # j,i,j € M), and ZjeM P(u; = jlz) = 1. Then the following identity holds

1
3 > P = 1p = 1,2) = P(u; = 1|z)| = 1 — P(y; = 1]z) (12)
jenm

The proof is given in supplementary material. From Lemma 3.3, it follows that d(¢,¢, k) = 1 — p;.
We will make use of Lemma 3.3 and Corollary 3.1 to efficiently estimate - in next section.

4 Gradient Boosting for CRF

In this section, we will present our gradient boosting algorithm. We will give estimation of ~ for U
to be the index set of all node potentials and edge potentials, given by the following two theorems.

"Note that our proof is actually for a time inhomogeneous Markov Chain.



Algorithm 1 Gradient Boosting for CRF

repeat
forif € {N,E} do

for y, z € D in parallel do
{inference of p;, 7; are done using dynamic programming}
Infer G;(y, x) < w;i(y) — pi, Hi(y, x) < p;(1 — p;) foreach i € U
Infer v;(y, ) using Theorem 4.1 and 4.2 for each i € U

end for

for [c] C U in parallel do
{We use [c] to enumerate over set of equivalent index defined by C in U/}

b argmingez, U6 +8) + T T, vem |Gilo:2)80,3) + 24y ) Hily, 2)8(0,0)
i€ [c

Ge < G+ €d.
end for
end for
until convergence

Theorem 4.1. Let U be the index set of all node potentials, assume p; = 1(y, = k), and define Q,
to be the set of all paths that start from t, then

len(q) s—1

il w) =200+ > > [ vaeiraan) (13)

q€Q; s=2 i=1
satisfies Eq.(6). We use len(q) as the length of the path, « is defined in Theorem 3.1.

Theorem 4.2. Let U be the index the set of all edge potentials, assume 11; = 1(ys = k1, yr41 = ka2),
and define Qy 111 to be the set of all path that start from t and t + 1 and do not cross (t,t+ 1), then

len(q) s—1
vl ) =20+ >3 1+ Y [T o)) (14)
qEQt t+1 s=2 =1

satisfies Eq.(6), with the same definition of len(q) and « as in Theorem 4.1.

Both theorems can be proved by using Corollary 3.1 and Lemma 3.3 to bound the total variation dis-
tance. We give the detailed proof in supplementary material. Based on Theorem 4.1 and 4.2, we can
get an efficient gradient boosting algorithm for CRF (GBCRF), which is presented in Algorithm 1.
Here € is a shrinkage term used to control overfitting. Our algorithm adaptively estimates -y via the
mixing rate calculation at each iteration. At the beginning of training, where each node variable is
independent from each other, we will have a -y that is close to 2 (and thus the updates are aggressive).
~ increases as the variables become dependent on each other (inducing more conservative updates).

The calculation of v can be performed using dynamic programming. To explain the idea more
clearly, let us consider the case when £ is a chain. In this case, Eq. (13) specializes into a calculation
of B &30, Hf;tl @;ir1and B; = Zizl H§=s+1 @; ;—1, and both can be calculated efficiently
using the following recursive formula

B = uar1(1+ B 1), B = cwa—1(14 B_y). (15)

Similarly, we can use dynamic programming for any tree-shaped £ (using up-down recursion). A
direct consequence of Theorem 4.1 is that we can bound the loss using estimation by number of
nodes in CRF. Though this bound is usually worse than the bound using mixing rate.

Corollary 4.1. When U is the index set of node potentials , v; = 2n satisfies Eq. (6), where n is
number of nodes in CRF.

Relation to LogitBoost Our algorithm can be viewed as a generalization of multi-class classification
using LogitBoost [5]. When the variables in each position are independent (no edge potentials), the
estimation of v equals 2, and our algorithm becomes identical to LogitBoost. When the variables
are dependent on each other, which is common in structured prediction, our model estimates the
dependency level via the Markov Chain mixing rate to guide the boosting objective in each iteration.



Time Complexity The time complexity for the gradient boosting statistics collection in Algorithm 1
is O(|D|nK?), where K is the number of states in each node and n is the average number of
nodes (e.g. length of sequence) in each instance. This is due to the fact that estimation of ~y can
be done in O(|D|nK?) complexity, using a dynamic programming algorithm. This complexity is
same as the complexity for traditional training methods for linear CRF. The time complexity of
entire algorithm is O(|D|nK? + g(|D|,n)), where g(|D|,n) is cost of function learning given the
statistics. For learning trees, the complexity of function learning is usually O (|D|nlog(|D|n)).
Thus our approach extends CRFs to non-linearity with only an additional log factor.

Convergence Analysis In this section, we analyze the convergence of our algorithm. The advantage
of our method is that it makes use of second order information, and guarantees convergence.

Theorem 4.3. L(¢) converges with the procedure described by Algorithm 1 for ¢ < 1.

Proof. During each iteration, assume ™ is the function that optimizes f/(gb, 0) defined in Eq. (8),

L(¢ + €6%) < L(¢,e6) < L($,0) = L(¢) (16)
Thus the loss function L decreases after each boosting step, and the algorithm converges to a mini-
ma (possibly local minima when F is nonlinear) of L. O

5 Related Work

Conditional random fields [9] are among the most successful solutions to structured prediction prob-
lems. Variants of conditional random fields have been proposed and widely applied for structured
prediction in domains such as natural language processing [9, 16], computer vision [7, 15] and bio-
informatics [21]. Most popular instantiations assume linear potential functions and improve the
performance by carefully engineering features. Our work focuses on learning probabilistic models
for tree-shaped CRFs with nonlinear potential functions. When there are loops in the CRF and infer-
ence is intractable, relaxation of the objective can be done to use approximate inference and learn-
ing [6, 13, 3]. A similar dependency based term is also used in the approximate inference [13, 3],
but is usually set be a constant value across all instances and training iterations. As a future work,
it would be interesting to explore whether our adaptive Markov Chain mixing rate bound can be
applied to this more general setting.

Gradient boosting [4], which performs additive optimization in the functional space, has been suc-
cessfully applied to classification problems that assume independent outputs conditioned on the
input [5]. Most existing attempts to “boost” CRF models optimize approximate objectives [20, 12].
TreeCRF algorithm [1] is similar to our approach in that it directly optimizes the log-likelihood func-
tion defined using non-linear potential functions, however they only take first order information into
account during optimization, requiring a decreasing step size. On the other hand, our method makes
use of second order information, and guarantees convergence with fixed step size. Our method can
also be viewed as a generalization of LogitBoost [5] for CRF. It is worth noting that the recent im-
provements of LogitBoost, which make use of adaptive base function [11, 17], can also potentially
be combined with our method to make further improvements.

6 Experiments

In this section, we evaluate our method on named entity recognition, hand written character recogni-
tion, and protein secondary structure prediction. We compare the following methods: (1) GBCRF is
the proposed method in this paper. We set F, to be a set of regression trees, and JF, to be linear func-
tions of basic transition features between states; (2) LogitBoost is a gradient boosting method for
multi-class classification [5] that does not support the dependencies between outputs; (3) TreeCRF
is a gradient boosting method that only takes first-order information [1]. We use the same family of
edge and node potentials as GBCRF; (4) Linear CREF is the standard CRF model with linear edge
and node potentials [9]. For all the methods, the training parameters are selected using a validation
set or cross validation, depending on the specific setup of each dataset.

Named Entity Recognition We first test our methods on the natural language task of named entity
recognition (NER) using the CoONLL-2003 shared task benchmark dataset [19]. The dataset contains
around 20K sentences, and defines a standard split into 14K as training set, 3.3K as validation



Table 1: F1 Measure of Name Entity Recognition on CoNLL-2003 Dataset. We use subscript val to
denote validation set, and subscript test to denote test set.

Word Embedding only  Word Features + Embedding

Method Flval F]-test Flval F]-test
Linear CRF  0.8452 0.7943 0.8952 0.8475
LogitBoost  0.8532 0.7887 0.8717 0.8197
TreeCRF 0.8630 0.8060 0.8846 0.8399
GBCRF 0.8801 0.8269 0.9015 0.8635
Table 2: Cross Validation Error on Table 3: Predictive Q8 Accuracy on Protein Sec-
Handwritten Character Recognition Dataset. ondary Structure Dataset.
Method Error Method Accuracy
Linear CRF 0.1292 £+ 0.0080 Linear CRF 0.614
LogitBoost 0.0967 £ 0.0049 LogitBoost 0.710
TreeCRF 0.0699 =+ 0.0040 TreeCRF 0.718
GBCRF 0.0464 £+ 0.0027 GBCRF 0.722
NeuroCRF (Do et al.[2]) 0.0444 SC-GSN (Zhou et al.[22]) 0.711

SC-GSN with “kick-start” ([22]) 0.721

set (also called development set), and 3.5K sentences as test set. Traditional approaches for NER
involve a lot of time-consuming feature engineering that requires domain expertise, and build a
Linear CRF over these features. Instead, in our experiment, we explore whether it is possible to
perform minimal feature engineering, and use a representation learned from data for prediction.

Specifically, we take the word embedding vectors from Mikolov et.al [14], which is learned from
Google news corpus, and train the models on this representation. In this setting , each word is
represented by a 300 dimensional vector that captures the “semantics” of the word. For each position
in the sentence, we take the embedding vector of the previous, current, and next word as input to node
potential function. We call this setting “word embedding only”. We further perform minimal feature
engineering to only generate the unigram features (word, postag and case pattern of current word).
We use these basic features to train a weak linear model, then use additive training to boost the base
model using the word embedding representation. We call this setting “word feature+embedding”.

The results of token-wise F1 evaluation for these models are shown in Table 1. From the result, we
see that GBCRF works better than Linear CRF in both settings. The gap between LogitBoost and
GBCRF indicates the importance of introducing edge potentials to this problem. We also find that
taking second order information into account helps us obtain a more accurate model.

Handwriting Character Recognition We also evaluate our method on a handwriting recognition
dataset’. The dataset consists of 6877 words and corresponds to about 52 thousand handwritten
characters [8, 18], each represented by a binary pixel vector of 128 dimensions, and belonging to
one of 26 alphabets. The dataset is randomly split into 10 folds for cross validation. We train the
models on 9 folds, test on 1 fold, and use the cross validation error to compare the methods.

The experiment results are shown in Table 2. Both our method and TreeCRF outperforms CRF
with linear potential functions, which indicates the effectiveness of introducing a non-linear poten-
tial function into the CRF on this dataset. The gap between LogitBoost and models that consider
dependencies indicate the importance of incorporating structure information of the outputs into the
model. Our results are also comparable to NeuroCRF [2], which uses a deep neural network as a
potential function whose weights are initialized by Restricted Boltzmann Machines.

Protein Secondary Structure Prediction We also conduct an experiment on protein secondary
structure prediction. The task is to predict 8-state secondary structure labels for a given amino-acid
sequence of a protein. We use the protein secondary structure data-set recently introduced by Zhou
et al.[22], which is the largest publicly available protein secondary structure prediction dataset. The
dataset contains 6128 proteins, with average sequence length around 208. We use exactly the same
features and data split step as [22]. The resulting data set contains 5600 sequences as training set,
256 sequences as validation set and 272 sequences as test set. Each position of the protein sequence
contains 46 dimension features (22 for PSSM, 22 for sequence and 2 for terminals) for prediction.

“http://www.seas.upenn.edu/ taskar/oct/
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(a) Evolution of Negative-loglikelihood (b) Evolution of average ~y estimation

Figure 1: Convergence of GBCRF on hand written character dataset. (a) Convergence comparison
between GBCRF and TreeCRF, with shrinkage rate of both algorithm set to 1. GBCRF converges
faster than TreeCRF; (b) Evolution of different  estimations on the CRF model in each round based
on 500 sequences. Mixing rate based estimation has the same trend as brute force estimation, and
provides a tighter estimation than the length based estimation.

To train the models, we take the concatenation of feature vectors within 3 positions of the target
position as input to the node potential, resulting in 322 input features in each position.

The performance of the model is measured by the accuracy of predictions on the test set (denoted as
Q8). We train the models with parameters discovered using the validation set, and report the results
in Table 3. From the table, we find that using trees as potential functions leads to better performance
than restricting the model to using linear functions. Our results are comparable to the state-of-
art result in this dataset, produced by Zhou et al. [22] (SC-GSN-3layer). The result is generated
by a deep convolutional generative stochastic network model to perform secondary structure label
prediction, optimized with a “kick-start” initialization scheme.

Convergence of GBCRF We further analyze the convergence of GBCRF on the handwritten char-
acter dataset. We plot the convergence of negative log-likelihood function of GBCRF and TreeCRF
in Fig. 1(a). We find that GBCRF converges faster than TreeCRF, demonstrating that taking second
order information into account not only gives theoretical guarantee of convergence, but also helps
the method to converge faster in practice.

We also investigate the tightness of v estimation. Figure 1(b) gives the average of different  esti-
mations on models trained by GBCRF in each round. Mixing rate based estimation is the method
proposed in this paper. We perform Brute Force estimation to compute  exactly using Eq. (9);
the complexity of this estimation is quadratic in the number of nodes and outputs in the CRF, and
hence cannot be used for most real-world sequences. Average Length based estimation is a naive
estimation using 2 times number of nodes in CRF, and provides an valid estimation of ~y since it
upper bounds Eq. (13), as we show in Corollary 4.1. We restrict this evaluation to the shortest 500
sequences, due to the computation cost of brute force estimation. From the figure, we find that mix-
ing rate based estimation exhibits the same trend as the brute force estimation, and is at most 2.3
times higher than the brute force estimation. Further, the mixing rate based bound is consistently
lower than the fixed bound computed by the length based estimation. These results indicate that our
mixing rate based estimation captures the changes in the dependencies in the model during training
correctly. Hence our proposed mixing rate based approach is indeed useful to estimate vy efficiently.

7 Conclusion

In this paper, we present novel gradient boosting algorithm for CRF. It is non-trival to design an ef-
fective gradient boosting for CRF, mainly due to the dense Hessian matrices introduced by variable
interdependency. To solve the problem, we make use of a Markov Chain mixing rate to derive an
efficiently computable adaptive upper bound of the loss function, and construct a gradient boosting
algorithm that iteratively optimizes the bound. The resulting algorithm can be viewed as a gener-
alization of LogitBoost to CRF, thus introducing non-linearity in CRFs at only a log factor cost.
Experimental results demonstrate that our method is both efficient and effective. As future work, it
is interesting to explore whether we can generalize the result to loopy models.
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Supplementary Material

A Proof for Lemma 2.1

Proof. The following inequality holds for ~y that satisfies the condition

PR D) SILHIEED B) S MR HED $) Bl HLL)

icU €U jeu €U jeu ieU jeu

Applying it to Talyor expansion in Eq (4), we have

=% ieU jeu
1 2 2
<ly,z,9) + Z 0:iGi(y, z) + B} Z'YiHiidi +0(67).
icU €U
O
B Proof for Lemma 3.3
Proof. Taking the fact that y1; and p; are mutual for j # 4, we have
S 1Py = s = 1,2) — Pl = 1]a)|
jeM
= P(ui = 1ps = 1,2) — Plpi = L) + D> |P(u; = Ups = 1,2) — Py = 1)
J#i
=[1 = P(ui = Lz)| + D |0 = P(p; = 1z)|
J#i
=(1 = P(ui = 1)) + Y P(u; = 1|z)
J#i
=2(1 - P = 1]a))
O

C Proof for Lemma 3.1 and 3.2

Proof. The proof is exactly the same for both node and potential case, we present the proof for U
to be all node potentials here. Recall the definition of H: H;; = p;;. Note that p; and p;; are short

hand notations for p; £ P(u; = 1|z), p;; £ P(pip; = 1|z), we have

1. Z |Hij| :Z|Pij/pi —pj|

2pi jeu j
=3 |P(u; = 1p; = 1,2) — P(u; = 1]z)|
Jjeu
=Y |P(ys = K|yr = k, ) — Plys = ¥'|2)|
sk’

= NIPWslz,ye = k) = Pys|2)]lso
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D Proof for Theorem 4.1 and 4.2

Proof. Proof for Theorem 4.1 Basically, we want to bound the total variation distance given by
Eq. (9) in Lemma 3.1,

2piz ||P(ys|177ys = k) (ye‘x ‘tv = QPde s, t, k

len(q)

=2pild(t,t, k) + Y Y df

qEQ; s=2
len(q
< 2pifd(t,t, k) + Y Z d(t,t, k) Haq(l’q(m
qeQ: s=2
len(q) s—1
=2pi(1 —ps)[1 + Z Z H Qg(i),q(i+1)]
g€Q, s=2 i=1
Here the inequality is given by Corollary 3.1 (d(q(s),t, k) < d(t,t,k) ]_L 1 Qq(i),q(i+1))> and last
equality is given by Lemma 3.3 (d(t, ¢, k) = 1 — p;). Recall that H;; = p;(1 — p;), we have proved
Theorem 4.1. O

Proof. Proof for Theorem 4.2 In this proof, we will reduce the total variation distance between
joint distribution of edge states into total variation distance of marginal distribution over nodes, as
in Theorem 4.1. Assume in edge pairs are (y;, Yr+1), (Ys, Ys+1) » and ys is closer to y;41 (without
loss of generality), then

P(ys, Ys+1lyt: ye41,7) = P(Ysi1lys, ©) P(ys|ye+1, ©)
We can convert total variation by

IP(ss Ysr1lye ves1, ) = P, ysa @)oo = > [PWss yssa|ye Y141, %) — P(ys, Ysra|2)]
Ys Ys+1

= 3 Plerlye o) P(yelysri, ) — Plyila)]

Ysr Ys+1

= I1PWslyes1,7) — Plys|o)]
Ys

=[P(yslyt+1,2) — P(ys|2) ||t
(17)

Now the case become same as node potential, we can make use of Corollary 3.1 bound the total
variation. Specifically, let ¢ € Q; ;41 (i.e. ¢(1) € {t,t + 1},q(d) ¢ {¢t,t + 1} fori > 1)

len(q)

> P Waey, Yagisnlye = ke, yers = ki1, ) — P(Yagiys Yot @)l o

=1
len(q)
= > NPWao¥a(r) = ka(1), ) = P(yaei)|2)llew
i=1
len(q) i—1
NP Yo War) = kg(1), ) = PWay|@)lew + D> I1PWat) [Wa(r) = Ea)> ) = Py |2)lleo [ [ et .ati+1)
i=2 =1
len(q) i—1
=[1 = P(yay = kg [2)](1 + D ] @atiya+1)
i=2 j=1
len(q) i—1
<[ = Plys = ki, yorr = ke [2)] 1+ D ] aG.a+1)-
i=2 j=1

Here the first inequality is due to Corollary 3.1. Summing the results over all ¢ € Q; ;11 will give
us Eq. (14). O
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