
ROUTING AND ACTION

MEMORANDUM

ROUTING

TO: (1) Network Sciences Division (Iyer, Purush)

Report is available for review

(2) Proposal Files Proposal No.:

CONTRACT OR GRANT NUMBER:

DESCRIPTION OF MATERIAL

INSTITUTION:

PRINCIPAL INVESTIGATOR: Pedro Domingos

TYPE REPORT: Manuscript

PERIOD COVERED: through

DATE RECEIVED: 9/23/14 4:36PM

(x) Report has been reviewed for technical sufficiency and IS [x] IS NOT [] satisfactory.

ACTION TAKEN BY DIVISION

W911NF-08-1-0242

University of Washington

TITLE: Gradient Boosting for Conditional Random Fields

(x) Material has been given an OPSEC review and it has been determined to be non sensitive and, except for
manuscripts and progress reports, suitable for public release.

Approved by SSL\PURUSH.S.IYER on 9/26/14 10:55AM

54231NSMUR.175

ARO FORM 36-E

Standard Form 298 (Rev 8/98)
Prescribed by ANSI Std. Z39.18

W911NF-08-1-0242

206-543-4229

Manuscript

54231-NS-MUR.175

a. REPORT

14. ABSTRACT

16. SECURITY CLASSIFICATION OF:

1. REPORT DATE (DD-MM-YYYY)

4. TITLE AND SUBTITLE

13. SUPPLEMENTARY NOTES

12. DISTRIBUTION AVAILIBILITY STATEMENT

6. AUTHORS

7. PERFORMING ORGANIZATION NAMES AND ADDRESSES

15. SUBJECT TERMS

b. ABSTRACT

2. REPORT TYPE

17. LIMITATION OF
ABSTRACT

15. NUMBER
OF PAGES

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

5c. PROGRAM ELEMENT NUMBER

5b. GRANT NUMBER

5a. CONTRACT NUMBER

Form Approved OMB NO. 0704-0188

3. DATES COVERED (From - To)
-

UU UU UU UU

23-09-2014

Approved for public release; distribution is unlimited.

Gradient Boosting for Conditional Random Fields

In this paper, we present a gradient boosting algorithm for tree-shaped conditional

random fields (CRF). Conditional random fields are an important class of models

for accurate structured prediction, but effective design of the feature functions

is a major challenge when applying CRF models to real world data. Gradient

boosting, which can induce and select functions, is a natural candidate solution

for the problem. However, it is non-trivial to derive gradient boosting algorithms

The views, opinions and/or findings contained in this report are those of the author(s) and should not contrued as an official Department
of the Army position, policy or decision, unless so designated by other documentation.

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS
(ES)

U.S. Army Research Office
 P.O. Box 12211
 Research Triangle Park, NC 27709-2211

Conditional Random Fields, Gradient Boosting Algorithms, Hessian Matrices, Markov Chain Mixing Rate, Functional Space
Optimization

REPORT DOCUMENTATION PAGE

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

10. SPONSOR/MONITOR'S ACRONYM(S)
 ARO

8. PERFORMING ORGANIZATION REPORT
NUMBER

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER
Pedro Domingos

Tianqi Chen, Sameer Singh, Carlos Guestrin

611103

c. THIS PAGE

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments
regarding this burden estimate or any other aspect of this collection of information, including suggesstions for reducing this burden, to Washington
Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA, 22202-4302.
Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any oenalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

University of Washington
Office of Sponsored Programs
4333 Brooklyn Avenue NE
Seattle, WA 98195 -9472

1

ABSTRACT

Gradient Boosting for Conditional Random Fields

Report Title

In this paper, we present a gradient boosting algorithm for tree-shaped conditional

random fields (CRF). Conditional random fields are an important class of models

for accurate structured prediction, but effective design of the feature functions

is a major challenge when applying CRF models to real world data. Gradient

boosting, which can induce and select functions, is a natural candidate solution

for the problem. However, it is non-trivial to derive gradient boosting algorithms

for CRFs, due to the dense Hessian matrices introduced by variable dependencies.

We address this challenge by deriving a Markov Chain mixing rate bound to

quantify the dependencies, and introduce a gradient boosting algorithm that iteratively

optimizes an adaptive upper bound of the objective function. The resulting

algorithm induces and selects features for CRFs via functional space optimization,

with provable convergence guarantees. Experimental results on three real

world datasets demonstrate that the mixing rate based upper bound is effective for

training CRFs with non-linear potentials.

2

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Gradient Boosting for Conditional Random Fields

Anonymous Author(s)
Affiliation
Address
email

Abstract

In this paper, we present a gradient boosting algorithm for tree-shaped conditional
random fields (CRF). Conditional random fields are an important class of model-
s for accurate structured prediction, but effective design of the feature functions
is a major challenge when applying CRF models to real world data. Gradient
boosting, which can induce and select functions, is a natural candidate solution
for the problem. However, it is non-trivial to derive gradient boosting algorithms
for CRFs, due to the dense Hessian matrices introduced by variable dependen-
cies. We address this challenge by deriving a Markov Chain mixing rate bound to
quantify the dependencies, and introduce a gradient boosting algorithm that itera-
tively optimizes an adaptive upper bound of the objective function. The resulting
algorithm induces and selects features for CRFs via functional space optimiza-
tion, with provable convergence guarantees. Experimental results on three real
world datasets demonstrate that the mixing rate based upper bound is effective for
training CRFs with non-linear potentials.

1 Introduction

Many problems in machine learning involve structured prediction, i.e. predicting a group of outputs
that depends on each other. Conditional random fields [9] are among the most successful solutions
to these problem. Variants of tree-shaped conditional random fields have been proposed and widely
applied to structured prediction problems in domains such as natural language processing [9, 16],
computer vision [7, 15] and bio-informatics [21]. As opposed to classification models that assume
independent output variables, CRF models capture the dependency pattern between output and input
via potential functions. Potential functions are usually defined using a linear combination of care-
fully engineered features of the input and the output variables. These feature functions are crucial
for learning accurate models. Thus, it is important to ask whether we can induce arbitrary poten-
tial functions automatically (via functional space optimization), instead of manually crafting them
and/or restricting them to linear combinations.

Gradient boosting [4], which performs additive training in functional spaces, is a natural candidate
for this problem. Effective gradient boosting algorithms, such as LogitBoost and its variants [5, 11,
17], have been proposed for inducing feature functions for (independent) multi-class classification
problems. The key ingredient in these methods is the effective use of second order information
via diagonal approximation of Hessian matrices. Unfortunately, it is non-trivial to develop such
boosting methods for CRFs, since variable interdependencies introduce dense Hessian matrices that
make gradient boosting infeasible due to the computational complexity. Instead, existing boosting
approaches either optimize approximate objectives [20, 12] or only take first order information into
account when optimizing exact likelihood [1]. Unfortunately, the convergence of this method is
guaranteed only with small step sizes.

In this paper, we present a novel gradient boosting algorithm for inducing non-linear feature func-
tions for tree-shaped CRFs. The CRF training is performed via iteratively optimizing adaptive upper

1

3

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

bounds of the loss function, to address the challenge of dense Hessians. The adaptive bounds, which
are derived using Markov Chain mixing rates, measure the dependency between variables, and ac-
cordingly control the conservativeness of the updates. The resulting gradient boosting algorithm,
which can be viewed as generalization of LogitBoost to structure prediction problems, optimizes
the CRF objective with provable convergence guarantees. Experimental results on three real world
datasets demonstrate the effectiveness and efficiency of our bound and the proposed algorithm.

2 Overview of Method

Model Formalization Given input x, a CRF model describes a distribution over the outputs as

P (y|x) =
exp(Φ(y, x))∑

y′∈Y exp(Φ(y′, x))
(1)

where Y is the set of possible output combinations, and Φ(y, x) captures the dependency between
the input and output variables. The model Φ usually factorizes as a sum of unary and pairwise (edge)
potential functions φi between individual output variables, which can be expressed as follows:

Φ(y, x) =

m∑
i=1

φi(x)µi(y), φi ∈ F , µi ∈ N ∪ E subject to φi = φj for (i, j) ∈ C, (2)

where N = {1(yt = k)}, E = {1(ys = k1, yt = k2)} are the sets of indicator functions of each
node and edge state. Each µi corresponds to a event yt = k or ys = k1, yt = k2 (depending on
whether φi is node or edge potential). We use µ as short hand for µ(y) and view it as a vector of
random variables. The family of all possible node and edge potential functions is F = Fn ∪ Fe,
whose size could be infinite. C represents equivalence classes in different parts of the model that we
use to capture parameter sharing, which is common in most applications of CRFs. In standard linear-
chain CRFs with linear potentials, F contains linear functions of x, and C can be used to constrain
the node and edge potential functions in different position to be the same. On the other hand,
LogitBoost considers arbitrary F , however constrains the model to contain only node potentials
(there are no edge potentials). In this paper we are interested in arbitrary function families F , and
focus on tree-shaped E that allow exact inference of marginals.

Training Objective Using functions φ in Eq.(2) as the model parameters allows us to induce poten-
tial functions automatically through functional space optimization. In particular, we generalize the
standard CRF objective over training data D = {(y, x)} to the following:

L(φ) =
∑

y,x∈D
l(y, x, φ) +

∑
c

Ω(φc) = −
∑

y,x∈D
lnP (y|x) +

∑
c

Ω(φc). (3)

Here l is the negative log-likelihood function over each data point.
∑

c Ω(φc) is a regularization
term that measures the complexity of the learned function, defined as a sum over the equivalence
class defined by C. In standard CRFs, for example, Ω is often the square of L2 norm of the parameter
vector. This generalized objective function encourages us to select predictive (i.e. optimizes l) and
simple (i.e. optimizes Ω) functions as potentials of a CRF.

Challenges for Function Learning Since the model parameters in this formulation are functions,
Eq.(3) cannot be directly optimized using traditional optimization techniques. Instead, we train
the model additively: at each iteration t, our proposed algorithm first searches over the functional
space F to find functions δ = [δ1, δ2, · · · , δm] that optimize the objective function L(φ(t) + δ),
and then adds them to the current model φ(t+1) ← φ(t) + δ. However, due to the complex nature
of the objective function, directly performing such a brute-force search requires a large amount of
computation and is thus infeasible. In the same spirit as LogitBoost [5, 11] for multi-class prediction,
we consider the second order Taylor expansion of the negative log-likelihood l(y, x, φ):

l(y, x, φ+ δ) ' l(y, x, φ) + δTG(y, x) +
1

2
δTH(y, x)δ. (4)

The gradient G and Hessian H in Eq.(4) are given by the following equation, where pi and pij are
short hand notations for pi , P (µi = 1|x), pij , P (µiµj = 1|x):

Gi = µi(y)− pi, Hij = pij − pipj . (5)

2

4

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Note that Eq.(5) holds for all i, j pairs, including two special cases: (1) Hii = pi(1 − pi) when
i = j, and (2) Hij = −pipj when µi and µj are mutual events. Intuitively, Hij measures the
correlation between two events, and is nonzero due to the dependencies in the CRF model. These
dense elements of the Hessian make direct optimization of Eq. (4) still very costly. An existing
approach to functional optimization for CRFs, presented in [1], resorts to first order approximation
to the loss, and can only guarantee convergence when the step size is small. An alternative is to
iteratively update one δi for i ∈ {1, · · · ,m} at a time. This approach would require m inference
steps per iteration, and is simply not applicable when the constraint C exists.

Our Approach In this paper, we consider an upper bound of Eq. (4) instead. The intuition behind
this approach, which will be formalized in following sections, is as follows: each variable in the
CRF depends weakly on variables that are “far” from it. This motivates the use of a diagonal upper
bound of the Hessian to construct loss functions, given by the following Lemma.
Lemma 2.1. Let U be a index set of potential functions we want to update, and let γ be a function
that satisfies the following inequality

γi(y, x)Hii(y, x) ≥
∑
j∈U
|Hij(y, x)| (6)

Then for δ ∈ {[δ1, δ2, · · · , δm] | δi = 0 for i /∈ U}, the following inequality holds,

l(y, x, φ+ δ) ≤ l(y, x, φ) +
∑
i∈U

[δiGi(y, x) +
1

2
γi(y, x)Hiiδ

2
i (y, x)] + o(δ2). (7)

The detailed proof of the lemma is given in supplementary material. For a given γ that satisfies the
condition, we can iteratively optimize L̃(φ, δ), which is an upper bound of L(φ), defined by

L̃(φ, δ) = L(φ)+
∑
i∈U

[(
∑
x,y∈D

Gi(y, x))δi(y, x)+
1

2
(
∑
x,y∈D

γi(y, x)Hii)δ
2
i (y, x)+Ω(φi+δi)−Ω(φi)]. (8)

L̃(φ, δ) is composed of |U| independent loss functions with a regularization term, and can be used
to guide the common function search (such as regression tree learning). Iteratively optimizing L̃will
result in a gradient boosting algorithm that ensures the convergence of L(φ) (Proof in Section 4).
Furthermore, the form of L̃ allows the search of δi for i ∈ U to be done in parallel for each equivalent
class defined by C, which gives us further computational benefits. In the next two sections, we will
discuss how we can efficiently estimate γ when U is the index set of all node potentials, and when it
is the index set of all edge potentials, using a mixing rate of Markov chain.

3 Upper Bound Derivation using a Markov Chain Mixing Rate

In this section, we will discuss how we can estimate γ when U is the index set of all node potentials,
and the index set of all edge potentials. Conceptually, the choice of γ should be related to the inter-
dependency of variables in the current model. When the variables in the model are independent from
each other, γ should be small, and when the variables in the model have strong dependencies, γ
should become larger. We want to quantitatively measure the dependencies in the CRF. Specifically,
we will connect the dependency level to the mixing rate of a Markov chain defined by the conditional
distribution of outputs on input P (y|x). To begin with, we re-express the right side of Eq. (6) using
total variation distance, defined by ‖P −Q‖tv = 1

2

∑
x |P (x)−Q(x)|.

Lemma 3.1. Let U correspond to the set of all node potentials U = {j|φj ∈ N}, assuming index i
corresponds to the event yt = k (i.e. µi = 1(yt = k)), then∑

j∈U
|Hij | = 2pi

∑
s

‖P (ys|x, µi = 1)− P (ys|x)‖tv. (9)

Lemma 3.2. Let U correspond to the set of all edge potentials U = {j|φj ∈ E}, then∑
j∈U
|Hij | = 2pi

∑
(s,v)∈E

‖P (ys, yv|x, µi = 1)− P (ys, yv|x)‖tv.

Note that we abuse the notation slightly here, by using E to indicate the index set of edges in CRF.

3

5

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

The proof is a re-arrangement of terms, and is provided in the supplementary material. Intuitively,
the total variation terms in Lemma 3.1 and 3.2 measure how dependent ys is on the event yt = k.
When ys is only weakly dependent on yt, the distance will be small. The complexity of calculating
Eq. (9) for all i is quadratic in the number of nodes, which is too expensive to be calculated directly
for most applications. We need an algorithm that scales linearly with the number of nodes.

Total variation distance allows us to approach the problem in terms of dependencies between vari-
ables. Intuitively, we expect the dependencies between ys and yt to become smaller as we change s
to get away from t. We formally state this in the following theorem:
Theorem 3.1. Mixing rate bound for Markov chain in CRF
Assume yt, ys and yv form a Markov chain yt → ys → yv , conditioned on x, i.e. P (yv|ys, yt, x) =

P (yv|ys, x) holds. Define d(s, t, k) , ‖P (ys|x, yt = k) − P (ys|x)‖tv . Then, the total variation
d(v, t, k) can be bounded by

d(v, t, k) ≤ [1−
∑
j

min
i
P (yv = j|ys = i, x)]d(s, t, k) , αs,vd(s, t, k). (10)

Proof. Define notation: Mij , P (yv = j|ys = i, x), Qj , miniMij , then

2d(v, t, k) =
∑
j

|P (yv = j|yt = k, x)− P (yv = j|x)|

=
∑
j

|
∑
i

MijP (ys = i|yt = k, x)−
∑
i

MijP (ys = i|x)|

=
∑
j

|
∑
i

(Mij −Qj)[P (ys = i|yt = k, x)− P (ys = i|x)]|

≤
∑
j

∑
i

(Mij −Qj)|P (ys = i|yt = k, x)− P (ys = i|x)|

=
∑
i

(1−
∑
j

Qj)|P (ys = i|yt = k, x)− P (ys = i|x)| = 2αs,vd(s, t, k)

The derivation of Theorem 3.1 is inspired, in spirit, by the mixing rate bounds of time homogeneous
Markov Chains [10]1. Intuitively, Theorem 3.1 shows the dependency decays exponentially as s
moves away from t. The following corollary holds as the direct consequence of the theorem.
Corollary 3.1. Let q = [q(1), q(2), · · · q(n)] be the path sequence in E from t to s (i.e. q(1) =
t, q(n) = s) then we can bound d(t, s, k) using d(t, t, k) times the decay ratio α along the path,

d(s, t, k) ≤
n−1∏
i

αq(i),q(i+1)d(t, t, k). (11)

In the case when E is a chain, Corollary 3.1 simplifies to d(s, t, k) ≤
∏s−1

h=t αh,h+1d(t, t, k) when
s > t, and d(s, t, k) ≤

∏t
h=s+1 αh,h−1d(t, t, k) when s < t. An important property of Theorem 3.1

is that the position specific mixing rate αs,v can be computed efficiently (complexity analysis in
Sec 4). We still need to calculate d(t, t, k), which is given by the following Lemma
Lemma 3.3. Let M correspond to the index set of µi such that µi, µj are mutual to each other (i.e.
µiµj = 0 for i 6= j, i, j ∈M), and

∑
j∈M P (µi = j|x) = 1. Then the following identity holds

1

2

∑
j∈M
|P (µj = 1|µi = 1, x)− P (µj = 1|x)| = 1− P (µi = 1|x) (12)

The proof is given in supplementary material. From Lemma 3.3, it follows that d(t, t, k) = 1 − pi.
We will make use of Lemma 3.3 and Corollary 3.1 to efficiently estimate γ in next section.

4 Gradient Boosting for CRF

In this section, we will present our gradient boosting algorithm. We will give estimation of γ for U
to be the index set of all node potentials and edge potentials, given by the following two theorems.

1Note that our proof is actually for a time inhomogeneous Markov Chain.

4

6

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Algorithm 1 Gradient Boosting for CRF
repeat

for U ∈ {N, E} do
for y, x ∈ D in parallel do
{inference of pi, γi are done using dynamic programming}
Infer Gi(y, x)← µi(y)− pi,Hii(y, x)← pi(1− pi) for each i ∈ U
Infer γi(y, x) using Theorem 4.1 and 4.2 for each i ∈ U

end for
for [c] ⊂ U in parallel do
{We use [c] to enumerate over set of equivalent index defined by C in U}
δc ← argminδ∈Fn

Ω(φi + δ) +
∑
i∈[c]

∑
y,x∈D

[
Gi(y, x)δ(y, x) + γi(y, x)Hii(y, x)δ2(y, x)

]
φc ← φc + εδc

end for
end for

until convergence

Theorem 4.1. Let U be the index set of all node potentials, assume µi = 1(yt = k), and define Qt

to be the set of all paths that start from t, then

γi(y, x) = 2(1 +
∑
q∈Qt

len(q)∑
s=2

s−1∏
i=1

αq(i),q(i+1)) (13)

satisfies Eq.(6). We use len(q) as the length of the path, α is defined in Theorem 3.1.
Theorem 4.2. Let U be the index the set of all edge potentials, assume µi = 1(yt = k1, yt+1 = k2),
and defineQt,t+1 to be the set of all path that start from t and t+ 1 and do not cross (t, t+ 1), then

γi(y, x) = 2(1 +
∑

q∈Qt,t+1

(1 +

len(q)∑
s=2

s−1∏
i=1

αq(i),q(i+1))) (14)

satisfies Eq.(6), with the same definition of len(q) and α as in Theorem 4.1.

Both theorems can be proved by using Corollary 3.1 and Lemma 3.3 to bound the total variation dis-
tance. We give the detailed proof in supplementary material. Based on Theorem 4.1 and 4.2, we can
get an efficient gradient boosting algorithm for CRF (GBCRF), which is presented in Algorithm 1.
Here ε is a shrinkage term used to control overfitting. Our algorithm adaptively estimates γ via the
mixing rate calculation at each iteration. At the beginning of training, where each node variable is
independent from each other, we will have a γ that is close to 2 (and thus the updates are aggressive).
γ increases as the variables become dependent on each other (inducing more conservative updates).

The calculation of γ can be performed using dynamic programming. To explain the idea more
clearly, let us consider the case when E is a chain. In this case, Eq. (13) specializes into a calculation
of β+

t ,
∑n

s=t

∏s−1
i=t αi,i+1 and β−t ,

∑t
s=1

∏t
i=s+1 αi,i−1, and both can be calculated efficiently

using the following recursive formula

β+
t = αt,t+1(1 + β+

t+1), β−t = αt,t−1(1 + β−t−1). (15)

Similarly, we can use dynamic programming for any tree-shaped E (using up-down recursion). A
direct consequence of Theorem 4.1 is that we can bound the loss using estimation by number of
nodes in CRF. Though this bound is usually worse than the bound using mixing rate.
Corollary 4.1. When U is the index set of node potentials , γi = 2n satisfies Eq. (6), where n is
number of nodes in CRF.

Relation to LogitBoost Our algorithm can be viewed as a generalization of multi-class classification
using LogitBoost [5]. When the variables in each position are independent (no edge potentials), the
estimation of γ equals 2, and our algorithm becomes identical to LogitBoost. When the variables
are dependent on each other, which is common in structured prediction, our model estimates the
dependency level via the Markov Chain mixing rate to guide the boosting objective in each iteration.

5

7

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Time Complexity The time complexity for the gradient boosting statistics collection in Algorithm 1
is O(|D|nK2), where K is the number of states in each node and n is the average number of
nodes (e.g. length of sequence) in each instance. This is due to the fact that estimation of γ can
be done in O(|D|nK2) complexity, using a dynamic programming algorithm. This complexity is
same as the complexity for traditional training methods for linear CRF. The time complexity of
entire algorithm is O(|D|nK2 + g(|D|, n)), where g(|D|, n) is cost of function learning given the
statistics. For learning trees, the complexity of function learning is usually O (|D|n log(|D|n)).
Thus our approach extends CRFs to non-linearity with only an additional log factor.

Convergence Analysis In this section, we analyze the convergence of our algorithm. The advantage
of our method is that it makes use of second order information, and guarantees convergence.
Theorem 4.3. L(φ) converges with the procedure described by Algorithm 1 for ε ≤ 1.

Proof. During each iteration, assume δ∗ is the function that optimizes L̃(φ, δ) defined in Eq. (8),

L(φ+ εδ∗) ≤ L̃(φ, εδ∗) ≤ L̃(φ,0) = L(φ) (16)

Thus the loss function L decreases after each boosting step, and the algorithm converges to a mini-
ma (possibly local minima when F is nonlinear) of L.

5 Related Work

Conditional random fields [9] are among the most successful solutions to structured prediction prob-
lems. Variants of conditional random fields have been proposed and widely applied for structured
prediction in domains such as natural language processing [9, 16], computer vision [7, 15] and bio-
informatics [21]. Most popular instantiations assume linear potential functions and improve the
performance by carefully engineering features. Our work focuses on learning probabilistic models
for tree-shaped CRFs with nonlinear potential functions. When there are loops in the CRF and infer-
ence is intractable, relaxation of the objective can be done to use approximate inference and learn-
ing [6, 13, 3]. A similar dependency based term is also used in the approximate inference [13, 3],
but is usually set be a constant value across all instances and training iterations. As a future work,
it would be interesting to explore whether our adaptive Markov Chain mixing rate bound can be
applied to this more general setting.

Gradient boosting [4], which performs additive optimization in the functional space, has been suc-
cessfully applied to classification problems that assume independent outputs conditioned on the
input [5]. Most existing attempts to “boost” CRF models optimize approximate objectives [20, 12].
TreeCRF algorithm [1] is similar to our approach in that it directly optimizes the log-likelihood func-
tion defined using non-linear potential functions, however they only take first order information into
account during optimization, requiring a decreasing step size. On the other hand, our method makes
use of second order information, and guarantees convergence with fixed step size. Our method can
also be viewed as a generalization of LogitBoost [5] for CRF. It is worth noting that the recent im-
provements of LogitBoost, which make use of adaptive base function [11, 17], can also potentially
be combined with our method to make further improvements.

6 Experiments

In this section, we evaluate our method on named entity recognition, hand written character recogni-
tion, and protein secondary structure prediction. We compare the following methods: (1) GBCRF is
the proposed method in this paper. We setFn to be a set of regression trees, andFe to be linear func-
tions of basic transition features between states; (2) LogitBoost is a gradient boosting method for
multi-class classification [5] that does not support the dependencies between outputs; (3) TreeCRF
is a gradient boosting method that only takes first-order information [1]. We use the same family of
edge and node potentials as GBCRF; (4) Linear CRF is the standard CRF model with linear edge
and node potentials [9]. For all the methods, the training parameters are selected using a validation
set or cross validation, depending on the specific setup of each dataset.

Named Entity Recognition We first test our methods on the natural language task of named entity
recognition (NER) using the CoNLL-2003 shared task benchmark dataset [19]. The dataset contains
around 20K sentences, and defines a standard split into 14K as training set, 3.3K as validation

6

8

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Table 1: F1 Measure of Name Entity Recognition on CoNLL-2003 Dataset. We use subscript val to
denote validation set, and subscript test to denote test set.

Word Embedding only Word Features + Embedding
Method F1val F1test F1val F1test
Linear CRF 0.8452 0.7943 0.8952 0.8475
LogitBoost 0.8532 0.7887 0.8717 0.8197
TreeCRF 0.8630 0.8060 0.8846 0.8399
GBCRF 0.8801 0.8269 0.9015 0.8635

Table 2: Cross Validation Error on
Handwritten Character Recognition Dataset.

Method Error
Linear CRF 0.1292 ± 0.0080
LogitBoost 0.0967 ± 0.0049
TreeCRF 0.0699 ± 0.0040
GBCRF 0.0464 ± 0.0027
NeuroCRF (Do et al.[2]) 0.0444

Table 3: Predictive Q8 Accuracy on Protein Sec-
ondary Structure Dataset.

Method Accuracy
Linear CRF 0.614
LogitBoost 0.710
TreeCRF 0.718
GBCRF 0.722
SC-GSN (Zhou et al.[22]) 0.711
SC-GSN with “kick-start” ([22]) 0.721

set (also called development set), and 3.5K sentences as test set. Traditional approaches for NER
involve a lot of time-consuming feature engineering that requires domain expertise, and build a
Linear CRF over these features. Instead, in our experiment, we explore whether it is possible to
perform minimal feature engineering, and use a representation learned from data for prediction.

Specifically, we take the word embedding vectors from Mikolov et.al [14], which is learned from
Google news corpus, and train the models on this representation. In this setting , each word is
represented by a 300 dimensional vector that captures the “semantics” of the word. For each position
in the sentence, we take the embedding vector of the previous, current, and next word as input to node
potential function. We call this setting “word embedding only”. We further perform minimal feature
engineering to only generate the unigram features (word, postag and case pattern of current word).
We use these basic features to train a weak linear model, then use additive training to boost the base
model using the word embedding representation. We call this setting “word feature+embedding”.

The results of token-wise F1 evaluation for these models are shown in Table 1. From the result, we
see that GBCRF works better than Linear CRF in both settings. The gap between LogitBoost and
GBCRF indicates the importance of introducing edge potentials to this problem. We also find that
taking second order information into account helps us obtain a more accurate model.

Handwriting Character Recognition We also evaluate our method on a handwriting recognition
dataset2. The dataset consists of 6877 words and corresponds to about 52 thousand handwritten
characters [8, 18], each represented by a binary pixel vector of 128 dimensions, and belonging to
one of 26 alphabets. The dataset is randomly split into 10 folds for cross validation. We train the
models on 9 folds, test on 1 fold, and use the cross validation error to compare the methods.

The experiment results are shown in Table 2. Both our method and TreeCRF outperforms CRF
with linear potential functions, which indicates the effectiveness of introducing a non-linear poten-
tial function into the CRF on this dataset. The gap between LogitBoost and models that consider
dependencies indicate the importance of incorporating structure information of the outputs into the
model. Our results are also comparable to NeuroCRF [2], which uses a deep neural network as a
potential function whose weights are initialized by Restricted Boltzmann Machines.

Protein Secondary Structure Prediction We also conduct an experiment on protein secondary
structure prediction. The task is to predict 8-state secondary structure labels for a given amino-acid
sequence of a protein. We use the protein secondary structure data-set recently introduced by Zhou
et al.[22], which is the largest publicly available protein secondary structure prediction dataset. The
dataset contains 6128 proteins, with average sequence length around 208. We use exactly the same
features and data split step as [22]. The resulting data set contains 5600 sequences as training set,
256 sequences as validation set and 272 sequences as test set. Each position of the protein sequence
contains 46 dimension features (22 for PSSM, 22 for sequence and 2 for terminals) for prediction.

2http://www.seas.upenn.edu/ taskar/ocr/

7

9

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

0 50 100 150 200 250 300 350 400
10

3

10
4

10
5

10
6

Iteration

N
eg

at
iv

e−
lo

gl
ik

el
ih

oo
d

GBCRF
TreeCRF

(a) Evolution of Negative-loglikelihood

0 50 100 150 200 250 300 350 400
2

4

6

8

10

12

14

16

18

Iteration

 γ

Mixing Rate based Estimation
Brute Force Estimation
Average Length based Estimation

(b) Evolution of average γ estimation

Figure 1: Convergence of GBCRF on hand written character dataset. (a) Convergence comparison
between GBCRF and TreeCRF, with shrinkage rate of both algorithm set to 1. GBCRF converges
faster than TreeCRF; (b) Evolution of different γ estimations on the CRF model in each round based
on 500 sequences. Mixing rate based estimation has the same trend as brute force estimation, and
provides a tighter estimation than the length based estimation.

To train the models, we take the concatenation of feature vectors within 3 positions of the target
position as input to the node potential, resulting in 322 input features in each position.

The performance of the model is measured by the accuracy of predictions on the test set (denoted as
Q8). We train the models with parameters discovered using the validation set, and report the results
in Table 3. From the table, we find that using trees as potential functions leads to better performance
than restricting the model to using linear functions. Our results are comparable to the state-of-
art result in this dataset, produced by Zhou et al. [22] (SC-GSN-3layer). The result is generated
by a deep convolutional generative stochastic network model to perform secondary structure label
prediction, optimized with a “kick-start” initialization scheme.

Convergence of GBCRF We further analyze the convergence of GBCRF on the handwritten char-
acter dataset. We plot the convergence of negative log-likelihood function of GBCRF and TreeCRF
in Fig. 1(a). We find that GBCRF converges faster than TreeCRF, demonstrating that taking second
order information into account not only gives theoretical guarantee of convergence, but also helps
the method to converge faster in practice.

We also investigate the tightness of γ estimation. Figure 1(b) gives the average of different γ esti-
mations on models trained by GBCRF in each round. Mixing rate based estimation is the method
proposed in this paper. We perform Brute Force estimation to compute γ exactly using Eq. (9);
the complexity of this estimation is quadratic in the number of nodes and outputs in the CRF, and
hence cannot be used for most real-world sequences. Average Length based estimation is a naive
estimation using 2 times number of nodes in CRF, and provides an valid estimation of γ since it
upper bounds Eq. (13), as we show in Corollary 4.1. We restrict this evaluation to the shortest 500
sequences, due to the computation cost of brute force estimation. From the figure, we find that mix-
ing rate based estimation exhibits the same trend as the brute force estimation, and is at most 2.3
times higher than the brute force estimation. Further, the mixing rate based bound is consistently
lower than the fixed bound computed by the length based estimation. These results indicate that our
mixing rate based estimation captures the changes in the dependencies in the model during training
correctly. Hence our proposed mixing rate based approach is indeed useful to estimate γ efficiently.

7 Conclusion

In this paper, we present novel gradient boosting algorithm for CRF. It is non-trival to design an ef-
fective gradient boosting for CRF, mainly due to the dense Hessian matrices introduced by variable
interdependency. To solve the problem, we make use of a Markov Chain mixing rate to derive an
efficiently computable adaptive upper bound of the loss function, and construct a gradient boosting
algorithm that iteratively optimizes the bound. The resulting algorithm can be viewed as a gener-
alization of LogitBoost to CRF, thus introducing non-linearity in CRFs at only a log factor cost.
Experimental results demonstrate that our method is both efficient and effective. As future work, it
is interesting to explore whether we can generalize the result to loopy models.

8

10

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

References
[1] T. Dietterich, G. Hao, and A. Ashenfelter. Gradient tree boosting for training conditional random fields.

Journal of Machine Learning Research, 9:2113–2139, 2008.

[2] T. Do and T. Artieres. Neural conditional random fields. In Proceedings of the Thirteenth International
Conference on Artificial Intelligence and Statistics (AISTATS’10), 2010.

[3] J. Domke. Structured learning via logistic regression. In Advances in Neural Information Processing
Systems 26 (NIPS’13), pages 647–655. 2013.

[4] J. Friedman. Greedy function approximation: a gradient boosting machine. Annals of Statistics, pages
1189–1232, 2001.

[5] J. Friedman, T. Hastie, and R. Tibshirani. Additive logistic regression: a statistical view of boosting.
Annals of Statistics, 28:2000, 1998.

[6] T. Hazan and R. Urtasun. Efficient learning of structured predictors in general graphical models. arXiv,
1210.2346, 2012.

[7] X. He, R. S. Zemel, and M. A. Carreira-Perpiñán. Multiscale conditional random fields for image la-
beling. In Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, CVPR’04, pages 695–703, 2004.

[8] R. Kassel. A Comparison of Approaches to On-line Handwritten Character Recognition. PhD thesis,
Cambridge, MA, USA, 1995.

[9] J. Lafferty, A. McCallum, and F. Pereira. Conditional random fields: Probabilistic models for segmenting
and labeling sequence data. In Proceedings of the Eighteenth International Conference on Machine
Learning (ICML ’01), pages 282–289, 2001.

[10] D. Levin, Y. Peres, and E. Wilmer. Markov Chains and Mixing Times. American Mathematical Society,
2008.

[11] P. Li. Robust Logitboost and adaptive base class (ABC) Logitboost. In Proceedings of the Twenty-Sixth
Conference Annual Conference on Uncertainty in Artificial Intelligence (UAI’10), pages 302–311, 2010.

[12] L. Liao, T. Choudhury, D. Fox, and H. Kautz. Training conditional random fields using virtual evidence
boosting. In Proceedings of the 20th International Joint Conference on Artifical Intelligence, IJCAI’07,
2007.

[13] O. Meshi, D. Sontag, T. Jaakkola, and A. Globerson. Learning efficiently with approximate inference via
dual losses. In Proceedings of the 27th International Conference on Machine Learning (ICML’10), pages
783–790, 2010.

[14] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean. Distributed representations of words and
phrases and their compositionality. In Advances in Neural Information Processing Systems 26 (NIPS’13),
pages 3111–3119. 2013.

[15] A. Quattoni, M. Collins, and T. Darrell. Conditional random fields for object recognition. In Advances in
Neural Information Processing Systems 17 (NIPS’04), pages 1097–1104.

[16] F. Sha and F. Pereira. Shallow parsing with conditional random fields. In Proceedings of the 2003
Conference of the North American Chapter of the Association for Computational Linguistics on Human
Language Technology (NAACL ’03), pages 134–141, 2003.

[17] P. Sun, J. Zhou, and M. D. Reid. AOSO-LogitBoost: Adaptive one-vs-one Logitboost for multi-class
problem. In Proceedings of the 29th International Conference on Machine Learning (ICML’12), pages
1087–1094, 2012.

[18] B. Taskar, C. Guestrin, and D. Koller. Max-margin Markov networks. In Advances in Neural Information
Processing Systems 16 (NIPS’04), pages 25–32, 2004.

[19] E. F. Tjong Kim Sang and F. De Meulder. Introduction to the conll-2003 shared task: Language-
independent named entity recognition. In W. Daelemans and M. Osborne, editors, Proceedings of CoNLL-
2003, pages 142–147. Edmonton, Canada, 2003.

[20] A. Torralba, K. P. Murphy, and W. T. Freeman. Contextual models for object detection using boosted
random fields. In Advances in Neural Information Processing Systems 17 (NIPS’04), pages 1401–1408.

[21] J. Vinson, D. Decaprio, M. Pearson, S.Luoma, and J. Galagan. Comparative gene prediction using con-
ditional random fields. In Advances in Neural Information Processing Systems 19 (NIPS’06), pages
1441–1448. 2007.

[22] J. Zhou and O. Troyanskaya. Deep supervised and convolutional generative stochastic network for protein
secondary structure prediction. In Proceedings of the 30th International Conference on Machine Learning
(ICML’14), volume 32, pages 745–753, 2014.

9

11

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Supplementary Material

A Proof for Lemma 2.1

Proof. The following inequality holds for γ that satisfies the condition∑
i∈U

γiHiiδ
2
i ≥

∑
i∈U

∑
j∈U
|Hij |δ2i =

1

2

∑
i∈U

∑
j∈U
|Hij |(δ2i + δ2j) ≥

∑
i∈U

∑
j∈U
|Hij |δiδj

Applying it to Talyor expansion in Eq (4), we have

l(y, x, φ+ δ) = l(y, x, φ) +
∑
i∈U

δiGi(y, x) +
1

2

∑
i∈U

∑
j∈U
|Hij |δiδj + o(δ2)

≤ l(y, x, φ) +
∑
i∈U

δiGi(y, x) +
1

2

∑
i∈U

γiHiiδ
2
i + o(δ2).

B Proof for Lemma 3.3

Proof. Taking the fact that µi and µj are mutual for j 6= i, we have∑
j∈M
|P (µj = 1|µi = 1, x)− P (µj = 1|x)|

=|P (µi = 1|µi = 1, x)− P (µi = 1|x)|+
∑
j 6=i

|P (µj = 1|µi = 1, x)− P (µj = 1|x)|

=|1− P (µi = 1|x)|+
∑
j 6=i

|0− P (µj = 1|x)|

=(1− P (µi = 1|x)) +
∑
j 6=i

P (µj = 1|x)

=2(1− P (µi = 1|x))

C Proof for Lemma 3.1 and 3.2

Proof. The proof is exactly the same for both node and potential case, we present the proof for U
to be all node potentials here. Recall the definition of H: Hij = pij . Note that pi and pij are short
hand notations for pi , P (µi = 1|x), pij , P (µiµj = 1|x), we have

1

2pi

∑
j∈U
|Hij | =

∑
j

|pij/pi − pj |

=
∑
j∈U
|P (µj = 1|µi = 1, x)− P (µj = 1|x)|

=
∑
s,k′

|P (ys = k′|yt = k, x)− P (ys = k′|x)|

=
∑
s

‖P (ys|x, yt = k)− P (ys|x)‖tv

10

12

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

D Proof for Theorem 4.1 and 4.2

Proof. Proof for Theorem 4.1 Basically, we want to bound the total variation distance given by
Eq. (9) in Lemma 3.1,

2pi
∑
s

‖P (ys|x, ys = k)− P (ys|x)‖tv = 2pi
∑
s

d(s, t, k)

= 2pi[d(t, t, k) +
∑
q∈Qt

len(q)∑
s=2

d(q(s), t, k)]

≤ 2pi[d(t, t, k) +
∑
q∈Qt

len(q)∑
s=2

d(t, t, k)
s−1∏
i=1

αq(i),q(i+1)]

= 2pi(1− pi)[1 +
∑
q∈Qt

len(q)∑
s=2

s−1∏
i=1

αq(i),q(i+1)]

.

Here the inequality is given by Corollary 3.1 (d(q(s), t, k) ≤ d(t, t, k)
∏s−1

i=1 αq(i),q(i+1)), and last
equality is given by Lemma 3.3 (d(t, t, k) = 1− pi). Recall that Hii = pi(1− pi), we have proved
Theorem 4.1.

Proof. Proof for Theorem 4.2 In this proof, we will reduce the total variation distance between
joint distribution of edge states into total variation distance of marginal distribution over nodes, as
in Theorem 4.1. Assume in edge pairs are (yt, yt+1), (ys, ys+1) , and ys is closer to yt+1 (without
loss of generality), then

P (ys, ys+1|yt, yt+1, x) = P (ys+1|ys, x)P (ys|yt+1, x)

We can convert total variation by

‖P (ys, ys+1|yt, yt+1, x)− P (ys, ys+1|x)‖tv =
∑

ys,ys+1

|P (ys, ys+1|yt, yt+1, x)− P (ys, ys+1|x)|

=
∑

ys,ys+1

P (ys+1|ys, x)|P (ys|yt+1, x)− P (ys|x)|

=
∑
ys

|P (ys|yt+1, x)− P (ys|x)|

=‖P (ys|yt+1, x)− P (ys|x)‖tv
(17)

Now the case become same as node potential, we can make use of Corollary 3.1 bound the total
variation. Specifically, let q ∈ Qt,t+1 (i.e. q(1) ∈ {t, t+ 1}, q(i) /∈ {t, t+ 1} for i > 1)
len(q)∑
i=1

‖P (yq(i), yq(i+1)|yt = kt, yt+1 = kt+1, x)− P (yq(i), yq(i+1)|x)‖tv

=

len(q)∑
i=1

‖P (yq(i)|yq(1) = kq(1), x)− P (yq(i)|x)‖tv

≤‖P (yq(1)|yq(1) = kq(1), x)− P (yq(1)|x)‖tv +

len(q)∑
i=2

‖P (yq(1)|yq(1) = kq(1), x)− P (yq(1)|x)‖tv
i−1∏
j=1

αq(j),q(j+1)

=[1− P (yq(1) = kq(1)|x)](1 +

len(q)∑
i=2

i−1∏
j=1

αq(j),q(j+1))

≤[1− P (yt = kt, yt+1 = kt+1|x)](1 +

len(q)∑
i=2

i−1∏
j=1

αq(j),q(j+1)).

Here the first inequality is due to Corollary 3.1. Summing the results over all q ∈ Qt,t+1 will give
us Eq. (14).

11

13

