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Abstract

A probability sequence is an ordered set of probability forecasts for the same

event. Although single-period probabilistic forecasts and methods for evaluating

them have been extensively analyzed, we are not aware of any prior work on

evaluating probability sequences. This paper proposes an efficiency condition

for probability sequences and shows properties of efficient forecasting systems,

including memorylessness and increasing discrimination. These results suggest

tests for efficiency and remedial interventions for inefficient systems.

1 Background

A probability forecast is an estimate of the probability that a precisely defined

event will occur. A probability sequence is an ordered set of probability forecasts

for a single verifying event. An example currently appearing in the press is the

forecast for the 2014 US Senate election at fivethirtyeight.com,1 which in March

of 2014 forecast a Republican Senate majority in the 114th Congress with a

probability of 0.508. The most recent earlier forecast, issued in July of 2013,

was for a Republican majority with a probability of 0.504. The forecast will

1http://fivethirtyeight.com/features/fivethirtyeight-senate-forecast/, accessed May 2014
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date forecast issued
July 1 July 29 Sept. 2 Sept. 30 Oct. 31 Nov. 6 Outcome
0.425 0.550 0.475 0.198 0.081 0.047 0

Table 1: Probability forecasts issued in 2012 by the New York Times fivethir-
tyeight blog for the Republican party to win a Senate majority in the 113th US
Congress.

be updated more frequently as the election approaches, forming a probability

sequence for the event that the Republicans win the Senate majority in the

114th US Congress. A similar algorithm was used to forecast the 2012 US

national elections, and issued probability forecasts at least weekly starting in

July 2012 until the eve of the election.2 For example, six of the forecasts for a

Republican Senate majority in the 113th Congress are given in Table 1. Wang

and Campbell (2013) describe the fivethirtyeight forecasting system and other

statistical modeling for election outcomes including their own.

Another familiar example of a probability sequence is the National Hurricane

Center’s (NHC’s) probability forecast for winds exceeding a given threshold,

generated every six hours over the course of the storm (DeMaria et al. 2009).

The wind-speed probability product estimates the probability of one-minute

sustained winds exceeding each of three thresholds within six-hour (or longer)

periods for each half-degree cell in the region. For example, the NHC forecasts

for tropical-storm force winds (winds exceeding 34 knots) for 2012’s Hurricane

Sandy affecting New York City for two 24-hour periods are given in Table 2.

Two sequences are shown, for two distinct (though not independent) events.

In contrast to the outcome of an election, whose resolution is clearly tied

to a specific time (election day), probability forecasting for time-series variables

highlights the importance of the distinction between a rolling-horizon forecast

and a fixed-event forecast. Every 24-hour period has a maximum sustained

2http://fivethirtyeight.blogs.nytimes.com/fivethirtyeights-2012-forecast/, accessed May
2014.
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date forecast issued
event date Oct. 25 Oct. 26 Oct. 27 Oct. 28 Oct. 29 Oct. 30

Oct. 28 0.06 0.06 0.11 0.04 0
Oct. 29 0.14 0.31 0.42 0.80 0.92 1

Table 2: NHC’s probability sequence issued at 11 am EDT each day for winds
exceeding 34 knots in NYC between 8 am EDT on the event date indicated and
8 am the following day. Boldface indicates the outcome.

date forecast issued
Oct. 24 Oct. 25 Oct. 26 Oct. 27 Oct. 28 Oct. 29 Oct. 30
<0.01 <0.01 0.06 0.42 <0.01 <0.01 <0.01

Table 3: NHC’s probability forcasts issued at 11 am EDT for winds exceeding
34 knots in NYC between 8 am EDT two days later and 8 am three days later.
This is an example of a rolling-horizon forecast and is not a probability sequence
as defined in this paper.

wind in NYC. The event that the maximum sustained wind exceeds 34 knots

between 8 am on October 28 and 8 am on October 29 is a distinct event from

the event that the maximum sustained wind exceeds 34 knots between 8 am

on October 29 and 8 am on October 30. In the context of forecast sequences,

a sequence is a set of forecasts for an event whose definition does not change.

We are interested in the relationships among multiple forecasts for the fixed

event, not in relationships among, for example, the 48-hour lead forecasts for

maximum sustained winds on different dates. Table 3 shows the rolling-horizon

forecast for maximum sustained wind speeds exceeding 34 knots at NYC during

the period approximately 45 to 69 hours after the 11 am issuance of the forecast.

Note that the forecasts issued October 26 and 27 correspond to the fixed event

forecast for the event dates October 28 and 29, respectively, shown in Table 2.

A forecasting system is a process for generating a probability forecast for

many similar events, such as many elections or winds experienced in many

storms, or many locations or verifying time periods. The forecasting process

may be subjective, statistical, dynamical, or some combination of the above.
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An example of subjective forecasts are the individual probabilistic forecasts for

ranges of change in economic variables such as national gross domestic product

and price levels collected in periodic Survey of Professional Forecasters, in the

US by the Federal Reserve Bank, and in Europe by the European Central Bank.

Another example of subjective forecasts are individual probabilistic forecasts

for various world events elicited as part of the Intelligence Advanced Research

Projects Activity (IARPA)’s Advanced Contingent Estimation Program,3 one

instance of which is described in Mellers et al. (2014).

Purely statistical forecasting systems, such as the fivethirtyeight election

forecasting system, use historical and event-specific data to estimate the prob-

ability of events. Dynamical forecasting systems, such as numerical weather

prediction models, may be used in simulation mode, as in ensemble-based fore-

casting systems, to produce probability forecasts (Sivillo, Ahlquist, and Toth

1997). Prediction market prices may also be interpreted as probabilistic fore-

casts reflecting a consensus of market participants, although they are not neces-

sarily calibrated to the market participants’ mean subjective probability (Man-

ski 2006).

Many forecasting systems are combinations of subjective and statistical fore-

casts — for example averaging or otherwise post-processing subjective forecasts

from many individuals, as in Baron, Mellers, Tetlock, Stone, and Ungar (2014),

to produce a distinct forecasting system. The system consists of the method for

eliciting individual subjective forecasts together with the aggregation process.

Most meteorological ensemble-forecasting systems also include post-processing

to produce a probabilistic forecast, for example adjusting for underdispersion in

the ensemble.

We consider the evaluation of a forecasting system, theoretically capable of

issuing forecasts for an infinite set of events. For a binary event, a single-period

3http://www.iarpa.gov/index.php/research-programs/ace, accessed June 2014.
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probabilistic forecasting system may be represented as a joint probability dis-

tribution fP,X(p, x) of two random variables, a forecast P and an associated

outcome X, with realizations p ∈ [0, 1], and x ∈ {0, 1}. There is a large liter-

ature addressing the question of how to evaluate a single-period probabilistic

forecasting system, or a sample from such a system. One criterion that is widely,

perhaps universally, advocated is reliability. A forecasting system is perfectly

reliable if P (X = x|p) = p ∀p, x. The degree of reliability can be measured in

a number of different ways, and usually it is not measured separately from the

second primary criterion, discrimination.

Discrimination, also called sharpness or resolution, is the ability of the fore-

casting system to differentiate among events by assigning high and low prob-

abilities, relative to the base rate, E[X]. Discrimination is only valuable if

paired with a high degree of reliability. At the extreme, a forecasting system

that randomly issues forecasts of zero and one has high discrimination but the

forecasts would be uncorrelated with the outcomes. The reverse is also true: a

forecasting system that always forecasts p = E[X] would be perfectly reliable

but uninformative to anyone who knew the base rate.

There are many ways to measure imperfect reliability and discrimination.

Many scoring functions, often called scoring rules, have been proposed for eval-

uating the overall performance of a forecasting system (or a sample). They

combine the measure of reliability and discrimination into a scalar value, and

take the form s(p, x). When x has a finite number of values, the function can

be separated, and for binary X, s(p, x) = s1(p) + s0(p), where s1(p) = s(p, 1)

and s0(p) = s(p, 0). A scoring function is positively (negatively) oriented if

higher (lower) scores reflect better performance, and therefore s′1(p) > (<)0

and s′0(p) < (>)0.

A large literature discusses the advantages and disadvantages of various scor-
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ing functions. Some of this work addresses the utility of the forecasting system

to a user in a decision context (Murphy and Ehrendorfer 1987; Granger and

Pesaran 2000; Jose, Nau, and Winkler 2008). Other work addresses desirable

properties of a forecasting system based on axiomatic appeals (Selten 1998;

Bröcker and Smith 2007; Winkler 1994; Jose, Nau, and Winkler 2009; Gneiting

and Raftery 2007).

The best choice of a scoring function depends on the purpose of the score

and the forecast. If the scoring function is used to evaluate human forecasters

(Johnstone, Jose, and Winkler 2011) or alternative models whose designers are

rewarded according to the function (Gneiting and Raftery 2007), and therefore

creates an incentive scheme, then an important criterion is that the scoring

rule is (strictly) proper meaning that the score is (uniquely) maximized by a

probabilistic forecast equal to the forecaster’s subjective probability, r, of the

event. Mathematically, s(p, x) is strictly proper if it satisfies(1). Even properness

is not a universally accepted criterion for selecting a scoring function. Bickel

(2007) points out that if the forecaster’s utility function is not linear in the

scoring function, a proper scoring function may not create the desired incentives.

The meteorology community commonly uses improper skill scores in evaluating

its forecasts, to capture the improvement in forecast relative to a baseline, as in

?) which uses the Brier skill score to evaluate the NHC’s wind-speed probability

forecasting system. Research in evaluating single-period probability forecasts is

active in the meteorology, decision science, and economics forecasting literature.

definition of proper s( ) : Er [s(r, x)] > Er [s(p, x)] ∀p 6= r, p, r ∈ [0, 1] (1)

A few researchers have empirically compared the performance of the same

forecasting system at different leads. For example, Mellers et al. (2014) allowed

subjective forecasters to revise their probability forecasts over time before an
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event was resolved, and found that subjective forecasts elicited in their experi-

ments improve on average between the first and last week that the forecasters

were able to forecast. Clements (2004) compared U.K. Monetary Policy Com-

mittee’s forecasts of the probability of inflation exceeding 2.5% in the current

quarter, the next quarter, and one year ahead, and found improvements in Brier

score and log probability score as the event drew closer. We have not found any

empirical examination of the relationships among the forecasts in a sequence,

such as a search for inter-period correlation or trends, or any prescriptive anal-

ysis of probability sequences.

Nor are we aware of any research addressing appropriate scoring functions

for probability sequences. It is interesting to note that Selten (1998) clearly

thought of each single-period forecast as part of a sequence, but nevertheless

limited his definition of a scoring rule to “measur[ing] the predictive success of

a period for every period separately” (p. 44).

In the next section, we introduce notation and definitions for sequences.

In Section 3, we propose an efficiency criterion for probability sequences, and

use it to derive properties of an efficient probabilistic forecasting system, dis-

cussing some of their implications. Finally, we conclude with a discussion of

the potential use of these results for diagnosing and remediating inefficiency in

sequence-forecasting systems, both subjective and model-based.

2 Sequences

For a probability sequence, a forecasting system is a joint probability distribu-

tion over a finite ordered sequence of T probabilistic forecasts, indexed by t.

Forecasts pt ∈ [0, 1] are realizations of the corresponding random variables Pt.

For convenience, we will also write the vector Pt = (PT , PT−1, . . . , Pt) and its

realization pt.

7
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Treating larger t as indicating a greater chronological distance from the out-

come, t declines over a sequence, t = T, . . . , 1 with forecast T being the first

and t = 0 corresponding to the actual outcome of the event being forecast. The

ordering of the sequence can also be interpreted as conditioning on successive

subsets of the sample space, with no necessary relationship with timing. How-

ever, we rely on the assumption that any information available to the generation

of forecast τ is also available for t < τ .

We disallow perfect correlation between any pair Pt and Pτ , t 6= τ because

perfect correlation effectively reduces the system to at most a T − 1-period

forecasting system. This reasoning will be discussed in more detail in Section

3.1.

The forecasting system may be denoted fPT ,PT−1,...,P1,X( ) = fP1,X( ), and

may be used to describe functions of x and pt, such as P (X = 1|pt) and

E [s (Pt, X)].

3 An efficiency condition for probability sequences

Criteria that apply to single-period probability forecasts, such as reliability,

should also apply to probability sequences. However, sequences should satisfy

additional criteria. For example, forecasts should improve over time with respect

to a single-period scoring function, as information available to support forecasts

in early periods is also available in later periods. An important question is how

to determine whether they are improving enough.

As a basis for developing specific performance criteria for sequences, we use

a minimal condition for a good forecasting system: it cannot be bootstrapped.

For a bootstrap-proof sequence, in each period t, it is impossible to write a

function with the earlier forecasts in the sequence itself as the only arguments

that will score better in expectation than the last forecast in the sequence.
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This is analogous to the criterion of weak efficiency for fixed event forecasts

as defined by Nordhaus (1987) in the forecasting of non-probabilistic economic

time series. Specifically, a forecast is weakly efficient if the forecast minimizes

the expected error conditional on forecasts issued previously.

We adopt the term efficient to describe a bootstrap-proof system, and in

the context of probability sequences, we operationalize this condition with the

following axiom:

efficiency axiom

Given a strictly-proper positively-oriented single-period scoring function s(p, x),

a sequence forecasting system is efficient if ∀t, pt, @g (pt) s.t.

E [s (g (pt) , X) |pt)] > E [s (pt, X) |pt)] (2)

The efficiency axiom says that, given complete knowledge of the forecasting

system, its performance cannot be improved by adjusting its forecasts based

only on the earlier forecasts in the sequence itself. This is true not just in

expectation over all possible values of Pt, but conditional on any particular

sequence pt.

Note that if s(p, x) = −(p− x)2, a positively-oriented single-period function

equal to the negative Brier score (Brier 1950), then the our efficiency condition

is exactly equivalent to Nordhaus (1987)’s condition of weak efficiency for the

forecast of a binary variable. Nordhaus (1987)’s standard of efficiency is that

the forecast minimizes the squared error, whereas the efficiency condition above

is defined with respect to any strictly proper scoring function.

Next, we derive properties of efficient sequence-forecasting systems.

9
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3.1 Reliable and memoryless

We call a sequence-forecasting system is each-period reliable if it satisfies (3)

and memoryless if it satisfies (4).

each-period reliability: P (X = 1|pt) = pt ∀t,pt (3)

memorylessness: P (X = 1|pt) = P (X = 1|pt) ∀t,pt. (4)

Proposition 1 An efficient sequence-forecasting system is each-period reliable

and memoryless.

Proof By definition of a strictly proper scoring function, if (3) is violated, then

g(pt) = P (X = 1|pt) satisfies (2) and the system is inefficient.

Since (3) has been shown for an efficient system, the conditioning on pt+1

may be suppressed as in (4), and an efficient system is memoryless.

Each-period reliability is appealing as a performance criterion for sequences

because reliability is a standard of optimality for single-period probability fore-

casts. An unreliable forecasting system is called poorly calibrated and if the

properties of the system are known, it can be calibrated in post-processing: a

new forecast p∗ = g(p) = P (X = 1|p) can be issued that is reliable.

Memorylessness is perhaps less intuitive. An efficient system is fully up-

dated at each period in that prior forecasts contain no additional information

independent the most recent forecast pt. If this were not true, the forecasting

system could be bootstrapped.

Some readers may find the implication of (4) that P (X = 1|pT = 0.9) =

P (X = 1|p1 = 0.9) counterintuitive because a forecast of p = 0.9 (if far from the

base rate) is highly informative, and if T > 1, more information is anticipated

to become available between time T and time 1. We would expect, however,

that an extreme forecast (far from the base rate) is much less common at time

10
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T than at time 1. If it occurs, it is realiable, but it is unlikely to occur, due to

lower discrimination of early forecasts, as discussed further in Section 3.4.

We specified in the definition of a forecasting system that no two periods’

forecasts may be perfectly correlated. Perfect correlation between any Pt and

Pτ for t 6= τ , together with a reliability constraint (3) on each period, implies

that pt = pτ always, and therefore the forecasts are identical, and the system is

at most a length-T sequence of distinct probability forecasts.

3.2 Inter-period reliable

A further implication of each-period reliability is inter-period reliability. We

call a forecasting system inter-period reliable if it satisfies (5).

inter-period reliability: E [Pt|pτ ] = pτ ∀t < τ. (5)

Proposition 2 An efficient forecasting system is inter-period reliable.

Proof

pτ
(3),(4)

= P (X = 1|pτ ) (6a)

=

∫ 1

0

P (X = 1|pτ , pt) fPt|Pτ , (pt|pτ ) dpt (6b)

(4)
=

∫ 1

0

ptfPt|Pτ (pt|pτ ) dpt = E [Pt|pτ ] . (6c)

where (6b) uses the law of total probability.

Each-period reliability is also an intuitive property of an efficient system.

If a system is not inter-period reliable, then a forecast g(pτ ) = E [Pt|pτ ] will

satisfy (2).

Both inter-period reliability and each-period reliability holds for a forecasting

system that is efficient with respect to any strictly proper scoring function. They
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do not depend on the scoring function.

3.3 Unpredictable revisions

A direct consequence of inter-period reliability is unpredictability in revisions.

Equation (7) gives specific statements of unpredictability in period-t revision

Pt−1 − pt.

∀pt, t > 1 :

zero expected revisions: E[Pt−1 − pt|pt] =0 (7a)

zero expected autocorrelation: E [(Pt−1 − pt) (pt − pt+1) |pt] = 0, t < T (7b)

Proposition 3 For an efficient sequence-forecasting system, expected revisions

and autocorrelation in revisions are always zero.

Although these properties follow directly from inter-period reliability, some

readers may find them counter-intuitive, so we offer a formal proof.

Proof

E[Pt−1 − pt|pt]
(4)
= E[Pt−1|pt]− pt

(5)
= 0⇒ (7a)

E [(Pt−1 − pt) (pt − pt+1) |pt]
(4)
= E [(Pt−1 − pt) |pt] (pt − pt+1)

(7a)
= 0⇒ (7b)

The properties defined in (7) also imply the weaker but more familiar prop-

erties:

E[Pt−1 − Pt] = 0 and (8a)

E [(Pt−1 − Pt) (Pt − Pt+1)] = 0 (8b)
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Neither trends (positive autocorrelation) nor noise (negative autocorrelation)

is expected in forecast from an efficient system. In an efficient system, there is

no predictability in revisions, conditional on prior forecasts. If there were, it

could be exploited to improve the forecast.

This result may be counterintuitive to some readers. (Nordhaus 1987) offers

an intuition for this result:

efficient forecasts appear jagged because they incorporate all news

quickly. Inefficient forecasts appear smoother and more consistent,

for they let the news seep in slowly. (p. 669)

The fact that these properties are not universally intuitive indicates that

subjective probabilistic forecasts may violate this criterion and therefore be

susceptible to improvement as discussed further in Section 4.

3.4 Strictly Improving

A forecasting system is strictly improving with respect to a positively-oriented

scoring function s( ) if it satisfies (9).

strict improvement: t < τ ⇒ E [s(Pt, X)|pτ ] > E [s(pτ , X)] , ∀pτ , τ > 1 (9)

Proposition 4 An efficient sequence-forecasting system is strictly improving

with respect to any strictly proper scoring function.

Proof The proof of depends on the strict convexity of E [s(p,X)|p] for proper

s( ) and reliable P , which is shown in Appendix 1.1. For an efficient forecasting

system, Pτ is reliable, and therefore for proper s( ), by Jensen’s inequality,

E [s (Pt, X) |pτ ] > E [s (E [Pt|pτ ] , X)]
(5)
= E [s (pτ , X)]⇒ (9)
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Note that (9) is a stricter condition than t < τ ⇒ E [s(Pt, X)] > E [s(Pτ , X)],

which is also true for an efficient forecasting system. By (9), the expected score

for later periods improves conditional on every value of pτ (and therefore con-

ditional on every pτ ).

The strictly-improving property of efficient forecast systems means that a

system that is efficient with respect to any strictly proper scoring function is

strictly improving with respect to all strictly proper scoring functions.

Since each period’s forecasts are perfectly reliable, the improvement must

come from better discrimination. Different scoring functions measure discrimi-

nation differently. Conditional on reliability, the expected negative Brier score

(which is positively oriented) is (10a) while the expected log score is (10b). As

discussed in Section 4.2, the Brier score discrimination component is equal to

the sample standard deviation, a common measure of dispersion. For an efficient

forecast all of these measures of dispersion will be increasing in expectation over

the forecast sequence. Although large dispersion is usually associated with a less

informative forecast, in this context, dispersion increases with the probability

of extreme (far from the base rate) forecasts that are also reliable, and therefore

informative.

Brier score discrimination: −
∫ 1

0

f(p)p(1− p)dp (10a)

log score discrimination:

∫ 1

0

f(p) (p ln(p) + (1− p)ln(1− p)) dp (10b)
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P1

p1 = 0.8 p1 = 0.2

P2
p2 = 0.6 0.160 / 0.040 0.020 / 0.080
p2 = 0.4 0.187 / 0.047 0.093 / 0.373

(a) Forecasting system 1.

P1

p1 = 0.8 p1 = 0.2

P2
p2 = 0.6 0.120 / 0.000 0.060 / 0.120
p2 = 0.4 0.227 / 0.087 0.053 / 0.333

(b) Forecasting system 2.

Table 4: Two forecasting systems. The values shown are the joint probabilities
P (P2 = p2, P1 = p1, X = 1) /P (P2 = p2, P1 = p1, X = 0). Recall that forecast
P1 is issued after forecast P2.

4 Discussion

4.1 Diagnosing inefficiency: an example

Each of the properties of efficient sequence-forecasting systems derived in Sec-

tion 3 is testable and may be used to diagnose inefficiency. A simple example

illustrates this for a forecasting system whose complete joint probability distri-

bution is known. Table 4 shows two two-period forecasting systems for a binary

event, each with a base rate, E[X] = 0.460. Table 4 gives the distribution of

the forecasts and outcome.

Both systems are each-period reliable, i.e. P (X = 1|pt) = pt for each value

of t and of pt. For example, for System 1, shown in Table 4a,

P (X = 1|p2 = 0.6) =
0.160 + 0.020

0.160 + 0.040 + 0.020 + 0.080
= 0.6.

Both systems are also improving, with negative Brier scores −0.240 for P2

and −0.160 for P1 (the negative Brier score is positively oriented), so the later

forecast, P1 is better than the earlier forecast as measured by the Brier score.
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Both systems are improving with respect to any single-period score. Since the

two systems have identical marginal probabilities P (Pt = pt) and conditional

probabilities P (X = x|Pt = pt) ∀t, pt, x, and therefore they have identical single-

period expected scores E [s(Pt, X)] regardless of the choice of s( ).

However, System 1 is efficient while System 2 is not. This can be diagnosed

by testing for inter-period reliability. For System 1, E[P1|p2 = 0.6] = 0.6

and E[P1|p2 = 0.4] = 0.4, while for System 2, E[P1|p2 = 0.6] = 0.440 and

E[P1|p2 = 0.4] = 0.469. This means System 2 is bootstrappable as illustrated

in Section 4.3.

4.2 Diagnosing inefficiency based on a sample

The properties of an efficient forecasting system suggest statistical tests for ef-

ficiency in the more common situation in which a sample from the forecasting

system is available, but not the complete distribution. One of the challenges

in evaluating single-period probabilistic forecasts is the data requirements, a

challenge that is compounded for probability sequences. A sample from a

sequence-forecasting system consists of N observations where the nth obser-

vation is (pt,n, xn), consisting of T forecasts pt,n plus the outcome xn, for a

total of N × (T + 1) observed values.

However, a sample from a sequence forecasting system may be tested for

violations of the efficiency properties based on one or two periods’ forecasts.

The inter-period reliability property and its corollaries, zero expected revisions

and zero autocorrelation, are especially interesting because they depend only

on the inter-period covariance structure of the forecasts and do not depend

on the relationship with the outcome X. Moreover, a forecasting system in

which realizations of the outcome are costly, delayed, or otherwise difficult to

assess, may be evaluated with respect to violations of these properties without
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data about the actual outcomes. In the context of NHC wind-speed probability

forecasts, for example, it is sometimes impossible to be sure whether winds

exceeded a given threshold because the maximum sustained wind might not

have occurred at a functional measuring station.

For example, a null hypothesis of zero autocorrelation in revisions may be

tested (for a given t) simply by regressing the t-period revisions against the

t − 1-period revisions, and using a Student’s4 t-test for a linear relationship,

interpreting the p-value as the probability of rejecting the null hypothesis (zero

autocorrelation) if it holds.

In the remainder of this section, we propose statistics that may be used as

the basis of tests of efficiency. Common approaches for evaluating single-period

probability forecasts class forecasts into discrete bins. Following this convention,

we classify pt,n into discrete bins j = 1, . . . , J , defined identically ∀t (although

it is not necessary for them to be identical). We define b(p) as the index of the

bin that probability p falls into, b(p) ∈ {1, . . . , J}, and

qt(j) =
∑

n:b(pt,n)=j

xn,

equivalently the relative frequency of the event X = 1 conditional on the forecast

pt falling in bin j. qt(j) is also equal to the within-sample reliability-calibrated

forecast for bin j.

Each-period reliability (3) may be tested for each t using the same methods

used for testing single-period probabilistic forecasts. Statistical tests for the null

hypothesis of forecast reliability (which could be applied for a given t to test for

each-period reliability) have been suggested. Bröcker (2012) suggests a family

of confidence intervals on q(j) over J bins as a test for single-period reliability.

A family test for each-period reliability over many periods, based on the null of

4We refer to the Student’s t-test to avoid confusion with period-t.
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each-period reliability could be developed.

The statistic in (11) is a single-period measure of inter-period unreliability.

Under the null hypothesis of efficiency, its expected value is zero for each t,

1 < t ≤ T .

inter-period reliability statistic:

1

N

J∑
j=1

 ∑
n:b(pt,n)=j

(pt,n − qt−1 (b(pt−1,n)))
2

 (11)

where qt−1 (b(pt−1,n)) is the reliability-calibrated t− 1 forecast

Testing whether a forecast is improving, even for a single pair of periods t

and t− 1, is not entirely straightforward. However, as discussed in Section 3.4,

if a forecasting system is reliable, improvement must come from discrimination.

Moreover, given enough data, each-period reliability may be readily enforced

by post-processing. Therefore, we might prefer a statistic that separates the

measure of discrimination from the measure of reliability. Conveniently, per

Proposition 4, an efficient forecast is improving with respect to any strictly

proper scoring function. This suggests that a test for the difference in the

discrimination component of any scoring function would be a useful test for the

strictly improving property (sufficiency of later forecasts).

The Brier score may be decomposed into a reliability, discrimination, and

variability components, as in Wilks (2011) (p. 333). The sample estimate

of the discrimination components is shown in (12). Large values of (12) lead

to better Brier scores. Using qt(j) instead of pt,n means that (12) estimates

the standard deviation of the reliability-calibrated forecast. For an efficient

forecasting sequence, therefore, (12) should be decreasing in t. A null hypothesis

that (12) is not improving (the system is inefficient) would assume that (12)
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evaluated at τ and at t < τ are equal.

discrimination statistic:
1

N

J∑
j=1

mt(j) (qt(j)− x̄)
2

(12)

where mt(j) =
∑

n:b(pt,n)=j

1 and x̄ =
N∑
n=1

xn

At the limit as J increases, (12) is equal to the sample standard deviation

of the reliability-calibrated forecast. For a reliable forecast, the sequence is

improving in discrimination if its standard deviation is increasing, and statistical

tests for differences of standard deviation may be applied for each t.

The statistics in (12) and (11) can be used as the basis for designing hy-

pothesis tests for each t. For multiple single-period tests, an appropriate test of

the family of inferences could be designed. Novel statistical tests for efficiency

of sequence-forecasting systems may be a productive area for future research.

The diagnosis of inefficiency is essentially a search for unexploited structure

in the forecasts. Any predictability that is not captured in the forecast can be

used in post-processing, or point to a way to improve the forecasting system.

Patterns such as conditional bias that might not show up in an average over j,

may also be of interest, such as trends that are a function of pt.

4.3 Remediation

Once diagnosed, inefficiency can be remedied in post-processing. For subjec-

tive forecasts, post-processing, such as debiasing to correct for over-precision,

is already a common intervention for subjective single-period probability fore-

casts. Similarly, in ensemble-based meteorological forecasting, a correction for

under-dispersion (insufficient spread) in the ensemble is common. In the con-

text of probability sequences, empirical or parametric functions of the form
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P1

p1 = 0.8 p1 = 0.2

P2
p2 = 0.6 1.000 0.333
p2 = 0.4 0.723 0.138

Table 5: Conditional probabilities for System 2 using both periods’ forecasts.
The values shown are P (X = 1|p2, p1).

p∗t (pt) = P (X = 1|pt) estimated from the available sample from the forecasting

system may be used to generate better forecasts, such that E [s(p∗(pt), X)] >

E [s(pt, X)].

post-processing function: p∗t (pt) = P (X = 1|pt) (13)

For example, System 2 in Table 4b can be improved in period t = 1 by post-

processing using the information from P1 and P2. Table 5 shows the conditional

probabilities P (X = 1|p1, p2) for System 2. A modified System 2 using the

probabilities in Table 5 in place of p1, i.e. p∗1(p1) = P (X = 1|p2, p1), has a

period-1 negative Brier score of −0.149, which is better System 2’s period-1

negative Brier score of −0.160.

Perhaps more interesting, a diagnosis of inefficiency implies that the fore-

casting system does not fully incorporate the available information and is sus-

ceptible to improvement and therefore may benefit from a re-examination of the

forecasting process, motivated and informed by the results of efficiency tests.

For subjective forecasts, diagnostic test results could be provided to the

forecasters as feedback to help them self-calibrate and motivate a search for

more valid predictors or better synthesis of information.

For dynamical model-based forecasts, diagnostic tests showing inefficiency

suggest a search for improving the underlying dynamical model or the addition

of statistical post-processing to exploit any detectable structure in the system.

For statistical models, the implications are the same—for example, it may sug-
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gest the possibility of a prior distribution that the model does not capture, or

predictors used in early forecasts that provide independent information that

could be exploited in later forecasts.

4.4 Implications for scoring functions

Scoring functions that are separable functions of single-period scores do not

diagnose violations of efficiency. For example, a separable scoring function would

not detect inter-period structure such as regression to the base rate or other

trends that could be removed in post-processing. In fact, the two systems shown

in Table 4 have identical marginal distributions P (Pt = pt), ∀t, pt, therefore

would have identical single-period scores regardless of the scoring function. Tests

that depend on the correlation structure are necessary to diagnose efficiency.

This suggests that sequence-scoring functions of a form that depend on the

inter-period structure of the system, which excludes functions of the form (14),

may be desirable. The question of which functions are appropriate in a given

situation is open.

T∑
t=1

wt
1

N

N∑
n=1

s(pt,n, xn) (14)

After more than 60 years of research on probabilistic forecasting, there is no

consensus on the best single-period scoring function, and ongoing research ex-

plores the relative merits of various scoring functions in particular contexts. For

example, an interesting difference arises from the consideration of probability

forecasts used to make investment decisions in competitive markets, where the

purchase price of an asset depends on the market (or a competitor’s) probability

forecast, and small differences in extreme (small or large) probabilities are very

important. Hence Jose, Nau, and Winkler (2008) do not adopt Selten (1998)’s

criterion that a scoring rule should not be hypersensitive (defined p. 50) to
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small differences. The meteorology community commonly uses skill scores that

are not proper in evaluating its forecasts (Gneiting and Raftery 2007). Skill

scores adjust for a measure of difficulty in making the forecast, often a reference

or baseline forecasting system. In that context, the benefits of this adjustment

outweigh any incentive for untruthful forecasting (or biased models). We antic-

ipate that a similar breadth of multi-period scoring functions would be useful

and appropriate for different forecasting and decision contexts.

The decision context in which the forecasting system might be used could

determine the relative importance of its performance over t, for example, in-

forming the selection of a scoring function. Moreover, it is very possible that a

decision maker could benefit more from using a particular inefficient forecasting

system, instead of an alternative efficient forecasting system. However, the inef-

ficient forecasting system is clearly improvable, and therefore although it may be

superior in user value to other efficient forecasting systems, it should not satisfy

a user (or, for that matter, a forecaster) because its inefficiency demonstrates

that it is possible to create a system that will perform even better.

5 Conclusion

Probability sequences are becoming more common and relevant to decision mak-

ers in many domains, including finance and intelligence. To our knowledge,

this is the first formal examination of the inter-period behavior of probabil-

ity sequences. We showed several properties of an efficient sequence forecast-

ing system, i.e. that it is reliable for each period, inter-period reliable and

therefore memoryless, always has zero expected revision, and strictly improv-

ing with respect to any strictly proper scoring function. Some of these prop-

erties are intuitive, but others—in particular inter-period reliability and zero

autocorrelations—are not. Analogous conditions of efficiency are commonly vi-
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olated in forecasting of non-probability variables and therefore we should expect

to find probability sequences that violate these properties and are susceptible

to improvement.
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1 Appendix

1.1 Convexity of expected score

For differentiable s( ), properness (1) implies that d
dpEr [s(p,X)] = 0 when eval-

uated at p = r, and therefore, for propert s(/, ),

s′1(p)

s′0(p)
= 1− 1

p
⇒ s′1(p) = s′0(p)− s′0(p)

p
. (15)

For reliable P ,

E [s(p,X)|p] = Ep [s(p,X)] = ps1(p) + (1− p)s0(p)

d

dp
E [s(p,X)|p] = ps′1(p) + s1(p) + (1− p)s′0(p)− s0(p)

(15)
= p

(
s′0(p)− s′0(p)

p

)
+ s1(p) + (1− p)s′0(p)− s0(p)

= s1(p)− s0(p)

For positively-oriented s( ), recall that s′1(p) > 0 and s′0(p) < 0, so

d2

dp2
E [s(p,X)|p] = s′1(p)− s′0(p) > 0

and therefore, for positively-oriented, proper s() and reliable P , E [s(p,X)|p]

is convex in p.
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