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Fig. II. Auto-chemotaxis of four cubic BZ gels, which 
autonomously self-aggregate in response to self-generated 
distribution of u in solution. (A) Initial placement of gels. 
(B) Late-time behavior of system. (C) Distribution of u in 
solution. Red corresponds to concentration of u [8].

RESULTS FROM PRIOR AFOSR FUNDING: JUNE 2011-JUNE 2014 
USING THEORY AND SIMULATION TO DESIGN ACTIVE MATERIALS WITH SENSORY AND 

ADAPTIVE CAPABILITIES 

In the proposed research, we will model hybrid materials that encompass both soft and hard 
components in order to design composites that can adapt to changes in the environment in controllable, 
“programmable” ways. In our prior studies [1-13], we focused primarily on soft materials—gels—that are 
highly mutable. The findings from these studies (see below) provide a strong foundation for the new 
effort in creating mutable hybrid materials. 

The specific aim of our previous studies was to design soft, active materials that: 1) function in an 
autonomous, self-sustained way, 2) perform multiple, complex functions, and 3) alter their functionality 
in a “programmable” manner in response to external stimuli. In devising these systems, we took 
advantage of the unique properties offered by polymer gels 
undergoing the Belousov-Zhabotinsky (BZ) reaction [1-10]. The BZ 
gels are unique because they can transduce chemical energy into 
mechanical oscillations in the absence of external stimuli. 
Consequently, these polymer networks can perform autonomous 
mechanical work. The ruthenium catalyst, which drives the BZ 
reaction, is typically uniformly distributed within the gel so the 
material is chemically and physically homogeneous. A level of 
structural heterogeneity and hierarchy is, however, generally necessary 
for materials to display higher order or complex functionality. For this 
reason, we focused on designing heterogeneous or chemically 
patterned BZ gels, where the catalyst is confined to distinct patches 
(“BZ patches”) within the polymer network (see Fig. I).  

Such heterogeneous gels provide a route for controlling the dynamical behavior and thus, the 
properties of the system. Furthermore, a number of functions—sensing, communication, shape changing, 
and actuation—can be integrated within one sample and, thus, the material can be harnessed to perform 
complex tasks. In order to exploit the unique properties of these active materials, we established a 
fundamental understanding of the dynamics of heterogeneous BZ gels and determined the optimum 
heterogeneous structures that will yield the desired functionality [9].   

We also considered another form of 
heterogeneity within this system—instead of 
a single gel sample, we investigated the 
behavior of multiple gel pieces that were 
separated by fluid [1,5,8]. Hence, we took 
into account not only the chemical reactions 
in the gel matrix, but also within the 
surrounding solution. Through these studies, 
we isolated scenarios where the gel pieces 
could effectively communicate with each 
other by emitting, sensing, and responding to 
the chemicals in the fluid. Namely, through 
the course of the reaction, the BZ gels generated the activator for the reaction, referred to as u , which 
then diffused into the surrounding fluid. Neighboring gel pieces could sense the presence of u  and 
respond by undergoing autonomous motion toward the highest concentration of u . In effect, the system 
exhibited autochemotaxis—moving in response to self-generated chemical gradients (see Fig. II).  

In total, this research yielded 13 journal publications [1-13] and 36 invited talks. Below, we 
highlight some of the findings that emerged from the previous funding period that illustrate the 
remarkable properties of these BZ gel systems. Notably, we enjoyed successful collaborations with three 

Fig. I. Propagation of 
traveling waves within 
heterogeneous self-oscillating 
gels can be controlled by 
tailoring the size and catalyst 
content in the patches [9].



experimental groups: Prof. Ryo Yoshida at the University of Tokyo, Dr. Rich Vaia at Wright-Patterson 
Air Force Base, and Prof. Ralph Nuzzo at the University of Illinois. Through interactions with these 
experimentalists, we could validate the predictions that emerged from our modeling studies and help 
experimental studies move in new, fruitful directions.  

A. Controlling the Dynamic Behavior of Heterogeneous Self-oscillating Gels  

We examined films of heterogeneous BZ gels where the catalyst is localized in distinct sub-
millimeter sized patches, and these BZ patches are surrounded by a non-reactive polymer network [9]. To 
complement our computational studies, we collaborated with Ryo Yoshida, who fabricated the first 
heterogeneous BZ gels (see Fig. I), attaining control over the size of the disk-shaped patches, the 
ruthenium concentration in each of the disks, and arrangement of the disks in the non-reactive matrix. We 
first considered two distinct disks of the BZ gel that differed in size or the concentration of the ruthenium 
catalyst, [Ru]. By varying the separation between the disks, we isolated conditions necessary for the 
synchronization between the chemo-mechanical oscillations within these BZ patches. We then considered 
an arrangement of four disks and demonstrated that the two-dimensional propagation of the traveling 
wave within the film could be controlled by tailoring the size and [Ru] in the patches. We demonstrated 
that the simulations capture the experimentally observed effects of the catalyst concentration, patch size, 
and inter-patch distance on the synchronization of oscillations in the neighboring BZ gels. Taken together, 
the experimental and computational studies reveal how the synchronization effects can be utilized to 
control the dynamical behavior of the entire system.  

We also collaborated with the 
Vaia group to validate our prediction 
that by varying the placement of these 
BZ patches within the matrix, we could 
modify the functionality of the material 
or introduce multi-functional behavior 
within a single sample [14]. In our 
computational studies, we considered a 
horizontal BZ strip within a non-
reactive gel matrix (see blue and yellow 
images in Fig. III); in case 1, the strip is 
placed in the center of the sample and in 
case 2, this strip is placed at the edge.  

As predicted in our prior studies 
[14], the experiments show that the 
dynamic patterns in the two samples are 
quite different (see images in Fig. III) 
[15]. Specifically, in case 2, a traveling chemical wave is seen to propagate from the right to the left edge. 
The differences in the observed behavior can be attributed to the fact that the ends of strips experience 
different environments in the two scenarios. These examples clearly reveal that the placement of a BZ 
patch within the sample plays an important role and can be used as a design tool. In particular, case 2 can 
be harnessed to create a pump that transports fluid and reagents to the edge of the gel. The findings 
validate our predictions on a new “modular” design approach [14], where different functionality can be 
achieved by simply varying the spatial arrangement of identical pieces of BZ gels within a polymer 
matrix.  

B. Modeling the Behavior of New UV Patternable Self-oscillating Gels 

 We also collaborated with Prof. Ralph Nuzzo to analyze the behavior of a new class of BZ gels, 
which can be dynamically shaped and patterned with light [7]. In contrast to the PNIPAAm-based 
systems, these polyacrylamide (PAAm)-based BZ gels contract when the Ru catalyst is in the oxidized 
state and the gels swell when the Ru is in the reduced state. We developed a model to explain this 

Fig. III. Predictions (indicated in blue and yellow) and 
experimental studies showing that the placement of rectangular 
BZ patches within the non-reactive gel matrix affect the mode 
of wave propagation and, hence, the functionality of the gel. 

Case 2 
Case 1



distinctive behavior and obtained results that show agreement with experimentally measured quantities 
[7], as indicated by Fig. IV. Notably, these PAAm-based BZ gels exhibit larger degrees of swelling and 
faster oscillatory rates and hence, provide ideal systems for realizing the full potential of these responsive, 
autonomously functioning materials.  

 

 

 

 

 

 

 

 

 

 

 
 

 
C. Controlling the Motion of Multiple BZ Gels in Solution: Forming Self-rotating Pinwheels 

and Interacting Gears 

We showed that millimeter-sized BZ gels can spontaneously self-
aggregate to form macroscopic, self-rotating pinwheels [5] (see Fig. V). 
Notably, we found that the system is bistable and the formation of the 
pinwheels depends on initial random fluctuations. The pinwheel formation 
can, however, be promoted by tailoring the local concentration of the 
activator for the BZ reaction. Furthermore, we demonstrated approaches 
for controlling the chirality of the pinwheels’ motion. These materials 
could form simple self-propelled machines, such as gears, that perform 
autonomous work. 

We also showed that light, which suppresses the oscillations in 
the illuminated regions, could be used to regulate the interaction between 
the four-gel clusters and promote the robust formation of two gears [1] 
(see Fig. VI). These studies point to a novel form of photo-chemo-
mechanical transduction, where light is harnessed to control the conversion of chemical and mechanical 
energy in the system. Moreover, the interaction between the gears reveals a new form of entrainment 
between these moving units. 
Namely, their coordinated motion 
is achieved through chemical 
coupling or communication, rather 
than a mechanical coupling. These 
findings can lead to the formation 
of chemically “communicating” 
devices that can be programmed to 
perform autonomous work through 
the use of light. 
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