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Foreword

This is the second of two reports that provide guidance on how to conduct predictive
validation studies and set standards for enlisted military occupations using the Armed
Services Vocational Aptitude Battery (ASVAB). The ASVAB is the primary enlistment
qualification and occupational classification instrument used by all of the U.S. military
services. The Navy was the lead on the project because it is the only Service at this time
maintaining an operationally focused ASVAB Validation/Standards program. The first
report, Introductory Guide for Conducting ASVAB Validation/Standards Studies in the
U.S. Navy provides context for the ASVAB and the area of personnel selection and
classification whereas this second report provides the technical guidance.

This work was sponsored and funded by the Navy’s Selection and Classification
office (N132G) with a contribution of funding from the Defense Manpower Data Center
— Personnel Testing Division (DMDC - PTD). The work was executed by Navy Personnel
Research, Studies, and Technology (NPRST/BUPERS-1), a department of the Bureau of
Naval Personnel, along with a team of experts on the various manual topics. The
contract work was conducted under the auspices of the U.S. Army Research Office
Scientific Services Program administered by Battelle (Delivery Order 0253, Contract No.
Wo911NF-07-D-0001).

David M. Cashbaugh
Director
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Executive Summary

The purpose of this Technical Manual, the complement to the Introductory Manual
(NPRST-TR-15-1), is to provide background and technical information that will assist
those responsible for conducting the studies that result in the setting of military job
aptitude/ability standards based on the Armed Services Vocational Aptitude Battery
(ASVAB). There are several Department of Defense (DoD) components that have
ASVAB responsibilities. The Office of the Under Secretary of Defense for Personnel and
Readiness, Accession Policy Directorate, sets policy for the development and use of the
ASVAB for determining military service eligibility. The Defense Manpower Data Center -
Personnel Testing Division (DMDC - PTD) is the Executive Agent for ASVAB research,
development and maintenance. Headquarters, United States Military Entrance
Processing Command (HQ-USMEPCOM) is responsible for enlistment processing,
which includes maintaining ASVAB testing sites and equipment. Each Service is
responsible for developing its own ASVAB job classification composites and cutscores,
which we refer to as ASVAB standards. The Manpower Accession Policy Working Group
(MAPWG), comprised of technical and policy representatives from the Services, HQ-
USMEPCOM, and DMDC, has the responsibility of overseeing the development,
effectiveness, and security of the ASVAB, and any new tests that meet the criteria for
inclusion in the battery or as adjunct classification tests. Finally, the Defense Advisory
Committee on Military Personnel Testing (DACMPT), comprised of nationally
recognized experts in the areas of test development and industrial/organizational
psychology, provides independent, objective recommendations on ASVAB development
and enlistment screening to the Secretary of Defense, through the Under Secretary of
Defense for Personnel and Readiness.

The Navy led the development of the two manuals because it is the only Service
currently supporting a continuing “ASVAB Validation/Standards Program.” All of the
Services support ASVAB validation/standards efforts to some degree, but generally (a)
on an as-needed basis for specific occupations or occupational groups, (b) periodically
when new predictors are considered for occupational classification, or (¢) when the
validity of the ASVAB is questioned at a highly visible level. The Navy takes the proactive
position of conducting ASVAB validation/standards studies on a routine basis because
the need is not always apparent. In doing so, the Navy continually monitors potential
red flags such as high academically related failure rates or setback rates in training,
major changes in the curriculum or training platforms, reductions in training time,
recruiting stressors, and the emergence of new occupations (Ratings) or the
consolidation of existing Ratings.

Although the Navy follows a general model that addresses ASVAB standards for
individual Ratings, ASVAB validation/standards studies are not conducted in a vacuum.
A change in an ASVAB standard for one Rating can impact the availability of ASVAB
qualified recruits for other Ratings. Rather, the one-Rating study simply means that
more individualized attention can be paid to specific issues (e.g., recruiting or training)
that influence (moderate) the effectiveness of an ASVAB standard. For example, an
individual study conducted for a Rating can result in recommendations beyond the
scope of the ASVAB standard, such as (a) allowable ASVAB point waiver maximums,

(b) establishment of a course module projected to improve training performance (that
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would be much less costly than raising the ASVAB standard so as to severely limit the
number of qualified recruits for the Rating), or (¢) development of other academic or
non-academic screening tools.

As more fully explained in the Introductory Manual, we consider training
performance as the criterion upon which to validate the ASVAB because the current
version of the ASVAB is comprised of tests with underlying constructs that map well to
training curriculum. Another reason training performance rather than job performance
is considered the criterion is that the Navy experiences non-trivial academically-related
training failures and setbacks at this up front stage. A high rate of training failure
translates to high costs for the Navy, but also for the Sailor who might experience a
career setback or drop in morale or motivation.

The Introductory Manual provides much more context than this brief introduction
and will be of interest not only to the ASVAB validation/standards researcher, but the
sponsors of the program and stakeholders (Recruiting, Training, and the Enlisted
Community Managers). The contents of the Technical Manual will be of interest mainly
to those who actually conduct ASVAB validation/standards studies, or who are in the
process of learning how to do so.

The chapters in the Technical Manual are briefly described as follows. Following
Chapter 1, the Introduction, Chapter 2 provides a review of basic correlation and
regression, classical test theory, and some factors that affect the validity coefficient
(validity and correlation are used interchangeably throughout). Chapter 3 provides a
discussion about ways to interpret the correlation coefficient. Chapter 4 is about
measurement error in our predictor and criterion measures, which can affect the
correlation coefficient (validity coefficient). Chapter 5 describes formulas for correcting
the validity coefficient for restriction in range. Chapters 6 and 7 are about the joint
correction for measurement error and restriction in range. Chapter 8 describes the
analytical formulas for deriving the standard error of the range-corrected validity
coefficient and cites some of the literature on the bootstrap method. Chapter 9 follows
up with a Monte Carlo with bootstrap simulation study that reports on the accuracy and
standard errors as a function of a number of study design conditions.

Chapter 10 describes effects on the validity coefficient from violating the
assumptions underlying the correction for range restriction. Chapter 11 works through
the situation where a negative sign can result for a range-corrected validity coefficient
when the sign is positive in the population.

Chapter 12 provides a discussion of commonly applied regression methods and the
difficulty in applying statistical power analysis in the context of a restricted in range
situation. Chapter 13 is about weighting predictor tests in composites and addresses the
tradeoffs between validity and adverse impact. Chapter 14 follows up with more about
weighting but from the perspective of a multidimensional performance domain.

Chapter 15 discusses multiple-hurdle selection systems and how bias can be
introduced into the estimation of the population validity coefficient when a hurdle is not
taken into account. Chapter 16 considers the estimation of the validity coefficient in a
multiple-hurdle selection situation within the missing data theory framework.
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Chapter 17 is focused on setting cutscores in general, and with application to the
ASVAB. Chapter 18 is about simulating recruit job assignments to study the impact of
changing an ASVAB standard for one or more Ratings on the fill of all Ratings — a
system approach. Chapter 19 is concerned with classification effectiveness and briefly
describes previous military models that address differential assignment capability.

The final chapter, Chapter 20, summarizes key points in each chapter of the two
manuals attempting to thread together a comprehensive picture of the ASVAB
validation/standards methods and concerns.

We advise the reader to be aware that the statistical notation in each chapter follows
the preference of the author(s) so is not totally consistent across chapters and
sometimes within a chapter, for example, when there are citations of others’ work. We
note that the reader will often find this situation in the literature so we have not taken
the extra time to provide consistency in statistical notation. Statistical terms are defined
in each chapter and where not, will be evident.

Finally, we suggest that those in the position to develop ASVAB policy recognize that
setting ASVAB standards for military occupations is not a trivial effort and requires not
only deep technical knowledge, but a realization that there is always a tradeoff between
supply of qualified recruits and the training capacity. Our best hope is that the
establishment of a joint-service selection and classification panel (See the charter for the
INTERSERVICE Aptitude/Ability Standards Panel in Appendix D of the Introductory
Manual) will be proactive in (a) continually monitoring the effectiveness of the ASVAB
standards within and across the Services, (b) establishing the integrity of the
performance criterion across the Services’ schoolhouses, (¢) bringing about more hands-
on job-like training to the schoolhouses, recognizing that the value of an ASVAB
technical test may not fully be appreciated when the criterion measure is strictly
academic-based, and (d) exploring use of the most comprehensive and technically sound
procedures for conducting predictive validity analyses.
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Chapter 1.
Introduction

Purpose/Background

The purpose of this Technical Manual, the complement to the Introductory Manual
(NPRST-TR-15-1), is to provide background and technical information that will assist
those responsible for conducting the studies that result in the setting of military job
aptitude/ability standards based on the Armed Services Vocational Aptitude Battery
(ASVAB). The manuals’ content, while mainly pertaining to the ASVAB, is broad enough
to apply to candidate tests that are yet to be added to the ASVAB, or to be considered as
adjunct occupational classification tests. The content also is applicable to those in
industry responsible for personnel selection functions, and we draw heavily on non-
military research.

As noted in the Introductory Manual, there are several Department of Defense
components that have ASVAB responsibilities. The Office of the Under Secretary of
Defense for Personnel and Readiness, Accession Policy Directorate, sets policy for the
development and use of the ASVAB for determining military service eligibility. The
Defense Manpower Data Center, Personnel Testing Division (DMDC-PTD) is the
Executive Agent for ASVAB research, development and maintenance. Headquarters,
United States Military Entrance Processing Command (HQ-USMEPCOM) is responsible
for enlistment processing, which includes maintaining ASVAB testing sites and
equipment. Each Service is responsible for developing its own ASVAB job classification
composites and cutscores, which we refer to as ASVAB standards. The Manpower
Accession Policy Working Group (MAPWG), comprised of technical and policy
representatives from the Services, HQ-USMEPCOM, and DMDC as Chairs of the
technical committee and full working group, has the responsibility of overseeing the
development, effectiveness, and security of the ASVAB, and any new tests that meet the
criteria for inclusion in the battery or as adjunct classification tests. Finally, the Defense
Advisory Committee on Military Personnel Testing (DACMPT), comprised of nationally
recognized experts in the areas of test development and industrial/organizational
psychology, provides independent, objective recommendations on ASVAB development
and enlistment screening to the Secretary of Defense, through the Under Secretary of
Defense for Personnel and Readiness.

At the time of this project the MAPWG was, and still is, fully engaged with the
research and processes involved in adding candidate tests to the computer platform that
delivers the adaptive version of the ASVAB to military applicants (CAT-ASVAB). These
efforts are a result of a commissioned expert ASVAB Review Panel (Drasgow,
Embretson, Kyllonen, & Schmitt, 2006). The Panel submitted 21 recommends regarding
the ASVAB. One of the recommendations was to validate the use of the ASVAB on a
routine basis. The Introductory and Technical Manuals regarding ASVAB validation
studies and study methods are meant to fulfill this recommendation.



As stated in the Introductory Manual, a framework or roadmap for conducting
ASVAB validation research was developed to address DMDC’s goal of having a unified
approach that all of the Services could follow (HumRRO) (McCloy, Campbell, Knapp,
Strickland, & DiFazio, 2006). The unified framework provides a context for thinking
about ASVAB validation research. It outlines diverse validation objectives, reviews
different criteria that may be used in validation research, and provides an overview of
factors that may influence the Services’ capacity to interpret and apply the results of
validation studies. The intent of the two manuals’ development is to provide more
specific information that fulfills these objectives.

The Navy led the development of the two manuals because it is the only Service
currently supporting a continuing “ASVAB Validation/Standards Program”. All of the
Services support ASVAB validation/standards efforts to some degree, but generally (a)
on an as-needed basis for specific occupations or occupational groups, (b) periodically
when new predictors are considered for occupational classification, or (¢) when the
validity of the ASVAB is questioned at a highly visible level. The Navy takes the proactive
position of conducting ASVAB validation/standards studies on a routine basis because
the need is not always apparent. In doing so, the Navy continually monitors potential
red flags such as high academically related failure rates or setback rates in training,
major changes in the curriculum or training platforms, reductions in training time,
recruiting stressors, and the emergence of new occupations (Ratings) or the
consolidation of existing Ratings.

Although the Navy follows a general model that addresses ASVAB standards for
individual Ratings, ASVAB validation/standards studies are not conducted in a vacuum.
A change in an ASVAB standard for one Rating can impact the availability of ASVAB
qualified recruits for other Ratings. Rather, the one-Rating study simply means that
more individualized attention can be paid to specific issues (e.g., recruiting or training)
that influence (moderate) the effectiveness of an ASVAB standard. For example, an
individual study conducted for a Rating can result in recommendations beyond the
scope of the ASVAB standard, such as (a) tolerable ASVAB point waiver maximumes,
(b) establishment of a course module projected to improve training performance (that
would be much less costly than raising the ASVAB standard so as to severely limit the
number of qualified recruits for the Rating), or (¢) development new screening tools.

The Navy also conducts occupational group (Rating) studies. Establishing the same
ASVAB standard for a homogeneous set or subset of Ratings — that is, with similar levels
of training, training time and job complexity — facilitates reassignments of Sailors in the
event they are required to cross Ratings because of, say, a military downsizing. Also,
having the same ASVAB standard for similar Ratings within an occupational group (if
only for a subset of the Ratings) allows the Navy to make initial assignments to the
occupational group deferring a specific Rating assignment to a later time when there is
more visibility on the Navy’s needs (e.g., school seat availability or high losses in the
Delayed Entry Program). The final Rating assignment usually occurs upon arrival at
Recruit Training Command (RTC), Great Lakes, IL, but could occur later during a core
technical course that serves all of the Ratings in the group. Several of the Services follow
the occupational group assignment model for at least a portion of their recruiting goals.



As more fully explained in the Introductory Manual, we consider training
performance as the criterion upon which to validate the ASVAB because the current
version of the ASVAB is comprised of tests with underlying constructs that map well to
training curriculum. Another reason training performance rather than job performance
is considered the criterion is that the Navy experiences non-trivial academically-related
training failures and setbacks at this up front stage. A high rate of training failure
translates to high costs for the Navy, but also for the Sailor who might experience a
career setback or drop in morale or motivation.

We estimate the ASVAB validity coefficient for the PAY97 normative population
(Segall, 2004) rather than yearly Service-specific applicant populations for two reasons.
First, validity coefficients can then be compared over time for the same occupation
within a Service as part of a monitoring process. Second, validity coefficients can be
compared for like occupations across the Services. The across-Service comparison of
ASVAB validity coefficients is especially important in this era of downsizing,
consolidation of resources, and moves towards conducting joint-service training and
operations. Having a common baseline population for validating the ASVAB can help in
diagnosing what is accounting for ASVAB validity decay, if it is observed. If ASVAB
validity for a particular occupation’s training (say, Aviation Mechanic) is observed to be
much lower for one Service but not another, the logical question becomes why. That is,
is it a training problem or a criterion problem (i.e., inadequate development of
performance tests)?

Accurately estimating the population ASVAB validity coefficient is important
because cutscores are set in reference to its magnitude. Negative consequences can
result from an inappropriately set cutscore, especially when the validity of the ASVAB is
high, training is difficult, and there is a substantial performance deficiency. All other
things being equal, the larger the validity coefficient the more sensitive the cutscore
adjustment will be to improving or degrading future performance levels. When the
ASVAB validity coefficient is found to diminish (decay), we should automatically ask
why. Many factors affect the validity coefficient; the ones that are statistical or technical
are highlighted in the chapters that follow. There are, however, less technical factors
that can affect the validity coefficient such as (a) poor training or poor training
performance measurement; (b) systematic differences in either the ASVAB testing
environment, or the schoolhouse testing environment where training performance is
evaluated; and (c¢) individual differences in motivation. ASVAB examinees should be
similarly motivated to test well, and we assume they are when they intend to enlist and
qualify for the most desirable military occupations. On the other hand, motivation levels
may not be so high when enlisted military members are administered non-ASVAB
experimental predictors in the schoolhouses — these students have already passed the
operational selection and classification hurdles and are secure in their enlistment
decisions as long as they pass the occupational specific training. An unexpectedly low
validity coefficient observed for any “experimental” predictor administered in the
schoolhouses could be due to unmotivated examinees as well as technical factors. All of
these issues are addressed in the chapters that follow.



Besides the Services’ role in monitoring ASVAB validity, DMDC constantly monitors
the ASVAB for score inflation that could occur due to test compromise — another factor
that can result in validity decay. To reduce the possibility of test compromise, DMDC
regularly develops new CAT-ASVAB item pools but also applies an item selection
algorithm that manages over-exposure of items. We also note that HQ-USMEPCOM has
oversight of the administration of the ASVAB across the nation’s 65 Military Entrance
Processing Stations (MEPS) has been exceptional in ensuring that the ASVAB is
administered in standardized secure conditions. Despite all of these efforts to reduce the
likelihood of ASVAB compromise (including current efforts to eliminate paper-and-
pencil ASVAB — a target for compromise), the Services are concerned that ASVAB
validity could decay due in the future if the military budgets continue to decline and
there are insufficient funds to resource all of the components developing, maintaining,
and operationalizing, and overseeing the ASVAB.

In developing ASVAB validity coefficients, we would hope that the military will
continue to develop stellar training and performance criterion measures that clearly
map to the skills, and abilities, and knowledge necessary to perform the job and which,
in turn, clearly map to the training for the job. Detecting whether this is true requires
both a standardized approach to ASVAB validation/standards studies and a common
population by which to gauge validity levels. We could take the position that the most
current combined Service applicant population should be used rather than the PAY97y
population and justify that position by saying that anything that alters the ranking of
individuals from what would be expected in the population would have an impact on
that validity coefficient. Such impact factors include demographic changes that occur in
our nation over time, as well as changes in the economic conditions over time. At the
time of the manuals’ development, military recruitment has benefited from a poor U.S.
economy and shortage of private industry jobs. This situation will likely change in the
future and if recruiting becomes more difficult, the military will need to adjust either the
ASVAB standards, the resources expended for recruiting, or the resources expended for
training. DMDC has charge of monitoring applicant ASVAB scores over time and for
flags that would indicate a requirement for new norming study (e.g., applicant
population characteristics, potential ASVAB additions, score drift or departures from
those obtained from national testing programs).

Finally, we suggest that those in the position to develop ASVAB policy recognize that
setting ASVAB standards for military occupations is not a trivial effort and requires not
only deep technical knowledge, but a realization that there is always a tradeoff between
supply of qualified recruits and the training capacity. Our best hope is for the
establishment of a joint-service selection and classification working group that will be
proactive in (a) continually monitoring the effectiveness of the ASVAB standards for all
of the Services, (b) establishing the integrity of the performance criterion across the
Services’ schoolhouses, (¢) bringing about more hands-on job-like training to the
schoolhouses, recognizing that the value of an ASVAB technical test may not fully be
appreciated when the criterion is strictly academic-based, and (d) exploring use of the
most state-of-the-art procedures for conducting validity analyses.



Target Audience

The Introductory Manual that accompanies this Technical Manual is intended to
provide broad-based background and procedural information to individuals with
diverse backgrounds and responsibilities in sponsoring, overseeing, and policy makers
that implement ASVAB standards. The Technical Manual is intended to explain the
statistical methods, theory, and formulas to the practitioner who develops ASVAB
standards. We have not, however, limited our perspective to the military context and
consider the background and interests of the industry practitioner. In addressing both
audiences, the technical material in some chapters is presented again in others not to be
taken as redundancies, but from different but relevant perspectives and contexts to
underscore and reinforce concepts.

We advise the reader to be aware that the statistical notation in each chapter follows
the preference of the author(s) so is not totally consistent across chapters and
sometimes within a chapter when there are citations of others’ work. Statistical terms
are defined in each chapter.

Technical Manual Chapters

The chapters in the Technical Manual are briefly described as follows. Following the
Introduction, Chapter 2 provides a review of basic correlation and regression, classical
test theory, and some factors that affect the validity coefficient (validity and correlation
are used interchangeably throughout). Chapter 3 provides a discussion about ways to
interpret the correlation coefficient. Chapter 4 is about measurement error in our
predictor and criterion measures. Chapter 5 describes formulas for correcting the
validity coefficient for restriction in range. Chapters 6 and 77 are about the joint
correction for measurement error and restriction in range. Chapter 8 describes the
analytical formulas for deriving the standard error of the range-corrected validity
coefficient and cites some of the literature on the bootstrap method. Chapter 9 follows
up with a Monte Carlo with bootstrap simulation study that reports on the accuracy and
standard errors as a function of many study design conditions.

Chapter 10 describes effects on the validity coefficient from violating the
assumptions underlying the correction for range restriction. Chapter 11 works through
the situation where a negative sign can result for a range-corrected validity coefficient
when the sign is positive in the population.

Chapter 12 provides a discussion of commonly applied regression methods and the
difficulty in applying statistical power analysis in the context of a restricted in range
situation. Chapter 13 is about weighting predictor tests in composites and addresses the
tradeoffs between validity and adverse impact. Chapter 14 follows up with more about
weighting but from the perspective of a multidimensional performance domain.

Chapter 15 discusses multiple hurdle selection systems and how bias can be
introduced into the estimation of the population validity coefficient when a hurdle is not
taken into account. Chapter 16 considers the estimation of the validity coefficient in a
multiple-hurdle selection situation within the missing data theory framework.



Chapter 17 is focused on setting cutscores in general, and with application to the
ASVAB. Chapter 18 is about simulating recruit job assignments to study the impact of
changing an ASVAB standard for one or more Ratings on the fill of all Ratings — a
system approach. Chapter 19 is concerned with classification effectiveness and previous
military models that address differential assignment capability.

The final chapter, Chapter 20, summarizes key points in each chapter of the two
manuals attempting to thread together a comprehensive picture of the ASVAB
validation/standards methods and concerns.

Appendix A contains an SPSS version of the multivariate range correction provided
by the Center for Naval Analyses and related files and instructions. Appendix B contains
a generated Taylor-Russell (1939) table that is useful in estimating expected
improvements in success rates given ASVAB estimated validity magnitude and other
study parameters. Appendix C is a worksheet that uses such tables to estimate
classification decision errors.
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have contributed much to the area of personnel selection and classification research. We
do not intend that these manuals imply that the Navy has all of the answers for
establishing ASVAB standards for military enlisted occupations so we encourage the
reader to delve more deeply into the topics that are only briefly discussed in the
manuals’ chapters. Many of the references in the chapters that follow will lead to
important work by all of the Services, such as the work led by Dr. Michael Rumsey and
Dr Len White of the Army Research Institute for the Behavioral Sciences (ARI); Dr. Paul
Mayberry, Dr. William Sims, Ms. Catherine Hiatt, and Dr. Neil Carey of CNA on behalf
of the Marine Corps; Dr. William Alley, Dr. Malcolm Ree, Dr. Melanie Darby, and Mr.
Jim Earles of the Air Force Human Resources Laboratory (AFHRL); and Dr. Edward
Alf, Dr. Reynaldo Monzon, and Mr. Paul Foley of Navy Personnel Research and
Development Center (NPRDC). We recognize the partnerships that the Services have
with the Federally Funded Research and Development Centers, and with the many
professors in academia, the list being too long to present here but knowable through the
references in the manual chapters.
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Chapter 2.
Predictor-Criterion Relations:
A Brief Statistical Overview
Jorge L. Mendoza

Introduction

This chapter discusses correlation and regression analyses and the interpretation of
these two statistical procedures in the context of personnel selection test validation
research. Consider a simple example involving two variables, a single predictor and a
criterion. The result of a correlation analysis is an index that depicts the magnitude of
the relation between two variables. The result of the regression analysis, simply stated,
is the line that best fits a plotted set of data points that represent standing on the two
variables. The two variables that apply in personnel selection research are usually a test
that is designed to predict performance and a measure of that performance. Although
correlation and regression are often discussed separately, these techniques go hand-in-
hand, and both are used to explore the relation between two or more variables.

For these procedures to be useful, we must have personnel selection instruments
(predictors) and performance outcomes (criteria) that measure the appropriate
domains, are free from contamination, and are reliable. Reliability is defined here
simply as a psychometric characteristic of a measure that leads to replicable outcomes
over many test administrations. We discuss reliability in this chapter from a
psychometric perspective as it relates to fundamental test validity analyses. Other
chapters in this manual speak more in depth to reliability and to specific topics that
negatively influence test validity research results.

From the organization’s perspective, the use of aptitude or other cognitive tests in
personnel selection is cost-effective only if the performance of personnel selected for
jobs is better than what would have been obtained if no selection system were in place.
From the individual’s perspective, the personnel selection system, to some degree,
ensures that they will not be selected for jobs for which there is high potential for
failure. The organization’s and the individual’s perspectives are consistent. There is
never a perfect correlation between personnel selection test scores and training or job
outcomes, however, so the best we can do is to include tests in our selection systems that
have the highest possible correlation, or “validity,” in predicting those job outcomes
(correlation and validity coefficient are used interchangeably in this chapter).

The chapter topics are as follows: (a) basic correlation and regression analyses, (b)
factors that affect correlation and regression, (c) the effect of unreliability on regression
and correlation, (d) overestimating the multiple regression coefficient, (e) incremental
validity, (f) tests of hypotheses and confidence intervals, (g) range restriction impact on
the correlation coefficient, and (h) standard errors of corrected correlations. Some
equations and their derivations are presented where appropriate; however, they are
considered introductions to topics and so are expanded in subsequent chapters.



Basic Correlation and Regression

According to Rogers and Nicewander (1988), Sir Francis Galton defined the term
“regression” in 1885. A decade later, Karl Pearson developed the correlation coefficient.
Pearson’s correlation coefficient, r, is frequently used in the social sciences and other
sciences to describe the relation between two variables. The correlation coefficient is
also central to many statistical methods (e.g., factor analysis, structural equations, and
cluster analysis). Despite its long history, the nuances of the correlation coefficient are
not generally well understood (Falk & Well, 1997).The correlation coefficient between
two variables x and y, vy, is defined by the ratio of the covariance between x and y (Sx)
to the product of the standard deviations of x and y (Sx and Sy, respectively),

S
ro=—>_. (2-1
v =35 g (2-1)
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The covariance is the numerator in the correlation formula and, as such, it is an
unbounded measure of linear association between two variables. The covariance is
defined as the sum of the cross-products of centered variables,

Z(x=X)(y—-Y)

S, = (2-2)
n

where n is the sample size and S denotes the sample (in some later equations, S and s

refer to population and sample, respectively, as we will note).

The correlation, on the other hand, is a bounded measure of linear relation ranging
from -1 to 1. A correlation of 1 indicates a perfect positive linear relation between two
variables, whereas —1 indicates a perfect negative (inverse) linear relation. The
correlation is an index of the magnitude of the relation between two variables and how
well the data fit a straight line.

Regression, on the other hand, identifies the straight line that fits the data best. A
regression line can be described by two values — the intercept, bo, and slope, b. With a
correlation of +1, all of the x and y plotted data points for individuals fall on a straight
line with positive slope. The regression line used to predict the y values from the x
values is given in most textbooks as

y=Dby +b,X. (2-3)

It is helpful to write the actual observation y as the sum of two components, y
predicted and the error in that prediction (e) so that

y=9+(y-y)=9y+e. (2-4)



As we see, the observation y is a linear function of two components: the part of y that is
predicted by x and the part of y that is not, the residual (error), e. By definition these
two components are not correlated, thus allowing the variance of y to be expressed as
the sum of the two independent component variances (leaving out the x notation),

S;=S;+S7. (2-5)

Accordingly, the proportion of the total y variance that is predicted from x is given by
the ratio

This variance ratio is important in applied settings because it tells us how much of the
variability in y can be accounted for by x. If we account for a large proportion of the
variability in y, then we know that x is a good predictor of y. For example, if 25% of the
variability in school grades is accounted for by the selection test x, then we know that
the test score is a relatively good predictor of school performance. We also know that
there are other components of performance that are not predicted by the test (75%),
which we may be interested in understanding. We can also show that this ratio, the
proportion of y variance that is predicted from x, is equal to the correlation coefficient
squared (r2), the square root of which is simply r. (We note that there are a number of
ways to derive a Pearson correlation not shown in this chapter, and also a number of
coefficients of association).

The intercept of a regression line is often not reported in validation research studies
because it (a) does not give us information about the strength of relation between x and
y and (b) is tied to the scale of the y variable (which is usually uninformative).
Therefore, the focus here is on the slope of the regression line, which is given by the
ratio of the covariance to the variance of x:

S
by.x = S_X;l . (2'7)

X
Accordingly, the relation between the correlation and the slope of the regression line is

by.xSx (2 8)
o, = . (2-
S

Xy
y

Note that when x and y are standardized (with mean zero and variance 1), the
correlation coefficient equals the regression coefficient. Thus, one interpretation of the
correlation coefficient is as the standardized regression coefficient when regressing y on
x (Rodgers & Nicewander, 1988). Intuitively, running regression on a correlation matrix
instead of a data file with raw scores for each variable produces only the standardized
regression coefficient (as opposed to the unstandardized regression weight (slope) and
intercept values that apply to raw scores).
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We can gain additional insight into the correlation coefficient by rewriting it in terms
of y residuals and y total variance, the proportion of the y variance that is not predicted
from (accounted for) by x. The correlation using these terms can be expressed as

O .
W oy &

The numerator under the square root sign in Equation 2-9 indicates the magnitude of
the departure of the predicted values from the observed values (residuals) and therefore
how well the regression line fits the data. The denominator, which fixes the ratio value
between —1 and 1, indicates the magnitude of the departure of the observed values from
the mean of those values and is the measure of total y variance. If x does not predict y at
all, the numerator and the denominator will be the same value and the ratio will equal 1,
with ry equaling zero. Conversely, if prediction is perfect and all data points are on a
straight line, the residuals will equal zero, as will the ratio and therefore ry, will equal 1.

We can gain further insight into the correlation coefficient by squaring
Equation 2-9,

2 Z(y-9)°
rxyzl—%. (2-10)

If we then substitute for the 1 in the equation,

2 (y-y)* Zy-9)° _ (Y- y)’
YOS(y-y)? E(y-9) Z(y-y)°

(2-11)

we come back to Equation 2-6, the ratio of variance of y as predicted by x over the
variance of y:

§2
r:=—2. (2-12)
y S;

It is important to plot the x/y values when dealing with regression and correlation to
inspect linearity and dispersion of scores about the regression line. Figures 2-1 through
2-4 are four scatter plots depicting different values of the correlation coefficient. Figure
2-1 illustrates the absence of relation between x and y with a correlation very near zero
(we note scale differences in the x and y axes in the four graphs that should not be a
distraction from the intended illustration — the visual forms of the x/y relationships).
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Figure 2-1. Scatter plot of xand ywhen r,, = .00.
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In Figure 2-2, the correlation is .39.
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Figure 2-2, Scatter plot of xand ywhen r,, = .39.
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In Figure 2-3, the correlation is .65
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Figure 2-3. Scatter plot of xand ywhen r,, = .65.
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In Figure 2-4 the correlation is .95.
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Figure 2-4. Scatter plot of xand ywhen r,, = .95.

We can see from Figures 2-1 through 2-4 that as the correlation coefficient
approaches 1.00, the scatter plot becomes less circular and more narrowly elliptical
implying a stronger relation between x and y.

Technical Factors That Affect Correlation and Regression

Situational factors can affect the magnitude of the correlation such as, when
considering the relation between a personnel selection test and a job performance
measure, the motivation of many individuals taking the selection test is low, or as noted
in Chapter 1, there is widespread compromise of a high stakes test like the ASVAB. But
there are also many technical factors that affect the correlation, six of which we discuss
in this section. The first and obvious technical factor that affects the magnitude of the
correlation and regression coefficients is the outlier observation. An outlier is a xy data
point that, graphically in a scatter plot, departs substantially from the observed
locations of the rest of the data points.
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Outliers are attributed to the response variable (dependent variable) and may or may
not have an effect on the regression parameters. That is, an outlier may or may not have
influence. For instance, an outlier would not be an influential variable if the bivariate
plot showed the data point to be exceedingly far removed from the other data points but
running exactly on the regression line. Removing that data point and recalculating the
regression line would yield the same slope as when the point was included. Influential
variables, on the other hand, may or may not appear as outliers but do affect at least one
regression parameter (e.g., slope). Chatterjee and Yilmasz (1992) provided a
comprehensive review of the subfield of regression diagnostics that includes a number
of useful graphics.

Referencing our past notation on residuals in Equation 2-9, the numerator, we
learned, is the sum of the departures of each of the predicted y values from their
respective observed y values. Any observation that is sufficiently far away graphically
from the rest of the observations could have a large residual. An outlier can either
decrease or increase the magnitude of the correlation and regression coefficients. It
behooves the researcher to plot the data before conducting a correlation analysis to look
for outliers; any suspicious point should be reconsidered carefully. Many standard
textbooks on regression and correlation have a section on outliers.

The second technical factor that affects the correlation coefficient and regression
coefficients is nonlinearity. Two variables could be related, for example, by a “U” or an
inverted “U” function rather than by a straight line. For example, some personality traits
may contribute positively to performance up to a certain level, at which point higher
levels of the trait become dysfunctional and performance suffers. Fitting a straight line
to the scatter plot generated by one of these functions would make little or no sense.

The third technical factor is variability in test scores. If there were little or no
variability on either the criterion or predictor, the correlation coefficient would be near
zero. We must look for measures that differentiate individuals — that is the major goal of
personnel testing research. Measures that provide differentiation in individuals’
standing, and the capability of predicting those standings, allows the researcher to apply
cutscores that identify the best performers.

The forth technical factor, related to variability in test scores is the restriction in the
range of test scores that occurs from applying a cutscore to the selection instrument.
Because the correlation coefficient magnitude is associated with test score variance, it
will be affected if the full range of variability in test scores is curtailed. The degree of
curtailment depends on the stringency of the cutscore, all other things being equal.

The fifth technical factor that affects the correlation coefficient is measurement
error, which is a random component of test scores (either the selection instrument —
independent variable, or the performance measure — the criterion variable) that affects
the precision of a measurement. We do not refer to measurement error as the biased
(systematic) contamination of the measurement instrument (e.g., uniform but very dim
lighting in an otherwise optimally standardized testing room) but rather the
unsystematic “noise.” The biasing systematic types of errors are discussed in later
chapters. The next section is a discussion of measurement error in the context of
classical test theory (CTT).

16



The sixth technical factor that affects the correlation is the similarity of the two
variables’ distribution shapes (assuming both are based on a continuous metric scale).
The maximum correlation is, of course 1.0, but it has been shown that for large
correlations, even moderate departures from distribution similarity (skew and kurtosis)
can lower a correlation (not so critical for small correlations, e.g., .30). We refer the
reader to Goodwin and Leech (2006) who discussed these six factors impacting the
correlation coefficient in greater depth and with excellent references.

Review of the Classical Measurement Model

The classical measurement model (or CTT) defines a test score as the sum of two
components, the “true score,” t and the error, € (disregarding sampling error). These
components are assumed to be unrelated (i.e., independent) and therefore uncorrelated.
We note that CTT does not address sampling error so in using the model we define the
criterion y as simply the sum of true ability plus error,

y=t,+&,, (2-13)
and the predictor x as
X=t +¢,. (2-14)

A measure with a small error component (¢) is consistent in measurement over
repeated measurements, assuming that the underlying construct (ability or attribute)
that we are measuring does not change. The consistency of a measure is defined by the
reliability coefficient (not the instrument in and of itself). The reliability coefficient
quantifies the “signal-to-noise” ratio of a measure, or “true score variance divided by the
total observed score variance.”

Given a stable and standardized testing environment, an individual taking the SAT
(for example) for college entrance at one setting can expect to obtain nearly the same
scores when the SAT is taken again had no additional learning taken place in the
interim. The scores will most likely not be exactly the same, however, but affected by
what are considered random factors that affect test performance at each testing time
such as mood, amount of sleep, worries, or unstable aspects of the test itself that
theoretically cancel out (e.g., sometimes a positive mood, sometimes a negative).

There are different ways of measuring test reliability but mathematically, the
reliability of x is always given by the ratio of the true score variance of x over the
observed score variance,

N

Oy
pxx = ; ° (2_15)

Q
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We can see the similarity of Equation 2-12 and Equation 2-15 and so we can
conceptualize the reliability of a test as either (a) the test’s correlation with itself (T,, ) or
(b) the proportion of total test variance that is accounted for by the variance of the true
score (I2).

The reliability coefficient ranges from 0 to 1. A reliability of 1 indicates that there is
no measurement error; a reliability of o indicates that test scores are the result of
completely random responses. The test developer needs to know if a potentially useful
test is unreliable so that it can be improved. Very often a researcher will discard a test
that demonstrates low reliability (or validity) even when there is support from a good
theory. Identifying what construct to measure is difficult in and of itself, and when we
are successful, it becomes even more difficult to measure it without excessive noise
(random factors).

Correcting the Validity Coefficient for Test Unreliability

The following equality illustrates in the theoretical world how to “estimate” the true
relation between x and y correcting for the unreliability of one or the other, or both,
measures:

rX,ty rtxvy — rxvy

r. = = =
e Py Pary

where py is the reliability of x and pyy is the reliability of y. We see from Equation 2-16
that the correlation (validity) is reduced and that we must adjust the observed validity
vy if we are interested in estimating the “true and perfectly reliable” correlation between
the two constructs, r, , . Note that in the first adjusted correlation in Equation 2-16 we

, (2-16)

adjust only for criterion unreliability (because the predictor reliability is 1.00,
unavailable, or not of interest); whereas in the second adjusted correlation we adjust
only for predictor unreliability. Depending upon the purpose of a study (applied or basic
construct research), the researcher can correct for unreliability in x, y, or neither.

The Effect of Unreliability on Regression and Correlation

It is interesting to note that the reliabilities of the x and y measures set an upper
bound to their correlation:

r-xy < \/pxxpyy . (2'17)

For example, assume x has a reliability of .90 and y has a reliability of .60. If both x and
y were to be corrected for attenuation due to unreliability, the maximum possible
correlation that we can observe between these two variables .735 (i.e., 949 times .775).
Because the reliabilities determine the upper bound of the criterion-related validity, it is
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important to use the most reliable measures possible in both applied and theory-based
research.

Another consequence of unreliability is the effect on the regression coefficient — a
reduced slope. We can demonstrate (e.g., McNemar, 1962) that the regression
coefficient is affected by reliability according to the following equality:

b, b,
b, =b, =—=-"2%. (2-18)
pXX pXX

Equation 2-18 tells us that errors of measurement on the predictor affect the
regression coefficient (slope), but that errors of measurement on the criterion (not
shown) do not. The reason why errors of measurement on the criterion do not affect the
regression coefficient is that they end up being part of the residuals, affecting the
residual variance but not the slope. As the formulas demonstrate, the regression
coefficient does not change with unreliability on y. The standard error (a measure of
precision) of b, however, is affected by unreliability (decreasing the standard error with
increasing reliability). We can see that the observed regression coefficient by.» will be
less than or equal to the regression coefficient for predicting t, from t, by rearrangement
of the relevant terms in Equation 2-18:

by.x = pxxbty.tx .

We note the conceptual parallel of this attenuation formula for the regression coefficient
with the attenuation formula for the correlation (e.g., rearranging the relevant terms in
the disattenuation formulas in Equation 2-16.

Table 2-1 shows how variability of b systematically differs across the different
conditions involving measurement error.

Table 2-1
The Variability of the Slope

Variance of b

by.x by.tx bty.x bty.tX
2 2 2 2
o2(-12) ol-r2) ola-r?,) or(1-12,)
no? notx noy noy,

X

We see from Table 2-1 that the variance of b (typically calculated and referred to as the
standard deviation or standard error of b) is the residual variance divided by the
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product of the variance of the predictor x and n. Using the results, we can show that
02(by.x) > 02 (bty_X ). In other words, errors of measurement in the criterion results in an

increase the variability of b.

We close this section by looking at a hypothetical example shown in Table 2-2.
Consider a predictor x with reliability .89 and a criterion y with reliability .75. Next,
assume that the variance of the predictor is 9 and that the variance of the criterion is 16.
The correlation between the predictor x and the criterion y is .42. It is useful to look at
the correlation and the slope of the regression line as we define x and y with perfect and
imperfect reliability. Table 2-2 gives the correlation and regression coefficients and
standard error of b under perfect and imperfect reliability in x and y.

Table 2-2
Correlation and Regression Under Measurement Error
Predictor
X %
r b s(b) r b s(b)
Criterion 416 .555 .1750 442 625 .1831
t, 481 .555 1461 510 .625 .1520

We can see from Table 2-2 that the correlation is affected by both criterion and
predictor measurement error. The regression coefficient, on the other hand, is directly
affected only by unreliability in the predictor.

Incremental Validity

Incremental validity (Sechrest, 1963) is the degree to which a measure explains or
predicts a phenomenon of interest, relative to other measures. Incremental validity can
be evaluated along several dimensions, including the statistical significance of the
increase in the correlation coefficient or the increase in the proportion of correct
decisions made (e.g., Hunsley & Meyer, 2003). Haynes and Lench (2003) have
discussed many indices of incremental validity. In this section, however, we focus on the
incremental change in the correlation coefficient.

Consider a situation in which we have two predictors. In this situation the regression
would be y on x; and x»; that is,

y=Dby+by, X3 +by, X, +e. (2-19)

Next assume that x; is the “old” predictor and that we want to see the incremental

validity of adding the “new” predictor x.. To do so, we would evaluate the correlation
between y and Y as a function of the two predictors (Equation 2-21) and between y and

A~

Y as a function of one predictor,
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y=Db,+ by.Xl X, +e. (2-20)

The basic idea in evaluating whether x. provides incremental validity involves
comparing two multiple correlations, Ry x> and Ryx.! Here, practical as well as
statistical issues are important. Because statistical tests of significance vary with sample
size, we can find a small difference without practical consequences to be statistically
significant. On the other hand, we could miss important differences with a small sample
because statistical significance was not attained (not enough power, discussed in a later
chapter). Thus, it is good practice to evaluate both the difference in the size of the effect
and the statistical significance of the effect. For example, the incremental validity of a
candidate test evaluated as a possible addition to the ASVAB could be .04 (observed
from the data). However, because the sample size is only 50 cases, that increment might
not be detected as statistically significant (recognizing that restriction in range of
ASVARB test scores complicates the matter, as discussed in later chapters).

A .04 validity increment to the ASVAB, if real, has practical significance in that a
military school with a high academic failure rate would be able to reduce this rate by
potentially several percentage points doing nothing else but instating the test. On the
other hand, a statistically significant .01 increment in validity found in a sample size of
1,000 would most likely have a trivial impact on graduation rate improvement (possibly
0.5%) but still be worth doing if there are associated improvements in other aspects of
the selection and classification system (e.g., reduced adverse impact or increased overall
qualification rates across all military occupations for future recruit populations).

Tests of Hypotheses and Confidence Intervals

After showing that two quantitative variables are correlated in a sample, we often
want to show that this finding extends to the population. For this purpose, we test the
null hypothesis that the population correlation is zero, hoping to reject this hypothesis.
Alternatively, we can establish a confidence interval around the population correlation.
Under normality, the test that the population correlation is zero is a test of
independence. The independence of two variables, assuming normality, involves the
following null hypothesis:

Ho:pzo.

The alternative hypothesis, regardless of whether we are conducting a one-tailed or
two-tailed test, is that the variables are related. We either reject or retain this null
hypothesis, with its rejection indicating a non-zero relation between the variables in the
population. We test this null hypothesis with the t test with n - 2 degrees of freedom. To
conduct the statistical test we compare the observed t,

! In most situations, it will be multiple correlations that are compared. Here, because of the example involving just
two predictors at most, the comparison is between a multiple correlation (when both predictors are used) and a
single-order correlation (when just one predictor is used).
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with table values from the t distribution that applies to correlation coefficients (found in
the appendices of many statistics books). If the observed t value that pertains to the
sample size falls in the researcher’s specified critical upper region of the distribution,
then the probability would be too low for the observed sample correlation having
occurred by chance and so we reject the null hypothesis. As is the case with all
inferential statistics, the t-value itself is not the main point of interest. Instead, we are
interested in the probability that the t-value is large enough to be statistically significant
(the p-value of the statistic). In many research contexts, a p-value smaller than.o5 is
sufficient to reject the null hypothesis. For example, in Table 2-3 we see that the
observed correlation between the x and y variables for the study sample size of 75 is .31
with an associated p-value = .006. The correct decision here is to reject the null in favor
of the alternative hypothesis stating that the variables are related in the population.

Table 2-3
Sample Output when Computing Pearson
Correlation Coefficients, N = 75

x y
X 1.00000 0.31499
(p = 0.0059)
y 0.31499 1.00000
(p = 0.0059)

The t-test is somewhat limited, because it cannot be used to test null hypotheses
other than p = 0. Fortunately, however, R. A. Fisher showed how a general test of
hypotheses about the population correlation coefficient can be made. It involves
transforming the sample correlation into a z-score. The Fisher r to z transformation
(discussed in textbooks such as Cohen, Cohen, West, & Aiken, 2003) is given by

z(r) = .5In[l+—rj, (2-22)
1-r

where “In” stands for the natural log (required because the correlation coefficient
distribution is skewed, not symmetrical as with many distributions). For almost any
value of p, the sampling distribution of z(r) is normally distributed with mean z(p) and a
large sample variance of 1/(n - 3).
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This statistical test of a specified magnitude of the correlation is a bit more
complicated than the t-test for merely the magnitude being greater than zero, because to
test the null hypothesis we must transform both r and p. For example, suppose that
instead of stating a null of zero in the previous example, one is interested in testing the
null hypothesis that pis .50 against pis not equal to .50 (either a plus or minus sign). To
test the hypothesis, we first transform the null hypothesis in terms of z,

Ho: z(p = .50) = .55.

Next, we transform r (= .315) and obtain a z(r) = .33, and compute the z score

=3P g7

72

Because -1.87 does not fall in the critical region (< -1.96), we retain the null
hypothesis that p is .50.

The Fisher r to z transformation can also be used to construct a confidence interval
around the population correlation. The margin of error for a 95% confidence interval on

p is given by
1
E=+z,, /ﬁ =1.96(.1178) =.23. (2-23)

so that z(p) is .33 + .23. This confidence interval is too wide to be of practical use. A
smaller confidence interval could be obtained by increasing the sample size. One would
need a sample size of 200 to bring E down to .14, and n = 500 to bring it down to .09.

To obtain the confidence interval on p instead of z(p), we must transform the z back
to an r. We transform it with the following identity:

—1+e?
e 2

The 95% confidence interval for p is .315 + .226.
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Confidence Interval on a Predicted Y

Another way of interpreting the correlation coefficient is by considering the error
that we make in predicting y from y . Anytime that we predict an individual y using a

regression equation, there is an error associated with the prediction. We can assess the
magnitude of this error by constructing a confidence interval around y. Such an interval
can be obtained from the t distribution with n = 2 degrees of freedom (df), or from many
computer programs. Winkler and Hays (1975) showed that this confidence interval is
given by

I+

y

S, V1-r? — %)?
AL P ZX) . (2-25)
n-2 S

X

t(l—a), n-2

We can see that as r increases, the numerator approaches zero and the interval gets
smaller. Consider two values of r, r = .35 versus r = .85. To make matters simple,
assume that the variances of y and x are equal to 1, and that n = 100. Also assume that
the mean of x is zero and that the value of x is 1. For r = .35, the 95% confidence interval
around y is

8775
v+1.96| —— /102 =1.75
g (@j

When we perform the same calculations for an r of .85, we find

2775
v+1.96) —— /102 =0.55
g (@j

The width of the interval for the larger = .85 narrowed to £0.55 (compared to +1.75 for
the smaller r = .35). We can see that, as the r increases, so does the precision of our
predicted value — logically so, because the data points are closer to the regression line.

Figures 2-5 and 2-6 make this point for correlations of .28 and .95, respectively
(again noting x/y scale differences should not be a distraction from the visual forms of
the graphs).
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Figure 2-6. 95% confidence interval around ywhen ry, = .95.

In Figures 2-5 and 2-6 we have plotted the 95% confidence interval for each y,
obtaining a confidence band around each regression line. As can be seen from these
figures, the band around the regression line in Figure 2-5 is much wider than the one in
Figure 2-6. The correlation in Figure 2-5 is .28 and the correlation in Figure 2-6 is .95.
The larger correlation gives a better estimate of the predicted score, y. Another way to
increase the precision of this estimate is by increasing the sample size. Thus, large n’s
and large correlations are needed when we predict individual scores.
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Overestimating the Multiple Regression Coefficient

Multiple regression produces regression coefficients that yield the highest possible
multiple R in the sample in which they were derived. If these regression coefficients are
applied to data in another sample, the R will be lower because the regression coefficients
are not optimal for that sample. This means the R obtained in the sample overestimates
the true relation between the set of predictors and the criterion in the population (Cascio,
1991). This phenomenon of over fitting the data, or fitting to the idiosyncrasies of a
particular data set, is exaggerated when the sample size is small. There are two procedures
commonly used to estimate the over prediction and therefore R in the population. The first
procedure is cross-validation, in which the optimal predictor weights derived in one
(validation) sample are used to predict the criterion in a second (cross-validation) sample.
The second procedure involves the application of a formula to estimate the degree of
shrinkage in R that should occur if in fact we can infer a value for the population.

Cross-Validating with Split Samples

Mosier (1951) provided the classic paradigm for empirical cross-validation in which a
single sample is drawn from a population and then divided into a validation and cross-
validation sample. Regression weights are estimated in the validation sample and then
applied in the cross-validation sample. Murphy (1983) has pointed out that there is only
one sampling and that the estimated multiple correlation in the cross-validation sample is
still a consequence of “overfitting” the data. Equally important is the fact that, even if there
were two samplings from the population, the validation and cross-validation multiple
correlations would be only two values out of a virtually infinitely large set of values.

Further, the two-sample cross-validation approach is paradoxical and inconsistent.
The goals of estimating regression weights are (a) stability of the estimate and (b)
generalizability of the estimated parameters. Weights estimated in two half-samples of
n; and n. cannot be as accurately estimated as from the entire sample of N = n; + n.. As
is well known, the standard error of a regression weight is a function of the sample size.
Splitting a single sample into two pieces reduces the sample size and increases the
standard error, thus reducing the accuracy of the estimates (Schmitt, Coyle, &
Rauschenberger, 1977). However, the estimation of regression weights in only one
sample does not provide estimates of the cross-applicability (i.e., generalizability). The
Navy position in validating the ASVAB is that future validations are required involving
new samples in the same context in order to “verify” initial findings. Naturally one must
take into account not only sampling error, but the characteristics of the sample data that
reflect training changes, criterion changes, and demographic changes and that it is
entirely possible that an unverified validation reflects real changes.
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Estimating Shrinkage with a Formula

A shrinkage formula can be used instead of cross-validation thereby keeping one’s
sample intact. Use of the formula is less cumbersome and allows the regression coefficients
to be estimated in a larger sample (yielding more precise population parameter estimates).
There are several “cross-validation” shrinkage formulas (Kennedy, 1988); however, one
must consider that they provide estimates that may answer different questions (McCloy,
1994). McCloy points out that the well-known Wherry (1931) shrinkage formula is
intended to give an estimate of the multiple correlation in the population. The more
relevant question is does the regression equation developed in the sample apply to the
population and does the resulting multiple correlation reflect that true but unobservable
value.

Cattin (1980) showed that the following formula produces the least biased estimates of
the shrunken multiple correlation to be expected if the sample equation were applied to
the population:

. N -k -3)p* + p?
. = ( )P 2’0 , (2-26)
(N-2k-2)p° +k

where:
O, = estimated population cross-validated multiple correlation,

N = number of people in the sample,
k = number of predictors in the regression equation, and
? = population squared multiple correlation

and where p must be estimated using the following formula from Wherry (1931):

N-1
A2 RZ
N—k—l( ), (@27)

where R2 is the squared multiple correlation in the sample and N and k are as defined
above. This value is printed by SPSS in its regression output and labeled “Adjusted R2.”
When all predictors are not selected a priori (i.e., the final predictors are selected based on
empirical considerations as in stepwise regression), the correction for shrinkage will

overestimate P, when the final number of predictors is used as the value of k. A more

conservative estimate would be obtained by using the original number of predictors
(before backward selection) as the value of k which might yield a lower-bound estimate of

0. , and an upper-bound estimate could be obtained by entering the multiple R in the

formula for the complete battery of original predictors. The best estimate of o, would be
the average of the upper- and lower-bound estimates.
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The Complication of Range Restriction in Test Scores

When we apply a shrinkage formula to regression results from a sample to estimate the
multiple correlation in a population we are not considering the case where a selection
instrument with cutscore has been applied to those selected into the sample. Applying a
cutscore to a selection instrument produces range restriction in the selected sample’s
scores because scores are missing below the cutscore. If we restrict in range scores
directly/explicitly through the process of selection on x, we not only reduce the variability
in x, but also, indirectly we reduce the variability in y. In other words, selection affects not
only variances, but also the covariance between x and y, and thus the magnitude of the
correlation coefficient. Further, in theory, when all the assumptions for correcting for
range restriction are adhered to (discussed in depth in later chapters), selection affects the
correlation coefficient but does not affect the regression coefficient or the error (residual)
variance (see Ghiselli, Campbell, & Zedeck, 1981, p. 297).

In theory, the regression coefficients are not affected by restriction in range caused by
applying a cutscore to an explicit selection variable because, assuming bivariate normality
in the unrestricted population, linearity exists throughout the total predictor score range
(an assumption that may or may not be met). We can see how the correlation is attenuated
by first rewriting the correlation coefficient squared as

2

re =1—S—‘;_. (2-28)

y
Because the error variance is unaffected by explicit selection on x but the y variance
decreases, the ratio in Equation 2-28 increases and thus rj, decreases. That the y variance

decreases by a reduction in x variance is simply shown by

S;=b;,S;+SZ, (2-29)

y.x <X

where b, is defined by Equation 2-7. Further, where an estimate of the unrestricted x

variance is available from the applicant (unrestricted) population; we can compute the
ratio of the restricted variance to the unrestricted variance. That ratio can be used in the
bivariate explicit selection case to correct the correlation for restriction in range and is
(using * to denote statistics computed in the restricted sample)

*2
2. (2-30
52 (2-30)

Obviously when hiring using x, the criterion data y (say performance measures) are
only available for those selected. Any correlation computed between x and y, or between
some other potential selection measure z and y is going to be attenuated by the selection
process and these direct and indirect “restricted in range” correlations must be corrected if
inferences are to be made about the correlations that applies to the unrestricted applicant
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population. As we will see in later chapters, it is the correlation in the unrestricted
population that matters in personnel selection and classification. When we correct the
correlation coefficient using traditional procedures, the two corrections (direct and
indirect) are different. We briefly address the direct restriction in range situation now and
discuss both direct and indirect restriction in range in depth in Chapter 5.

To find the relation between the restricted and the unrestricted correlation between x
and y due to explicit selection on x, we focus on the restricted variance of y (asterisks
indicating restricted statistics),

*2 2 *2 2
S, =b;,S,”+S; . (2-31)
We can write the restricted variance in terms of the error variance and the slope because

they are not affected by selection on x. If we then substitute for the slope and the error
variance in Equation 2-31, we obtain

2¢c?2
* r * * *
SIS Xézy SZ+S7(1-1). (2-32)

X

With some algebraic manipulation, Equation 2-31 reduces to the following ratio,

*2c*2 22

rxy S y erS y

* = . (2_ )
7 g 33

X

Substituting for the unrestricted variance of y in terms of known quantities, we find that

(282 12 (07,52 +S2)
s 52

X

. (2-34)

Equation 2-34 can be solved for ry, to obtain an estimate of the unrestricted correlation
coefficient under direct range restriction. Note that all the terms can be obtained directly
from the data from the restricted sample. The equations that we find in the literature (e.g.,
Lord & Novick, 1968; Sackett & Yang, 2000) are also solutions for correcting the
correlation for range restriction, one for direct restriction range given by

* SX
My 5

= . (2-35)

My \/ =
1-r2+r2| =X
Xy Xy *2
SX
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Researchers most frequently use Equation 2-35 to adjust the restricted correlation
coefficient for direct range restriction. As an example, assume that the observed
correlation in the selected sample between x and y is .21, and that the ratio of variances is
5, corresponding to about 34% selection from the top under a normal distribution. The
unrestricted correlation is

2145 46957
Ty = 2. o12xc 12646
J1-212 + 212%5 L

Table 2-4 is shows the effect of direct range restriction on the correlation coefficient
for varying degrees of restriction, designated by the ratio of unrestricted variance, V(x),
to restricted variance V/{x), and unrestricted correlation values.

=.37. (2-36)

Table 2-4
The Effect of Selection under Direct Range Restriction
Assuming Bivariate Normality

Selection Restricted Correlation in Restricted Sample (r*)
Ratio Variance V(x)/V(x) r=.90 r=.70 r=.50 r=.30 r=.10
.05 0.1381 7.24 2742 1341 .0795 .0434 .0139
.10 0.1691 5.91 .3297 .1636 .0972 .0531 .0170
.15 0.1949 5.13 .3733 .1876 1118 .0612 .0196
.20 0.2186 4.57 4115 .2096 .1252 .0686 .0220
.25 0.2416 4.14 4464 .2305 .1382 .0758 .0243
.30 0.2645 3.78 4794 .2510 .1510 .0829 .0266
.35 0.2878 3.47 .5109 2715 .1639 .0901 .0289
.40 0.3118 3.21 .5413 .2923 1772 .0976 .0313
.45 0.3369 2.97 .5710 .3136 .1909 .1054 .0338
.50 0.3634 2.75 .6001 .3355 .2053 1135 .0365
.55 0.3917 2.55 .6288 .3584 .2206 1223 .0393
.60 0.4223 2.37 .6572 .3824 .2369 1316 .0424
.65 0.4557 2.19 .6853 .4078 .2544 .1419 .0458
.70 0.4928 2.03 7132 4350 2737 .1532 .0495
.75 0.5347 1.87 7412 4642 .2950 .1658 .0537
.80 0.5830 1.72 .7692 4962 .3190 .1803 .0585
.85 0.6405 1.56 .7976 .5317 .3468 1974 .0642
.90 0.7121 1.40 .8269 .5723 .3802 .2185 .0714
.95 0.8096 1.24 .8582 .6216 4235 .2467 .0811
1.00 1.0000 1.00 .9000 .7000 .5000  .3000  .1000

Note. V(x)/V{x)is the ratio of unrestricted to restricted variance.
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Table 2-4 shows that as the selection ratio gets smaller (more stringent selection) the
observed correlation also gets smaller. For example, when we selected 10% of the
subjects from a population with a correlation of .50, the restricted correlation is only
.0972. In contrast, if we select 90% instead of 10%, the correlation.50 population
correlation is only diminished to .3802.

A similar argument can be made for indirect range restriction where not only is the
unrestricted correlation (validity) of interest for the test used in explicit selection (x), but
also is of interest for a second test that is correlated to x (say z) but not used in the
selection process. Assuming selection on x, the indirect range restriction correction
formula is given by documented formulas derived years ago and discussed in a later
chapter on corrections for range restriction. Sackett and Yang (2000) provide the formula
in a more recent publication:

* * * S 2
rzy + Irxy Iz (STXZ _1)
ry = = < ¥ (2-37)
J[lwx*f oo DI+ (L, ~D)]
X X

As noted earlier, Chapter 5 provides a more in-depth discussion about the range
correction formulas and we also encourage the reader not familiar with this topic to read
the various typologies of range restriction discussed by Sackett and Yang (2000).

Standard Errors of Range Corrected Correlations

The usual standard error of the correlation coefficient does not apply to correlations
corrected for range restriction (we put aside the issue of unreliable measures for this
discussion). Consequently, the usual confidence intervals and tests of hypotheses must be
modified. Several researchers (e.g., Bobko & Rieck, 1980; Mendoza, 1993; Raju & Brand,
2003) have proposed large-sample estimators for the standard errors of the corrected
coefficients. These formula methods are somewhat cuambersome and hard to compute.
Thus, we do not discuss them at length here.

Figures 2-7 through 2-9 show the combined effects of the selection ratio and the
correlation coefficient on the standard error of the correction for direct range restriction
(see Mendoza, 1993).

31



Lpplicant sarvgple =5000

Figure 2-7. Plot of the standard error of the corrected correlation for direct
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Figure 2-8. Plot of the standard error of the corrected correlation for direct

=500.
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Lpplicant saraple=100

Figure 2-9. Plot of the standard error of the corrected correlation for direct
restriction in range when N =100.

Figures 2-7 through 2-9 apply to different applicant sample sizes (5,000; 500; and 100,
respectively) and their corresponding smaller selected sample sizes at any specific selection
ratio. We can see from these figures that the combination of a small applicant sample, a
small selection ratio, and a low population correlation results in the largest standard error.
This combination of low correlation and a small selected sample size is likely to yield test
results with low power and wide confidence intervals.

Although the situation is not much better with computer-intensive procedures, the
investigator facing the problem of conducting a hypothesis test or constructing a
confidence interval with a corrected estimator should use a computer-intensive
procedure—either the bootstrap or multiple imputations. The bootstrap perhaps has more
intuitive appeal. The bootstrap has been described fully by Efron and Tibshirani (1993)
and for standard error of a corrected correlation by Chan and Chan (2004) and by
Mendoza, Hart, and Powell (1991). Although the procedures are slightly different, they give
similar results. Under moderate sample sizes with moderate correlations, the bootstrap
method has been found to be rather accurate in estimating the standard error under direct
range restriction. The case of indirect range restriction has received less attention, but it
would appear the bootstrap method should yield similar accuracy in error results. Multiple
imputation procedures covering both direct and indirect range restriction also were found
to be accurate, as long as the correlation was not close to zero (Chasteen & Mendoza,
2003). More about the bootstrap method is discussed in later chapters.
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Concluding Remarks

We have seen that to conduct a high-quality criterion-related predictive validity
study we need reliable measures, a quality sample, and personnel selection and
performance measures with score variability. Regression analysis was used to identify a
linear trend in the data, and the correlation coefficient was used to quantify the fit of the
data to the trend. We discussed the importance of creating a scatter plot to examine the
data for outliers and nonlinearity, as well as ways to test for statistical significance with
one or more predictors. We have seen that the precision of our estimates of r, b, and y
depend on the size of both the correlation coefficient and the sample, in addition to
other factors that affect correlation and regression analysis. We also reviewed classical
test theory, measurement error, confidence intervals, restriction in range of test scores
used in selection, the correction for range restriction, and also ways to estimate
associated errors in the resulting corrected correlation (validity coefficient), recognizing
that sample size is an important factor.

The chapters that follow will provide more in-depth discussion and context on the
topics discussed in this chapter. They also will provide greater details about the methods
that are most important in accurately estimating the magnitude of the validity
coefficient and setting ASVAB standards. The next chapter is a discussion about
interpreting the validity coefficient.
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Chapter 3.
Interpreting the Correlation (Validity) Coefficient
Norman M. Abrahams, Jorge L. Mendoza, and
Janet D. Held

Introduction

The ultimate goal of the selection and classification practitioner is to set
aptitude/ability standards (e.g., a cutscore applied to a performance predictor) that
meet the organization’s goal in hiring candidates who perform well enough that the
organization succeeds in its mission, given other constraints (training excellence,
personnel promotional policies, demand for the product, etc.). The fundamental statistic
with which to gage the decision to hire a candidate is the validity coefficient. The
previous chapter provided a technical evolution of correlation and regression analysis
with a brief review of classical test theory and other statistically based topics. An
understanding of these topics is fundamental for an in-depth understanding of the
validity coefficient and how it should be interpreted. Unfortunately, although we as
personnel research psychologists may fully understand what the validity coefficient
means, policy makers may not. This chapter focuses on interpreting the validity
coefficient in ways that can better communicate the value of our selection instruments.

Validity Interpretation: An Empirical Expectancy Table

As discussed in Chapter 2, it is often useful to graphically illustrate the relation
between two variables. The correlation scatter plots in Figures 2-1 through 2-4 can be
modified to provide useful information about the potential for improving the “expected”
performance (the criterion — y-axis) by increasing the test score requirement (the
predictor — x-axis). In other words, once the correlation between a personnel selection
instrument and a performance measure has been determined, the task is to determine
how the organization will benefit from the relation. The graphs in Figures 2-1 through
2-4 do not depict the restriction in range that the military observes, but they are useful
in explaining “expectancy tables.” Given that higher scores on the criterion are
associated with higher scores on the predictor, we can collapse the units of each axis of
the four figures into fewer but meaningful metric categories. For example, we can
collapse the continuous scores on the y-axis into the five grades A, B, C, D, and F to
represent grades in college. Also, we can collapse the continuous scores on the x-axis
into five percentile categories, or quintiles, to represent standing on the predictor.

There are several variations of the expectancy chart (expectancy table) that apply
slightly different quantitative information (Cascio, 1991; Lawshe, 1958). Tables 13 and
14 in the Nuclear Field (NF) study (Appendix B of the Introductory Manual) display the
type of empirically based expectancy tables developed for ASVAB standards studies. The
ASVAB scores are collapsed on a somewhat arbitrary basis for the NF study and we do
so for our example on the next page.
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Table 3-1 illustrates an empirically derived expectancy table with an aptitude/ability
test used to predict course grades (A, B, C, or D grades). (The illustration uses a very
small sample for simplification with the understanding that small sample results are
subject to sampling error and are often unstable.)

Table 3-1
Expectancy Table of Grades by Test Scores

Predictor Test Score

Grade 1 2 3 4 5 6 7 8 9 Total

0 0 0 0 10 30 20 20 20 100
A 0.0% | 0.0% | 0.0% | 0.0% 7.1% | 20.0% | 20.0% | 50.0% | 100%

0 0 0 20 50 70 50 20 0 210
B 0.0% | 0.0% | 0.0% | 14.3% | 35.7% | 46.7% | 50.0% | 50.0% | 0.0%

0 10 50 70 60 40 20 0 0 250
C 0.0% | 16.7% | 62.5% | 50.0% | 42.9%6 | 26.7% | 20.0% | 0.0% | 0.0%

20 50 30 50 20 10 10 0 0 190
D 100% | 83.3% | 37.5% | 35.7% | 14.3% | 6.7% | 10.0% | 0.0% | 0.0%

Total 20 60 80 140 140 150 100 40 20 750

The two variables in Table 3-1 correlate .42 in the observed data so we would expect
some systematic differences in the proportion (or percent) of students who attain high
and low grades, given their scores on the predictor test. We have rescaled these two
continuous variables into a smaller number of meaningful x and y categories to
conveniently illustrate the advantages of an expectancy table. Table 3-1 cell entries
contain counts for students who received a particular grade and test score. The sum of
each row count is in the far right hand margin, and the sum of each column count is at
the bottom margin. The percent entries in each cell are computed by dividing the cell
count by its respective column sum; that is, a percentage of individuals achieving a
specific grade given a specific predictor score. The probability or expectancy of achieving
a specific grade or higher at a specific test score is simply the sum of the cell percentages
in that test score column for that specific grade and higher.

As an example, we see from Table 3-1 that as the test score increases, the probability
(percentage) of students obtaining a C or better increases. We see that at a test score of
2, only 16.7 percent of the students received a C or better whereas at a test score of 6,
93.3% of the individuals received a C or better. As the probability of success increases,
the risk of failure decreases. Individuals with higher test scores tend to do better, but the
relation is not perfect because the correlation is not 1. For example, there is a large
spread of scores in each grade category for the test score of 6 rather than those scores
being concentrated solely in the B or C categories. Note that the trend of better
performance with higher predictor scores is more likely to appear unstable (or
imperfect) when the sample size is small than when it is large.
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To illustrate another potential use of the expectancy table, assume we would like to
select only those individuals (who apply to take the course) who have at least a 50%
chance of obtaining a B or A. For ease of interpretation, we recompiled Table 3-1 as
Table 3-2, collapsing the grade categories and associated percentages into two labeled
“B or better” and “C or worse.”

Table 3-2
Expectancy Table of Collapsed Grades by Test Scores

Predictor Test Score

Grade 1 2 3 4 5 6 7 8 9 Total
B or 0 0 0 20 60 100 70 40 20 310
better 0.0% | 0.0% | 0.0% | 14.3% | 42.9% | 66.7% | 70.0% | 100% | 100%
Cor 20 60 80 120 80 50 30 0 0 440
worse 100% | 100% | 100% | 85.7% | 57.1% | 33.3% | 30.0% | 0.0% | 0.0%
Total 20 60 80 140 140 150 100 40 20 750

As we can see from Table 3-2, we would have to select individuals with a test score of
6 or higher to meet the “50% or higher” criterion. At a score of 5, only 42.9% of the
individuals receive a grade of B or better (about a .43 probability).

Tables 3-1 and 3-2 are just one of many formats that portray the relationship
between a selection instrument’s correlation with the criterion of interest, in this case, a
predictor test and actual grades in a course for those who enrolled. We refer the reader
to other sources mentioned earlier for illustrations. The main point of developing
expectancy tables in the personnel selection/classification realm is that quantitative
information about two variables can be organized to display their relationship and thus
allow interpretation of how adjusting levels on one variable (always the selection
instrument) will impact affect levels on the other (the performance, or criterion
variable).

Restriction in Range Effect on Interpreting the Correlation

Expectancy tables, in all formats, give a sense of the strength of the relation between
the xy variables, or predictor and criterion variable, but only for the data at hand. The
data at hand in ASVAB validation/standards studies come from schoolhouses that
instruct students who have been screened on, among other variables, an ASVAB
standard (composite with cutscore). Chapter 2 briefly discussed restriction in range due
to a cutscore on an operational (in place) selection/classification instrument. However,
Figures 2-1 to 2-4, which show the closeness of data points to the regression lines for
broad ranges of scores, do not portray the restriction in range effect on the correlation.

Figure 3-1 clearly shows the effect of a cutscore on the magnitude of the validity
coefficient in the practical situation where applicants are selected for training based on
an ASVAB standard.
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Figure 3-1. Diminished observed validity between ASVAB scores and final
school grade when selection is stringent.

Figure 3-1 shows, notionally, a substantial correlation, or validity coefficient, that
applies to an applicant population (r, = .60) if, theoretically, all applicants reflecting a
full range of ability (or a random sample of them) were classified to a Rating
(occupation) and allowed to attend the Rating’s technical training course. Not all
applicants are selected, however, as indicated by the dots on the x-axis without a partner
y score. The validity coefficient of the ASVAB measure (a composite of ASVAB tests
specific to the Rating) is a much lower ryy = .08 and not of interest. That is, the full-
range validity coefficient for the applicant population is of interest because it is that
validity coefficient that will be used to set an effective cutscore (a balancing act
described later). Chapter 2 briefly described a single case of estimating the unrestricted
(population) validity coefficient (explicit selection) and Chapter 5 goes further into the
topic. The point here is that the restricted validity coefficient is uninterpretable for our
process of setting ASVAB standards.

The Taylor-Russell Tables for Interpreting Validity Coefficients

Assume that the correlation in not restricted in range. As noted from long ago (e.g.,
Hull, 1928), if we then consider the magnitude of the correlation coefficient and its
squared value, the amount of shared variance between the test and the performance
measure can appear small (e.g., a correlation of .20 squared translates into 4% of two
variables’ overlap). Taylor and Russell (1939) took a different perspective and showed
that even small validity coefficients can be useful. The Taylor and Russell (1939) tables
are theory-based and derived from bivariate normal distributions of any positive
correlation magnitude (between zero and 1). Figure 3-2 on the next page will be used for
illustration of how the tables were compiled and their use in interpreting the utility of a
validity coefficient.
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cases for 30% qualified population.

Figure 3-2. Success rate improvement as a function of magnitude of the validity
coefficient (base rate = .20).

Figure 3-2 is taken from the Navy’s Nuclear Field (NF) ASVAB validation/standards
study in Appendix B of the Introductory Manual and is used to illustrate the expected
improvement in the graduation rate applying a selection instrument with three validity
magnitudes. The three bivariate distributions represent, from left to right, validities of
.25 (the smallest ASVAB validity coefficient observed for SEAL physically intensive
training criteria), .55 (the average of ASVAB composite validities in predicting training
performance across all Navy entry level schools), and .85 (the largest ASVAB validity
coefficient observed for academically based Nuclear Field courses).

Overlaid on each bivariate normal in Figure 3-2 is the same y-axis performance bar
(horizontal) reflecting a 20% success rate (in training) and the same x-axis cutscore
(vertical) reflecting an ASVAB 30% qualification rate. Both of these “parameters” being
equal, the success rate of the selected group is solely dependent on the magnitude of the
validity coefficient. The aggregate success rates for the Figure 3-2 graphs are 29% for ry,
=.25; 41% for ry, = .55; and 56% for ry = .85.

The Taylor-Russell (1939) tables are mathematically derived and displayed as 10
published tables each with a different “base rate” success rate, but with the same validity
coefficient range (0 to 1.0 displayed in the left most column) and the same selection
ratio (SR) range (display across the first header row). The table entries are the success
rates associated with each SR and validity coefficient combination, which differ across
tables. Also displayed on the left most graphs are the correct and incorrect classification
decision outcomes associated with each combination of base rate, SR, validity coefficient
magnitude, and success rate, explained shortly.
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In the military application of the Taylor Russell (1939) tables, three of the four
parameters are known from ASVAB validation/standards studies, so the fourth (the
base rate) is fixed. Specifically known are (a) the correlation between the ASVAB
composite scores and training grades for the unrestricted ASVAB population is
estimated for the unrestricted population applying the correction for range restriction to
the correlation estimated in the ASVAB restricted school sample; (b) the selection ratio
is the proportion of the applicant population qualified for an occupation due to the
operational ASVAB composite’s cutscores (the ASVAB normative population is used in
most cases for uniformity across studies and because of the full range of ASVAB scores),
and (c) the success rate is the pass rate that applies to the school sample.

Finding the applicable Taylor-Russell (1939) base rate table is a simple process of
fitting these three parameters to every base rate until a match is found. The match
criterion is that the internal table success rate that exists at the intersection of the
validity coefficient and the selection ratio matches the school sample success rate. Once
the correct base rate table is identified, various assessment scenarios can be evaluated
such as (a) estimating improved success rates from raising the cutscore on the
operational ASVAB composite, (b) replacing the operational composite with one that is
evaluated as having a larger validity coefficient, or (c) lowering the selection ratio
(cutscore) if recruitment is a problem and the status quo success rate is not an issue.

Figure 3-2 shows that, all other things being equal (i.e., a cutscore that qualifies 30%
of the population, and challenging training that only 20% of applicants would be
expected to pass), the validity magnitude being the sole determinant of the selected
candidates’ success rate (29% success for ryv, = .25; 41% for ry = .55; and 56% for an
validity coefficient = .85). A generated Taylor-Russell (1939) table for a base rate of .10
is provided in Appendix A as an example.

The far left graph in Figure 3-2 also depicts another validity interpretation — all other
things being equal, the larger validity coefficient (with exceptions), the more accurate
the selection/classification decision. As depicted, there are two correct selection
decisions (correctly accepted and correctly rejected) and two incorrect selection
decisions (incorrectly accepted and incorrectly rejected). One can visualize moving the
vertical cutscore bar to the right in all three graphs to improve the success rate and
correct selection decisions (both rejecting as well as accepting applicants) but at the
expense of increasing the incorrect decision of rejecting applicants who would have
succeeded. At least for the military, it may be that the applicant population propensed to
enlist in the military diminishes to such an extent that the cost of rejecting able and
willing youth becomes larger than accepting them with higher risk.

Appendix B provides a worksheet example of how to compute the correct and
incorrect decision quadrants of a bivariate distribution when there is a specified level of
performance on both the selection instrument and the criterion. We note at this point
that the Taylor-Russell (1939) tables apply to only one job; the problem of many jobs, as
is the case for the military, will be addressed in the later chapters on cutscore analysis
and simulating job assignments.
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The Taylor-Russell (1939) tables can be used to interpret the validity coefficient as
having “utility” in the context of an organization’s cost associated parameters (e.g.,
current success rate, expected improvements given a more valid selection instrument,
cost of maintaining the instrument, and difficulty in finding enough qualified
candidates). However, Smith (1948) provided a cautionary note on using the Taylor-
Russell tables. The assumption underlying the tables is bivariate normality no matter
what the magnitude of the correlation. This theoretically requirement may not be met
and there may be a mismatch in the Taylor Russell segment defined by the selection
ratio and the empirical data at the selection ratio. That is, the selected segment of the
bivariate normal distribution is only assumed to reflect the attributes of the
operationally obtained empirical sample. In the military context, we cannot be sure that
these two segments match, especially over time when the dynamics of the recruiting
environment change where for some years there is an abundance of recruits with very
high ASVAB scores because of a lack of private sector job opportunities or college costs,
or conversely, a lack of high ASVAB scores when the economy improves.

Validity Coefficient Utility Interpretation: The Naylor-Shine Tables

The Taylor-Russell (1939) tables just discussed pertain to a dichotomous pass/fail
(or successful /unsuccessful) criterion variable. The use of these tables assumes all
personnel who pass the selection ratio cutscore perform at the same level. That is, there
is no distinction in the relative contribution of employees who score highest on the
predictor compared to those who score at or close to the cutscore. The Navy’s
philosophy is consistent with not making relative judgments about a Sailor’s career
performance potential at the training stage (where the tables are applied), because post
training other personnel and organizational factors contribute over and above the
ASVAB to job performance (e.g., OJT, motivation, career intentions, etc.). If, in the job
context, the narrower view is to interpret the validity coefficient in differentiating
personnel on their relative performance, the researcher could use the Naylor-Shine
(1965) tables. The Naylor-Shine tables pertain to a continuous criterion variable and are
used for a type of “expectancy” analysis where the interest is in determining and
improving the mean predicted performance of employees. The Naylor-Shine tables are
easy to use and require only the validity coefficient and a cutscore. The cutscore,
however, must be identified in terms of a z-score within the sample, not projected for
the population, so it is a sample-specific assessment. The basic equation of the Naylor-
Shine tables is given by

o 9@)
Zy = rxy R

, (3-1)

where ¢(z,) is the ordinate of the normal distribution at the cutscore zy, and SR is the
selection ratio (e.g., Cascio, 1991).
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As an example of the use of the Naylor-Shine (1965) tables, we assume two validity
coefficients of .20 and .40, a base rate of .30, and a selection ratio (SR) of .40. A Taylor-
Russell (1939) table analysis shows that a .20 validity coefficient is associated with a
37% success rate, whereas a .40 validity coefficient is associated with a 44 percent
success rate. However, what does this 7% success rate improvement translate to in
terms of improvement in mean performance? Remembering that the z-scores (standard
score format) allow the validity coefficient to be the regression weight in this bivariate
case, the predicted criterion would be twice as large applying the .40 validity than when
applying the .20 validity. The computed expected mean criterion values (in terms of z-
score) for the two correlation coefficients, .20 and .40, are .193 and .386, respectively.

In theory, the interpretation of the validity coefficient is that organizations can
double the average performance of its employees merely by using a selection test that
has twice as much predictive validity as the selection test in place. In practice, however,
these performance gains are more difficult to achieve, because we are implicitly
assuming that performance is strictly a function of the predictor. In the military training
context, as in many other venues, training support systems are in place to deal with
aptitude level declines (e.g., tutoring, night study sessions, and remediation). Also in the
military job context, if job performance is the focus, performance is a function of several
attributes, including performance in training, in which case a multi-attribute utility
analysis may be more appropriate (Roth & Bobko, 1997). The main point that the
Naylor-Shine equation makes is that one can expect increases in mean performance
with larger validity coefficients. In the military training context, achieving twice as much
predictive validity in the ASVAB world would not be possible given the already high
ASVAB reliability and the academic/technical nature of the training criterion.

We refer the reader to Cascio (1993) for a full discussion of the role of utility in
making selection decisions. Here, we describe briefly a well-known utility model that, as
before, incorporates a selection instrument’s predictive validity coefficient.

The Brogden-Cronbach-Gleser Utility Model

An expanded way to interpret the validity coefficient, and perhaps the most
important to organizations, is in its role in estimating the cost savings, or utility, to the
organization from implementing tests in their selection system. The Taylor-Russell
(1939) and Naylor-Shine (1965) tables have been criticized in this regard. In particular,
Cascio (1982) noted that a limitation common to both models is that “neither of these
models formally integrates the concept of cost of selection or dollars gained or lost into
the utility” (p. 222). The utility in the prior models discussed is strictly in terms of
improved success rates and improved performance. However, the military is not a
widget-producing organization, and so, it is difficult to tie military personnel
productivity to cost savings due to a test’s use in selection or classification. Nevertheless,
we briefly discuss a model that does consider organizational dollar savings. Cronbach
and Gleser (1965) built upon the work by Brogden (1959) to establish the Brogden-
Cronbach-Gleser (BCG) model of utility. The BCG model shows how the validity
coefficient of a selection instrument has practical consequences for an organization’s
productivity (utility in terms of dollar payoff, or ROI).
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The BCG model formula is:

AU = (N)(T)(SDy)(rx)(Zx) — (N)(Cy)

where, with annotations referring to the military context,

AU = Increase in average dollar value payoff (in terms of employee productivity
resulting from the valid selection process over random selection, where there would
be no testing costs)

N = Number of job applicants to be tested (potentially a million military applicants
per year)

Cy = Cost of testing one applicant (a factor for the military in a budget-constrained
environment but not much more expensive than current costs to support the
infrastructure required for applicant processing at the Military Entrance Processing
Stations and the mental, moral, and physical checks)

T = Term of employment (varies from one term of enlistment to a full career)

Z, = Average standard predictor score of the selected group at the ordinate of
standard curve (height on the normal curve corresponding to the cutscore, which
can be found in a statistical table or from a formula; this value is lower for more
extreme cutscores)

SD, = Standard deviation of dollar-valued job performance (projected for the
normally distributed applicant population that was not subject to selection by a test
with cutscore)

rw = Correlation between the selection test and performance measure.

As with the Taylor-Russell (1939) and Naylor-Shine (1965) tables, increasing the
magnitude of the validity coefficient (ry,), all other things equal, improves the utility of
the testing program for the organization. Besides the military issues commented upon in
the variable descriptions, another issue that has limited the BCG model’s application in
industry is how best to estimate the dollar standard deviation of job performance. We
refer the reader to expanded applications of utility analysis (e.g., Cabrera & Raju, 2001;
Johnson & Zeidner, 1991; Raju, Burke, & Normand, 1990).

Validity Coefficient Magnitudes Dependent on the Criterion

The DoD-sponsored Job Performance Measurement Project (JPM) discussed in the
Introductory Manual involved various offshoot research projects. For example, the
Center for Naval Analysis (CNA) conducted many studies on behalf of the Marine Corps.
Carey (1992) conducted a study entitled “Does Choice of a Criterion Matter?” in which
various surrogates of hands-on performance tests (HOPT; the National Academy of
Sciences considered this type of performance measure to be the Gold Standard) were
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tried out as alternatives because of the high cost of developing them across all military
occupations. Carey showed that in the development of ASVAB classification composites
used for classification to the Marine Corps infantry occupations, it did not matter much
which surrogate criterion was used. (In fact, a criterion might not even be needed to
develop the predictor composite; a rational approach that the Navy takes that involves
linking the underlying ASVAB constructs to the training curriculum). However, if the
ASVAB composite was to be used to develop selection standards, it definitely mattered
which criterion was used to establish the ASVAB’s validity. In a cautionary note, Carey
stated that “...the choice of a criterion will make a difference when used for purposes
where the strength of the relation between aptitude and criterion is critical. Setting
selection standards is one such purpose” (p. 103).

Carey (1992) went on to show that the validity coefficient (corrected for range
restriction) for the ASVAB General Technical (GT) composite (VE+AR) varied widely,
depending upon the surrogate criterion that it was based upon. For example, the validity
of the GT composite was .80 when the criterion was the occupation-tailored Job
Knowledge Test; .42 for Grade Point Average in training, and .26 for the Supervisor
rating (data from a Marine Corps Base labeled “B”). The various validity magnitudes
would result in very different GT cutscores, some of which would not produce the 90%
training success rate expected by the Marine Corps.

For example, in another paper, Carey and Wilbourn (1991) showed that by the “10
fail percent rule” a GT cutscore of 81 was required when the Job Knowledge Test was
used as the predicted criterion versus a GT cutscore of 29 when the Supervisory Rating
was used as the criterion. The broader conception of interpreting the validity coefficient
amounts to deciding what performance context is most relevant for establishing
selection standards. If the greatest concern for the military is training success (an
expensive early career point of evaluation for the Navy), then measures of training
success should be the criterion and the analysis of ASVAB validity coefficients is
straightforward (final school grade becomes the continuous criterion variable).

If, on the other hand, the greatest concern is for predicting job performance,
estimating the validity of the ASVAB, or any other predictor, cognitive or non-cognitive,
becomes more complicated. An array of questions are then on the table such as (a) what
is a sufficient magnitude for the validity coefficient given the it would most likely be
much larger when training performance is the criterion, (b) what are the relative
reliabilities of the measures (stability or equivalence), (¢) how many recruits failed
training and therefore are not in the job performance sample — a missing data problem,
and (d) which job performance measures should you chose (e.g., supervisor ratings, job
knowledge tests, or HOPT). Further, if predicting job performance is the goal, then
given an already operational ASVAB standard that predicts training outcomes, one
needs to consider how to structure the occupational classification model as a multiple
hurdle that includes training performance (discussed in Chapters 15 and 16).
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Obviously it is critical to understand the criterion and its relevance for establishing
ASVAB standards. A recommendation coming out of one post JPM effort was to
improve the final course grade to reflect what is learned and executed on the job (Sims &
Hiatt, 2011). We can reflect on the conclusions stated by Mayberry and Carey (1993)
from extensive work on the JPM project as follows:

“Past validation research has typically concentrated on the
identification of performance predictors (i.e., aptitude measures) with
little regard for the quality, appropriateness, or completeness of the
criterion measure. Such research usually collects the most convenient or
readily available performance measures: supervisor ratings, training
grades, promotion rates, etc. This is not to devalue such performance
indicators, for each assesses some aspect of the multidimensional ‘job
performance construct...” (p. 39).

The Navy would endorse developing a final school grade that reflects not just
knowledge learned but practical application of that knowledge.

Some Other Perspectives about Test Validity

Early in the industrial-organizational psychology measurement literature, Cronbach
and Meehl (1955) and other testing experts recognized the issue of defining the term
“validity.” “Validity for what purpose?” was one of the questions addressed by the APA
Committee on Psychological Tests charged with specifying “...what qualities should be
investigated before a test is published” (p. 281). The multiyear project spelled out four
types of validity that could all be interpreted as focusing on different criteria. Content
validity focuses on establishing how well test items map to the specific areas intended to
be measured without regard to an external performance criterion (e.g. math items in a
predictor test map to math items that are also in the course assessment test). Construct
validity focuses on how well the test captures the underlying domain of test performance
that was hypothesized to relate to some external criterion (e.g., spatial visualization
aptitude/ability hypothesized to relate to performance in an Air Traffic Controller tower.
Criterion-related validity focuses on how well the predictor test actually relates to
performance on a specific external criterion (and most likely assumes or knows that
construct validity has been addressed in the test’s development).

There are two criterion-related validity categories. The first is concurrent, where
typically a new or experimental predictor test is tried out in a sample of individuals who
have already met a cognitive test standard. These individuals typically are about to be
measured on the performance criterion (if not at the same time as the predictor test’s
administration). Individuals may or may not be motivated when taking the new test as
their performance may not be perceived as resulting in any decision about their status in
the organization (as they are already hired). Therefore, the validity of the predictor in a
concurrent validity setting may not reflect what would be found if the instrument were
used operationally to make front-end hiring or job classification decisions.
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The second criterion-related validity category is predictive, where the predictor test
is administered at or nearly at the front end of the applicant assessment process. For the
military, a new predictor test that has been evaluated positively in a concurrent validity
setting may progress to a predictive validity setting (where the test could be
administered alongside the CAT-ASVAB in the military screening process).

Cronbach and Meehl (1955) considered not only the type of validity considered but
what it really means to establish the validity of a test: “One does not validate a test, but
only a principle for making inferences. If a test yields many different types of inferences,
some of them may be valid and others invalid...” (p. 297). The example presented earlier
from the work of Carey (1992) and Carey and Wilbourn (1991) suggests that (a)
calculation of the “right” predictive validity coefficient is important for the military and
(b) criteria of convenience should be highly scrutinized. We refer the reader to Cronbach
and Meehl for their classic report on construct validity and references to the APA
committee’s and other’s published work and merely say that establishing the content
and construct validity of the various ASVAB tests is the primary responsibility of the
ASVAB test developer, Defense Manpower Data Center, Personnel Testing Division
(DMDC-PTD); however, it is also the responsibility of the individual Services when they
develop new tests intended for use in occupational classification as adjuncts to the
ASVAB.

Concluding Remarks

This chapter discussed the interpretation of the validity coefficient assuming there
are no factors that affect the calculation of its accuracy. The ASVAB validity coefficient
of interest to the Navy in most cases applies to the ASVAB normative youth population
from which future recruits are, theoretically, expected to be selected. Interpreting the
ASVAB’s validity coefficient (predictive, not concurrent when applied to the ASVAB)
typically has involved demonstrating an expected improvement in the personnel success
rates over random assignment from use of a predictor instrument. However,
interpretation of the validity coefficient can also be expressed as (a) average expected
improvements in performance scores and (b) proportional to the cost saving from
replacing a selection/classification instrument with one that has improved validity
(other factors held constant, such as cost of administration). Another way to interpret
the validity of selection instruments is in terms of classification decision accuracy where,
all other things being equal, larger magnitude of the validity coefficient will reduce
classification errors. Finally, the criterion matters when establishing selection or
classification standards and therefore establishing the appropriate criterion is part of
the process of interpreting the ASVAB’s validity coefficient. The next chapter provides a
more in-depth discussion of the criterion and its reliability.
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Chapter 4.
Measurement Error and Reliability Estimators
Sarah A. Hezlett

Introduction

Because it is not possible to develop psychological measures to be perfectly reliable,
the variables of interested in our studies are imperfect reflections of their theoretical or
“true” relations. We saw in Chapter 2 that measurement errors can affect correlations,
as can a host of other reasons, including restriction in range of predictor test scores due
to operational use of a cutscore. In this chapter, we expand on the measurement error
topic keeping in mind that while measurement error is random at the individual level, it
systematically affects the accuracy of the estimation of the validity coefficient. Further,
some types of error are systematic and contribute to the true score variance while other
types — the kind we attempt to measure, are random errors. This chapter also provides a
few examples of reliabilities that apply to different types of criterion and some that are
reported for the ASVAB tests. Finally, we cite some critiques in the literature of studies
that have misinterpreted the measurement error situation (Schmidt & Hunter, 1996).

Background

As discussed in Chapter 2, measurement error reduces the reliability of any
psychological measure and therefore places a limit on the magnitude of the correlation
between a predictor and criterion measure. However, in general, validity coefficients
should be corrected for measurement error only when researchers are attempting to
understand how the constructs measured by two or more measures are related (Society
for Industrial and Organizational Psychology, 2003), which would include any
experimental predictor considered for addition to the ASVAB and its relation to the
criterion. In the operational setting, military applicants’ ASVAB scores of record, and
not their “true” scores (indeterminate) are the scores used to make enlistment and
occupational classification decisions, therefore we do not correct the ASVAB (the
predictor) for unreliability.

For the criterion variable, test reliability is of concern in both the research and
operational setting. In the research setting, Mayberry and Wright (1992) paid particular
attention to criterion reliability during the joint-service Job Performance Measurement
(JPM) project (the 1980s project discussed in the Introductory Manual). Mayberry and
Wright saw three reasons why we would want to have reliable measures: (a) the need to
have consistent and meaningful measurements for an individual, (b) to be able to
generalize a single measurement to a larger context; and (c) to avoid limiting the validity
of the measure used to predict the criterion. An additional reason for wanting a reliable
criterion measure when conducting operational ASVAB validation/standards studies is
that if found to be unreliable, there may be a need to recommend a complete rework of
the measure to ensure a, b, and c above.
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For the most part, the Navy’s training command (Navy Education and Training
Command, NETC) has high standards in developing the criterion used in ASVAB
validity/standards, the school performance tests in technical training. However, if the
ASVAB validity coefficient resulting from use of the criterion is much lower than
expected from historical studies, then further exploration of the criterion would be
recommended in a follow-on study (as well as addressing any ASVAB compromise that
may have occurred). The high validity once known for a predictor in this case has been
affected and there is question about the instrument’s usability for future
selection/classification decisions.

Navy research has not been conducted in recent years to assess the reliability of the
“final school grade” variable used in in Navy training and so we cannot state a range of
plausible values. We note, however, that Hunter (1986) and Hunter and Hunter (1984)
apparently conducted reliability research on Navy training performance criteria (also
reported in Salgado, Anderson, Moscosco, Bertua, & De Fruyt, 2003) that tend to be
objective tests. The estimated average criterion reliability reported from this work
(meta-analysis) is about .80. The method used to estimate the criterion reliabilities is
not known (to the current authors) but the .80 value is consistent with what Mayberry
and Wright (1992) found for objective job knowledge tests administered to two Marine
Corps mechanical occupations (an average of about .80) where the method of estimating
reliability was test retest. We note that .90 reliability coefficient appears to be sort of a
“gold standard” (Guilford & Fruchter, 1978; Nunnally, 1978), but that reliabilities of
lower magnitude can still be adequate for many selection and classification situations.

Experimental predictors being evaluated in a research context should be submitted
to the process of correcting their validity coefficients for errors in measurement, both in
the predictor and the criterion. That is, in the “theoretical” world, as mentioned, the
interest may be solely in establishing the worthiness of the predictor instrument. If a
criterion variable has low reliability, it will obscure the predictor’s value (remembering
reliability puts a ceiling on validity). Or, the experimental predictor itself may have less
than satisfactory reliability because, for example, there were limited resources applied in
the test development process. Documenting the issues that might have led to low
predictor validity and also providing a correction for reliability that shows the potential
for the instrument will possibly lead to issue resolution, especially if past research
supports the underlying construct purported to be measured by the experimental
predictor measure is linked to jobs (by job analysis). (Chapters 6 and 7 deal with joint
corrections for reliability and range restriction.)

It is not possible to know for sure what kinds of influences cause a predictor or
criterion measure’s scores to be unreliable, or to know an individual’s “true” score. The
general broad factors that contribute to the unreliability of a measure’s scores are the
testing environment (e.g., not standardized), the examinee’s state of mind (e.g.,
unmotivated or tired), the appropriateness of the examinee population (e.g., the test
may be too difficult or easy for the target population), and the test itself (adequate
resources and expertise might not have been available to develop a psychometrically
acceptable test).
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It is also not possible to know the exact amount of error in any psychological
measure and so error must be estimated (see formulas presented in Chapter 2 and later
in this chapter). A variety of indices of measurement error have been developed, each
with its own strengths and assumptions. The kinds of reliability coefficients discussed in
this chapter are not exhaustive but address the most pertinent that the ASVAB
validation/standards researcher will want to consider: (a) internal consistency (do the
items correlate highly and similarly with one another, indicating that scores on each
item provide you with similar information about the examinee), (b) stability (does the
test produce the same correlation for examinees tested twice over some meaningful time
between testing sessions, assuming no learning has occurred), (c) equivalence (to what
degree do parallel forms of a test correlate), (d) interrater (do the same panel members
rate individuals the same if this is a method of performance evaluation), and (e)
intrarater (does the same rater grade all individuals according to the structured grading
methods and not let influencers such as fatigue over time or perceptions of a student
that biases the grading process).

Defining Reliability

As was shown in Chapter 2, the concept of measurement error is captured in a
simple equation that is a central tenet of classical test theory (CTT). In this section, we
revisit the development of CTT reliability equations with sometimes a different
perspective than in Chapter 2.

The CTT reliability equation expresses the value of the variable that is observed (x)
as a function of the true value of the variable (7) and measurement error (e).

x=T+e (4-1)

CTT, sometimes referred to as true-score theory, is not the only theoretical approach
to understanding psychological measurement, but it is one of the oldest and most
dominant approaches. Although some of CTT’s implications regarding the selection of
reliability estimates diverge from those of other psychometric theories, for example,
domain sampling (where any measure if considered a compilation of a random set of
items from a specific content domain — Nunnally’s (1998) favored model or parallel
tests, the conclusions about the nature of tests and true scores are all the same (Ghiselli,
Campbell, & Zedeck, 1981). We reiterate the point (from Chapter 2) that all
psychometric theories differentiate systematic biasing errors such as “test-wiseness” and
random errors such as examinees’ moods at testing time. Random errors are assumed
uncorrelated to true scores and are treated as an additive component to the true score
component in our observed score. Systematic error, on the other hand, is considered
mathematically as part of the true score and can therefore increase reliability because
there is an increase in the proportion of true score variance to total test score variance.
Systematic bias, however, can affect test validity. Although there are methods for
disentangling the systematic error from the unsystematic random error, they are not
discussed in this manual.
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It is also important to know that when we refer to an instrument’s reliability, we are
not referring exactly to that instrument itself, but the measurements that are made by
that instrument, which may be population and sample specific. In the ASVAB High
School Testing Program (STP) (now called the Career Exploration Program — CEP),
norms and test reliabilities are reported by grade and gender.

Reliability estimates, as we know by now, are used to quantify the amount of
measurement error in an observed variable or measure (Charles, 2005). Conceptually,
reliability refers to the extent to which an individual scores the same way when
measured multiple times (Ghiselli et al., 1981). Perfect reliability (7« = 1.0) would occur
only if an individual always received the same score on a measure (or equivalent set of
measures) no matter when it was (they were) administered (assuming no learning has
occurred). Under CTT, multiple tests are parallel when they have (a) equal means, (b)
equal standard deviations, (c) equal correlations with each other, and (d) equal
correlations with scores on any other measure (Ghiselli et al.).

The development of the concept of reliability within CTT that includes parallel tests
(of which many have been developed in the ASVAB testing program) is grounded on
three assumptions (Ghiselli et al., 1981). The first assumption is captured in Equation 4-
1: Observed scores are an additive function of true and error scores. The second
assumption clarifies the nature of true scores in that it assumes that individuals have
stable characteristics that persist over time. The third assumption clarifies the nature of
measurement error in that it assumes that error is completely random and, therefore,
independent of and uncorrelated with all other characteristics.

Ghiselli et al. (1981) showed that these three assumptions and the concept of parallel
tests can be combined to derive a mathematical definition of reliability. Assuming
variables are in deviation score form, the correlation between two parallel tests x; and x-
is

X4 X
rX1X2 — & . (4_2)
n

O'Xlo'x2

Because an individual’s true scores on a series of parallel tests are equal and because
the standard deviations of all parallel tests are equal, substituting Equation 4-1 into

Equation 4-2 and replacing ouox. with ¢ results in

T+e T +e
rxlx2 :Z( n;_)g 2)- (4'3)

This expression can be expanded to,
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and re-arranged to,
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Because the correlation between two variables multiplied by their standard deviations is
equal to the sum of the cross products of deviation, this equation can be re-written as
follows:
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By the assumption that errors are random, the correlation between error terms and
other variables is zero. Therefore, Equation 4-6 reduces to

:QTZ. 4-7)
O

*1Xp

Thus, to reiterate, the reliability is the proportion of the variance observed in a measure
that is attributable to true variations in the value of the variable (Charles, 2005; Ghiselli
et al., 1981). Traditionally, r« has been used to denote the reliability of predictors, while
ryy has been used to indicate the reliability of criteria. Estimates of reliability typically
range from 0.0 to 1.0, with values close to 1.0 indicating greater reliability and therefore
measurement with less error.

As an example of the effect of the magnitude of an estimated reliability coefficient on
the size of the corrected validity coefficient, suppose the observed correlation between a
predictor and a criterion is .30 but we assume that it is attenuated as a result of criterion
unreliability. If the estimated reliability of the criterion is .52, the corrected validity
coefficient will increase to .42. On the other hand, if the reliability is estimated to be a
much greater .86, the corrected validity coefficient will increase to only .32. The closer
the reliability estimate is to 1.0, the less of an improvement in the validity coefficient
resulting from the correction for unreliability. We caution that we would want to follow
the advice of experts, including Nunnally and Bernstein (1994), that a reliability
coefficient of .70 may be considered sufficient for internal consistency measures in the
initial development of a measure, but that in operational use .80 or even .90 may be
required.
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Selection of Reliability Estimates

Historically, there has been debate over what type of reliability estimates should be
used in making corrections to the validity coefficient for attenuation due to unreliability
(Muchinsky, 1996). The general convention is to use a reliability estimate that is aligned
with one’s “views” of what are the most important sources of error in a particular
validation situation (Muchinsky). To have a “view”, it is important to have an
understanding of common kinds of reliability estimates and the sources of measurement

error they capture.

Common indices of reliability include estimates of internal consistency reliability
(e.g., Cronbach’s Alpha, KR-20), test-retest reliability (i.e., stability), the coefficient of
equivalence and stability, interrater reliability, intrarater reliability, and coding
reliability. Before discussing the sources of error captured in each of these kinds of
reliability estimates, it is important to note that it is not appropriate to make repeated
corrections of a validity coefficient using multiple reliability estimates. That is, the
validity coefficient should not be first corrected using an internal consistency estimate of
reliability, then a stability coefficient, and then an estimate of interrater reliability.

The practitioner should select the single most appropriate reliability estimate
available and perform one validity coefficient correction for attenuation (correction for
unreliability). We refer the reader to Nunnally’s (1978) classic text on CTT for, among
other important topics, the chapter on “Theory of Measurement Error.” The description
of the types of reliability described below are from the perspective of Hunter and
Schmidt (1977; 2004) who were concerned about the various types of random effects
that would affect a meta-analysis procedure (and the generalization of an identified
effect across samples although not within the realm of an ASVAB validation/standards
study). For those familiar with the framework of validity generalization (VG) that
considers multiple studies and multiple statistical artifacts, there is only one type of
measurement considered, purely random error, not the systematic error introduced by
the factors stated in the previous paragraph.

Internal Consistency Reliability

The terms internal consistency reliability traditionally has been used to describe
reliability estimates that are based upon individuals’ responses to multiple, independent
stimuli during a single measurement session. The multiple stimuli are assumed to be
parallel, making them equivalent in assessing the variable of interest (Hunter &
Schmidt, 2004). Examples of criterion measures that involve multiple responses during
a single measurement session include multiple-item tests of job knowledge and job
simulations or samples that require incumbents to react to several independent events.

Having multiple responses completed at a single point in time permits us to identify
two types of measurement error: (a) random response error and (b) specific error
(previously referred to in this chapter as systematic error) (Hunter & Schmidt, 2004).
Random response error has been characterized as “noise” in the human nervous system
(Hunter & Schmidt). It involves arbitrary behaviors not systematically related to any
characteristics of the person being assessed or the situation in which the person is being
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measured. Specific response errors are errors stemming from reactions to a particular
situation or stimulus (e.g., item content). Technically, these errors are person-by-item
interactions (see Hunter & Schmidt, p. 100).

Internal consistency reliability coefficients fail to capture a third potential source of
measurement error (Ghiselli et al., 1981; Hunter & Schmidt, 2004) -- transient error.
Transient errors are due to factors that vary randomly over time, such as mood or
illness. Because internal consistency reliability estimates are based on the collection of
data at a single point in time, these coefficients do not detect transient errors (Ghiselli et
al., Hunter & Schmidt). Therefore, internal consistency reliability coefficients may
overestimate the reliability of a criterion measure if transient errors are present.
Consequently, using internal consistency reliability coefficients, such as Cronbach’s
alpha (Cronbach, 1951) or KR-20 formula (Kuder-Richardson, 1937), to correct for
attenuation may lead to underestimates of the operational validity of a set of predictors.

Test-Retest (Stability) Reliability

Test-retest reliability estimates are computed by correlating individuals’ responses to
a stimulus (e.g., a job knowledge test, a job simulation) at two points in time (Ghiselli et
al., 1981; Hunter & Schmidt, 2004). For example, a group of job incumbents might
complete a job simulation soon after they complete their job training (Time 1) and then
complete the same job simulation several weeks later (Time 2). The correlation between
the incumbents’ scores at Time 1 and Time 2 provides an estimate of the simulation’s
stability measure of reliability.

For test-retest reliability estimates, one needs to be careful not to take the two
measurements very far apart in time as learning might occur for some but not all
subjects, thus shifting the rank ordering of performance from the original order. This
shift in rank ordering at Time 2 from Time 1 thus lowers the magnitude of the calculated
reliability coefficient (merely, the correlation between Time 2 and Time 1 scores).

Test-retest reliability takes into account two sources of measurement error: (a)
random response error, and (b) transient error. The correlation of individuals’ scores at
two different times will be decreased to the extent that individuals’ responses at either
time are affected by random “noise” or by transitory factors, such as mood, fatigue, or
illness (Ghiselli et al., 1981). On the other hand, specific error is not assessed by
estimates of test-retest reliability. Because the same stimulus is administered at both
time periods, the same measurement errors that arise from specific aspects of the
stimuli (e.g., specific instructions, test items) will occur in both time periods. The
stability coefficient, therefore, will be too large because this common specific error will
appear to be true score variance (Hunter & Schmidt, 2004). As with differential learning
over time, practice effects might affect the reliability estimate (Ghiselli et al.) if they are
not uniformly applicable to all applicants (e.g., differential practice effects as with
differential learning will lead to a lower test-retest reliability estimate).
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Coefficient of Equivalence

The coefficient of equivalence considers all three kinds of measurement error
(stability, internal consistency, and equivalence) but is largely concerned with the latter.
Computing this reliability estimate requires administering two parallel forms of a
stimulus at two points in time (Hunter & Schmidt, 2004). This is the most difficult type
of reliability to assess because of the difficulty in creating strictly parallel test forms that
are equivalent in means, standard deviations, and other moments of their score
distributions (Ghiselli et al., 1981). For paper and pencil ASVAB forms, parallel form
development efforts have occurred over years that involve item writing, tryout of these
items in a nearly full range population of youth, and form assembly based upon item
parameters that are matched across forms. The computer adaptive version of the
ASVAB, CAT-ASVAB, develops pools of items based upon Item Response Theory and
parameters with item selection for an individual based upon an adaptive algorithm.

Interrater Reliability

In many validation studies, the criterion is developed specifically for the study and
measured by having observers evaluate the individuals constituting the validation
sample. For example, supervisors or peers may rate job incumbents’ performance or
evaluators may rate trainees’ proficiency. The sources of error in such judgments can be
clustered into two broad categories: (a) error in judgment and (b) idiosyncratic rater
perceptions (Hunter & Schmidt, 2004). Because judgments are responses to stimuli,
they (like responses to items on a test) are affected by random error, specific error, and
transient error (Hunter & Schmidt). For example, a supervisor’s ratings may be affected
by random “noise,” by idiosyncratic errors induced by the wording of the rating scales,
or by errors in judgment generated by temporary influence such as the supervisor’s
illness, mood, or fatigue. In addition, raters have their own idiosyncratic biases that
affect perceptions of others and these biases are thus not part of the criterion construct
and, consequently, are a form of error (Hunter & Schmidt).

The correlation between ratings of the same people provided by different raters
serves as an estimate of interrater reliability. This estimate of reliability takes into
account both errors of judgment and idiosyncratic rater perceptions (Hunter & Schmidlt,
2004). The correlation between the judges will be reduced to the extent that either judge
responds randomly, makes errors related to the specific scales being used,
independently experiences a source of transient error, or has idiosyncratic perceptions
(Hunter & Schmidt). Thus, the inter-rater reliability coefficient is analogous to the
coefficient of equivalence and stability (Hunter & Schmidt). It is generally agreed that
interrater reliability is the appropriate way to estimate reliability for judgments;
however, we will see later that intrarater reliability is generally higher.2

% Note that interrater reliability (which considers the similarity of the rank ordering of ratees by raters) differs from
interrater agreement (which considers the similarity of the absolute magnitude of the ratings provided to ratees
across raters) (Tinsley & Weiss, 1975).

57



Intrarater Reliability

At times, data to compute interrater reliabilities are not available. For example, it
might not be feasible for individuals in the validation sample to be evaluated by multiple
raters. When there is only a single set of ratings for each individual, an alternate
reliability estimate can be computed if individuals have been rated on more than one
dimension (e.g., multiple dimensions of performance, or multiple items assessing
training success). This intrarater reliability is analogous to an internal consistency
reliability estimate (Hunter & Schmidt, 2004). It captures only random errors and
specific errors; it does not assess either transient error or idiosyncrasies in rater
perceptions (Hunter & Schmidt, 2004). Not surprisingly, estimates of intrarater
reliability are often much higher than estimates of interrater reliability (Visweswaran et
al., 1996).

Coding Reliability

Occasionally, coded data are used as a criterion measure. For example, trainees’
performance on a leadership simulation is recorded. Later, the trainees’ non-verbal
behavior is scored by trained observers. Coding discrepancies between the trained
observers are known as coding error (Hunter & Schmidt, 2004). There are multiple
ways of estimating the reliability of coding, including computing the correlation between
different trained observers’ coding.

Coding error is important to assess, but it is not the only source of measurement
error that affects coded data (Hunter & Schmidt, 2004). It also is critical to consider the
sources of error in the behavior being coded. For example, a trainees’ performance on a
leadership simulation is likely to be affected by random error, specific error, and
transient error. These sources of error are not captured by the extent to which trained
observers’ codings agree, making coding reliability a potentially poor choice for
corrections for attenuation (Hunter & Schmidt, 2004). In some cases, coding error
might be very low; resulting in high estimates of coding reliability, but the consistency of
the behavior being sampled might be quite low. In these instances, coding reliability
would substantially overestimate the actual reliability of the criterion of interest and
under-correct the validity coefficient, resulting in a downwardly biased estimate of the
predictor’s validity.

Meta-analytic Sources of Job Performance (Criterion) Reliability Estimates

In using meta-analytic estimates of reliability in correcting validity coefficients for
measurement error, it is critical to select reliability estimates that are well-aligned with
the criteria used in the current validation study. For example, if the criterion of interest
is supervisory ratings for overall job performance, then the reliability coefficient should
be one developed on the same performance metric. Meta-analytic studies will produce
an “average” reliability with a range and standard deviation. Taking the average as the
reliability coefficient that “may” apply to one’s study could be the safest thing for a
researcher to do remembering that there should be similarity in the content of the
criteria, the length of the measurement instrument, and the number of raters.
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Table 4-1 gives examples of meta-analytic reliability estimates (averages) where job
performance served as the criterion in all cases but with three ways of estimating the
reliability coefficient (Interrater, Intrarater, and Stability).

Table 4-1
Meta-Analytic Estimates of Job Performance Measures’ Reliability
Type of
Criteria reliability k N r, SDr,
Job perf., supervisor ratings® Interrater 40 14,650 .52 .10
Job perf., supervisor ratings® Intrarater 89 17,899 .86 .14
Job perf., supervisor ratings® Stability 12 1,374 .81 .09
Job perf., peer ratings® Interrater 9 2,389 42 A1
Job perf., peer ratings® Intrarater 10 1,270 .85 12

Note. K = the number of studies. Reliabilities are for incumbents.
AVisweswaran et al. (1996) also report reliabilities for different aspects of jobs performance such as
leadership, job knowledge, and effort.

Table 4-1 shows that the Interrater reliabilities for both supervisory and peer ratings
(.52 and .42, respectively) are much lower than the Intrarater reliabilities for the same
(.86 and .85, respectively) (as noted they should be in a previous sub-section on
Intrarater Reliability). Second, the magnitudes of the standard deviations of reliability
estimates across studies for every type of reliability highlight the variability in
coefficients of reliability. In this regard, it has been argued that the highly cited and used
mean interrater reliability for supervisory job performance ratings estimated by
Visweswaran et al. (1996) might be a lower bound estimate of reliability (Scullen,
Bergey, & Aiman-Smith, 2005). We note that wide use of the value indicates that in the
published work on the reliability of the supervisory ratings, the Interrater reliability is
deemed most appropriate.

Marine Corps Job Performance (Criterion) Reliability Estimates

As mentioned earlier in this chapter and at various points in both the Introductory
and Technical Manuals, the joint-service Job Performance Measurement (JPM) project
was a huge endeavor to ascertain the magnitude of the predictive relationship between
the ASVAB and the job performance. For the most part, the project bypassed ASVAB’s
relationship with training performance and concentrated heavily on the development of
job performance measures of various types focusing on the gold standard, hands-on
measures of job performance (Wigdor & Green, 1991). Each Service was responsible for
developing the performance criteria for a number of occupations that were selected to
be reflective of a divers set of occupational areas. In retrospect, it appears that the
Marine Corps JPM efforts were the most in-depth in the development and publishing of
their work.
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Table 4-2 has been taken from Mayberry and Wright (1992) (Table 1 and Appendix
Table A-1) and contains reliability estimates for hands-on measures of job performance
and job knowledge measures that apply to five helicopter mechanic military occupations
(MOS) (different helicopter platforms).

Table 4-2

Sample Derived Criterion Reliability Estimates from the Marine Corps
JPM Project (Mayberry & Wright, 1992)

Military Occupational Specialties (1980 Reference Form 8a)

Job-1 Job-2 Job-3 Job-4 Job-5

Hands-on performance test

Test-retest .70 (.79) | .81 (88) - - -

Split-halves .71 (.80) | .80(.87) # .85(.91) .74 (.82) | .84 (.87)

Alpha coefficient .73 (.81) | .81(.88) @ .81(88) | .69 (.78) | .77 (.81)
Job Knowledge test

Test-retest .61 (73) | .77 (.87) - - -

Split-halves 91 (.94) | .95(.97) H .93(.96) @ .92 (.95) | .91(.92)

Alpha coefficient .90 (.93) | .95(.97) @ .92(.96) @ .90 (.94) | .92 (.93)

Notes. (1) Jobs are helicopter mechanics for four different platforms. (2) Range corrected reliabilities
are shown in parentheses. (3) Score agreement reliabilities documented in the report are not included
in the table.

Mayberry and Wright (1992) note that the first reliabilities of the pair listed in Table
4-2 were developed in range sample available for the four helicopter mechanic MOSs.
These reliabilities are restricted in range due to the operational use of an ASVAB
standard (composite with cutscore) in the sense that the full range of ASVAB scoring
youth were not considered in the measures’ development — just those who met the
ASVAB classification standard, graduated from training, and reported to the job. The
range corrected reliabilities are listed in parenthesis and we defer discussion of the
range correction process until Chapters 6 and 7.

Although the military most likely will never see the level of effort that went into
criterion development during the JPM days, we caution about accepting criterion of
convenience that most researchers have access to in their organization’s databases
without questioning how they were derived. (Chapter 4 of the Introductory Manual
addresses the criterion problem and the potential pitfalls of criteria of convenience.)
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Paper and Pencil and CAT-ASVAB Reported Reliabilities

The developers of the ASVAB, Defense Manpower Data Center, Personnel Testing
Division (DMDC-PTD) report estimated reliabilities of the ASVAB tests from Item
Response Theory (IRT) methods, not CTT methods. The IRT method provides an
analogue to the CTT methods, called marginal reliability, and involves averaging
expected error variance across the ability (theta) range and transforming them in to
reliability coefficients (conceptually, internal consistency reliabilities). DMDC provides
a link to the Official ASVAB website that includes many relevant research documents,
one of which is an explanation of the IRT methods, references, and reported CAT-
ASVAB reliabilities www.officialasvab.com/reliability res.htm . We site only one of
DMDC’s references related to reliability estimation using IRT methods (Sireci, Thissen,
& Wainer, 1991). Reliabilities for paper and pencil ASVAB forms are also published (e.g.,
Palmer et al., 1988; Sands, Waters, & McBride 1997). Table 4-3 is provided to give the
reader an idea of the magnitude of the ASVAB test reliabilities for both test-retest
(stability) and parallel forms (equivalency).

Table 4-3
Test Retest and Parallel Forms Reliabilities for Earlier ASVAB Power Tests

ASVAB Power Tests (1980 8a Reference Form)
GS AR WK PC AS MK MC EI

Test-Retest .83 91 91 .78 .86 .89 .83 .79
Parallel 82 | .88 .90 79 82 87 78 | .75
Forms

Notes. (1) See Chapter 2 of the Introductory Manual for descriptions of the ASVAB tests. (2)
Reliabilities were developed on 12 graders participating in the High School Student Testing Program
— now called the Career Exploration Program (CEP). (3) All values were taken from the ASVAB
Technical Manual for the ASVAB 18/19 CEP, which are published elsewhere.

Table 4-3 shows some similarities between test-retest and parallel forms reliabilities
for the individual subtests. Larger differences are noted between tests (e.g., PC and WK
— both part of the ASVAB Verbal composite). When WK and PC are formed into a
composite (Verbal [VE]), the verbal construct is more reliably measured.

Measurement Error Scenario Observations

Schmidt and Hunter (1996) were concerned that many researchers who publish
validity studies have misconceptions about measurement error and how it should be
addressed. The authors provided a critique of 26 studies under different scenarios with
the intent of augmenting the mostly theory and formula-based treatments of the
measurement error topic. Of the 26 scenarios, we discuss only two and note that all are
worth reading.
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Scenario 6 (Measurement error not addressed in theory-based aptitude
research)

Schmidt and Hunter (1996) described Scenario 6 for a researcher who tested specific
aptitude theory against the g theory using three tests that measured quantitative, verbal,
and spatial ability, all three having reliabilities of at least .80 (not specified if test-retest,
parallel forms, or internal consistency). The criterion was a measure of job performance
(not specified what aspect of job performance, overall, or if reliability was measured and
how). In the regression analysis, g was entered first into the equation to predict job
performance, followed by the three individual tests. It appears that two of the three tests
had standardized regression weights that were statistically significant and of practical
value. However, Schmidt and Hunter pointed out that Schmidt, Hunter, and Caplan
(1981) have discussed this phenomenon in detail and that what is missing from the
researcher’s method was to correct the criterion related validity for measurement error
(we presume just the predictors could be corrected). When the corrections were
subsequently done, the standardized regression weights that were originally significant
became zero, supporting the g theory.

Specific aptitude theory versus general mental ability in psychological research has
been an important topic in the ASVAB community for a long time (e.g., Ree & Earles,
1991; Ree, Earles, & Teachout, 1994). That is, should we just be using the general factor
“g” taken as the first principle component factor as the measure of the full ASVAB’s
utility in predicting training or job performance or should we use occupation tailored
ASVAB composite comprised of several tests (instead of all ASVAB tests in measuring g)
to emphasizing differential assignment and person/job fit. Using all tests in a measure
of g boosts the reliability, and therefore, potentially boosts validity across many
occupations whereas using tailored composites would have lower validity.

Scenario 10 (Validity correction using the wrong reliability coefficient for
supervisory ratings)

Schmidt and Hunter (1996) described Scenario 10 for a researcher who was
interested in the predictive validity of a personnel assessment outcome measure when
the criterion was the supervisor’s ratings of job performance. There were 10 job
dimensions for a single supervisor to rate and an overall “index” of job performance was
the sum of standardized scores across all dimensions. Coefficient alpha, derived from
the intercorrelations of the 10 dimensions, was used to correct the validity coefficient for
unreliability in the criterion measure. Schmidt and Hunter point out that coefficient
alpha (internal consistency) is inappropriate because, basically, with one rater, the
idiosyncrasies of the rater and his/her perceptions of the rated individual would
somewhat affect the ratings on all dimensions. Mathematically, this systematic error
becomes part of the true score variance and increases the ratio of true to observed score
variance with the result of an upwardly biased validity coefficient. Schmidt and Hunter
state about the intrarater reliability that “It is an estimate of what the correlation would
be if the same rater rerated the same employees ...”p. 209. The authors go on to cite
Cronbach (1951) on this fundamental issue.
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Schmidt and Hunter (1996) state that the appropriate reliability in this scenario is
interrater reliability (which would require a rework of the research design) and cite
others who have documented the large specific rater error (between raters) particularly
when the criterion is job performance (King, Hunter, & Schmidt, 1980; Rothstein,
1990). The finding of low intrarater reliability and high intrarater reliability in these
researchers’ work is consistent with what we observed in Table 4-1 of this chapter. We
have included this scenario because supervisory ratings are a part of both military and
private industry performance evaluation systems.

Scenario 15 (Construct equivalence of speeded tests using wrong
reliability coefficient)

Schmidt and Hunter (1996) described Scenario 15 for a researcher who was directed
by his organization to develop an in-house clerical speed/accuracy test that was
construct equivalent to a commercially published test (Minnesota Clerical Test). The in-
house developed test was administered alongside the commercial test for over 1,800 job
applicants — the scores from the two tests correlated .81. KR-20 (internal consistency)
estimates of reliability were .96 for the in-house measure and .94 for the commerecial.
Dividing .81 by the produce of the square roots of .96 and .94 yielded .85. This estimate
of the true score correlation was not of sufficient magnitude to conclude that the two
measures were construct equivalent.

Schmidt and Hunter (1996) pointed out that KR-20, a special case of coefficient
alpha (internal consistency), was not appropriate for use with speeded tests because all
of the items in speeded tests are typically of the same type (homogeneous). Further, the
items are so easy that if given enough time, all examinees could answer all of the items
correctly (thus inflating reliability). Schmidt and Hunter suggested a parallel forms
approach to estimate construct equivalence and the researcher followed up by (a)
splitting each test in half and administering two timed halves for each and (b) correcting
the two resulting intercorrelations with the Spearman-Brown (Brown, 1910; Spearman,
1920) formula, thereby estimating reliabilities for length corrected forms (doubling each
test to their original length). The resulting reliabilities were .79 and .87 (new and
commercial instruments), which yielded an estimated .98 correlation between the true
scores of each measure — confirming construct equivalency.

As an aside, we note that the former ASVAB clerical speed/accuracy test, Coding
Speed, has been found to add incremental validity to the ASVAB for not only clerical
types of jobs, but for other types of Navy Ratings such as Air Traffic Controller and the
Navy SEALs (Appendix A of the Introductory Manual). From time to time, the question
comes up within the ASVAB community about what is actually being measured by
Coding Speed. Segal (2012) through extensive analyses concludes that there is a
motivational component.
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Concluding Remarks

This chapter provided a discussion of the underlying tenants of test measurement
error and the various types of reliability estimates that apply to both the predictor and
the criterion. In our focus on the criterion, we included reliability averages taken from
the meta-analytic literature and showed the differences in the magnitudes of reliability
coefficients for three methods of measuring job performance (interrater, intrarater, and
stability). We discussed the ASVAB reliabilities for both CAT-ASVAB (IRT methods) and
paper and pencil ASVAB. We again note that the ASVAB selection and occupational
classification composites containing more than one individual test result in higher
reliability coefficients, about .90 or above. However, we do not correct for predictor
reliability in operationally focused ASVAB validation/standards studies. Currently, the
not even ASVAB composite validities are corrected for measurement error in the
criterion variable, which typically is the training grade variable, also because of the
operational focus. However, the position of ignoring reliability in the criterion may
change as the military experiences more protracted financial constraints placing at risk
the reliability of all types of military performance measures. Further, as personality and
interest measures are considered for selection and classification decisions, the
underlying true relationships of predictors and post training performance measures
(where personality theoretically applies) will require consideration of the appropriate
reliability indices and correction methods; even appropriate indices/methods should be
questioned for use in the operational context.

Chapter 5 goes in depth on the topic of range restriction and the various corrections
of the validity coefficient derived in a selected sample. Chapters 6 and 7 address the
joint correction for restriction in range and measurement error (reliability).
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Chapter 5.
Correcting for Restriction of Test Score Range
Fritz Drasgow

Introduction

The last chapter provided a discussion about many aspects of measurement error
and reliability coefficients, all having to do with the validity coefficient and its
limitations. We address how to correct a validity coefficient for reliability in later
chapters. This chapter focuses strictly on the correcting the validity coefficient for range
restriction in test scores that results from applying a selection or classification standard
(e.g., an ASVAB classification composite with cutscore) that screens out applicants
below that standard. We briefly examined the effects of range restriction on the
correlation coefficient in Chapter 2 for the explicit (direct) selection case. However,
there are other kinds of range restriction and we address some of them in this chapter.
We refer the reader to Sackett and Yang (2000) for a more complete treatment of the
restriction in range issue.

Restriction in Range Situations in General

Probably the most common situation for restriction of range in test scores arises in
the context of personnel selection when individuals with high scores on a selection test
are admitted to college or hired for a job. Here, academic or job performance (variable Y
to be predicted from variable X) can be assessed for only those individuals who are
admitted or hired. Thus, whereas complete data are available for the explicit selection
variable (X) for the total applicant population (from which, theoretically, future
applicants will be selected), only partial data are available for the academic or job
performance variable (Y). In this case we call Y the incidental selection variable, the
same as what we call a candidate X variable that was, for example, administered only to
an already selected group of individuals based upon an operational selection or
classification standard.

We describe another type of incidental selection involving just the ASVAB. Although
all nine ASVAB tests are administered to military applicants, only four of the nine tests
(PC, WK, MK, and AR) constituting the Armed Forces Qualification Test (AFQT) are
used to determine suitability for entrance into the U.S. military services, whereas the
remaining ASVAB tests (GS, MC, EI, AS, and AO) are available for military
classification into occupations. If we were to use the AFQT with some cutscore to assign
(classify) military selected recruits into a specific occupation subsequent to using a
lower AFQT score for military selection, the AFQT would be the explicit selection
variable (on a cognitive basis) for the occupation.

Now say we suspect that a different combination of ASVAB tests would be more
highly predictive of training performance (the Y variable) than the AFQT based upon the
characteristics and requirements of the occupation and the curriculum used to train for
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that occupation, say a technical job that involves electronics. Such an ASVAB composite
could be AR+MK+EI+GS (the Services Electronics composite). Because this composite
was not used in the actual ASVAB standard, we would not expect the variance of that
composite to be as diminished as the AFQT variance, given the explicit cutscore on
AFQT. Because the magnitude of the correlation coefficient is dependent on test score
variance, the validity of the AR+MK+EI+GS composite developed in the selected sample
would be downward biased compared to the validity of the AFQT. In order to evaluate
the validity of the two composites on an even playing field, we need to correct both
validities for restriction in range of test scores and provide validity estimates for the
unrestricted population.

In statistical notation, for the simplest case of one explicit predictor variable and one
incidental variable (say, the criterion), we can compute the variance of X in the

unrestricted group, S’, and in the restricted (selected) group, s’.3 In contrast, we can

compute the variance of the performance variable Y, 35 , in the restricted group only,

because we do not have performance data for those not selected. Similarly, we can
compute the correlation of X and Y'in the restricted group, r,,, but not in the

unrestricted group, our point of interest in predictive validity studies. Thus, the variance
of Yin the unrestricted group, Sy2 , and the correlation of X and Y'in the unrestricted

group, R, , are unknown and must be estimated.+

Restriction in range can have a very large impact on correlations (validity estimates)
as observed in Table 2-4 of Chapter 2. Consequently, it is very important to understand
the effects of range restriction when conducting ASVAB validation studies. As a real life
example, Thorndike (1949) provided extraordinary validity results for 1,036 men in pilot
training for the U.S. Army Air Force during World War II. These men were considered
an experimental group and were selected without regard to their standing on a selection
composite that was used under normal pilot selection circumstances (Pilot Stanine). The

selection composite had a substantial correlation, R,, = .64, with performance scores
received in the pilot training course. Thorndike also computed the correlation for only
the 136 men who would have qualified for pilot training under normal selection
circumstances; for this selected group, the correlation of the selection composite with
training school performance was only r, = .18. The importance of correcting for

incidental selection as well as explicit selection can be seen in the correlations presented
by Thorndike (1949), which are reproduced in Table 5-1.

% We use large letters for the large (i.e., unrestricted) group and small letters for the small (i.e., restricted) group.

* “R” in the Navy ASVAB validation/standards study context does not refer to a multiple correlation; rather it stands
for the theoretical population (unrestricted) correlation (Rho, orp). The unrestricted validity is estimated for an
ASVAB composite, consisting of a number of integer weighted ASVAB tests, as it predicts in a linear model the
continuous criterion variable, final school grade in training.

68



Table 5-1
Thorndike’s (1949) Correlations of Predictors with Success in Army Air Force
Pilot Training for Total and Restricted Groups

Total Group Restricted Group
Predictor (N=1036) (N=136)
Pilot Stanine (Composite Score)* .64 .18
Mechanical Principles** 44 .03
General Information** .46 .20
Complex Coordination** .40 -.03
Instrument Comprehension** .45 27
Arithmetic Reasoning 27 .18
Finger Dexterity .18 .00

*Explicit selection variable
**Components of explicit selection variable

The Pilot Stanine (Composite Score) in Table 5-1 tagged with a single asterisk was
used for explicit selection and comprised the four tests tagged with a double asterisk.
The other two tests without asterisks, Arithmetic Reasoning and Finger Dexterity, were
given to pilot applicants as part of the Pilot selection battery but had no weight in the
Pilot Stanine score. Note that one correlation in the restricted group (Complex
Coordination) was negative (-.03) even though its correlation was positive and
substantial in the unrestricted “Total” group (.40).

Table 5-1 shows that Instrument Comprehension had the largest correlation for the
restricted group (.27) followed by General Information (.20). Complex Coordination had
a negative correlation, essentially zero (-.03), and Mechanical Principles had a positive
correlation, but also essentially zero (.03). These two correlations would lead one to
conclude that these tests were worthless for predicting success in pilot training when in
the unrestricted group from which, theoretically, future selection decisions could be
made, the correlations were meaningful (.40 and .44, respectively). Most important to
note in Table 5-1, the Pilot Stanine (Composite Score) has the highest validity in
predicting who from the unrestricted group would be successful in Pilot training (.64). If
evaluated only in the selected group, the validity would be assessed not at .64, but at
only .18.

It is critical to realize that the validity estimates of interest in this example are those
coefficients of the selection tests for the pilot applicant group from which future
selection decisions will be made, not the coefficients for the selected group. Simply
considering the restricted range of talent that occurs from use of a selection composite
and cutscore results in a highly biased estimate of association between the selection
composite and training school performance, and that bias will be downward and
proportional to the reduction in variance that results from the particular cutscore.
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The statistical problem in determining the applicant group validity estimates from
knowledge of them only for a restricted in range group becomes somewhat of a “missing
not at random” data problem. Correcting correlations and variances for this special
missing data problem involves the correction for restriction of range, which has had a
long history of research. Gulliksen (1950) provides a thorough treatment of bivariate,
trivariate, and multivariate cases and cites work dating back to Karl Pearson (1903a,
1903b). The remainder of this chapter describes the cases of most importance to
evaluating tests and composites of tests for military job classification.

The Bivariate Case: Explicit Selection on One Variable

The bivariate correction for range restriction is the simplest case and is illustrated in
the Army Air Force study described in the previous section taken from Thorndike
(1949). Specifically, there is explicit selection on a predictor X and, consequently, data
are available on the criterion Y for only the restricted sample. Thus, we know the

variance of X in the total group, S?, as well as the selected group, s.. We also know the
variance of Y'in the selected group, 55 , and the correlation of X and Y'in the selected
group, I, . Our task is to use these known quantities to determine the variance of Y'in the

total group, Sj , and the correlation of X and Y'in the total group, R, .

We shall assume without loss of generality that all variables have been transformed
to deviation scores and consequently the intercepts of regressions are all zero. Two
assumptions commonly made in regression are needed to derive corrections for
restriction in range: (a) linearity and (b) homoscedasticity. Stated more precisely, the
first assumption is that E(Y | X = x) = Bx for all x.

In the total group, the regression of Y on X is

) S
ﬂz%Xz%ﬁ% (5-1)

X

and the regression in the selected group is

A S
Yo=b,X =1, X, (52)

X

Given the assumption of linearity, excluding some individuals with low X scores does
not change the mean Y score for a given X score for those selected and so

Bxy = bxy (5_3)
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and therefore

S S
ny_y:rx y' (5'4)

y_
X SX

Homoscedasticity means that the errors about the regression line have constant
variance, signified by

for the total sample and

for the restricted sample. Again, excluding individuals with low X scores should not
change these conditional standard deviations; therefore,

Sy,/ 1-R} =s,,/1-1). (5-7)

Examining Equations 5-4 and 5-7 shows that we have two equations and two
unknowns, S and R, . To solve, we first rewrite Equation 5-4 as

and then substitute into Equation 7,

S, S
ry S—VR—X\jl— R: = sy\jl— ry. (5-9)
x 'y

Squaring both sides and moving known quantities to the right side,

1-r?
- 2 (5-10)

2
Xy

2
1-R,
2
R?

U')|m
x o [>X N

and therefore
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[iz —1}. (5-11)
Mo

Adding one to both sides and taking the reciprocals,

2 _
Ry =

N

, (5-12)
_1J

1
1+SX2[

1

Ry = - , (5-13)
1+ 52(12 —1}
Sx r-xy

which provides the formula to convert the known correlation from the restricted sample,
I'vy, to an estimate of the unknown correlation Ry, in the total group, the validity of
interest when validating tests for selection purposes. Also, given this value of R,,, we can
substitute into Equation 5-8 to obtain an estimate of S,.

w
é-‘w‘ =

and

The Trivariate Case: Implicit Selection on a Third Variable

In the trivariate case, we have a predictor X, criterion Y, and an additional predictor
Z that we wish to study. There is direct selection on X, which reduces its correlation with
Y in the selected group as described in the previous section. The additional predictor Z is
typically not used to make selection decisions, so there is no explicit selection on Z.
However, ordinarily Z and X are correlated, so selecting on X has the effect of reducing
the variance of Z. This situation is called indirect or incidental selection on Z.

Of critical importance in the situation of incidental selection is that the practitioner
understands the experimental design and at what point Z was administered. In a
predictive validity study, applicants are administered the selection test X and the new
predictor Z at the same time. Explicit selection on X occurs and selectees report to, say,
training. Training performance Y scores are observed along with X and Z scores for all
those who trained. In a concurrent validity study, applicants are administered only the
selection test X. As before, there is explicit selection on X and selectees report to
training. Z is administered to all selectees who report to training and, as before, X and Z
scores are observed for all those who trained. The key distinction between the predictive
and concurrent designs is whether the variance of Z is observed in the total group or not

(i.e.,1is Sf known).
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In the predictive validity study, all applicants are given tests X and Z, so S? and S’

are known. Performance is observed later, so sj 1s known but not Sf . The correlations of

X and Z with performance Y are observed in the selected group, so rw and r,, are known,
but the correlations of the two predictors with the criterion in the total group, R,y and
Ry, must be estimated.

In the predictive validity design, we need to assume that the regression of Y on Zis
linear and homoscedastic as well as Y on X. Given the assumption of linearity, selection
on X does not affect the conditional means of Y given Z and we have

The homoscedasticity assumption means

S, = Sy\jl— R} = sy\f 1-r; =s,,. (5-15)

As in the case of direct selection on X, we have two equations and two unknowns (Sy
and R,); note that S, s,, sy, and r are known. Solving Equations 5-14 and 5-15 gives

w

y S

S, =r, =
y ZVSZR

L (5-16)

zy

and

1

I:ezy = ’ (5'17)
+& ==
Sz r-zy

which have exactly the same form as Equations 5-8 and 5-13. Thus, the fact that there is
direct selection on X and incidental selection on Z is immaterial. What is important is

that S? and S’ are known.

In a concurrent validity study, S?is not known and so we cannot simply use
Equation 5-17 to estimate R;,. In this case, Sy, S;, and R, are unknowns, so we have two
equations (Equations 5-14 and 5-15) and three unknowns. To obtain a solvable set of
equations, we need the additional assumption that the partial correlation between Z and
Y, holding X constant, is the same in the restricted and total groups. Specifically,
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R, —R.R

Xz \xy xz xy

= (5-18)

\/1R\/1R2 \j_\/ﬁ

Equations 5-14, 5-15, and 5-18 contain the three unknowns, and hence can be solved
(see p. 149 in Gulliksen [1950] for the algebra). The solution for the correlation of Z and
Y for the total group is

2
— ol + Tl —
SX

Xz xy xz ' xy

R, = . (5-19)
2 2 sz 2 2 Sf
1-r; +rng 1—rxy+rxy¥

The Multivariate Case

Sackett and Yang (2000), in their article that addresses expanded types of restriction
in range, cited both Aitken (1934) and Lawley (1943) as further developing the
published Pearson (1903) correction formulas for the multivariate case. Hunter,
Schmidt, and Le (2006) point out that the military is in the favorable position of
applying the multivariate correction formulas when evaluating candidate ASVAB
composites that are subject to incidental selection because all military applicants are
required to take the full ASVAB (and there is an ASVAB normative youth population
that can serve as the unrestricted population in the corrections).

Gulliksen (1950) discussed several cases of multivariate selection (e.g., the variances
of the incidental selection variables for the unrestricted population are known or
unknown). As in the case of the predictive versus concurrent study design, the key to the
correction formulas is whether the variances of the predictors are known in the
population. In the case of the ASVAB, the variances of all the ASVAB tests, and the
explicit selection composite formed from these tests, are known for both the
unrestricted population (which for the Navy, is the ASVAB normative population) and
the restricted “selected” group, but the variance of the criterion variable is known only
for the selected group. In this case, all of the ASVAB tests, which provide more
potentially relevant information about an applicant, can be treated mathematically as
explicit selection variables when in fact a single composite of ASVAB tests used for
explicit selection (more information about the applicant is obtained through use of all
ASVAB tests).

We adopt some matrix algebra notation for the multivariate case (generally cited by
the Navy as Lawley [1943]). Let Cxand c.cdenote the variance-covariance matrices of
the predictors in the total and restricted groups, Cxy and ¢xy denote the vector of
covariances of the predictors with the criterion in the total and restricted groups, and, as

before, Sj and si denote the variance of the criterion in the total and restricted groups.
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As in the univariate case, we assume that the regression of the criterion on the
predictors is unaffected by selection,

B,, =C,C,, =b,, =c,c,,. (5-20)

XX Xy
From Equation 5-20 it is apparent that

C.=C.clc. =C.b , (5-21)

Xy XX XX XY XX xy 1

so that the covariances of the predictors can be computed from known quantities (Cx,
Cxx, and ¢yy). The standard deviations of the predictors are known (they are the square
roots of the diagonal entries in Cx) and so all that remains is determining the variance
of the criterion in the total group.

Using the theory of linear transformations, the variance of the errors E =Y —Y is

Var(Y —=Y) =Var(Y)+Var(Y)-2Cov(Y,Y)
=S} +Var(X'B,,)—2Cov(Y, X'B,,)
=S +B,,C,B,, —2C,B

Xy 7 xx = xy Xy = Xy

—82+C c.cB, -2C B

Xy Xy 7 xx = xy Xy = xy

—sz+c B -2C.B

Xy = xy Xy = xy

=S;-C,B

Xy = xy

(5-22)

for the total group and for the restricted group,

Var(Y -Y)=s2-c b, . (5-23)
If the errors are homoscedastic,

S;-C,B,, =s;—c,b,, (5-24)
so that,

S; =s,—c,b,+C B, . (5-25)
Using Equation 5-20 yields
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2 2 ! '
S, =s,+(C,, —¢c,)b,,. (5-26)
Define the diagonal matrix D, as containing the variances of the predictors,

DX = Dlag (Cxx) . (5_27)
Then the correlations of the predictors with the criterion in the total group are

R, =—D;
SY

Y7C,,. (5-28)

Concluding Remarks

There are several cases of explicit and incidental selection situations that should be
considered when correcting validity coefficients for restriction in range. However, the
Navy, in validating the operational and candidate replacement ASVAB composites for a
specific occupation classification standard, applies the multivariate correction for range
restriction that treats all nine of the ASVAB tests as explicit selection variables. The
multivariate method in many cases has been found to give more accurate estimates of
population validity coefficients than the univariate method and also addresses the
incidental selection situations involving ASVAB tests that are not used in the operational
selection composite. A number of issues regarding this procedure do exist and are
discussed in later chapters (see for example, negative range corrected validity
coefficients discussed in Chapter 11). We also refer the reader to Dunbar and Linn (1991)
for more about the restriction in range topic in a military context. The next chapter
addresses the joint correction for range restriction and measurement error.
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Chapter 6.
Joint Corrections for Measurement Error and
Range Restriction
Sarah A. Hezlett

Introduction

Both restriction in range of test scores and measurement error attenuate observed
validity coefficients, making joint corrections appealing. Historically, however, there has
been confusion about how to correct for both range restriction and unreliability, or even
if such corrections are appropriate. Recent theoretical work has clarified that the nature
of the range restriction drives the appropriate procedures to follow when making joint
corrections (Hunter, Schmidt, and Le, 2006; Mendoza & Mumford, 1987; Stauffer &
Mendoza, 2001). This chapter provides some background on the joint corrections.

Background

The formulas for correcting for correlation attenuation due to measurement error
(attenuation) and range restriction were derived independently, creating some
uncertainty about how joint corrections should be made (Stauffer & Mendoza, 2001).
Standard practices have ranged from stern cautions about their use to almost
nonchalant applications of accepted rules of thumb. For example, Standards for
Educational and Psychological Tests (APA, 1974, revised in 1999) advised that validity
coefficients corrected for both measurement error and range restriction should only be
used to guide further research, but a psychometric rationale was not included to support
this warning (Bobko, 1983; Schmidt, Hunter, Pearlman, & Hirsh, 1985). More recent
validation guidelines (e.g., see Chapter 7 of the Introductory Manual and SIOP, 2003)
encourage such corrections.

At other times, the methods of combining the two types of corrections have almost
appeared to be taken lightly. The corrections for range restriction and measurement
error have been treated as if they affect the validity coefficient separately and can be
combined linearly (Hunter et al., 2006; Mendoza & Mumford, 1987). The order in which
corrections have been made traditionally has been driven by the nature of the available
data. Specifically, whether or not the estimate of reliability was based on range
restricted data has been used as the factor determining the sequence of corrections
(Stauffer & Mendoza, 2001) (explained more fully in the next chapter).

Restricting the range of data not only affects the magnitude of the observed validity
coefficient (as described in Chapter 5); it also attenuates reliability estimates (the
correlation of true scores with observed scores). For example, in many validation
studies, criterion data (scores) are only available for job incumbents who have been
hired on the basis of their scores on a selection measure. The range of incumbent scores
on the criterion is restricted in comparison to what the range of scores would have been
if all applicants, rather than just those who performed well on the selection instrument,
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had been hired and proceeded to perform. Assuming reliability is constant over the total
range of criterion scores (which may not be the case), the magnitude of a reliability
estimate for the criterion data collected from job incumbents will be biased downward
from that which would be obtained in an unrestricted sample of job applicants
(theoretically having performance scores).

Conventionally, if the estimate of reliability was known for the unrestricted group
(not affected by range restriction), the validity coefficient was first corrected for range
restriction and then corrected for measurement error. On the other hand, if the estimate
of the reliability was curtailed through range restriction, the validity coefficient was first
corrected for unreliability and then corrected for range restriction (Stauffer & Mendoza,
2001). In some situations, however, using this rule of thumb will yield inappropriate
results (Stauffer & Mendoza).

On issue with the rule of thumb is that it has been demonstrated that unreliability
and range restriction interact, affecting how range restriction is defined statistically
(Hunter et al., 2006; Mendoza & Mumford, 1987). Consequently, the nature of the range
restriction, rather than whether or not the reliability estimate is affected by range
restriction, should determine how joint corrections for measurement error and range
restriction are made (Hunter et al.; Stauffer & Mendoza, 2001). The appropriate steps
and formulas to use in correcting jointly for unreliability and range restriction depends
upon (a) the nature of the range restriction, (b) the type of data available, and (c) the
objectives of the research (i.e., whether correcting for measurement error in the
predictor is appropriate — not considered so in operationally focused ASVAB
validation/standards studies).

In the next section, we review derivations of the correction for measurement error,
followed by the corrections for both measurement error and range restriction.

Correcting Validity Coefficients for Measurement Error

A mathematical formula specifying the relation of the correlation between observed
measures with the correlation between true scores was discussed by Spearman in 1904,
making it one of the earliest applications of classical, or true-score, test theory (Charles,
2005; Muchinsky, 1996). According to this formula, the hypothetical correlation
between observed scores on two measures (px) is a function of the correlation between
the variables the measures are designed to assess (i.e., their true scores, Tx and Ty) and
the reliabilities of the measures (o and pyy) (Charles):

Pxy = Prr, \/E\/pyy . (6-1)

Equation 6-1 can be algebraically solved to obtain pr1y, the correlation between the
true scores of X and Y, that is, an estimate of an observed correlation corrected for
measurement error in both the predictor and criterion having estimates of the reliability
of both measures. Equation 2-16 in Chapter 2 is that algebraic solution and is restated
here as:
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pxy
pTxTy - = p(c Yoo (6_2)
Pxx \V pyy

Note that the equation of the correlation between true scores and the corrected value
rests on the assumption that the errors are random (Charles, 2005) and not subject to
sampling issues. The practitioner’s use of the correction for attenuation presented in
Equation 6-2 requires the substitution of observed sample statistics presented as
Equation 6-3:

rxcyC =

My
\/a \/E (6-3)

Although many researchers have discussed an observed validity coefficient corrected
for measurement error as if it were a population value, we must remember that the
correction is based on sample statistics and is thus merely an estimate of the population
parameter (Charles, 2005; Muchinsky, 1996) and one that rests on the assumptions of
classical test theory (CTT). (CAT-ASVAB reliabilities are now based upon Item Response
Theory (IRT), which has a different set of assumptions and a different way in
quantifying measurement precision, briefly discussed later.)

The corrected validity coefficient for measurement error is generally a less biased
estimate of the population parameter than is the uncorrected validity coefficient (SIOP,
2003). However there can be overestimates or underestimates of the population validity
coefficient, as highlighted by the fact that the value of a corrected validity coefficient
occasionally can be greater than 1. That is, correction for attenuation sometimes yields
values for validity coefficients that are not theoretically possible. Debate over the
possible causes of this phenomenon erupted soon after Spearman’s (1904) work on the
correction for attenuation and sampling error; errors in estimating reliability remain
viable explanations (Charles, 2005; Muchinsky, 1996).

In practice, the following correction formula is generally used in industry for hiring
decisions, as it is widely agreed that only error in measuring the criterion should be
corrected, not error in measuring predictors (SIOP, 2003).

My

=—. 6-
Mxy, \/E (6-4)

In industry, hiring decisions must be based on the fallible scores collected with the
predictor (Muchinsky, 1996), making a validity coefficient corrected for the reliability of
the predictor a poor estimate of the predictor’s operational validity. We recognize that
the Navy does not correct for reliability for the training criterion used to validate the
ASVAB in the operational occupational classification context, which will be discussed in
Chapter 17 about setting ASVAB cutscores. When validity coefficients are corrected for
measurement error, both the corrected and uncorrected values should be reported
(SIOP, 2003).
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The Joint Correction for Direct Range Restriction

First, the case of direct range restriction due to explicit selection on an observed
variable (e.g., scores on the ASVAB) is considered, and then the case of incidental
selection. In both cases, emphasis is placed on outlining the steps to follow when
correcting for range restriction and unreliability only in the criterion. Procedures that
also incorporate corrections for measurement error in the predictor are mentioned, but
treated more in depth in the chapter that follows. The correction for measurement error
in the predictor is typically applied for research purposes (e.g., evaluating a potential
new addition to the ASVAB) but are rarely used to inform decisions about operational
selection systems, our focus in this chapter. We note that the addition of corrections for
measurement error in the predictor changes the appropriate steps to follow, at times in
substantial ways.

For many jobs, applicants take a selection test. The x scores of the unrestricted
sample of applicants are used to make hiring decisions. The resulting pool of job
incumbents has a restricted set of scores on the selection test (x). As noted in Chapter 5,
the standard deviation of scores in the unrestricted applicant population (Sy) differs
from the standard deviation of scores in the restricted job incumbent sample (sx). In
almost all cases involving educational or personnel selection, criterion data (such as
training or job performance) are only available in the restricted sample (y). Thus,
estimates of criterion reliability typically are based on data collected from the restricted
sample of job incumbents (), rather than on the unrestricted sample of applicants
(ryy).

In this situation where criterion reliabilities are only available in the restricted in
range sample, and the interest is in the validity of an explicit selector, several different
approaches may be used to correct observed validity coefficients for both measurement
error in the criterion and range restriction (Bobko, 1983; Hunter et al., 2006; Lee,
Miller, & Graham, 1982). A three-step procedure was developed by Schmidt, Hunter,
and Urry (1976) that consists of (a) correcting the observed criterion reliability for range
restriction, (b) correcting the observed validity for range restriction, and (c¢) using the
range corrected reliability coefficient to further correct the validity coefficient (that has
been corrected for range restriction). A two-step correction procedure involves (a)
correcting the observed validity coefficient for criterion unreliability using the observed
reliability coefficient and (b) correcting the resulting validity coefficient that has been
corrected for unreliability for restriction of range (Lee et al.). The two procedures are
mathematically identical (Bobko) and may be combined in a single step utilizing one
formula (Bobko; Hunter et al.). Research has demonstrated that these corrections for
both range restriction and measurement error in the criterion yield estimates of the
correlation between the variables of interest that are less biased than the uncorrected,
observed correlation(Lee et al.; Bobko).

More formally, when correcting an observed validity for direct range restriction and
measurement error in the criterion, the first step is to correct the correlation between
the predictor and criterion in the restricted sample (i.e., rxy for the job incumbent
sample) using an estimate of the reliability of the criterion in the restricted sample ()

81



(Hunter et al., 2006). As the following formula shows, this yields an estimate of the
correlation between the predictor (x) and the estimated true score on the criterion (y.)
in the restricted population (Hunter et al.):

Ixy
Ny =—

¢ \/a . (6-5)

The next step is to correct the correlation for range restriction on the predictor,
which results in an estimate of the correlation between scores on the predictor and the
estimated true scores on the criterion for the unrestricted population. This corrected
validity coefficient (now using R as the estimated population validity) is considered to be
an estimate of the “operational validity” of the predictor (Hunter et al., 2006):

rxyCU X

R.., =
T U2 -Dry, > (66)

where, for simplification purposes, Ux = Sx/sx. The operational validity also can be
obtained in a single step using the following equation (Bobko, 1983; Hunter et al.). Note
that the inputs on the right-hand side of the equation are based on the restricted sample
of job incumbents; that is, they are the observed validity coefficient and the estimate of
criterion reliability based on the restricted sample. The only piece of data from the
unrestricted data set (i.e., the applicant population) that is utilized is the standard
deviation Sy in Uy:

R . rnyX
XY, —
’ \/ryy+U>2(rX2y—rX2y , (67

For most purposes, the correction process would stop with either the use of Equation
6-6 (if the multiple step procedures were followed) or Equation 6-7. However, for some
theory based research, an additional correction for measurement error in the predictor
can be made to obtain the correlation between estimated predictor true scores and
estimated criterion true scores in the unrestricted population, which merely involves
dividing the operational validity from Equation 6-7, by the square root of the estimate of
the reliability of the predictor in the unrestricted (applicant) population (Hunter et al.,
2006):
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Hunter et al. (2006) provide a formula for obtaining the validity coefficient corrected
for range restriction, criterion unreliability, and predictor unreliability in a single step.
Alternate approaches may be used if an estimate of the criterion’s reliability is only
available for the unrestricted (applicant) population (Hunter et al.). It should be noted
that the correction procedures are best applied in large samples (Mendoza & Mumford,
1987) and that we should remember that just as standard errors are important to
consider in the estimation of basic kinds of statistics, they are also important for
estimating the standard errors of the joint corrections (e.g., Fife, Mendoza, & Terry,
2012).

The Joint Correction for Indirect Range Restriction

Correcting for range restriction and measurement error is a more complex process
when there is indirect range restriction. Within selection contexts, a common situation
that illustrates indirect range restriction is a concurrent validation study (Hunter et al.,
1986). In a concurrent validation study, job incumbents are measured on both a
“potential” selection measure (X) and a criterion measure (Y). The incumbents were not
hired on the basis of their scores on the potential selection measure but on Z, which
proceeded measurement on both the potential predictor and the criterion (Hunter et al.,
2006) (notice we are using Z now to designate the explicit selector, not X). If the original
method of selecting the job incumbents (Z) correlated with the potential selection
measure, the hiring of the job incumbents was reflected in their true scores (7) on the
potential predictor X.

In essence, in the scenario just described, selection has technically been made on the
basis of the latent ability (7) assessed by X (Hunter et al., 2006; Mendoza & Mumford,
1987). Correcting for criterion measurement error and indirect range restriction may be
accomplished in a multiple step procedure (Hunter et al.); however, the steps needed
will vary depending upon the reliability estimates available for the potential predictor,
X. We note that it is possible to estimate the reliability of X in the restricted group from
the reliability of X in the unrestricted group and vice versa (Hunter et al.); therefore, the
steps executed will depend on what reliabilities need to be computed (shown shortly).

First, the observed correlation between the potential predictor and criterion in the
restricted (i.e., job incumbent) sample () is corrected using an estimate of the
reliability of the criterion () in the restricted sample (Hunter et al., 2006) as was done
in the direct selection case (Equation 6-1) repeated here as Equation 6-9.

Mxy

My, = E (6-9)

As Equation 6-9 shows (again), the correction yields an estimate of the correlation
between the potential predictor in the incumbent sample and the estimated true score
on the criterion in this sample (Hunter et al., 2006).
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Next, if the reliability of X (ry) in the restricted (incumbent) sample is not known, it
must be estimated from the reliability of X in the unrestricted (applicant) population
(Rxx) assuming it has been reported. As the following equation illustrates, and as
Hunter et al. (2006) note, “...the incumbent reliability of the independent variable may
be considerably lower than the applicant reliability” (p. 602):

r,=1-UZ(-R_ ). (6-10)

The step involving Equation 6-10 may be skipped if there is already an estimate of the
restricted reliability (Hunter et al.) (e.g., from test-retest administration of the measure
during the predictor developmental stage).

The third step in the procedure involves correcting ry, for measurement error in X
found estimated for the restricted in range population (Hunter et al., 2006). Note that
this is a crucial place where the sequencing of the steps for direct and indirect range
restriction diverges. In the case of indirect range restriction, the correlation between the

predictor scores and the criterion true scores for the restricted group (v, ) are corrected

for the unreliability of the potential predictor in the restricted population ('« ), yielding
an estimate of the correlation between predictor and criterion true scores in the
restricted sample:

Ixy
Nx.y, =—F/—. (6-11)
r-XX

The corrected correlation ( Ix_y,) in Equation 6-11 is not estimated in the steps to correct
for direct range restriction.

The fourth step in making corrections for measurement error and indirect range
restriction is to estimate the reliability of the predictor, X, in the unrestricted population
Rxx, if it is not known (Hunter et al., 2006), by

Ry =1-U2(L—re). (6-12)

Note that U, =S,/S, =1/U, where U, was defined earlier and which shows that Rxx

and rx can be calculated from each other. This step can be skipped if an estimate of Rxx
is available for the unrestricted population (as it is for an ASVAB composite when it is
used as the explicit selection variable and other ASVAB composites are subject to
incidental selection effects). The fifth step involves estimating the range restriction
which has occurred on the latent trait or ability (T) that is assessed by X shown as

U =J[uf —(@-R )1/ Rex) (6-13)
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In the sixth step, this estimate of U; is used to correct for the effect of indirect range

restriction, yielding an estimate of the correlation between true scores on the predictor
and criterion in the unrestricted population (Hunter et al., 2006). Note again that

U; =1/u, . Thus, the outputs of the previous (fifth) step and the third step in the
procedure are used as inputs to this step yielding

rxcchT

R.. —
SN T VET

. (6-14)

Ry v, 1s an estimate of the validity of the predictor corrected for indirect range

restriction, predictor unreliability, and criterion unreliability. For some research
purposes, this is the estimate of interest. However, as we have noted, for most applied
decisions about the use of X, an additional step is needed to estimate the operational
validity of X. In essence this step re-introduces measurement error and yields an
estimate of the correlation between the predictor scores and true scores on the criterion
in the unrestricted group (Hunter et al., 2006).

Ryv, = Ry v Rxx - (6-15)

We note here that Mayberry and Wright (1992) (Table 4.2 in Chapter 4) used
Equation 6-12 (a form also shown in Lord & Novick, 1968, Equation 6.2.1) to estimate
the unrestricted reliabilities of their Job Performance Measurement (JPM) project
criterion measures (Table 4.2 in Chapter 4). Substituting Y for X and recouping the
components of the U ratio we show:

N SZ
Py =1-—251-r,).

Yy —
SY

Mayberry and Write obtained an estimate of the unrestricted Y standard deviation
from the same procedure used to perform the multivariate correction for range
restriction (Chapter 5) on ASVAB restricted in range validity coefficients (e.g., Lawley,
1943). The same method was also used in the Enhanced Computer Administered Test
(ECAT) battery project (Wolfe, Alderton, Larson, & Held, 1995) that involved not only
potential new ASVAB tests, but more realistic performance based criterion measures
derived from the schoolhouse setting (Kieckhaefer et al., 1992).

Concluding Remarks

This chapter was intended to inform ASVAB validation/standards researchers about
the complicated validity corrections that are considered in the psychometric and
industrial-organizational, education research and operational settings. Combining
corrections for range restriction and unreliability is a complex process. Selecting the
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appropriate correction procedures requires careful consideration of the nature of the
range restriction, the objectives of the research, and the available data. Research has
demonstrated that, in general, joint corrections yield less biased estimates of the
relation of interest (Bobko, 1983; Hunter et al., 2006) and so these corrections have
been recommended (SIOP, 2003). We note, however, that sampling error is not
accounted for in any of this chapter’s correction formulas and as always the researcher
should be mindful of small samples and any other factors that may result in spurious
findings.

The next chapter provides a further discussion of the joint corrections for reliability
and restriction in range from a slightly different perspective to reinforce important
principles that are grounded in classical measurement theory.
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Chapter 7.
More on Joint Corrections
Jorge L. Mendoza

Introduction

As we saw in the last chapter, correcting for both unreliability in measures and
restriction in range due to selection effects is a bit more complicated than either
correction alone. Hunter, Schmidt, and Le (2006) refer to measurement error as a
“simple artifact” as would be a dichotomized quantitative variable. Simple artifacts
combine in a linear fashion without regard to order so that their correction formulas can
be rolled up into one “global artifact” term that is then used, for example, to correct a
correlation. Restriction in range, however, introduces complications and interactions,
thereby referred to as “a complex artifact”. Not only must one consider the degree of
restriction in range imposed by the cutscore on a selection instrument, but also the
magnitude of the population validity coefficient, which is in itself what the researcher is
trying to determine. In this chapter we attempt to somewhat simplify the concepts of the
joint correction with strict adherence to classical test theory (CTT) assumptions. We
specifically address the problem that arises when direct selection results in a violation of
the assumption that true and error scores are not correlated. Some of the concepts and
formulas from the last chapter are represented here from a slightly different perspective
but should on balance be more helpful for instantiating principles than a distraction.
Note that in this chapter we use the asterisk to indicate the range restricted statistics.

The Joint Correction Paradigm

As noted in the previous chapter, in correcting for both range restriction and
unreliability, the sequence has usually been a matter of the estimates of reliability that
are available to the researcher. If we assume that the researcher is attempting to go

from the restricted observed correlations, r, , ., to the unrestricted “true” correlations,

X2,y

Mo tz ty o

sequence of corrections differs. When the reliability estimate is restricted, we follow the
sequence of correcting for unreliability first and then for range restriction, as follows:

depending on whether we have restricted or unrestricted reliability estimates, the

* *

r,, —

X,Z,Y tx,tz, ty — I

tX,tz,ty .

When the reliability estimate is unrestricted, we correct first for range restriction, then
for unreliability as follows:

*

I —>r

X,Z,Yy X,

z,y — r-tx,tz,ty.

88



When the reliability estimates are mixed (e.g., an unrestricted reliability for variable
x, and a restricted reliability for variable y from the restricted sample) we must bring
them all to the same level before correcting (discussed in the last chapter).

The second sequence, correcting first for range restriction and last for reliability, is
preferred because biased estimates of reliability have been observed for the explicit
selection variable (say x) under direct (explicit) range restriction (Fife, Mendoza, Terry,
2012). This matter is discussed later in the chapter.

In principle, the joint correction is simple, and it follows the same pattern regardless
of the number of variables involved. To illustrate, consider our preferred correction
sequence in matrix format for a three-variable situation that has been observed in the
selected sample. (The reader may want to refer back to Chapter 5 for the matrix form of
the multivariate correction for range restriction.) We show the matrix sequence as,

1 rXZ er 1 rxz rxy 1 r-txtz rtxty
rx,z,y = 1 zy rx z,y = 1 rzy _>rtx,tz,ty = 1 rtzty
1 1 1

The matrix on the left contains the restricted correlations among x, z, and y where
(a) x was used as an explicit (direct) selection variable, (b) y is the performance measure
taken sometime after selection and incidentally (indirectly) restricted (because we do
not have performance scores on y for those not selected on x), and (c) zis an
experimental “potential” predictor incidentally restricted. (Note in the last chapter the
roles of x and z were reversed when considering the x variable as a “potential” predictor,
incidentally restricted.)

The Joint Correction Formulas
To bring transparency to the corrections, we again present Equations 2-35 and 2-36

from Chapter 2 that are commonly used for correcting for explicit and incidental range
restriction (Lord & Novick, 1968; Sackett & Yang, 2000). Assuming direct selection on

X:
{
Xy S*
= : (7-1)

ry =
1—rx*2+r*2[ X]
y Xy *2

On the other hand, the indirect range restriction correction formula given by (e.g., Sackett
& Yang) is:
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* * * SZ
rzy + rxyrxz( :(2 _1)
Sx

My = 5 5 . (7-2)
Juwi =D+ (S5 -1
SX SX

Going from the restricted r,, , matrix to unrestricted ryy, is relatively

straightforward. That is, we estimate the unrestricted population correlations by
applying Equation 7-1 to solve for the unrestricted for v, and rx, and Equation 7-2 to
solve for the unrestricted r,.5 If the researcher would like to go further and obtain a
correlation matrix with correlation values estimated to be free of the effects of
unreliability (7x,ty), we must have the unrestricted reliabilities.

The correction sequence, as discussed, depends on the type (restricted vs.
unrestricted) of the available reliability estimates (Stauffer & Mendoza, 2001). If all of
the reliability estimates have been obtained in the selected sample, then we correct first
for unreliability and then correct for range restriction. On the other hand, if the
reliability estimates apply to the unrestricted applicant pool, we correct first for range
restriction and then for unreliability (the preferred sequence). The situation requires a
slightly different approach if the reliability estimates are mixed in level, some coming
from the restricted sample and some from the unrestricted one, discussed below.

Before discussing the corrections in general, we address a situation involving only
one correlation. Suppose that we are interested in estimating the “true” unrestricted
correlation ru,y. This is the unrestricted correlation between t, and t,. Next assume that
we have the unrestricted reliability for x but the restricted reliability for y. The fact that
we have a restricted estimate (an estimate from the selected sample) of the reliability of

y is of no real concern if the ratio S,> /S’ is known (indicated by U in the previous

chapter). We begin the process by unrestricting the reliability of y to bring the y and x
reliabilities to the unrestricted level. We correct the reliability of y by modifying
Equation 2-36 (7-2) following Sackett, Laczo, and Arvey (2002), as:

. .+, S?
ryy,+rxyrxy'(s—j2—1)

Py = = k — . (7-3)

anj%g—mmﬂﬁ%;—m

X

> Note that if one were to use the Expectation-Maximization Algorithm available in many computer programs, we
could easily go from the restricted matrix to the unrestricted matrix without having to be concerned about direct or
indirect corrections.
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Lord and Novick (1968, p. 130) present the much simpler formula for obtaining an
estimate of pyy, as (changing their x variable application to y):

P2 =1-[(S2ISH)L-p ). (7-4)

Equation 7-4 simply comes from the algebraic manipulation of the second of our
classical measurement theory equalities:

S, =S¢ =8,/ (1-pf ), and
s, A—py )=S7 - p5r )-

We note that Equation 7-4 was applied correctly in the Mayberry and Wright (1992)
study reported in Chapter 4 that involved estimating the reliability of incidentally range
restricted job performance measures (the criterion variables, y) for the unrestricted
ASVAB population. The estimated unrestricted population y variance was accomplished
using the multivariate correction for range restriction (Chapter 5 and elsewhere,
applying all ASVAB tests at the population level as explicit selection variables). This
correction not only yields range corrected correlations, but range corrected standard
deviations and test score means. Mendoza and Munford (1987) show this added
standard deviation correction for joint-correction scenario for the two-variable case.

Whatever the method, now that we have two unrestricted reliability estimates, pyy
and pux (oo assumed from the start as known), we proceed to obtain the unrestricted
“true” correlation by applying the correction of ry, for unreliability in both x and y:

I'xy

\ PxxPyy

which applied to Equation 7-2 to give the joint correction as:

Ity = , (7-5)

< S
rxy(?i) 1
My = X . (7-6)
v %, 82 PP
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We could, however, depending upon the research objectives, have just corrected for
either the reliability of x or the reliability of y and not both. In this case, we would just
modify the last portion of Equation 7-5 to accommodate only one reliability estimate.
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True and Error Score Correlation: A Complication

Although there is no issue with correcting the reliability estimate of an incidentally
selected y variable for restriction in range, there is a complicating issue for the x variable
under direct restriction in range. If the unrestricted reliability of x is not available (a
very unusual situation for Navy researchers, and unheard of for the ASVAB), we must
proceed with caution. It has been shown that trand ex when subjected to explicit
selection are negatively correlated in the restricted sample (Mendoza & Mumford, 1987;
Hunter, Schmidt, and Le, 2006), illustrated in Figure 7-2.

Cutscore on the
Observed X score
removes both frue

and error scores

(assumed equal

variances) from

the bottom and
thus causes a
negative
correlation when
zero in the
unrestricted space

True
J score

<
X Cutscore Error score

Figure 7-2. Range Restriction effects on the relation between true and error scores.

Because of the negative correlation between the error and true scores displayed in
Figure 7-2 (that generally increases in magnitude with more stringent selection ratios
and lower reliability), the total score variance must be expressed as

S =S7+S. +2cov*(t,e) (7-7)
and not by

S;Z = S;Z + Sezr (7_8)

recognizing in Equation 7-8 that error variance is not restricted when the variable
involved is subject to incidental selection or when selection occurs on true scores (but
unfortunately this does not apply to our x variable because it is subject to explicit
selection). Because the covariance (and therefore the correlation) between t and e are
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negative, we can see that the total x score variance for the restricted sample in Equation
7-7 will be smaller due to direct restriction in range resulting in a larger true score/total
score variance ratio, thus overestimating the restricted in range reliability estimate and
underestimating the unrestricted reliability estimate.

For theoretical and practical purposes, Mendoza, Stafford, and Stauffer (2000)
developed a procedure for estimating the unrestricted reliability using a test-retest
reliability estimate obtained in a directly restricted sample (assuming an actual re-
administration of the x test can occur under acceptable conditions). As an independent
administration of x has taken place, the error scores are not correlated between the x
and the retest portion of x, say x’. The variance of x’ reduces to the usual sum of true
plus error variances; that is, Equation 7-8 holds for x’but not for x (for x, Equation 7-7
holds). Putting these two observations together, Mendoza, et al. (2000) showed that we
can estimate the unrestricted reliability of x from

covx(x,x")

Pxx = sz (7'9)

The numerator of Equation 7-9 contains the covariance between x and x’ (in the
selected sample), and the denominator contains the restricted variance of x (the original
administration), that is, the variance of the measure used for selection. Note that we are
using the regression of x’ on x in the restricted sample to estimate the regression of x’on
x in the unrestricted sample, the unrestricted reliability. You may recall that the
regression coefficient is not affected by range restriction and when parallel forms (or
test-retest) have the same unrestricted variances, then their ratio equals one and thus,

S :
b=r S—y applied to parallel forms becomes, b = rz—x ,withb=r.

X X

Thus, it makes sense to use the regression coefficient to estimate the unrestricted
reliability. (Notice that in the unrestricted sample the correlation between x and x’is
equal to the regression because the variance of x is equal to the variance of x’.)
Furthermore, Fife et al. (2012) have shown in a simulation study that the approach
given in Equation 7-9 of using the retest estimate in a selected sample to estimate the
unrestricted reliability is unbiased.

Because ASVARB reliabilities are documented for full range groups (see Chapter 4), it
should never be the case that we would need to estimate unrestricted ASVAB reliabilities
from an ASVAB range-restricted school sample. However, we might need to estimate a
potential predictor’s full range reliability if it were used operationally (cutscore) when
the only reliabilities available are from a range restricted sample (say, during the
research project’s time frame when both validities and reliabilities were assessed).
Technically, however, because an ASVAB classification composite was the operational
standard at the time of the concurrent validity study, the potential predictor is only the
incidental selection variable, as is the y variable, and therefore, we are not dealing with
correlated true and error scores. The point to remember is that if a variable is used for
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selection and the norm (published) reliability is not available, it would be inappropriate
to use the scores in the selected sample to estimate the unrestricted reliability. At the
very least, we need to retest the subjects in the selected sample.

It may be a more common scenario in industry (not for the military) that an
organization does not use any cognitive selection instrument in selecting personnel, and
at some point decides that it should. The chosen instrument may not have published
reliabilities and for convenience, the organization may only consider reliability
estimation for the incumbent sample. In this case, because direct selection has occurred
on this newly instated x variable, we have to advise that the test-retest reliability
estimation will be required (or parallel forms) and not an internal consistency type of
reliability due to the explicit selection effect of correlated true and error scores. On the
other hand, if a cognitive measure is already in place for personnel screening (again
without known reliability), there is no issue and any type of reliability estimator can be
considered. At this point we refer the reader back to Chapter 4 to assess the most
appropriate reliability estimation types for specific situations (we prefer stability or
equivalence reliability estimators when concerned with validity coefficients).

Estimating the Restricted Reliability from the Unrestricted Estimate

We mentioned earlier that the researcher must bring the reliabilities to the same
level in the correction for range restriction. For completeness, we include the rationale
and formulas for estimating the restricted reliability having obtained the estimated
unrestricted reliability via test-retest in the selected sample (Equation 7-9).

First, we have noticed that the unrestricted reliability is obtained from the regression
of X’ on x in the directly selected group

_cov*(xx)

Pxx = S* () bx'x'

Also, we know that the variance of the new administration in the selected group
(notation now “v”) is equal to the sum of the true and error variances,

v*(x") = v*(t) + v(e).

Notice that the variance of the errors in the new administration is not reduced. Putting
these facts together, we can see that error variance can be obtained from the regression
coefficient and the unrestricted variance of x,

v(e) = (1 by )V (x).

Thus, it follows that the restricted reliability (local) can be obtained from the variance of
the new administration and the unrestricted variance as follows,

. V@) = (@ = by V)

A
= V)
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Concluding Remarks

As we have seen, it is a complicated matter to estimate the unrestricted population
validity coefficient free of measurement error in all variables concerned when all we
have is the restricted and fallible versions. It is particularly difficult when dealing with
the explicit selection variable’s reliability estimate in the restricted sample. We note that
the formula developments in this chapter assume that classical measurement
assumptions are met, which is rarely the case, and so the reader should proceed with
caution when making the joint corrections and under the specific difficult situations
described in this chapter. It also should be kept in mind that as we correct for artifacts
in the pursuit of unbiased estimators, precision decreases as the standard errors
increase. If samples are large, this is not much of an issue, but it is an issue when
samples are small.

We note that only range restriction is currently addressed in the Navy’s ASVAB
validation/standards studies because of the operational focus of selecting and classifying
personnel. The ASVAB reliabilities are known and we take for granted that the criterion
measures (training performance measured for all Navy occupations) are of high
integrity. This may not always be the case so monitoring efforts will always be a
requirement. The current thinking in military personnel research is that the joint
corrections will be more relevant as candidate additions to the ASVAB are considered in
an applied research context rather than an operational context. The methods also will be
relevant if measures other than training performance become additional criterion
variables in validation studies.

The next chapter deals with another complication in the evaluation of the validity
coefficient that applies to the population of interest — the effects violations in the
underlying range restriction assumptions have on the accuracy of the estimated
population validity coefficient.
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Chapter 8.
Standard Errors of the Corrected Correlation
Jeff W. Johnson

Introduction

It is well known that the validity coefficient for a personnel selection test will be
attenuated due to both unreliability of measures and restriction in range of test scores,
as discussed in previous chapters. Little attention is typically paid, however, to the
standard error of validity coefficients (correlations) corrected for range restriction.
Assessing the standard error of the validity coefficient is essential for constructing
confidence intervals (which vary in width with sample size, all other things being equal)
and making valid inferences about the population. This chapter provides a brief review
of the two major approaches reported in the literature for estimating standard errors of
corrected correlations due to range restriction: (a) asymptotic sampling variance
formulas and (b) bootstrapping. The chapter also provides a brief discussion of the joint
correction for range restriction and unreliability.

Asymptotic Sampling Variance Formulas

Several researchers have investigated the sampling distributions of correlations
corrected for range restriction and developed sampling variance formulas (e.g., Allen &
Dunbar, 1990; Forsyth, 1971; Gullickson & Hopkins, 1976; Mendoza, 1993). Similarly,
researchers have investigated sampling variance of correlations corrected for
unreliability in one or both variables (e.g., Forsyth & Feldt, 1969; Hakstian, Schroeder,
& Rogers, 1988, 1989; Mendoza, Stafford, & Stauffer, 2000; Rogers, 1976). Bobko and
Rieck (1980) and Bobko (1983) derived a formula for estimating the standard error of
correlations corrected for range restriction and unreliability in one variable.

Only Raju and Brand (2003) have presented a formula for estimating the standard
error of correlations that have been corrected for range restriction and unreliability in
both variables. This formula is useful because it is a simpler expression than previous
formulas and does not require a separate formula for different definitions of reliability.

Raju and Brand’s (2003) asymptotic sampling variance formula for correlations
corrected for direct range restriction and unreliability in both variables is expressed as

. k?r r (r, —r2)(r, —r?
(n-)W
where
W =r,r, -5 +kr2.  (8-2)
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In these equations, ryy is the observed correlation between a predictor x and a criterion
Y, '« is the reliability of the predictor, ryy is the reliability of the criterion, and p,, is the

estimated population correlation after correction for range restriction and unreliability
in both variables. In addition, k represents the ratio of the unattenuated, unrestricted
standard deviation to the unattenuated, restricted standard deviation for x. That is,

S SR (g

XX
Stx Sy Fxx

Because the reliability of x in the unrestricted sample (R.) may sometimes be
unavailable, Raju, Lezotte, Fearing, and Oshima (2006) offered the following derivation
of k:

. (8-4)

It should be pointed out, however, that the type of reliability estimate used is
important. Internal consistency reliability estimates of x in the restricted sample are not
recommended. If one must estimate the reliability of x in the restricted sample, one
should use a test-retest reliability estimate. (See Fife, Mendoza, and Terry, 2012 and the
previous chapter for an explanation of the reason.)

The standard error of p,, is, NV ( P, ) - Furthermore, Raju et al. (2006) admit that the

correct estimation of k requires the assumption that t and e are not correlated, a
situation not likely to hold in direct range restriction situations. If there is a second
administration in the selected group, however, we can estimate k, without assuming
independence between t and e in the selected group, as follows:

 siRn
\/U(X')—S,%(l — Ryx) ’

where v(x’) is the variance of the new administration under the restricted space.

Raju and Brand (2003) showed that Equation 10-1 is a general formula that can be
applied when there is no range restriction or when one corrects for unreliability in either
x or y instead of both. For example, if a correlation has been corrected only for range
restriction, ry and ryy = 1. Equation 8-1 then reduces to
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k*(@-r})?
(n-1)(1- rfy + kzrfy 3

v(bxy) = (8'5)

This is the same equation that Bobko and Rieck’s (1980) sampling variance formula
reduces to when r, = 1. An equivalent but simpler formula for computing the standard
error of a correlation corrected only for range restriction is

_ ﬁxy(l_ﬁfy) )

r.,vn-1

Xy

SE(p,y) (8-6)

It should be pointed out that regardless of how we estimate the standard error of the
corrected correlation under direct range restriction (using either Bobko & Rieck ,1980
with the bootstrap, or Mendoza, 1993), if the unrestricted reliabilities are known, the
standard error of the corrected correlation is given by

SE( Ry )—SE(R ) !
VRxxRyy 7 RyxRyy ’

(since the reliabilities are known we can treat them as constant in the computation of
the standard error.)

Assuming that sampling errors of corrected correlations are normally distributed, a
Z test for determining whether a corrected correlation is significantly different from a
hypothesized population correlation is

7-P"P (87

W (p)

If |Z| > |z|, where z is the table’s value from the unit normal distribution for a given
alpha level (e.g., when « = .05, z = 1.96 for a two-tailed test), then p is considered to be

significantly different from p. When testing whether two independent corrected
correlations are significantly different from each other, the appropriate test is

7=—t1"F (g8

W2 +V(5,)
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A Monte Carlo study by Raju and Brand (2003) found that the asymptotic sampling
variance formula (Equation 8-1) provides accurate estimates of the sampling variance of
corrected correlations. The authors also found that observed alpha levels from the
formula were very similar to the nominal alpha levels, although the former consistently
overestimated the latter. Also, the power rates for the formula tended to be very low,
which was consistent with the power rates found in other studies of significance tests for
corrected correlations (e.g., Hakstian et al., 1988).

Raju and Brand (2003) noted two implications for practitioners in the use of their
formula. First, their procedure is very conservative in that a Type II error (failing to
reject the null hypothesis when it is false) is much more likely to occur than a Type I
error (rejecting the null hypothesis when it is not false). Second, their procedure
assumes that the corrected correlations are normally distributed, which might not be the
case in practice. The authors recommend continuing to develop new significance tests
for corrected correlations that are based on different distributional assumptions and
thus might have higher power (detecting a false null hypothesis).

Bootstrapping Approaches

Bootstrapping, mentioned in Chapter 2, is a nonparametric procedure that can be
applied for estimating standard errors of any sample statistic. Using the bootstrap does
not require assumptions about an underlying population distribution (i.e., normality) as
does the use of parametric based procedures that use standard equations. In an ASVAB
validation/standards study, the bootstrap can be applied to the school sample at hand
(e.g., n= 250 records for students having complete data on both the ASVAB and final
school course grade). The standard error of a bootstrapped multivariate range corrected
validity coefficient is derived as the standard deviation of those validities for a large
number of bootstrapped samples (e.g., 1,000) where each sample is the same size as the
original sample. Each of the 1,000 samples is formed as follows. Bootstrap Sample #1 is
formed from randomly drawing a case from the original sample and replacing that case
(in essence, leaving the original sample intact) for the next draw until the n=250 sample
is formed. The process repeats until Bootstrap Sample #1000 is formed. The standard
deviation of 1,000 corrected validities is taken as the standard error (Efron, 1979).

The bootstrap approach has been shown to be appropriate for the bivariate
correlation situation (Bickel & Freedman, 1981, Lunneborg, 1985). Mendoza, Hart, and
Powell (1991) derived a confidence interval for a correlation corrected for range

restriction (0 ) based on a bootstrap procedure and investigated the accuracy and

stability of the confidence interval under conditions of incomplete truncation.
Incomplete truncation means that a probability mechanism is used to select cases,
where those with a higher score on x have a higher probability of being selected.
Incomplete truncation is a situation that is similar to what might be seen in test data
that are range restricted due to indirect (incidental) selection. To study range restriction
due to direct (explicit) selection, a truncation method would need to be used that
produced a sample that excluded all cases falling below a cutscore.
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Chan and Chan (2004) conducted a bootstrap study in which they investigated the
sampling variance of the corrected correlation resulting from direct restriction in range.
The experimental conditions included both (a) normal and nonnormal data and (b)
different levels ofp, selection ratio, sample size, and truncation type. The authors
compared Monte Carlo and bootstrapped distribution variance with Bobko and Rieck’s
(1980) formula for estimating the standard error of a correlation corrected for range
restriction. Recall that when correlations are corrected only for range restriction and not
for unreliability, the standard error formulas given by Bobko and Rieck are equivalent to
those given by Raju and Brand (2003) (see Equation 8-5). The Chan and Chan results
indicated that the bootstrapped standard error is generally more accurate than Bobko
and Rieck’s, especially with small sample sizes. In contrast, Li, Chan, and Cui (2011)
investigated indirect restriction in range showing that the bootstrap procedure produced
standard errors of corrected correlations and confidence intervals that were generally
more accurate across conditions including, as did Chan and Chan, combinations of
sample size, selection ratio, p, and types of nonnormal distributions.

Concluding Remarks

A general formula developed by Raju and Brand (2003) for computing sampling
variances for range corrected correlations was presented for the case of direct (explicit)
selection and unreliability in both the X and Y variables. The formula is based on
asymptotic sampling variance theory and therefore can be used for computing
confidence intervals or testing for significance when the samples are relatively large. In
the practical/operational ASVAB validation/standards setting process, it may be just as
appropriate to apply the bootstrap technique. The next chapter reports on a Monte
Carlo/bootstrap simulation study involving the bootstrap using the ASVAB. The study
examined the accuracy of the multivariate range correction procedure for estimating
unrestricted population ASVAB validity estimates under various conditions and
simulation-based estimates of the standard errors.
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Chapter 9.
A Monte Carlo/Bootstrap Study of Range Corrected
Validity Accuracy
John H. Wolfe

Introduction

As we saw in the last chapter, there is error associated with a sample-based statistic
used as an estimator of a population parameter. The error in the estimation of the
population parameter refers to accuracy, and the range of error upon repeated trials
refers to precision. This chapter describes a Monte Carlo study that examines both
accuracy and precision using the ASVAB tests and the multivariate correction for range
restriction (described in Chapter 5).The Monte Carlo study design involved the
conditions of predictor/criterion specification, sample size, selection ratio, and
distribution skew. The predictors were two ASVAB composites and the criteria were two
ASVAB tests that served as surrogate criteria. The validity coefficients of the selector
composites were, of course, known (referred to as “R” in some graphs, not to be
confused with the multiple correlation, R), and so we could evaluate the accuracy and
precision of the multivariate correction for range restriction under the various
conditions.

Background

Several Monte Carlo studies have been conducted to examine the accuracy of the
correction for range restriction in estimating the unrestricted validity coefficient. Most
of the studies involved the univariate rather than the multivariate correction for range
restriction. These Monte Carlo studies examined the univariate correction formula
accuracy and the standard deviations of corrected validity coefficients to see what
formula might apply (e.g., the standard error formula for the bivariate case). Few
studies have examined the multivariate correction for range restriction, probably
because the procedure is mainly applied by the military with use of all ASVAB scores
that are available for all military applicants. However, it has been determined that the
multivariate formulas are generally more accurate than the univariate formulas (Booth-
Kewley, 1985; Held & Foley, 1994), at least for adequate sample sizes.

Accuracy of the multivariate correction for range restriction has been postulated to
occur due to “...(a) inclusion of variables with adequate distributional properties, (b) the
compensatory effects of regression weights, and (c) the related psychometric principle
that differentially weighting a large number of correlated predictor variables has little
impact on a multiple correlation. Taken from another perspective, the multivariate
correction accuracy may simply be due to the fact that a regression equation with
multiple relevant predictors yields a lower standard error of estimate than a regression
equation with only one of the predictors” (Wolfe & Held, 2010, p. 357).
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Recall that all ASVAB tests whose scores are available for the unrestricted population
are entered into the multivariate correction for range restriction as explicit selection
variables, even though only a subset of ASVAB tests formed into a composite serve as
the explicit selection variable.

Most studies of the correction for range restriction recommend examining extreme
conditions that would affect validity accuracy and the standard error, such as varying
degrees of violation of the linearity and homoscedasticity assumptions that are made in
performing the correction. Although Lawley (1943) relaxed the normality assumption, at
least several studies have examined varying degrees of skewness because skew can cause
nonlinearity (Brewer & Hill, 1969). Finally, several studies have reported that stringency
in the selection ratio has a major impact on the sampling variance of the corrected
validity (Mendoza & Reinhardt, 1991; Raju & Brand, 2003).

The Monte Carlo study reported here was designed to evaluate the impact of several
factors on corrected validity accuracy using the multivariate formulas. The tests used in
the study are those in the ASVAB. The ASVAB is the selection and classification
instrument for all U.S. military services and consists of the following nine tests: General
Science (GS), Arithmetic Reasoning (AR), Word Knowledge (WK), Paragraph
Comprehension (PC), Auto and Shop Information (AS), Mathematics Knowledge (MK),
Mechanical Comprehension (MC), Electronics Information (EI), and Assembling Objects
(AO) (see Chapter 2 of the Introductory Manual for full descriptions). Two of the ASVAB
tests (PC and AS) were specified as the criteria in this study so that we would know the
unrestricted validity, but also because these tests reflect underlying constructs that map to
many military training requirements (i.e., PC for understanding technical manuals and AS
in the learning of mechanical principles and maintenance processes).

There were four main goals of this Monte Carlo study. The first goal was to
determine the effects of the study-designed conditions on the accuracy of the
multivariate correction for range restriction formulas in estimating known unrestricted
validities. The second goal was to determine the standard error distributions that come
out of the multivariate corrected validity distributions. The third goal was to determine
if an ancillary measure (termed “hit rate”) could be used with some degree of confidence
to identify the predictor with largest validity coefficient. The fourth goal was to
determine if the bootstrap is useful in identifying the predictor with largest validity
coefficient referring to the median of a bootstrapped distribution rather than the mean,
or if it was more appropriate to use the point estimate from the total Monte Carlo
Sample from which the bootstrap sample was derived. The hypothesis was that the
median of a bootstrapped distribution reduces the influence of outliers and therefore
gives a more accurate point estimate and smaller standard error.

The Monte Carlo study incorporated the following conditions: (a) selection ratio, (b)
sample size, and (c) degree of skew. The validity magnitude or covariance levels were
not varied systematically in this initial phase of work. These conditions could be varied
along with validity difference between ASVAB composites in a subsequent phase along
with predictor and criterion unreliability. Although only two ASVAB composites served
as selectors, these and other ASVAB combinations served as predictors.
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Monte Carlo Methods
Generation of Synthetic Populations

Segall (2004) described the Profile of American Youth (PAY97) ASVAB norming
sample that was weighted to be representative of the American youth population
(21,117,079 cases). Several synthetic populations were generated from the PAY97
correlation matrix by using deviate generators provided in the International
Mathematical and Statistical Library (IMSL) and Cholesky factorization routines
(Ackleh, Allen, Kearfott, & Seshaiyer, 2009). The procedure is described as follows:

Let C be the covariance matrix of the PAY97 sample with m variables. The Cholesky
factorization of C is a lower triangular matrix L such that

C=LL . (9-1)

where the superscript T indicates the transpose of the associated matrix. Now let Z be
an N by m matrix containing N cases on m uncorrelated variables, each with zero means
and unit standard deviations. Let X = ZL . The covariance matrix of X is

L oyrx- Y rraor oz =rL=c. (9-2)
N -1 N -1 N -1

Thus, by generating N random vectors of m variables and applying the L
transformation, a random sample with the desired covariance matrix can be generated.
Notice that the uncorrelated variables in Z do not have to be independently or
identically distributed or have normal distributions. Using a random normal generator
with N = 20 million and m = 9, a Z matrix was generated, along with an X matrix of
multivariate normal cases with the same means, standard deviations, and correlations
as the PAY97 population.

Karian and Dudewicz (2000) showed that a wide variety of distributions can be
fitted by the four-parameter generalized lambda distribution and presented methods for
generating random variables with specified skewness and kurtosis. Using these
methods, Z matrices of independently and identically distributed skewed variables were
generated. When the Z matrix was multiplied by the L matrix, the resulting X matrix
had the same covariance matrix as the PAY97 population, but with “ASVAB” test scores
that were skewed to varying degrees.

Different levels of skewness were used to generate eight Z matrices of 20 million
cases of nine variables. Only the first of the X variables had the same skewness as the
first Z variable. Because the L matrix is triangular, the second X variable was a weighted
sum of the first two Z variables. The third X variable was the weighted sum of the first
three Z variables, etc. Because of the central limit theorem, successive X variables
approached closer and closer to normality, which is to say, their skewness diminished.
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Table 9-1 shows the characteristics of the “skew = -1.0” population and associated
distribution descriptives for the Forward Skew condition.

Table 9-1
Descriptive Statistics for the Forward —1.0 Skewed Population of 20+ Million
Simulated Test Scores

Test Minimum Maximum Mean SD Skewness SE  Kurtosis SE
GS 2.10 66.33 50.0018 9.99917 -1.001 0.001 0.602 0.001
AR -14.19 71.51 50.0011 9.99495 -0.708 0.001 0.302 0.001
WK -11.84 71.65 49.9992 10.00185 -0.715 0.001 0.316 0.001
MK -12.87 73.28 49,9981 9.99570 -0.604 0.001 0.224 0.001
MC -14.36 73.27 49.9999 10.00125 -0.664 0.001 0.272 0.001

EI -9.87 75.49 49.9969 10.00584 -0.619 0.001 0.241 0.001
AO -13.67 75.80 49.9984 10.00477 -0.575 0.001 0.212 0.001
PC -11.19 76.91 49.9992 9.99917 -0.590 0.001 0.225 0.001
AS -15.70 86.16 50.0008 10.00512 -0.460 0.001 0.155 0.001
VE -8.20 75.02 49.9990 9.99798 -0.679 0.001 0.302 0.001
AFQT -19.00 290.00 199.9976  36.37105 -0.687 0.001 0.317 0.001

GW -7.44 137.28 100.0000 18.97468 -0.884 0.001 0.493 0.001
GM -10.78 138.95 100.0007  18.35251 -0.829 0.001 0.441 0.001
EL -2.44 278.38 199.9969 34.59769 -0.783 0.001 0.404 0.001
AL 9.86 493.58 349.9943  58.00127 -0.759 0.001 0.387 0.001

Notes -

AFQT = Armed Forces Qualification Test score are in standard score format.

GW for the purpose of the study = GS + WK

GM for the purpose of the study = GS + MC

EL = is the Service's Electronics composite, AR + MK + EI + GS

AL = for the purpose of the study = integer- or unit-weighted GS + AR + WK + MC + EI + AO

As Table 9-1 shows, the first “test” (GS) has the specified —1.0 skewness. In contrast,
the criterion variable PC (further down the list) has a much smaller skew (-0.590), with
even less skew observed for the other criterion variable, AS (-0.460). As shown, the
skewness of the variables decreases almost linearly down the rows of the table. The
remaining variables, VE through AL, are composites of the test scores. The ASVAB VE is
a combination of 2/3WK and 1/3PC. The GW composite, formed by equal-integer
weighting of the two tests, GS and WK, served as one of two selector composites in the
study; GM, formed from GS and MC, served as the other.

It is worth noting that although the “tests” have the same means, standard
deviations, and correlations as the PAY97 population, the ranges of scores are far
greater. In particular, some of the “test” scores are negative. This extended score range
occurs even in the multivariate normal simulated populations.
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By reversing the order of the variables, so that AS is first and GS is last, a reversed L
matrix was produced that also generated artificial test scores with the PAY97
covariances. When applied to a skewed Z matrix, the result was a set of variables with
AS (a criterion variable and the last variable listed) having the highest degree of skew
and GS having the least. Table 9-2 shows the results.

Table 9-2
Descriptive Statistics for Reversed —1.0 Skewed Population of 20+ Million
Simulated Test Scores

Test Minimum Maximum Mean SD Skewness SE Kurtosis SE
GS -12.92 79.77 49.9982 10.00120 -0.477 0.001 0.146 0.001
AR -16.76 78.84 49.9980 9.99516  -0.487 0.001 0.151 0.001
WK -13.80 75.14 49.9978  9.99895 -0.576 0.001 0.207 0.001
MK -13.62 76.07 49.9955 9.99449 -0.585 0.001 0.220 0.001
MC -13.59 76.04 49.9993 10.00226 -0.557 0.001 0.200 0.001
EI -13.23 73.30 49.9980 10.00386 -0.635 0.001 0.251 0.001
AO -12.53 74.09 49.9989 10.00505 -0.656 0.001 0.275 0.001
PC -8.88 69.85 50.0003 9.99726  -0.868 0.001 0.476 0.001
AS 2.54 66.15 50.0025 10.00534 -1.000 0.001 0.601 0.001
VE -12.94 73.35 49.9985 9.99485 -0.667 0.001 0.292 0.001
AFQT  -29.00 297.00 199.9900 36.36357 -0.609 0.001 0.257 0.001

GW -21.11 154.27 99.9959 18.97391 -0.511 0.001 0.170 0.001
GM -16.92 153.53 99.9975 18.35534 -0.500 0.001 0.167 0.001
EL -26.55 302.93 199.9896 34.59795 -0.491 0.001 0.160 0.001
AL -28.22 520.13 349.9857 57.99905 -.513 0.001 0.176 0.001

Notes:

AFQT = Armed Forces Qualification Test scores are in standard score format.

GW = GS + WK

GM = GS + MC

EL = AR + MK + EI +GS
AL = GS + AR +WK +MC +EI +AO

Monte Carlo Simulation
Conditions Studied

Monte Carlo methods were used to investigate the effects on the multivariate
corrected ASVAB validity coefficients and their differences from choice of selector,
choice of criterion, selection ratio, sample size, and skewness of the parent population.
The alternative selectors were GW and GM. The alternative criteria were PC and AS.
Five levels of selection ratio (1.0, .8, .6, .4, and .2) and eight sample sizes (50, 75, 100,
150, 225, 350, 500, and 800) were considered. The total number of combinations of
these factors is 2x2x5x8 = 160, including the redundant combinations, when SR = 1.0
and GM and GW selectors are equivalent. The parent populations had 8 levels of
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skewness applied in forward and reverse variable order, making 16 skewed populations,
and the multivariate normal population made the 17t population (skew levels were -2.0,
-1.5, -1.0, -0.5, .0.0, +0.5, +1.0, +1.5, and +2.0). In the later analyses, the normal
population was duplicated and appeared once labeled as “Forward” and once again as
“Reverse.” Thus, the total database consisted of 160x18 = 2,880 combinations, with
some duplicate or equivalent combinations. For each of these 160 combinations, 1,000
samples were drawn randomly without replacement from one of the 17 parent
populations of 20 million cases.

Measures

As defined in the notes to Table 9-1 and Table 9-2, four unit-weighted composites of
test scores were constructed. For each of the 1,000 samples under each condition, a
covariance matrix was constructed with all the tests (predictors and criteria) and
composites. Regression equations were developed using the PC and AS tests as the
criteria. Multiple correlations were “fully cross-validated.” That is, for each sample
point, a regression estimate was constructed from the n-1 other points in the sample,
and the correlation of these estimates with the actual criteria was computed. Finally, all
of these correlations were corrected for multivariate range restriction using Lawley’s
(1943) procedure.

The means and standard deviations of the corrected sample validity estimates were
determined and compared with their population validities. For the regression, the
population validity of the sample regression equation was determined and averaged
across the 1,000 samples.

Bootstrap Means and Medians

For each of the 1,000 samples, 1,000 resamples were drawn with replacement. The
covariances within each resample were computed and the validity estimates corrected
for range restriction. The means and medians of these “bootstrapped” corrected
validities were computed, and their means and standard deviations were compared with
those of the Monte Carlo samples’ corrected validity estimates and with each other.

Percentage of Samples Correctly Identifying Best Predictor

Separate analyses were conducted for each criterion test (PC and AS). The most valid
and second-most valid ASVAB predictors of these criteria (as known in the population)
were compared across the 1,000 Monte Carlo samples (and separately, the bootstrap
samples). The mean and standard deviation of validity differences were computed
across the 1,000 samples, as was the percentage of samples that correctly showed the
predictor with known highest validity in population. One analysis compared the unit-
weighted composites, another compared multiple regression with the AL composite, and
a third compared the ASVAB tests.
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Results

Many figures containing graphs were generated for the study; however, because of
their number and size, however, we present only the ones that highlight key findings.

Standard Deviations of Corrected Validities

Standard deviations were calculated for the Monte Carlo procedure’s 1,000
uncorrected and corrected validities that applied to the study’s various conditions. As a
baseline check, for the multivariate normal case with no selection and no correction for
range restriction, it was found that the observed standard deviations of the Monte Carlo
generated distributions were closely approximated by the standard formula for
calculating the standard error of the correlation coefficient,

sdev, = (1—p?) /N

(Stuart & Ord, 1994). The standard deviation comparison results are summarized in
Figure 9-1, which is a plot of the ratio of the multivariate corrected observed validity
standard deviation to the formula sdev: over selection ratios (SRs) where GM (GS+MC)
was the selector and AS was the criterion (PC is not listed in the legend because it also
serves as a criterion). The clear trend was for the simulation-based correction using the
multivariate formulas to both under-and overestimate the formula depending on the
selection ratio as well as the predictor.
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Figure 9-1. Simulated/Formula-based corrected validity standard deviation
ratio with GM as the selector/predictor and AS the criterion (PAY97).
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Figure 9-1 shows 12 graphed lines that apply to 12 predictors, some of which
represent single tests that constitute the study’s selection composites and others only
incidentally correlated. (Appendix A provides the PAY97 correlation matrix for the
ASVAB tests.) We first address the condition of no selection (SR = 1.0) and note that for
all 12 predictors, the ratio was smaller than without selection, indicating the
multivariate correction for range restriction had greater precision in estimating the
population validity than the formula for sdev,. We refer to “precision” as corrected
validity coefficients that are within a narrow range over trials, whereas “accuracy” refers
to corrected validity coefficients that are close to the known population values (Wolfe &
Held, 2010).

The topmost line in Figure 9-1 at SR = 1.0 applies to the full multiple regression
equation (MR) involving all ASVAB predictors, which intuitively would not be expected
to follow the formula for a correlation coefficient’s sampling distribution standard
deviation. Relative to the other lines across selection ratios, both MR and the explicit
selection composite GM (GS + MC) were higher; however, all lines trended upward over
increasingly stringent SRs. At a SR = .60, both MR and GM had an approximate 1.0
ratio, indicating equality of standard deviation methods.

At a more stringent SR = .40 in Figure 9-1, most ratios exceeded 1.0, indicating a
switch in the precision of the observed and formula-based standard error estimates (the
formula-based method having greater precision). Also noted was the fanning out of the
ratios at the most stringent SR = .20. The increase in the ratio index and the increased
spread of the values among predictors may simply be due to the nature of isolated upper
tail segments of a bivariate normal distribution: They are less representative of the total
distribution, even with large samples (in this case, n = 800, a large enough sample size
to expect stable results).

Chapter 11 provides a discussion of the potential for the multivariate correction for
range restriction to produce negative corrected validity estimates in small samples when
the sign is positive in the population. The phenomenon discussed in Chapter 11 applied
to the current study for the smallest small sample size of 50 and a stringent SR = .20.
Table 9-3 gives the unrestricted validity coefficients for the two focal ASVAB predictors
in the study and the two criteria.

Table 9-3
Population Validity Coefficients
Criterion
Predictor AS PC
GM .65 71
GW .50 .78

Notes: GM = GS + MC; GW = GS + WK. Test names are given on the second page of this chapter
and test descriptions in Chapter 2 of the Introductory Manual.
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Next, we attempted to account for the differences in the validity standard deviation
ratios among predictors by relating them to the squared population validity coefficients.
Figure 9-2 depicts a simplified situation where there is no selection and where the
sample size is the largest in the study (n = 800).
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Figure 9-2. Relation between standard deviation ratios and squared
population validity coefficients among predictors (no selection; n = 800).

Figure 9-2 depicts a correlation of .78 between the ratio index and the population’s
squared validity coefficients across the various predictors with varying known levels of
predictive validity. It appears that smaller population validity coefficients are associated
with smaller standard errors from multivariate range corrections compared to the
standard error formula, but it is not apparent what might be the reason.

Effect of Predictor and Criterion Skew on Range-Restriction Corrections

Recall that with the Forward Skew condition in the population, the predictors have
the greatest skew, whereas the criteria have the least skew. In the Reverse Skew
condition, the situation is reversed. Figure 9-3 allows us to examine the effects of skew
sign and magnitude on validity accuracy (average bias in the simulations) for both
conditions for the study’s selection ratios (the GM composite as the selection variable),
the largest sample size (n = 800), and three of the study’s skew values (-1.5, 0, +1.5).
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Figure 9-3. Sample validity bias across selection ratios with GM selection
and GM predicting AS (Forward and Reverse Skew, n = 800).
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The top graph in Figure 9-3 applies to the Forward Skew condition (larger skew on
the predictors and less on the criterion) and shows relatively no bias in the multivariate
range correction at zero skew and over the span of increasingly positive skew values.
There is, however, negative bias for negative skew, with more bias with increasingly
stringent selection ratios. In contrast, the bottom graph in Figure 9-3 applies to the
Reverse Skew condition (larger skew on the criterion and less on the predictors). Figure
9-3 shows a systematic increase in bias at increasingly stringent selection ratios with
large positive bias associated with the -1.5 negative skew condition and slightly lower
bias, but negative, for the positive skew condition.

Next, we addressed whether it is possible to identify the “best” composite in a small
sample under skewed conditions. Identifying the predictor with the largest validity
coefficient is always a concern in small samples due to large sampling error, but we
added the data condition of skewness to gather more insight into how predictor and
criterion score distributions affect the already potentially unstable validity results in a
small sample. It was important to consider which predictor/criterion pair to use in
demonstrating the best composite identification percentage, because the magnitude of
the population validity difference depended on which criterion was used (AS or PC). We
chose the PC criterion for both GM and GW to predict because the population validity
differences were smaller than when AS was the criterion (.78 - .71 = .07 for the GW —
GM validity difference when PC was the criterion compared to .65 - .50 = .15 when AS
was the criterion).

As many readers of this document may know, with use of the current ASVAB,
typically the range of incremental validity provided by the optimal composite over one
in operational use is not much more than .02 to .05 (assuming final school grade in
training is the criterion). However, the fact that many of the current military ASVAB
composites are highly correlated at this time does not mean that they will be in
perpetuity.® Further, identifying the best composite (speaking only in terms of validity
coefficient magnitude in this chapter) would seem to be as important if not more so
given the sample size is very small in a particular ASVAB validation/standards study
and there is not much confidence that the magnitude of multivariate range corrected
validity coefficients actually reflect the population values.

Figure 9-4 shows the accuracy of identifying the “best” composite predicting PC
(with GW as the selection variable this time) as the percentage of 1,000 Monte Carlo
samples that GW was identified as having a larger validity coefficient (.78) than GM
(.71) resulting from the multivariate range correction. As with Figure 9-3, Figure 9-4
shows both the Forward and Reverse skew conditions as separate graphs. What differs
in Figure 9-4 is that that the y-axis is “Percent Correctly Identified” rather than “Validity
Bias” (in Figure 9-3). Also, the sample size now is the smallest n = 50 compared to the
study’s largest n = 800, the selector is GW rather than GM, and the criterion is PC
rather than AS.

® As recommended by the ASVAB review panel (Drasgow, Embretson, Kyllonen, & Schmitt, 2006), several
potentially new ASVAB classification tests are being validated for possible inclusion in a future ASVAB.
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Figure 9-4. Best composite identified with GW selection comparing GW and
GM predicting PC (Forward and Reverse skew, n = 50).
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As seen in Figure 9-4, the forms of the two Forward and Reverse skew conditions
mirror the forms in Figure 9-3. That is, the impact of large skew on the set of predictors
treated as explicit selectors in the multivariate range correction is largely
inconsequential to both validity bias over increasingly stringent selection ratios but also
in identifying the best predictor over selection ratios, but is consequential when large
skew is placed on the criterion. When the load of skew is reversed in this study
(criterion getting the most), there are extreme results with both indices (validity bias
and identifying the best composite) regardless of sample size (Figure 9-3 with n = 800,
Figure 9-4 with n = 50). We note that with the n = 800 sample, GW with validity of .78
was identified 100% of the time over GM with .71 validity, showing that a sample size as
small as 50 has drawbacks, at least in this simulation study without the benefit of having
a more adequate real life criterion variable (e.g., the Navy’s final school grade for
measuring training performance). We also note again that the validity difference of .07
to detect was not set, but a feature of the ASVAB tests chosen to serve as surrogate
criterion variables and the ASVAB composites chosen to serve as the selectors/
predictors.

By now, it should be clear that the effect of skewness on the accuracy of range-
restriction corrections is not a simple one. It involves complex interactions with
selection ratio, sample size, and the particular selectors and criteria used. The
magnitude and direction of the effects seem to depend on the particular combinations of
selectors and criteria. Further, from sampling theory, sample size will play a part even in
the best of conditions.

We further investigated the role of sample size in the ability to at least detect the
“best” composite assuming our data conditions were perfect. Table 9-4 shows the “hit”
rate over all of the study’s selection ratios for three pairs of the ASVAB predictors and
PC as the criterion: (a) GW (GS + WK) compared to EL (AR + MK+ EI+ GS, (b) MR
(optimal regression-weighted GS + AR + WK + MK + EI + MC + AO) compared to the
same tests unit weighted, and (c) the single ASVAB tests, WK compared to AR.

Table 9-4 shows several interesting results for data that do not violate the
multivariate range correction assumptions (i.e., the data are multivariate normal data).
First, the predictor with the largest population validity coefficient is, not surprisingly,
the multiple regression “best fit” equation, MR (table notes give population multiple
correlations) with R,y = .826. The comparison validity applies to the unit weighted
version of the equation (AL) with Ry, = .795 for a population validity difference of .031.
Detecting MR as the best predictor at a 94% accuracy range (a form of power) requires a
sample size of 150. In contrast, the single ASVAB test pair (WK — AR) requires n= 350.
The lower sample size required for the MR/AL validity difference detection is consistent
with the larger MR and AL validity in predicting PC as compared to WK and AR, and
with the “precision” of MR and AL in terms of lower standard errors in their
multivariate corrected validity estimates.
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Table 9-4
“Hit Rate” with and without Selection for Best Predictor across Sample Sizes
with PC as the Criterion (1,000 Monte Carlo Replications)

Predictor Pairs

Sample Size GW — EL MR - AL WK - AR
% >0 Diff (% >0 Diff) (% >0 Diff)
Selection Ratio = 1.00, no selection
50 59 35 72
75 62 54 77
100 63 72 79
150 70 94 85
225 69 99 90
350 74 100 94
500 79 100 96
800 84 100 99
Selection Ratio = .20 based on GM selection
50 59 44 69
75 60 59 74
100 61 74 78
150 66 91 83
225 68 99 88
350 74 100 93
500 78 100 96
800 83 100 98

Notes:

GW = GS + WK with R,, = .781; EL = AR + MK + EI + GS with R,, = .771 for a .010 validity diff.
MR = regression weighted GS + AR + WK + MK + EI + MC + AO with R,, = .826;

AL = unit weighted tests with R,, = .795 for a .031 validity diff. WK R,, = .764; AR R,, = .723 for a
.041 validity diff.

The second point of interest in Table 9-4 is that even with a stringent selection ratio
(recognizing that multivariate normal without skew was used in the simulations), the
results across the three predictor pairs are not too dissimilar. For example, the 150 and
350 sample size requirement for at least a 90% hit rate is the same for both the
unrestricted population and the SR = .20 selected samples.

The last point of interest we discuss in Table 9-4 is the relatively low hit rate for the
GW/EL validity comparison where the population difference is a small .010. Although
this is a small validity increment, it is typically observed in ASVAB validation/standards
studies and could be a deciding factor as to which composite to recommend. In this
small validity difference case at relatively large validity coefficient magnitudes, a sample
of n = 500 was required to approach the .80 hit rate in identifying the GW as the best
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predictor. In ASVAB validation/standards studies, a hit rate as small as two-thirds could
be considered adequate, and we see that n = 150 gives us this degree of confidence (i.e.,
66% hit rate even when selection is stringent). Finally, we remind ourselves that the
comparisons in Table 9-4 involve only two predictors and that the military tends to
evaluate many more in a particular study. Chance factors will diminish our confidence
the more composites we compare, although perhaps not to any substantial degree if we
are not so concerned with the magnitude of the validity difference but instead with only
which composite is “best.” 7 Nevertheless, the greater the number of comparisons and
the smaller the population validity difference between composites as well as the
magnitude of the validity coefficients (larger being better), the greater the likelihood
that a wrong composite will be identified as best, all other things being equal.

Multiple Regression vs. Unit-Weighted Composites

Unit-weighted composites are used in practice because it is believed that they will be
more stable and generalizable than multiple regression derived weights, especially in
small samples. In this study’s simulations, multiple regression always had a larger fully
cross-validated validity coefficient than any unit-weighted composite, or single test,
when the sample size was 100 or greater, lending support for regression weighted
composites using all of the ASVAB tests over unit-weighted composites with some small
number of ASVAB tests. For sample sizes of 50, however, regression was always
superior for predicting AS but was second-best for predicting PC. For sample sizes of 75,
regression was usually (but not always) superior for predicting PC. These mixed findings
do not support either regression-based weights or unit weights with small samples, but
do with much larger samples.

Also, in addition to the corrected cross-validity estimates, it was possible to compute
the population validity values (using full range population data) using the sample
regression equations and unit-weighted composites. These population values were often
lower than the multivariate range corrected validity estimates derived from the sample.
The result that multiple regression in the population sometimes was not as good for
predicting PC as one of the composites or tests in the sample, regardless of how large the
sample size was, occurred mostly when the selection was stringent and the skewness
was large, complicating the matter.

Because the population validity is a better index of the actual predictive value of a
predictor than corrected validity coefficients, which are only estimates, these findings
suggest that unit weights may be superior to regression weights when skewness and
selection are extreme. Unfortunately, the population validity is known only in
simulations such as those performed in this study, never in practice. We encourage the
reader to explore the literature on regression versus unit weights recognizing that the
Army has taken the position that full ASVAB regression weighted equations have the
most utility for their enlisted classification systems.

" Dr. Daniel O. Segall reprogrammed a Fortran version of the multivariate range correction Fortran program to
output a square matrix of the percentage of times (out of 1,000 bootstraps applied to the study sample) that one
ASVAB composite had a larger corrected validity coefficient than any other included in the study.

117



Bootstrap Means vs. Medians

One of the purposes of this study was to determine if bootstrapping could help
identify the best of several alternate predictors by comparing the median versus the
mean derived in the bootstrap samples. The idea is that by virtue of selecting the
bootstrap median instead of mean as the central tendency statistic, outlier values would
have a diminished effect on the corrected validity coefficient. Table 9-5 shows the
descriptive statistics and the bias that applies to these two central tendency statistics
(i.e., population minus corrected validity estimates) resulting from the 2,880
simulations that incorporated the study conditions.

Table 9-5
Descriptive Statistics for Bias Associated with Sample Corrected
Validities across 2,880 Simulation Conditions

N Minimum Maximum Mean SD Skewness Kurtosis
SAMPLE 2,880 -0.233 0.132  -0.00351 0.029312 -0.308 8.263
MEAN 2,880 -0.326 0.130 -0.00874 0.035965 -2.053 13.381
MEDIAN 2,880 -0.238 0.132  -0.00295 0.029370 -0.574 9.080

In Table 9-5, SAMPLE refers to the mean bias generated from the Monte Carlo
sample, whereas MEAN and MEDIAN refer to bias associated with the mean and
median corrected validity coefficients generated from the bootstrap of each Monte Carlo
sample. The Mean column in Table 9-5 could be used to evaluate correction bias.

Table 9-5 shows that, for the Monte Carlo results (SAMPLE), the mean bias of
estimating the population validity coefficients resulting from the range restriction
correction is -.00351, which is close to the value of zero we would expect if there was no
bias. The mean bias across all of the individual bootstrapped Monte Carlo samples
based on the mean of each bootstrapped distribution (MEAN) is -.00874, slightly larger
in magnitude than that observed from the parent Monte Carlo (-.00351). In contrast, the
mean bias based on the median of each bootstrapped distribution (MEDIAN) is smaller
(but possibly trivially so) at -.00294. The bootstrap MEAN value appears more biased
than the bootstrapped MEDIAN value when comparisons are made to the Monte Carlo
mean (SAMPLE), although the practical difference (3¢ decimal place) may (or may not)
be considered trivial.

Consistent with the range-corrected validity results supporting the bootstrap
MEDIAN to be used as the central tendency index to bootstrap, Table 9-5 also shows
that the bootstrap MEDIAN'’s standard deviation (SD = .029370) is comparable to the
Monte Carlo (SAMPLE) SD (.029312), whereas the bootstrap Mean’s SD (MEAN) is
larger (.035965). The bootstrap MEAN’s distribution also has larger Skewness and
Kurtosis than the two counterpart distributions, indicating outlier influence.
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Table 9-6 shows the intercorrelations between the SAMPLE, MEAN, and MEDIAN
corrected estimates.

Table 9-6
Correlations Between Monte Carlo Sample Validity Means,
Bootstrap Means, and Bootstrap Medians across 2,880
Simulation Conditions

SAMPLE MEAN MEDIAN
SAMPLE 1.000
MEAN .956 1.000
MEDIAN .998 .968 1.000

Table 9-6 shows that the correlation between corrected validity estimates is largest
when derived for the Monte Carlo (SAMPLE) and bootstrap procedure that uses the
median (MEDIAN) rather than the mean (MEAN). Based on the results presented in
Tables 9-5 and 9-6, the median value of range-corrected validity estimates, not the
mean, could be considered the appropriate bootstrap statistic when establishing the
standard error of the bootstrap distribution and the construction of confidence intervals

Concluding Remarks

We have reported only some of the findings from the complete study described in
this chapter, but they are of considerable interest for ASVAB validation/standards
researchers. First, as noted in Chapter 2, many factors affect the correlation coefficient,
and the ones of most concern are the integrity of the criterion and the distributional
properties of the variables. We know a great deal about these features for the ASVAB but
not for the performance measure that is used to validate the ASVAB. One of the goals of
the study was to determine if the experimental conditions affected the accuracy of the
multivariate correction for range restriction, and some conditions did more than others.
Second, in general, a disproportionate amount of skew on the criterion relative to the
predictors led to both overestimates and underestimates of the validity coefficient, all
other things equal.

We also saw that the Monte Carlo-generated sampling errors of the corrected validity
coefficients were both larger and smaller than the standard formula that applies to
bivariate correlation, depending upon the stringency of selection under multivariate
normal conditions. Fourth, across all of the study conditions, the bootstrap median
corrected validity coefficient provided a very slight improvement in population validity
estimates and also in reducing the standard deviation of the estimates, presumably from
reducing the effects of outlier values.
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We also explored sample size effects without skew effects and saw that if the
objective was to identify the “best” composite out of two, a sample size of 500 would be
required if we had to recommend with a high degree of certainty, say 80% (or a power of
.80) that we had made the correct decision. Of course, the validity levels we reported
were large and so detecting the best composite for low magnitudes validity coefficients
would require even larger sample sizes (addressed in the next chapter).

Finally, we might have a better ASVAB validation situation when using the military’s
training grades as the criterion than is depicted by this simulation study for multivariate
normality (without skew). That is, at least for the Navy, final school grade in training
reflects better differentiation in individuals’ performance than might be expected at
stringent selection ratios imposed on a bivariate or multivariate normal distribution.
But even though the military does not typically encounter the extreme conditions that
were constructed in this simulation study, practitioners should be aware of them when
conducting ASVAB validation/standards studies. Understanding the interactions of the
relevant selection factors should be an important research goal.

The next chapter provides a section on the power of establishing a validity
magnitude effect and the issues involved in comparing validity coefficient differences in
personnel selection situations. The chapter also provides a brief discussion about
regression methods, with the following chapter considering a variable’s suppressor
effects that enhance a full least squares regression equation’s predictive optimization, as
was observed in the study results reported in this chapter.
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Chapter 10.
Assumption Violation Effects on Range Correction
Accuracy
Jeff W. Johnson

Introduction

As if there were not already enough statistical corrections we need to be concerned
about in estimating our population ASVAB validation coefficient (i.e., corrections for
both restriction in range and unreliability - measurement error), we now consider
factors that impact the accuracy of these corrections. The joint corrections worked
through in Chapter 6 do not consider sampling error or that the assumptions for
correcting for range restriction may not have met (i.e., linearity, homoscedasticity, and
explicit selection in the simple bivariate case of X and Y variables). This chapter focuses
solely on the effects of assumption violations on the accuracy of the range corrected
validity coefficient.

Background

To review briefly, if a group has been selected solely on the basis of their scores on
some variable X, then this is known as explicit selection on X, and X is referred to as the
explicit selection variable (Lord & Novick, 1968). When the variance of x in the selected
group is smaller than the variance of X in the population, as is usually the case, the
correlation between x and a criterion (y) in the selected group () will underestimate
the population correlation (R.y). Pearson (1903) developed a correction formula for
estimating R,y given the selected group’s correlation and the ratio of the variance of the
predictor in the selected and total groups (sx2/Sx?) (see Chapter 2’s Table 2-4).

Another way that sample variability may be restricted is in the case of incidental
selection (Lord & Novick, 1968). Suppose Z is a proposed predictor of Y. The range of
both Y and Z is restricted to the extent to which they are both correlated with the explicit
selection variable, X. Both Y and Z are then termed incidental selection variables.
Pearson (1903) also developed a formula for the estimation of the population correlation
between Y and Z, presented in Chapter 5 in the section about the trivariate case (the
incidental /indirect restriction in range case).

Sackett and Yang (2000) developed a classification scheme for different range-
restriction scenarios and we have recommended a read on their work in prior chapters.
These scenarios were based on various combinations of the following facets: (a)
variable(s) on which selection occurs, (b) whether unrestricted variances for relevant
variables known, and (c) whether a possible third variable is measured or unmeasured.
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The interested reader is advised to consult this article if the selection situation is more
complex than the explicit or incidental situations described here.8

Review of Range Restriction Correction Assumptions

Correction formulas for explicit and incidental range restriction are based on several
assumptions that have been previously discussed but are reiterated here: (a) there is
linearity of regression of Y on X, (b) the conditional variance of Y given X is constant at
all values of X, and (c) selection is based solely on X. The “a” and “b” are considered
distributional assumptions and “c” a selection assumption. An additional assumption in
the three-variable case is that the covariance of Y and Z given X does not depend on X
(Lord & Novick, 1968). The three-variable case is the simple case of the general
multivariate case, and many more X and many more Y variables can apply in one
multivariate range restriction correction. Lawley (1943) relaxed the normal distribution
assumption in the multivariate case, and this makes intuitive sense because we know
that many inferential statistics are robust to violations of normality and that linearity
can exist between variables that are not exactly normally distributed.

Several authors (e.g., Ghiselli, 1966; Guion, 1965; Linn, 1968; Lord & Novick, 1968)
have noted that test score data often fail to satisfy the assumptions of linearity and
homoscedasticity. Lee and Foley (1986) showed empirically that the slope of the
regression line and the dispersion of Y on X are often not constant throughout the range
of test scores. Therefore, it is reasonable to question the accuracy of the corrections
when these assumptions are violated.

Studies of Assumption Violations

Greener and Osburn (1980) simulated test score data to examine the effect of
assumption violations on the accuracy of the bivariate correction formula for explicit
selection. They studied three general types of distributions: (a) sigmoid, (b) football, and
(c) fan. Sigmoid distributions violate the assumption of linearity because of flattening in
both tails of the bivariate distribution. Lee and Foley (1986) found that the relation
between the Armed Forces Qualification Test (AFQT) and the ASVAB Mathematics
Knowledge (MK) approximated a sigmoid; however, we remember that the AFQT, while
sometimes appearing normally distributed in a recruit population because high aptitude
youth tend to seek college options and low aptitude youth do not qualify for the military
service), is scored on the percentile metric so the investigation bivariate normality was
not totally appropriate. Football-shaped distributions violate the homoscedasticity
assumption because the conditional variance of Y given X is at its maximum in the
center and decreases in the tails of the distribution. Fan-shaped distributions also
violate the assumption of homoscedasticity in that the conditional variance of Y given X
increases systematically from one tail to the other.

8 Note that there is a typo in Sackett and Yang’s (2000) Equation 7 presenting the corrected population
variance-covariance matrix in the case of multivariate correction. The value in the upper right quadrant of

the matrix should be Vp,pV;,_pr;,n—p (P. R. Sackett, personal communication, March, 2000).
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Greener and Osburn (1980) found in their investigations that, with a sigmoid
distribution, the corrected correlations increasingly underestimated the population
correlations as the degree of truncation of the distribution increased (i.e., the selection
ratio became more stringent). In all cases, however, the corrected correlation was a
more accurate estimate of the population correlation than was the uncorrected
correlation. The trend in the fan distribution was for the corrected correlation to
gradually underestimate the population correlation to a greater extent as a function of
the degree of truncation and the size of the population correlation. The corrected
correlation was superior to the uncorrected correlation in all cases.

With the football distribution, the correction overestimated the population
correlation in samples that were truncated 50% or more. There was also a tendency for
corrected correlations to overestimate the population correlation as a function of its
size. The corrected correlation was not as accurate as the uncorrected correlation in
highly restricted samples. The general conclusion was that for moderate degrees of
restriction (i.e., selection ratios of .60 or higher), the corrected correlation is a
reasonably good estimate of the population correlation and is much better than the
uncorrected correlation. For more restrictive selection ratios, the corrections become
progressively worse in estimating the population correlation, and unacceptable
overestimates result from the football distribution.

Although Lawley (1943) relaxed the normality assumption in the multivariate
correction for range restriction, Brewer and Hills (1969) showed that skewed
distributions can affect linearity, and therefore the accuracy of the estimation of the
population correlation.

Holmes (1990) developed a mathematical framework to investigate the effects of
violations of the assumptions of linearity and homoscedasticity. Simple expressions
were derived algebraically for both the selected group and corrected correlations in
terms of the population correlation in the sigmoid, fan, and football situations. By
plugging in preset parameter values, Holmes was able to determine what selected group
magnitude of correlation ryy could be expected for different levels of unrestricted
validities Ryy values and different degrees of selection (akin to Table 2-4). The results

were very similar to the results of Greener and Osburn (1980).

Gross and Fleischman (1983) studied distributions that simultaneously violated the
assumptions of linearity, homoscedasticity, and selection only on X. They found that the
correction was not robust with respect to these simultaneous violations, but it was more
accurate than the uncorrected correlation much of the time. Gross and Fleischman
(1987) found that the correction formula performed poorly for certain nonlinear
regression forms and recommended that it should not be used unless the population
correlation was thought to be large and sample sizes were large.

Johnson and Sager (1991) conducted the only study that has investigated the effects
of assumption violations on correlations corrected for range restriction due to incidental
selection. The authors generated simulated test score data that approximated sigmoid,
fan, and football distributions, and observed the effects of different levels of selection
and correlation between the explicit selection variable and each of two incidental
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selection variables. Similar to the explicit selection case (e.g., Greener & Osburn, 1980),
when the assumption of linearity was violated by flattening in both tails of the XY
distribution, it appeared to be safe to correct for range restriction in all cases. The
corrected correlation was at least as good an estimate as the uncorrected correlation
except in the most extreme conditions.

Things were not so simple, however, when the assumption of homoscedasticity was
violated. With the football-shaped distribution, the corrected correlation usually more
closely estimated the population correlation than did the uncorrected correlation. The
corrected correlation, however, was also much more likely to be an overestimate. Very
large overcorrections usually were found only at low selection ratios.

The most troubling distribution was the fan distribution. Both the corrected and
uncorrected correlations had a tendency to overestimate the population correlation
when Ry < Ryz. This phenomenon, however, was more pronounced for the corrected

correlation. The uncorrected correlation in this case more closely estimated the
population correlation. Correcting for range restriction, however, improved the estimate
dramatically when Ryz > Ryz.

Offsetting Violations

As depicted in the previous section, the correction for range restriction’s accuracy
depends on adherence to the underlying assumptions for performing them, the severity
of the violations, the degree of restriction in range, and sample size. Further, the
influence of assumption violations on corrections for range restriction is actually more
complex than is evident when violations are examined separately. For example, the
linearity violation may result in an overestimate of the population (unrestricted) validity
coefficient when the heteroscedasticity assumption holds, but if each assumption is
violated in certain ways, they could offset each other and result in an accurate validity
estimate. The offsetting linearity and heteroscedasticity violations can be evaluated in
the reduced form of the unrestricted validity coefficient:

Sxy

X QY

Ryy = , (10-1)

where R,y represents the corrected (estimated) population validity derived from the
known sample regression coefficient b, the known population standard deviation Sy, and
the derived (estimated) standard deviation. In a further reduced form of Equation 10-1

hSx
Ry=—  (10-2)
Y

(see Held & Foley, 1994, for the derivation of this formula and its relation to the
accuracy quotient Q derived by Gross, 1982). Gross showed that, when simultaneous
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violations of the linearity and heteroscedasticity assumptions are such that ratio of the
numerator value to the denominator are favorable, there can be an offset with an
accurate estimate of the population validity. Because Sy is known, the ratio of b to Sy in
Equation 10-2 becomes the determining index of correction accuracy. In fact, it is
possible for b (sample) and Sy (estimated) to deviate slightly or wildly from the
population values to produce an accurate validity estimate.

Assuming any specific sample size and population validity, would the standard
deviation of a bootstrapped distribution of corrected validity coefficients be larger when
there are large offsets in b and Sythan when there are small offsets? The bootstrap
distribution SD might be larger when there were large offsets because there would be
the potential for more extreme pairs of non-offsetting b and Sy values to be picked up
through the “random selection with case replacement” bootstrap sample forming
procedure. One could picture an upward curving pear as the example of an offsetting
case with the slope and conditional Y SDs lowering as predictor scores lower.

Concluding Remarks

Violations in the assumptions for performing the correction for range restriction
might or might not lead to an inaccurate estimate of the population validity. The idea
that assumption violations can offset each other should be well understood. The
personnel selection practitioner should consider understanding the sample as well as
possible. A clinical approach could be used where a sample’s adequacy is assessed by
evaluating the consistency of the conditional prediction errors and regression weights
across segments of the explicit selector score range, and also by studying the residuals
from the sample regression analysis (y regressed on x). Of course, a clinical approach
would require an adequate sample size and a selection ratio that is not too stringent.
Even in the best of circumstances, we can never accurately extrapolate a sample b and s,
situation to the unrestricted population. The next chapter describes how small sample
size and stringent selection ratios can result in wildly different range corrected validity
estimates across samples.

Chapter 10. References
Brewer, J. K., & Hills, J. R. (1969). Univariate selection: The effects of size of
correlation, degree of skew, and degree of restriction. Psychometrika, 34, 347-361.
Ghiselli, E. E. (1966). The validity of occupational aptitude tests. NY: Wiley.

Greener, J. M., & Osburn, H. G. (1980). Accuracy of corrections for restriction in range
due to explicit selection in heteroscedastic and nonlinear distributions. Educational
and Psychological Measurement, 40, 337-346.

Gross, A. L. (1982). Relaxing the assumptions underlying corrections for restriction in
range. Educational and Psychological Measurement, 42, 795-801.

126



Gross, A. L., & Fleischman, L. (1983). Restriction of range corrections when both
distribution and selection assumptions are violated. Applied Psychological
Measurement, 7, 227-237.

Gross, A. L., & Fleischman, L. (1987). The correction for restriction of range and
nonlinear regressions: An analytic study. Applied Psychological Measurement, 11,
211-217.

Guion, R. M. (1965). Personnel testing. New York: McGraw-Hill.

Held, J. D., & Foley, P. P. (1994). Explanations for accuracy of the general multivariate
formulas for correcting for range restriction. Applied Psychological Measurement,

18, 355-367.

Holmes, D. J. (1990). The robustness of the usual correction for restriction in range due
to explicit selection. Psychometrika, 55, 19-32.

Johnson, J. W., & Sager, C. E. (1991, April). The robustness of range restriction
correction due to incidental selection. Poster presented at the Sixth Annual
Conference of the Society for Industrial and Organizational Psychology, St. Louis,
MO.

Lawley, D. (1943). A note on Karl Pearson’s selection formula. Royal Society of
Edinburgh, Proceedings, Section A, 62, 28-30.

Lee, R., & Foley, P. P. (1986). Is the validity of a test constant throughout the test score
range? Journal of Applied Psychology, 71, 641-644.

Linn, R. L. (1968). Range restriction problems in the use of self-selected groups for test
validation. Psychological Bulletin, 69, 69-73.

Lord, F. M., & Novick, M. R. (1968). Statistical theories of mental test scores. Reading,
MA: Addison-Wesley.

Pearson, K. (1903). Mathematical contributions to the theory of evolution - XI. On the
influence of natural selection on the variability and correlation of organs.
Philosophical Transactions of the Royal Society, London, Series A, 200, 1-66.

Sackett, P. R., & Yang, H. (2000). Correction for range restriction: An expanded
typology. Journal of Applied Psychology, 85, 112-118.

127



Chapter 11.
The Potential for a Negative Range Corrected Validity
Janet D. Held and Thomas R. Carretta

Introduction

From a Monte Carlo study reported in a later chapter, we will see that the
distributions of validity coefficients corrected for range restriction could, in principle,
include corrected coefficients with a negative sign when the population sign is positive.
Ree, Carretta, Earles, and Albert (1994) provided a discussion with empirical examples
regarding the potential for a corrected validity coefficient to change sign from its
uncorrected condition. The issue arose when Air Force psychologists noted the sign
change phenomena was sometimes observed for groups, particularly in pilot selection
(Thorndike, 1949). The discussion initiated by Ree et al. (1994) is extended in this
chapter with an examination of the basis for a sign change using conceptually simplified
range restriction correction formulas (univariate and multivariate). The study data
reported in this chapter were scores on the Armed Services Vocational Aptitude Battery
(ASVAB) obtained from a Navy applicant population at a time when the battery
contained the Numerical Operations and Coding Speed tests. A suitable criterion was
designated as one of the 10 ASVAB tests so that population (unrestricted) validity
coefficients were known. Some of the restriction in range formula derivations presented
in previous chapters are repeated here for clarity.

How Negative Range Corrected Validities Can Occur

The general restriction in range problem (Pearson, 1903; Lawley, 1943) in military
personnel selection research is to find the predictor/criterion correlation (validity) for
the applicant population of interest, for which only predictor (selection instrument)
information is available. On the basis of complete predictor/criterion information
obtainable for a restricted subset of the applicant population (students selected at some
predetermined minimum aptitude level), correction formulas can be used to estimate
the unrestricted applicant population validity. As noted several times, the unrestricted
applicant population is, theoretically, the one from which future recruits be selected for
training school. The accuracy of this estimated (corrected) validity is contingent on the
degree to which certain data assumptions have been met. These assumptions for the
bivariate case of one predictor and one criterion are (a) linearity of regression of the
criterion, y, on the predictor, x; (b) homoscedasticity of y error variance for all values of
x; and (c) selection having occurred solely on x. The bivariate formula (correction for
explicit selection) commonly encountered in the literature and cited in previous
chapters (Case 1 from Guilford, 1965, p. 141; Case A from Thorndike, 1982, p. 210) is

rxy(SX/Sx)

y = ; - = . (11-1)
\/1-rxy+rxy(SX/SX)

R
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Equation 11-1 can be conceptually simplified in the more familiar form,

ny:—SXY , (11-2)
Sx Sy

where Rxyis the corrected validity coefficient (not a multiple correlation), Sxyrepresents
the unknown unrestricted population covariance, Sy represents the unknown
unrestricted population criterion standard deviation, and Sx is the known unrestricted
population predictor standard deviation. Sxy is derived from the linearity identity where
unrestricted and restricted slopes are assumed equal. Sy is derived from the
homoscedasticity identities where unrestricted and restricted standard errors of
estimate across the entire range of the predictor are assumed equal. These slope and
error identities, as we have seen in previous chapters are, respectively,

B=Ss /Sy =b=s,/s,° (11-3)

S.2 =S, 2(1-R%x ) =5% =s%(1-r?y). (11-4)

Without solving the problem here (see Gulliksen, 1950 and Held and Foley, 1994 for
formula applications using the ASVAB, as well as Chapter 5 of this document), the
numerator in Equation 11-2 (the corrected covariance) presents the only possible
opportunity for a negative sign. Further, from the linearity assumption, the corrected
covariance is derived applying the restricted sample weight (unstandardized regression
coefficient, or slope). Formally,

B=S,, /Sy’ =b=s,/s,> (11-5)

S, =bS,?, (11-6)

where the sign of b determines the sign of both the restricted and corrected covariance,
and therefore, the restricted and corrected validity coefficient.

The bivariate correction just reviewed is the singular case of the general multivariate
correction (Gulliksen, 1950, Chp 13; Lawley, 1943, and Chapter 5 of this document). As
described in Chapter 5, the multivariate correction formulas are merely matrix algebra
extensions of the univariate case. The multivariate correction treating incidental selector
variables as explicit is typically applied by military psychologists in an attempt to isolate
all selection factors (Novick & Thayer, 1969) and because the procedure has been shown
to be, generally, more accurate than the univariate correction (Booth-Kewley, 1985). The
multivariate correction has also been shown to be more accurate with very large samples
under violations of the correction assumptions and at stringent selection ratios, where
inaccurate corrections are typically found.
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A common correction assumption violation is heteroscedasticity where a flattening
of the regression line is observed due to y variances typically being smaller for extreme
values of x than in the middle range of x (Lord & Novick, 1968, p. 148). This study of
small samples, however, reveals the inadequacies of the multivariate correction with
small samples, where sampling errors in regression weights are high (“bouncing betas™)
exaggerated at very stringent selection ratios where there may be a flattening of the
sparse data points.

Taking Equation 11-2 as the conceptually simplified correction formula for the
bivariate case, we only need to generalize the multivariate covariance derivation parallel
to Sxy. That parallel is in matrix algebra notation,

CXY :W,yxCXX ’ (11'7)

where, for multiple predictors but only one criterion, Cxy and w’,, are covariance and

full least squares regression weight vectors, and Cxx is a square matrix of predictor
(selector) variances/covariances. As in the bivariate case, Cyy is derived from linearity
identities; however, the identities now apply to multiple selection variables selectors
(e.g., ASVAB tests with known population parameters, are treated mathematically as
explicit selectors even though operationally, the explicit selector may be a composite
formed from only a few). Each covariance term, Cx;vin Cxy,is derived through matrix
algebra.9 This involves summing the multiplicative terms in two vectors: the particular
selector test’s variance with that selector’s regression weight, and the subsequent
covariances between that selector and every other selector multiplied by that other
selector’s weight. Given all selector variables are positively correlated, negative
covariances in Cyy will be obtained through the matrix multiplication, if and only if, at
least one weight is negative. And, there must be a sufficient magnitude or number of
negative weights to produce the negative corrected covariance term (and thus, the
negative corrected validity).

For predictors and criteria that are positively correlated in an unrestricted
population, this unusual and theoretically impossible positive-to-negative sign change is
a result of inadequate data. Next, we describe a study involving small samples and
stringent selection to illustrate the unusual but theoretically possible case of a negative-
to-positive sign change. All predictors and the criterion are positively correlated in this
study’s unrestricted population.

® Horst (1963) provides a clear presentation of matrix algebra for social scientists.
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A Small Sample Simulation Study under Stringent Selection

The ASVAB selector composite, VE + AR (Verbal + Arithmetic Reasoning) was used
as the explicit selection variable in a study examining the positive-to-negative range
corrected validity coefficient phenomenon. VE + AR composite scores were used to
select five random samples of 50 cases each from a Navy applicant population at the .10
selection (acceptance) ratio. The criterion was the ASVAB Mechanical Comprehension
(MC) test, which was consistent with a prior study of Navy mechanical school
classification composites (Held & Foley, 1994) where MC was used as a surrogate
criterion but where the sample sizes were exceeding large.

Validities were corrected for range restriction in each of the five samples using both
the univariate correction and two-predictor variable modified multivariate correction
where (a) VE + AR was treated as the sole explicit selector and (b) VE and AR were
entered separately into a multivariate correction as separate explicit selectors. Table 11-1
shows range corrected validities resulting from both correction procedures and the
regression weights used in each correction. As both methods produced the same range
corrected validities, they are listed only once.

Table 11-1
Uncorrected and Corrected Validities and Unstandardized Regression
Weights used in Univariate and Modified Multivariate Corrections

Univariate Case Multivariate Case

Weights Weights
Groups r, R, VE + AR R, VE AR
Unrestricted® .687 .687 451 .687 425 472
Restricted® .184 .838 601 .838 549 649
Sample 1 (n = 50) .145 .759 432 .753 .631 .274
Sample 2 (n = 50) .092 .559 301 .528 483 .118
Sample 3 (n = 50) 251 917 1.004 913 1.079 912
Sample 4 (n = 50) 121 .682 332 .682 395 .283
Sample 5 (7 = 50) 315 .938 1.031 .933 1.386 .765

Note: R, is the uncorrected validity and R, is the corrected validity, which was the same for each method.
The composite VE + AR (Verbal + Arithmetic Reasoning) is the explicit selection variable.

147,288 Navy applicants.

13,684 Navy applicants selected by VE + AR at selection ratio = .10.
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Table 11-1 only lists one set of range corrected validities for the five samples because
the values were the same for both correction methods. None of the range corrected
validities were negative nor were the test weights. The variation in the magnitude of the
range corrected validities were tied to the magnitude of the uncorrected validities, which
were subject to the small sample size (n = 50), the stringent .10 selection ratio, and the
nature of the data at extreme segments of score distributions. Table 11-2 provides results
for the eight-variable multivariate correction (the two explicit selection variables VE and
AR augmented by the six remaining ASVAB incidental selection variables treated as
explicit). Sample 4 of Table 11-2 shows a negative sign change in the corrected validity,
which can be attributed to the large (erratic) negative weight for AR and its influence in
the matrix algebra derivation of the AR covariance term (with MC).

Table 11-2
Uncorrected and Corrected Validities and Unstandardized Regression
Weights used in Eight Variable Multivariate Range Corrections

Weights

Groups Iy R. VE AR MK AS GS EI NO CS

Unrestricted® .687 .687 .065 224 173 319 137 .173 -.050 .029

Restricted"” 184 .719 -.070 226 .264 .247 .168 .207 -.040 -.008

Sample 1 145 822  .392 411 354 .164 -.180 ~-.133 .280 -.194
(n=50)
Sample 2 .092 345 -363 -.177 .164 .247 578 .012 .095 -.058
(n =50)
Sample 3 251 .870 .383 622 .066 .266 .363 .121 .112 -.172
(n=50)
Sample 4 121 -316 -.291 -1.044 527 .318 .537 .004 -.057 -.065
(n =50)
Sample 5 315 .878 .793 479 503 .608 -.237 -.134 -.063 -.199
(n =50)

Note. r, and R.are the uncorrected and corrected validities, respectively. VE + AR (Verbal + Arithmetic
Reasoning) is the explicit selection variable. The other ASVAB tests applied as explicit selection variable in
the correction are Mathematics knowledge (MK), Auto and Shop Information (AS), General Science (GS),
Electronics Information (EI), Numerical Operations (NO), and Coding Speed (CS). Mechanical
Comprehension (MC) is the criterion. Raw score weights were derived from a stepwise multiple regression
procedure.

147,288 Navy applicants.

13,684 Navy applicants selected by VE + AR at the .10 selection ratio.
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To explain the negative-to-positive sign change, we examined the three-variable
correction case of one explicit selector variable (VE + AR [VEAR]) and two incidental
selector variables (the criterion, MC, and a candidate replacement composite, VE + NO
+ CS [VENOCS]). The three-variable formula commonly encountered in the literature is

rzy+rxz Iy [( Sil Si)_l]

Rav= (11-8)
JI+r% (3 2)- 101+ 1% [(53/ %) 1]

(Case 3 from Guilford, 1965, p. 343; Case C from Thorndike, 1982, p.213), where z is
designated as the incidental selector composite, and x and y are designated as the
explicit selector and incidental criterion variables, respectively. As with the criterion,
population values for z are unavailable (at least treated mathematically so). As in the
bivariate case, Equation 11-8 can be conceptually simplified to Equation 11-2 and further
to the multivariate case using matrix notation. (see Horst, 1963, for matrix algebra
applications for social scientists.) However, Cxy, the corrected VE + NO + CS and MC
covariance (individual composite test covariances summed for the composite covariance
term), is taken from the Cyy matrix of derived incidental variance/covariance terms, as
is the criterion standard deviation (square root of the diagonal variance term).

The potential for a negative-to-positive sign change for the incidental selection
composite validity can be evaluated from the equation

CYY:ny+V\/yx(CXY 'ny) (11'9)

derived from the homoscedasticity identities.

Conceptually it is simpler to illustrate the inappropriate positive to negative range
corrected validities graphically as in Figure 11-1 where the two predictors/selection
instruments are not highly correlated in the unrestricted population.

MC BY VEAR MC BY VENOCS
80 80
70 . B . . - 70
60-"5% 60
50 : . 50
@] (@]
= 40 = 40
120 122 124 126 128 130 140 150 160 170 180 190 200
VEAR VENOCS

Figure 11-1. Bivariate predictor/criterion plot for the explicit and incidental selector
variables.
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We take from Figure 11-1 that complete truncation of the explicit selector at the
stringent acceptance cutscore assures that at least a few high criterion outliers will exist
for at least a few low-performing incidental selector scorers. Conversely, at least a few
low outliers will exist for at least a few high-performing incidental selector scorers. If the
incidental selector correlated highly with the explicit selector, the two graphs would be
more similar. In fact, for this study, no negative restricted validity estimates were found
for other composites that were more highly correlated with VE + AR.

The data used to generate the two graphs in Figure 11-1 are from Sample 1 of this
simulation study. Note the stable regression weights for that sample (Composite scores
are sums of standardized test scores: M = 50, SD = 10 in the ASVAB normative
population). The restricted validity estimates of the explicit selector, VE + AR and the
incidental selector, VE + NO + CS, are .145 and -.242, respectively. The restricted
intercorrelation of the two selectors is .188. The unrestricted validity estimates for VE +
AR and VE + NO + CS are .678 and .420, respectively. The unrestricted intercorrelation
of the two selectors is .700. The explanation for the second graph and the obvious
negative predictor/criterion relation stems from the rather low unrestricted validity of
the incidental selector compared to the moderate validity of the explicit selector, and the
moderate intercorrelation of the two selectors.

An Example Problem

The following is a simplified presentation of the multivariate correction for
incidental range restriction for the three-variable case graphed above using the data
from Sample 1 (see Table 11-2).

Cxx = [210.05] (unrestricted VE + AR SD); exx = [3.31] (restricted VE + AR SD)
Cxy = [1.43 3.78] (restricted VE + AR covariances with MC and VE + NO + CS)
cyy = [29.53-14.52 ] (restricted MC/VE + NO + CS incidental variable)
[-14.52 122.01] (variance/covariance matrix)
Wyy = ClhxCxy = [1/(3.31)][1.43 3.78] = [0.43 1.13]
Cxy = Cxx Wxy = W/yx Cxx = [210.05][0.43 1.13] = [90.32 237.36]

Cyy = ¢yy + W/x[Cxy - €xy] = (corrected MC and VE + NO + CS variance/covariance
matrix) = [ 67.75 85.92 ][ 85.92 385.96 ], and thus the estimated population validity
coefficient Rxy = 85.92 / (19.65 * 8.23).

The two denominator values, 19.65 and 8.23, were derived from Cyy as, respectively, the
square roots of the MC and VE + NO + CS variance terms (in the diagonal). The
corrected validity of VE + NO + CS is .530, which deviates from the actual value of .420
but is of the correct sign.
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The Potential for Small Sample Stable Results: A Navy Study

It is not necessarily the fact that actual ASVAB multivariate corrected validity
coefficients involving small samples at very stringent selection ratios will produce
erratic regression weights as demonstrated in simulation studies involving multivariate
normal distributions. In working with Navy schoolhouse grading systems, we note that
much effort goes into the development of a high integrity criterion measure. Multiple
progress tests are administered during the course of training that, for the most part,
affect the final school grade. The progress tests and final test are developed to address
the recruit abilities resulting from the ASVAB standard. In contrast, the underpinnings
of the range correction formulas assume bivariate normality in the explicit selection
two-variable case (x,y) and multivariate normality in the more than two variable case
(e.g., x1, X2, Y OT" X, Ui, Y=). Figure 11-2 illustrates the schoolhouse predictor/criterion
situation where the full range ASVAB distribution is apparent, but not final school
grade.

Final School
Grade
' Xx xyx
! x x
Lt A Xxx ¢ = Pass
- x .
PPt ’; x :‘xx = Fail
- %
{ ®xx x
e - x X
=~ ~og 00
BN % %
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1
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' .
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\ ”
* ’
v i/
A ’
» '
\\\ L

Figure 11-2. Bivariate predictor/criterion plot not fully mapped.

Figure 11-2 does not reflect a bivariate normal distribution in a full range population
prior to selection even though the elliptical shape suggests it does. If the elliptical shape
applied, the lowest scores of the final school grade distribution would stretch to the
y-axis origin (as does the ASVAB score distribution on the x-axis). At this point in time,
the Navy does not include school failure data (academically related or otherwise) in the
validity analysis because (a) we may not have the exact reason(s) for failure, (b) the
criterion data for graduates are considered high quality, and (c) the correction for range
restriction equations would not know that the left tail of the y distribution is missing.
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To illustrate the high integrity criterion data used in Navy ASVAB validation/
standards studies, Table 11-3 shows the ASVAB regression weights with final school
grade as the criterion for two Navy Air Traffic Controller (AC Rating) A-School samples
(initial technical training), each of very different sample size (n = 269 and n = 71) (Held,
2006).

Table 11-3
Unstandardized Regression Weights used in a Nine Variable Multivariate
Range Correction for Two Navy Air Traffic Controller Training Samples

Weights
Sample GS AR MK EI AS MC VE AO CS Sum
Size
n= 269 031 .113  .099 .031 .038 .073 .008 -.012 .132 .513
n=71 .086 .049 .248 -.095 .131 .006 .055 ~-.004 .166 .643

Unlike Table 11-2, which showed erratic regression weights for some of the small
samples, Table 11-3 shows relatively stable weights, although different for each sample.
Most importantly, the sums of the weights for the two samples are not highly dissimilar
even though the sample sizes are. The sums of the regression weights across small
samples, and not the signs of each variable in a sample, have been shown to be
somewhat of an indicator of correction stability (Held and Foley, 1994). Table 11-4 lists
the multivariate range corrected validities for a number of candidate ASVAB composites
derived for each of the two AC samples whose regressions weights are listed in Table 11-
3. (Coding Speed [CS] test is a former ASVAB test now a Navy special classification test.)

Table 11-4
Similarity of Multivariate Range Corrected Validities and Validity Differences
for Two Navy Air Traffic Controller Training Samples

AC Rating AC Rating

Sample #1 Sample #2
Predictor (N = 269) (N=71)
VE+AR+MK+CS .74 (largest) .78 (largest)
VE+AR+MK+MC 72 .75
AR+2MK+GS 72 .76
VE+AR+MK+AO 72 .76
VE+MK+GS .70 .75
VE+AR .67 (smallest) .71 (smallest)

Note. Samples were taken several years apart (Held, 2006).
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As can be seen from Table 11-4, both Navy Air Traffic Controller (AC Rating) A-
School samples, taken several years apart, yielded rather stable multivariate corrected
validity results despite the disparity in their sample sizes (n = 269 vs. n = 71). The
largest validity coefficient for each sample was for the VE+AR+MK+CS composite (.74
and .78 for the larger and smaller samples, respectively) and this stability in results was
related to the stability in the sum of the regression weights (Table 11-3).

Concluding Remarks

This chapter described several conditions under which sign changes can occur when
correcting validity coefficients for range restriction using the multivariate method. In
general, the negative-to-positive sign change when all selector variables and the
criterion are positively correlated in the unrestricted population is a function of the
intercorrelations of the selectors and criterion in the restricted data set and cannot be
viewed as an abnormal outcome. The positive-to-negative sign change may merely be
due to a highly stringent selection ratio combined with a small and/or inadequate data
set and should be viewed as an unrealistic outcome.

Even though the methodological issues revealed in this chapter’s study and Chapter
10 on assumption violations, we may not have to be overly cautious about applying the
multivariate correction formulas if the samples are not extremely small because of the
Navy’s high integrity process for developing the training performance criterion. Also,
whereas the selection ratio in the simulation study was extremely stringent (top 10%
qualification rate), they are much more moderate for most of the Navy’s (and other
Services’) military occupations.

The next chapter departs from the range correction topic and addresses several
topics that are commonly considered when estimating the relation between a selection
or classification instrument and a performance criterion.
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Chapter 12.
Partial Correlation, Hierarchical and Logistic Regression,
and Power
Thomas R. Carretta and Janet D. Held

Introduction

This chapter addresses several topics that are commonly considered when estimating
the relation between a selection or classification instrument and a performance
criterion: (a) partial correlation to remove a variable’s influence, (b) hierarchical
regression to estimate a variable’s influence (e.g., variables fixed in the study such as
demographics, or variables whose measures have been taken at different points in time),
(c) logistic regression when continuous criterion measures are not available, and (d)
power analysis. We note that non-linear relations are not addressed in this manual, but
there are methods fully addressed in the literature.

Partial Correlation: The Effect of a Third Variable

Validation research is generally correlational in nature. The interpretation of
correlations, although straightforward on the surface, can be fraught with hazards.
Consider the correlation of an ability test with supervisor ratings of job performance. It
would not be unusual to find low correlations, which could lead to inappropriately
abandoning predictive measures. The Principles for the Validation and Use of
Personnel Selection Procedures (SIOP, 2003) noted that the relation between ability (or
any other measure) and occupational criteria is best understood with the effect of job
experience removed. That is, those individuals who have prior experience with
performing the job tasks, or tasks that are similar to those involved in the current job,
will naturally perform at higher levels, at least in the beginning, all other things being
equal. Removing, or controlling for, this “experience” variable can easily be done by
“partialing out” experience from the relation between ability and the criteria. Partial
correlation, in a more general sense, measures the degree of association between two
variables with the effect of one or more variables removed. The partial correlation is
computed with the following formula:

rsz B ryxl r-X1Xz

r =
VX2 % 2 2 2
\/1— M, \/1— Mex,

where Iy, , isthe correlation between y and x., while partialing out the effects of x;;

(12-1)

Iy, is the correlation between y and xz; ry, is the correlation between y and x;; and T, ,,

is the correlation between x;and x. (Crocker & Algina, 1986). Using our example, y is job
performance ratings, x. is the ability test, and x; is job experience.
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Carretta, Perry, and Ree (1996) provided an example when they correlated ability
test scores with ratings of situational awareness (SA) for 171 F-15 pilots. The zero-order
correlation (zero-order is the term used to indicate that no partialing out has been done)
of ability and SA was .10. However, when F-15 flying experience (i.e., number of flying
hours) was partialed out, the correlation was .17. In this instance, it would be incorrect
to report the correlation between ability and SA as .10.

More broadly, the idea of partial correlation can be subsumed under the statistical
concept of mediation. Mediation means that one variable acts through another to exert
its influence on a third variable. For example, “A —-B— C” indicates that variable A acts
through variable B to exert its influence on variable C. Note that there is no direct
influence of A on C in this model specification. That is, we do not specify “A—C”
although that relation can occur.

Hunter (1986) provided an informative model of mediation in the area of job
performance. Hunter demonstrated for numerous jobs that job knowledge mediated the
relation between ability and job performance. Similarly, Ree, Carretta, and Doub
(1998/1999) showed for 83 U.S. Air Force enlisted jobs that prior job knowledge (JKp)
mediated the relation between ability (the general ability g factor) and the acquisition of
subsequent job knowledge (JKs) during training. In this case both ability and prior job
knowledge were directly related to the acquisition of subsequent job knowledge during
training, but ability also had an indirect influence on subsequent job knowledge through
prior job knowledge. The path diagram is shown in Figure 12-1.

g |8 [ } -29 »<JKS

\I/

, 64

Figure 12-1. An example of mediation: Ability (g) and prior job knowledge
(JKp) have a direct effect on the acquisition of subsequent job knowledge
(JKs); ability also has an indirect effect on JKs through JKp (Ree et al.,
1998/1999).

The effect of mediation also was demonstrated by Ree, Carretta, and Teachout (1995)
for pilot trainees. In the Ree et al. (1995) study, general cognitive ability (g) had both
direct and indirect influence on the acquisition of aviation job knowledge and on hands-
on flying performance during pilot training. Several other studies have shown the
mediating effect of job knowledge between ability and performance (Borman, White, &
Dorsey, 1995; Borman, White, Pulakos, & Oppler, 1991; Lance & Bennett, 2000;
Schmidt, Hunter, & Outerbridge, 1986).
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In closing, to know the “true” relation of a predictor with job performance (assuming
perfect reliability) it is necessary to partial out the effect of experience, such as job
experience (i.e., years, training). The variable to be partialed out, however, depends on
the purpose of the study. Most importantly, partialing out the effects of a variable
should be considered when the objective is to confirm one’s theory about the variables
that contribute to performance. One possible military application of the partialing, or
control, procedure would be for reclassifying enlisted members when they are required
to do so (e.g., due to military downsizing or reprioritization in staffing occupational
fields). One could control for the number of years in service when examining the
relation between ASVAB scores and re-training outcomes. For example, the Air Force
takes into account the experience of pilots manning aircraft when selecting candidates
for training on Remotely Piloted Aircraft (RPA). In this case, the control variable would
be number of flying hours.

Hierarchical Regression

One of the Navy’s analysis tools applied in some ASVAB validation/standards studies
is hierarchical regression. This tool, or method, is used primarily to evaluate the validity
contribution of existing or candidate tests that serve as a second stage classification
screen (multiple hurdle). Hierarchical regression analysis is also a useful method for
controlling for the effects of variables, like demographic variables, that are hypothesized
to relate to the dependent variable of interest but that are not in realm of control (i.e., a
variable available in the dataset but not a variable manipulated via an experimental
design or considered a suitable basis for rejecting candidates). Unlike stepwise
regression where the variable accounting for the most variance in the criterion variable
automatically enters into an equation first, and so forth, until a single model is
developed, in hierarchical regression, the researcher determines the order of variable
entry. Each entry step produces a regression equation and associated statistics, building
up the models to account for the added variables at each step.

We refer to hierarchical regression as linear in this section with variable entry
sequentially stepped so that the multiple R2 and change in R2 can be evaluated for every
added variable. Note in this case that “R” in fact refers to a multiple correlation whereas
in past chapters, aside from a specific application in Chapter 10, “R” stood for the
unrestricted (population) validity coefficient. Note also that non-linear models may
apply that may have complicated interpretations due to unaccounted multiple hurdle
selection systems (that we do not address here).

In the Navy ASVAB validation/standards context, hierarchical analysis has been
used to assess whether the Defense Language Aptitude Battery (DLAB) contributes
validity above the ASVAB in predicting final school grade in language training. The
method also has been used to assess whether the Nuclear Field (NF) community’s Navy
Advanced Placement Test (NAPT) contributed validity above the ASVAB in predicting
final school grade in highly technical training courses. Both of these tests are expensive
to develop, update, administer, and maintain (not to mention examinee testing time, as
each test can take 2 hours to complete).
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We refer the reader to the Nuclear Field (NF) study (Appendix B of the Introductory
Manual) for an example of a hierarchical regression analysis. Briefly, the analysis was
conducted for the three NF Ratings (Electronics Technician, Electrician’s Mate, and
Machinist’s Mate) (Table 8 in Appendix B) to determine the significance of the NAPT’s
incremental validity to the ASVAB. NAPT was entered as a second step in the
hierarchical analysis after the ASVAB and the incremental validity of the NAPT was
statistically and meaningfully significant for all three Ratings. Also significant was a
subsequent entry step, waiver type (e.g., education), and for two Ratings, the following
regression step in the hierarchy, the interaction term of two different types of waivers
(education and civil).

We refer the reader to Lautenschlager and Mendoza (1986) for the type of
hierarchical analyses described in this section and to Raudenbush and Bryk (2002) for a
complete treatment of hierarchical/multilevel analysis. We close this section by noting
that partial correlation and hierarchical regression (linear in both cases) essentially
address the objective of controlling for variables or isolating their effects from other
variables and that the “experience variable” discussed in the partial correlation section
could just as well have been entered into a hierarchical regression analysis. The
difference is the focus of the analysis: eliminating an influence or establishing its
importance. Power analysis (Cohen, 1988) can be applied to both methods and also to
logistic regression, which is discussed in the next section.

Logistic Regression when the Criterion is Binary

Raju, Steinhaus, Edwards, and DeLessio (1991) suggested that a two-parameter
logistic regression (LR) model could be used for several personnel functions that involve
selection instruments, most notably in setting cutscores conditional on ability. The
outcome of interest in this application of LR is not the magnitude of the validity
coefficient but the predicted probability of success (e.g., passing training) conditional on
the selection instrument scores (e.g., the ASVAB). Raju et al. noted the usefulness of LR
in that the validity coefficient that results from the correlation of two continuous
measures in isolation does not have practical value in setting cutscores (or assessing
utility for an organization — see Chapter 3) unless used with the Taylor-Russell tables
(Taylor & Russell, 1939). We note, however, that the Taylor-Russell tables are an
integral part of conducting ASVAB validation/standards studies (discussed earlier in
Chapter 3). We are reminded that these tables allow us to estimate expected
improvements in military training success rates conditional on validity magnitude,
selection stringency, and current success rates under different scenarios. The interest
here is in aggregate success rate of individuals in a training course, not how likely it is
that any individual will pass.

The LR predicted probability of success (or failure) is not without merit or place in
ASVAB validation studies, but only when the performance outcome is not measured on
a continuous score scale. For example, the ASVAB validation/standards study
conducted for the Navy SEALSs (Sea, Air, and Land special warfare combat forces)
provided in Appendix A of the Introductory Manual illustrates the use of LR when a
continuous criterion variable is not available, just a pass/fail binary outcome. The
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SEALSs conduct mentally and physically challenging training and there are many reasons
for not completing training (e.g., medical issues that arrive in training). The
performance measure to date is not scored on a continuous scale. The most frequent
reason for not passing SEAL training, at least in the initial BUD/S course, is self-
elimination (drop on request — cannot meet the physical or mental challenge).

The SEAL ASVAB study was an attempt to establish which of a number of ASVAB
composites was most predictive of a successful training outcome comparing the LR
procedure with the Lawley (1943) multivariate correction for range restriction
(discussed in Chapter 5 and elsewhere). The validity coefficient rankings (magnitude)
among a number of candidate ASVAB composites were compared across the two
methods recognizing that the (a) the binary criterion variable suppressed the validity
coefficient in each case and (b) only the Lawley procedure would adjust for the
downward bias of the validity coefficient due to ASVAB selection effects (SEALS had two
alternative standards at the time) without the correction (i.e., the LR procedure).

In LR, there are several reported pseudo validity coefficients, one of which was used
in the validity coefficient comparison, the Nagelkerke R (square root of the reported
Nagelkerke R2). The Nagelkerke R2 is recognized as inappropriate for comparison to the
OLS Rz on theoretical grounds but perhaps useful in comparing models (Hosmer &
Lemeshow, 2000). Our goal in the SEAL study was just that — that is, for each method
(multivariate range correction vs. LR), to determine whether the ASVAB composites
were ranked the same, which they were, but with lower validity magnitudes for LR.

We note that another shortfall in the comparison study was that the corrected
validity coefficient obtained from the Lawley procedure was not really a multiple R, but
rather an estimated Rho for a particular integer-weighted ASVAB composite. The
Ordinary Least Squares (OLS) equation weights (that result in a multiple R in the
sample) are merely applied in the multivariate range restriction correction (Chapter 5).

The magnitude of the “population” validity coefficient is important in ASVAB
validation/standards studies, and when a binary (pass/fail) score implies an underlying
continuous score distribution, a correction for this artificial dichotomization (not
applied in the SEAL study) should be applied, as described in the next section.

Correction for Dichotomization: An Alternative Approach to Logistic
Regression When the Criterion Is Binary

LR is most appropriate when the criterion variable is a genuine dichotomy, such as
“crashed the airplane” versus “landed safely,” or most commonly in the study of disease
interventions where the patient either died or lived. The question of whether a student
passed or failed, however, implies an underlying performance distribution where a
decision point or cut-point on the final school grade establishes how the student is
categorized. Did the computer technician pass or fail the information network
certification test? A “yes/no” answer may be the only type of available performance
information. When the grades that determined pass/fail disposition are available, they
should be the criterion measure of choice and we then deal with range restriction to
estimate the validity coefficient (past chapters).

143



Logically, we can think of an individual who barely passed the course as not being as
knowledgeable as one who passed with flying colors. In the Navy SEAL ASVAB study
(Appendix A in the Introductory Manual), the training disposition available was either
pass the grueling mentally and physically challenging regimen, or drop on your own
accord. We could think that even the dropped students had some differentiation in
“What it takes to be a SEAL”, but there is no measurement instrument used to
differentiate students who drop.

Dichotomization of a continuous criterion variable (yielding an artificially
dichotomized variable, as opposed to a truly dichotomous variable) not only loses
information, but causes the correlation between it and a continuous variable to appear
lower than it theoretically should be. If we compute a simple correlation between a
continuous predictor variable (say a cognitive test score) and a dichotomized dependent
variable (say pass/fail in a training course), we are computing a point-biserial
correlation. (For SPSS/SAS users, the point-biserial is merely the Pearson correlation
between the continuous variable and the dichotomized variable — artificially
dichotomized or a true dichotomy.)

We learn in basic statistics that when the proportions are 50-50 for each category of
the dichotomized variable (e.g., 50% pass and 50% fail), the variance is maximized
relative to other splits. Because variance is maximized, so is the correlation coefficient.
The more extreme the splits, the more downward is the biasing effect on the correlation.
For example, if the correlation between two variables is .50 before dichotomization and
the proportions are 50-50 in the dichotomized criterion, the correlation after
dichotomization will still be .50. However, if the proportions are 60-40, 70-30, 80-20,
and 90-10, the correlations from dichotomization will be .39, .38, .35, and .29,
respectively. If the correlation before dichotomization is .25, the after-dichotomization
correlations for the proportions 60-40, 70-30, 80-20, and 90-10 would be .20, .19, .17,
and .15, respectively. We see that the lower the correlation to begin with, the lower the
downward biasing effect when one of the two continuous variables is dichotomized.

Cohen (1983) reminds us that early test construction practices (before the
computational efficiency that computers provide) involved dichotomizing the total test
score into high/low (analogous to pass/fail for training) to simplify the computation of
test item/total test score correlations. Cohen did not object to this practice when the
only purpose was merely to decide which items to keep and which to toss. From Cohen’s
article, the rank ordering of items based on the point-biserial correlation does not
appear to be affected by this total test score dichotomization. However, to correct for the
correlation underestimate (assuming an underlying continuous distribution), Cohen
(1988) and Cohen and Cohen (1983) provide the statistical correction obtaining the
biserial from the point biserial, which involves the ordinate (height) of the normal curve
at the point of dichotomization (assuming a normal distribution of underlying
scores/abilities/etc.).10

1% The ordinate value (the height of the normal distribution at the cutpoint) is available in some statistical
appendices, including Cohen and Cohen (1983) Appendix Table C.
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The Air Force has long recognized the dichotomization problem and potential ways
to deal with the complication of restriction in range. The Air Force applies the correction
for dichotomization (e.g., when pass/fail in training is all that is available) after
correcting validity coefficients for range restriction in order to provide a better estimate
of the predictive validity of personnel selection methods. The Navy has not applied the
procedure only because, at this point, only the Navy SEALSs have been found to only
have a dichotomous training outcome variable. We illustrate the correction for
dichotomization (that is, obtaining the biserial correlation) subsequent to a multivariate
range correction for a .34 ASVAB validity reported in Table 6 of Appendix A of the
Introductory Manual (SEAL study):

)

h

r, = rpb

where I, is the Biserial correlation and r,,is the Point Biserial, in this case, corrected for

multivariate range restriction (.34), pq = .30 X .70 (30% pass rate for SEALs) and
h = .352 taken as the height of the normal curve (symmetrical for .30 and .70) from

Appendix C in Cohen and Cohen (1988). The I, value turns out to be .443. Of course it

will never be known whether these two corrections (for range restriction and
dichotomization) yield an accurate estimate of the ASVAB’s validity in the ASVAB
normative youth population (PAY97) in predicting SEAL training outcomes.

Finally, Cohen (1983) cautions us against artificially dichotomizing the criterion
variable because not only is the correlation coefficient diminished, but so is statistical
power, a topic discussed in the next section.

Statistical Power
Background

Statistical power is the probability of detecting a statistically significant difference in
a sample when in fact it exists in the population. More formally, power is the probability
of rejecting the null hypothesis (H,) when it is false and therefore accepting the
alternative study hypothesis (H:) when it is true (Cohen, 1988). Almost all statistics
courses include the topic of statistical power (Cohen; Cohen & Cohen, 1983), but
relatively few published studies report power to accompany the various statistical tests
to which power can be applied(e.g., r, t, Z, or F tests). Two surveys of a prestigious
applied psychology journal showed that the average statistical power for studies
accepted for publication was only .46 and declined to .37 two decades later (Sedlmeier &
Gigerenzer, 1989). In other words, researchers could only expect to detect an existing
effect 46% of the time (37% for the more recent survey). Conversely, researchers could
expect to fail to detect the existing effect 54% of the time (63% for the more recent
survey)!
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Low statistical power is not unique to psychological research and has been reported
in reviews of management research (Cashen & Geiger, 2004; Mazen, Graf, Kellogg, &
Hemmosi, 1997), software engineering (Dyba, Kampenes, & Sjoberg, 2006), and other
fields such as medicine (Halpern, Karlawish, & Berlin, 2002). Low statistical power in
the field of personnel selection research means that we are inclined to make incorrect
conclusions about the psychological phenomena we study. In the case of the military’s
ASVAB validation/standards studies, an incorrect decision in recommending an ASVAB
candidate composite for classifying recruits into a particular occupation would not have
a dire consequence-because there already is an operational ASVAB composite with a
cutscore in place (with the exception of newly formed occupations). Further, the
candidate ASVAB composites evaluated for an occupation are generally highly
correlated due to the rational composite development process that maps the underlying
ASVAB constructs to the curriculum (although there is also an empirical approach that
might produce less highly correlated composites).

In contrast, there can be a lot at stake in falsely rejecting a potentially effective
medicine when the effect is real in the population. For example, making a false decision
to not submit a drug to the FDA for approval because of low power may have substantial
negative impact on those in the population who would have benefited from the drug. We
stress that just because an effect is not detected in a sample taken from a population
does mean the effect does not exist. In ASVAB standards validation work, sample size
has a lot to do with detecting a real effect and it, out of all the other influential factors
(including development of best practice criterion measures), may be the only variable
within the practitioner’s control.

Power analysis involves many moving parts. As Cohen (1988) notes, statistical power
is a joint function of the Type I error rate, effect size, sample size, and degree to which
the sample values reflect their true values in the population. We refer the reader to
Cohen for the many power applications and merely review some fundamentals that
apply in general. Researchers set a statistical significance level, alpha (a), for rejecting
the null hypothesis, Ho, and thereby accepting the study hypothesis, H;. Generally, a .05
a level in personnel psychology research is sufficiently stringent for us to reject the null
hypothesis (H,) and accept the alternative hypothesis (H,). If the effect does exist in the
population, increasing a will increase the probability that we detect that true effect (e.g.,
a = .10 rather than a more stringent .05) and thus increase statistical power. However,
in sampling theory, we are bound to observe statistical significance some proportion of
time over the long haul even when the effect is not there. The probability of doing so is
called a Type I error and is the a level.

Establishing a more stringent statistical test (e.g., a = .01 rather than .05) reduces
the Type I error but increases the probability of a Type II error (), given the effect exists
in the population. A Type II error is the probability of failing to reject H, when in fact,
the effect exists in the population and H; should be accepted. The cost of committing
each type of error is weighed by the organization conducting the research. Of particular
concern in the practical world is that extremely large samples will demonstrate an effect
when the magnitude of that effect will have trivial consequences (Murphy, Myors, &
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Wolach, 2009). Murphy et al. suggested considering a “minimum” effect size in
determining sample size requirements in power analysis.

The calculation of power is simply 1 minus the probability of failing to appropriately
reject Ho (Type II error ), or 1 — 3. Increasing power is mainly about reducing § by
limiting the overlap of the two distributions that are being compared for the effect.
Diminishing the overlap can be achieved, basically, in three ways. First, increasing a
reduces distribution overlap by moving the critical significance test value (in effect, a
vertical cutscore) to the left on the x-axis. (We are assuming that the control group’s
distribution is to the left of the experimental group’s distribution, with some overlap in
the two). Second, moving the two distributions apart reduces overlap, which means
somehow increasing the effect. Third, increasing sample size reduces overlap by
narrowing the two distributions’ spread (variance), thereby reducing overlap.

Power’s Relevance for ASVAB Test Validation

We have so far stressed the importance of the following factors in ASVAB
validation/standards studies: (a) applying the multivariate correction for range
restriction in estimating ASVAB composite validity coefficients in the unrestricted
ASVAB population, (b) assessing (to the extent possible) the sample’s adherence to the
underlying assumptions of performing the correction, (¢) using (if not proactively
helping to develop) meaningful and reliable performance criteria, and (d) having an
adequate sample size to produce more accurate and stable range-corrected validity
estimates. Of these factors, only adequate sample size pertains to the traditional
calculations presented in power analysis.

Four questions logically arise about adequacy of sample size in conducting ASVAB
validation/standards studies:

1. Isthe sample at hand considered representative of the ASVAB population from
which it theoretically was drawn; thereby leading us to believe that an effect
found in the sample generalizes to that population?

2. Should we rely on historical studies in considering the actual effect size in the
population (correlation coefficient/validity)?

3. If we refer to historical studies for a “pre-estimate” of validity magnitude and
therefore sample size requirement, do we refer to the restricted or unrestricted
ASVAB validity?

4. What magnitude of the validity difference should be considered sufficiently large
to recommend one ASVAB composite over another?

Regarding the first question, the sample at hand is all we have, and we must
therefore assume that it is representative of the ASVAB population. The question
becomes which ASVAB population and whether the choice influences which parameter
values (means, standard deviations, and correlations) are appropriate to apply in the
range correction procedure. The Navy applies the PAY97 ASVAB population in the range
correction procedure, so it assumes representativeness. We could decide that the most
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recent military applicant population (or the Service-specific applicant populations) is
closest in attributes to our sample. However, this produces at least two unintended
consequences: (a) the inability to generalize validity coefficients over time due to
changes in economic conditions that may lead to differing applicant compositions and
(b) the inability to generalize validity coefficients across the Services’ same occupations,
which might be an issue under budget constraints that lead to more joint-service
training and operations.

Regarding the second question, the American Psychological Association (APA) Task
Force on Statistical Inference (Wilkinson, 1999) endorsed the approach of referring to
high-quality historical studies for pre-estimating population effect sizes in power
analysis. Regarding the third question, if we do refer to historical studies, do we refer to
the restricted or estimated unrestricted ASVAB validity? If we refer to the estimated
unrestricted validity, the ASVAB validation/standards study researcher must first
complete the study—not at all helpful in the preplanning stages that involve estimating
sample size. Regarding the fourth question, the comparison of ASVAB composite
validity coefficients must involve the range-corrected state. Otherwise, the comparison
will be biased (as we saw in the Chapter 5, Thorndike example - Table 5-1).

Determining the necessary sample size for sufficient power in an ASVAB
validation/standards study is a complicated matter, and we look to others for advice in
this area. We first look to regression analysis, because all of the ASVAB tests are used in
sample-based regression weights that are then applied (via the linearity assumption
along with the homoscedasticity assumption) in the derived multivariate range-
corrected validity estimates. Green (1991) reviewed various “rules-of-thumb” presented
in the literature regarding multiple regression and noted that the most conservative
sample sizes came from Nunnally (1978). Nunnally applied a multiple regression
shrinkage formula (p. 180) in his sample size analysis and recommended 300 to 400
cases for 9 or 10 predictor variables. Green (1991) took the position that if power is to be
considered, the more complicated “rules of thumb” (that he reviewed) produced lower
sample size requirements, but there was no specific endorsement at the time of a most
appropriate integrated power/regression procedure.

Because the Navy applies all nine ASVAB tests in the multivariate correction for
range restriction, we might consider a reasonable regression-based sample size estimate
based on Nunnally’s (1978) advice of 35 cases X g variables = 315 cases as a general rule.
We would have to recognize, however, that we need a good understanding about factors
that might influence regression weight stability (as described in previous chapters). We
could also posit that being able to detect a real difference in the validity of ASVAB
composites in the population is almost as important as detecting that the composites
have a certain magnitude of validity (effect size). Cohen (1988) addressed both of these
magnitude concerns, stating that “these (statistical power) tables are not valid under
conditions of range restriction such as may occur in personnel selection” (p. 100).
However, we could stretch our perspective a bit and refer to Cohen’s Table 4.3.2 to test
whether a .03 validity difference could be detected with sufficient power given different
sample sizes, different validity magnitudes, and different validity differences between,
say, two ASVAB classification composites.
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Cohen’s (1988) Table 4.3.2 (one-tailed a = .05 significance test) applies to the
population effect size. However, the two correlations to compare are independent,
coming from different populations (pp. 119-120). This is not the case in our ASVAB
validation/standards studies; nevertheless, we proceed. The effect sizes of the difference
are expressed as “g” and are listed across the top ledger row. The “q.” values listed in the
table column just to the right of the first column (with Ns) apply if we are conducting
significance testing for the correlations obtained from our samples. A further
modification can be made for the case of paired correlations compared in one sample

(section 4.5.4, p. 142).

For simplicity and illustrative purposes, we use Cohen’s (1988) Table 4.3.2 to
demonstrate a power planning scenario that would be useful to us if not for the
restriction in range problem. We also note that the table applies only to correlations
derived in independent samples (which apply to independent populations). Cohen
specifies the effect size of the difference in correlation coefficients as “q”, which is
calculated as the difference in the Fisher Z transformation values calculated for each of
the comparison correlations. Cohen assumes small, medium, and large effects sizes for
correlations are associated with g values of .10, .30, and .50 (p. 129).

We first refer to Cohen’s (1988) Table 4.2.1 after deciding that a small effect (g = .10)
is sufficient to recommend one ASVAB composite over another. With simple
calculations, we can determine the correlation differences needed to attain q = .10 for
three baseline correlations that we specify as representative of the ASVAB validity for a
range of Navy occupations. The three correlations are .30, .55, and .80, and the
increments in validity required for g = .10 are .08, .05, and .03, respectively. We see
right away that our specified .03 validity difference at the planning stages of the study
deemed acceptable for an ASVAB composite replacement does not apply across the
spectrum of validity magnitudes (i.e., if we were to assume the unrestricted validity
coefficients for ASVAB composites were the target validity values to use to conduct the
power analysis). More specifically for the reader, “q” is calculated from Cohen’s (1988)
Table 4.2.1 for the following comparisons: (a) .80 compared to .83 for a .03 difference
(similar to our Nuclear Field study reported in Appendix B of the Introductory Manual),
(b) .55 (Navy average) compared to .60 for a .05 difference, and (c) .30 (a bit larger than
observed for the SEALS) compared to .38 for a validity difference of .08. The g values for
these values are all slightly below .10 (.089, .075, and .090 for the baseline .80, .55, and
.30 correlations, respectively).

Assuming the g values derived for our three correlation pairs are close enough to
Cohen’s (1988) g = .10 value, we enter Cohen’s Table 4.3.2 at the .10 g column and look
to see what sample size is required to achieve the power level we specified in the ASVAB
validation/standards study planning stages (power of .80). A sample size of 1,000 is
required to achieve the highest power level entered in the table entry (.72). We note that
validity differences of as large as .08 (for the .38 - .30 comparison) are never observed
in ASVAB validation/standards studies because of the substantial correlation between
ASVAB composites that occurs through the rational composite development process of
mapping ASVAB constructs to the curriculum constructs (complementing the empirical
regression-based process).
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We remind ourselves again that the power/sample size analysis we conducted using
Cohen’s (1988) Table 4.3.2 is inappropriate for ASVAB use in that the table applies to
independent correlations, not related correlations derived in the same sample. We refer
the reader to Cohen’s modification for a pair of correlations (p. 142) and note that
Equation 4.5.6 applies for testing the statistical significance (once the sample values are
found) as opposed to research planning purposes.

Next, we look to others who have explicitly considered the range restriction issue.
Schmidt, Hunter, and Urry (1976) were concerned with the legal issues surrounding use
of a selection instrument with zero validity and so addressed the role of power in the
personnel selection framework. Schmidt et al. acknowledged the complication involved
in violating the assumptions underlying range correction and so conducted their
research under the assumption that all had been met. The authors addressed explicit
selection only, acknowledging that the incidental selection case is also important. In this
regard, Sackett and Wade (1983) extended the Schmidt et al. power formulas and tables
to include the incidental selection case, which they recognized as the typical personnel
researcher’s case of interest (i.e., evaluating new measures). We direct the reader to
Raju, Edwards, and LoVerde (1985) for their comments on both articles.

We refer only to Schmidt et al. (1976) because the Navy treats all ASVAB tests as
explicit selection variables in the multivariate correction for range restriction (applying
all ASVAB regression weights derived in the sample). Schmidt et al. melded power,
restriction in range, and criterion unreliability into their complex of equations and
derived restricted validity estimates for 10 selection ratios and 8 criterion reliability
estimates. Again, the objective for their personnel selection issue was only to establish if
the observed validity was greater than zero in the unrestricted population. Schmidt et al.
provided tables with sample size requirements for two unrestricted validity levels (.35
and .50), two power levels (.50 and .90), and various significance levels for one- and
two-tailed statistical tests.

We refer to Schmidt et al.’s (1976) Table 4 that applies to the unrestricted validity of
.50 (close to the Navy average of .55 across Ratings), a power level of .90 (higher than
the Cohen’s .80), a one-tailed a = .05 test, and a criterion reliability of .80 (perhaps
reasonable to assume across Navy schools). At a fairly unrestricted selection ratio of .70,
a known unrestricted validity of .50 is reduced to .33 with a sample size requirement of
75. At a much more stringent SR of .30, the unrestricted validity of .50 is reduced
further to .25 with a near doubling of the sample size requirement to 134. If we specify
the .50 power level (flip of a coin) commonly found in cited historical literature and
seemingly unacceptable in the personnel selection realm, then the sample size
requirement is substantially reduced (Ns = 26 and 44, respectively).

We close this section by saying that it is not clear in our minds what methods are
appropriate for determining the sample size requirement for a specific ASVAB
validation/standards study. The situation is complicated by practical issues such as the
(a) urgency of the standards requirement that might preclude waiting for a sufficient
sample size to form; (b) ability to detect obvious idiosyncrasies of the sample that might
lead us to wait for more data; (c) complications of ASVAB restriction in range effects
that are not simple to address, especially when selection ratios are stringent and the
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criterion score distributions appear skewed; and (d) actual integrity of the criterion
(which is not known until a full study is in progress). The best we might be able to do is
to wait as long as possible within the practical parameters of the study for an adequate
sample size to analyze, recognizing that prior validity studies for the same or similar
occupations might provide some useful technical parameters.
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Chapter 13.
Weighting Variables: The Tradeoff between Validity and
Adverse Impact
Jeff W. Johnson

Introduction

With the exception of the Army, the Services use integer (unit) weights to construct
their ASVAB occupational classification composites, which involve two to four tests (the
Army uses full-least squares regression weights using all ASVAB tests). Several reasons
have been proposed for using simple or unit weights, including simplifying computation
(Stahlnaker, 1938), improving robustness (Dawes, 1979), reducing shrinkage under
cross-validation compared to regression weights (Wainer, 1976, 1978), and providing
better generalizability to future samples theoretically coming from the same population.
This and the next chapter deal with issues to consider when weighting variables in
prediction equations with this chapter focusing on a heuristic that organizations can use
to assess the specific tradeoff of maximizing validity while minimizing adverse impact.
We do not specifically address the methods used to assess adverse impact (a limited
discussion is provided in Chapter 15) and so we refer the reader to the vast literature on
the topic (e.g., Linn, 1973; Thorndike, 1971) some of which includes the military context
(e.g., Wise et al., 1992).

To Weight or Not to Weight?

It is reasonable to ask if there is any point to differential weighting of tests in a
composite. There is a large literature that suggests that unit or simple weights yield
nearly the same results as regression weights (Aiken, 1966; Ree, Carretta, & Earles,
1998; Wainer, 1976, 1978; Wilks, 1938). Three factors are important for determining the
expected correlation between composites of a set of tests — the average correlation
among the tests, the number of tests, and the relative variability of the weights. Under
typical circumstances, differently weighted combinations of the same tests into
composites will yield results that are very highly correlated (Wilks, 1938).

For example, Ree et al. (1998) cited published examples of nearly identical rank
orderings of individuals for composites that were based on regression weights, unit
weights, policy-capturing weights, and factor weights. The more highly correlated the
tests are, the more similar the rank-ordering of the individuals will be, even though the
composites were formulated to weight the tests differentially (Ree et al., 1998). Because
military enlistment and classification composites are based on the ASVAB, which
consists of moderately intercorrelated tests, different weighting schemes are likely to
make very little difference in the rank-ordering of individuals or the amount of criterion
variance explained (i.e., R2). If top-down selection is used, the same individuals will be
selected regardless of the weights.
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Prediction vs. Explanation

Multiple regression analysis has two distinct applications: prediction and
explanation (Courville & Thompson, 2001). When multiple regression is used for a
purely predictive purpose, the regression equation derived within a sample is used to
predict scores on a criterion variable from a weighted combination of variables (i.e., test
scores). This same equation can be applied later to test scores for a similar sample, or a
future sample not yet available. The issue in the prediction application becomes whether
the original equation is optimal in the new sample.

The elements of the equation are least-squares regression coefficients, which
indicate the amount by which the criterion score is expected to change as the result of a
unit increase in a given predictor score, while holding the other predictors constant.
These regression coefficients minimize the sum of squared errors of prediction about the
linear regression line and are optimal for maximizing prediction in the sample in which
they were developed. Of greatest interest in the prediction application is the extent to
which the criterion can be predicted by the predictor variables (indicated by R2), with
less interest in the relative magnitude of the regression coefficients.

When multiple regression is used for explanatory or theory-testing purposes, the
interest is in the extent to which each variable contributes to the prediction of the
criterion. For example, if theory suggested that one variable was relatively more
important than another, we would expect this to be reflected in their relative regression
weights. Interpretation of the regression weights is the primary concern, such that
substantive conclusions can be drawn regarding one predictor with respect to another.

Least-squares regression coefficients are not designed to be interpreted in this way
and are uninterpretable in terms of relative importance when predictor variables are
correlated (Johnson & LeBreton, 2004). In this case, the appropriate procedure is
dominance analysis (Budescu, 1993) or relative weight analysis (Johnson, 2000). These
procedures partition the predictable variance in the criterion (represented by R2) among
the predictors according to the proportionate contribution each predictor makes,
considering both its direct effect and its effect when combined with the other variables
in the regression equation (Johnson & LeBreton).

Relative Weight Analysis

Johnson and LeBreton (2004) recommend two alternate methods for measuring the
relative importance of predictors - Budescu’s (1993) dominance analysis and Johnson’s
(2000) relative weight analysis (RWA). Both methods (a) yield importance weights that
represent the proportionate contribution each predictor makes to R2 (b) consider a
predictor’s direct effect and its effect when combined with other predictors, and (c)
result in estimates of importance that make conceptual sense. The two methods also
produce almost identical results despite using very different approaches to evaluate the
importance of the predictors (Johnson, 2000; LeBreton, Ployhart, & Ladd, 2004).
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The advantage of RWA over dominance analysis is that relative weights can be
computed much more quickly than dominance analysis weights, both in terms of
researcher time and computer processing time. RWA takes the same amount of time
regardless of the number of predictors, but the time required to run a dominance
analysis increases exponentially as the number of predictors increases. Dominance
analysis requires that regression analyses be conducted for all possible combinations of
predictors, so a 10-predictor model requires 1,023 separate regression analyses. Even
with modern high-speed computers, this can take significant CPU time. Dominance
analysis requires that code be written or edited, whereas RWA requires only syntax that
specifies the included variables. Choosing RWA over dominance analysis could therefore
result in considerable cost and time savings, especially when multiple analyses are
required. For these reasons, empirical studies comparing relative importance weights to
regression weights have used RWA. Thus, this chapter focuses on RWA.

RWA is based on the observation that most statistical measures of predictor
importance yield the same results when predictors are uncorrelated. For example,
squared zero-order correlations, squared standardized regression coefficients,
Hoffman’s (1960) product measure, and Darlington’s (1968) usefulness are all
equivalent and sum to R2 when predictors are uncorrelated. Therefore, the first step in
RWA is to transform the predictors (e.g., specific attributes measured on a survey) to
their maximally related orthogonal counterparts. In other words, a set of new variables
is created that are as highly related as possible to the original set of predictors but are
uncorrelated with each other. Gibson (1962) describes this relatively simple RWA
mathematical process.

Conceptually, the RWA process could be likened to a principal components analysis
in which the same number of components as number of predictors is extracted and
rotated to the point where no other rotation would yield higher correlations between
each original predictor and its associated orthogonal variable. The criterion (i.e., some
overall evaluation measured by the survey such as overall customer satisfaction or
overall employee satisfaction) is then regressed on the new uncorrelated variables. The
squared standardized regression coefficients unambiguously represent the relative
importance of the new variables.

The relative importance of the new variables is an approximation of the relative
importance of the original predictors. To arrive at an estimate of the relative importance
of the original predictors, there must be some mechanism by which information on the
relations between the new variables and the criterion is combined with information on
the relations between the original predictors and the new variables. Johnson (2000)
showed that the appropriate way to do this was to regress the original predictors on the
new orthogonal variables. Because regression coefficients are assigned to the
uncorrelated variables, the relative importance of the uncorrelated variables to the
original predictors is unambiguous.
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By combining the indices representing the relative importance of the uncorrelated
variables to the criterion and the indices representing the relative importance of the
uncorrelated variables to the original predictors, we can compute an index representing
the relative importance of the original predictors to the criterion (i.e., relative weights).
In practical terms, the output of RWA is a weight for each predictor that represents its
relative contribution to the dependent variable. Larger weights indicate a stronger
association with the outcome.

Using Relative Weights for Prediction

Least-squares regression coefficients that maximize the prediction of a criterion have
long been considered inadequate as measures of predictor importance, especially under
conditions of multicollinearity (Budescu, 1993; Green & Tull, 1975; Hoffman, 1960).
Conversely, there is some question as to whether relative importance indices are
appropriate for use as weights in situations where the primary concern is prediction.
Least-squares regression coefficients yield the highest possible R2 in the sample in
which they were derived. The question of ultimate interest, however, is how well these
regression coefficients predict when they are applied to data in another sample. Two
primary factors (sampling error and multicollinearity) influence the extent to which
regression coefficients derived in one sample will predict in another. Both suggest that
relative importance weights may have an advantage over least-squares regression
weights in some circumstances.

Sampling error makes least-squares regression weights prone to inaccuracy,
especially when sample sizes are very small. Therefore, unit weights (i.e., all predictors
weighted equally) are often superior when applied to population data (Schmidt, 1971).
In other words, regression weights in a small sample could be so different from the
optimal weights in the population that it is better not to weight the predictors at all.
Even when sample sizes are large, unit weights are often applied in practice because
organizational stakeholders perceive them as easy to explain and maintain over time.
The simplicity and interpretability of unit weights very often trump the better prediction
of regression weights.

High multicollinearity (i.e., intercorrelations between predictor variables) leads to
instability in regression weights, making them less applicable outside the sample in
which they were derived (Wainer, 1978). Dominance analysis and RWA are designed to
provide estimates of relative importance precisely under conditions of multicollinearity,
so they are more likely to be stable across samples. Greater stability of relative
importance weights under conditions of multicollinearity makes it reasonable to
hypothesize that sample-based relative importance weights may sometimes provide
better prediction in the population than do sample-based least-squares regression
weights. This is especially likely in small samples where regression weights are
dependent on the idiosyncrasies of the sample data.

' See Johnson (2000) for mathematical formulas detailing the derivation and calculation of relative weights.
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In addition to the statistical rationales for using relative importance weights for
prediction over regression or unit weights, there are also conceptual considerations that
give importance weights an advantage. Relative importance weights can be expressed as
the percentage of predictable criterion variance attributed to each predictor, so these
indices may be easier to present to decision makers (e.g., managers, executives, board
members) when compared to regression coefficients or increments in R2 (LeBreton,
Hargis, Griepentrog, Oswald, & Ployhart, 2007). For example, it is likely much easier to
convince organizational decision makers to invest money in a new selection instrument
when it is described as accounting for 25% of the predictable variance in overall job
performance than when it is described as increasing R2 by .03. On the other hand, as
was demonstrated in Chapter 3, an R2 translates into a validity coefficient. The increase
in R2 of .03 translates into an increment in validity of .17 which, with much explanation,
can be used to project expected improvments in, say, military training success rates and
the cost savings by not having to (a) re-recruit individuals to fill the slots of those failed
(b) reassign failed students to another occupation, (c¢) transport them to other training
sites, and (d) realize a much-diminshed time in productive status (during their first term
of enlistment).

Empirical Studies

At least two studies have compared the predictive power of relative importance
indices to least-squares regression coefficients. Oswald, Johnson, and Oliver (2000)
compared relative weights (Johnson, 2000) to regression weights, unit weights, and
rational weights (rational weights were estimates of the relative importance of
predictors made by 26 industrial-organizational psychologists). Using correlation
matrices between 9 predictors and each of 11 criteria as the population correlation
matrices, these authors conducted a Monte Carlo study in which least-squares
regression weights and relative weights were computed within 1,000 replications of each
of four sample sizes (n = 50, 100, 200, or 500). These weights were then applied to the
population matrix, and R2 was computed in each instance.

Oswald et al. (2000) also computed R2when applying unit weights and rational
weights. Results indicated that, on average, (a) relative weights were less biased than
least-squares regression weights, (b) relative weights were more stable than least-
squares regression weights, (c) relative weights tended to be more similar to rational
weights than were least-squares regression weights, and (d) sample-based relative
weights tended to yield a higher R2 in the population than did unit weights and rational
weights. Sample-based relative weights also tended to yield a higher R2in the population
than did least-squares regression weights with smaller sample sizes (less than about
100).

Oswald (2001) followed up this study with another Monte Carlo study in which the
number of predictors, extent of multicollinearity among the predictors, and sample size
were varied. Further, range restriction and criterion and predictor reliability artifacts
were built into some of the conditions. Oswald found that relative weights tended to
provide better prediction than regression weights for sample sizes of 100 or less when
multicollinearity was relatively low but not when multicollinearity was high. The
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superiority of regression weights under high multicollinearity conditions was explained
by the presence of suppressor variables. Suppressor variables have low zero-order
correlations with the criterion but large negative regression coefficients because they
suppress error variance in the other predictors, thereby improving prediction.
Suppressor variables are common when all predictors are highly intercorrelated.
Multiple regression analysis is designed to take advantage of suppressor variables to
enhance prediction, but relative weight analysis is not. Multiple regression had less of an
advantage when range restriction and unreliability artifacts were added. When there
were few predictors and sample sizes were small, relative weights demonstrated better
prediction despite the presence of suppressor variables.

Adverse Impact of a Composite

A common problem faced by personnel selection researchers and practitioners
involves choosing a set of predictors from a larger set of potential predictors for the
purpose of creating a selection test battery. There are usually two primary
considerations when creating a test battery: maximizing the criterion-related validity of
the test battery while minimizing adverse impact against protected groups. By adverse
impact we refer to majority and minority mean differences in test scores on a selection
instrument favoring the majority group such that the majority group is hired at a higher
rate. (Adverse impact is discussed in the Chapter 18). Creating a composite of several
valid predictors is a common strategy for reducing the degree to which a selection
procedure produces group differences (Campbell, 1996; Sackett & Ellingson, 1997;
Schmitt, Rogers, Chan, Sheppard, & Jennings, 1997). The problem is that the most valid
predictors of performance tend to also produce the largest group differences (Sackett &
Ellingson, 1997), so adding a predictor that increases the validity of the composite will
often have the simultaneous effect of increasing adverse impact.

Compounding the problem is the fact that adding a predictor with little adverse
impact to a predictor with large adverse impact typically does not reduce the adverse
impact of the composite to the extent that generally would be expected (Sackett &
Ellingson, 1997). Sackett and Ellingson provided an example of two uncorrelated
predictors. One predictor had a standardized mean subgroup difference (d) of 1.00 and
the other had a d of 0.00. Most researchers would expect that the two predictors would
offset each other, so the d of an equally weighted composite of the two predictors would
be 0.50. In fact, the d of this composite would be 0.71. The composite d approaches the
mean of the individual test d’s as the correlation between the tests increases. Thus,
reducing adverse impact by adding predictors to a composite is not as easy as it seems at
first glance.

Considering Both Validity and Adverse Impact
When stakeholders value both maximizing validity and minimizing adverse impact,

the dilemma of the researcher evaluating alternative composites is determining at what
point the gain in validity is offset by the increase in adverse impact. The problem is
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exacerbated when there are many predictors from which to choose. The number of
possible composites that can be created from p predictors is 2P — 1.12 With just 5
predictors, there are 31 potential composites to evaluate. It is difficult to compare 31
composites to determine which is best at balancing validity and adverse impact. With
just a few more predictors, the number of potential composites increases rapidly. With 8
predictors, the number of potential composites is 255. With 10 predictors, it increases to
1,023 (we are reminded that the ASVAB has 9 tests at this point). Although some
composites can be rejected immediately because they are obviously inferior, there
usually will be a large number of composites among which it could be difficult to choose.

It would be desirable to have an automated procedure for choosing among
composites that considers both validity and adverse impact. This would make the
process of choosing a composite much less complicated, take much of the subjectivity
out of the process, and make the selection procedure easier to defend. Johnson,
Abrahams, and Held (2004; see also Johnson & Abrahams, 2003) proposed a procedure
to select predictors for composites that considers both criterion-related validity and
standardized mean subgroup differences. This procedure was flexible enough to allow
the user to adjust the parameters depending on the relative value placed on validity and
adverse impact.

Johnson et al. (2004) recognized that a larger increase in validity should be required
to justify increasing adverse impact when adverse impact is already relatively high than
when it is low. For example, an increase in the standardized mean subgroup difference
(d) from 0.00 to 0.10 is not as damaging as an increase from 0.50 to 0.60. The increases
are of the same magnitude, but in the first case, adverse impact is still low and in the
second case it is becoming less acceptable. A small increase in validity is worthwhile if
adverse impact is low, but a larger increase in validity should be required if it is already
high. The solution was to create a formula that could be applied to d that would
transform it to a value that decreases exponentially as d increases. Less adverse impact
results in a higher transformed score. By adding the validity coefficient to this
transformed d value, a choice can be made between alternative composites by choosing
the one that has the highest combined validity/transformed adverse impact sum. The
idea behind the transformed d score is that, as adverse impact increases, it takes a
progressively larger increase in validity to justify choosing the composite.

After experimenting with several transformation formulas, Johnson et al. (2004)
determined that the following formula best represented their conceptualization of the
relative value of validity and adverse impact at different levels of d:

ad + bd?
d =1-| ———— . (131
¢ ( e j(s)

2 Note that p of these “composites” will comprise just the single tests (i.e., they will involve just one measure).
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Parameters a and b are similar to the constant and slope in a regression equation.
Parameter a, like the constant, affects the starting point for the increase in validity
required to offset a given increase in adverse impact. Parameter b, like the slope, affects
the rate at which the required increase in validity increases as d increases. Users of this
procedure can adjust these parameters to reflect their personal or institutional
preferences for the relative weight that should be placed on adverse impact and validity
when choosing test composites.

As an example of the use of Equation 13-1, set a = 4 and b = 5. Suppose adding a
subtest increases the adverse impact of the composite from 0.10 to 0.20. For the sum of
d: and validity to increase beyond the sum for the previous composite, validity would
have to increase by at least .022 — that is, the difference in d; values calculated at d = .10
(.982) and d = .20 (.960). Similarly, if adverse impact increased from 0.50 to 0.60,
validity would have to increase by at least .038. This takes into account the fact that
increases in adverse impact when there is very little adverse impact are more acceptable
than increases in adverse impact when adverse impact is more severe. To determine the
combined validity/adverse impact score (VAI) for a particular composite, Johnson et al.
(2004) used the following equation:

VAI =r. + d;, (13-2)

where r¢ is the validity of the composite and d: is as defined in Equation 13-1. The best
composite is the one in which VAT is at its maximum. Johnson et al. noted that d; can be
replaced by the mean d; across different subgroup comparisons (e.g., Black-White,
Hispanic-White, Male-Female) if more than one comparison is of concern. A weighted
mean d; also can be computed if certain types of adverse impact are of greater concern
than are others.

Although a great deal more research is necessary in this area, the Johnson et al.
(2004) procedure has some promise as a starting point in automating the selection of
composites when considering both validity and adverse impact. This procedure has been
used operationally in a study in which one of many possible predictor composites had to
be chosen for each of several criterion variables (Johnson, Paullin, & Hennen, 2005). In
this study, VAI was computed for each possible composite for each criterion and was
one piece of information used in choosing the final composite for each criterion. Future
research should be directed toward further refining the VAI formula and identifying
more objective ways of placing relative value on validity and adverse impact.

Concluding Remarks

Given the mixed results regarding weights, it is not clear under what conditions
relative weights provide better prediction than least-squares regression weights. Given
the distinct advantages that relative importance indices have over regression coefficients
in terms of communicating to decision makers, it might be worth exploring the
possibility that relative weights have predictive advantages. Also, considering both
validity and adverse impact simultaneously is feasible but involves policy makers and
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technical information about minority group score barriers that result from the current
set of selection instruments. The other strategy for reducing score barriers, as adopted
by the Navy, is to offer alternative ASVAB composites that, with appropriate cutscores,
form standards that apply to everyone. This way the Navy can capitalize on the prior
experience/knowledge in the technical areas that some recruits have, but maintain a
classification system that maintains diversity across most Ratings. The next chapter
focuses on the calculation of weights with a focus on a composite of criteria that can be
used in test validation research.
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Chapter 14.
More on Weights: Forming a Composite of Multiple
Performance Criteria
Rodney A. McCloy

Introduction

This chapter extends the discussion on weights in the last chapter with a slightly
different emphasis and computational framework. Methods of determining weights for a
set of components that are to be combined to form a composite (whether a predictor
composite or a criterion composite) can be thought of as falling into two primary
categories — rational and empirical weights. Rational weights are developed by judges
who provide numeric weights based on their views about how the components should
contribute to the composite (often based on each judge’s notions of what organizational
policy is or should be). Empirical weights are developed when quantitative techniques
are applied to yield a set of weights that achieve some pre-determined goal (e.g.,
maximize the reliability of the resulting composite). Sometimes, empirical weights are
obtained after performing mathematical operations on data provided by
judges/stakeholders, thus representing both categories to a degree. This chapter
provides a discussion of two rational weighting approaches and one empirical method
that uses judgments as data. It concludes by identifying additional weighting goals that
might lead one to compute empirical weights. Also, the shift is from training
performance as the criterion, which has been the focus of the Navy’s approach in ASVAB
validation/standards studies, to the dimensions of job performance as the “criteria.”

Rational Weights: Direct Estimation

When creating a composite variable (assume for now we are creating a composite of
performance measures), component weights often can be provided with relatively little
muss and fuss. An individual or group of policy makers can simply agree that all the
components in the performance composite should be weighted equally. If so, the
components are said to be “unit-weighted” (as discussed in the previous chapter). A
unit-weighting scheme most often arises when there is an explicit desire to treat all the
components as equal to one another in importance, although it can sometimes arise
when there is no clear policy for how best to assign weights to the components.

Another common approach is to assemble a group of expert judges and have them
allocate 100 percentage points across the components. Sometimes judges will make the
point assignments individually and then review the results as a group before arriving at
a final set of weights, which is most often the mean across judges (sometimes a second
round of individual weighting is conducted following the group session). Unit weights
can be viewed as a special case of percentage allocation, with all the components
receiving an equal percentage contribution to the composite (i.e., each weight is
equivalent to 100/k, where k is the number of components to be weighted).
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Whatever the weights, the purpose of these a priori weighting schemes (Wang &
Stanley, 1970) is to reflect the policies of the judges participating in the weighting
exercise. Perhaps the most important point regarding weights obtained via direct
estimation is that the weights allow the composite to be defined as desired. That is, the
weights are not driven by statistical realities or limitations, but rather by policy makers
and other stakeholders who have the opportunity to define the reality they envision (by
creating a composite score that reflects their overall view).

Rational Weights: Policy Specifying

Another means of developing rational weights involves a procedure known as “policy
specifying” (Ward, 1977). Policy specification is “a decision-modeling technique by
which variables identified as pertinent to a decision-making process can be combined to
derive a single predicted payoff value” (Pina, Emerson, Leighton, & Cummings, 1988,
p.5). The U.S. Air Force used this procedure to weight and combine 10 variables deemed
critical to the assignment of enlisted personnel to Air Force Specialties into a single
score (payoff function) that the Air Force then used with their Processing and
Classification of Enlistees (PACE; Pina et al., 1988) system used to quantify the efficacy
of the Air Force’s person-job matching decisions.

Policy specification is a form of “policy capturing”, a general term that describes
methods for obtaining policy information from stakeholders and decision-makers, and
describing the relations between that information and the judgments based on it
(Rogelberg, Ployhart, Balzer, & Yonker, 1999). With regard to PACE, the procedure
began with the assembly of a group of subject matter experts (classification experts,
policy makers) who held weekly meetings during which they discussed and eventually
identified the variables they deemed most important to making sound assignment
decisions. The variables included enlistee aptitude, training preferences, gender,
training cost, probability of completing the first term of enlistment, and the fill priorities
of the available jobs.

Having identified 10 such variables and selected measures of them, the Air Force
judges then combined these measures into groups in a bottom-up agglomerative
process. For example, they formed a trainability score that comprised intellectual ability
and academic background. The aggregation continued until all 10 variables had been
combined into a single score that served as the index upon which the value of various
classification decisions were based. The grouped variables were weighted by importance
at each step.

Pifia et al. (1988) did not describe how the importance weights were determined.
Regardless, the importance weights and the groups of variables formed by the expert
panel serve as rationally-weighted representations of the policies of the panel. The
policy-specifying technique could serve as a basis for judgmentally determining the
underlying value stakeholders ascribe to multiple criteria that need to be combined to
form a single composite criterion.
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Empirical Weights: Conjoint Measurement

Another policy-capturing approach develops empirical weights for the components;
however, these empirical weights are derived from expert judgments about the relative
importance/worth of the components. Conjoint scaling (Green & Srinivasan, 1978;
Johnson, 1974) (sometimes called conjoint measurement) requires judges to evaluate
(e.g., rank-order, rate) groups of stimuli that differ systematically with regard to the
dimensions in question. The stimuli may differ on all the dimensions of interest
simultaneously (full-profile conjoint scaling) or on just two dimensions (two-factors-at-
a-time conjoint scaling).

As an example of the latter approach to conjoint scaling, Sadacca, Campbell, White,
and DiFazio (1989) sought to determine the relative importance of weights that should
be assigned to the five job performance constructs developed during the Army’s Project
A (Campbell, 1990; Campbell & Knapp, 2001) to yield a composite representing overall
job performance. The five constructs of interest were Core Technical Proficiency,
General Soldiering Proficiency, Effort and Leadership, Maintaining Personal Discipline,
and Physical Fitness and Military Bearing (Campbell, 1986).

In the Sadacca et al. (1989) study, non-commissioned officers and company-grade
and field-grade officers representing 20 Army occupations served as judges. The judges’
task was to rank 15 hypothetical Soldiers in terms of overall job performance. The judges
provided rankings for 10 sets of 15 Soldiers. The 15 Soldiers within each set differed in
terms of their relative standing on two of the Project A performance constructs (e.g.,
Effort and Leadership vs. General Soldiering Proficiency). If Soldiers who scored higher
on a given performance construct (say, Effort and Leadership) than another (say,
General Soldiering Proficiency) were ranked higher than Soldiers who had the opposite
scoring pattern, then the construct with the higher score among the more highly ranked
Soldiers was deemed more important (and thus received a larger empirical weight) than
the other construct.

Conjoint scaling produces weights that are based on the ratio of the dimension (here,
construct) regression weights obtained when predicting a given judge’s ranking of the
stimuli (here, Soldiers) (see Torgerson, 1958). Sadacca et al. (1989) found that the
weights applied to the five performance components differed significantly across the 20
jobs (consistent with differential assignment theory, which is discussed in the last
chapter). Conjoint scaling could assist the Navy and other Services with determining a
reasonable set of weights to apply to multiple components of a composite performance
measure.

Empirical Weights: Other Goals

As with selection and classification goals, there may be many goals to consider in
weighting components in a performance composite. Wang and Stanley (1970) present
many options for weighting components in a composite, including weighting (a) to
achieve equal correlations of the components with the resulting composite, (b) to
achieve minimum variation of the composite, (c) to achieve maximum reliability of the
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resulting composite, (d) by difficulty (of test/measure), and (e) by length (of
test/measure). The choice of the appropriate weighting scheme depends on the purpose
of the composite itself—in particular, whether it is to be viewed as a psychological
construct or else as a statistical conglomerate that might embody multiple dimensions
for the purpose of encompassing as many relevant factors as possible when yielding a
score that will serve as a decision index.

What You See Is (Probably) Not What You Get: Nominal Weights and
Effective Weights

Frequently, the assignment of a set of desired weights to multiple components
(whether predictors or criteria) does not yield the intended weighting scheme. Rather,
these nominal weights specified by the weighting scheme (e.g., equal weights,
differential weights assigned by expert judges) will contribute to, but not equal (and
likely will not even be proportional to), the effective weights that result when the
composite is formed (Wang & Stanley, 1970). That is, the nominal weights transform
into a different set of weights. The transformation is a function of the variances of and
covariances among the elements constituting the composite. This occurs because the
variance of a composite is a function of the sum of the variances of the components and
their covariances, as shown in Equation 1 (p. 664) from Wang and Stanley:

Var(X, +Xz+ . . . +Xo)=Var(Xy) +Var(X2)+ . . .
+Var(X,) +2Cov(X:X;) +2Cov(X:X:) + . . . +2Cov(Xp-1Xn).

When nominal weights (w) have been assigned to the various components, the variance
of the weighted composite is thus

Var(w,: X, +wXe+ . . . +woXy)=w*Var(X*)+w:?Var(X:)+ ...
+ wa2Var(X,) +2w,w:Cov(X,X.) + 2w,wsCov (X Xs) + . . .
+ 2w wWaCov (Xp-1X0).

(Wang & Stanley, Equation 3, p. 665). This, in turn, means that the contribution of any
single component from that composite to the variance of the composite is

C;=w;w,Cov(X;X,) +w;wCov(X; X))+ . ..
+ wiw;,Cov(X;Xi_1) + w;*Var (X;) + wiwis:.Cov(XiXin) + . ..
+ w;w,Cov (X X,).

(Wang & Stanley, Equation 4, p. 665). Thus, although the nominal weights certainly
contribute to the resulting effective weights, they do not equal them unless the
components are uncorrelated or correlate with one another to the same degree. Further,
the formula indicates that as components are added, the variance of the composite is
increasingly a function of the covariances rather than of the variances.
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Wang and Stanley (19770) pointed out that this discrepancy between nominal and
effective weights will occur whenever normative scoring is in effect—that is, when the
meaning of a given test score is interpreted relative to scores from others on the test
(e.g., percentiles, standard scores). If a criterion-referenced scoring process is used (e.g.,
percent correct), then effective weights typically will be proportional to nominal weights.

Fortunately, given a set of nominal weights, one can solve for values for the empirical
weights that, when applied to the variances and covariances, will yield effective weights
for the components that equal the desired, intended nominal weights. To demonstrate,
assume we have scores on five performance dimensions with the following variance-
covariance (VCV) and correlation (Corr) matrices (Tables 14-1 and 14-2, respectively):

Table 14-1

Variance/Covariance (VCV) Matrix for Five Performance Dimensions

2 3 4 5

1
1 32
2 20
3 12
4 16
5 6

27
4 4
6 22 36

10 7 13 15

Table 14-2

Correlation (Corr) Matrix for Five Performance Dimensions

1 2 3 4 5
1 1

2 .68041 1

3 33129 .12022 1

4 47140 19245 57264 1

5 27386 .49690 .28227 55943 1
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Also assume that we would like these five dimensions to receive equal weight when
forming a performance composite. The task of obtaining empirical weights becomes one
of solving a system of five equations for five unknowns that, when applied to the
variances and covariances as specified in the equations that follow, will yield effective
weights that are equivalent to the desired magnitude expressed by the nominal weights.
The five equations are as follows:

X1: 1 = (W1)?*Var(X1) + (W1*w2)*Cov(X1,X2) + (w1*w3)* Cov(X1,X3) + (W1*w4)*Cov(X1,X4) + (w1*w5)*Cov(X1,X5)
X2: 1 = (W2)?*Var(X2) + (W2*w1)*CoviX2 X1) + (W2*w3)* Cov(X2,X3) + (W2*w4)*Cov(X2X4) + (W2*w5)*Cov(X2,X5)
X3: 1 = (W3)?*Var(X3) + (W3*w1)*Cov(X3,X1) + (W3*w2)* Cov(X3,X2) + (W3*w4)*Cov(X3,X4) + (W3*w5)*Cov(X3,X5)
X4: 1 = (W4)?*Var(X4) + (w4 w1)*CoviX4.X1) + (WA w2)* Cov(X4,X2) + (W*w3)*Cov(X4,X3) + (wa*w5)*Cov(X4,X5)
X5: 1 = (W5)?*Var(X5) + (W5*w1)*Cov(X5X1) + (W5*w2)* Cov(X5,X2) + (W5*w3)*Cov(X5,X3) + (W5*w4)*Cov(X5X4)

where X1 through X5 are the five component scores to be weighted and w1 through w5
are the empirically determined weights for which we seek a solution.

When not constrained to equal 1.0 (as is specified for these five equations), the
formula on the right side of the equals sign in these equations yields the effective weight
for the particular component under consideration, given application of the nominal
weights (here, w1 = w2 = w3 = w4 = w5 = 1.0) to the variances and covariances (and is
equivalent to Wang and Stanley’s [1970] Equation 4 presented earlier). In the present
example, each component’s sum is simply the sum of the variance and covariances for a
given component (because all weights equal 1.0). Thus, for component X1, applying
weights of 1.0 yields an effective weight of 86, which is the sum of 32 (its variance) and
20, 12, 16, and 6 (its covariances with the other four components).

Table 14-3 presents the effective weights for all five components in this example,
along with the nominal (desired) weight for each component (“Nominal Weight”) and
the percentage contribution to the composite that the nominal weights specify each
component should have (“Nominal %”).
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Table 14-3
Nominal, Effective, and Empirical Weights for Five Performance
Components: Equal Nominal Weights and Unstandardized Variables

Nominal Nominal Effective Effective Empirical
Component Weight % Weight % Weights
X1 1 20 86 22.5 0.104
X2 1 20 67 17.5 0.124
X3 1 20 86 22.5 0.107
X4 1 20 93 24.3 0.097
X5 1 20 51 13.3 0.160

In Table 14-3, dividing each component’s effective weight by the sum of all of the
effective weights yields the percentage contribution of each component to the composite
(the “Effective %” column in Table 14-3). These percentages clearly do not equal the
desired apportionment of 20% (1/5) to all five components.

Because of the differing variances and covariances among the components, the
weights that need to be assigned to the components to obtain equal effective weights
would not be 1.0 across the board (as the nominal weights might suggest). Rather, the
solution for this system of equations given the variance-covariance matrix (Table 14-1) is
listed in the “Empirical Weights” column of Table 14-3.13 Applying these empirically
determined weights to the components X1 through X5 will yield effective weights for the
components that match the desired nominal weights of w1 = w2 = w3 = w4 = w5 = 1.0.
Thus, applying the empirical weights to the variances and covariances will result in each
component contributing equally to the composite.

A similar analysis can be achieved if the nominal weights specify that some
components should contribute more to the composite than others. Assume that an
expert judgment exercise yielded the following set of weights for the five components:

w1 =20%, w2 =10%, w3 = 10%, w4 = 40%, w5 = 20%.

With this weight specification, the equations to solve would be as follows:

3 The weights were obtained using the “Solver” add-in from Excel 2007. Other linear programming software also
could calculate the weights that solve the specified system of equations.
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X1: 2 = (WLP*Var(X1) + (w1*w2)*Cow(X1,X2) + (w1*w3)* Cov(X1,X3) + (w1*w4)*Cov(X1,X4) + (w1*w5)*Cov(X1,X5)
X2: 1 = (W2)?*Var(X2) + (w2*w1)*Cov(X2,X1) + (W2*w3)* Cov(X2,X3) + (W2*w4)*Cov(X2,X4) + (W2*W5)*Cov(X2,X5)
X3: 1 = (W3)?*Var(X3) + (W3*w1)*Cov(X3,X1) + (W3*w2)* Cov(X3,X2) + (W3*w4)*Cov(X3,X4) + (W3*w5)*Cov(X3,X5)
X4: 4 = (W4)?*Var(X4) + (w4 w1)*CoviX4.X1) + (w4 w2)* Cov(X4,X2) + (WA*W3)*Cov(X4,X3) + (wa*w5)*Cov(X4,X5)

X5: 2 = (W5)?*Var(X5) + (W5*w1)*Cov(X5,X1) + (W5*W2)* Cov(X5,X2) + (W5*W3)*Cov(X5,X3) + (W5*w4)*Cov(X5,X4)

(note how the nominal weights serve as constraints on the left side of the equals sign).
The effective weights for these specified nominal weights again are not as desired. Once
more (a) applying the desired weights to the right side of each equation, (b) calculating
the sum for each component, and then (c) dividing that sum by the total of the sums of
all five components, we see the extent to which the application of the nominal weights to
the five components “as they are” yields effective weights that differ from what is
desired, shown in Table 14-4.

Table 14-4
Nominal, Effective, and Empirical Weights for Five Performance
Components: Unequal Nominal Weights and Unstandardized Variables

Nominal Nominal Effective Effective Empirical
Component Weight % Weight % Weights
X1 2 20 344 19.4 0.153
X2 1 10 115 6.5 0.102
X3 1 10 171 9.7 0.080
X4 4 40 920 51.9 0.243
X5 2 20 222 12.5 0.222

As before, Table 14-4 shows that there is a departure from the desired
apportionment of components to the composite. To recapture the desired nominal
weights, we need to apply empirically determined weights (Footnote 13) to the variances
and covariances of the components.

The problem regarding differences between desired nominal weights (e.g., those
specified by expert judges) and effective nominal weights (those that actually exist
because of the influence of the components’ variances and covariances) does not vanish
if one standardizes the components prior to weighting. Standardization will obviate the
complicating problem of unequal variances across components, but unequal covariances
will almost certainly remain, thus providing a similar (if somewhat lesser) problem.
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For example, assume that we treated the correlation matrix (Table 14-2) as the
variance-covariance matrix. As such, it means that we are using standardized variables.
The problem of effective weights that stray from the desired specified weights remains,
although the differences between desired and actual contributions of components to the
composite are not as great as in the unstandardized case (Table 14-3). The standardized
case with equal nominal weights is presented in Table 14-5.

Table 14-5
Nominal, Effective, and Empirical Weights for Five Performance
Components: Equal Nominal Weights and Standardized Variables

Nominal Nominal Effective Effective Empirical
Component Weight %o Weight % Weights
X1 1 20 2.76 21.3 0.589
X2 1 20 2.49 19.2 0.646
X3 1 20 2.31 17.8 0.683
X4 1 20 2.80 21.6 0.581
X5 1 20 2.61 20.2 0.618

Although standardizing the components prior to weighting reduced the discrepancy
between nominal and effective weights (see Tables 14-5 and 14-6), as noted, it still did
not produce the equal weighting we were seeking to achieve. As Wang and Stanley
(1970) pointed out, “using nominal weights with standard scores probably comes closest
to achieving equal effective weighting, particularly if the average correlation of each
variable with the others is nearly constant” (p. 666). The empirically determined weights
are still necessary to faithfully reproduce the desired weighting of the components.

Finally, to complete the comparison, Table 14-6 presents the results that would be
obtained by applying the expert judges’ nominal weights to standardized components.
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Table 14-6
Nominal, Effective, and Empirical Weights for Five Performance
Components: Unequal Nominal Weights and Standardized Variables

Nominal Nominal Effective Effective Empirical
Component Weight % Weight % Weights
X1 2 20 10.89 18.7 0.863
X2 1 10 4.24 7.3 0.530
X3 1 10 4.64 8.0 0.515
X4 4 40 27.10 46.9 1.458
X5 2 20 11.13 19.1 0.861

Concluding Remarks

The weights required to yield desired nominal weights are almost never the nominal
weights. Achieving a desired allocation of influence of components on a composite
therefore requires more than development of nominal weights. The nominal weights
must be appropriately transformed into new weights that, along with the variances and
covariances of the components, yield the desired nominal weighting for those
components.

Below are a couple of summary points to keep in mind when creating a composite
variable—whether a criterion composite (as discussed in this chapter using job
performance as the example) or a predictor composite. Following these suggestions will
enhance the interpretability of the composite and ensure you are using a variable that
has the properties you desire it to have.

e If forming a single composite criterion meant to represent “overall” job
performance, think carefully about how to weight the components that constitute
the composite. Several methods are available that allow the composite to reflect
stakeholders’ policy valuations.

e Keep in mind the distinction between nominal weights and effective weights.
Applying equal weights to a set of components will almost certainly result in
unequal contributions of the components to the composite. In most instances
involving rationally determined weights, alternate empirical weights need to be
calculated and applied to the components to obtain effective weights that will
produce the desired weighting indicated by the nominal weights.
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Chapter 15.
Multiple Hurdles and the Correction for Range Restriction
Norman M. Abrahams

Introduction

The main objective of conducting a predictive validity study in the personnel
selection context is to determine the value or effectiveness of the selection test in
screening job applicants. However, many validation strategies do not take into account
that there may be more than one selection stage in an organization's hiring process.
That is, typically, we deal with a single decision point. Multiple hurdle selection systems
have more than one. In this chapter, we describe several sequential testing or multiple
hurdle selection systems and the technical problems that may lead to inaccurate
estimates of test validity (downward bias) when a hurdle is not taken into account, or is
inappropriately dealt with. We also explore some of the literature on multiple hurdles
and several remedies, some of which involve the correction for range restriction
formulas described in earlier chapters.

Multiple Hurdle Selection Systems

In general, the range restriction problem is not unique to the field of personnel
selection, nor is the problems of accurately estimating the unknown unrestricted
correlation when there have been violations of the underlying Pearson-Lawley
assumptions, such as curvilinearity. For example, the range restriction problem arises in
other fields such as health (e.g., participants in a clinical trial drop after the first phase
because they did not reach a critical level of improvement), econometrics (e.g., there are
unobservable lower wage earners in a wage comparison study involving all occupations),
and education, where, for example, college applicants may be rejected because they do
not meet an official score on the Scholastic Aptitude Test (SAT) or the Academic College
Testing (ACT) (a range restriction situation similar to military qualification on the
ASVAB). As another example, students who qualify for a high ranking university may
not even bother to apply to a lower tier college resulting in restriction in range in high
scores (see Sackett and Yang, 2000, for more types of restriction in range).

Besides these obvious cases of range restriction, there are others that are not so
obvious. For example, a structure interview may be used in college admissions but the
instrument may not be scored and so, not used in validity analysis. If the institution
wants to estimate the validity of the SAT/ACT in predicting first year grade point
average for the applicant population, the omission of the interview instrument scores
may cause the range corrected validity of SAT/ACT to be downward biased. The use of a
structured interview may also be used to eliminate candidates from employment
consideration. Generally the interview is administered after a general cognitive test has
screened applicant out and so acts as a second stage assessment, part of a sequential
testing or multiple hurdle selection system.
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Multiple hurdles, as opposed to multiple cutscores, are sequential screening/
selection systems that are formally structured in stages so that not all applicants are
administered all of the tests or instruments. Essentially, an applicant must meet the
cutscore on the first screen to progress to the second screen. For example, the Federal
Aviation Administration (FAA) administers a general cognitive ability test to Air Traffic
Controller applicants in an initial screening stage and those failing the test are
eliminated from further employment consideration. In a second stage of testing, those
passing this first stage of testing are administered a more expensive battery of
comprehensive and time-consuming tests. Those applicants who survive both stages
(and any other hurdles) are eligible for employment consideration. Multiple hurdle
selection systems provide practical benefits to both the organization and the applicants.
From the organizational perspective, the most expensive personnel selection procedures
are conserved. From the applicants’ perspective, time spent in a fruitless effort to gain
employment is minimized, freeing those rejected in the first stage to pursue other
employment opportunities.

There are at least two examples of multiple hurdle cognitive screening systems in the
military involving the Armed Services Vocational Aptitude Battery (ASVAB). The first
example is the use of a subset of the ASVAB tests, the ASVAB math and verbal tests—the
Armed Forces Qualification Test AFQT) for military service eligibility (see Chapter 2 in
the Introductory Manual). Of course, other military screens are applied that include
education and non-cognitive screens such as physical fitness, medical, and moral status.
If all of the military eligibility screens are passed (hurdles), the ASVAB is again used in a
second stage of cognitive screening for occupation qualification. Technically, because all
military applicants must take the full ASVAB for both enlistment and occupational
classification, the ASVAB use can be thought of as a multiple cutoff system. The only
differentiating factor that makes this screening system a hurdle and not a multiple
cutscore system is that the selection and classification decisions are separate processes.

Another example of an ASVAB multiple hurdle situation that is often not recognized
as such is when the criterion that the ASVAB is targeted to predict is job performance.
The first hurdle, of course, is the ASVAB standard for military eligibility, but technically
is not considered so because the scores for both enlistment and job classification are
available for all applicants. So, we say the second hurdle screen is passing the training
course to “qualify” for reporting to the job. Just as many military enlisted members do
not meet the ASVAB standard for a specific occupation, many who do qualify and attend
the training course do not meet the training standard and therefore fail the training and
do not report to the job. In this multiple hurdle case, measures of training performance
serve the same purpose as the ASVAB classification standard — to screen out individuals
from the job who are at an unacceptable risk for failure. Ignoring a screening hurdle has
analytical consequences when validating the ASVAB, discussed in the following sections.

Technical Issues with Multiple Hurdles
Earlier chapters introduced the Pearson-Lawley correction for range restriction

formulas. We recall that the assumptions for applying the formulas for the simple
bivariate case are (a) linearity in regression of y on x throughout the unrestricted
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bivariate distribution and (b) homoscedasticity of y error variance conditional on the
values of x. An additional assumption is that explicit selection has occurred only on x.
We can consider the assumptions (a) and (b) as “distribution assumptions” and the
explicit selection on x assumption as a “selection assumption.” Lawley (1943) relaxed
the distributional properties of x and y for the multivariate case (i.e., the formal
properties of test score normality) but maintained that linearity and homoscedasticity
should hold. For the multivariate case, the selection assumption is that y; covariances
are unconditional on xi. As a reminder, the three-variable case of one explicit selection
variable and two incidental variables (commonly, one explicit selector, one experimental
predictor, and one criterion variable) is a specific case of the general multivariate
formulas (see Chapter 5).

It is well recognized and thoroughly discussed in previous chapters that the
underlying assumptions for correcting for range restriction in the two-variable (x,y)
bivariate normal case is linearity of y regressed on x across the total x-score range with
homoscedasticity of error variances. Bivariate normal distributions are not always
attained, however, and it is left to the researcher to assess the state of the only partially
observable data (due to a selection standard in our illustration). Much research has been
conducted on violations of the linearity and homoscedasticity assumptions and why
these violations occur (some discussed in Chapter 11). We refer the reader to Dunbar
and Linn (1991), Linn (1983), and Sackett and Yang (2000) for graphical
representations of the non-linearity relations between two variables that can occur when
a third “selection” variable selection has not been accounted for. As our visual aid, we
first refer to Figure 15-1 for the depiction of the relation between two hurdle variables,
H, and H., before and after a cutscore has been applied to H,.

H>

Figure 15-1. Non-linearity relation between two hurdle tests (/. and H,)
resulting from the H,; cutscore.
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Figure 15-1 shows the linear regression line (H; on H.) before a cutscore has been
applied to H;, and also the slightly curvilinear line above that results from a cutscore
applied to H;. We can see clearly that the linear regression line (roughly drawn to go
through the mean of the H; distribution observed at each H-score) becomes curvilinear
because in the very low H- score range, most of the low scores on H; are eliminated due
to the H;, H. correlation. Obviously, to the extent that scores on H» are highly correlated
to scores on the performance measure, say Y (now substituting for H>), the curvilinear
relationship between H; and Y also will be observed and the validity of H;in predicting Y
will be downward biased (as the slope of the line is flattened). We could say for Figure
15-1 that H, is the ASVAB, H. is training grade, and Y is a measure of job performance.
We can see how the ASVAB’s predictive validity will be underestimated with job
performance as the criterion if we ignore the training hurdle.

A Constructed Two-Hurdle Example

This section describes the technical aspects of estimating the validity of ignored, not
recognized, or inappropriately dealt with hurdles. A hypothetical case was constructed
in which we predetermined the correlations, means, and standard deviations for two
hurdles (H, and H.) and a performance criterion (Y) in an applicant population drawn
from a trivariate normal distribution. For convenience, we limited this population to
1,000 cases. The three variables were standardized to have means of 0 and standard
deviations of 1. In the first scenario, an inappropriately dealt with hurdle, H; is a
recognized formal hurdle whereas H> is also a hurdle but ignored. The objective of our
investigation was to compare the accuracy of the validity estimations for both H; and H-
for the scenario where the true validity coefficients are known for both variables.

Table 15-1 shows the correlation matrix constructed for a hypothetical applicant
population with means and standard deviations for the three variables just described.

Table 15-1
Hypothetical Applicant Population (N = 1,000) H;, H;, and Y
Means, Standard Deviations (SD), and Intercorrelations

H H> Y Mean SD

Hy 1.00 .45 .46 0.00 1.00
H> 1.00 .53 0.00 1.00
Y 1.00 0.00 1.00

Next, we assume that the top 28% of applicants scoring highest on H, in Table 15-1
were administered H.. The Y variable would not be known at this point. Table 15-2
shows the resulting H; and H. correlation matrix, determined analytically.
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Table 15-2
Hurdle 1 Selectees (7 = 280) with H; and H> Means, Standard
Deviations, and Intercorrelations

H; H> Mean SD
Hy 1.00 .25 1.20 0.51
H> 1.00 0.54 0.92

Table 15-2 shows that the range restriction that occurred by selection on H,
attenuates the H,H. correlation (initially .45 to a now much lower .25). Consistent with
range restriction effects, the mean scores are higher for both H; and H. (than the initial
standard score mean of 0) and the standard deviations lower (than the initial 1.0).

Finally, we assumed that 160 of the 280 applicants who scored highest on H; scored
highest on H- (16% of the original applicant population). The 160 final selectees went on
to the training program to be scored on the performance variable Y. Table 15-3 shows
the resulting H;, H», and Y correlation matrix from the fabricated two-hurdle selection
system, also determined analytically.

Table 15-3
Hurdle 2 Selectees (7 = 160) with H;, H, and Y Means,
Standard Deviations, and Intercorrelations

Hy H> Y Mean SD

Hy 1.00 .19 23 1.28 0.54
H> 1.00 31 1.17 0.59
Y 1.00 0.83 0.87

Table 15-3 shows that the range restriction that occurred by selection on both H; H>
further attenuates the H,H. correlation (.25 in Table 15-2, after the first hurdle; .19 in
Table 15-3, after the second hurdle). Consistent with increased range restriction effects,
the mean scores are even higher for both H; and H», and at least for H., the standard
deviation is lower. Further, because the Y variable, observed for the first time, is
correlated with both H; and H> in the population (.46 and .53, respectively), these
correlations are also reduced in magnitude (.23 and .31, respectively).

We remind ourselves that H, was erroneously thought to be an experimental
predictor, not a formal selection instrument with an applied cutscore. As often occurs in
the evaluation of an experimental predictor, we might assume that it is appropriate to
apply a conventional Pearson-Lawley correction that treats H- as an incidental selection
variable (Pearson’s Case III, which is Equation 5-19 in Chapter 5 and Equation 7, p. 174,
in Thorndike, 1949). This correction procedure is not technically appropriate, however,
because H.was a formal explicit selection instrument. Table 15-4 shows the estimated
applicant population matrix resulting from misapplication of the Case III formula.
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Table 15-4
“Corrected” Applicant Population H; H> and Y Means, Standard
Deviations, and Correlations

H H> Y Mean SD
Hy 1.00 33 .39 0.00 1.00
H> 1.00 37 0.91 0.61
Y 1.00 0.37 0.92

The Table 15-4 values differ markedly from the known applicant population values in
Table 15-1. The inappropriately used Case III formula produced corrections that not
only underestimated the H; and H- applicant population validities, but also “reversed”
their relative standings in predictive effectiveness. In the applicant population, H- has
higher validity than H; (.53 vs. .46, respectively), but Pearson’s Case III correction
erroneously produced .37 versus .39, respectively.

Sequential use of the Pearson-Lawley Formulas

In two studies of multiple hurdles (only a part of which is reported in this chapter),
Abrahams and Alf (1998; Alf & Abrahams, 1998) investigated and compared several
variations of the Pearson-Lawley formulas for their potential to solve the multiple
hurdle validity estimation problem. The authors found that applying the standard
Pearson-Lawley formulas in a sequential manner yielded the exact population values
(Table 15-1). Specifically, the H,, H», Y matrix for the final selectee sample (Table 15-3)
is used with the Pearson-Lawley multivariate formulas to estimate the missing Y for the
Hurdle 2 matrix (Table 15-2) that contains only H; and H>. In turn, the now complete
three-variable Hurdle 2 matrix is used with the correction formulas to estimate the
missing H- and Y applicant population data (Table 15-1).

Abrahams and Alf (1998; Alf & Abrahams, 1998) noted in their investigation of
Lawley’s (1943) original exposition of the multivariate correction procedures that a
single statement supported the use of the sequential corrections. Specifically, Lawley
noted that “Since the conditions (linearity and homoscedasticity) refer to relations
existing between the y and x variables and take no account of the form of distribution of
the x alone, it is clear that the selection formulas, if once applicable, may again be
applied when a second selection is performed on the already selected population” (p.
29).

The use of the sequential Lawley correction assumes that data for those selected and
rejected are available at each hurdle stage. Having complete data might not normally be
the case. For example, those at the Hurdle 2 stage will have H; and Hscores, but those
rejected on H, will not appear at the next stage where the Y measurement is taken.
Another kind of “missing data” situation applies to those selected at both hurdles but
some of whom fail on the criterion variable, in which case the failures’ Y scores will be
missing or, if entered, highly suspect. These two types of missing data must be imputed
somehow to legitimately use the sequential Lawley correction method.
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Abrahams, Alf, and Neumann (1993) provided an imputation procedure to compute
Y performance scores that do not rely on predictor scores (i.e., Y scores for missing cases
are not based upon regression equations that use the predictors). This imputation
procedure has had application for scoring failures for large-scale ASVAB validation/
standards studies (Wise et al., 1992). However the procedure could just as well be
applied to missing hurdle scores for those rejected at a hurdle and therefore not arriving
at the stage where performance Y scores are taken. The “Scoring of Failures” procedure
is based on the observed criterion distribution that is then anchored to the theoretically
normal distribution. Because the method is not based upon regression analysis
involving the predictors, the imputations may dampen the predictor validity
coefficients. On the other hand, the procedure does have the potential to inflate validity
estimates due to the direct tie to predictor scores (regression-based).

Some Psychometric and Econometric Methods

Alf and Abrahams (1998) explored not only the Pearson-Lawley formulas but also a
variety of other correction methods (including Maximum Likelihood) for potential use
in multiple hurdles selection systems. The methods can be categorized as either
psychometric or econometric. The psychometric methods are variants of procedures
developed by Pearson (1903) and Lawley (1943) and assume linearity of regression and
homoscedasticity, as discussed earlier in this chapter and in previous chapters. The
econometric methods (e.g., Heckman, 1979; Muthén & Joreskog, 1983) typically model
the single-stage selection process developing a regression equation for y on x that
includes a binary term to account for the range-restricted group. Typically, the numeric
value of 1 is assigned to members of the unselected population, and o to the selected
group. Some approaches use probit analysis as the first stage in the process of
parameter estimation to account for the effects of sample selection.

The next step in a probit analysis is to include the probit values along with x in a
least squares regression to predict y for all cases. The validity coefficient then becomes a
straightforward calculation. The applicability of some of the econometric methods has,
to a certain extent, been studied in psychometric settings. Nelson’s (1984) research,
however, suggests that the econometric methods are least effective where they are most
needed—that is, where the sample selection is most stringent. In the case of selection
stringency, the Pearson-Lawley procedures were more accurate than the econometric
procedures. After reviewing several studies, Dunbar and Linn (1991) were not optimistic
about the application of econometric methods to test validation methods. The relative
ineffectiveness of the econometric methods may be due, in part, to their failure to use all
of the available information available for use by the Pearson-Lawley procedures.

An important difference in the econometric and psychometric methods is that,
although their intentions are identical, their assumptions differ. The econometric
methods assume a strict cutscore or “threshold value” (as referred to by
econometricians). All applicants below the cutscore are rejected and all above are
selected. The psychometric methods, on the other hand, do not require the strict
cutscore assumption and therefore are flexible in permitting the real-world possibility of
a variety of reasons leading to selection or rejection. Further, the selection and rejection
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can occur from any point in the predictor distribution. The restrictive assumption of the
econometric methods, coupled with increased standard errors of their parameter
estimates may, in combination, contribute to their relative ineffectiveness compared to
the Pearson-Lawley methods.

It is important to note that neither the econometric nor psychometric approaches
(without sequential corrections) deal specifically with evaluating multiple hurdle
selection systems. For example, Linn (1983) demonstrated the inadequacies of both
models in estimating conditional means and variances as a result of an unaccounted
hurdle that resulted in a curvilinear regression of y on x.

Concluding Remarks

The importance of applying the appropriate procedures for correcting for range
restriction in multiple hurdle selection systems cannot be overstated. There are real
consequences in the applied setting for either not acknowledging a hurdle or
inappropriately estimating a hurdle instrument’s validity. The consequences of
misestimating the validity of multiple hurdle selection instruments will most likely be
reflected in an inappropriate setting of cutscores with a corresponding negative impact
on the organization. The next chapter provides information about mainstream methods
for dealing with multiple hurdle data considered within the framework of a missing data
problem.
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Chapter 16.
Multiple Hurdles as a Missing Data Problem
Jorge L. Mendoza and Janet D. Held

Introduction

In the previous chapter, we were able to visualize and understand the downward bias
in the validity coefficient resulting from ignoring a selection hurdle. We also saw that
when all of the required data are available, the Pearson-Lawley procedures can be used
in a sequential process starting from second stage data working back to the first stage.
In this chapter, we take the position that a multiple hurdle selection system can be
placed within the general framework of the missing data problem. Procedures such as
Maximum Likelihood (ML) and Multiple Imputation (MI) are discussed, which have
additional benefits over Pearson-Lawley in that the methods provide standard errors of
prediction. For a full discussion of the problems in the context of selection test
validation, we refer the reader to Dunbar and Linn (1991). The broad topic of missing
data theory is more fully discussed by others (e.g., Little & Rubin, 2002; Rubin, 1976,
1996; Schafer, 2000, Schafer & Graham, 2002).

Some Missing Data Terminology
Missing Completely at Random (MCAR)

Data that are missing completely at random (MCAR) are exactly that—data that are
not observed due to chance alone. MCAR data result from completely random processes
(e.g., the inability or neglect of a data recorder). We do not address MCAR data in the
single or multiple hurdles selection design other than to say they should not influence
the regression of Y or X or the correlation between the two variables because there is no
systematic pattern of missingness.

Missing at Random (MAR) and Missing Not at Random (MNAR)

Data that are missing at random (MAR) arise from the situation when performance
Y scores are missing strictly due to selection on X, assuming X and Y are correlated to
some degree. In personnel selection, factors such as applicant self-selection or rejection
of job offers are factors that do not correlate with the reasons why some of the Y scores
are missing. If they were correlated, then the situation would be missing not at random,
or MNAR. For example, a MNAR situation would be when a selection process was based
solely on a cognitive measure but job performance was related not only to cognition, but
also to being able to get along with others. Further assume that those who cannot “get
along” with others were fired. This situation would yield MNAR data, because some of
the job performance Y scores are missing due to not being able to get along — that is, a
factor that is related to Y scores and cannot be eliminated by controlling for the
cognitively based X.
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In personnel selection and the conduct of validity analysis, we are hoping for a MAR
situation and we note that a MAR assumption is consistent with the Pearson-Lawley
assumption of selection having occurred solely on X. Missing not at random (MNAR)
means that some other selection mechanism besides X is responsible for the missing Y
scores. This “other selection mechanism” might or might not correlate with X but must
correlate with Y after controlling for X, thereby biasing the validity correction. MAR is a
confusing term, because we intuitively think of the term “random” to mean just that —
missing completely at random (MCAR).

Monotone Data

A monotone pattern of missing data means that all individuals having Y scores also
have X scores. In a multiple hurdle selection system, we have labeled X as H,, which is
followed by H.. In the multiple hurdle case, all individuals with Y scores will also have
H, scores, and all individuals with H. scores will also have H; scores. A monotone data
pattern is typically depicted as a set of stair steps, each decreasing in height going from
left to right (e.g., see Mendoza, Munford, Bart, & Siew, 2004 and their stair step
depiction for various test validation designs with ML estimation using the Estimation-
Maximization Algorithm). Monotone patterns of missingness are a special case of the
MAR assumption.

Ignorable and Non-ignorable Missingness

The ignorable missingness assumption (Rubin, 1976) means that the selection
mechanism is known and the data are available. Ignorable missingness, consistent with
MAR, is also equivalent to the Pearson-Lawley assumption of selection having occurred
solely on X. The selection situation is ignorable in that the Y data are missing strictly
due to the correlation of X with Y, not due to some unobserved selection mechanism
that is correlated with Y after controlling for X. The ignorable selection situation applies
to the multiple hurdle selection system when all hurdles are accounted for; if not, there
is non-ignorable missingness. Adjusting regressions and correlations for non-ignorable
missingness (such as the unaccounted-for institutional decisions based upon factors
that correlated with both X and Y, and self-selection decisions that eliminate high
aptitude/achievement youth from some low-tier colleges) affects the unrestricted
population regressions and correlations. Both ignorable and non-ignorable missingness
can be consistent with a monotonic data pattern; however, non-ignorable missingness is
consistent not with MAR, but with MNAR. The terms MAR and “ignorable” are used
interchangeably in the literature.

Censored Data

The term censoring is used in several fields to describe data that are missing due to
the upper or lower limits of the measurement instrument, such as what psychologists
would observe when an aptitude test has a ceiling effect, or what an economist would
observe when an aptitude standard causes range restriction. The concept of censored
data is not the same as truncated data, which introduces some confusion in our
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personnel selection test validation designs. For example, ASVAB composite scores will
be left truncated in a Navy school’s data set due to a cutscore applied to the Navy
Rating’s operational ASVAB classification composite, whereas other ASVAB composite
scores will be censored because all ASVAB composites are correlated (to varying
extents). In either case, direct (explicit) selection or incidental (indirect) selection, we
can deal with the downward bias in ASVAB validity coefficients when estimating them
for the unrestricted population with the traditional formulas presented in Chapter 5.

Heckman (1976, 1979), as an economist, refers to censored data in the broadest of
terms in that the data can be censored due to either an organization’s decision-making
process (some of which might or might not be accounted for) or a self-selection process
(that cannot be accounted for). Censoring, unless purely random, violates the MAR
assumption and the data are therefore MNAR. Heckman represents a MNAR selection
model by depicting an organization’s decision-making process that is not taken into
account (our unaccounted for hurdle depicted in Chapter 14).

Addressing the Non-Ignorable Missing Data Problem

Researchers in academia have long been concerned with the non-ignorable
missingness problem. For example, Linn (1968) pointed out the problem of establishing
the validity of a career guidance test battery in making future decisions (e.g., further
education or career choices) when those who take the battery are self-selected. Linn
provided valuable insights into the problem:

“In situations such as those encountered in attempting to validate a
guidance test battery, the nature of the process of self-selection is very
difficult to model and the true explicit selection variables are difficult to
identify and/or to measure. It may be that the most reasonable approach
to the problem of correcting for bias due to selection in such cases is to
include as many measures which are thought to have relevance for the
selection processes as is reasonable within the practical constraints of the
situation” (p. 72).

More recently, Ryan, Sacco, McFarland, and Kriska (2000) pointed to such self-
selection factors as an applicant’s perceptions of the organization and motivation to
obtain the job, as well as employment alternatives or offers from higher tier colleges. All
of these self-selection factors are considered non-ignorable selection mechanisms that
are difficult to model. The following subsections provide brief discussions about the
salient points of research attempting to solve the standard range restriction problem
and the non-ignorable missingness problem, some of which make comparisons to the
Pearson-Lawley method.

Muthén and Yang Hsu (1993)
Muthén and Yang Hsu (1993) were concerned about the missing data problem in

college or graduate school admissions. Muthén and Yang Hsu were most interested,
however, in using structural equation modeling to find the structure and correlations
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between the underlying latent factors in a test battery (not relations from observable test
scores). Muthén and Yang Hsu pointed out that the Pearson-Lawley approach is not
designed to deal with latent variables. (In simple situations, we can achieve similar
results by correcting for the Pearson-Lawley estimators for unreliability.) We do not
discuss the complexities of the study or findings here other than to say that the Pearson-
Lawley and ML procedure are comparable under multivariate normality and full data
availability. The benefits of the ML procedures are that they are theoretically supported
and in principle are more flexible than the Pearson-Lawley corrections. Another
advantage of the ML approach is that in many situations it gives estimates of standard
errors that apply to the full information maximum likelihood using the observed
information matrix. We refer the reader to Muthén and Yang Hsu or Enders (2010) for a
full discussion of the ML procedures.

Mendoza, Bard, Mumford, and Siew (2004)

Mendoza et al. (2004) provided an algebraic extension of Pearson-Lawley. They also
pointed out that the multiple-hurdle situation in many contexts is a monotone missing
data problem and that the algebraic extensions under the assumption of multivariate
normality and ignorable data provide ML estimates. The ML estimates can be more
easily obtained using the EM (estimation maximization) algorithm. Although the EM
algorithm provides ML estimates, it does not provide standard errors because it does
not find the derivative in the maximization of the ML function. When the EM algorithm
is used to find the ML estimates, the standard errors can be obtained using one of the
many available bootstrap methods. Mendoza et al. covered three test validation designs
(concurrent, predictive, and multiple-hurdle) and their EM solutions under the
assumption of MAR and an ignorable selection mechanism. (The authors refer us to
Sackett & Yang, 2000, for a complete taxonomy of correction procedures.)

For context, Mendoza et al. (2004) provided a citation for a multiple-hurdle
selection system used to employ airport screeners (Kolmstetter, 2003). In the first stage,
an online application was administered. Those who passed the first stage completed a
computer-administered test battery in the second stage. A third stage consisted of a
structured interview, followed by a physical ability test and a medical evaluation. The
final stage was a security background check.

Three methods were applied to estimate (recover) the known unrestricted regression
parameters and variable correlations: (a) the appropriate sequential correction formulas
developed and described in the Mendoza et al. (2004) study, (b) the ML Expectation
Maximization (EM) algorithm (Dempster, Laird, & Rubin, 1977), and (c) Bayesian
multiple imputation (MI) (Rubin, 1976). The results showed that the MI method was
most accurate in estimating the known unrestricted regressions and correlations in the
limited context when compared to the EM algorithm and the formulas, but that all three
procedures (given large samples from a multivariate normal population) produce
similar results. We note that the formulas developed by Mendoza et al. are extensions of
Rubin’s missing data algorithm and yield comparable results in the multiple-hurdle
context that applied to the Pearson-Lawley sequential corrections.
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Mendoza et al. (2004) took the position that even under the ignorable selection
situation, there are some advantages to using either the EM or MI approaches over the
formulas. Formula use requires exact specification of the test validation design, which is
a function of how many hurdles are present, whereas the EM or Full Information
Maximum Likelihood (FIML) procedures do not. Also, the EM algorithm “...yields ML
estimators under a variety of missing data structures and is not limited to the monotonic
missing data structure...” (p. 430). The MI procedure has the added advantage over EM
in that it provides a facsimile to a formula-based standard error. Mendoza suggested
that procedures that augment EM with bootstrap standard errors may also be useful for
conducting test validation. We refer the reader to some of the bootstrap literature that
suggests accurate standard errors of the range-corrected correlation coefficient (Chan &
Chan, 2004; Li, Chan, & Cui, 2010; Mendoza, Hart, & Powell, 1991).

Olson and Becker (1983)

Olson and Becker (1983) graphically portray another non-ignorable selection
situation that applies to the military setting where many high aptitude/achievement
youths opt for college rather than the military service (particularly in times when there
is a large supply of high paying private sector jobs that require a college education).
Figure 16-1 is the opposite situation displayed by Figure 15-1 (Chapter 15) where low
aptitude/ability individuals are screened out of the selection process.
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Figure 16-1. Non-linearity and heteroscedasticity resulting when high
aptitude youth select out.
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Figure 16-1 represents a regression situation (say the ASVAB as X and final school
grade as Y). Assuming a substantial correlation between X and Y, there will be missing
or sparse data in the upper X,Y score range if many high ASVAB youth chose college or
high paying jobs over military service. The missingness effect will be a downward bias in
the population regressions and correlation. We note for Figure 16-1 that the X cutscore
is not shown and that the displayed Y cutscore is notional not reflecting accuracy or at
what point the line would cross the y-axis.4 Olson and Becker (1983) also noted that
complete truncation on Y'is not in reality a situation experienced by organizations, and
psychologists’ formula to correct for complete Y truncation, presented by Thorndike
(1949) as his Case 1 (p. 173), would never be used in application. Further, the Thorndike
Case 2 solution (p. 173) that corrects for incidental selection on Y due to explicit
selection on X is not appropriate because in a nonignorable selection situation (either
low or high score missingness), the explicit X variable in the equation is not the only
explicit selection mechanism.

Organizations that conduct utility analysis to evaluate their personnel selection
systems should realize that if a non-ignorable selection mechanism is not accounted for
(either low or high score missingness), there may be under prediction of the
performance Y scores due to smaller regression weights (a lower slope). We refer to the
quotation by Linn (1968) about the need to include all variables that are relevant in the
estimation of a selection test’s validity coefficient (this chapter) and add a partial quote
from Thorndike provided by Olson and Becker (1983).

“When selection is based, as it often is, on a clinical judgment which
combines in an unspecified and inconstant fashion various types of data
about the applicant, and when this judgment is not expressed in any type
of quantitative score, one is at a loss as to how to estimate the extent to
which the validity coefficient for any test procedure has been affected by
that screen” (Thorndike, 1949, p. 176).

Olson and Becker proposed, as others have, an analytical method based on the
econometric literature to address the special case of “...omitted variable bias” (p. 143).
We discuss the method in the next section as developed by Heckman (1976, 1979)
(mentioned in Chapter 15) and applied to our more familiar academic selection context.

Gross and McGanney (1987)

Gross and McGanney (1987) were concerned about the non-ignorable missing data
problem in the academic setting and the shortfalls of the traditional correction formulas
(i.e., Pearson-Lawley). “The traditional correction formula approach can be viewed as
the special case of the general model in which one assumes a priori no interrelation” (p.
605). Gross and McGanney acknowledged that the Heckman (1976, 1979) econometric
missing data model could be used as part of a solution. The Heckman model, compared

4 We refer the reader to Chapter 3 about the cautionary note from Smith (1948) on using the Taylor-Russell (1939)
tables when the assumption of bivariate normality in the X/Y relation is not upheld.
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to the Pearson-Lawley (traditional correction formulas), allows specification of the
relation between the non-ignorable selection process and Y. Gross and McGanney
described a potentially useful statistical model that has three components:

“... () aregression model that expresses the xy relation, (b) a selection
model that describes the selection process (i.e., the basis for the missing y
scores), and (c) an assumption concerning the relation between the two
former models” (p. 605).

Gross and McGanney (1987) started their discussion of the first model component with
the basic population-based regression model,

y=B,+BXx+e, (16-1)

and pointed out that the correlation regression parameters p(x,y) can be expressed from
regression analysis terms (their Equation 2) as:

p(x,y) = [B. - o[B8, - o) + a2 (y 0], (16-2)

Gross and McGanney (1987) started their discussion of the second model
component, that is, the process of selection that explains observable and unobservable y
scores, by defining ys as observable only if a threshold value is exceeded on the selection
mechanism. A regression model for y; that parallels Equation 16-1 (their Equation 3) is,

Y. =a,+a"X,+e, (16-3)

where xs, the actual selection variable(s), could be (a) the same as the predictor x
variable of interest, (b) other than the x variable, or (c¢) a mix of both. Given some
distribution normality assumptions that Gross and McGanney, an equation can be
developed (shown as their Equation 4, the normal ogive or probit function) that
estimates the probability of selection and thus has an observed y, given xs. The variable
ys is therefore only partially observable to the extent that all of the xs are observed.

Gross and McGanney (1987) started their discussion of the third component of the
model, the relation between the regression and selection models, with an assumption of
bivariate normality between x and x5, and between y and ys, with the primary interest in
the correlation between y and ys conditional on x and x5, p(y, ys|x, xs). The authors state
“This correlation is a key parameter of the model because it determines whether the
selection process is ignorable (i.e., whether there is a relation between y and the
probability of selection)” (p. 606). That is, if [p(y,ys|x, xs) = 0]), then the traditional
Pearson-Lawley correction will suffice (to the extent that all underlying assumptions for
performing the correction apply). Conversely, if the yys correlation is not zero (ys
modeled as a latent variable), then there has been a latent unobserved selection
mechanism and an additional regression parameter must be included in the corrected
validity estimation model.
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Gross and McGanney (1987) evaluated two procedures for estimating the
unrestricted x,y correlation, a two-step process (Heckman, 1976, 1979; Olsen & Becker,
1983) and ML (comparing the results with the Pearson-Lawley range correction). We
refer the interested reader to the article for the details and merely mention that there
appeared to be mixed results but favoring the ML procedure. However, the authors in
their summary section expressed general concerns about the adequacy of sample size,
potential multicollinearity issues between the x and xs variables, the bivariate normality
assumption for y and ys, and the possibility that high ability individuals as well as low
ability may be missing from the data due to nonignorable selection processes.

Concluding Remarks

We refer the reader to Enders (2010) for an applied approach to dealing with
missing data and full discussions of the newer methods considered as state-of-the-art.
Enders provided an employee selection data set that he used to demonstrate the pros
and cons of the various methods. He also discussed software packages and provided a
list of recommended readings after each chapter and a website where some syntax can
be obtained (www.appliedmissingdata.com). However, Enders reminded us of several
important points: “A missing data handling technique is only as good as the veracity of
its assumptions...” and “Until more robust MNAR analysis models become available
(and that may never happen), increasing the sophistication level of the MAR analysis
may be the best we can do” (p. 344). We also refer the interested reader to the
recommendations of The National Academies Panel on Handling Missing Data in
Clinical Trials (National Research Council, 2010). First, the panel emphasized the role of
design to limit the amount and impact of missing data. Two of their 18
recommendations were of special interest to personnel researchers.

e Recommendation 3: “Trial sponsors should continue to collect information on
key outcomes on participants who discontinue their protocol...” (p. 3), and

e Recommendation 15: “Sensitivity analyses should be part of the primary
reporting of findings from clinical trials. Examining the sensitivity of the
assumptions about the missing data mechanism should be a mandatory
component of reporting” (p. 5).

These two recommendations echo the comments made here and elsewhere about the
importance of collecting additional data that could be helpful in understanding
missingness, and also the importance of carrying out several different analyses if the
MAR assumption is suspected.
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Chapter 17
Setting ASVAB Cutscores
Janet D. Held

Introduction

Chapter 3 introduced us to the various ways we can interpret the correlation
(validity) coefficient. One of those ways is obviously tied to the magnitude of the validity
coefficient that applies to a given selection instrument and, as a result, the extent to
which we can improve a given inadequate success rate by raising that selection
instrument’s cutscore. Chapter 3 showed us how to construct an empirically-based
expectancy (cutscore) table and also the theory-based Taylor-Russell (1939) tables.
When conducting ASVAB validation/standards studies, we should recognize that there
are limitations with empirical-based expectancy tables in that they are only appropriate
for the operational selection/classification instrument upon which explicit selection has
taken place and not for a candidate replacement because there is a floor of
aptitude/ability already established due to the operational standard. Also, the empirical
expectancy analysis cannot be used to assess performance impact from lowering the
operational cutscore because individuals with scores below the cutscore would not be
qualified. If such data points were observed below the cutscore, ASVAB waivers would
have been given and we would not know the basis of the waiver decision (and even if we
did, the sample size would be typically too small to include in an analysis). In this
chapter on cutscore setting, we assume that (a) point waivers are not considered in
cutscore analysis (although we provide guidance later in the chapter) and (b) the
estimate of the population validity of a selection instrument is accurate.

Three Approaches in the Literature to Setting Cutscores

Two common approaches to setting cutscores for hiring decisions discussed in the
literature are banding and top-down selection (e.g., Aguinis, 2004; Truxillo, Donahue, &
Sulzer, 1996). The banding approach explicitly recognizes that there is measurement
error in everyone’s observed test scores. Banding undifferentiates individuals who score
slightly lower or higher on a selection instrument’s cutscore and therefore affords
opportunity to consider, or place more emphasis on, other selection factors, such as
community service, education, job experience, race/ethnicity, etc.

In contrast, the top-down approach takes the position that hiring candidates with the
highest scores on the selection instrument will benefit the organization in terms of
optimal job performance (see Sackett & Roth, 1991 for a comparison of the top-down
and banding cutscore approaches). In the military enlistment context, a top-down
ASVAB score approach is never taken and, in fact, the Navy’s operational classification
algorithm has a curtailment component for largely overqualified recruits for specific
Ratings (discussed in the next chapter).
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Besides the banding and top-down approaches to setting cutscores, a third approach
is to use experts’ judgments to come to a cutscore consensus: a content-based approach
as opposed to a criterion-based approach. The Angoff (19771) method is most frequently
evaluated against other content-oriented approaches (e.g., Truxillo, Donahue, & Sulzer,
1996) and involves deciding what constitutes a “minimally qualified” individual. In the
military context, meeting training objectives constitutes a minimally-qualified graduate
(See Chapter 5 in the Introductory Manual for information on Navy training).

Cascio and Aguinis (2005) stated that “It is unrealistic to expect that there is a single
‘best’ method of setting cutoff scores for all situations” (p. 227). We address other
approaches and situations more in-depth in the following sections.

The Approach of Minimizing Classification Decision Errors

One also can set cutscores by deciding to minimize classification errors. Ghiselli,
Campbell, and Zedeck (1981) described two classic examples (e.g., Cureton, 1957) 