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Foreword 

This is the second of two reports that provide guidance on how to conduct predictive 
validation studies and set standards for enlisted military occupations using the Armed 
Services Vocational Aptitude Battery (ASVAB). The ASVAB is the primary enlistment 
qualification and occupational classification instrument used by all of the U.S. military 
services. The Navy was the lead on the project because it is the only Service at this time 
maintaining an operationally focused ASVAB Validation/Standards program. The first 
report, Introductory Guide for Conducting ASVAB Validation/Standards Studies in the 
U.S. Navy provides context for the ASVAB and the area of personnel selection and 
classification whereas this second report provides the technical guidance.  

This work was sponsored and funded by the Navy’s Selection and Classification 
office (N132G) with a contribution of funding from the Defense Manpower Data Center 
– Personnel Testing Division (DMDC - PTD). The work was executed by Navy Personnel 
Research, Studies, and Technology (NPRST/BUPERS-1), a department of the Bureau of 
Naval Personnel, along with a team of experts on the various manual topics. The 
contract work was conducted under the auspices of the U.S. Army Research Office 
Scientific Services Program administered by Battelle (Delivery Order 0253, Contract No. 
W911NF-07-D-0001).  

 

 

David M. Cashbaugh 
Director 
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Executive Summary 

The purpose of this Technical Manual, the complement to the Introductory Manual 
(NPRST-TR-15-1), is to provide background and technical information that will assist 
those responsible for conducting the studies that result in the setting of military job 
aptitude/ability standards based on the Armed Services Vocational Aptitude Battery 
(ASVAB). There are several Department of Defense (DoD) components that have 
ASVAB responsibilities. The Office of the Under Secretary of Defense for Personnel and 
Readiness, Accession Policy Directorate, sets policy for the development and use of the 
ASVAB for determining military service eligibility. The Defense Manpower Data Center - 
Personnel Testing Division (DMDC - PTD) is the Executive Agent for ASVAB research, 
development and maintenance. Headquarters, United States Military Entrance 
Processing Command (HQ-USMEPCOM) is responsible for enlistment processing, 
which includes maintaining ASVAB testing sites and equipment.  Each Service is 
responsible for developing its own ASVAB job classification composites and cutscores, 
which we refer to as ASVAB standards. The Manpower Accession Policy Working Group 
(MAPWG), comprised of technical and policy representatives from the Services, HQ-
USMEPCOM, and DMDC, has the responsibility of overseeing the development, 
effectiveness, and security of the ASVAB, and any new tests that meet the criteria for 
inclusion in the battery or as adjunct classification tests. Finally, the Defense Advisory 
Committee on Military Personnel Testing (DACMPT), comprised of nationally 
recognized experts in the areas of test development and industrial/organizational 
psychology, provides independent, objective recommendations on ASVAB development 
and enlistment screening to the Secretary of Defense, through the Under Secretary of 
Defense for Personnel and Readiness.  

The Navy led the development of the two manuals because it is the only Service 
currently supporting a continuing “ASVAB Validation/Standards Program.” All of the 
Services support ASVAB validation/standards efforts to some degree, but generally (a) 
on an as-needed basis for specific occupations or occupational groups, (b) periodically 
when new predictors are considered for occupational classification, or (c) when the 
validity of the ASVAB is questioned at a highly visible level. The Navy takes the proactive 
position of conducting ASVAB validation/standards studies on a routine basis because 
the need is not always apparent. In doing so, the Navy continually monitors potential 
red flags such as high academically related failure rates or setback rates in training, 
major changes in the curriculum or training platforms, reductions in training time, 
recruiting stressors, and the emergence of new occupations (Ratings) or the 
consolidation of existing Ratings.  

Although the Navy follows a general model that addresses ASVAB standards for 
individual Ratings, ASVAB validation/standards studies are not conducted in a vacuum. 
A change in an ASVAB standard for one Rating can impact the availability of ASVAB 
qualified recruits for other Ratings. Rather, the one-Rating study simply means that 
more individualized attention can be paid to specific issues (e.g., recruiting or training) 
that influence (moderate) the effectiveness of an ASVAB standard. For example, an 
individual study conducted for a Rating can result in recommendations beyond the 
scope of the ASVAB standard, such as (a) allowable ASVAB point waiver maximums,    
(b) establishment of a course module projected to improve training performance (that 



 

viii 

would be much less costly than raising the ASVAB standard so as to severely limit the 
number of qualified recruits for the Rating), or (c) development of other academic or 
non-academic screening tools.  

As more fully explained in the Introductory Manual, we consider training 
performance as the criterion upon which to validate the ASVAB because the current 
version of the ASVAB is comprised of tests with underlying constructs that map well to 
training curriculum. Another reason training performance rather than job performance 
is considered the criterion is that the Navy experiences non-trivial academically-related 
training failures and setbacks at this up front stage. A high rate of training failure 
translates to high costs for the Navy, but also for the Sailor who might experience a 
career setback or drop in morale or motivation.  

The Introductory Manual provides much more context than this brief introduction 
and will be of interest not only to the ASVAB validation/standards researcher, but the 
sponsors of the program and stakeholders (Recruiting, Training, and the Enlisted 
Community Managers). The contents of the Technical Manual will be of interest mainly 
to those who actually conduct ASVAB validation/standards studies, or who are in the 
process of learning how to do so.  

The chapters in the Technical Manual are briefly described as follows. Following 
Chapter 1, the Introduction, Chapter 2 provides a review of basic correlation and 
regression, classical test theory, and some factors that affect the validity coefficient 
(validity and correlation are used interchangeably throughout). Chapter 3 provides a 
discussion about ways to interpret the correlation coefficient. Chapter 4 is about 
measurement error in our predictor and criterion measures, which can affect the 
correlation coefficient (validity coefficient). Chapter 5 describes formulas for correcting 
the validity coefficient for restriction in range. Chapters 6 and 7 are about the joint 
correction for measurement error and restriction in range. Chapter 8 describes the 
analytical formulas for deriving the standard error of the range-corrected validity 
coefficient and cites some of the literature on the bootstrap method. Chapter 9 follows 
up with a Monte Carlo with bootstrap simulation study that reports on the accuracy and 
standard errors as a function of a number of study design conditions. 

 Chapter 10 describes effects on the validity coefficient from violating the 
assumptions underlying the correction for range restriction. Chapter 11 works through 
the situation where a negative sign can result for a range-corrected validity coefficient 
when the sign is positive in the population.  

Chapter 12 provides a discussion of commonly applied regression methods and the 
difficulty in applying statistical power analysis in the context of a restricted in range 
situation. Chapter 13 is about weighting predictor tests in composites and addresses the 
tradeoffs between validity and adverse impact. Chapter 14 follows up with more about 
weighting but from the perspective of a multidimensional performance domain.  

Chapter 15 discusses multiple-hurdle selection systems and how bias can be 
introduced into the estimation of the population validity coefficient when a hurdle is not 
taken into account. Chapter 16 considers the estimation of the validity coefficient in a 
multiple-hurdle selection situation within the missing data theory framework.  
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Chapter 17 is focused on setting cutscores in general, and with application to the 
ASVAB.  Chapter 18 is about simulating recruit job assignments to study the impact of 
changing an ASVAB standard for one or more Ratings on the fill of all Ratings – a 
system approach. Chapter 19 is concerned with classification effectiveness and briefly 
describes previous military models that address differential assignment capability.  

The final chapter, Chapter 20, summarizes key points in each chapter of the two 
manuals attempting to thread together a comprehensive picture of the ASVAB 
validation/standards methods and concerns.  

We advise the reader to be aware that the statistical notation in each chapter follows 
the preference of the author(s) so is not totally consistent across chapters and 
sometimes within a chapter, for example, when there are citations of others’ work. We 
note that the reader will often find this situation in the literature so we have not taken 
the extra time to provide consistency in statistical notation. Statistical terms are defined 
in each chapter and where not, will be evident.   

Finally, we suggest that those in the position to develop ASVAB policy recognize that 
setting ASVAB standards for military occupations is not a trivial effort and requires not 
only deep technical knowledge, but a realization that there is always a tradeoff between 
supply of qualified recruits and the training capacity. Our best hope is that the  
establishment of a joint-service selection and classification panel (See the charter for the 
INTERSERVICE Aptitude/Ability Standards Panel in Appendix D of the Introductory 
Manual) will be proactive in (a) continually monitoring the effectiveness of the ASVAB 
standards within and across the Services, (b) establishing the integrity of the 
performance criterion across the Services’ schoolhouses, (c) bringing about more hands-
on job-like training to the schoolhouses, recognizing that the value of an ASVAB 
technical test may not fully be appreciated when the criterion measure is strictly 
academic-based, and (d) exploring use of the most comprehensive and technically sound 
procedures for conducting predictive validity analyses. 
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Chapter 1. 
Introduction 

Purpose/Background 

The purpose of this Technical Manual, the complement to the Introductory Manual 
(NPRST-TR-15-1), is to provide background and technical information that will assist 
those responsible for conducting the studies that result in the setting of military job 
aptitude/ability standards based on the Armed Services Vocational Aptitude Battery 
(ASVAB). The manuals’ content, while mainly pertaining to the ASVAB, is broad enough 
to apply to candidate tests that are yet to be added to the ASVAB, or to be considered as 
adjunct occupational classification tests. The content also is applicable to those in 
industry responsible for personnel selection functions, and we draw heavily on non-
military research.  

 As noted in the Introductory Manual, there are several Department of Defense 
components that have ASVAB responsibilities. The Office of the Under Secretary of 
Defense for Personnel and Readiness, Accession Policy Directorate, sets policy for the 
development and use of the ASVAB for determining military service eligibility. The 
Defense Manpower Data Center, Personnel Testing Division (DMDC-PTD) is the 
Executive Agent for ASVAB research, development and maintenance. Headquarters, 
United States Military Entrance Processing Command (HQ-USMEPCOM) is responsible 
for enlistment processing, which includes maintaining ASVAB testing sites and 
equipment. Each Service is responsible for developing its own ASVAB job classification 
composites and cutscores, which we refer to as ASVAB standards. The Manpower 
Accession Policy Working Group (MAPWG), comprised of technical and policy 
representatives from the Services, HQ-USMEPCOM, and DMDC as Chairs of the 
technical committee and full working group, has the responsibility of overseeing the 
development, effectiveness, and security of the ASVAB, and any new tests that meet the 
criteria for inclusion in the battery or as adjunct classification tests. Finally, the Defense 
Advisory Committee on Military Personnel Testing (DACMPT), comprised of nationally 
recognized experts in the areas of test development and industrial/organizational 
psychology, provides independent, objective recommendations on ASVAB development 
and enlistment screening to the Secretary of Defense, through the Under Secretary of 
Defense for Personnel and Readiness.  

At the time of this project the MAPWG was, and still is, fully engaged with the 
research and processes involved in adding candidate tests to the computer platform that 
delivers the adaptive version of the ASVAB to military applicants (CAT-ASVAB). These 
efforts are a result of a commissioned expert ASVAB Review Panel (Drasgow, 
Embretson, Kyllonen, & Schmitt, 2006). The Panel submitted 21 recommends regarding 
the ASVAB. One of the recommendations was to validate the use of the ASVAB on a 
routine basis. The Introductory and Technical Manuals regarding ASVAB validation 
studies and study methods are meant to fulfill this recommendation.  
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As stated in the Introductory Manual, a framework or roadmap for conducting 
ASVAB validation research was developed to address DMDC’s goal of having a unified 
approach that all of the Services could follow (HumRRO) (McCloy, Campbell, Knapp, 
Strickland, & DiFazio, 2006). The unified framework provides a context for thinking 
about ASVAB validation research. It outlines diverse validation objectives, reviews 
different criteria that may be used in validation research, and provides an overview of 
factors that may influence the Services’ capacity to interpret and apply the results of 
validation studies. The intent of the two manuals’ development is to provide more 
specific information that fulfills these objectives.  

The Navy led the development of the two manuals because it is the only Service 
currently supporting a continuing “ASVAB Validation/Standards Program”. All of the 
Services support ASVAB validation/standards efforts to some degree, but generally (a) 
on an as-needed basis for specific occupations or occupational groups, (b) periodically 
when new predictors are considered for occupational classification, or (c) when the 
validity of the ASVAB is questioned at a highly visible level. The Navy takes the proactive 
position of conducting ASVAB validation/standards studies on a routine basis because 
the need is not always apparent. In doing so, the Navy continually monitors potential 
red flags such as high academically related failure rates or setback rates in training, 
major changes in the curriculum or training platforms, reductions in training time, 
recruiting stressors, and the emergence of new occupations (Ratings) or the 
consolidation of existing Ratings.  

Although the Navy follows a general model that addresses ASVAB standards for 
individual Ratings, ASVAB validation/standards studies are not conducted in a vacuum. 
A change in an ASVAB standard for one Rating can impact the availability of ASVAB 
qualified recruits for other Ratings. Rather, the one-Rating study simply means that 
more individualized attention can be paid to specific issues (e.g., recruiting or training) 
that influence (moderate) the effectiveness of an ASVAB standard. For example, an 
individual study conducted for a Rating can result in recommendations beyond the 
scope of the ASVAB standard, such as (a) tolerable ASVAB point waiver maximums,    
(b) establishment of a course module projected to improve training performance (that 
would be much less costly than raising the ASVAB standard so as to severely limit the 
number of qualified recruits for the Rating), or (c) development new screening tools.  

The Navy also conducts occupational group (Rating) studies. Establishing the same 
ASVAB standard for a homogeneous set or subset of Ratings – that is, with similar levels 
of training, training time and job complexity – facilitates reassignments of Sailors in the 
event they are required to cross Ratings because of, say, a military downsizing. Also, 
having the same ASVAB standard for similar Ratings within an occupational group (if 
only for a subset of the Ratings) allows the Navy to make initial assignments to the 
occupational group deferring a specific Rating assignment to a later time when there is 
more visibility on the Navy’s needs (e.g., school seat availability or high losses in the 
Delayed Entry Program). The final Rating assignment usually occurs upon arrival at 
Recruit Training Command (RTC), Great Lakes, IL, but could occur later during a core 
technical course that serves all of the Ratings in the group. Several of the Services follow 
the occupational group assignment model for at least a portion of their recruiting goals.   
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As more fully explained in the Introductory Manual, we consider training 
performance as the criterion upon which to validate the ASVAB because the current 
version of the ASVAB is comprised of tests with underlying constructs that map well to 
training curriculum. Another reason training performance rather than job performance 
is considered the criterion is that the Navy experiences non-trivial academically-related 
training failures and setbacks at this up front stage. A high rate of training failure 
translates to high costs for the Navy, but also for the Sailor who might experience a 
career setback or drop in morale or motivation.  

We estimate the ASVAB validity coefficient for the PAY97 normative population 
(Segall, 2004) rather than yearly Service-specific applicant populations for two reasons. 
First, validity coefficients can then be compared over time for the same occupation 
within a Service as part of a monitoring process. Second, validity coefficients can be 
compared for like occupations across the Services. The across-Service comparison of 
ASVAB validity coefficients is especially important in this era of downsizing, 
consolidation of resources, and moves towards conducting joint-service training and 
operations. Having a common baseline population for validating the ASVAB can help in 
diagnosing what is accounting for ASVAB validity decay, if it is observed. If ASVAB 
validity for a particular occupation’s training (say, Aviation Mechanic) is observed to be 
much lower for one Service but not another, the logical question becomes why. That is, 
is it a training problem or a criterion problem (i.e., inadequate development of 
performance tests)?  

Accurately estimating the population ASVAB validity coefficient is important 
because cutscores are set in reference to its magnitude. Negative consequences can 
result from an inappropriately set cutscore, especially when the validity of the ASVAB is 
high, training is difficult, and there is a substantial performance deficiency. All other 
things being equal, the larger the validity coefficient the more sensitive the cutscore 
adjustment will be to improving or degrading future performance levels. When the 
ASVAB validity coefficient is found to diminish (decay), we should automatically ask 
why. Many factors affect the validity coefficient; the ones that are statistical or technical 
are highlighted in the chapters that follow. There are, however, less technical factors 
that can affect the validity coefficient such as (a) poor training or poor training 
performance measurement; (b) systematic differences in either the ASVAB testing 
environment, or the schoolhouse testing environment where training performance is 
evaluated; and (c) individual differences in motivation. ASVAB examinees should be 
similarly motivated to test well, and we assume they are when they intend to enlist and 
qualify for the most desirable military occupations. On the other hand, motivation levels 
may not be so high when enlisted military members are administered non-ASVAB 
experimental predictors in the schoolhouses – these students have already passed the 
operational selection and classification hurdles and are secure in their enlistment 
decisions as long as they pass the occupational specific training. An unexpectedly low 
validity coefficient observed for any “experimental” predictor administered in the 
schoolhouses could be due to unmotivated examinees as well as technical factors. All of 
these issues are addressed in the chapters that follow.  
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Besides the Services’ role in monitoring ASVAB validity, DMDC constantly monitors 
the ASVAB for score inflation that could occur due to test compromise – another factor 
that can result in validity decay. To reduce the possibility of test compromise, DMDC 
regularly develops new CAT-ASVAB item pools but also applies an item selection 
algorithm that manages over-exposure of items. We also note that HQ-USMEPCOM has 
oversight of the administration of the ASVAB across the nation’s 65 Military Entrance 
Processing Stations (MEPS) has been exceptional in ensuring that the ASVAB is 
administered in standardized secure conditions. Despite all of these efforts to reduce the 
likelihood of ASVAB compromise (including current efforts to eliminate paper-and-
pencil ASVAB – a target for compromise), the Services are concerned that ASVAB 
validity could decay due in the future if the military budgets continue to decline and 
there are insufficient funds to resource all of the components developing, maintaining, 
and operationalizing, and overseeing the ASVAB.  

In developing ASVAB validity coefficients, we would hope that the military will 
continue to develop stellar training and performance criterion measures that clearly 
map to the skills, and abilities, and knowledge necessary to perform the job and which, 
in turn, clearly map to the training for the job. Detecting whether this is true requires 
both a standardized approach to ASVAB validation/standards studies and a common 
population by which to gauge validity levels. We could take the position that the most 
current combined Service applicant population should be used rather than the PAY97 
population and justify that position by saying that anything that alters the ranking of 
individuals from what would be expected in the population would have an impact on 
that validity coefficient. Such impact factors include demographic changes that occur in 
our nation over time, as well as changes in the economic conditions over time. At the 
time of the manuals’ development, military recruitment has benefited from a poor U.S. 
economy and shortage of private industry jobs. This situation will likely change in the 
future and if recruiting becomes more difficult, the military will need to adjust either the 
ASVAB standards, the resources expended for recruiting, or the resources expended for 
training. DMDC has charge of monitoring applicant ASVAB scores over time and for 
flags that would indicate a requirement for new norming study (e.g., applicant 
population characteristics, potential ASVAB additions, score drift or departures from 
those obtained from national testing programs).  

Finally, we suggest that those in the position to develop ASVAB policy recognize that 
setting ASVAB standards for military occupations is not a trivial effort and requires not 
only deep technical knowledge, but a realization that there is always a tradeoff between 
supply of qualified recruits and the training capacity. Our best hope is for the 
establishment of a joint-service selection and classification working group that will be 
proactive in (a) continually monitoring the effectiveness of the ASVAB standards for all 
of the Services, (b) establishing the integrity of the performance criterion across the 
Services’ schoolhouses, (c) bringing about more hands-on job-like training to the 
schoolhouses, recognizing that the value of an ASVAB technical test may not fully be 
appreciated when the criterion is strictly academic-based, and (d) exploring use of the 
most state-of-the-art procedures for conducting validity analyses. 
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Target Audience 

The Introductory Manual that accompanies this Technical Manual is intended to 
provide broad-based background and procedural information to individuals with 
diverse backgrounds and responsibilities in sponsoring, overseeing, and policy makers 
that implement ASVAB standards. The Technical Manual is intended to explain the 
statistical methods, theory, and formulas to the practitioner who develops ASVAB 
standards. We have not, however, limited our perspective to the military context and 
consider the background and interests of the industry practitioner. In addressing both 
audiences, the technical material in some chapters is presented again in others not to be 
taken as redundancies, but from different but relevant perspectives and contexts to 
underscore and reinforce concepts.  

We advise the reader to be aware that the statistical notation in each chapter follows 
the preference of the author(s) so is not totally consistent across chapters and 
sometimes within a chapter when there are citations of others’ work. Statistical terms 
are defined in each chapter. 

Technical Manual Chapters 

The chapters in the Technical Manual are briefly described as follows. Following the 
Introduction, Chapter 2 provides a review of basic correlation and regression, classical 
test theory, and some factors that affect the validity coefficient (validity and correlation 
are used interchangeably throughout). Chapter 3 provides a discussion about ways to 
interpret the correlation coefficient. Chapter 4 is about measurement error in our 
predictor and criterion measures. Chapter 5 describes formulas for correcting the 
validity coefficient for restriction in range. Chapters 6 and 7 are about the joint 
correction for measurement error and restriction in range. Chapter 8 describes the 
analytical formulas for deriving the standard error of the range-corrected validity 
coefficient and cites some of the literature on the bootstrap method. Chapter 9 follows 
up with a Monte Carlo with bootstrap simulation study that reports on the accuracy and 
standard errors as a function of many study design conditions. 

Chapter 10 describes effects on the validity coefficient from violating the 
assumptions underlying the correction for range restriction. Chapter 11 works through 
the situation where a negative sign can result for a range-corrected validity coefficient 
when the sign is positive in the population.  

Chapter 12 provides a discussion of commonly applied regression methods and the 
difficulty in applying statistical power analysis in the context of a restricted in range 
situation. Chapter 13 is about weighting predictor tests in composites and addresses the 
tradeoffs between validity and adverse impact. Chapter 14 follows up with more about 
weighting but from the perspective of a multidimensional performance domain.  

Chapter 15 discusses multiple hurdle selection systems and how bias can be 
introduced into the estimation of the population validity coefficient when a hurdle is not 
taken into account. Chapter 16 considers the estimation of the validity coefficient in a 
multiple-hurdle selection situation within the missing data theory framework.  
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Chapter 17 is focused on setting cutscores in general, and with application to the 
ASVAB.  Chapter 18 is about simulating recruit job assignments to study the impact of 
changing an ASVAB standard for one or more Ratings on the fill of all Ratings – a 
system approach. Chapter 19 is concerned with classification effectiveness and previous 
military models that address differential assignment capability.  

The final chapter, Chapter 20, summarizes key points in each chapter of the two 
manuals attempting to thread together a comprehensive picture of the ASVAB 
validation/standards methods and concerns.  

Appendix A contains an SPSS version of the multivariate range correction provided 
by the Center for Naval Analyses and related files and instructions. Appendix B contains 
a generated Taylor-Russell (1939) table that is useful in estimating expected 
improvements in success rates given ASVAB estimated validity magnitude and other 
study parameters. Appendix C is a worksheet that uses such tables to estimate 
classification decision errors.  

Acknowledgement of Others’ Military Test Validation Work 

The authors of the two manuals acknowledge that all of the military personnel 
research laboratories and their supporting contractors as well as industry and academia 
have contributed much to the area of personnel selection and classification research. We 
do not intend that these manuals imply that the Navy has all of the answers for 
establishing ASVAB standards for military enlisted occupations so we encourage the 
reader to delve more deeply into the topics that are only briefly discussed in the 
manuals’ chapters. Many of the references in the chapters that follow will lead to 
important work by all of the Services, such as the work led by Dr. Michael Rumsey and 
Dr Len White of the Army Research Institute for the Behavioral Sciences (ARI); Dr. Paul 
Mayberry, Dr. William Sims, Ms. Catherine Hiatt, and Dr. Neil Carey of CNA on behalf 
of the Marine Corps; Dr. William Alley, Dr. Malcolm Ree, Dr. Melanie Darby, and Mr. 
Jim Earles of the Air Force Human Resources Laboratory (AFHRL); and Dr. Edward 
Alf, Dr. Reynaldo Monzon, and Mr. Paul Foley of Navy Personnel Research and 
Development Center (NPRDC). We recognize the partnerships that the Services have 
with the Federally Funded Research and Development Centers, and with the many 
professors in academia, the list being too long to present here but knowable through the 
references in the manual chapters. 
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Chapter 2. 
 Predictor-Criterion Relations: 

A Brief Statistical Overview 
Jorge L. Mendoza 

Introduction 

This chapter discusses correlation and regression analyses and the interpretation of 
these two statistical procedures in the context of personnel selection test validation 
research. Consider a simple example involving two variables, a single predictor and a 
criterion. The result of a correlation analysis is an index that depicts the magnitude of 
the relation between two variables. The result of the regression analysis, simply stated, 
is the line that best fits a plotted set of data points that represent standing on the two 
variables. The two variables that apply in personnel selection research are usually a test 
that is designed to predict performance and a measure of that performance. Although 
correlation and regression are often discussed separately, these techniques go hand-in-
hand, and both are used to explore the relation between two or more variables.  

For these procedures to be useful, we must have personnel selection instruments 
(predictors) and performance outcomes (criteria) that measure the appropriate 
domains, are free from contamination, and are reliable. Reliability is defined here 
simply as a psychometric characteristic of a measure that leads to replicable outcomes 
over many test administrations. We discuss reliability in this chapter from a 
psychometric perspective as it relates to fundamental test validity analyses. Other 
chapters in this manual speak more in depth to reliability and to specific topics that 
negatively influence test validity research results.  

From the organization’s perspective, the use of aptitude or other cognitive tests in 
personnel selection is cost-effective only if the performance of personnel selected for 
jobs is better than what would have been obtained if no selection system were in place. 
From the individual’s perspective, the personnel selection system, to some degree, 
ensures that they will not be selected for jobs for which there is high potential for 
failure. The organization’s and the individual’s perspectives are consistent. There is 
never a perfect correlation between personnel selection test scores and training or job 
outcomes, however, so the best we can do is to include tests in our selection systems that 
have the highest possible correlation, or “validity,” in predicting those job outcomes 
(correlation and validity coefficient are used interchangeably in this chapter). 

The chapter topics are as follows: (a) basic correlation and regression analyses, (b) 
factors that affect correlation and regression, (c) the effect of unreliability on regression 
and correlation, (d) overestimating the multiple regression coefficient, (e) incremental 
validity, (f) tests of hypotheses and confidence intervals, (g) range restriction impact on 
the correlation coefficient, and (h) standard errors of corrected correlations. Some 
equations and their derivations are presented where appropriate; however, they are 
considered introductions to topics and so are expanded in subsequent chapters. 
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Basic Correlation and Regression 

According to Rogers and Nicewander (1988), Sir Francis Galton defined the term 
“regression” in 1885. A decade later, Karl Pearson developed the correlation coefficient. 
Pearson’s correlation coefficient, r, is frequently used in the social sciences and other 
sciences to describe the relation between two variables. The correlation coefficient is 
also central to many statistical methods (e.g., factor analysis, structural equations, and 
cluster analysis). Despite its long history, the nuances of the correlation coefficient are 
not generally well understood (Falk & Well, 1997).The correlation coefficient between 
two variables x and y, rxy, is defined by the ratio of the covariance between x and y (Sxy) 
to the product of the standard deviations of x and y (Sx and Sy, respectively), 

yx

xy

xy
SS

S
r  .   (2-1) 

The covariance is the numerator in the correlation formula and, as such, it is an 
unbounded measure of linear association between two variables. The covariance is 
defined as the sum of the cross-products of centered variables,  

n

yyxx
S xy

))(( 
   (2-2) 

where n is the sample size and S denotes the sample (in some later equations, S and s 
refer to population and sample, respectively, as we will note). 

The correlation, on the other hand, is a bounded measure of linear relation ranging 
from -1 to 1. A correlation of 1 indicates a perfect positive linear relation between two 
variables, whereas –1 indicates a perfect negative (inverse) linear relation. The 
correlation is an index of the magnitude of the relation between two variables and how 
well the data fit a straight line.  

Regression, on the other hand, identifies the straight line that fits the data best. A 
regression line can be described by two values – the intercept, b0, and slope, b. With a 
correlation of +1, all of the x and y plotted data points for individuals fall on a straight 
line with positive slope. The regression line used to predict the y values from the x 
values is given in most textbooks as 

xbby xy.0ˆ  .   (2-3) 

It is helpful to write the actual observation y as the sum of two components, y 
predicted and the error in that prediction (e) so that  

eyyyyy  ˆ)ˆ(ˆ .   (2-4) 
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As we see, the observation y is a linear function of two components: the part of y that is 
predicted by x and the part of y that is not, the residual (error), e. By definition these 
two components are not correlated, thus allowing the variance of y to be expressed as 
the sum of the two independent component variances (leaving out the x notation), 

22

ˆ

2

eyy SSS  .   (2-5) 

Accordingly, the proportion of the total y variance that is predicted from x is given by 
the ratio  

2

2

ˆ

y

y

S

S
.   (2-6) 

This variance ratio is important in applied settings because it tells us how much of the 
variability in y can be accounted for by x. If we account for a large proportion of the 
variability in y, then we know that x is a good predictor of y. For example, if 25% of the 
variability in school grades is accounted for by the selection test x, then we know that 
the test score is a relatively good predictor of school performance. We also know that 
there are other components of performance that are not predicted by the test (75%), 
which we may be interested in understanding. We can also show that this ratio, the 
proportion of y variance that is predicted from x, is equal to the correlation coefficient 
squared (r2), the square root of which is simply r. (We note that there are a number of 
ways to derive a Pearson correlation not shown in this chapter, and also a number of 
coefficients of association). 

The intercept of a regression line is often not reported in validation research studies 
because it (a) does not give us information about the strength of relation between x and 
y and (b) is tied to the scale of the y variable (which is usually uninformative). 
Therefore, the focus here is on the slope of the regression line, which is given by the 
ratio of the covariance to the variance of x: 

2.

x

xy

xy
S

S
b  .   (2-7) 

Accordingly, the relation between the correlation and the slope of the regression line is  

y

xxy

xy
S

Sb
r

.
 .   (2-8) 

Note that when x and y are standardized (with mean zero and variance 1), the 
correlation coefficient equals the regression coefficient. Thus, one interpretation of the 
correlation coefficient is as the standardized regression coefficient when regressing y on 
x (Rodgers & Nicewander, 1988). Intuitively, running regression on a correlation matrix 
instead of a data file with raw scores for each variable produces only the standardized 
regression coefficient (as opposed to the unstandardized regression weight (slope) and 
intercept values that apply to raw scores).  
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We can gain additional insight into the correlation coefficient by rewriting it in terms 
of y residuals and y total variance, the proportion of the y variance that is not predicted 
from (accounted for) by x. The correlation using these terms can be expressed as 

2

2

)(

)ˆ(
1

yy

yy
rxy




 .   (2-9) 

The numerator under the square root sign in Equation 2-9 indicates the magnitude of 
the departure of the predicted values from the observed values (residuals) and therefore 
how well the regression line fits the data. The denominator, which fixes the ratio value 
between –1 and 1, indicates the magnitude of the departure of the observed values from 
the mean of those values and is the measure of total y variance. If x does not predict y at 
all, the numerator and the denominator will be the same value and the ratio will equal 1, 
with rxy equaling zero. Conversely, if prediction is perfect and all data points are on a 
straight line, the residuals will equal zero, as will the ratio and therefore rxy will equal 1. 

We can gain further insight into the correlation coefficient by squaring           
Equation 2-9, 
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 .   (2-10) 

If we then substitute for the 1 in the equation, 
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 ,   (2-11) 

we come back to Equation 2-6, the ratio of variance of y as predicted by x over the 
variance of y: 

2

2

ˆ2

y

y

xy
S

S
r  .   (2-12) 

It is important to plot the x/y values when dealing with regression and correlation to 
inspect linearity and dispersion of scores about the regression line. Figures 2-1 through 
2-4 are four scatter plots depicting different values of the correlation coefficient. Figure 
2-1 illustrates the absence of relation between x and y with a correlation very near zero 
(we note scale differences in the x and y axes in the four graphs that should not be a 
distraction from the intended illustration – the visual forms of the x/y relationships).  
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     y ‚                                                                                         

    65 ˆ                                                                                         
       ‚                                                                                         
       ‚                                                                                         
       ‚                                                                                         
       ‚                                                                                         
       ‚                                                    A                                    
       ‚                                A                                                        
    60 ˆ                                                                                         
       ‚                                                                                         
       ‚                                    A                                                    
       ‚                                                                                         
       ‚                                                 A               A                       
       ‚                                 B        A                                              
       ‚                                               A       A   A                             
    55 ˆ          AA                               A    A                                        
       ‚                                                                                         
       ‚                                 A A      A                                              
       ‚                            A         A                                                  
       ‚               A                               A A                                       
       ‚                            A A               A    A                                     
       ‚                          A                   A                                          
    50 ˆ             A        A        A       A   A          A                                  
       ‚                                 A A   A  AA       A                                     
       ‚                       A        A     A                 A   A                            
       ‚                                 A A       A                              A              
       ‚                  A          A                                             A             
       ‚                                                A    AA A                                
       ‚                                                    A      A                             
    45 ˆ                     A  A      A     A                                                   
       ‚                                                                           A             
       ‚                                         A    A                                          
       ‚                        A  A  A                  A                                       
       ‚                                               A                                         
       ‚                         A                    A                                          
       ‚                                               A                                         
    40 ˆ                                                                                         
       ‚                                                                                         
       ‚                                   A                                                     
       ‚                                                                                         
       ‚                                                                                         
       ‚                                                                                         
       ‚                                                                                         
    35 ˆ                                                                                         
       ‚                                                                                         
       Šƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒ      
         35           40           45           50           55           60           65        
                                                                                                 

                                                    x                                               

Figure 2-1. Scatter plot of x and y when rxy = .00. 
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In Figure 2-2, the correlation is .39.  

                                                                                                 

  y ‚                                                                                            

160 ˆ                                                                                            
    ‚                                                               A                            
    ‚                                                                A                           
    ‚                                           A  A                                             
    ‚                                                          A                                 
    ‚                                                                     A   A                  
140 ˆ                                                                                            
    ‚                                            A               A               A         A     
    ‚                                  A                          A       A                      
    ‚                                                                                            
    ‚                                                           A                                
    ‚                            A               AA      A                                       
120 ˆ             A                                    A                                         
    ‚                          A                           A   A                                 
    ‚                                          A   A  A                                          
    ‚                                    AA                                                      
    ‚                          A                                                                 
    ‚                     A     A          A       A    A                                        
100 ˆ                                      A   A                A                                
    ‚                                   A   A          A           A                             
    ‚              A                           A         A                         A             
    ‚                                      A         A         A                                 
    ‚                     A            A                            A                            
    ‚                                               A     A                                      
 80 ˆ                            A A         A      A                                            
    ‚     A                       A                                                              
    ‚                  A                A   A A         A                                A       
    ‚                                              A                                             
    ‚                                                                  A                         
    ‚                        A                A                                                  
 60 ˆ                                          A                                                 
    ‚                                                       A                                    
    ‚               A                                                                            
    ‚                                                                                            
    ‚                                                                                            
    ‚                                                                                            
 40 ˆ                                                                                            
    ‚                                                                                            
    ‚                                                                                            
    ‚                                       A                                                    
    ‚                                                                                            
    ‚                    A                                                                       
 20 ˆ                                                                                            
    ‚                                                                                            
    Šˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
   37.5     40                45                50                55                60    
                                                                                                 

                                                    x                                              

Figure 2-2. Scatter plot of x and y when rxy = .39. 
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In Figure 2-3, the correlation is .65 
 

                                                                                                 

      y ‚                                                                                        

    130 ˆ                                                                                        
        ‚                                                A                                       
        ‚                                                                                        
        ‚                                            A      A                        A           
        ‚                                                    A          A                        
        ‚                                        A                                               
    120 ˆ                                      B A                                               
        ‚                                                                                        
        ‚                                                   A     A                              
        ‚                                                                                        
        ‚                           A                                                            
        ‚                                 A          A    D     A                                
    110 ˆ                                         AA A   A    A                                  
        ‚                                                 A       A          A                   
        ‚                               A       A  A    A  A                                     
        ‚                                                                                        
        ‚                              A       AA         A A                                    
        ‚                      AA         A     A A   A                                          
    100 ˆ                               A                                                        
        ‚                                      AA                                                
        ‚                              B                A                                        
        ‚                                             A                                          
        ‚                                                                                        
        ‚                         A           AA                                                 
     90 ˆ                       A                 A     A                                        
        ‚                                       A                                                
        ‚                         A                                                              
        ‚                                                                                        
        ‚              A A               A                                                       
        ‚                                A                                                       
     80 ˆ                         A                             A                                
        ‚                                A                                                       
        ‚                            A                                                           
        ‚                 A           A  A                                                       
        ‚                                                                                        
        ‚                     A      A                                                           
     70 ˆ                        A A                                                             
        ‚                                                                                        
        ‚                                                                                        
        ‚                                                                                        
        ‚                                                                                        
        ‚                                                                                        
     60 ˆ                        A                                                               
        ‚                                                                                        
        Šƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒƒƒƒˆƒƒ     
          35           40           45           50           55           60           65       
                                                                                                 

                                                    x                                             

Figure 2-3. Scatter plot of x and y when rxy = .65. 
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In Figure 2-4 the correlation is .95.  

 

                                                                                                 
  y ‚                                                                                            
    ‚                                                                                            
120 ˆ                                                                                            
    ‚                                                                                A       A   
    ‚                                                                           A     A          
    ‚                                                                                            
    ‚                                                                                            
    ‚                                                                    A    AA       A         
    ‚                                                             A  A   A   A  A    A           
110 ˆ                                                                            A               
    ‚                                                                                            
    ‚                                                                                            
    ‚                                                       A    AAA                             
    ‚                                                          A                                 
    ‚                                                 A   A          A                           
    ‚                                           A            A                                   
100 ˆ                                   A      A A  A  AA           AA                           
    ‚                                     A     AA A AA                                          
    ‚                                         AA AA   A     A                                    
    ‚                                             A  A                                           
    ‚                               A      A   AAA   A                                           
    ‚                      A          A     A A                                                  
    ‚                              A A       A                                                   
 90 ˆ                            AA                                                              
    ‚                          B     A A                                                         
    ‚                         AA                                                                 
    ‚                  AAA                                                                       
    ‚                                                                                            
    ‚                 A                                                                          
    ‚                       AA                                                                   
 80 ˆ                                                                                            
    ‚                                                                                            
    ‚                                                                                            
    ‚                                                                                            
    ‚                                                                                            
    ‚A                                                                                           
    ‚                                                                                            
 70 ˆ                                                                                            
    ‚                                                                                            
    Šˆƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒƒˆ 
   37.5      40                  40                  50                  55                 60 
                                                                                                 
                                                  x                                              

Figure 2-4. Scatter plot of x and y when rxy = .95. 

We can see from Figures 2-1 through 2-4 that as the correlation coefficient 
approaches 1.00, the scatter plot becomes less circular and more narrowly elliptical 
implying a stronger relation between x and y. 

Technical Factors That Affect Correlation and Regression 

Situational factors can affect the magnitude of the correlation such as, when 
considering the relation between a personnel selection test and a job performance 
measure, the motivation of many individuals taking the selection test is low, or as noted 
in Chapter 1, there is widespread compromise of a high stakes test like the ASVAB. But 
there are also many technical factors that affect the correlation, six of which we discuss 
in this section. The first and obvious technical factor that affects the magnitude of the 
correlation and regression coefficients is the outlier observation. An outlier is a xy data 
point that, graphically in a scatter plot, departs substantially from the observed 
locations of the rest of the data points.  
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Outliers are attributed to the response variable (dependent variable) and may or may 
not have an effect on the regression parameters. That is, an outlier may or may not have 
influence. For instance, an outlier would not be an influential variable if the bivariate 
plot showed the data point to be exceedingly far removed from the other data points but 
running exactly on the regression line. Removing that data point and recalculating the 
regression line would yield the same slope as when the point was included. Influential 
variables, on the other hand, may or may not appear as outliers but do affect at least one 
regression parameter (e.g., slope). Chatterjee and Yilmasz (1992) provided a 
comprehensive review of the subfield of regression diagnostics that includes a number 
of useful graphics.  

Referencing our past notation on residuals in Equation 2-9, the numerator, we 
learned, is the sum of the departures of each of the predicted y values from their 
respective observed y values. Any observation that is sufficiently far away graphically 
from the rest of the observations could have a large residual. An outlier can either 
decrease or increase the magnitude of the correlation and regression coefficients. It 
behooves the researcher to plot the data before conducting a correlation analysis to look 
for outliers; any suspicious point should be reconsidered carefully. Many standard 
textbooks on regression and correlation have a section on outliers. 

The second technical factor that affects the correlation coefficient and regression 
coefficients is nonlinearity. Two variables could be related, for example, by a “U” or an 
inverted “U” function rather than by a straight line. For example, some personality traits 
may contribute positively to performance up to a certain level, at which point higher 
levels of the trait become dysfunctional and performance suffers. Fitting a straight line 
to the scatter plot generated by one of these functions would make little or no sense.  

The third technical factor is variability in test scores. If there were little or no 
variability on either the criterion or predictor, the correlation coefficient would be near 
zero. We must look for measures that differentiate individuals – that is the major goal of 
personnel testing research. Measures that provide differentiation in individuals’ 
standing, and the capability of predicting those standings, allows the researcher to apply 
cutscores that identify the best performers. 

The forth technical factor, related to variability in test scores is the restriction in the 
range of test scores that occurs from applying a cutscore to the selection instrument. 
Because the correlation coefficient magnitude is associated with test score variance, it 
will be affected if the full range of variability in test scores is curtailed. The degree of 
curtailment depends on the stringency of the cutscore, all other things being equal.  

The fifth technical factor that affects the correlation coefficient is measurement 
error, which is a random component of test scores (either the selection instrument – 
independent variable, or the performance measure – the criterion variable) that affects 
the precision of a measurement. We do not refer to measurement error as the biased 
(systematic) contamination of the measurement instrument (e.g., uniform but very dim 
lighting in an otherwise optimally standardized testing room) but rather the 
unsystematic “noise.” The biasing systematic types of errors are discussed in later 
chapters. The next section is a discussion of measurement error in the context of 
classical test theory (CTT). 
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The sixth technical factor that affects the correlation is the similarity of the two 
variables’ distribution shapes (assuming both are based on a continuous metric scale). 
The maximum correlation is, of course 1.0, but it has been shown that for large 
correlations, even moderate departures from distribution similarity (skew and kurtosis) 
can lower a correlation (not so critical for small correlations, e.g., .30). We refer the 
reader to Goodwin and Leech (2006) who discussed these six factors impacting the 
correlation coefficient in greater depth and with excellent references.  

Review of the Classical Measurement Model 

The classical measurement model (or CTT) defines a test score as the sum of two 
components, the “true score,” t and the error, ε (disregarding sampling error). These 
components are assumed to be unrelated (i.e., independent) and therefore uncorrelated. 
We note that CTT does not address sampling error so in using the model we define the 
criterion y as simply the sum of true ability plus error, 

yyty  ,   (2-13) 

and the predictor x as 

xxtx  .   (2-14) 

A measure with a small error component (ε) is consistent in measurement over 
repeated measurements, assuming that the underlying construct (ability or attribute) 
that we are measuring does not change. The consistency of a measure is defined by the 
reliability coefficient (not the instrument in and of itself). The reliability coefficient 
quantifies the “signal-to-noise” ratio of a measure, or “true score variance divided by the 
total observed score variance.”  

Given a stable and standardized testing environment, an individual taking the SAT 
(for example) for college entrance at one setting can expect to obtain nearly the same 
scores when the SAT is taken again had no additional learning taken place in the 
interim. The scores will most likely not be exactly the same, however, but affected by 
what are considered random factors that affect test performance at each testing time 
such as mood, amount of sleep, worries, or unstable aspects of the test itself that 
theoretically cancel out (e.g., sometimes a positive mood, sometimes a negative). 

There are different ways of measuring test reliability but mathematically, the 
reliability of x is always given by the ratio of the true score variance of x over the 
observed score variance, 
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x

t

xx
x




  .   (2-15) 
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We can see the similarity of Equation 2-12 and Equation 2-15 and so we can 

conceptualize the reliability of a test as either (a) the test’s correlation with itself ( xxr ) or 

(b) the proportion of total test variance that is accounted for by the variance of the true 

score (
2

.xtr ).  

The reliability coefficient ranges from 0 to 1. A reliability of 1 indicates that there is 
no measurement error; a reliability of 0 indicates that test scores are the result of 
completely random responses. The test developer needs to know if a potentially useful 
test is unreliable so that it can be improved. Very often a researcher will discard a test 
that demonstrates low reliability (or validity) even when there is support from a good 
theory. Identifying what construct to measure is difficult in and of itself, and when we 
are successful, it becomes even more difficult to measure it without excessive noise 
(random factors).  

Correcting the Validity Coefficient for Test Unreliability 

The following equality illustrates in the theoretical world how to “estimate” the true 
relation between x and y correcting for the unreliability of one or the other, or both, 
measures:  

yyxx

yx

yy

yt

xx

tx

tt

rrr
r xy

yx 

,,,

,  ,   (2-16) 

where xx is the reliability of x and yy is the reliability of y. We see from Equation 2-16 
that the correlation (validity) is reduced and that we must adjust the observed validity 
rxy if we are interested in estimating the “true and perfectly reliable” correlation between 

the two constructs, 
yx ttr , . Note that in the first adjusted correlation in Equation 2-16 we 

adjust only for criterion unreliability (because the predictor reliability is 1.00, 
unavailable, or not of interest); whereas in the second adjusted correlation we adjust 
only for predictor unreliability. Depending upon the purpose of a study (applied or basic 
construct research), the researcher can correct for unreliability in x, y, or neither.  

The Effect of Unreliability on Regression and Correlation 

It is interesting to note that the reliabilities of the x and y measures set an upper 
bound to their correlation: 

yyxxxyr  .   (2-17) 

For example, assume x has a reliability of .90 and y has a reliability of .60. If both x and 
y were to be corrected for attenuation due to unreliability, the maximum possible 
correlation that we can observe between these two variables .735 (i.e., 949 times .775). 
Because the reliabilities determine the upper bound of the criterion-related validity, it is 
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important to use the most reliable measures possible in both applied and theory-based 
research. 

Another consequence of unreliability is the effect on the regression coefficient – a 
reduced slope. We can demonstrate (e.g., McNemar, 1962) that the regression 
coefficient is affected by reliability according to the following equality: 

xx

xy

xx

xt

tytt

bb
bb

y

xxy 

..

..  .   (2-18) 

Equation 2-18 tells us that errors of measurement on the predictor affect the 
regression coefficient (slope), but that errors of measurement on the criterion (not 
shown) do not. The reason why errors of measurement on the criterion do not affect the 
regression coefficient is that they end up being part of the residuals, affecting the 
residual variance but not the slope. As the formulas demonstrate, the regression 
coefficient does not change with unreliability on y. The standard error (a measure of 
precision) of b, however, is affected by unreliability (decreasing the standard error with 
increasing reliability). We can see that the observed regression coefficient by.x will be 
less than or equal to the regression coefficient for predicting ty from tx by rearrangement 
of the relevant terms in Equation 2-18: 

 

xy ttxxxy bb ..  .  

We note the conceptual parallel of this attenuation formula for the regression coefficient 
with the attenuation formula for the correlation (e.g., rearranging the relevant terms in 
the disattenuation formulas in Equation 2-16. 

Table 2-1 shows how variability of b systematically differs across the different 
conditions involving measurement error.  

Table 2-1 
The Variability of the Slope 

Variance of b 

xyb .  
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b .  
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We see from Table 2-1 that the variance of b (typically calculated and referred to as the 
standard deviation or standard error of b) is the residual variance divided by the 
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product of the variance of the predictor x and n. Using the results, we can show that 

σ2(by.x) > σ2 ( xt y
b . ). In other words, errors of measurement in the criterion results in an 

increase the variability of b. 

We close this section by looking at a hypothetical example shown in Table 2-2. 
Consider a predictor x with reliability .89 and a criterion y with reliability .75. Next, 
assume that the variance of the predictor is 9 and that the variance of the criterion is 16. 
The correlation between the predictor x and the criterion y is .42. It is useful to look at 
the correlation and the slope of the regression line as we define x and y with perfect and 
imperfect reliability. Table 2-2 gives the correlation and regression coefficients and 
standard error of b under perfect and imperfect reliability in x and y. 

Table 2-2 
Correlation and Regression Under Measurement Error 

 Predictor 

 

 

Criterion 

x tx 

 r b s(b) r b s(b) 

y .416 .555 .1750 .442 .625 .1831 

ty .481 .555 .1461 .510 .625 .1520 

We can see from Table 2-2 that the correlation is affected by both criterion and 
predictor measurement error. The regression coefficient, on the other hand, is directly 
affected only by unreliability in the predictor. 

Incremental Validity 

Incremental validity (Sechrest, 1963) is the degree to which a measure explains or 
predicts a phenomenon of interest, relative to other measures. Incremental validity can 
be evaluated along several dimensions, including the statistical significance of the 
increase in the correlation coefficient or the increase in the proportion of correct 
decisions made (e.g., Hunsley & Meyer, 2003). Haynes and Lench (2003) have 
discussed many indices of incremental validity. In this section, however, we focus on the 
incremental change in the correlation coefficient. 

Consider a situation in which we have two predictors. In this situation the regression 
would be y on x1 and x2; that is, 

exbxbby xyxy  22.1.0 1
ˆ .   (2-19) 

Next assume that x1 is the “old” predictor and that we want to see the incremental 
validity of adding the “new” predictor x2. To do so, we would evaluate the correlation 

between y and ŷ as a function of the two predictors (Equation 2-21) and between y and 
ŷ  as a function of one predictor, 
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exbby xy  1.0 1
ˆ .   (2-20) 

The basic idea in evaluating whether x2 provides incremental validity involves 
comparing two multiple correlations, Ry,x1x2 and Ry,x1.1 Here, practical as well as 
statistical issues are important. Because statistical tests of significance vary with sample 
size, we can find a small difference without practical consequences to be statistically 
significant. On the other hand, we could miss important differences with a small sample 
because statistical significance was not attained (not enough power, discussed in a later 
chapter). Thus, it is good practice to evaluate both the difference in the size of the effect 
and the statistical significance of the effect. For example, the incremental validity of a 
candidate test evaluated as a possible addition to the ASVAB could be .04 (observed 
from the data). However, because the sample size is only 50 cases, that increment might 
not be detected as statistically significant (recognizing that restriction in range of 
ASVAB test scores complicates the matter, as discussed in later chapters).  

A .04 validity increment to the ASVAB, if real, has practical significance in that a 
military school with a high academic failure rate would be able to reduce this rate by 
potentially several percentage points doing nothing else but instating the test. On the 
other hand, a statistically significant .01 increment in validity found in a sample size of 
1,000 would most likely have a trivial impact on graduation rate improvement (possibly 
0.5%) but still be worth doing if there are associated improvements in other aspects of 
the selection and classification system (e.g., reduced adverse impact or increased overall 
qualification rates across all military occupations for future recruit populations). 

Tests of Hypotheses and Confidence Intervals 

After showing that two quantitative variables are correlated in a sample, we often 
want to show that this finding extends to the population. For this purpose, we test the 
null hypothesis that the population correlation is zero, hoping to reject this hypothesis. 
Alternatively, we can establish a confidence interval around the population correlation. 
Under normality, the test that the population correlation is zero is a test of 
independence. The independence of two variables, assuming normality, involves the 
following null hypothesis: 

H0: ρ = 0. 

The alternative hypothesis, regardless of whether we are conducting a one-tailed or 
two-tailed test, is that the variables are related. We either reject or retain this null 
hypothesis, with its rejection indicating a non-zero relation between the variables in the 
population. We test this null hypothesis with the t test with n - 2 degrees of freedom. To 
conduct the statistical test we compare the observed t, 

                                                      
1
 In most situations, it will be multiple correlations that are compared. Here, because of the example involving just 

two predictors at most, the comparison is between a multiple correlation (when both predictors are used) and a 

single-order correlation (when just one predictor is used). 
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r
t    (2-21) 

with table values from the t distribution that applies to correlation coefficients (found in 
the appendices of many statistics books). If the observed t value that pertains to the 
sample size falls in the researcher’s specified critical upper region of the distribution, 
then the probability would be too low for the observed sample correlation having 
occurred by chance and so we reject the null hypothesis. As is the case with all 
inferential statistics, the t-value itself is not the main point of interest. Instead, we are 
interested in the probability that the t-value is large enough to be statistically significant 
(the p-value of the statistic). In many research contexts, a p-value smaller than.05 is 
sufficient to reject the null hypothesis.  For example, in Table 2-3 we see that the 
observed correlation between the x and y variables for the study sample size of 75 is .31 
with an associated p-value = .006. The correct decision here is to reject the null in favor 
of the alternative hypothesis stating that the variables are related in the population. 

 

 

 
 
 
 
 

The t-test is somewhat limited, because it cannot be used to test null hypotheses 
other than ρ = 0. Fortunately, however, R. A. Fisher showed how a general test of 
hypotheses about the population correlation coefficient can be made. It involves 
transforming the sample correlation into a z-score. The Fisher r to z transformation 
(discussed in textbooks such as Cohen, Cohen, West, & Aiken, 2003) is given by 















r

r
rz

1

1
ln5.)( , (2-22) 

where “ln” stands for the natural log (required because the correlation coefficient 
distribution is skewed, not symmetrical as with many distributions). For almost any 

value of , the sampling distribution of z(r) is normally distributed with mean z(ρ) and a 
large sample variance of 1/(n - 3).  
  

Table 2-3 
Sample Output when Computing Pearson 

Correlation Coefficients, N = 75 

 x y 

x 1.00000 
 

0.31499 
(p = 0.0059) 

y 0.31499 
(p = 0.0059) 

1.00000 
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This statistical test of a specified magnitude of the correlation is a bit more 
complicated than the t-test for merely the magnitude being greater than zero, because to 

test the null hypothesis we must transform both r and . For example, suppose that 
instead of stating a null of zero in the previous example, one is interested in testing the 

null hypothesis that  is .50 against  is not equal to .50 (either a plus or minus sign). To 
test the hypothesis, we first transform the null hypothesis in terms of z, 

H0: z(ρ = .50) = .55. 

Next, we transform r (= .315) and obtain a z(r) = .33, and compute the z score 

.87.1

72

1

55.33.



z  

Because -1.87 does not fall in the critical region (< -1.96), we retain the null 
hypothesis that ρ is .50.  

The Fisher r to z transformation can also be used to construct a confidence interval 
around the population correlation. The margin of error for a 95% confidence interval on 
ρ is given by 
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so that z(ρ) is .33 ± .23. This confidence interval is too wide to be of practical use. A 
smaller confidence interval could be obtained by increasing the sample size. One would 
need a sample size of 200 to bring E down to .14, and n = 500 to bring it down to .09. 

To obtain the confidence interval on ρ instead of z(ρ), we must transform the z back 
to an r. We transform it with the following identity: 
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The 95% confidence interval for ρ is .315 ± .226.  
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Confidence Interval on a Predicted Y 

Another way of interpreting the correlation coefficient is by considering the error 
that we make in predicting y from ŷ . Anytime that we predict an individual y using a 

regression equation, there is an error associated with the prediction. We can assess the 
magnitude of this error by constructing a confidence interval around y. Such an interval 
can be obtained from the t distribution with n = 2 degrees of freedom (df), or from many 
computer programs. Winkler and Hays (1975) showed that this confidence interval is 
given by 
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We can see that as r increases, the numerator approaches zero and the interval gets 
smaller. Consider two values of r, r = .35 versus r = .85. To make matters simple, 
assume that the variances of y and x are equal to 1, and that n = 100. Also assume that 
the mean of x is zero and that the value of x is 1. For r = .35, the 95% confidence interval 
around y is 
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When we perform the same calculations for an r of .85, we find 
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The width of the interval for the larger r = .85 narrowed to ±0.55 (compared to ±1.75 for 
the smaller r = .35). We can see that, as the r increases, so does the precision of our 
predicted value – logically so, because the data points are closer to the regression line.  

Figures 2-5 and 2-6 make this point for correlations of .28 and .95, respectively 
(again noting x/y scale differences should not be a distraction from the visual forms of 
the graphs).  
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Figure 2-5. 95% confidence interval around y when rxy = .28. 

 
Figure 2-6. 95% confidence interval around y when rxy = .95. 

In Figures 2-5 and 2-6 we have plotted the 95% confidence interval for each y, 
obtaining a confidence band around each regression line. As can be seen from these 
figures, the band around the regression line in Figure 2-5 is much wider than the one in 
Figure 2-6. The correlation in Figure 2-5 is .28 and the correlation in Figure 2-6 is .95. 
The larger correlation gives a better estimate of the predicted score, y. Another way to 
increase the precision of this estimate is by increasing the sample size. Thus, large n’s 
and large correlations are needed when we predict individual scores. 

y

60

70

80

90

100

110

120

130

140

x

40 50 60 70

y

70

80

90

100

110

120

130

x

40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60



 

26 

 

Overestimating the Multiple Regression Coefficient 

Multiple regression produces regression coefficients that yield the highest possible 
multiple R in the sample in which they were derived. If these regression coefficients are 
applied to data in another sample, the R will be lower because the regression coefficients 
are not optimal for that sample. This means the R obtained in the sample overestimates 
the true relation between the set of predictors and the criterion in the population (Cascio, 
1991). This phenomenon of over fitting the data, or fitting to the idiosyncrasies of a 
particular data set, is exaggerated when the sample size is small. There are two procedures 
commonly used to estimate the over prediction and therefore R in the population. The first 
procedure is cross-validation, in which the optimal predictor weights derived in one 
(validation) sample are used to predict the criterion in a second (cross-validation) sample. 
The second procedure involves the application of a formula to estimate the degree of 
shrinkage in R that should occur if in fact we can infer a value for the population.  

Cross-Validating with Split Samples 

Mosier (1951) provided the classic paradigm for empirical cross-validation in which a 
single sample is drawn from a population and then divided into a validation and cross-
validation sample. Regression weights are estimated in the validation sample and then 
applied in the cross-validation sample. Murphy (1983) has pointed out that there is only 
one sampling and that the estimated multiple correlation in the cross-validation sample is 
still a consequence of “overfitting” the data. Equally important is the fact that, even if there 
were two samplings from the population, the validation and cross-validation multiple 
correlations would be only two values out of a virtually infinitely large set of values. 

Further, the two-sample cross-validation approach is paradoxical and inconsistent. 
The goals of estimating regression weights are (a) stability of the estimate and (b) 
generalizability of the estimated parameters. Weights estimated in two half-samples of 
n1 and n2 cannot be as accurately estimated as from the entire sample of N = n1 + n2. As 
is well known, the standard error of a regression weight is a function of the sample size. 
Splitting a single sample into two pieces reduces the sample size and increases the 
standard error, thus reducing the accuracy of the estimates (Schmitt, Coyle, & 
Rauschenberger, 1977). However, the estimation of regression weights in only one 
sample does not provide estimates of the cross-applicability (i.e., generalizability). The 
Navy position in validating the ASVAB is that future validations are required involving 
new samples in the same context in order to “verify” initial findings. Naturally one must 
take into account not only sampling error, but the characteristics of the sample data that 
reflect training changes, criterion changes, and demographic changes and that it is 
entirely possible that an unverified validation reflects real changes.  
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Estimating Shrinkage with a Formula 

A shrinkage formula can be used instead of cross-validation thereby keeping one’s 
sample intact. Use of the formula is less cumbersome and allows the regression coefficients 
to be estimated in a larger sample (yielding more precise population parameter estimates). 
There are several “cross-validation” shrinkage formulas (Kennedy, 1988); however, one 
must consider that they provide estimates that may answer different questions (McCloy, 
1994). McCloy points out that the well-known Wherry (1931) shrinkage formula is 
intended to give an estimate of the multiple correlation in the population. The more 
relevant question is does the regression equation developed in the sample apply to the 
population and does the resulting multiple correlation reflect that true but unobservable 
value.  

Cattin (1980) showed that the following formula produces the least biased estimates of 
the shrunken multiple correlation to be expected if the sample equation were applied to 
the population: 
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where: 

c̂  = estimated population cross-validated multiple correlation, 

N = number of people in the sample, 
k = number of predictors in the regression equation, and 

2 = population squared multiple correlation 
 

and where  must be estimated using the following formula from Wherry (1931): 
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where R2 is the squared multiple correlation in the sample and N and k are as defined 
above. This value is printed by SPSS in its regression output and labeled “Adjusted R2.” 
When all predictors are not selected a priori (i.e., the final predictors are selected based on 
empirical considerations as in stepwise regression), the correction for shrinkage will 

overestimate c̂  when the final number of predictors is used as the value of k. A more 

conservative estimate would be obtained by using the original number of predictors 
(before backward selection) as the value of k which might yield a lower-bound estimate of 

c̂ , and an upper-bound estimate could be obtained by entering the multiple R in the 

formula for the complete battery of original predictors. The best estimate of c̂  would be 

the average of the upper- and lower-bound estimates. 
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The Complication of Range Restriction in Test Scores 

When we apply a shrinkage formula to regression results from a sample to estimate the 
multiple correlation in a population we are not considering the case where a selection 
instrument with cutscore has been applied to those selected into the sample. Applying a 
cutscore to a selection instrument produces range restriction in the selected sample’s 
scores because scores are missing below the cutscore. If we restrict in range scores 
directly/explicitly through the process of selection on x, we not only reduce the variability 
in x, but also, indirectly we reduce the variability in y. In other words, selection affects not 
only variances, but also the covariance between x and y, and thus the magnitude of the 
correlation coefficient. Further, in theory, when all the assumptions for correcting for 
range restriction are adhered to (discussed in depth in later chapters), selection affects the 
correlation coefficient but does not affect the regression coefficient or the error (residual) 

variance (see Ghiselli, Campbell, & Zedeck, 1981, p. 297). 

In theory, the regression coefficients are not affected by restriction in range caused by 
applying a cutscore to an explicit selection variable because, assuming bivariate normality 
in the unrestricted population, linearity exists throughout the total predictor score range 
(an assumption that may or may not be met). We can see how the correlation is attenuated  
by first rewriting the correlation coefficient squared as 
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Because the error variance is unaffected by explicit selection on x but the y variance 

decreases, the ratio in Equation 2-28 increases and thus 2

xyr decreases. That the y variance 

decreases by a reduction in x variance is simply shown by  

 222
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exxyy SSbS  ,   (2-29) 

where xyb . is defined by Equation 2-7.  Further, where an estimate of the unrestricted x 

variance is available from the applicant (unrestricted) population; we can compute the 
ratio of the restricted variance to the unrestricted variance. That ratio can be used in the 
bivariate explicit selection case to correct the correlation for restriction in range and is 
(using * to denote statistics computed in the restricted sample)   
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Obviously when hiring using x, the criterion data y (say performance measures) are 
only available for those selected. Any correlation computed between x and y, or between 
some other potential selection measure z and y is going to be attenuated by the selection 
process and these direct and indirect “restricted in range” correlations must be corrected if 
inferences are to be made about the correlations that applies to the unrestricted applicant 
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population. As we will see in later chapters, it is the correlation in the unrestricted 
population that matters in personnel selection and classification. When we correct the 
correlation coefficient using traditional procedures, the two corrections (direct and 
indirect) are different. We briefly address the direct restriction in range situation now and 
discuss both direct and indirect restriction in range in depth in Chapter 5. 

To find the relation between the restricted and the unrestricted correlation between x 
and y due to explicit selection on x, we focus on the restricted variance of y (asterisks 
indicating restricted statistics), 
 

 22*2
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We can write the restricted variance in terms of the error variance and the slope because 
they are not affected by selection on x. If we then substitute for the slope and the error 
variance in Equation 2-31, we obtain 
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With some algebraic manipulation, Equation 2-31 reduces to the following ratio, 
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Substituting for the unrestricted variance of y in terms of known quantities, we find that 
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 Equation 2-34 can be solved for rxy to obtain an estimate of the unrestricted correlation 
coefficient under direct range restriction. Note that all the terms can be obtained directly 
from the data from the restricted sample. The equations that we find in the literature (e.g., 
Lord & Novick, 1968; Sackett & Yang, 2000) are also solutions for correcting the 
correlation for range restriction, one for direct restriction range given by 
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Researchers most frequently use Equation 2-35 to adjust the restricted correlation 
coefficient for direct range restriction. As an example, assume that the observed 
correlation in the selected sample between x and y is .21, and that the ratio of variances is 
5, corresponding to about 34% selection from the top under a normal distribution. The 
unrestricted correlation is 
 

37.
2646.1

46957.

5*21.21.1

521.

22



xyr .   (2-36) 

Table 2-4 is shows the effect of direct range restriction on the correlation coefficient 
for varying degrees of restriction, designated by the ratio of unrestricted variance, V(x), 
to restricted variance V’(x), and unrestricted correlation values.  

Table 2-4 
The Effect of Selection under Direct Range Restriction 

Assuming Bivariate Normality 

Selection 
Ratio 

Restricted 
Variance 

 Correlation in Restricted Sample (r*) 

V(x)/V’(x) r = .90 r = .70 r = .50 r = .30 r = .10 

  .05 0.1381 7.24 .2742 .1341 .0795 .0434 .0139 

  .10 0.1691 5.91 .3297 .1636 .0972 .0531 .0170 

  .15 0.1949 5.13 .3733 .1876 .1118 .0612 .0196 

  .20 0.2186 4.57 .4115 .2096 .1252 .0686 .0220 

  .25 0.2416 4.14 .4464 .2305 .1382 .0758 .0243 

  .30 0.2645 3.78 .4794 .2510 .1510 .0829 .0266 

  .35 0.2878 3.47 .5109 .2715 .1639 .0901 .0289 

  .40 0.3118 3.21 .5413 .2923 .1772 .0976 .0313 

  .45 0.3369 2.97 .5710 .3136 .1909 .1054 .0338 

  .50 0.3634 2.75 .6001 .3355 .2053 .1135 .0365 

  .55 0.3917 2.55 .6288 .3584 .2206 .1223 .0393 

  .60 0.4223 2.37 .6572 .3824 .2369 .1316 .0424 

  .65 0.4557 2.19 .6853 .4078 .2544 .1419 .0458 

  .70 0.4928 2.03 .7132 .4350 .2737 .1532 .0495 

  .75 0.5347 1.87 .7412 .4642 .2950 .1658 .0537 

  .80 0.5830 1.72 .7692 .4962 .3190 .1803 .0585 

  .85 0.6405 1.56 .7976 .5317 .3468 .1974 .0642 

  .90 0.7121 1.40 .8269 .5723 .3802 .2185 .0714 

  .95 0.8096 1.24 .8582 .6216 .4235 .2467 .0811 

1.00 1.0000 1.00 .9000 .7000 .5000 .3000 .1000 

    Note. V(x)/V’(x) is the ratio of unrestricted to restricted variance. 
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Table 2-4 shows that as the selection ratio gets smaller (more stringent selection) the 
observed correlation also gets smaller. For example, when we selected 10% of the 
subjects from a population with a correlation of .50, the restricted correlation is only 
.0972. In contrast, if we select 90% instead of 10%, the correlation.50 population 
correlation is only diminished to .3802.  

A similar argument can be made for indirect range restriction where not only is the 
unrestricted correlation (validity) of interest for the test used in explicit selection (x), but 
also is of interest for a second test that is correlated to x (say z) but not used in the 
selection process. Assuming selection on x, the indirect range restriction correction 
formula is given by documented formulas derived years ago and discussed in a later 
chapter on corrections for range restriction. Sackett and Yang (2000) provide the formula 
in a more recent publication: 
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As noted earlier, Chapter 5 provides a more in-depth discussion about the range 
correction formulas and we also encourage the reader not familiar with this topic to read 
the various typologies of range restriction discussed by Sackett and Yang (2000). 

Standard Errors of Range Corrected Correlations 

The usual standard error of the correlation coefficient does not apply to correlations 
corrected for range restriction (we put aside the issue of unreliable measures for this 
discussion). Consequently, the usual confidence intervals and tests of hypotheses must be 
modified. Several researchers (e.g., Bobko & Rieck, 1980; Mendoza, 1993; Raju & Brand, 
2003) have proposed large-sample estimators for the standard errors of the corrected 
coefficients. These formula methods are somewhat cumbersome and hard to compute. 
Thus, we do not discuss them at length here.  

Figures 2-7 through 2-9 show the combined effects of the selection ratio and the 
correlation coefficient on the standard error of the correction for direct range restriction 
(see Mendoza, 1993).  
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Figure 2-7. Plot of the standard error of the corrected correlation for direct 
restriction in range when N =5000. 

 

 

Figure 2-8. Plot of the standard error of the corrected correlation for direct 
restriction in range when N =500. 
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Figure 2-9. Plot of the standard error of the corrected correlation for direct 
restriction in range when N =100. 

Figures 2-7 through 2-9 apply to different applicant sample sizes (5,000; 500; and 100, 
respectively) and their corresponding smaller selected sample sizes at any specific selection 
ratio. We can see from these figures that the combination of a small applicant sample, a 
small selection ratio, and a low population correlation results in the largest standard error. 
This combination of low correlation and a small selected sample size is likely to yield test 
results with low power and wide confidence intervals. 

Although the situation is not much better with computer-intensive procedures, the 
investigator facing the problem of conducting a hypothesis test or constructing a 
confidence interval with a corrected estimator should use a computer-intensive 
procedure—either the bootstrap or multiple imputations. The bootstrap perhaps has more 
intuitive appeal. The bootstrap has been described fully by Efron and Tibshirani (1993) 
and for standard error of a corrected correlation by Chan and Chan (2004) and by 
Mendoza, Hart, and Powell (1991). Although the procedures are slightly different, they give 
similar results. Under moderate sample sizes with moderate correlations, the bootstrap 
method has been found to be rather accurate in estimating the standard error under direct 
range restriction. The case of indirect range restriction has received less attention, but it 
would appear the bootstrap method should yield similar accuracy in error results. Multiple 
imputation procedures covering both direct and indirect range restriction also were found 
to be accurate, as long as the correlation was not close to zero (Chasteen & Mendoza, 
2003). More about the bootstrap method is discussed in later chapters. 
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Concluding Remarks 

We have seen that to conduct a high-quality criterion-related predictive validity 
study we need reliable measures, a quality sample, and personnel selection and 
performance measures with score variability. Regression analysis was used to identify a 
linear trend in the data, and the correlation coefficient was used to quantify the fit of the 
data to the trend. We discussed the importance of creating a scatter plot to examine the 
data for outliers and nonlinearity, as well as ways to test for statistical significance with 
one or more predictors. We have seen that the precision of our estimates of r, b, and y 
depend on the size of both the correlation coefficient and the sample, in addition to 
other factors that affect correlation and regression analysis. We also reviewed classical 
test theory, measurement error, confidence intervals, restriction in range of test scores 
used in selection, the correction for range restriction, and also ways to estimate 
associated errors in the resulting corrected correlation (validity coefficient), recognizing 
that sample size is an important factor.  

The chapters that follow will provide more in-depth discussion and context on the 
topics discussed in this chapter. They also will provide greater details about the methods 
that are most important in accurately estimating the magnitude of the validity 
coefficient and setting ASVAB standards. The next chapter is a discussion about 
interpreting the validity coefficient.  
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Chapter 3. 
Interpreting the Correlation (Validity) Coefficient 

Norman M. Abrahams, Jorge L. Mendoza, and                
Janet D. Held 

Introduction 

The ultimate goal of the selection and classification practitioner is to set 
aptitude/ability standards (e.g., a cutscore applied to a performance predictor) that 
meet the organization’s goal in hiring candidates who perform well enough that the 
organization succeeds in its mission, given other constraints (training excellence, 
personnel promotional policies, demand for the product, etc.). The fundamental statistic 
with which to gage the decision to hire a candidate is the validity coefficient. The 
previous chapter provided a technical evolution of correlation and regression analysis 
with a brief review of classical test theory and other statistically based topics. An 
understanding of these topics is fundamental for an in-depth understanding of the 
validity coefficient and how it should be interpreted. Unfortunately, although we as 
personnel research psychologists may fully understand what the validity coefficient 
means, policy makers may not. This chapter focuses on interpreting the validity 
coefficient in ways that can better communicate the value of our selection instruments.  

Validity Interpretation: An Empirical Expectancy Table 

As discussed in Chapter 2, it is often useful to graphically illustrate the relation 
between two variables. The correlation scatter plots in Figures 2-1 through 2-4 can be 
modified to provide useful information about the potential for improving the “expected” 
performance (the criterion – y-axis) by increasing the test score requirement (the 
predictor – x-axis). In other words, once the correlation between a personnel selection 
instrument and a performance measure has been determined, the task is to determine 
how the organization will benefit from the relation. The graphs in Figures 2-1 through  
2-4 do not depict the restriction in range that the military observes, but they are useful 
in explaining “expectancy tables.” Given that higher scores on the criterion are 
associated with higher scores on the predictor, we can collapse the units of each axis of 
the four figures into fewer but meaningful metric categories. For example, we can 
collapse the continuous scores on the y-axis into the five grades A, B, C, D, and F to 
represent grades in college. Also, we can collapse the continuous scores on the x-axis 
into five percentile categories, or quintiles, to represent standing on the predictor. 

There are several variations of the expectancy chart (expectancy table) that apply 
slightly different quantitative information (Cascio, 1991; Lawshe, 1958). Tables 13 and 
14 in the Nuclear Field (NF) study (Appendix B of the Introductory Manual) display the 
type of empirically based expectancy tables developed for ASVAB standards studies. The 
ASVAB scores are collapsed on a somewhat arbitrary basis for the NF study and we do 
so for our example on the next page. 
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Table 3-1 illustrates an empirically derived expectancy table with an aptitude/ability 
test used to predict course grades (A, B, C, or D grades). (The illustration uses a very 
small sample for simplification with the understanding that small sample results are 
subject to sampling error and are often unstable.) 

Table 3-1 
Expectancy Table of Grades by Test Scores 

 Predictor Test Score 

Total Grade 1 2 3 4 5 6 7 8 9 

A 

0 

0.0% 

0 

0.0% 

0 

0.0% 

0 

0.0% 

10 

7.1% 

30 

20.0% 

20 

20.0% 

20 

50.0% 

20 

100% 
100 

 

B 

0 

0.0% 

0 

0.0% 

0 

0.0% 

20 

14.3% 

50 

35.7% 

70 

46.7% 

50 

50.0% 

20 

50.0% 

0 

0.0% 
210 

 

C 

0 

0.0% 

10 

16.7% 

50 

62.5% 

70 

50.0% 

60 

42.9%6 

40 

26.7% 

20 

20.0% 

0 

0.0% 

0 

0.0% 
250 

 

D 

20 

100% 

50 

83.3% 

30 

37.5% 

50 

35.7% 

20 

14.3% 

10 

6.7% 

10 

10.0% 

0 

0.0% 

0 

0.0% 
190 

 

Total 20 60 80 140 140 150 100 40 20 750 

The two variables in Table 3-1 correlate .42 in the observed data so we would expect 
some systematic differences in the proportion (or percent) of students who attain high 
and low grades, given their scores on the predictor test. We have rescaled these two 
continuous variables into a smaller number of meaningful x and y categories to 
conveniently illustrate the advantages of an expectancy table. Table 3-1 cell entries 
contain counts for students who received a particular grade and test score. The sum of 
each row count is in the far right hand margin, and the sum of each column count is at 
the bottom margin. The percent entries in each cell are computed by dividing the cell 
count by its respective column sum; that is, a percentage of individuals achieving a 
specific grade given a specific predictor score. The probability or expectancy of achieving 
a specific grade or higher at a specific test score is simply the sum of the cell percentages 
in that test score column for that specific grade and higher.  

As an example, we see from Table 3-1 that as the test score increases, the probability 
(percentage) of students obtaining a C or better increases. We see that at a test score of 
2, only 16.7 percent of the students received a C or better whereas at a test score of 6, 
93.3% of the individuals received a C or better. As the probability of success increases, 
the risk of failure decreases. Individuals with higher test scores tend to do better, but the 
relation is not perfect because the correlation is not 1. For example, there is a large 
spread of scores in each grade category for the test score of 6 rather than those scores 
being concentrated solely in the B or C categories. Note that the trend of better 
performance with higher predictor scores is more likely to appear unstable (or 
imperfect) when the sample size is small than when it is large. 
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To illustrate another potential use of the expectancy table, assume we would like to 
select only those individuals (who apply to take the course) who have at least a 50% 
chance of obtaining a B or A. For ease of interpretation, we recompiled Table 3-1 as 
Table 3-2, collapsing the grade categories and associated percentages into two labeled 
“B or better” and “C or worse.” 

Table 3-2 
Expectancy Table of Collapsed Grades by Test Scores 

 Predictor Test Score 

Total Grade 1 2 3 4 5 6 7 8 9 

B or 

better 

0 

0.0% 

0 

0.0% 

0 

0.0% 

20 

14.3% 

60 

42.9% 

100 

66.7% 

70 

70.0% 

40 

100% 

20 

100% 

310 

 

C or 

worse  

20 

100% 

60 

100% 

80 

100% 

120 

85.7% 

80 

57.1% 

50 

33.3% 

30 

30.0% 

0 

0.0% 

0 

0.0% 

440 

 

Total 20 60 80 140 140 150 100 40 20 750 

As we can see from Table 3-2, we would have to select individuals with a test score of 
6 or higher to meet the “50% or higher” criterion. At a score of 5, only 42.9% of the 
individuals receive a grade of B or better (about a .43 probability). 

Tables 3-1 and 3-2 are just one of many formats that portray the relationship 
between a selection instrument’s correlation with the criterion of interest, in this case, a 
predictor test and actual grades in a course for those who enrolled. We refer the reader 
to other sources mentioned earlier for illustrations. The main point of developing 
expectancy tables in the personnel selection/classification realm is that quantitative 
information about two variables can be organized to display their relationship and thus 
allow interpretation of how adjusting levels on one variable (always the selection 
instrument) will impact affect levels on the other (the performance, or criterion 
variable).   

Restriction in Range Effect on Interpreting the Correlation  

Expectancy tables, in all formats, give a sense of the strength of the relation between 
the xy variables, or predictor and criterion variable, but only for the data at hand. The 
data at hand in ASVAB validation/standards studies come from schoolhouses that 
instruct students who have been screened on, among other variables, an ASVAB 
standard (composite with cutscore). Chapter 2 briefly discussed restriction in range due 
to a cutscore on an operational (in place) selection/classification instrument. However, 
Figures 2-1 to 2-4, which show the closeness of data points to the regression lines for 
broad ranges of scores, do not portray the restriction in range effect on the correlation.   

Figure 3-1 clearly shows the effect of a cutscore on the magnitude of the validity 
coefficient in the practical situation where applicants are selected for training based on 
an ASVAB standard.  
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Figure 3-1. Diminished observed validity between ASVAB scores and final 
school grade when selection is stringent. 

Figure 3-1 shows, notionally, a substantial correlation, or validity coefficient, that 
applies to an applicant population (rxy = .60) if, theoretically, all applicants reflecting a 
full range of ability (or a random sample of them) were classified to a Rating 
(occupation) and allowed to attend the Rating’s technical training course. Not all 
applicants are selected, however, as indicated by the dots on the x-axis without a partner 
y score. The validity coefficient of the ASVAB measure (a composite of ASVAB tests 
specific to the Rating) is a much lower rxy = .08 and not of interest. That is, the full-
range validity coefficient for the applicant population is of interest because it is that 
validity coefficient that will be used to set an effective cutscore (a balancing act 
described later). Chapter 2 briefly described a single case of estimating the unrestricted 
(population) validity coefficient (explicit selection) and Chapter 5 goes further into the 
topic. The point here is that the restricted validity coefficient is uninterpretable for our 
process of setting ASVAB standards.  

The Taylor-Russell Tables for Interpreting Validity Coefficients 

Assume that the correlation in not restricted in range. As noted from long ago (e.g., 
Hull, 1928), if we then consider the magnitude of the correlation coefficient and its 
squared value, the amount of shared variance between the test and the performance 
measure can appear small (e.g., a correlation of .20 squared translates into 4% of two 
variables’ overlap). Taylor and Russell (1939) took a different perspective and showed 
that even small validity coefficients can be useful. The Taylor and Russell (1939) tables 
are theory-based and derived from bivariate normal distributions of any positive 
correlation magnitude (between zero and 1). Figure 3-2 on the next page will be used for 
illustration of how the tables were compiled and their use in interpreting the utility of a 
validity coefficient.  
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Figure 3-2. Success rate improvement as a function of magnitude of the validity 
coefficient (base rate = .20). 

Figure 3-2 is taken from the Navy’s Nuclear Field (NF) ASVAB validation/standards 
study in Appendix B of the Introductory Manual and is used to illustrate the expected 
improvement in the graduation rate applying a selection instrument with three validity 
magnitudes. The three bivariate distributions represent, from left to right, validities of 
.25 (the smallest ASVAB validity coefficient observed for SEAL physically intensive 
training criteria), .55 (the average of ASVAB composite validities in predicting training 
performance across all Navy entry level schools), and .85 (the largest ASVAB validity 
coefficient observed for academically based Nuclear Field courses).  

Overlaid on each bivariate normal in Figure 3-2 is the same y-axis performance bar 
(horizontal) reflecting a 20% success rate (in training) and the same x-axis cutscore 
(vertical) reflecting an ASVAB 30% qualification rate. Both of these “parameters” being 
equal, the success rate of the selected group is solely dependent on the magnitude of the 
validity coefficient. The aggregate success rates for the Figure 3-2 graphs are 29% for rxy 
= .25; 41% for rxy = .55; and 56% for rxy = .85. 

The Taylor-Russell (1939) tables are mathematically derived and displayed as 10 
published tables each with a different “base rate” success rate, but with the same validity 
coefficient range (0 to 1.0 displayed in the left most column) and the same selection 
ratio (SR) range (display across the first header row). The table entries are the success 
rates associated with each SR and validity coefficient combination, which differ across 
tables. Also displayed on the left most graphs are the correct and incorrect classification 
decision outcomes associated with each combination of base rate, SR, validity coefficient 
magnitude, and success rate, explained shortly.  
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In the military application of the Taylor Russell (1939) tables, three of the four 
parameters are known from ASVAB validation/standards studies, so the fourth (the 
base rate) is fixed. Specifically known are (a) the correlation between the ASVAB 
composite scores and training grades for the unrestricted ASVAB population is 
estimated for the unrestricted population applying the correction for range restriction to 
the correlation estimated in the ASVAB restricted school sample; (b) the selection ratio 
is the proportion of the applicant population qualified for an occupation due to the 
operational ASVAB composite’s cutscores (the ASVAB normative population is used in 
most cases for uniformity across studies and because of the full range of ASVAB scores), 
and (c) the success rate is the pass rate that applies to the school sample.  

Finding the applicable Taylor-Russell (1939) base rate table is a simple process of 
fitting these three parameters to every base rate until a match is found. The match 
criterion is that the internal table success rate that exists at the intersection of the 
validity coefficient and the selection ratio matches the school sample success rate. Once 
the correct base rate table is identified, various assessment scenarios can be evaluated 
such as (a) estimating improved success rates from raising the cutscore on the 
operational ASVAB composite, (b) replacing the operational composite with one that is 
evaluated as having a larger validity coefficient, or (c) lowering the selection ratio 
(cutscore) if recruitment is a problem and the status quo success rate is not an issue.  

Figure 3-2 shows that, all other things being equal (i.e., a cutscore that qualifies 30% 
of the population, and challenging training that only 20% of applicants would be 
expected to pass), the validity magnitude being the sole determinant of the selected 
candidates’ success rate (29% success for rxy = .25; 41% for rxy = .55; and 56% for an 
validity coefficient = .85). A generated Taylor-Russell (1939) table for a base rate of .10 
is provided in Appendix A as an example. 

The far left graph in Figure 3-2 also depicts another validity interpretation – all other 
things being equal, the larger validity coefficient (with exceptions), the more accurate 
the selection/classification decision. As depicted, there are two correct selection 
decisions (correctly accepted and correctly rejected) and two incorrect selection 
decisions (incorrectly accepted and incorrectly rejected). One can visualize moving the 
vertical cutscore bar to the right in all three graphs to improve the success rate and 
correct selection decisions (both rejecting as well as accepting applicants) but at the 
expense of increasing the incorrect decision of rejecting applicants who would have 
succeeded. At least for the military, it may be that the applicant population propensed to 
enlist in the military diminishes to such an extent that the cost of rejecting able and 
willing youth becomes larger than accepting them with higher risk.  

Appendix B provides a worksheet example of how to compute the correct and 
incorrect decision quadrants of a bivariate distribution when there is a specified level of 
performance on both the selection instrument and the criterion. We note at this point 
that the Taylor-Russell (1939) tables apply to only one job; the problem of many jobs, as 
is the case for the military, will be addressed in the later chapters on cutscore analysis 
and simulating job assignments.  
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The Taylor-Russell (1939) tables can be used to interpret the validity coefficient as 
having “utility” in the context of an organization’s cost associated parameters (e.g., 
current success rate, expected improvements given a more valid selection instrument, 
cost of maintaining the instrument, and difficulty in finding enough qualified 
candidates). However, Smith (1948) provided a cautionary note on using the Taylor-
Russell tables. The assumption underlying the tables is bivariate normality no matter 
what the magnitude of the correlation. This theoretically requirement may not be met 
and there may be a mismatch in the Taylor Russell segment defined by the selection 
ratio and the empirical data at the selection ratio. That is, the selected segment of the 
bivariate normal distribution is only assumed to reflect the attributes of the 
operationally obtained empirical sample. In the military context, we cannot be sure that 
these two segments match, especially over time when the dynamics of the recruiting 
environment change where for some years there is an abundance of recruits with very 
high ASVAB scores because of a lack of private sector job opportunities or college costs, 
or conversely, a lack of high ASVAB scores when the economy improves.   

Validity Coefficient Utility Interpretation: The Naylor-Shine Tables 

The Taylor-Russell (1939) tables just discussed pertain to a dichotomous pass/fail 
(or successful/unsuccessful) criterion variable. The use of these tables assumes all 
personnel who pass the selection ratio cutscore perform at the same level. That is, there 
is no distinction in the relative contribution of employees who score highest on the 
predictor compared to those who score at or close to the cutscore. The Navy’s 
philosophy is consistent with not making relative judgments about a Sailor’s career 
performance potential at the training stage (where the tables are applied), because post 
training other personnel and organizational factors contribute over and above the 
ASVAB to job performance (e.g., OJT, motivation, career intentions, etc.). If, in the job 
context, the narrower view is to interpret the validity coefficient in differentiating 
personnel on their relative performance, the researcher could use the Naylor-Shine 
(1965) tables. The Naylor-Shine tables pertain to a continuous criterion variable and are 
used for a type of “expectancy” analysis where the interest is in determining and 
improving the mean predicted performance of employees. The Naylor-Shine tables are 
easy to use and require only the validity coefficient and a cutscore. The cutscore, 
however, must be identified in terms of a z-score within the sample, not projected for 
the population, so it is a sample-specific assessment. The basic equation of the Naylor-
Shine tables is given by 

SR

z
rz x

xyy

)(
 ,   (3-1) 

where (zx) is the ordinate of the normal distribution at the cutscore zx, and SR is the 
selection ratio (e.g., Cascio, 1991).  
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As an example of the use of the Naylor-Shine (1965) tables, we assume two validity 
coefficients of .20 and .40, a base rate of .30, and a selection ratio (SR) of .40. A Taylor-
Russell (1939) table analysis shows that a .20 validity coefficient is associated with a 
37% success rate, whereas a .40 validity coefficient is associated with a 44 percent 
success rate. However, what does this 7% success rate improvement translate to in 
terms of improvement in mean performance? Remembering that the z-scores (standard 
score format) allow the validity coefficient to be the regression weight in this bivariate 
case, the predicted criterion would be twice as large applying the .40 validity than when 
applying the .20 validity. The computed expected mean criterion values (in terms of z-
score) for the two correlation coefficients, .20 and .40, are .193 and .386, respectively.  

In theory, the interpretation of the validity coefficient is that organizations can 
double the average performance of its employees merely by using a selection test that 
has twice as much predictive validity as the selection test in place. In practice, however, 
these performance gains are more difficult to achieve, because we are implicitly 
assuming that performance is strictly a function of the predictor. In the military training 
context, as in many other venues, training support systems are in place to deal with 
aptitude level declines (e.g., tutoring, night study sessions, and remediation). Also in the 
military job context, if job performance is the focus, performance is a function of several 
attributes, including performance in training, in which case a multi-attribute utility 
analysis may be more appropriate (Roth & Bobko, 1997). The main point that the 
Naylor-Shine equation makes is that one can expect increases in mean performance 
with larger validity coefficients. In the military training context, achieving twice as much 
predictive validity in the ASVAB world would not be possible given the already high 
ASVAB reliability and the academic/technical nature of the training criterion.  

We refer the reader to Cascio (1993) for a full discussion of the role of utility in 
making selection decisions. Here, we describe briefly a well-known utility model that, as 
before, incorporates a selection instrument’s predictive validity coefficient. 

The Brogden-Cronbach-Gleser Utility Model 

An expanded way to interpret the validity coefficient, and perhaps the most 
important to organizations, is in its role in estimating the cost savings, or utility, to the 
organization from implementing tests in their selection system. The Taylor-Russell 
(1939) and Naylor-Shine (1965) tables have been criticized in this regard. In particular, 
Cascio (1982) noted that a limitation common to both models is that “neither of these 
models formally integrates the concept of cost of selection or dollars gained or lost into 
the utility” (p. 222). The utility in the prior models discussed is strictly in terms of 
improved success rates and improved performance. However, the military is not a 
widget-producing organization, and so, it is difficult to tie military personnel 
productivity to cost savings due to a test’s use in selection or classification. Nevertheless, 
we briefly discuss a model that does consider organizational dollar savings. Cronbach 
and Gleser (1965) built upon the work by Brogden (1959) to establish the Brogden-
Cronbach-Gleser (BCG) model of utility. The BCG model shows how the validity 
coefficient of a selection instrument has practical consequences for an organization’s 
productivity (utility in terms of dollar payoff, or ROI). 
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The BCG model formula is:  

ΔU = (N)(T)(SDy)(rxy)(Zx) – (N)(Cy)
 

where, with annotations referring to the military context, 

ΔU = Increase in average dollar value payoff (in terms of employee productivity 

resulting from the valid selection process over random selection, where there would 

be no testing costs) 

N = Number of job applicants to be tested (potentially a million military applicants 

per year) 

Cy = Cost of testing one applicant (a factor for the military in a budget-constrained 

environment but not much more expensive than current costs to support the 

infrastructure required for applicant processing at the Military Entrance Processing 

Stations and the mental, moral, and physical checks)  

T = Term of employment (varies from one term of enlistment to a full career) 

Zx  =  Average standard predictor score of the selected group at the ordinate of 

standard curve (height on the normal curve corresponding to the cutscore, which 

can be found in a statistical table or from a formula; this value is lower for more 

extreme cutscores) 

SDy  =  Standard deviation of dollar-valued job performance (projected for the 

normally distributed applicant population that was not subject to selection by a test 

with cutscore)  

rxy =  Correlation between the selection test and performance measure. 

As with the Taylor-Russell (1939) and Naylor-Shine (1965) tables, increasing the 
magnitude of the validity coefficient (rxy), all other things equal, improves the utility of 
the testing program for the organization. Besides the military issues commented upon in 
the variable descriptions, another issue that has limited the BCG model’s application in 
industry is how best to estimate the dollar standard deviation of job performance. We 
refer the reader to expanded applications of utility analysis (e.g., Cabrera & Raju, 2001; 
Johnson & Zeidner, 1991; Raju, Burke, & Normand, 1990).  

Validity Coefficient Magnitudes Dependent on the Criterion 

The DoD-sponsored Job Performance Measurement Project (JPM) discussed in the 
Introductory Manual involved various offshoot research projects. For example, the 
Center for Naval Analysis (CNA) conducted many studies on behalf of the Marine Corps. 
Carey (1992) conducted a study entitled “Does Choice of a Criterion Matter?” in which 
various surrogates of hands-on performance tests (HOPT; the National Academy of 
Sciences considered this type of performance measure to be the Gold Standard) were 
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tried out as alternatives because of the high cost of developing them across all military 
occupations. Carey showed that in the development of ASVAB classification composites 
used for classification to the Marine Corps infantry occupations, it did not matter much 
which surrogate criterion was used. (In fact, a criterion might not even be needed to 
develop the predictor composite; a rational approach that the Navy takes that involves 
linking the underlying ASVAB constructs to the training curriculum). However, if the 
ASVAB composite was to be used to develop selection standards, it definitely mattered 
which criterion was used to establish the ASVAB’s validity. In a cautionary note, Carey 
stated that “…the choice of a criterion will make a difference when used for purposes 
where the strength of the relation between aptitude and criterion is critical. Setting 
selection standards is one such purpose” (p. 103).  

Carey (1992) went on to show that the validity coefficient (corrected for range 
restriction) for the ASVAB General Technical (GT) composite (VE+AR) varied widely, 
depending upon the surrogate criterion that it was based upon. For example, the validity 
of the GT composite was .80 when the criterion was the occupation-tailored Job 
Knowledge Test; .42 for Grade Point Average in training, and .26 for the Supervisor 
rating (data from a Marine Corps Base labeled “B”). The various validity magnitudes 
would result in very different GT cutscores, some of which would not produce the 90% 
training success rate expected by the Marine Corps.  

For example, in another paper, Carey and Wilbourn (1991) showed that by the “10 
fail percent rule” a GT cutscore of 81 was required when the Job Knowledge Test was 
used as the predicted criterion versus a GT cutscore of 29 when the Supervisory Rating 
was used as the criterion. The broader conception of interpreting the validity coefficient 
amounts to deciding what performance context is most relevant for establishing 
selection standards.  If the greatest concern for the military is training success (an 
expensive early career point of evaluation for the Navy), then measures of training 
success should be the criterion and the analysis of ASVAB validity coefficients is 
straightforward (final school grade becomes the continuous criterion variable).  

If, on the other hand, the greatest concern is for predicting job performance, 
estimating the validity of the ASVAB, or any other predictor, cognitive or non-cognitive, 
becomes more complicated. An array of questions are then on the table such as (a) what 
is a sufficient magnitude for the validity coefficient given the it would most likely be 
much larger when training performance is the criterion, (b) what are the relative 
reliabilities of the measures (stability or equivalence), (c) how many recruits failed 
training and therefore are not in the job performance sample – a missing data problem, 
and (d) which job performance measures should you chose (e.g., supervisor ratings, job 
knowledge tests, or HOPT). Further, if predicting job performance is the goal, then 
given an already operational ASVAB standard that predicts training outcomes, one 
needs to consider how to structure the occupational classification model as a multiple 
hurdle that includes training performance (discussed in Chapters 15 and 16). 
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 Obviously it is critical to understand the criterion and its relevance for establishing 
ASVAB standards. A recommendation coming out of one post JPM effort was to 
improve the final course grade to reflect what is learned and executed on the job (Sims & 
Hiatt, 2011). We can reflect on the conclusions stated by Mayberry and Carey (1993) 
from extensive work on the JPM project as follows: 

“Past validation research has typically concentrated on the 
identification of performance predictors (i.e., aptitude measures) with 
little regard for the quality, appropriateness, or completeness of the 
criterion measure. Such research usually collects the most convenient or 
readily available performance measures: supervisor ratings, training 
grades, promotion rates, etc. This is not to devalue such performance 
indicators, for each assesses some aspect of the multidimensional ‘job 
performance construct…” (p. 39). 

The Navy would endorse developing a final school grade that reflects not just 
knowledge learned but practical application of that knowledge. 

Some Other Perspectives about Test Validity 

Early in the industrial-organizational psychology measurement literature, Cronbach 
and Meehl (1955) and other testing experts recognized the issue of defining the term 
“validity.” “Validity for what purpose?” was one of the questions addressed by the APA 
Committee on Psychological Tests charged with specifying “…what qualities should be 
investigated before a test is published” (p. 281). The multiyear project spelled out four 
types of validity that could all be interpreted as focusing on different criteria. Content 
validity focuses on establishing how well test items map to the specific areas intended to 
be measured without regard to an external performance criterion (e.g. math items in a 
predictor test map to math items that are also in the course assessment test). Construct 
validity focuses on how well the test captures the underlying domain of test performance 
that was hypothesized to relate to some external criterion (e.g., spatial visualization 
aptitude/ability hypothesized to relate to performance in an Air Traffic Controller tower. 
Criterion-related validity focuses on how well the predictor test actually relates to 
performance on a specific external criterion (and most likely assumes or knows that 
construct validity has been addressed in the test’s development).  

 There are two criterion-related validity categories. The first is concurrent, where 
typically a new or experimental predictor test is tried out in a sample of individuals who 
have already met a cognitive test standard. These individuals typically are about to be 
measured on the performance criterion (if not at the same time as the predictor test’s 
administration).  Individuals may or may not be motivated when taking the new test as 
their performance may not be perceived as resulting in any decision about their status in 
the organization (as they are already hired). Therefore, the validity of the predictor in a 
concurrent validity setting may not reflect what would be found if the instrument were 
used operationally to make front-end hiring or job classification decisions.  
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The second criterion-related validity category is predictive, where the predictor test 
is administered at or nearly at the front end of the applicant assessment process. For the 
military, a new predictor test that has been evaluated positively in a concurrent validity 
setting may progress to a predictive validity setting (where the test could be 
administered alongside the CAT-ASVAB in the military screening process).   

Cronbach and Meehl (1955) considered not only the type of validity considered but 
what it really means to establish the validity of a test: “One does not validate a test, but 
only a principle for making inferences. If a test yields many different types of inferences, 
some of them may be valid and others invalid…” (p. 297). The example presented earlier 
from the work of Carey (1992) and Carey and Wilbourn (1991) suggests that (a) 
calculation of the “right” predictive validity coefficient is important for the military and 
(b) criteria of convenience should be highly scrutinized. We refer the reader to Cronbach 
and Meehl for their classic report on construct validity and references to the APA 
committee’s and other’s published work and merely say that establishing the content 
and construct validity of the various ASVAB tests is the primary responsibility of the 
ASVAB test developer, Defense Manpower Data Center, Personnel Testing  Division 
(DMDC-PTD); however, it is also the responsibility of the individual Services when they 
develop new tests intended for use in occupational classification as adjuncts to the 
ASVAB.  

Concluding Remarks 

This chapter discussed the interpretation of the validity coefficient assuming there 
are no factors that affect the calculation of its accuracy. The ASVAB validity coefficient 
of interest to the Navy in most cases applies to the ASVAB normative youth population 
from which future recruits are, theoretically, expected to be selected. Interpreting the 
ASVAB’s validity coefficient (predictive, not concurrent when applied to the ASVAB) 
typically has involved demonstrating an expected improvement in the personnel success 
rates over random assignment from use of a predictor instrument. However, 
interpretation of the validity coefficient can also be expressed as (a) average expected 
improvements in performance scores and (b) proportional to the cost saving from 
replacing a selection/classification instrument with one that has improved validity 
(other factors held constant, such as cost of administration). Another way to interpret 
the validity of selection instruments is in terms of classification decision accuracy where, 
all other things being equal, larger magnitude of the validity coefficient will reduce 
classification errors. Finally, the criterion matters when establishing selection or 
classification standards and therefore establishing the appropriate criterion is part of 
the process of interpreting the ASVAB’s validity coefficient. The next chapter provides a 
more in-depth discussion of the criterion and its reliability.  
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Chapter 4. 
Measurement Error and Reliability Estimators  

Sarah A. Hezlett 

Introduction 

Because it is not possible to develop psychological measures to be perfectly reliable, 
the variables of interested in our studies are imperfect reflections of their theoretical or 
“true” relations. We saw in Chapter 2 that measurement errors can affect correlations, 
as can a host of other reasons, including restriction in range of predictor test scores due 
to operational use of a cutscore. In this chapter, we expand on the measurement error 
topic keeping in mind that while measurement error is random at the individual level, it 
systematically affects the accuracy of the estimation of the validity coefficient. Further, 
some types of error are systematic and contribute to the true score variance while other 
types – the kind we attempt to measure, are random errors. This chapter also provides a 
few examples of reliabilities that apply to different types of criterion and some that are 
reported for the ASVAB tests. Finally, we cite some critiques in the literature of studies 
that have misinterpreted the measurement error situation (Schmidt & Hunter, 1996). 

Background 

As discussed in Chapter 2, measurement error reduces the reliability of any 
psychological measure and therefore places a limit on the magnitude of the correlation 
between a predictor and criterion measure. However, in general, validity coefficients 
should be corrected for measurement error only when researchers are attempting to 
understand how the constructs measured by two or more measures are related (Society 
for Industrial and Organizational Psychology, 2003), which would include any 
experimental predictor considered for addition to the ASVAB and its relation to the 
criterion. In the operational setting, military applicants’ ASVAB scores of record, and 
not their “true” scores (indeterminate) are the scores used to make enlistment and 
occupational classification decisions, therefore we do not correct the ASVAB (the 
predictor) for unreliability.  

For the criterion variable, test reliability is of concern in both the research and 
operational setting. In the research setting, Mayberry and Wright (1992) paid particular 
attention to criterion reliability during the joint-service Job Performance Measurement 
(JPM) project (the 1980s project discussed in the Introductory Manual). Mayberry and 
Wright saw three reasons why we would want to have reliable measures: (a) the need to 
have consistent and meaningful measurements for an individual, (b) to be able to 
generalize a single measurement to a larger context; and (c) to avoid limiting the validity 
of the measure used to predict the criterion. An additional reason for wanting a reliable 
criterion measure when conducting operational ASVAB validation/standards studies is 
that if found to be unreliable, there may be a need to recommend a complete rework of 
the measure to ensure a, b, and c above. 
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For the most part, the Navy’s training command (Navy Education and Training 
Command, NETC) has high standards in developing the criterion used in ASVAB 
validity/standards, the school performance tests in technical training. However, if the 
ASVAB validity coefficient resulting from use of the criterion is much lower than 
expected from historical studies, then further exploration of the criterion would be 
recommended in a follow-on study (as well as addressing any ASVAB compromise that 
may have occurred). The high validity once known for a predictor in this case has been 
affected and there is question about the instrument’s usability for future 
selection/classification decisions.  

Navy research has not been conducted in recent years to assess the reliability of the 
“final school grade” variable used in in Navy training and so we cannot state a range of 
plausible values. We note, however, that Hunter (1986) and Hunter and Hunter (1984) 
apparently conducted reliability research on Navy training performance criteria (also 
reported in Salgado, Anderson, Moscosco, Bertua, & De Fruyt, 2003) that tend to be 
objective tests. The estimated average criterion reliability reported from this work 
(meta-analysis) is about .80. The method used to estimate the criterion reliabilities is 
not known (to the current authors) but the .80 value is consistent with what Mayberry 
and Wright (1992) found for objective job knowledge tests administered to two Marine 
Corps mechanical occupations (an average of about .80) where the method of estimating 
reliability was test retest. We note that .90 reliability coefficient appears to be sort of a 
“gold standard” (Guilford & Fruchter, 1978; Nunnally, 1978), but that reliabilities of 
lower magnitude can still be adequate for many selection and classification situations.  

Experimental predictors being evaluated in a research context should be submitted 
to the process of correcting their validity coefficients for errors in measurement, both in 
the predictor and the criterion. That is, in the “theoretical” world, as mentioned, the 
interest may be solely in establishing the worthiness of the predictor instrument. If a 
criterion variable has low reliability, it will obscure the predictor’s value (remembering 
reliability puts a ceiling on validity). Or, the experimental predictor itself may have less 
than satisfactory reliability because, for example, there were limited resources applied in 
the test development process. Documenting the issues that might have led to low 
predictor validity and also providing a correction for reliability that shows the potential 
for the instrument will possibly lead to issue resolution, especially if past research 
supports the underlying construct purported to be measured by the experimental 
predictor measure is linked to jobs (by job analysis). (Chapters 6 and 7 deal with joint 
corrections for reliability and range restriction.) 

It is not possible to know for sure what kinds of influences cause a predictor or 
criterion measure’s scores to be unreliable, or to know an individual’s “true” score. The 
general broad factors that contribute to the unreliability of a measure’s scores are the 
testing environment (e.g., not standardized), the examinee’s state of mind (e.g., 
unmotivated or tired), the appropriateness of the examinee population (e.g., the test 
may be too difficult or easy for the target population), and the test itself (adequate 
resources and expertise might not have been available to develop a psychometrically 
acceptable test).  
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It is also not possible to know the exact amount of error in any psychological 
measure and so error must be estimated (see formulas presented in Chapter 2 and later 
in this chapter). A variety of indices of measurement error have been developed, each 
with its own strengths and assumptions. The kinds of reliability coefficients discussed in 
this chapter are not exhaustive but address the most pertinent that the ASVAB 
validation/standards researcher will want to consider: (a) internal consistency (do the 
items correlate highly and similarly with one another, indicating that scores on each 
item provide you with similar information about the examinee), (b) stability (does the 
test produce the same correlation for examinees tested twice over some meaningful time 
between testing sessions, assuming no learning has occurred), (c) equivalence (to what 
degree do parallel forms of a test correlate), (d) interrater (do the same panel members 
rate individuals the same if this is a method of performance evaluation), and (e) 
intrarater (does the same rater grade all individuals according to the structured grading 
methods and not let influencers such as fatigue over time or perceptions of a student 
that biases the grading process).  

Defining Reliability 

As was shown in Chapter 2, the concept of measurement error is captured in a 
simple equation that is a central tenet of classical test theory (CTT). In this section, we 
revisit the development of CTT reliability equations with sometimes a different 
perspective than in Chapter 2.  

The CTT reliability equation expresses the value of the variable that is observed (x) 
as a function of the true value of the variable (T) and measurement error (e). 

eTx     (4-1) 

CTT, sometimes referred to as true-score theory, is not the only theoretical approach 
to understanding psychological measurement, but it is one of the oldest and most 
dominant approaches. Although some of CTT’s implications regarding the selection of 
reliability estimates diverge from those of other psychometric theories, for example, 
domain sampling (where any measure if considered a compilation of a random set of 
items from a specific content domain – Nunnally’s (1998) favored model or parallel 
tests, the conclusions about the nature of tests and true scores are all the same (Ghiselli, 
Campbell, & Zedeck, 1981). We reiterate the point (from Chapter 2) that all 
psychometric theories differentiate systematic biasing errors such as “test-wiseness” and 
random errors such as examinees’ moods at testing time. Random errors are assumed 
uncorrelated to true scores and are treated as an additive component to the true score 
component in our observed score. Systematic error, on the other hand, is considered 
mathematically as part of the true score and can therefore increase reliability because 
there is an increase in the proportion of true score variance to total test score variance. 
Systematic bias, however, can affect test validity. Although there are methods for 
disentangling the systematic error from the unsystematic random error, they are not 
discussed in this manual. 
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It is also important to know that when we refer to an instrument’s reliability, we are 
not referring exactly to that instrument itself, but the measurements that are made by 
that instrument, which may be population and sample specific. In the ASVAB High 
School Testing Program (STP) (now called the Career Exploration Program – CEP), 
norms and test reliabilities are reported by grade and gender.  

Reliability estimates, as we know by now, are used to quantify the amount of 
measurement error in an observed variable or measure (Charles, 2005). Conceptually, 
reliability refers to the extent to which an individual scores the same way when 
measured multiple times (Ghiselli et al., 1981). Perfect reliability (rxx = 1.0) would occur 
only if an individual always received the same score on a measure (or equivalent set of 
measures) no matter when it was (they were) administered (assuming no learning has 
occurred). Under CTT, multiple tests are parallel when they have (a) equal means, (b) 
equal standard deviations, (c) equal correlations with each other, and (d) equal 
correlations with scores on any other measure (Ghiselli et al.).  

The development of the concept of reliability within CTT that includes parallel tests 
(of which many have been developed in the ASVAB testing program) is grounded on 
three assumptions (Ghiselli et al., 1981). The first assumption is captured in Equation 4-
1: Observed scores are an additive function of true and error scores. The second 
assumption clarifies the nature of true scores in that it assumes that individuals have 
stable characteristics that persist over time. The third assumption clarifies the nature of 
measurement error in that it assumes that error is completely random and, therefore, 
independent of and uncorrelated with all other characteristics. 

Ghiselli et al. (1981) showed that these three assumptions and the concept of parallel 
tests can be combined to derive a mathematical definition of reliability. Assuming 
variables are in deviation score form, the correlation between two parallel tests x1 and x2 

is 
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Because an individual’s true scores on a series of parallel tests are equal and because 
the standard deviations of all parallel tests are equal, substituting Equation 4-1 into 

Equation 4-2 and replacing 21 xx with 
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This expression can be expanded to, 
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and re-arranged to, 
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Because the correlation between two variables multiplied by their standard deviations is 
equal to the sum of the cross products of deviation, this equation can be re-written as 
follows: 
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By the assumption that errors are random, the correlation between error terms and 
other variables is zero. Therefore, Equation 4-6 reduces to 
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Thus, to reiterate, the reliability is the proportion of the variance observed in a measure 
that is attributable to true variations in the value of the variable (Charles, 2005; Ghiselli 
et al., 1981). Traditionally, rxx has been used to denote the reliability of predictors, while 
ryy has been used to indicate the reliability of criteria. Estimates of reliability typically 
range from 0.0 to 1.0, with values close to 1.0 indicating greater reliability and therefore 
measurement with less error.  

As an example of the effect of the magnitude of an estimated reliability coefficient on 
the size of the corrected validity coefficient, suppose the observed correlation between a 
predictor and a criterion is .30 but we assume that it is attenuated as a result of criterion 
unreliability. If the estimated reliability of the criterion is .52, the corrected validity 
coefficient will increase to .42. On the other hand, if the reliability is estimated to be a 
much greater .86, the corrected validity coefficient will increase to only .32. The closer 
the reliability estimate is to 1.0, the less of an improvement in the validity coefficient 
resulting from the correction for unreliability. We caution that we would want to follow 
the advice of experts, including Nunnally and Bernstein (1994), that a reliability 
coefficient of .70 may be considered sufficient for internal consistency measures in the 
initial development of a measure, but that in operational use .80 or even .90 may be 
required. 
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Selection of Reliability Estimates 

Historically, there has been debate over what type of reliability estimates should be 
used in making corrections to the validity coefficient for attenuation due to unreliability 
(Muchinsky, 1996). The general convention is to use a reliability estimate that is aligned 
with one’s “views” of what are the most important sources of error in a particular 
validation situation (Muchinsky). To have a “view”, it is important to have an 
understanding of common kinds of reliability estimates and the sources of measurement 
error they capture. 

Common indices of reliability include estimates of internal consistency reliability 
(e.g., Cronbach’s Alpha, KR-20), test-retest reliability (i.e., stability), the coefficient of 
equivalence and stability, interrater reliability, intrarater reliability, and coding 
reliability. Before discussing the sources of error captured in each of these kinds of 
reliability estimates, it is important to note that it is not appropriate to make repeated 
corrections of a validity coefficient using multiple reliability estimates. That is, the 
validity coefficient should not be first corrected using an internal consistency estimate of 
reliability, then a stability coefficient, and then an estimate of interrater reliability.  

The practitioner should select the single most appropriate reliability estimate 
available and perform one validity coefficient correction for attenuation (correction for 
unreliability). We refer the reader to Nunnally’s (1978) classic text on CTT for, among 
other important topics, the chapter on “Theory of Measurement Error.” The description 
of the types of reliability described below are from the perspective of Hunter and 
Schmidt (1977; 2004) who were concerned about the various types of random effects 
that would affect a meta-analysis procedure (and the generalization of an identified 
effect across samples although not within the realm of an ASVAB validation/standards 
study). For those familiar with the framework of validity generalization (VG) that 
considers multiple studies and multiple statistical artifacts, there is only one type of 
measurement considered, purely random error, not the systematic error introduced by 
the factors stated in the previous paragraph.  

Internal Consistency Reliability 

The terms internal consistency reliability traditionally has been used to describe 
reliability estimates that are based upon individuals’ responses to multiple, independent 
stimuli during a single measurement session. The multiple stimuli are assumed to be 
parallel, making them equivalent in assessing the variable of interest (Hunter & 
Schmidt, 2004). Examples of criterion measures that involve multiple responses during 
a single measurement session include multiple-item tests of job knowledge and job 
simulations or samples that require incumbents to react to several independent events. 

Having multiple responses completed at a single point in time permits us to identify 
two types of measurement error: (a) random response error and (b) specific error 
(previously referred to in this chapter as systematic error) (Hunter & Schmidt, 2004). 
Random response error has been characterized as “noise” in the human nervous system 
(Hunter & Schmidt). It involves arbitrary behaviors not systematically related to any 
characteristics of the person being assessed or the situation in which the person is being 
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measured. Specific response errors are errors stemming from reactions to a particular 
situation or stimulus (e.g., item content). Technically, these errors are person-by-item 
interactions (see Hunter & Schmidt, p. 100).  

Internal consistency reliability coefficients fail to capture a third potential source of 
measurement error (Ghiselli et al., 1981; Hunter & Schmidt, 2004) -- transient error. 
Transient errors are due to factors that vary randomly over time, such as mood or 
illness. Because internal consistency reliability estimates are based on the collection of 
data at a single point in time, these coefficients do not detect transient errors (Ghiselli et 
al., Hunter & Schmidt). Therefore, internal consistency reliability coefficients may 
overestimate the reliability of a criterion measure if transient errors are present. 
Consequently, using internal consistency reliability coefficients, such as Cronbach’s 
alpha (Cronbach, 1951) or KR-20 formula (Kuder-Richardson, 1937), to correct for 
attenuation may lead to underestimates of the operational validity of a set of predictors.  

Test-Retest (Stability) Reliability 

Test-retest reliability estimates are computed by correlating individuals’ responses to 
a stimulus (e.g., a job knowledge test, a job simulation) at two points in time (Ghiselli et 
al., 1981; Hunter & Schmidt, 2004). For example, a group of job incumbents might 
complete a job simulation soon after they complete their job training (Time 1) and then 
complete the same job simulation several weeks later (Time 2). The correlation between 
the incumbents’ scores at Time 1 and Time 2 provides an estimate of the simulation’s 
stability measure of reliability. 

For test-retest reliability estimates, one needs to be careful not to take the two 
measurements very far apart in time as learning might occur for some but not all 
subjects, thus shifting the rank ordering of performance from the original order. This 
shift in rank ordering at Time 2 from Time 1 thus lowers the magnitude of the calculated 
reliability coefficient (merely, the correlation between Time 2 and Time 1 scores). 

Test-retest reliability takes into account two sources of measurement error: (a) 
random response error, and (b) transient error. The correlation of individuals’ scores at 
two different times will be decreased to the extent that individuals’ responses at either 
time are affected by random “noise” or by transitory factors, such as mood, fatigue, or 
illness (Ghiselli et al., 1981). On the other hand, specific error is not assessed by 
estimates of test-retest reliability. Because the same stimulus is administered at both 
time periods, the same measurement errors that arise from specific aspects of the 
stimuli (e.g., specific instructions, test items) will occur in both time periods. The 
stability coefficient, therefore, will be too large because this common specific error will 
appear to be true score variance (Hunter & Schmidt, 2004). As with differential learning 
over time, practice effects might affect the reliability estimate (Ghiselli et al.) if they are 
not uniformly applicable to all applicants (e.g., differential practice effects as with 
differential learning will lead to a lower test-retest reliability estimate). 
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Coefficient of Equivalence  

The coefficient of equivalence considers all three kinds of measurement error 
(stability, internal consistency, and equivalence) but is largely concerned with the latter. 
Computing this reliability estimate requires administering two parallel forms of a 
stimulus at two points in time (Hunter & Schmidt, 2004). This is the most difficult type 
of reliability to assess because of the difficulty in creating strictly parallel test forms that 
are equivalent in means, standard deviations, and other moments of their score 
distributions (Ghiselli et al., 1981). For paper and pencil ASVAB forms, parallel form 
development efforts have occurred over years that involve item writing, tryout of these 
items in a nearly full range population of youth, and form assembly based upon item 
parameters that are matched across forms. The computer adaptive version of the 
ASVAB, CAT-ASVAB, develops pools of items based upon Item Response Theory and 
parameters with item selection for an individual based upon an adaptive algorithm.   

Interrater Reliability 

In many validation studies, the criterion is developed specifically for the study and 
measured by having observers evaluate the individuals constituting the validation 
sample. For example, supervisors or peers may rate job incumbents’ performance or 
evaluators may rate trainees’ proficiency. The sources of error in such judgments can be 
clustered into two broad categories: (a) error in judgment and (b) idiosyncratic rater 
perceptions (Hunter & Schmidt, 2004). Because judgments are responses to stimuli, 
they (like responses to items on a test) are affected by random error, specific error, and 
transient error (Hunter & Schmidt). For example, a supervisor’s ratings may be affected 
by random “noise,” by idiosyncratic errors induced by the wording of the rating scales, 
or by errors in judgment generated by temporary influence such as the supervisor’s 
illness, mood, or fatigue. In addition, raters have their own idiosyncratic biases that 
affect perceptions of others and these biases are thus not part of the criterion construct 
and, consequently, are a form of error (Hunter & Schmidt). 

The correlation between ratings of the same people provided by different raters 
serves as an estimate of interrater reliability. This estimate of reliability takes into 
account both errors of judgment and idiosyncratic rater perceptions (Hunter & Schmidt, 
2004). The correlation between the judges will be reduced to the extent that either judge 
responds randomly, makes errors related to the specific scales being used, 
independently experiences a source of transient error, or has idiosyncratic perceptions 
(Hunter & Schmidt). Thus, the inter-rater reliability coefficient is analogous to the 
coefficient of equivalence and stability (Hunter & Schmidt). It is generally agreed that 
interrater reliability is the appropriate way to estimate reliability for judgments; 
however, we will see later that intrarater reliability is generally higher.2 

                                                      
2
 Note that interrater reliability (which considers the similarity of the rank ordering of ratees by raters) differs from 

interrater agreement (which considers the similarity of the absolute magnitude of the ratings provided to ratees 

across raters) (Tinsley & Weiss, 1975). 
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Intrarater Reliability 

At times, data to compute interrater reliabilities are not available. For example, it 
might not be feasible for individuals in the validation sample to be evaluated by multiple 
raters. When there is only a single set of ratings for each individual, an alternate 
reliability estimate can be computed if individuals have been rated on more than one 
dimension (e.g., multiple dimensions of performance, or multiple items assessing 
training success). This intrarater reliability is analogous to an internal consistency 
reliability estimate (Hunter & Schmidt, 2004). It captures only random errors and 
specific errors; it does not assess either transient error or idiosyncrasies in rater 
perceptions (Hunter & Schmidt, 2004). Not surprisingly, estimates of intrarater 
reliability are often much higher than estimates of interrater reliability (Visweswaran et 
al., 1996).  

Coding Reliability 

Occasionally, coded data are used as a criterion measure. For example, trainees’ 
performance on a leadership simulation is recorded. Later, the trainees’ non-verbal 
behavior is scored by trained observers. Coding discrepancies between the trained 
observers are known as coding error (Hunter & Schmidt, 2004). There are multiple 
ways of estimating the reliability of coding, including computing the correlation between 
different trained observers’ coding. 

Coding error is important to assess, but it is not the only source of measurement 
error that affects coded data (Hunter & Schmidt, 2004). It also is critical to consider the 
sources of error in the behavior being coded. For example, a trainees’ performance on a 
leadership simulation is likely to be affected by random error, specific error, and 
transient error. These sources of error are not captured by the extent to which trained 
observers’ codings agree, making coding reliability a potentially poor choice for 
corrections for attenuation (Hunter & Schmidt, 2004). In some cases, coding error 
might be very low; resulting in high estimates of coding reliability, but the consistency of 
the behavior being sampled might be quite low. In these instances, coding reliability 
would substantially overestimate the actual reliability of the criterion of interest and 
under-correct the validity coefficient, resulting in a downwardly biased estimate of the 
predictor’s validity. 

Meta-analytic Sources of Job Performance (Criterion) Reliability Estimates 

In using meta-analytic estimates of reliability in correcting validity coefficients for 
measurement error, it is critical to select reliability estimates that are well-aligned with 
the criteria used in the current validation study. For example, if the criterion of interest 
is supervisory ratings for overall job performance, then the reliability coefficient should 
be one developed on the same performance metric. Meta-analytic studies will produce 
an “average” reliability with a range and standard deviation. Taking the average as the 
reliability coefficient that “may” apply to one’s study could be the safest thing for a 
researcher to do remembering that there should be similarity in the content of the 
criteria, the length of the measurement instrument, and the number of raters.  
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Table 4-1 gives examples of meta-analytic reliability estimates (averages) where job 
performance served as the criterion in all cases but with three ways of estimating the 
reliability coefficient (Interrater, Intrarater, and Stability).  

Table 4-1 
Meta-Analytic Estimates of Job Performance Measures’ Reliability 

Criteria 
Type of 

reliability k N ryy SDryy 

 

Job perf., supervisor ratingsa Interrater 40 14,650 .52 .10 

Job perf., supervisor ratingsa Intrarater 89 17,899 .86 .14 

Job perf., supervisor ratingsa Stability 12 1,374 .81 .09 

Job perf., peer ratingsa Interrater 9 2,389 .42 .11 

Job perf., peer ratingsa Intrarater 10 1,270 .85 .12 

Note. K = the number of studies. Reliabilities are for incumbents. 

aVisweswaran et al. (1996) also report reliabilities for different aspects of jobs performance such as 

leadership, job knowledge, and effort. 

Table 4-1 shows that the Interrater reliabilities for both supervisory and peer ratings 
(.52 and .42, respectively) are much lower than the Intrarater reliabilities for the same 
(.86 and .85, respectively) (as noted they should be in a previous sub-section on 
Intrarater Reliability). Second, the magnitudes of the standard deviations of reliability 
estimates across studies for every type of reliability highlight the variability in 
coefficients of reliability. In this regard, it has been argued that the highly cited and used 
mean interrater reliability for supervisory job performance ratings estimated by 
Visweswaran et al. (1996) might be a lower bound estimate of reliability (Scullen, 
Bergey, & Aiman-Smith, 2005). We note that wide use of the value indicates that in the 
published work on the reliability of the supervisory ratings, the Interrater reliability is 
deemed most appropriate.  

Marine Corps Job Performance (Criterion) Reliability Estimates 

As mentioned earlier in this chapter and at various points in both the Introductory 
and Technical Manuals, the joint-service Job Performance Measurement (JPM) project 
was a huge endeavor to ascertain the magnitude of the predictive relationship between 
the ASVAB and the job performance. For the most part, the project bypassed ASVAB’s 
relationship with training performance and concentrated heavily on the development of 
job performance measures of various types focusing on the gold standard, hands-on 
measures of job performance (Wigdor & Green, 1991). Each Service was responsible for 
developing the performance criteria for a number of occupations that were selected to 
be reflective of a divers set of occupational areas. In retrospect, it appears that the 
Marine Corps JPM efforts were the most in-depth in the development and publishing of 
their work.   
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Table 4-2 has been taken from Mayberry and Wright (1992) (Table 1 and Appendix 
Table A-1) and contains reliability estimates for hands-on measures of job performance 
and job knowledge measures that apply to five helicopter mechanic military occupations 
(MOS) (different helicopter platforms). 

Table 4-2 
Sample Derived Criterion Reliability Estimates from the Marine Corps 

JPM Project (Mayberry & Wright, 1992) 

 Military Occupational Specialties (1980 Reference Form 8a) 

  Job-1 Job-2 Job-3 Job-4 Job-5 

Hands-on performance test 

     Test-retest .70 (.79) .81 (88) - - - 
 

 

     Split-halves .71 (.80) .80 (.87) .85 (.91) .74 (.82) .84 (.87) 
 

 

     Alpha coefficient .73 (.81) .81 (.88) .81 (88) .69 (.78) .77 (.81) 
 

 

Job Knowledge test 

     Test-retest .61 (73) .77 (.87) - - - 
 

 

     Split-halves .91 (.94) .95 (.97) .93 (.96) .92 (.95) .91 (.92) 
 

 

     Alpha coefficient .90 (.93) .95 (.97) .92 (.96) .90 (.94) .92 (.93) 
 
 

Notes. (1) Jobs are helicopter mechanics for four different platforms. (2) Range corrected reliabilities 

are shown in parentheses. (3) Score agreement reliabilities documented in the report are not included 
in the table. 

Mayberry and Wright (1992) note that the first reliabilities of the pair listed in Table 
4-2 were developed in range sample available for the four helicopter mechanic MOSs. 
These reliabilities are restricted in range due to the operational use of an ASVAB 
standard (composite with cutscore) in the sense that the full range of ASVAB scoring 
youth were not considered in the measures’ development – just those who met the 
ASVAB classification standard, graduated from training, and reported to the job. The 
range corrected reliabilities are listed in parenthesis and we defer discussion of the 
range correction process until Chapters 6 and 7. 

Although the military most likely will never see the level of effort that went into 
criterion development during the JPM days, we caution about accepting criterion of 
convenience that most researchers have access to in their organization’s databases 
without questioning how they were derived. (Chapter 4 of the Introductory Manual 
addresses the criterion problem and the potential pitfalls of criteria of convenience.)  
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Paper and Pencil and CAT-ASVAB Reported Reliabilities 

The developers of the ASVAB, Defense Manpower Data Center, Personnel Testing 
Division (DMDC-PTD) report estimated reliabilities of the ASVAB tests from Item 
Response Theory (IRT) methods, not CTT methods. The IRT method provides an 
analogue to the CTT methods, called marginal reliability, and involves averaging 
expected error variance across the ability (theta) range and transforming them in to 
reliability coefficients (conceptually, internal consistency reliabilities).  DMDC provides 
a link to the Official ASVAB website that includes many relevant research documents, 
one of which is an explanation of the IRT methods, references, and reported CAT-
ASVAB reliabilities www.officialasvab.com/reliability_res.htm . We site only one of 
DMDC’s references related to reliability estimation using IRT methods (Sireci, Thissen, 
& Wainer, 1991). Reliabilities for paper and pencil ASVAB forms are also published (e.g., 
Palmer et al., 1988; Sands, Waters, & McBride 1997). Table 4-3 is provided to give the 
reader an idea of the magnitude of the ASVAB test reliabilities for both test-retest 
(stability) and parallel forms (equivalency).   

Table 4-3 
Test Retest and Parallel Forms Reliabilities for Earlier ASVAB Power Tests 

 ASVAB Power Tests (1980 8a Reference Form) 

   GS AR WK PC AS MK MC EI 

Test-Retest  .83 .91 .91 .78 .86 .89 .83 .79 
 

 

Parallel 
Forms 

.82 .88 .90 .79 .82 .87 .78 .75 
 

 

Notes. (1) See Chapter 2 of the Introductory Manual for descriptions of the ASVAB tests. (2) 

Reliabilities  were developed on 12th graders participating in the High School Student Testing Program 

– now called the Career Exploration Program (CEP). (3) All values were taken from the ASVAB 
Technical Manual for the ASVAB 18/19 CEP, which are published elsewhere. 

Table 4-3 shows some similarities between test-retest and parallel forms reliabilities 
for the individual subtests. Larger differences are noted between tests (e.g., PC and WK 
– both part of the ASVAB Verbal composite). When WK and PC are formed into a 
composite (Verbal [VE]), the verbal construct is more reliably measured.  

Measurement Error Scenario Observations 

Schmidt and Hunter (1996) were concerned that many researchers who publish 
validity studies have misconceptions about measurement error and how it should be 
addressed. The authors provided a critique of 26 studies under different scenarios with 
the intent of augmenting the mostly theory and formula-based treatments of the 
measurement error topic. Of the 26 scenarios, we discuss only two and note that all are 
worth reading.    
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Scenario 6 (Measurement error not addressed in theory-based aptitude 
research) 

Schmidt and Hunter (1996) described Scenario 6 for a researcher who tested specific 
aptitude theory against the g theory using three tests that measured quantitative, verbal, 
and spatial ability, all three having reliabilities of at least .80 (not specified if test-retest, 
parallel forms, or internal consistency). The criterion was a measure of job performance 
(not specified what aspect of job performance, overall, or if reliability was measured and 
how). In the regression analysis, g was entered first into the equation to predict job 
performance, followed by the three individual tests. It appears that two of the three tests 
had standardized regression weights that were statistically significant and of practical 
value. However, Schmidt and Hunter pointed out that Schmidt, Hunter, and Caplan 
(1981) have discussed this phenomenon in detail and that what is missing from the 
researcher’s method was to correct the criterion related validity for measurement error 
(we presume just the predictors could be corrected). When the corrections were 
subsequently done, the standardized regression weights that were originally significant 
became zero, supporting the g theory.  

Specific aptitude theory versus general mental ability in psychological research has 
been an important topic in the ASVAB community for a long time (e.g., Ree & Earles, 
1991; Ree, Earles, & Teachout, 1994). That is, should we just be using the general factor 
“g” taken as the first principle component factor as the measure of the full ASVAB’s 
utility in predicting training or job performance or should we use occupation tailored 
ASVAB composite comprised of several tests (instead of all ASVAB tests in measuring g) 
to emphasizing differential assignment and person/job fit. Using all tests in a measure 
of g boosts the reliability, and therefore, potentially boosts validity across many 
occupations whereas using tailored composites would have lower validity.  

Scenario 10 (Validity correction using the wrong reliability coefficient for 
supervisory ratings) 

Schmidt and Hunter (1996) described Scenario 10 for a researcher who was 
interested in the predictive validity of a personnel assessment outcome measure when 
the criterion was the supervisor’s ratings of job performance. There were 10 job 
dimensions for a single supervisor to rate and an overall “index” of job performance was 
the sum of standardized scores across all dimensions. Coefficient alpha, derived from 
the intercorrelations of the 10 dimensions, was used to correct the validity coefficient for 
unreliability in the criterion measure. Schmidt and Hunter point out that coefficient 
alpha (internal consistency) is inappropriate because, basically, with one rater, the 
idiosyncrasies of the rater and his/her perceptions of the rated individual would 
somewhat affect the ratings on all dimensions. Mathematically, this systematic error 
becomes part of the true score variance and increases the ratio of true to observed score 
variance with the result of an upwardly biased validity coefficient. Schmidt and Hunter 
state about the intrarater reliability that “It is an estimate of what the correlation would 
be if the same rater rerated the same employees …”p. 209. The authors go on to cite 
Cronbach (1951) on this fundamental issue. 
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Schmidt and Hunter (1996) state that the appropriate reliability in this scenario is 
interrater reliability (which would require a rework of the research design) and cite 
others who have documented the large specific rater error (between raters) particularly 
when the criterion is job performance (King, Hunter, & Schmidt, 1980; Rothstein, 
1990).  The finding of low intrarater reliability and high intrarater reliability in these 
researchers’ work is consistent with what we observed in Table 4-1 of this chapter. We 
have included this scenario because supervisory ratings are a part of both military and 
private industry performance evaluation systems. 

Scenario 15 (Construct equivalence of speeded tests using wrong 
reliability coefficient) 

Schmidt and Hunter (1996) described Scenario 15 for a researcher who was directed 
by his organization to develop an in-house clerical speed/accuracy test that was 
construct equivalent to a commercially published test (Minnesota Clerical Test). The in-
house developed test was administered alongside the commercial test for over 1,800 job 
applicants – the scores from the two tests correlated .81. KR-20 (internal consistency) 
estimates of reliability were .96 for the in-house measure and .94 for the commercial. 
Dividing .81 by the produce of the square roots of .96 and .94 yielded .85. This estimate 
of the true score correlation was not of sufficient magnitude to conclude that the two 
measures were construct equivalent.  

Schmidt and Hunter (1996) pointed out that KR-20, a special case of coefficient 
alpha (internal consistency), was not appropriate for use with speeded tests because all 
of the items in speeded tests are typically of the same type (homogeneous). Further, the 
items are so easy that if given enough time, all examinees could answer all of the items 
correctly (thus inflating reliability).  Schmidt and Hunter suggested a parallel forms 
approach to estimate construct equivalence and the researcher followed up by (a) 
splitting each test in half and administering two timed halves for each and (b) correcting 
the two resulting intercorrelations with the Spearman-Brown (Brown, 1910; Spearman, 
1920) formula, thereby estimating reliabilities for length corrected forms (doubling each 
test to their original length). The resulting reliabilities were .79 and .87 (new and 
commercial instruments), which yielded an estimated .98 correlation between the true 
scores of each measure – confirming construct equivalency.  

As an aside, we note that the former ASVAB clerical speed/accuracy test, Coding 
Speed, has been found to add incremental validity to the ASVAB for not only clerical 
types of jobs, but for other types of Navy Ratings such as Air Traffic Controller and the 
Navy SEALs (Appendix A of the Introductory Manual). From time to time, the question 
comes up within the ASVAB community about what is actually being measured by 
Coding Speed. Segal (2012) through extensive analyses concludes that there is a 
motivational component.  
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Concluding Remarks 

This chapter provided a discussion of the underlying tenants of test measurement 
error and the various types of reliability estimates that apply to both the predictor and 
the criterion. In our focus on the criterion, we included reliability averages taken from 
the meta-analytic literature and showed the differences in the magnitudes of reliability 
coefficients for three methods of measuring job performance (interrater, intrarater, and 
stability). We discussed the ASVAB reliabilities for both CAT-ASVAB (IRT methods) and 
paper and pencil ASVAB. We again note that the ASVAB selection and occupational 
classification composites containing more than one individual test result in higher 
reliability coefficients, about .90 or above.  However, we do not correct for predictor 
reliability in operationally focused ASVAB validation/standards studies. Currently, the 
not even ASVAB composite validities are corrected for measurement error in the 
criterion variable, which typically is the training grade variable, also because of the 
operational focus. However, the position of ignoring reliability in the criterion may 
change as the military experiences more protracted financial constraints placing at risk 
the reliability of all types of military performance measures. Further, as personality and 
interest measures are considered for selection and classification decisions, the 
underlying true relationships of predictors and post training performance measures 
(where personality theoretically applies) will require consideration of the appropriate 
reliability indices and correction methods; even appropriate indices/methods should be 
questioned for use in the operational context.  

Chapter 5 goes in depth on the topic of range restriction and the various corrections 
of the validity coefficient derived in a selected sample.  Chapters 6 and 7 address the 
joint correction for restriction in range and measurement error (reliability).  
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Chapter 5. 
Correcting for Restriction of Test Score Range 

Fritz Drasgow 

Introduction 

The last chapter provided a discussion about many aspects of measurement error 
and reliability coefficients, all having to do with the validity coefficient and its 
limitations. We address how to correct a validity coefficient for reliability in later 
chapters. This chapter focuses strictly on the correcting the validity coefficient for range 
restriction in test scores that results from applying a selection or classification standard 
(e.g., an ASVAB classification composite with cutscore) that screens out applicants 
below that standard. We briefly examined the effects of range restriction on the 
correlation coefficient in Chapter 2 for the explicit (direct) selection case. However, 
there are other kinds of range restriction and we address some of them in this chapter.  
We refer the reader to Sackett and Yang (2000) for a more complete treatment of the 
restriction in range issue.  

Restriction in Range Situations in General 

Probably the most common situation for restriction of range in test scores arises in 
the context of personnel selection when individuals with high scores on a selection test 
are admitted to college or hired for a job. Here, academic or job performance (variable Y 
to be predicted from variable X) can be assessed for only those individuals who are 
admitted or hired. Thus, whereas complete data are available for the explicit selection 
variable (X) for the total applicant population (from which, theoretically, future 
applicants will be selected), only partial data are available for the academic or job 
performance variable (Y). In this case we call Y the incidental selection variable, the 
same as what we call a candidate X variable that was, for example, administered only to 
an already selected group of individuals based upon an operational selection or 
classification standard.  

We describe another type of incidental selection involving just the ASVAB. Although 
all nine ASVAB tests are administered to military applicants, only four of the nine tests 
(PC, WK, MK, and AR) constituting the Armed Forces Qualification Test (AFQT) are 
used to determine suitability for entrance into the U.S. military services, whereas the 
remaining ASVAB  tests (GS, MC, EI, AS, and AO) are available for military 
classification into occupations. If we were to use the AFQT with some cutscore to assign 
(classify) military selected recruits into a specific occupation subsequent to using a 
lower AFQT score for military selection, the AFQT would be the explicit selection 
variable (on a cognitive basis) for the occupation.  

Now say we suspect that a different combination of ASVAB tests would be more 
highly predictive of training performance (the Y variable) than the AFQT based upon the 
characteristics and requirements of the occupation and the curriculum used to train for 
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that occupation, say a technical job that involves electronics. Such an ASVAB composite 
could be AR+MK+EI+GS (the Services Electronics composite). Because this composite 
was not used in the actual ASVAB standard, we would not expect the variance of that 
composite to be as diminished as the AFQT variance, given the explicit cutscore on 
AFQT. Because the magnitude of the correlation coefficient is dependent on test score 
variance, the validity of the AR+MK+EI+GS composite developed in the selected sample 
would be downward biased compared to the validity of the AFQT. In order to evaluate 
the validity of the two composites on an even playing field, we need to correct both 
validities for restriction in range of test scores and provide validity estimates for the 
unrestricted population. 

In statistical notation, for the simplest case of one explicit predictor variable and one 
incidental variable (say, the criterion), we can compute the variance of X in the 

unrestricted group, 2

xS , and in the restricted (selected) group, 2

xs .3 In contrast, we can 

compute the variance of the performance variable Y, 2

ys , in the restricted group only, 

because we do not have performance data for those not selected. Similarly, we can 

compute the correlation of X and Y in the restricted group, xyr , but not in the 

unrestricted group, our point of interest in predictive validity studies. Thus, the variance 

of Y in the unrestricted group, 2

yS , and the correlation of X and Y in the unrestricted 

group, xyR , are unknown and must be estimated.4   

Restriction in range can have a very large impact on correlations (validity estimates) 
as observed in Table 2-4 of Chapter 2. Consequently, it is very important to understand 
the effects of range restriction when conducting ASVAB validation studies. As a real life 
example, Thorndike (1949) provided extraordinary validity results for 1,036 men in pilot 
training for the U.S. Army Air Force during World War II. These men were considered 
an experimental group and were selected without regard to their standing on a selection 
composite that was used under normal pilot selection circumstances (Pilot Stanine). The 

selection composite had a substantial correlation, xyR = .64, with performance scores 

received in the pilot training course. Thorndike also computed the correlation for only 
the 136 men who would have qualified for pilot training under normal selection 
circumstances; for this selected group, the correlation of the selection composite with 

training school performance was only xyr = .18. The importance of correcting for 

incidental selection as well as explicit selection can be seen in the correlations presented 
by Thorndike (1949), which are reproduced in Table 5-1.  

                                                      
3
 We use large letters for the large (i.e., unrestricted) group and small letters for the small (i.e., restricted) group. 

4
 “R” in the Navy ASVAB validation/standards study context does not refer to a multiple correlation; rather it stands 

for the theoretical population (unrestricted) correlation (Rho, or). The unrestricted validity is estimated for an 

ASVAB composite, consisting of a number of integer weighted ASVAB tests, as it predicts in a linear model the 

continuous criterion variable, final school grade in training.   



 

69 

 

Table 5-1 
Thorndike’s (1949) Correlations of Predictors with Success in Army Air Force 

Pilot Training for Total and Restricted Groups 

Predictor 
Total Group 
(N = 1036) 

Restricted Group 
(N = 136) 

Pilot Stanine (Composite Score)* .64 .18 

Mechanical Principles** .44 .03 

General Information** .46 .20 

Complex Coordination** .40 -.03 

Instrument Comprehension** .45 .27 

Arithmetic Reasoning .27 .18 

Finger Dexterity .18 .00 
*Explicit selection variable 

**Components of explicit selection variable 

The Pilot Stanine (Composite Score) in Table 5-1 tagged with a single asterisk was 
used for explicit selection and comprised the four tests tagged with a double asterisk. 
The other two tests without asterisks, Arithmetic Reasoning and Finger Dexterity, were 
given to pilot applicants as part of the Pilot selection battery but had no weight in the 
Pilot Stanine score. Note that one correlation in the restricted group (Complex 
Coordination) was negative (-.03) even though its correlation was positive and 
substantial in the unrestricted “Total” group (.40).  

Table 5-1 shows that Instrument Comprehension had the largest correlation for the 
restricted group (.27) followed by General Information (.20). Complex Coordination had 
a negative correlation, essentially zero (-.03), and Mechanical Principles had a positive 
correlation, but also essentially zero (.03). These two correlations would lead one to 
conclude that these tests were worthless for predicting success in pilot training when in 
the unrestricted group from which, theoretically, future selection decisions could be 
made, the correlations were meaningful (.40 and .44, respectively). Most important to 
note in Table 5-1, the Pilot Stanine (Composite Score) has the highest validity in 
predicting who from the unrestricted group would be successful in Pilot training (.64). If 
evaluated only in the selected group, the validity would be assessed not at .64, but at 
only .18. 

It is critical to realize that the validity estimates of interest in this example are those 
coefficients of the selection tests for the pilot applicant group from which future 
selection decisions will be made, not the coefficients for the selected group. Simply 
considering the restricted range of talent that occurs from use of a selection composite 
and cutscore results in a highly biased estimate of association between the selection 
composite and training school performance, and that bias will be downward and 
proportional to the reduction in variance that results from the particular cutscore.  
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The statistical problem in determining the applicant group validity estimates from 
knowledge of them only for a restricted in range group becomes somewhat of a “missing 
not at random” data problem. Correcting correlations and variances for this special 
missing data problem involves the correction for restriction of range, which has had a 
long history of research. Gulliksen (1950) provides a thorough treatment of bivariate, 
trivariate, and multivariate cases and cites work dating back to Karl Pearson (1903a, 
1903b). The remainder of this chapter describes the cases of most importance to 
evaluating tests and composites of tests for military job classification. 

The Bivariate Case: Explicit Selection on One Variable  

The bivariate correction for range restriction is the simplest case and is illustrated in 
the Army Air Force study described in the previous section taken from Thorndike 
(1949). Specifically, there is explicit selection on a predictor X and, consequently, data 
are available on the criterion Y for only the restricted sample. Thus, we know the 

variance of X in the total group, 2

xS , as well as the selected group, 2

xs . We also know the 

variance of Y in the selected group, 2

ys , and the correlation of X and Y in the selected 

group, xyr . Our task is to use these known quantities to determine the variance of Y in the 

total group, 2

yS , and the correlation of X and Y in the total group, xyR . 

We shall assume without loss of generality that all variables have been transformed 
to deviation scores and consequently the intercepts of regressions are all zero. Two 
assumptions commonly made in regression are needed to derive corrections for 
restriction in range: (a) linearity and (b) homoscedasticity. Stated more precisely, the 
first assumption is that ( | )E Y X x Bx   for all x. 

In the total group, the regression of Y on X is 

ˆ y

T yx xy

x

S
Y B X R X

S
     (5-1) 

and the regression in the selected group is 

ˆ y

S yx xy

x

s
Y b X r X

s
  .   (5-2) 

Given the assumption of linearity, excluding some individuals with low X scores does 
not change the mean Y score for a given X score for those selected and so  

xy xyB b    (5-3) 
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and therefore 

y y

xy xy

x x

S s
R r

S s
 .   (5-4) 

Homoscedasticity means that the errors about the regression line have constant 
variance, signified by 

21y x y xyS S R      (5-5) 

for the total sample and  

21y x y xys s r      (5-6) 

for the restricted sample. Again, excluding individuals with low X scores should not 
change these conditional standard deviations; therefore, 

2 21 1 .y xy y xyS R s r      (5-7) 

Examining Equations 5-4 and 5-7 shows that we have two equations and two 

unknowns, yS and xyR . To solve, we first rewrite Equation 5-4 as  

y x
y xy

x xy

s S
S r

s R
  ,  (5-8) 

and then substitute into Equation 7, 

2 21 1 .
y x

xy xy y xy

x xy

s S
r R s r

s R
      (5-9) 

Squaring both sides and moving known quantities to the right side, 

2 22

2 2 2

1 1xy xyx

xy x xy

R rs

R S r

 
    (5-10) 

and therefore 
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2

2 2 2

1 1
1 1 .x

xy x xy

s

R S r

 
    

 

   (5-11) 

Adding one to both sides and taking the reciprocals, 

2

2

2 2

1
,

1
1 1

xy

x

x xy

R
s

S r


 

   
 

   (5-12) 

and 

2

2 2

1
,

1
1 1

xy

x

x xy

R

s

S r


 

   
 

   (5-13) 

which provides the formula to convert the known correlation from the restricted sample, 
rxy, to an estimate of the unknown correlation Rxy in the total group, the validity of 
interest when validating tests for selection purposes. Also, given this value of Rxy, we can 
substitute into Equation 5-8 to obtain an estimate of Sy. 

The Trivariate Case: Implicit Selection on a Third Variable 

In the trivariate case, we have a predictor X, criterion Y, and an additional predictor 
Z that we wish to study. There is direct selection on X, which reduces its correlation with 
Y in the selected group as described in the previous section. The additional predictor Z is 
typically not used to make selection decisions, so there is no explicit selection on Z. 
However, ordinarily Z and X are correlated, so selecting on X has the effect of reducing 
the variance of Z. This situation is called indirect or incidental selection on Z. 

Of critical importance in the situation of incidental selection is that the practitioner 
understands the experimental design and at what point Z was administered. In a 
predictive validity study, applicants are administered the selection test X and the new 
predictor Z at the same time. Explicit selection on X occurs and selectees report to, say, 
training. Training performance Y scores are observed along with X and Z scores for all 
those who trained. In a concurrent validity study, applicants are administered only the 
selection test X. As before, there is explicit selection on X and selectees report to 
training. Z is administered to all selectees who report to training and, as before, X and Z 
scores are observed for all those who trained. The key distinction between the predictive 
and concurrent designs is whether the variance of Z is observed in the total group or not 

(i.e., is
2

zS known). 
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In the predictive validity study, all applicants are given tests X and Z, so 2

xS  and 
2

zS

are known. Performance is observed later, so 2

ys  is known but not 2

yS . The correlations of 

X and Z with performance Y are observed in the selected group, so rxy and rzy are known, 
but the correlations of the two predictors with the criterion in the total group, Rxy and 
Rzy, must be estimated. 

In the predictive validity design, we need to assume that the regression of Y on Z is 
linear and homoscedastic as well as Y on X. Given the assumption of linearity, selection 
on X does not affect the conditional means of Y given Z and we have  

y y

yz zy zy yz

z z

S s
B R r b

S s
   .   (5-14) 

The homoscedasticity assumption means 

2 21 1 .y z y zy y zy y zS S R s r s         (5-15) 

As in the case of direct selection on X, we have two equations and two unknowns (Sy 
and Rzy); note that Sz, sz, sy, and rzy are known. Solving Equations 5-14 and 5-15 gives 

y z
y zy

z zy

s S
S r

s R


    

(5-16) 

and 

2

2 2

1

1
1 1

zy

z

z zy

R

s

S r


 

   
 

,   (5-17) 

which have exactly the same form as Equations 5-8 and 5-13. Thus, the fact that there is 
direct selection on X and incidental selection on Z is immaterial. What is important is 

that 2

xS  and 
2

zS are known. 

In a concurrent validity study, 
2

zS is not known and so we cannot simply use 

Equation 5-17 to estimate Rzy. In this case, Sy, Sz, and Rzy, are unknowns, so we have two 
equations (Equations 5-14 and 5-15) and three unknowns. To obtain a solvable set of 
equations, we need the additional assumption that the partial correlation between Z and 
Y, holding X constant, is the same in the restricted and total groups. Specifically, 
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2 2 2 21 1 1 1

zy xz xy zy xz xy

zy x zy x

xz xy xz xy

R R R r r r
R r

R R r r
 

 
  

   
.   (5-18) 

Equations 5-14, 5-15, and 5-18 contain the three unknowns, and hence can be solved 
(see p. 149 in Gulliksen [1950] for the algebra). The solution for the correlation of Z and 
Y for the total group is 

2

2

2 2
2 2 2 2

2 2
1 1

x
zy xz xy xz xy

x
zy

x x
xz xz xy xy

x x

S
r r r r r

s
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S S
r r r r

s s

 


   
      

   

.   (5-19) 

The Multivariate Case 

Sackett and Yang (2000), in their article that addresses expanded types of restriction 
in range, cited both Aitken (1934) and Lawley (1943) as further developing the 
published Pearson (1903) correction formulas for the multivariate case. Hunter, 
Schmidt, and Le (2006) point out that the military is in the favorable position of 
applying the multivariate correction formulas when evaluating candidate ASVAB 
composites that are subject to incidental selection because all military applicants are 
required to take the full ASVAB (and there is an ASVAB normative youth population 
that can serve as the unrestricted population in the corrections).  

Gulliksen (1950) discussed several cases of multivariate selection (e.g., the variances 
of the incidental selection variables for the unrestricted population are known or 
unknown). As in the case of the predictive versus concurrent study design, the key to the 
correction formulas is whether the variances of the predictors are known in the 
population. In the case of the ASVAB, the variances of all the ASVAB tests, and the 
explicit selection composite formed from these tests, are known for both the 
unrestricted population (which for the Navy, is the ASVAB normative population) and 
the restricted “selected” group, but the variance of the criterion variable is known only 
for the selected group. In this case, all of the ASVAB tests, which provide more 
potentially relevant information about an applicant, can be treated mathematically as 
explicit selection variables when in fact a single composite of ASVAB tests used for 
explicit selection (more information about the applicant is obtained through use of all 
ASVAB tests).  

We adopt some matrix algebra notation for the multivariate case (generally cited by 
the Navy as Lawley [1943]). Let Cxx and cxx denote the variance-covariance matrices of 
the predictors in the total and restricted groups, Cxy and cxy denote the vector of 
covariances of the predictors with the criterion in the total and restricted groups, and, as 

before, 2

yS and 2

ys denote the variance of the criterion in the total and restricted groups.  
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As in the univariate case, we assume that the regression of the criterion on the 
predictors is unaffected by selection, 

1 1

xy xx xy xy xx xy

   B C C b c c .   (5-20) 

From Equation 5-20 it is apparent that 

1 ,xy xx xx xy xx xy

 C C c c C b    (5-21) 

so that the covariances of the predictors can be computed from known quantities (Cxx, 
cxx, and cxy). The standard deviations of the predictors are known (they are the square 
roots of the diagonal entries in Cxx) and so all that remains is determining the variance 
of the criterion in the total group. 

Using the theory of linear transformations, the variance of the errors ˆE Y Y  is 
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 (5-22) 

for the total group and for the restricted group, 

2 'ˆ( ) y xy xyVar Y Y s  c b  .   (5-23) 

If the errors are homoscedastic, 

2 ' 2 '

y xy xy y xy xyS s  C B c b    (5-24) 

so that, 

2 2 ' '

y y xy xy xy xyS s  c b C B .   (5-25) 

Using Equation 5-20 yields 
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2 2 ' '( )y y xy xy xyS s  C c b .   (5-26) 

Define the diagonal matrix xD  as containing the variances of the predictors, 

( )x xxDiagD C .   (5-27) 

Then the correlations of the predictors with the criterion in the total group are 

1/ 21
xy x xy

yS

R D C .   (5-28) 

Concluding Remarks 

There are several cases of explicit and incidental selection situations that should be 
considered when correcting validity coefficients for restriction in range. However, the 
Navy, in validating the operational and candidate replacement ASVAB composites for a 
specific occupation classification standard, applies the multivariate correction for range 
restriction that treats all nine of the ASVAB tests as explicit selection variables. The 
multivariate method in many cases has been found to give more accurate estimates of 
population validity coefficients than the univariate method and also addresses the 
incidental selection situations involving ASVAB tests that are not used in the operational 
selection composite. A number of issues regarding this procedure do exist and are 
discussed in later chapters (see for example, negative range corrected validity 
coefficients discussed in Chapter 11). We also refer the reader to Dunbar and Linn (1991) 
for more about the restriction in range topic in a military context. The next chapter 
addresses the joint correction for range restriction and measurement error.  
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Chapter 6. 
Joint Corrections for Measurement Error and 

Range Restriction 
Sarah A. Hezlett 

Introduction 

Both restriction in range of test scores and measurement error attenuate observed 
validity coefficients, making joint corrections appealing. Historically, however, there has 
been confusion about how to correct for both range restriction and unreliability, or even 
if such corrections are appropriate. Recent theoretical work has clarified that the nature 
of the range restriction drives the appropriate procedures to follow when making joint 
corrections (Hunter, Schmidt, and Le, 2006; Mendoza & Mumford, 1987; Stauffer & 
Mendoza, 2001). This chapter provides some background on the joint corrections.  

Background 

The formulas for correcting for correlation attenuation due to measurement error 
(attenuation) and range restriction were derived independently, creating some 
uncertainty about how joint corrections should be made (Stauffer & Mendoza, 2001). 
Standard practices have ranged from stern cautions about their use to almost 
nonchalant applications of accepted rules of thumb. For example, Standards for 
Educational and Psychological Tests (APA, 1974, revised in 1999) advised that validity 
coefficients corrected for both measurement error and range restriction should only be 
used to guide further research, but a psychometric rationale was not included to support 
this warning (Bobko, 1983; Schmidt, Hunter, Pearlman, & Hirsh, 1985). More recent 
validation guidelines (e.g., see Chapter 7 of the Introductory Manual and SIOP, 2003) 
encourage such corrections.  

At other times, the methods of combining the two types of corrections have almost 
appeared to be taken lightly. The corrections for range restriction and measurement 
error have been treated as if they affect the validity coefficient separately and can be 
combined linearly (Hunter et al., 2006; Mendoza & Mumford, 1987). The order in which 
corrections have been made traditionally has been driven by the nature of the available 
data. Specifically, whether or not the estimate of reliability was based on range 
restricted data has been used as the factor determining the sequence of corrections 
(Stauffer & Mendoza, 2001) (explained more fully in the next chapter).  

Restricting the range of data not only affects the magnitude of the observed validity 
coefficient (as described in Chapter 5); it also attenuates reliability estimates (the 
correlation of true scores with observed scores). For example, in many validation 
studies, criterion data (scores) are only available for job incumbents who have been 
hired on the basis of their scores on a selection measure. The range of incumbent scores 
on the criterion is restricted in comparison to what the range of scores would have been 
if all applicants, rather than just those who performed well on the selection instrument, 
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had been hired and proceeded to perform. Assuming reliability is constant over the total 
range of criterion scores (which may not be the case), the magnitude of a reliability 
estimate for the criterion data collected from job incumbents will be biased downward 
from that which would be obtained in an unrestricted sample of job applicants 
(theoretically having performance scores).  

Conventionally, if the estimate of reliability was known for the unrestricted group 
(not affected by range restriction), the validity coefficient was first corrected for range 
restriction and then corrected for measurement error. On the other hand, if the estimate 
of the reliability was curtailed through range restriction, the validity coefficient was first 
corrected for unreliability and then corrected for range restriction (Stauffer & Mendoza, 
2001). In some situations, however, using this rule of thumb will yield inappropriate 
results (Stauffer & Mendoza). 

On issue with the rule of thumb is that it has been demonstrated that unreliability 
and range restriction interact, affecting how range restriction is defined statistically 
(Hunter et al., 2006; Mendoza & Mumford, 1987). Consequently, the nature of the range 
restriction, rather than whether or not the reliability estimate is affected by range 
restriction, should determine how joint corrections for measurement error and range 
restriction are made (Hunter et al.; Stauffer & Mendoza, 2001). The appropriate steps 
and formulas to use in correcting jointly for unreliability and range restriction depends 
upon (a) the nature of the range restriction, (b) the type of data available, and (c) the 
objectives of the research (i.e., whether correcting for measurement error in the 
predictor is appropriate – not considered so in operationally focused ASVAB 
validation/standards studies). 

In the next section, we review derivations of the correction for measurement error, 
followed by the corrections for both measurement error and range restriction.  

Correcting Validity Coefficients for Measurement Error 

A mathematical formula specifying the relation of the correlation between observed 
measures with the correlation between true scores was discussed by Spearman in 1904, 
making it one of the earliest applications of classical, or true-score, test theory (Charles, 
2005; Muchinsky, 1996). According to this formula, the hypothetical correlation 

between observed scores on two measures (xy) is a function of the correlation between 
the variables the measures are designed to assess (i.e., their true scores, Tx and Ty) and 

the reliabilities of the measures (xx and yy) (Charles): 

yyxxTTxy yx
  .   (6-1) 

Equation 6-1 can be algebraically solved to obtain TxTy, the correlation between the 
true scores of X and Y, that is, an estimate of an observed correlation corrected for 
measurement error in both the predictor and criterion having estimates of the reliability 
of both measures. Equation 2-16 in Chapter 2 is that algebraic solution and is restated 
here as: 
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ccyx
yx

yyxx

xy

TT 



  .   (6-2) 

Note that the equation of the correlation between true scores and the corrected value 
rests on the assumption that the errors are random (Charles, 2005) and not subject to 
sampling issues. The practitioner’s use of the correction for attenuation presented in 
Equation 6-2 requires the substitution of observed sample statistics presented as 
Equation 6-3:  

yyxx

xy
yx

rr

r
r

cc
 .   (6-3) 

Although many researchers have discussed an observed validity coefficient corrected 
for measurement error as if it were a population value, we must remember that the 
correction is based on sample statistics and is thus merely an estimate of the population 
parameter (Charles, 2005; Muchinsky, 1996) and one that rests on the assumptions of 
classical test theory (CTT). (CAT-ASVAB reliabilities are now based upon Item Response 
Theory (IRT), which has a different set of assumptions and a different way in 
quantifying measurement precision, briefly discussed later.) 

The corrected validity coefficient for measurement error is generally a less biased 
estimate of the population parameter than is the uncorrected validity coefficient (SIOP, 
2003). However there can be overestimates or underestimates of the population validity 
coefficient, as highlighted by the fact that the value of a corrected validity coefficient 
occasionally can be greater than 1. That is, correction for attenuation sometimes yields 
values for validity coefficients that are not theoretically possible. Debate over the 
possible causes of this phenomenon erupted soon after Spearman’s (1904) work on the 
correction for attenuation and sampling error; errors in estimating reliability remain 
viable explanations (Charles, 2005; Muchinsky, 1996).  

In practice, the following correction formula is generally used in industry for hiring 
decisions, as it is widely agreed that only error in measuring the criterion should be 
corrected, not error in measuring predictors (SIOP, 2003).  

yy

xy
xy

r

r
r

c
 . (6-4) 

In industry, hiring decisions must be based on the fallible scores collected with the 
predictor (Muchinsky, 1996), making a validity coefficient corrected for the reliability of 
the predictor a poor estimate of the predictor’s operational validity. We recognize that 
the Navy does not correct for reliability for the training criterion used to validate the 
ASVAB in the operational occupational classification context, which will be discussed in 
Chapter 17 about setting ASVAB cutscores. When validity coefficients are corrected for 
measurement error, both the corrected and uncorrected values should be reported 
(SIOP, 2003).  
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The Joint Correction for Direct Range Restriction 

First, the case of direct range restriction due to explicit selection on an observed 
variable (e.g., scores on the ASVAB) is considered, and then the case of incidental 
selection. In both cases, emphasis is placed on outlining the steps to follow when 
correcting for range restriction and unreliability only in the criterion. Procedures that 
also incorporate corrections for measurement error in the predictor are mentioned, but 
treated more in depth in the chapter that follows. The correction for measurement error 
in the predictor is typically applied for research purposes (e.g., evaluating a potential 
new addition to the ASVAB) but are rarely used to inform decisions about operational 
selection systems, our focus in this chapter. We note that the addition of corrections for 
measurement error in the predictor changes the appropriate steps to follow, at times in 
substantial ways. 

For many jobs, applicants take a selection test. The x scores of the unrestricted 
sample of applicants are used to make hiring decisions. The resulting pool of job 
incumbents has a restricted set of scores on the selection test (x). As noted in Chapter 5, 
the standard deviation of scores in the unrestricted applicant population (Sx) differs 
from the standard deviation of scores in the restricted job incumbent sample (sx). In 
almost all cases involving educational or personnel selection, criterion data (such as 
training or job performance) are only available in the restricted sample (y). Thus, 
estimates of criterion reliability typically are based on data collected from the restricted 
sample of job incumbents (ryy), rather than on the unrestricted sample of applicants 
(rYY). 

In this situation where criterion reliabilities are only available in the restricted in 
range sample, and the interest is in the validity of an explicit selector, several different 
approaches may be used to correct observed validity coefficients for both measurement 
error in the criterion and range restriction (Bobko, 1983; Hunter et al., 2006; Lee, 
Miller, & Graham, 1982). A three-step procedure was developed by Schmidt, Hunter, 
and Urry (1976) that consists of (a) correcting the observed criterion reliability for range 
restriction, (b) correcting the observed validity for range restriction, and (c) using the 
range corrected reliability coefficient to further correct the validity coefficient (that has 
been corrected for range restriction). A two-step correction procedure involves (a) 
correcting the observed validity coefficient for criterion unreliability using the observed 
reliability coefficient and (b) correcting the resulting validity coefficient that has been 
corrected for unreliability for restriction of range (Lee et al.). The two procedures are 
mathematically identical (Bobko) and may be combined in a single step utilizing one 
formula (Bobko; Hunter et al.). Research has demonstrated that these corrections for 
both range restriction and measurement error in the criterion yield estimates of the 
correlation between the variables of interest that are less biased than the uncorrected, 
observed correlation(Lee et al.; Bobko). 

More formally, when correcting an observed validity for direct range restriction and 
measurement error in the criterion, the first step is to correct the correlation between 
the predictor and criterion in the restricted sample (i.e., rxy for the job incumbent 
sample) using an estimate of the reliability of the criterion in the restricted sample (ryy) 
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(Hunter et al., 2006). As the following formula shows, this yields an estimate of the 
correlation between the predictor (x) and the estimated true score on the criterion (yc) 
in the restricted population (Hunter et al.): 

yy

xy
xy

r

r
r

c


.   (6-5) 

The next step is to correct the correlation for range restriction on the predictor, 
which results in an estimate of the correlation between scores on the predictor and the 
estimated true scores on the criterion for the unrestricted population. This corrected 
validity coefficient (now using R as the estimated population validity) is considered to be 
an estimate of the “operational validity” of the predictor (Hunter et al., 2006): 
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,      (6-6) 

where, for simplification purposes, Ux = Sx/sx . The operational validity also can be 
obtained in a single step using the following equation (Bobko, 1983; Hunter et al.). Note 
that the inputs on the right-hand side of the equation are based on the restricted sample 
of job incumbents; that is, they are the observed validity coefficient and the estimate of 
criterion reliability based on the restricted sample. The only piece of data from the 
unrestricted data set (i.e., the applicant population) that is utilized is the standard 
deviation Sx in Ux:  
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,      (6-7) 

For most purposes, the correction process would stop with either the use of Equation 
6-6 (if the multiple step procedures were followed) or Equation 6-7. However, for some 
theory based research, an additional correction for measurement error in the predictor 
can be made to obtain the correlation between estimated predictor true scores and 
estimated criterion true scores in the unrestricted population, which merely involves 
dividing the operational validity from Equation 6-7, by the square root of the estimate of 
the reliability of the predictor in the unrestricted (applicant) population (Hunter et al., 
2006): 
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Hunter et al. (2006) provide a formula for obtaining the validity coefficient corrected 
for range restriction, criterion unreliability, and predictor unreliability in a single step. 
Alternate approaches may be used if an estimate of the criterion’s reliability is only 
available for the unrestricted (applicant) population (Hunter et al.). It should be noted 
that the correction procedures are best applied in large samples (Mendoza & Mumford, 
1987) and that we should remember that just as standard errors are important to 
consider in the estimation of basic kinds of statistics, they are also important for 
estimating the standard errors of the joint corrections (e.g., Fife, Mendoza, & Terry, 
2012). 

The Joint Correction for Indirect Range Restriction 

Correcting for range restriction and measurement error is a more complex process 
when there is indirect range restriction. Within selection contexts, a common situation 
that illustrates indirect range restriction is a concurrent validation study (Hunter et al., 
1986). In a concurrent validation study, job incumbents are measured on both a 
“potential” selection measure (X) and a criterion measure (Y). The incumbents were not 
hired on the basis of their scores on the potential selection measure but on Z, which 
proceeded measurement on both the potential predictor and the criterion (Hunter et al., 
2006) (notice we are using Z now to designate the explicit selector, not X). If the original 
method of selecting the job incumbents (Z) correlated with the potential selection 
measure, the hiring of the job incumbents was reflected in their true scores (T) on the 
potential predictor X.  

In essence, in the scenario just described, selection has technically been made on the 
basis of the latent ability (T) assessed by X (Hunter et al., 2006; Mendoza & Mumford, 
1987). Correcting for criterion measurement error and indirect range restriction may be 
accomplished in a multiple step procedure (Hunter et al.); however, the steps needed 
will vary depending upon the reliability estimates available for the potential predictor, 
X. We note that it is possible to estimate the reliability of X in the restricted group from 
the reliability of X in the unrestricted group and vice versa (Hunter et al.); therefore, the 
steps executed will depend on what reliabilities need to be computed (shown shortly).  

First, the observed correlation between the potential predictor and criterion in the 
restricted (i.e., job incumbent) sample (rxy) is corrected using an estimate of the 
reliability of the criterion (ryy) in the restricted sample (Hunter et al., 2006) as was done 
in the direct selection case (Equation 6-1) repeated here as Equation 6-9.  

.
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    (6-9) 

 
As Equation 6-9 shows (again), the correction yields an estimate of the correlation 

between the potential predictor in the incumbent sample and the estimated true score 
on the criterion in this sample (Hunter et al., 2006). 
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Next, if the reliability of X (rxx) in the restricted (incumbent) sample is not known, it 
must be estimated from the reliability of X in the unrestricted (applicant) population 
(RXX) assuming it has been reported. As the following equation illustrates, and as 
Hunter et al. (2006) note, “…the incumbent reliability of the independent variable may 
be considerably lower than the applicant reliability” (p. 602):  

).1(1 2

XX
RUr Xxx     (6-10) 

The step involving Equation 6-10 may be skipped if there is already an estimate of the 
restricted reliability (Hunter et al.) (e.g., from test-retest administration of the measure 
during the predictor developmental stage).   

The third step in the procedure involves correcting rxy for measurement error in X 
found estimated for the restricted in range population (Hunter et al., 2006). Note that 
this is a crucial place where the sequencing of the steps for direct and indirect range 
restriction diverges. In the case of indirect range restriction, the correlation between the 

predictor scores and the criterion true scores for the restricted group (
c

xyr ) are corrected 

for the unreliability of the potential predictor in the restricted population ( xxr ), yielding 
an estimate of the correlation between predictor and criterion true scores in the 
restricted sample:  

xx

xy
yx

r

r
r c

cc
 .   (6-11) 

The corrected correlation (
cc

yxr ) in Equation 6-11 is not estimated in the steps to correct 

for direct range restriction.  

The fourth step in making corrections for measurement error and indirect range 
restriction is to estimate the reliability of the predictor, X, in the unrestricted population 
RXX, if it is not known (Hunter et al., 2006), by  

)1(1 2
xxxXX ruR  .   (6-12) 

Note that XXxX USsu /1/   where Ux was defined earlier and which shows that RXX 

and rxx can be calculated from each other. This step can be skipped if an estimate of RXX 

is available for the unrestricted population (as it is for an ASVAB composite when it is 
used as the explicit selection variable and other ASVAB composites are subject to 
incidental selection effects).  The fifth step involves estimating the range restriction 
which has occurred on the latent trait or ability (T) that is assessed by X shown as   

.   (6-13) 
)/)]1([ 2
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In the sixth step, this estimate of Tu is used to correct for the effect of indirect range 

restriction, yielding an estimate of the correlation between true scores on the predictor 
and criterion in the unrestricted population (Hunter et al., 2006). Note again that

TT uU 1 . Thus, the outputs of the previous (fifth) step and the third step in the 

procedure are used as inputs to this step yielding 

22 )1(1
cc

cc

cc

yxT

Tyx

YX

rU

Ur
R


 .   (6-14) 

ccYXR is an estimate of the validity of the predictor corrected for indirect range 

restriction, predictor unreliability, and criterion unreliability. For some research 
purposes, this is the estimate of interest. However, as we have noted, for most applied 
decisions about the use of X, an additional step is needed to estimate the operational 
validity of X. In essence this step re-introduces measurement error and yields an 
estimate of the correlation between the predictor scores and true scores on the criterion 
in the unrestricted group (Hunter et al., 2006). 

XXYXXY RRR
ccc

 .   (6-15) 

We note here that Mayberry and Wright (1992) (Table 4.2 in Chapter 4) used 
Equation 6-12 (a form also shown in Lord & Novick, 1968, Equation 6.2.1) to estimate 
the unrestricted reliabilities of their Job Performance Measurement (JPM) project 
criterion measures (Table 4.2 in Chapter 4). Substituting Y for X and recouping the 
components of the U ratio we show: 

)1(1
2

2
^

yy

Y

y

YY r
S

s
 . 

Mayberry and Write obtained an estimate of the unrestricted Y standard deviation 
from the same procedure used to perform the multivariate correction for range 
restriction (Chapter 5) on ASVAB restricted in range validity coefficients (e.g., Lawley, 
1943). The same method was also used in the Enhanced Computer Administered Test 
(ECAT) battery project (Wolfe, Alderton, Larson, & Held, 1995) that involved not only 
potential new ASVAB tests, but more realistic performance based criterion measures 
derived from the schoolhouse setting (Kieckhaefer et al., 1992).    

Concluding Remarks 

This chapter was intended to inform ASVAB validation/standards researchers about 
the complicated validity corrections that are considered in the psychometric and 
industrial-organizational, education research and operational settings. Combining 
corrections for range restriction and unreliability is a complex process. Selecting the 
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appropriate correction procedures requires careful consideration of the nature of the 
range restriction, the objectives of the research, and the available data. Research has 
demonstrated that, in general, joint corrections yield less biased estimates of the 
relation of interest (Bobko, 1983; Hunter et al., 2006) and so these corrections have 
been recommended (SIOP, 2003). We note, however, that sampling error is not 
accounted for in any of this chapter’s correction formulas and as always the researcher 
should be mindful of small samples and any other factors that may result in spurious 
findings.  

The next chapter provides a further discussion of the joint corrections for reliability 
and restriction in range from a slightly different perspective to reinforce important 
principles that are grounded in classical measurement theory.  
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Chapter 7. 
More on Joint Corrections 

Jorge L. Mendoza 

Introduction 

As we saw in the last chapter, correcting for both unreliability in measures and 
restriction in range due to selection effects is a bit more complicated than either 
correction alone. Hunter, Schmidt, and Le (2006) refer to measurement error as a 
“simple artifact” as would be a dichotomized quantitative variable. Simple artifacts 
combine in a linear fashion without regard to order so that their correction formulas can 
be rolled up into one “global artifact” term that is then used, for example, to correct a 
correlation. Restriction in range, however, introduces complications and interactions, 
thereby referred to as “a complex artifact”. Not only must one consider the degree of 
restriction in range imposed by the cutscore on a selection instrument, but also the 
magnitude of the population validity coefficient, which is in itself what the researcher is 
trying to determine. In this chapter we attempt to somewhat simplify the concepts of the 
joint correction with strict adherence to classical test theory (CTT) assumptions. We 
specifically address the problem that arises when direct selection results in a violation of 
the assumption that true and error scores are not correlated. Some of the concepts and 
formulas from the last chapter are represented here from a slightly different perspective 
but should on balance be more helpful for instantiating principles than a distraction. 
Note that in this chapter we use the asterisk to indicate the range restricted statistics. 

The Joint Correction Paradigm 

As noted in the previous chapter, in correcting for both range restriction and 
unreliability, the sequence has usually been a matter of the estimates of reliability that 
are available to the researcher.  If we assume that the researcher is attempting to go 

from the restricted observed correlations, *

,, yzxr  to the unrestricted “true” correlations, 

tytztxr ,, , depending on whether we have restricted or unrestricted reliability estimates, the 

sequence of corrections differs. When the reliability estimate is restricted, we follow the 
sequence of correcting for unreliability first and then for range restriction, as follows: 

tytztxtytztxyzx rrr ,,

*

,,

*

,,  . 

When the reliability estimate is unrestricted, we correct first for range restriction, then 
for unreliability as follows: 

tytztxyzxyzx rrr ,,,,

*

,,  . 
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When the reliability estimates are mixed (e.g., an unrestricted reliability for variable 
x, and a restricted reliability for variable y from the restricted sample) we must bring 
them all to the same level before correcting (discussed in the last chapter).  

The second sequence, correcting first for range restriction and last for reliability, is 
preferred because biased estimates of reliability have been observed for the explicit 
selection variable (say x) under direct (explicit) range restriction (Fife, Mendoza, Terry, 
2012). This matter is discussed later in the chapter.  

In principle, the joint correction is simple, and it follows the same pattern regardless 
of the number of variables involved. To illustrate, consider our preferred correction 
sequence in matrix format for a three-variable situation that has been observed in the 
selected sample.  (The reader may want to refer back to Chapter 5 for the matrix form of 
the multivariate correction for range restriction.) We show the matrix sequence as, 


















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1

1
*

**

*

,, zy
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

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
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
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

















1

1

1

,, tzty

txtytxtz

tytztx r

rr

r  

The matrix on the left contains the restricted correlations among x, z, and y where 
(a) x was used as an explicit (direct) selection variable, (b) y is the performance measure 
taken sometime after selection and incidentally (indirectly) restricted (because we do 
not have performance scores on y for those not selected on x), and (c) z is an 
experimental “potential” predictor incidentally restricted. (Note in the last chapter the 
roles of x and z were reversed when considering the x variable as a “potential” predictor, 
incidentally restricted.)  

The Joint Correction Formulas 

To bring transparency to the corrections, we again present Equations 2-35 and 2-36 
from Chapter 2 that are commonly used for correcting for explicit and incidental range 
restriction (Lord & Novick, 1968; Sackett & Yang, 2000). Assuming direct selection on 
x: 

 
















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


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2
2*2*

*
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1
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x
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x

x
xy

xy

S

S
rr

S

S
r

r .   (7-1) 

On the other hand, the indirect range restriction correction formula given by (e.g., Sackett 
& Yang) is:  
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Going from the restricted 
*

,, yzxr  matrix to unrestricted rx,z,y,  is relatively 

straightforward. That is, we estimate the unrestricted population correlations by 
applying Equation 7-1 to solve for the unrestricted for rxy and rxz and Equation 7-2 to 
solve for the unrestricted rzy.5 If the researcher would like to go further and obtain a 
correlation matrix with correlation values estimated to be free of the effects of 
unreliability (rtx,tz,ty), we must have the unrestricted reliabilities.  

The correction sequence, as discussed, depends on the type (restricted vs. 
unrestricted) of the available reliability estimates (Stauffer & Mendoza, 2001). If all of 
the reliability estimates have been obtained in the selected sample, then we correct first 
for unreliability and then correct for range restriction. On the other hand, if the 
reliability estimates apply to the unrestricted applicant pool, we correct first for range 
restriction and then for unreliability (the preferred sequence). The situation requires a 
slightly different approach if the reliability estimates are mixed in level, some coming 
from the restricted sample and some from the unrestricted one, discussed below.  

Before discussing the corrections in general, we address a situation involving only 
one correlation. Suppose that we are interested in estimating the “true” unrestricted 
correlation rtx,ty. This is the unrestricted correlation between tx and ty. Next assume that 
we have the unrestricted reliability for x but the restricted reliability for y. The fact that 
we have a restricted estimate (an estimate from the selected sample) of the reliability of 

y is of no real concern if the ratio 
22* / xx SS  is known (indicated by U in the previous 

chapter). We begin the process by unrestricting the reliability of y to bring the y and x 
reliabilities to the unrestricted level. We correct the reliability of y by modifying 
Equation 2-36 (7-2) following Sackett, Laczo, and Arvey (2002), as: 
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5
 Note that if one were to use the Expectation-Maximization Algorithm available in many computer programs, we 

could easily go from the restricted matrix to the unrestricted matrix without having to be concerned about direct or 

indirect corrections. 
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Lord and Novick (1968, p. 130) present the much simpler formula for obtaining an 

estimate of yy, as (changing their x variable application to y): 

)].1)(/[(1 22*22*

YTyYYT sS       (7-4) 

Equation 7-4 simply comes from the algebraic manipulation of the second of our 
classical measurement theory equalities: 

)1( 22*22*

YTyEe sSs  , and 

)1()1( 222*2*

YTYyty Ss   .    

We note that Equation 7-4 was applied correctly in the Mayberry and Wright (1992) 
study reported in Chapter 4 that involved estimating the reliability of incidentally range 
restricted job performance measures (the criterion variables, y) for the unrestricted 
ASVAB population. The estimated unrestricted population y variance was accomplished 
using the multivariate correction for range restriction (Chapter 5 and elsewhere, 
applying all ASVAB tests at the population level as explicit selection variables). This 
correction not only yields range corrected correlations, but range corrected standard 
deviations and test score means. Mendoza and Munford (1987) show this added 
standard deviation correction for joint-correction scenario for the two-variable case.  

Whatever the method, now that we have two unrestricted reliability estimates, yy 

and xx (xx assumed from the start as known), we proceed to obtain the unrestricted 
“true” correlation by applying the correction of rxy for unreliability in both x and y: 

yyxx

xy
tytx

r
r


, ,   (7-5)  

which applied to Equation 7-2 to give the joint correction as: 
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We could, however, depending upon the research objectives, have just corrected for 
either the reliability of x or the reliability of y and not both. In this case, we would just 
modify the last portion of Equation 7-5 to accommodate only one reliability estimate. 
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True and Error Score Correlation: A Complication  

Although there is no issue with correcting the reliability estimate of an incidentally 
selected y variable for restriction in range, there is a complicating issue for the x variable 
under direct restriction in range.  If the unrestricted reliability of x is not available (a 
very unusual situation for Navy researchers, and unheard of for the ASVAB), we must 
proceed with caution. It has been shown that tx and ex when subjected to explicit 
selection are negatively correlated in the restricted sample (Mendoza & Mumford, 1987; 
Hunter, Schmidt, and Le, 2006), illustrated in Figure 7-2. 

 

Figure 7-2. Range Restriction effects on the relation between true and error scores. 

Because of the negative correlation between the error and true scores displayed in 
Figure 7-2 (that generally increases in magnitude with more stringent selection ratios 
and lower reliability), the total score variance must be expressed as  

),(cov*22*2*2* etSSS etx     (7-7) 

and not by 

𝑆𝑥
∗2 =  𝑆𝑡

∗2 + 𝑆𝑒
2,   (7-8) 

recognizing in Equation 7-8 that error variance is not restricted when the variable 
involved is subject to incidental selection or when selection occurs on true scores (but 
unfortunately this does not apply to our x variable because it is subject to explicit 
selection). Because the covariance (and therefore the correlation) between t and e are 
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negative, we can see that the total x score variance for the restricted sample in Equation 
7-7 will be smaller due to direct restriction in range resulting in a larger true score/total 
score variance ratio, thus overestimating the restricted in range reliability estimate and 
underestimating the unrestricted reliability estimate.  

For theoretical and practical purposes, Mendoza, Stafford, and Stauffer (2000) 
developed a procedure for estimating the unrestricted reliability using a test-retest 
reliability estimate obtained in a directly restricted sample (assuming an actual re-
administration  of the x test can occur under acceptable conditions).  As an independent 
administration of x has taken place, the error scores are not correlated between the x 
and the retest portion of x, say x’. The variance of x’ reduces to the usual sum of true 
plus error variances; that is, Equation 7-8 holds for x’ but not for x (for x, Equation 7-7 
holds).  Putting these two observations together, Mendoza, et al. (2000) showed that we 
can estimate the unrestricted reliability of x from 

𝜌𝑥𝑥 =  
𝑐𝑜𝑣∗(𝑥,𝑥′)

𝑆𝑥
∗2 .     (7-9) 

 

The numerator of Equation 7-9 contains the covariance between x and x’ (in the 
selected sample), and the denominator contains the restricted variance of x (the original 
administration), that is, the variance of the measure used for selection. Note that we are 
using the regression of x’ on x in the restricted sample to estimate the regression of x’ on 
x in the unrestricted sample, the unrestricted reliability. You may recall that the 
regression coefficient is not affected by range restriction and when parallel forms (or 
test-retest) have the same unrestricted variances, then their ratio equals one and thus, 

x

y

S

S
rb   applied to parallel forms becomes, 

x

x

S

S
rb ' , with b = r. 

Thus, it makes sense to use the regression coefficient to estimate the unrestricted 
reliability. (Notice that in the unrestricted sample the correlation between x and x’ is 
equal to the regression because the variance of x is equal to the variance of x’.) 
Furthermore, Fife et al. (2012) have shown in a simulation study that the approach 
given in Equation 7-9 of using the retest estimate in a selected sample to estimate the 
unrestricted reliability is unbiased. 

Because ASVAB reliabilities are documented for full range groups (see Chapter 4), it 
should never be the case that we would need to estimate unrestricted ASVAB reliabilities 
from an ASVAB range-restricted school sample. However, we might need to estimate a 
potential predictor’s full range reliability if it were used operationally (cutscore) when 
the only reliabilities available are from a range restricted sample (say, during the 
research project’s time frame when both validities and reliabilities were assessed). 
Technically, however, because an ASVAB classification composite was the operational 
standard at the time of the concurrent validity study, the potential predictor is only the 
incidental selection variable, as is the y variable, and therefore, we are not dealing with 
correlated true and error scores.  The point to remember is that if a variable is used for 



 

94 

 

selection and the norm (published) reliability is not available, it would be inappropriate 
to use the scores in the selected sample to estimate the unrestricted reliability.  At the 
very least, we need to retest the subjects in the selected sample.  

It may be a more common scenario in industry (not for the military) that an 
organization does not use any cognitive selection instrument in selecting personnel, and 
at some point decides that it should. The chosen instrument may not have published 
reliabilities and for convenience, the organization may only consider reliability 
estimation for the incumbent sample. In this case, because direct selection has occurred 
on this newly instated x variable, we have to advise that the test-retest reliability 
estimation will be required (or parallel forms) and not an internal consistency type of 
reliability due to the explicit selection effect of correlated true and error scores. On the 
other hand, if a cognitive measure is already in place for personnel screening (again 
without known reliability), there is no issue and any type of reliability estimator can be 
considered. At this point we refer the reader back to Chapter 4 to assess the most 
appropriate reliability estimation types for specific situations (we prefer stability or 
equivalence reliability estimators when concerned with validity coefficients).  

Estimating the Restricted Reliability from the Unrestricted Estimate  

We mentioned earlier that the researcher must bring the reliabilities to the same 
level in the correction for range restriction. For completeness, we include the rationale 
and formulas for estimating the restricted reliability having obtained the estimated 
unrestricted reliability via test-retest in the selected sample (Equation 7-9).  

First, we have noticed that the unrestricted reliability is obtained from the regression 
of x’ on x in the directly selected group 

𝜌𝑥𝑥 =
𝑐𝑜𝑣∗(𝑥,𝑥′)

𝑆∗(𝑥)
= 𝑏𝑥′𝑥. 

Also, we know that the variance of the new administration in the selected group 

(notation now “v”) is equal to the sum of the true and error variances, 

𝑣∗(𝑥′) = 𝑣∗(𝑡) + 𝑣(𝑒). 

Notice that the variance of the errors in the new administration is not reduced. Putting 

these facts together, we can see that error variance can be obtained from the regression 

coefficient and the unrestricted variance of x,  

𝑣(𝑒) = (1 − 𝑏𝑥′𝑥)𝑉(𝑥).  

Thus, it follows that the restricted reliability (local) can be obtained from the variance of 

the new administration and the unrestricted variance as follows, 

𝑟𝑥𝑥
∗ =

𝑣∗(𝑥′) − ((1 − 𝑏𝑥′𝑥)𝑉(𝑥))

𝑣∗(𝑥′)
. 
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Concluding Remarks 

As we have seen, it is a complicated matter to estimate the unrestricted population 
validity coefficient free of measurement error in all variables concerned when all we 
have is the restricted and fallible versions. It is particularly difficult when dealing with 
the explicit selection variable’s reliability estimate in the restricted sample. We note that 
the formula developments in this chapter assume that classical measurement 
assumptions are met, which is rarely the case, and so the reader should proceed with 
caution when making the joint corrections and under the specific difficult situations 
described in this chapter.  It also should be kept in mind that as we correct for artifacts 
in the pursuit of unbiased estimators, precision decreases as the standard errors 
increase.  If samples are large, this is not much of an issue, but it is an issue when 
samples are small.  

 We note that only range restriction is currently addressed in the Navy’s ASVAB 
validation/standards studies because of the operational focus of selecting and classifying 
personnel. The ASVAB reliabilities are known and we take for granted that the criterion 
measures (training performance measured for all Navy occupations) are of high 
integrity.  This may not always be the case so monitoring efforts will always be a 
requirement. The current thinking in military personnel research is that the joint 
corrections will be more relevant as candidate additions to the ASVAB are considered in 
an applied research context rather than an operational context. The methods also will be 
relevant if measures other than training performance become additional criterion 
variables in validation studies.   

The next chapter deals with another complication in the evaluation of the validity 
coefficient that applies to the population of interest – the effects violations in the 
underlying range restriction assumptions have on the accuracy of the estimated 
population validity coefficient.  
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Chapter 8. 
Standard Errors of the Corrected Correlation 

Jeff W. Johnson 

Introduction 

It is well known that the validity coefficient for a personnel selection test will be 
attenuated due to both unreliability of measures and restriction in range of test scores, 
as discussed in previous chapters. Little attention is typically paid, however, to the 
standard error of validity coefficients (correlations) corrected for range restriction. 
Assessing the standard error of the validity coefficient is essential for constructing 
confidence intervals (which vary in width with sample size, all other things being equal) 
and making valid inferences about the population. This chapter provides a brief review 
of the two major approaches reported in the literature for estimating standard errors of 
corrected correlations due to range restriction: (a) asymptotic sampling variance 
formulas and (b) bootstrapping. The chapter also provides a brief discussion of the joint 
correction for range restriction and unreliability.  

Asymptotic Sampling Variance Formulas 

Several researchers have investigated the sampling distributions of correlations 
corrected for range restriction and developed sampling variance formulas (e.g., Allen & 
Dunbar, 1990; Forsyth, 1971; Gullickson & Hopkins, 1976; Mendoza, 1993). Similarly, 
researchers have investigated sampling variance of correlations corrected for 
unreliability in one or both variables (e.g., Forsyth & Feldt, 1969; Hakstian, Schroeder, 
& Rogers, 1988, 1989; Mendoza, Stafford, & Stauffer, 2000; Rogers, 1976). Bobko and 
Rieck (1980) and Bobko (1983) derived a formula for estimating the standard error of 
correlations corrected for range restriction and unreliability in one variable. 

Only Raju and Brand (2003) have presented a formula for estimating the standard 
error of correlations that have been corrected for range restriction and unreliability in 
both variables. This formula is useful because it is a simpler expression than previous 
formulas and does not require a separate formula for different definitions of reliability. 

Raju and Brand’s (2003) asymptotic sampling variance formula for correlations 
corrected for direct range restriction and unreliability in both variables is expressed as 

3
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In these equations, rxy is the observed correlation between a predictor x and a criterion 

y, rxx is the reliability of the predictor, ryy is the reliability of the criterion, and xy̂  is the 

estimated population correlation after correction for range restriction and unreliability 
in both variables. In addition, k represents the ratio of the unattenuated, unrestricted 
standard deviation to the unattenuated, restricted standard deviation for x. That is, 
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Because the reliability of x in the unrestricted sample (Rxx) may sometimes be 
unavailable, Raju, Lezotte, Fearing, and Oshima (2006) offered the following derivation 
of k: 
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It should be pointed out, however, that the type of reliability estimate used is 
important. Internal consistency reliability estimates of x in the restricted sample are not 
recommended. If one must estimate the reliability of x in the restricted sample, one 
should use a test-retest reliability estimate. (See Fife, Mendoza, and Terry, 2012 and the 
previous chapter for an explanation of the reason.)   

The standard error of xy̂  is )ˆ(ˆ
xyV  . Furthermore, Raju et al. (2006) admit that the 

correct estimation of k requires the assumption that t and e are not correlated, a 
situation not likely to hold in direct range restriction situations.  If there is a second 
administration in the selected group, however, we can estimate k, without assuming 
independence between t and e in the selected group, as follows: 

𝑘 =
𝑆𝑥

2√𝑅𝑥𝑥

√𝑣(𝑥′)−𝑆𝑥
2(1 − 𝑅𝑥𝑥)

 , 

where v(x’) is the variance of the new administration under the restricted space.  

Raju and Brand (2003) showed that Equation 10-1 is a general formula that can be 
applied when there is no range restriction or when one corrects for unreliability in either 
x or y instead of both. For example, if a correlation has been corrected only for range 
restriction, rxx and ryy = 1. Equation 8-1 then reduces to 
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This is the same equation that Bobko and Rieck’s (1980) sampling variance formula 
reduces to when ryy = 1. An equivalent but simpler formula for computing the standard 
error of a correlation corrected only for range restriction is 
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It should be pointed out that regardless of how we estimate the standard error of the 
corrected correlation under direct range restriction (using either Bobko & Rieck ,1980 
with the bootstrap, or Mendoza, 1993), if the unrestricted reliabilities are known, the 
standard error of the corrected correlation is given by  

𝑆𝐸 (
𝑅𝑥𝑦

√𝑅𝑥𝑥𝑅𝑦𝑦

) = 𝑆𝐸(𝑅𝑥𝑦)
1

√𝑅𝑥𝑥𝑅𝑦𝑦

 , 

(since the reliabilities are known we can treat them as constant in the computation of 
the standard error.) 

Assuming that sampling errors of corrected correlations are normally distributed, a 
Z test for determining whether a corrected correlation is significantly different from a 
hypothesized population correlation is 
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If |Z| > |z|, where z is the table’s value from the unit normal distribution for a given 

alpha level (e.g., when  = .05, z = 1.96 for a two-tailed test), then ̂  is considered to be 

significantly different from . When testing whether two independent corrected 
correlations are significantly different from each other, the appropriate test is 
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A Monte Carlo study by Raju and Brand (2003) found that the asymptotic sampling 
variance formula (Equation 8-1) provides accurate estimates of the sampling variance of 
corrected correlations. The authors also found that observed alpha levels from the 
formula were very similar to the nominal alpha levels, although the former consistently 
overestimated the latter. Also, the power rates for the formula tended to be very low, 
which was consistent with the power rates found in other studies of significance tests for 
corrected correlations (e.g., Hakstian et al., 1988). 

Raju and Brand (2003) noted two implications for practitioners in the use of their 
formula. First, their procedure is very conservative in that a Type II error (failing to 
reject the null hypothesis when it is false) is much more likely to occur than a Type I 
error (rejecting the null hypothesis when it is not false). Second, their procedure 
assumes that the corrected correlations are normally distributed, which might not be the 
case in practice. The authors recommend continuing to develop new significance tests 
for corrected correlations that are based on different distributional assumptions and 
thus might have higher power (detecting a false null hypothesis). 

Bootstrapping Approaches 

Bootstrapping, mentioned in Chapter 2, is a nonparametric procedure that can be 
applied for estimating standard errors of any sample statistic. Using the bootstrap does 
not require assumptions about an underlying population distribution (i.e., normality) as 
does the use of parametric based procedures that use standard equations. In an ASVAB 
validation/standards study, the bootstrap can be applied to the school sample at hand 
(e.g., n= 250 records for students having complete data on both the ASVAB and final 
school course grade). The standard error of a bootstrapped multivariate range corrected 
validity coefficient is derived as the standard deviation of those validities for a large 
number of bootstrapped samples (e.g., 1,000) where each sample is the same size as the 
original sample. Each of the 1,000 samples is formed as follows. Bootstrap Sample #1 is 
formed from randomly drawing a case from the original sample and replacing that case 
(in essence, leaving the original sample intact) for the next draw until the n=250 sample 
is formed. The process repeats until Bootstrap Sample #1000 is formed. The standard 
deviation of 1,000 corrected validities is taken as the standard error (Efron, 1979).  

The bootstrap approach has been shown to be appropriate for the bivariate 
correlation situation (Bickel & Freedman, 1981, Lunneborg, 1985). Mendoza, Hart, and 
Powell (1991) derived a confidence interval for a correlation corrected for range 

restriction ( ̂ ) based on a bootstrap procedure and investigated the accuracy and 

stability of the confidence interval under conditions of incomplete truncation. 
Incomplete truncation means that a probability mechanism is used to select cases, 
where those with a higher score on x have a higher probability of being selected. 
Incomplete truncation is a situation that is similar to what might be seen in test data 
that are range restricted due to indirect (incidental) selection. To study range restriction 
due to direct (explicit) selection, a truncation method would need to be used that 
produced a sample that excluded all cases falling below a cutscore. 
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Chan and Chan (2004) conducted a bootstrap study in which they investigated the 
sampling variance of the corrected correlation resulting from direct restriction in range. 
The experimental conditions included both (a) normal and nonnormal data and (b) 

different levels of, selection ratio, sample size, and truncation type. The authors 
compared Monte Carlo and bootstrapped distribution variance with Bobko and Rieck’s 
(1980) formula for estimating the standard error of a correlation corrected for range 
restriction. Recall that when correlations are corrected only for range restriction and not 
for unreliability, the standard error formulas given by Bobko and Rieck are equivalent to 
those given by Raju and Brand (2003) (see Equation 8-5). The Chan and Chan results 
indicated that the bootstrapped standard error is generally more accurate than Bobko 
and Rieck’s, especially with small sample sizes. In contrast, Li, Chan, and Cui (2011) 
investigated indirect restriction in range showing that the bootstrap procedure produced 
standard errors of corrected correlations and confidence intervals that were generally 
more accurate across conditions including, as did Chan and Chan, combinations of 

sample size, selection ratio, , and types of nonnormal distributions.  

Concluding Remarks 

A general formula developed by Raju and Brand (2003) for computing sampling 
variances for range corrected correlations was presented for the case of direct (explicit) 
selection and unreliability in both the X and Y variables. The formula is based on 
asymptotic sampling variance theory and therefore can be used for computing 
confidence intervals or testing for significance when the samples are relatively large. In 
the practical/operational ASVAB validation/standards setting process, it may be just as 
appropriate to apply the bootstrap technique. The next chapter reports on a Monte 
Carlo/bootstrap simulation study involving the bootstrap using the ASVAB. The study 
examined the accuracy of the multivariate range correction procedure for estimating 
unrestricted population ASVAB validity estimates under various conditions and 
simulation-based estimates of the standard errors.  
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Chapter 9. 
A Monte Carlo/Bootstrap Study of Range Corrected 

Validity Accuracy 
John H. Wolfe  

Introduction 

As we saw in the last chapter, there is error associated with a sample-based statistic 
used as an estimator of a population parameter. The error in the estimation of the 
population parameter refers to accuracy, and the range of error upon repeated trials 
refers to precision. This chapter describes a Monte Carlo study that examines both 
accuracy and precision using the ASVAB tests and the multivariate correction for range 
restriction (described in Chapter 5).The Monte Carlo study design involved the 
conditions of predictor/criterion specification, sample size, selection ratio, and 
distribution skew. The predictors were two ASVAB composites and the criteria were two 
ASVAB tests that served as surrogate criteria. The validity coefficients of the selector 
composites were, of course, known (referred to as “R” in some graphs, not to be 
confused with the multiple correlation, R), and so we could evaluate the accuracy and 
precision of the multivariate correction for range restriction under the various 
conditions.  

Background 

Several Monte Carlo studies have been conducted to examine the accuracy of the 
correction for range restriction in estimating the unrestricted validity coefficient. Most 
of the studies involved the univariate rather than the multivariate correction for range 
restriction. These Monte Carlo studies examined the univariate correction formula 
accuracy and the standard deviations of corrected validity coefficients to see what 
formula might apply (e.g., the standard error formula for the bivariate case). Few 
studies have examined the multivariate correction for range restriction, probably 
because the procedure is mainly applied by the military with use of all ASVAB scores 
that are available for all military applicants. However, it has been determined that the 
multivariate formulas are generally more accurate than the univariate formulas (Booth-
Kewley, 1985; Held & Foley, 1994), at least for adequate sample sizes.  

Accuracy of the multivariate correction for range restriction has been postulated to 
occur due to “…(a) inclusion of variables with adequate distributional properties, (b) the 
compensatory effects of regression weights, and (c) the related psychometric principle 
that differentially weighting a large number of correlated predictor variables has little 
impact on a multiple correlation. Taken from another perspective, the multivariate 
correction accuracy may simply be due to the fact that a regression equation with 
multiple relevant predictors yields a lower standard error of estimate than a regression 
equation with only one of the predictors” (Wolfe & Held, 2010, p. 357).  
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Recall that all ASVAB tests whose scores are available for the unrestricted population 
are entered into the multivariate correction for range restriction as explicit selection 
variables, even though only a subset of ASVAB tests formed into a composite serve as 
the explicit selection variable. 

Most studies of the correction for range restriction recommend examining extreme 
conditions that would affect validity accuracy and the standard error, such as varying 
degrees of violation of the linearity and homoscedasticity assumptions that are made in 
performing the correction. Although Lawley (1943) relaxed the normality assumption, at 
least several studies have examined varying degrees of skewness because skew can cause 
nonlinearity (Brewer & Hill, 1969). Finally, several studies have reported that stringency 
in the selection ratio has a major impact on the sampling variance of the corrected 
validity (Mendoza & Reinhardt, 1991; Raju & Brand, 2003). 

The Monte Carlo study reported here was designed to evaluate the impact of several 
factors on corrected validity accuracy using the multivariate formulas. The tests used in 
the study are those in the ASVAB. The ASVAB is the selection and classification 
instrument for all U.S. military services and consists of the following nine tests: General 
Science (GS), Arithmetic Reasoning (AR), Word Knowledge (WK), Paragraph 
Comprehension (PC), Auto and Shop Information (AS), Mathematics Knowledge (MK), 
Mechanical Comprehension (MC), Electronics Information (EI), and Assembling Objects 
(AO) (see Chapter 2 of the Introductory Manual for full descriptions). Two of the ASVAB 
tests (PC and AS) were specified as the criteria in this study so that we would know the 
unrestricted validity, but also because these tests reflect underlying constructs that map to 
many military training requirements (i.e., PC for understanding technical manuals and AS 
in the learning of mechanical principles and maintenance processes). 

There were four main goals of this Monte Carlo study. The first goal was to 
determine the effects of the study-designed conditions on the accuracy of the 
multivariate correction for range restriction formulas in estimating known unrestricted 
validities. The second goal was to determine the standard error distributions that come 
out of the multivariate corrected validity distributions. The third goal was to determine 
if an ancillary measure (termed “hit rate”) could be used with some degree of confidence 
to identify the predictor with largest validity coefficient. The fourth goal was to 
determine if the bootstrap is useful in identifying the predictor with largest validity 
coefficient referring to the median of a bootstrapped distribution rather than the mean, 
or if it was more appropriate to use the point estimate from the total Monte Carlo 
Sample from which the bootstrap sample was derived. The hypothesis was that the 
median of a bootstrapped distribution reduces the influence of outliers and therefore 
gives a more accurate point estimate and smaller standard error. 

The Monte Carlo study incorporated the following conditions: (a) selection ratio, (b) 
sample size, and (c) degree of skew. The validity magnitude or covariance levels were 
not varied systematically in this initial phase of work. These conditions could be varied 
along with validity difference between ASVAB composites in a subsequent phase along 
with predictor and criterion unreliability.  Although only two ASVAB composites served 
as selectors, these and other ASVAB combinations served as predictors.  
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Monte Carlo Methods 

Generation of Synthetic Populations 

Segall (2004) described the Profile of American Youth (PAY97) ASVAB norming 
sample that was weighted to be representative of the American youth population 
(21,117,079 cases). Several synthetic populations were generated from the PAY97 
correlation matrix by using deviate generators provided in the International 
Mathematical and Statistical Library (IMSL) and Cholesky factorization routines 
(Ackleh, Allen, Kearfott, & Seshaiyer, 2009). The procedure is described as follows: 

Let C be the covariance matrix of the PAY97 sample with m variables. The Cholesky 
factorization of C is a lower triangular matrix L such that 

TC LL  .    (9-1) 

where the superscript T indicates the transpose of the associated matrix. Now let Z be 
an N by m matrix containing N cases on m uncorrelated variables, each with zero means 
and unit standard deviations. Let X ZL . The covariance matrix of X is 

1 1 1
( ) .

1 1 1

T T T T T TX X L Z ZL L Z Z L L L C
N N N

   
  

 (9-2) 

Thus, by generating N random vectors of m variables and applying the L 
transformation, a random sample with the desired covariance matrix can be generated. 
Notice that the uncorrelated variables in Z do not have to be independently or 
identically distributed or have normal distributions. Using a random normal generator 
with N = 20 million and m = 9, a Z matrix was generated, along with an X matrix of 
multivariate normal cases with the same means, standard deviations, and correlations 
as the PAY97 population.  

Karian and Dudewicz (2000) showed that a wide variety of distributions can be 
fitted by the four-parameter generalized lambda distribution and presented methods for 
generating random variables with specified skewness and kurtosis. Using these 
methods, Z matrices of independently and identically distributed skewed variables were 
generated. When the Z matrix was multiplied by the L matrix, the resulting X matrix 
had the same covariance matrix as the PAY97 population, but with “ASVAB” test scores 
that were skewed to varying degrees. 

Different levels of skewness were used to generate eight Z matrices of 20 million 
cases of nine variables. Only the first of the X variables had the same skewness as the 
first Z variable. Because the L matrix is triangular, the second X variable was a weighted 
sum of the first two Z variables. The third X variable was the weighted sum of the first 
three Z variables, etc. Because of the central limit theorem, successive X variables 
approached closer and closer to normality, which is to say, their skewness diminished.  
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Table 9-1 shows the characteristics of the “skew = -1.0” population and associated 
distribution descriptives for the Forward Skew condition. 

Table 9-1 
Descriptive Statistics for the Forward –1.0 Skewed Population of 20+ Million 

Simulated Test Scores 

Test Minimum Maximum Mean SD Skewness SE Kurtosis SE 

GS 2.10 66.33 50.0018 9.99917 -1.001 0.001 0.602 0.001   
AR -14.19 71.51 50.0011 9.99495 -0.708 0.001 0.302 0.001   
WK -11.84 71.65 49.9992 10.00185 -0.715 0.001 0.316 0.001   
MK -12.87 73.28 49.9981 9.99570 -0.604 0.001 0.224 0.001   
MC -14.36 73.27 49.9999 10.00125 -0.664 0.001 0.272 0.001   
EI -9.87 75.49 49.9969 10.00584 -0.619 0.001 0.241 0.001   
AO -13.67 75.80 49.9984 10.00477 -0.575 0.001 0.212 0.001   
PC -11.19 76.91 49.9992 9.99917 -0.590 0.001 0.225 0.001   
AS -15.70 86.16 50.0008 10.00512 -0.460 0.001 0.155 0.001   
VE -8.20 75.02 49.9990 9.99798 -0.679 0.001 0.302 0.001   

AFQT -19.00 290.00 199.9976 36.37105 -0.687 0.001 0.317 0.001   
GW -7.44 137.28 100.0000 18.97468 -0.884 0.001 0.493 0.001   
GM -10.78 138.95 100.0007 18.35251 -0.829 0.001 0.441 0.001   
EL -2.44 278.38 199.9969 34.59769 -0.783 0.001 0.404 0.001   
AL 9.86 493.58 349.9943 58.00127 -0.759 0.001 0.387 0.001   

 Notes: 
 AFQT = Armed Forces Qualification Test score are in standard score format. 
 GW for the purpose of the study = GS + WK 

 GM for the purpose of the study = GS + MC 

 EL = is the Service’s Electronics composite, AR + MK + EI + GS 
 AL = for the purpose of the study = integer- or unit-weighted GS + AR + WK + MC + EI + AO 

As Table 9-1 shows, the first “test” (GS) has the specified –1.0 skewness. In contrast, 
the criterion variable PC (further down the list) has a much smaller skew (-0.590), with 
even less skew observed for the other criterion variable, AS (-0.460). As shown, the 
skewness of the variables decreases almost linearly down the rows of the table. The 
remaining variables, VE through AL, are composites of the test scores. The ASVAB VE is 
a combination of 2/3WK and 1/3PC. The GW composite, formed by equal-integer 
weighting of the two tests, GS and WK, served as one of two selector composites in the 
study; GM, formed from GS and MC, served as the other. 

It is worth noting that although the “tests” have the same means, standard 
deviations, and correlations as the PAY97 population, the ranges of scores are far 
greater. In particular, some of the “test” scores are negative. This extended score range 
occurs even in the multivariate normal simulated populations. 
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By reversing the order of the variables, so that AS is first and GS is last, a reversed L 
matrix was produced that also generated artificial test scores with the PAY97 
covariances. When applied to a skewed Z matrix, the result was a set of variables with 
AS (a criterion variable and the last variable listed) having the highest degree of skew 
and GS having the least. Table 9-2 shows the results. 

Table 9-2 
Descriptive Statistics for Reversed –1.0 Skewed Population of 20+ Million 

Simulated Test Scores 

Test Minimum Maximum Mean SD Skewness SE Kurtosis SE 

GS -12.92 79.77 49.9982 10.00120 -0.477 0.001 0.146 0.001   
AR -16.76 78.84 49.9980 9.99516 -0.487 0.001 0.151 0.001   
WK -13.80 75.14 49.9978 9.99895 -0.576 0.001 0.207 0.001   
MK -13.62 76.07 49.9955 9.99449 -0.585 0.001 0.220 0.001   
MC -13.59 76.04 49.9993 10.00226 -0.557 0.001 0.200 0.001   
EI -13.23 73.30 49.9980 10.00386 -0.635 0.001 0.251 0.001   
AO -12.53 74.09 49.9989 10.00505 -0.656 0.001 0.275 0.001   
PC -8.88 69.85 50.0003 9.99726 -0.868 0.001 0.476 0.001   
AS 2.54 66.15 50.0025 10.00534 -1.000 0.001 0.601 0.001   
VE -12.94 73.35 49.9985 9.99485 -0.667 0.001 0.292 0.001   

AFQT -29.00 297.00 199.9900 36.36357 -0.609 0.001 0.257 0.001   
GW -21.11 154.27 99.9959 18.97391 -0.511 0.001 0.170 0.001   
GM -16.92 153.53 99.9975 18.35534 -0.500 0.001 0.167 0.001   
EL -26.55 302.93 199.9896 34.59795 -0.491 0.001 0.160 0.001   
AL -28.22 520.13 349.9857 57.99905 -.513 0.001 0.176 0.001   

 Notes: 

 AFQT = Armed Forces Qualification Test scores are in standard score format. 
 GW = GS + WK 

 GM = GS + MC 

 EL = AR + MK + EI +GS 
 AL = GS + AR +WK +MC +EI +AO 

Monte Carlo Simulation 

Conditions Studied 

Monte Carlo methods were used to investigate the effects on the multivariate 
corrected ASVAB validity coefficients and their differences from choice of selector, 
choice of criterion, selection ratio, sample size, and skewness of the parent population. 
The alternative selectors were GW and GM. The alternative criteria were PC and AS. 
Five levels of selection ratio (1.0, .8, .6, .4, and .2) and eight sample sizes (50, 75, 100, 
150, 225, 350, 500, and 800) were considered. The total number of combinations of 
these factors is 2x2x5x8 = 160, including the redundant combinations, when SR = 1.0 
and GM and GW selectors are equivalent. The parent populations had 8 levels of 
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skewness applied in forward and reverse variable order, making 16 skewed populations, 
and the multivariate normal population made the 17th population (skew levels were -2.0, 
-1.5, -1.0, -0.5, .0.0, +0.5, +1.0, +1.5, and +2.0). In the later analyses, the normal 
population was duplicated and appeared once labeled as “Forward” and once again as 
“Reverse.” Thus, the total database consisted of 160x18 = 2,880 combinations, with 
some duplicate or equivalent combinations. For each of these 160 combinations, 1,000 
samples were drawn randomly without replacement from one of the 17 parent 
populations of 20 million cases. 

Measures 

As defined in the notes to Table 9-1 and Table 9-2, four unit-weighted composites of 
test scores were constructed. For each of the 1,000 samples under each condition, a 
covariance matrix was constructed with all the tests (predictors and criteria) and 
composites. Regression equations were developed using the PC and AS tests as the 
criteria. Multiple correlations were “fully cross-validated.” That is, for each sample 
point, a regression estimate was constructed from the n-1 other points in the sample, 
and the correlation of these estimates with the actual criteria was computed. Finally, all 
of these correlations were corrected for multivariate range restriction using Lawley’s 
(1943) procedure. 

The means and standard deviations of the corrected sample validity estimates were 
determined and compared with their population validities. For the regression, the 
population validity of the sample regression equation was determined and averaged 
across the 1,000 samples. 

Bootstrap Means and Medians 

For each of the 1,000 samples, 1,000 resamples were drawn with replacement. The 
covariances within each resample were computed and the validity estimates corrected 
for range restriction. The means and medians of these “bootstrapped” corrected 
validities were computed, and their means and standard deviations were compared with 
those of the Monte Carlo samples’ corrected validity estimates and with each other. 

Percentage of Samples Correctly Identifying Best Predictor 

Separate analyses were conducted for each criterion test (PC and AS). The most valid 
and second-most valid ASVAB predictors of these criteria (as known in the population) 
were compared across the 1,000 Monte Carlo samples (and separately, the bootstrap 
samples). The mean and standard deviation of validity differences were computed 
across the 1,000 samples, as was the percentage of samples that correctly showed the 
predictor with known highest validity in population. One analysis compared the unit-
weighted composites, another compared multiple regression with the AL composite, and 
a third compared the ASVAB tests. 
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Results 

Many figures containing graphs were generated for the study; however, because of 
their number and size, however, we present only the ones that highlight key findings. 

Standard Deviations of Corrected Validities 

Standard deviations were calculated for the Monte Carlo procedure’s 1,000 
uncorrected and corrected validities that applied to the study’s various conditions. As a 
baseline check, for the multivariate normal case with no selection and no correction for 
range restriction, it was found that the observed standard deviations of the Monte Carlo 
generated distributions were closely approximated by the standard formula for 
calculating the standard error of the correlation coefficient, 

2(1 ) /rsdev N   

(Stuart & Ord, 1994). The standard deviation comparison results are summarized in 
Figure 9-1, which is a plot of the ratio of the multivariate corrected observed validity 
standard deviation to the formula sdevr over selection ratios (SRs) where GM (GS+MC) 
was the selector and AS was the criterion (PC is not listed in the legend because it also 
serves as a criterion). The clear trend was for the simulation-based correction using the 
multivariate formulas to both under-and overestimate the formula depending on the 
selection ratio as well as the predictor. 

 

Figure 9-1. Simulated/Formula-based corrected validity standard deviation 
ratio with GM as the selector/predictor and AS the criterion (PAY97). 
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Figure 9-1 shows 12 graphed lines that apply to 12 predictors, some of which 
represent single tests that constitute the study’s selection composites and others only 
incidentally correlated. (Appendix A provides the PAY97 correlation matrix for the 
ASVAB tests.) We first address the condition of no selection (SR = 1.0) and note that for 
all 12 predictors, the ratio was smaller than without selection, indicating the 
multivariate correction for range restriction had greater precision in estimating the 
population validity than the formula for sdevr. We refer to “precision” as corrected 
validity coefficients that are within a narrow range over trials, whereas “accuracy” refers 
to corrected validity coefficients that are close to the known population values (Wolfe & 
Held, 2010). 

The topmost line in Figure 9-1 at SR = 1.0 applies to the full multiple regression 
equation (MR) involving all ASVAB predictors, which intuitively would not be expected 
to follow the formula for a correlation coefficient’s sampling distribution standard 
deviation. Relative to the other lines across selection ratios, both MR and the explicit 
selection composite GM (GS + MC) were higher; however, all lines trended upward over 
increasingly stringent SRs. At a SR = .60, both MR and GM had an approximate 1.0 
ratio, indicating equality of standard deviation methods.  

At a more stringent SR = .40 in Figure 9-1, most ratios exceeded 1.0, indicating a 
switch in the precision of the observed and formula-based standard error estimates (the 
formula-based method having greater precision). Also noted was the fanning out of the 
ratios at the most stringent SR = .20. The increase in the ratio index and the increased 
spread of the values among predictors may simply be due to the nature of isolated upper 
tail segments of a bivariate normal distribution: They are less representative of the total 
distribution, even with large samples (in this case, n = 800, a large enough sample size 
to expect stable results).  

Chapter 11 provides a discussion of the potential for the multivariate correction for 
range restriction to produce negative corrected validity estimates in small samples when 
the sign is positive in the population. The phenomenon discussed in Chapter 11 applied 
to the current study for the smallest small sample size of 50 and a stringent SR = .20. 
Table 9-3 gives the unrestricted validity coefficients for the two focal ASVAB predictors 
in the study and the two criteria. 

Table 9-3 
Population Validity Coefficients  

 Criterion 

Predictor AS PC 

GM  .65 .71 

GW .50 .78 

 Notes: GM = GS + MC; GW = GS + WK. Test names are given on the second page of this chapter 
and test descriptions in Chapter 2 of the Introductory Manual. 
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Next, we attempted to account for the differences in the validity standard deviation 
ratios among predictors by relating them to the squared population validity coefficients. 
Figure 9-2 depicts a simplified situation where there is no selection and where the 
sample size is the largest in the study (n = 800).  

 

Figure 9-2. Relation between standard deviation ratios and squared 
population validity coefficients among predictors (no selection; n = 800). 

Figure 9-2 depicts a correlation of .78 between the ratio index and the population’s 
squared validity coefficients across the various predictors with varying known levels of 
predictive validity. It appears that smaller population validity coefficients are associated 
with smaller standard errors from multivariate range corrections compared to the 
standard error formula, but it is not apparent what might be the reason.  

Effect of Predictor and Criterion Skew on Range-Restriction Corrections 

Recall that with the Forward Skew condition in the population, the predictors have 
the greatest skew, whereas the criteria have the least skew. In the Reverse Skew 
condition, the situation is reversed. Figure 9-3 allows us to examine the effects of skew 
sign and magnitude on validity accuracy (average bias in the simulations) for both 
conditions for the study’s selection ratios (the GM composite as the selection variable), 
the largest sample size (n = 800), and three of the study’s skew values (-1.5, 0, +1.5).  
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Figure 9-3. Sample validity bias across selection ratios with GM selection 
and GM predicting AS (Forward and Reverse Skew, n = 800). 
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The top graph in Figure 9-3 applies to the Forward Skew condition (larger skew on 
the predictors and less on the criterion) and shows relatively no bias in the multivariate 
range correction at zero skew and over the span of increasingly positive skew values. 
There is, however, negative bias for negative skew, with more bias with increasingly 
stringent selection ratios. In contrast, the bottom graph in Figure 9-3 applies to the 
Reverse Skew condition (larger skew on the criterion and less on the predictors). Figure 
9-3 shows a systematic increase in bias at increasingly stringent selection ratios with 
large positive bias associated with the -1.5 negative skew condition and slightly lower 
bias, but negative, for the positive skew condition.  

Next, we addressed whether it is possible to identify the “best” composite in a small 
sample under skewed conditions. Identifying the predictor with the largest validity 
coefficient is always a concern in small samples due to large sampling error, but we 
added the data condition of skewness to gather more insight into how predictor and 
criterion score distributions affect the already potentially unstable validity results in a 
small sample. It was important to consider which predictor/criterion pair to use in 
demonstrating the best composite identification percentage, because the magnitude of 
the population validity difference depended on which criterion was used (AS or PC). We 
chose the PC criterion for both GM and GW to predict because the population validity 
differences were smaller than when AS was the criterion (.78 - .71 = .07 for the GW – 
GM validity difference when PC was the criterion compared to .65 - .50 = .15 when AS 
was the criterion).  

As many readers of this document may know, with use of the current ASVAB, 
typically the range of incremental validity provided by the optimal composite over one 
in operational use is not much more than .02 to .05 (assuming final school grade in 
training is the criterion). However, the fact that many of the current military ASVAB 
composites are highly correlated at this time does not mean that they will be in 
perpetuity.6 Further, identifying the best composite (speaking only in terms of validity 
coefficient magnitude in this chapter) would seem to be as important if not more so 
given the sample size is very small in a particular ASVAB validation/standards study 
and there is not much confidence that the magnitude of multivariate range corrected 
validity coefficients actually reflect the population values. 

Figure 9-4 shows the accuracy of identifying the “best” composite predicting PC 
(with GW as the selection variable this time) as the percentage of 1,000 Monte Carlo 
samples that GW was identified as having a larger validity coefficient (.78) than GM 
(.71) resulting from the multivariate range correction. As with Figure 9-3, Figure 9-4 
shows both the Forward and Reverse skew conditions as separate graphs. What differs 
in Figure 9-4 is that that the y-axis is “Percent Correctly Identified” rather than “Validity 
Bias” (in Figure 9-3). Also, the sample size now is the smallest n = 50 compared to the 
study’s largest n = 800, the selector is GW rather than GM, and the criterion is PC 
rather than AS.   

                                                      
6
  As recommended by the ASVAB review panel (Drasgow, Embretson, Kyllonen, & Schmitt, 2006), several 

potentially new ASVAB classification tests are being validated for possible inclusion in a future ASVAB. 
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Figure 9-4. Best composite identified with GW selection comparing GW and 
GM predicting PC (Forward and Reverse skew, n = 50). 
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As seen in Figure 9-4, the forms of the two Forward and Reverse skew conditions 
mirror the forms in Figure 9-3. That is, the impact of large skew on the set of predictors 
treated as explicit selectors in the multivariate range correction is largely 
inconsequential to both validity bias over increasingly stringent selection ratios but also 
in identifying the best predictor over selection ratios, but is consequential when large 
skew is placed on the criterion.  When the load of skew is reversed in this study 
(criterion getting the most), there are extreme results with both indices (validity bias 
and identifying the best composite) regardless of sample size (Figure 9-3 with n = 800, 
Figure 9-4 with n = 50). We note that with the n = 800 sample, GW with validity of .78 
was identified 100% of the time over GM with .71 validity, showing that a sample size as 
small as 50 has drawbacks, at least in this simulation study without the benefit of having 
a more adequate real life criterion variable (e.g., the Navy’s final school grade for 
measuring training performance). We also note again that the validity difference of .07 
to detect was not set, but a feature of the ASVAB tests chosen to serve as surrogate 
criterion variables and the ASVAB composites chosen to serve as the selectors/ 
predictors.  

By now, it should be clear that the effect of skewness on the accuracy of range-
restriction corrections is not a simple one. It involves complex interactions with 
selection ratio, sample size, and the particular selectors and criteria used. The 
magnitude and direction of the effects seem to depend on the particular combinations of 
selectors and criteria. Further, from sampling theory, sample size will play a part even in 
the best of conditions.  

We further investigated the role of sample size in the ability to at least detect the 
“best” composite assuming our data conditions were perfect. Table 9-4 shows the “hit” 
rate over all of the study’s selection ratios for three pairs of the ASVAB predictors and 
PC as the criterion: (a) GW (GS + WK) compared to EL (AR + MK+ EI+ GS, (b) MR 
(optimal regression-weighted GS + AR + WK + MK + EI + MC + AO) compared to the 
same tests unit weighted, and (c) the single ASVAB tests, WK compared to AR.  

 Table 9-4 shows several interesting results for data that do not violate the 
multivariate range correction assumptions (i.e., the data are multivariate normal data). 
First, the predictor with the largest population validity coefficient is, not surprisingly, 
the multiple regression “best fit” equation, MR (table notes give population multiple 
correlations) with Rxy = .826. The comparison validity applies to the unit weighted 
version of the equation (AL) with Rxy = .795 for a population validity difference of .031. 
Detecting MR as the best predictor at a 94% accuracy range (a form of power) requires a 
sample size of 150. In contrast, the single ASVAB test pair (WK – AR) requires n= 350. 
The lower sample size required for the MR/AL validity difference detection is consistent 
with the larger MR and AL validity in predicting PC as compared to WK and AR, and 
with the “precision” of MR and AL in terms of lower standard errors in their 
multivariate corrected validity estimates. 
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Table 9-4 
“Hit Rate” with and without Selection for Best Predictor across Sample Sizes 

with PC as the Criterion (1,000 Monte Carlo Replications) 

 

Sample Size 

Predictor Pairs 

GW – EL 

%>0 Diff 

MR – AL 

(%>0 Diff) 

WK – AR 

(%>0 Diff) 

Selection Ratio = 1.00, no selection 

50 59 35 72 

75 62 54 77 

100 63 72 79 

150 70 94 85 

225 69 99 90 

350 74 100 94 

500 79 100 96 

800 84 100 99 

Selection Ratio = .20 based on GM selection 

50 59 44 69 

75 60 59 74 

100 61 74 78 

150 66 91 83 

225 68 99 88 

350 74 100 93 

500 78 100 96 

800 83 100 98 

 Notes:  
GW = GS + WK with Rxy = .781; EL = AR + MK + EI + GS with Rxy = .771 for a .010 validity diff.  

MR = regression weighted GS + AR + WK + MK + EI + MC + AO with Rxy = .826;                         

AL = unit weighted tests with Rxy = .795 for a .031 validity diff. WK Rxy = .764; AR Rxy = .723 for a 
.041 validity diff. 

 The second point of interest in Table 9-4 is that even with a stringent selection ratio 
(recognizing that multivariate normal without skew was used in the simulations), the 
results across the three predictor pairs are not too dissimilar. For example, the 150 and 
350 sample size requirement for at least a 90% hit rate is the same for both the 
unrestricted population and the SR = .20 selected samples.  

 The last point of interest we discuss in Table 9-4 is the relatively low hit rate for the 
GW/EL validity comparison where the population difference is a small .010. Although 
this is a small validity increment, it is typically observed in ASVAB validation/standards 
studies and could be a deciding factor as to which composite to recommend. In this 
small validity difference case at relatively large validity coefficient magnitudes, a sample 
of n = 500 was required to approach the .80 hit rate in identifying the GW as the best 
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predictor. In ASVAB validation/standards studies, a hit rate as small as two-thirds could 
be considered adequate, and we see that n = 150 gives us this degree of confidence (i.e., 
66% hit rate even when selection is stringent).   Finally, we remind ourselves that the 
comparisons in Table 9-4 involve only two predictors and that the military tends to 
evaluate many more in a particular study. Chance factors will diminish our confidence 
the more composites we compare, although perhaps not to any substantial degree if we 
are not so concerned with the magnitude of the validity difference but instead with only 
which composite is “best.” 7 Nevertheless, the greater the number of comparisons and 
the smaller the population validity difference between composites as well as the 
magnitude of the validity coefficients (larger being better), the greater the likelihood 
that a wrong composite will be identified as best, all other things being equal.  

Multiple Regression vs. Unit-Weighted Composites 

Unit-weighted composites are used in practice because it is believed that they will be 
more stable and generalizable than multiple regression derived weights, especially in 
small samples. In this study’s simulations, multiple regression always had a larger fully 
cross-validated validity coefficient than any unit-weighted composite, or single test, 
when the sample size was 100 or greater, lending support for regression weighted 
composites using all of the ASVAB tests over unit-weighted composites with some small 
number of ASVAB tests. For sample sizes of 50, however, regression was always 
superior for predicting AS but was second-best for predicting PC. For sample sizes of 75, 
regression was usually (but not always) superior for predicting PC. These mixed findings 
do not support either regression-based weights or unit weights with small samples, but 
do with much larger samples.  

Also, in addition to the corrected cross-validity estimates, it was possible to compute 
the population validity values (using full range population data) using the sample 
regression equations and unit-weighted composites. These population values were often 
lower than the multivariate range corrected validity estimates derived from the sample. 
The result that multiple regression in the population sometimes was not as good for 
predicting PC as one of the composites or tests in the sample, regardless of how large the 
sample size was, occurred mostly when the selection was stringent and the skewness 
was large, complicating the matter.  

Because the population validity is a better index of the actual predictive value of a 
predictor than corrected validity coefficients, which are only estimates, these findings 
suggest that unit weights may be superior to regression weights when skewness and 
selection are extreme. Unfortunately, the population validity is known only in 
simulations such as those performed in this study, never in practice. We encourage the 
reader to explore the literature on regression versus unit weights recognizing that the 
Army has taken the position that full ASVAB regression weighted equations have the 
most utility for their enlisted classification systems.  

                                                      
7
 Dr. Daniel O. Segall reprogrammed a Fortran version of the multivariate range correction Fortran program to 

output a square matrix of the percentage of times (out of 1,000 bootstraps applied to the study sample) that one 

ASVAB composite had a larger corrected validity coefficient than any other included in the study.  
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Bootstrap Means vs. Medians 

One of the purposes of this study was to determine if bootstrapping could help 
identify the best of several alternate predictors by comparing the median versus the 
mean derived in the bootstrap samples. The idea is that by virtue of selecting the 
bootstrap median instead of mean as the central tendency statistic, outlier values would 
have a diminished effect on the corrected validity coefficient. Table 9-5 shows the 
descriptive statistics and the bias that applies to these two central tendency statistics 
(i.e., population minus corrected validity estimates) resulting from the 2,880 
simulations that incorporated the study conditions. 

Table 9-5 
Descriptive Statistics for Bias Associated with Sample Corrected 

Validities across 2,880 Simulation Conditions 

 N Minimum Maximum Mean SD Skewness Kurtosis   

SAMPLE 2,880 -0.233 0.132 -0.00351 0.029312 -0.308   8.263   

MEAN 2,880 -0.326 0.130 -0.00874 0.035965 -2.053 13.381   

MEDIAN 2,880 -0.238 0.132 -0.00295 0.029370 -0.574   9.080   

In Table 9-5, SAMPLE refers to the mean bias generated from the Monte Carlo 
sample, whereas MEAN and MEDIAN refer to bias associated with the mean and 
median corrected validity coefficients generated from the bootstrap of each Monte Carlo 
sample. The Mean column in Table 9-5 could be used to evaluate correction bias. 

Table 9-5 shows that, for the Monte Carlo results (SAMPLE), the mean bias of 
estimating the population validity coefficients resulting from the range restriction 
correction is -.00351, which is close to the value of zero we would expect if there was no 
bias. The mean bias across all of the individual bootstrapped Monte Carlo samples 
based on the mean of each bootstrapped distribution (MEAN) is -.00874, slightly larger 
in magnitude than that observed from the parent Monte Carlo (-.00351). In contrast, the 
mean bias based on the median of each bootstrapped distribution (MEDIAN) is smaller 
(but possibly trivially so) at -.00294. The bootstrap MEAN value appears more biased 
than the bootstrapped MEDIAN value when comparisons are made to the Monte Carlo 
mean (SAMPLE), although the practical difference (3rd decimal place) may (or may not) 
be considered trivial. 

Consistent with the range-corrected validity results supporting the bootstrap 
MEDIAN to be used as the central tendency index to bootstrap, Table 9-5 also shows 
that the bootstrap MEDIAN’s standard deviation (SD = .029370) is comparable to the 
Monte Carlo (SAMPLE) SD (.029312), whereas the bootstrap Mean’s SD (MEAN) is 
larger (.035965). The bootstrap MEAN’s distribution also has larger Skewness and 
Kurtosis than the two counterpart distributions, indicating outlier influence.  

 



 

119 

 

Table 9-6 shows the intercorrelations between the SAMPLE, MEAN, and MEDIAN 
corrected estimates.  

Table 9-6 
Correlations Between Monte Carlo Sample Validity Means, 

Bootstrap Means, and Bootstrap Medians across 2,880 
Simulation Conditions 

 SAMPLE MEAN MEDIAN   

SAMPLE 1.000     

MEAN .956 1.000    

MEDIAN .998 .968 1.000   

Table 9-6 shows that the correlation between corrected validity estimates is largest 
when derived for the Monte Carlo (SAMPLE) and bootstrap procedure that uses the 
median (MEDIAN) rather than the mean (MEAN). Based on the results presented in 
Tables 9-5 and 9-6, the median value of range-corrected validity estimates, not the 
mean, could be considered the appropriate bootstrap statistic when establishing the 
standard error of the bootstrap distribution and the construction of confidence intervals  

Concluding Remarks 

We have reported only some of the findings from the complete study described in 
this chapter, but they are of considerable interest for ASVAB validation/standards 
researchers. First, as noted in Chapter 2, many factors affect the correlation coefficient, 
and the ones of most concern are the integrity of the criterion and the distributional 
properties of the variables. We know a great deal about these features for the ASVAB but 
not for the performance measure that is used to validate the ASVAB. One of the goals of 
the study was to determine if the experimental conditions affected the accuracy of the 
multivariate correction for range restriction, and some conditions did more than others. 
Second, in general, a disproportionate amount of skew on the criterion relative to the 
predictors led to both overestimates and underestimates of the validity coefficient, all 
other things equal.  

We also saw that the Monte Carlo-generated sampling errors of the corrected validity 
coefficients were both larger and smaller than the standard formula that applies to 
bivariate correlation, depending upon the stringency of selection under multivariate 
normal conditions. Fourth, across all of the study conditions, the bootstrap median 
corrected validity coefficient provided a very slight improvement in population validity 
estimates and also in reducing the standard deviation of the estimates, presumably from 
reducing the effects of outlier values.  
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We also explored sample size effects without skew effects and saw that if the 
objective was to identify the “best” composite out of two, a sample size of 500 would be 
required if we had to recommend with a high degree of certainty, say 80% (or a power of 
.80) that we had made the correct decision. Of course, the validity levels we reported 
were large and so detecting the best composite for low magnitudes validity coefficients 
would require even larger sample sizes (addressed in the next chapter).  

Finally, we might have a better ASVAB validation situation when using the military’s 
training grades as the criterion than is depicted by this simulation study for multivariate 
normality (without skew). That is, at least for the Navy, final school grade in training 
reflects better differentiation in individuals’ performance than might be expected at 
stringent selection ratios imposed on a bivariate or multivariate normal distribution. 
But even though the military does not typically encounter the extreme conditions that 
were constructed in this simulation study, practitioners should be aware of them when 
conducting ASVAB validation/standards studies. Understanding the interactions of the 
relevant selection factors should be an important research goal.  

The next chapter provides a section on the power of establishing a validity 
magnitude effect and the issues involved in comparing validity coefficient differences in 
personnel selection situations. The chapter also provides a brief discussion about 
regression methods, with the following chapter considering a variable’s suppressor 
effects that enhance a full least squares regression equation’s predictive optimization, as 
was observed in the study results reported in this chapter.  
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Chapter 10. 
 Assumption Violation Effects on Range Correction 

Accuracy 
Jeff W. Johnson  

Introduction 

As if there were not already enough statistical corrections we need to be concerned 
about in estimating our population ASVAB validation coefficient (i.e., corrections for 
both restriction in range and unreliability - measurement error), we now consider 
factors that impact the accuracy of these corrections. The joint corrections worked 
through in Chapter 6 do not consider sampling error or that the assumptions for 
correcting for range restriction may not have met (i.e., linearity, homoscedasticity, and 
explicit selection in the simple bivariate case of X and Y variables). This chapter focuses 
solely on the effects of assumption violations on the accuracy of the range corrected 
validity coefficient.  

Background 

To review briefly, if a group has been selected solely on the basis of their scores on 
some variable X, then this is known as explicit selection on X, and X is referred to as the 
explicit selection variable (Lord & Novick, 1968). When the variance of x in the selected 
group is smaller than the variance of X in the population, as is usually the case, the 
correlation between x and a criterion (y) in the selected group (rxy) will underestimate 
the population correlation (Rxy). Pearson (1903) developed a correction formula for 
estimating Rxy given the selected group’s correlation and the ratio of the variance of the 
predictor in the selected and total groups (sx

2/Sx
2) (see Chapter 2’s Table 2-4). 

Another way that sample variability may be restricted is in the case of incidental 
selection (Lord & Novick, 1968). Suppose Z is a proposed predictor of Y. The range of 
both Y and Z is restricted to the extent to which they are both correlated with the explicit 
selection variable, X. Both Y and Z are then termed incidental selection variables. 
Pearson (1903) also developed a formula for the estimation of the population correlation 
between Y and Z, presented in Chapter 5 in the section about the trivariate case (the 
incidental/indirect restriction in range case). 

Sackett and Yang (2000) developed a classification scheme for different range-
restriction scenarios and we have recommended a read on their work in prior chapters. 
These scenarios were based on various combinations of the following facets: (a) 
variable(s) on which selection occurs, (b) whether unrestricted variances for relevant 
variables known, and (c) whether a possible third variable is measured or unmeasured. 
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The interested reader is advised to consult this article if the selection situation is more 
complex than the explicit or incidental situations described here.8 

Review of Range Restriction Correction Assumptions 

Correction formulas for explicit and incidental range restriction are based on several 
assumptions that have been previously discussed but are reiterated here: (a) there is 
linearity of regression of Y on X, (b) the conditional variance of Y given X is constant at 
all values of X, and (c) selection is based solely on X. The “a” and “b” are considered 
distributional assumptions and “c” a selection assumption. An additional assumption in 
the three-variable case is that the covariance of Y and Z given X does not depend on X 
(Lord & Novick, 1968). The three-variable case is the simple case of the general 
multivariate case, and many more X and many more Y variables can apply in one 
multivariate range restriction correction. Lawley (1943) relaxed the normal distribution 
assumption in the multivariate case, and this makes intuitive sense because we know 
that many inferential statistics are robust to violations of normality and that linearity 
can exist between variables that are not exactly normally distributed. 

Several authors (e.g., Ghiselli, 1966; Guion, 1965; Linn, 1968; Lord & Novick, 1968) 
have noted that test score data often fail to satisfy the assumptions of linearity and 
homoscedasticity. Lee and Foley (1986) showed empirically that the slope of the 
regression line and the dispersion of Y on X are often not constant throughout the range 
of test scores. Therefore, it is reasonable to question the accuracy of the corrections 
when these assumptions are violated. 

Studies of Assumption Violations 

Greener and Osburn (1980) simulated test score data to examine the effect of 
assumption violations on the accuracy of the bivariate correction formula for explicit 
selection. They studied three general types of distributions: (a) sigmoid, (b) football, and 
(c) fan. Sigmoid distributions violate the assumption of linearity because of flattening in 
both tails of the bivariate distribution. Lee and Foley (1986) found that the relation 
between the Armed Forces Qualification Test (AFQT) and the ASVAB Mathematics 
Knowledge (MK) approximated a sigmoid; however, we remember that the AFQT, while 
sometimes appearing normally distributed in a recruit population because high aptitude 
youth tend to seek college options and low aptitude youth do not qualify for the military 
service), is scored on the percentile metric so the investigation bivariate normality was 
not totally appropriate.  Football-shaped distributions violate the homoscedasticity 
assumption because the conditional variance of Y given X is at its maximum in the 
center and decreases in the tails of the distribution. Fan-shaped distributions also 
violate the assumption of homoscedasticity in that the conditional variance of Y given X 
increases systematically from one tail to the other.  

                                                      
8 Note that there is a typo in Sackett and Yang’s (2000) Equation 7 presenting the corrected population 
variance-covariance matrix in the case of multivariate correction. The value in the upper right quadrant of 

the matrix should be 
*

,

1*

,, pnppppp VVV 


 (P. R. Sackett, personal communication, March, 2000). 
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Greener and Osburn (1980) found in their investigations that, with a sigmoid 
distribution, the corrected correlations increasingly underestimated the population 
correlations as the degree of truncation of the distribution increased (i.e., the selection 
ratio became more stringent). In all cases, however, the corrected correlation was a 
more accurate estimate of the population correlation than was the uncorrected 
correlation. The trend in the fan distribution was for the corrected correlation to 
gradually underestimate the population correlation to a greater extent as a function of 
the degree of truncation and the size of the population correlation. The corrected 
correlation was superior to the uncorrected correlation in all cases.  

With the football distribution, the correction overestimated the population 
correlation in samples that were truncated 50% or more. There was also a tendency for 
corrected correlations to overestimate the population correlation as a function of its 
size. The corrected correlation was not as accurate as the uncorrected correlation in 
highly restricted samples. The general conclusion was that for moderate degrees of 
restriction (i.e., selection ratios of .60 or higher), the corrected correlation is a 
reasonably good estimate of the population correlation and is much better than the 
uncorrected correlation. For more restrictive selection ratios, the corrections become 
progressively worse in estimating the population correlation, and unacceptable 
overestimates result from the football distribution. 

Although Lawley (1943) relaxed the normality assumption in the multivariate 
correction for range restriction, Brewer and Hills (1969) showed that skewed 
distributions can affect linearity, and therefore the accuracy of the estimation of the 
population correlation.  

Holmes (1990) developed a mathematical framework to investigate the effects of 
violations of the assumptions of linearity and homoscedasticity. Simple expressions 
were derived algebraically for both the selected group and corrected correlations in 
terms of the population correlation in the sigmoid, fan, and football situations. By 
plugging in preset parameter values, Holmes was able to determine what selected group 
magnitude of correlation rxy could be expected for different levels of unrestricted 
validities Rxy values and different degrees of selection (akin to Table 2-4). The results 

were very similar to the results of Greener and Osburn (1980). 

Gross and Fleischman (1983) studied distributions that simultaneously violated the 
assumptions of linearity, homoscedasticity, and selection only on X. They found that the 
correction was not robust with respect to these simultaneous violations, but it was more 
accurate than the uncorrected correlation much of the time. Gross and Fleischman 
(1987) found that the correction formula performed poorly for certain nonlinear 
regression forms and recommended that it should not be used unless the population 
correlation was thought to be large and sample sizes were large. 

Johnson and Sager (1991) conducted the only study that has investigated the effects 
of assumption violations on correlations corrected for range restriction due to incidental 
selection. The authors generated simulated test score data that approximated sigmoid, 
fan, and football distributions, and observed the effects of different levels of selection 
and correlation between the explicit selection variable and each of two incidental 



 

125 

 

selection variables. Similar to the explicit selection case (e.g., Greener & Osburn, 1980), 
when the assumption of linearity was violated by flattening in both tails of the XY 
distribution, it appeared to be safe to correct for range restriction in all cases. The 
corrected correlation was at least as good an estimate as the uncorrected correlation 
except in the most extreme conditions. 

Things were not so simple, however, when the assumption of homoscedasticity was 
violated. With the football-shaped distribution, the corrected correlation usually more 
closely estimated the population correlation than did the uncorrected correlation. The 
corrected correlation, however, was also much more likely to be an overestimate. Very 
large overcorrections usually were found only at low selection ratios. 

The most troubling distribution was the fan distribution. Both the corrected and 
uncorrected correlations had a tendency to overestimate the population correlation 
when Rxz < Ryz. This phenomenon, however, was more pronounced for the corrected 

correlation. The uncorrected correlation in this case more closely estimated the 
population correlation. Correcting for range restriction, however, improved the estimate 
dramatically when Rxz > Ryz. 

Offsetting Violations 

As depicted in the previous section, the correction for range restriction’s accuracy 
depends on adherence to the underlying assumptions for performing them, the severity 
of the violations, the degree of restriction in range, and sample size. Further, the 
influence of assumption violations on corrections for range restriction is actually more 
complex than is evident when violations are examined separately. For example, the 
linearity violation may result in an overestimate of the population (unrestricted) validity 
coefficient when the heteroscedasticity assumption holds, but if each assumption is 
violated in certain ways, they could offset each other and result in an accurate validity 
estimate. The offsetting linearity and heteroscedasticity violations can be evaluated in 
the reduced form of the unrestricted validity coefficient: 

 ,
SS

S
 = R

YX

XY
XY  (10-1) 

where Rxy represents the corrected (estimated) population validity derived from the 
known sample regression coefficient b, the known population standard deviation Sx, and 
the derived (estimated) standard deviation. In a further reduced form of Equation 10-1 

S

bSx
 = R

Y

XY  (10-2) 

(see Held & Foley, 1994, for the derivation of this formula and its relation to the 
accuracy quotient Q derived by Gross, 1982). Gross showed that, when simultaneous 
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violations of the linearity and heteroscedasticity assumptions are such that ratio of the 
numerator value to the denominator are favorable, there can be an offset with an 
accurate estimate of the population validity. Because Sx is known, the ratio of b to Sy in 
Equation 10-2 becomes the determining index of correction accuracy. In fact, it is 
possible for b (sample) and Sy (estimated) to deviate slightly or wildly from the 
population values to produce an accurate validity estimate.  

Assuming any specific sample size and population validity, would the standard 
deviation of a bootstrapped distribution of corrected validity coefficients be larger when 
there are large offsets in b and SY than when there are small offsets? The bootstrap 
distribution SD might be larger when there were large offsets because there would be 
the potential for more extreme pairs of non-offsetting b and SY values to be picked up 
through the “random selection with case replacement” bootstrap sample forming 
procedure. One could picture an upward curving pear as the example of an offsetting 
case with the slope and conditional Y SDs lowering as predictor scores lower.  

Concluding Remarks 

Violations in the assumptions for performing the correction for range restriction 
might or might not lead to an inaccurate estimate of the population validity. The idea 
that assumption violations can offset each other should be well understood. The 
personnel selection practitioner should consider understanding the sample as well as 
possible. A clinical approach could be used where a sample’s adequacy is assessed by 
evaluating the consistency of the conditional prediction errors and regression weights 
across segments of the explicit selector score range, and also by studying the residuals 
from the sample regression analysis (y regressed on x). Of course, a clinical approach 
would require an adequate sample size and a selection ratio that is not too stringent. 
Even in the best of circumstances, we can never accurately extrapolate a sample b and sy 
situation to the unrestricted population. The next chapter describes how small sample 
size and stringent selection ratios can result in wildly different range corrected validity 
estimates across samples. 
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Chapter 11. 
 The Potential for a Negative Range Corrected Validity 

Janet D. Held and Thomas R. Carretta 

Introduction 

From a Monte Carlo study reported in a later chapter, we will see that the 
distributions of validity coefficients corrected for range restriction could, in principle, 
include corrected coefficients with a negative sign when the population sign is positive. 
Ree, Carretta, Earles, and Albert (1994) provided a discussion with empirical examples 
regarding the potential for a corrected validity coefficient to change sign from its 
uncorrected condition. The issue arose when Air Force psychologists noted the sign 
change phenomena was sometimes observed for groups, particularly in pilot selection 
(Thorndike, 1949). The discussion initiated by Ree et al. (1994) is extended in this 
chapter with an examination of the basis for a sign change using conceptually simplified 
range restriction correction formulas (univariate and multivariate). The study data 
reported in this chapter were scores on the Armed Services Vocational Aptitude Battery 
(ASVAB) obtained from a Navy applicant population at a time when the battery 
contained the Numerical Operations and Coding Speed tests. A suitable criterion was 
designated as one of the 10 ASVAB tests so that population (unrestricted) validity 
coefficients were known. Some of the restriction in range formula derivations presented 
in previous chapters are repeated here for clarity. 

How Negative Range Corrected Validities Can Occur 

The general restriction in range problem (Pearson, 1903; Lawley, 1943) in military 
personnel selection research is to find the predictor/criterion correlation (validity) for 
the applicant population of interest, for which only predictor (selection instrument) 
information is available. On the basis of complete predictor/criterion information 
obtainable for a restricted subset of the applicant population (students selected at some 
predetermined minimum aptitude level), correction formulas can be used to estimate 
the unrestricted applicant population validity. As noted several times, the unrestricted 
applicant population is, theoretically, the one from which future recruits be selected for 
training school. The accuracy of this estimated (corrected) validity is contingent on the 
degree to which certain data assumptions have been met. These assumptions for the 
bivariate case of one predictor and one criterion are (a) linearity of regression of the 
criterion, y, on the predictor, x; (b) homoscedasticity of y error variance for all values of 
x; and (c) selection having occurred solely on x. The bivariate formula (correction for 
explicit selection) commonly encountered in the literature and cited in previous 
chapters (Case 1 from Guilford, 1965, p. 141; Case A from Thorndike, 1982, p. 210) is  
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Equation 11-1 can be conceptually simplified in the more familiar form, 

 
SS

S
 = R

YX

XY
XY ,    (11-2) 

where RXY is the corrected validity coefficient (not a multiple correlation), SXY represents 
the unknown unrestricted population covariance, SY represents the unknown 
unrestricted population criterion standard deviation, and SX is the known unrestricted 
population predictor standard deviation. SXY is derived from the linearity identity where 
unrestricted and restricted slopes are assumed equal. SY is derived from the 
homoscedasticity identities where unrestricted and restricted standard errors of 
estimate across the entire range of the predictor are assumed equal. These slope and 
error identities, as we have seen in previous chapters are, respectively,  

22
// xxyXSY ssbSSB      (11-3) 

).1()1( 222222
xyyeXYYE rssRSS      (11-4) 

Without solving the problem here (see Gulliksen, 1950 and Held and Foley, 1994 for 
formula applications using the ASVAB, as well as Chapter 5 of this document), the 
numerator in Equation 11-2 (the corrected covariance) presents the only possible 
opportunity for a negative sign. Further, from the linearity assumption, the corrected 
covariance is derived applying the restricted sample weight (unstandardized regression 
coefficient, or slope). Formally,  

22
// xxyXXY ssbSSB      (11-5) 

2

XXY bSS  ,   (11-6) 

where the sign of b determines the sign of both the restricted and corrected covariance, 
and therefore, the restricted and corrected validity coefficient. 

The bivariate correction just reviewed is the singular case of the general multivariate 
correction (Gulliksen, 1950, Chp 13; Lawley, 1943, and Chapter 5 of this document). As 
described in Chapter 5, the multivariate correction formulas are merely matrix algebra 
extensions of the univariate case. The multivariate correction treating incidental selector 
variables as explicit is typically applied by military psychologists in an attempt to isolate 
all selection factors (Novick & Thayer, 1969) and because the procedure has been shown 
to be, generally, more accurate than the univariate correction (Booth-Kewley, 1985). The 
multivariate correction has also been shown to be more accurate with very large samples 
under violations of the correction assumptions and at stringent selection ratios, where 
inaccurate corrections are typically found. 
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 A common correction assumption violation is heteroscedasticity where a flattening 
of the regression line is observed due to y variances typically being smaller for extreme 
values of x than in the middle range of x (Lord & Novick, 1968, p. 148). This study of 
small samples, however, reveals the inadequacies of the multivariate correction with 
small samples, where sampling errors in regression weights are high (“bouncing betas”) 
exaggerated at very stringent selection ratios where there may be a flattening of the 
sparse data points. 

Taking Equation 11-2 as the conceptually simplified correction formula for the 
bivariate case, we only need to generalize the multivariate covariance derivation parallel 
to SXY. That parallel is in matrix algebra notation,  

XXyxXY CwC  ,    (11-7) 

where, for multiple predictors but only one criterion, CXY and w′
yx are covariance and 

full least squares regression weight vectors, and CXX is a square matrix of predictor 
(selector) variances/covariances. As in the bivariate case, CXY is derived from linearity 

identities; however, the identities now apply to multiple selection variables selectors 
(e.g., ASVAB tests with known population parameters, are treated mathematically as 
explicit selectors even though operationally, the explicit selector may be a composite 
formed from only a few). Each covariance term, CXiY in CXY, is derived through matrix 
algebra.9 This involves summing the multiplicative terms in two vectors: the particular 
selector test’s variance with that selector’s regression weight, and the subsequent 
covariances between that selector and every other selector multiplied by that other 
selector’s weight. Given all selector variables are positively correlated, negative 
covariances in CXY will be obtained through the matrix multiplication, if and only if, at 

least one weight is negative. And, there must be a sufficient magnitude or number of 
negative weights to produce the negative corrected covariance term (and thus, the 
negative corrected validity). 

For predictors and criteria that are positively correlated in an unrestricted 
population, this unusual and theoretically impossible positive-to-negative sign change is 
a result of inadequate data. Next, we describe a study involving small samples and 
stringent selection to illustrate the unusual but theoretically possible case of a negative-
to-positive sign change. All predictors and the criterion are positively correlated in this 
study’s unrestricted population. 

 

  

                                                      
9
 Horst (1963) provides a clear presentation of matrix algebra for social scientists. 
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A Small Sample Simulation Study under Stringent Selection 

The ASVAB selector composite, VE + AR (Verbal + Arithmetic Reasoning) was used 
as the explicit selection variable in a study examining the positive-to-negative range 
corrected validity coefficient phenomenon. VE + AR composite scores were used to 
select five random samples of 50 cases each from a Navy applicant population at the .10 
selection (acceptance) ratio. The criterion was the ASVAB Mechanical Comprehension 
(MC) test, which was consistent with a prior study of Navy mechanical school 
classification composites (Held & Foley, 1994) where MC was used as a surrogate 
criterion but where the sample sizes were exceeding large.  

Validities were corrected for range restriction in each of the five samples using both 
the univariate correction and two-predictor variable modified multivariate correction 
where (a) VE + AR was treated as the sole explicit selector and (b) VE and AR were 
entered separately into a multivariate correction as separate explicit selectors. Table 11-1 
shows range corrected validities resulting from both correction procedures and the 
regression weights used in each correction.  As both methods produced the same range 
corrected validities, they are listed only once. 

Table 11-1 
Uncorrected and Corrected Validities and Unstandardized Regression 

Weights used in Univariate and Modified Multivariate Corrections 

  Univariate Case Multivariate Case 

   Weights  Weights 

Groups   ru   Rc VE + AR   Rc    VE  AR 

Unrestricteda .687 .687 .451 .687 .425 .472 

Restrictedb .184 .838 .601 .838 .549 .649 

Sample 1 (n = 50) .145 .759 .432 .753 .631 .274 

Sample 2 (n = 50) .092 .559 .301 .528 .483 .118 

Sample 3 (n = 50) .251 .917 1.004 .913 1.079 .912 

Sample 4 (n = 50) .121 .682 .332 .682 .395 .283 

Sample 5 (n = 50) .315 .938 1.031 .933 1.386 .765 
Note: Ru is the uncorrected validity and Rc is the corrected validity, which was the same for each method. 

The composite VE + AR (Verbal + Arithmetic Reasoning) is the explicit selection variable. 
a147,288 Navy applicants. 
b13,684 Navy applicants selected by VE + AR at selection ratio = .10.  
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Table 11-1 only lists one set of range corrected validities for the five samples because 
the values were the same for both correction methods. None of the range corrected 
validities were negative nor were the test weights. The variation in the magnitude of the 
range corrected validities were tied to the magnitude of the uncorrected validities, which 
were subject to the small sample size (n = 50), the stringent .10 selection ratio, and the 
nature of the data at extreme segments of score distributions. Table 11-2 provides results 
for the eight-variable multivariate correction (the two explicit selection variables VE and 
AR augmented by the six remaining ASVAB incidental selection variables treated as 
explicit). Sample 4 of Table 11-2 shows a negative sign change in the corrected validity, 
which can be attributed to the large (erratic) negative weight for AR and its influence in 
the matrix algebra derivation of the AR covariance term (with MC). 

Table 11-2 
Uncorrected and Corrected Validities and Unstandardized Regression 

Weights used in Eight Variable Multivariate Range Corrections 

 Weights 

Groups ru Rc VE AR MK AS GS EI NO CS 

Unrestricteda .687 .687 .065 .224 .173 .319 .137 .173 -.050 .029 

Restrictedb .184 .719 -.070 .226 .264 .247 .168 .207 -.040 -.008 

Sample 1  
(n = 50) 

.145 .822 .392 .411 .354 .164 -.180 -.133 .280 -.194 

Sample 2  
(n = 50) 

.092 .345 -.363 -.177 .164 .247 .578 .012 .095 -.058 

Sample 3  
(n = 50) 

.251 .870 .383 .622 .066 .266 .363 .121 .112 -.172 

Sample 4  
(n = 50) 

.121 -.316 -.291 -1.044 .527 .318 .537 .004 -.057 -.065 

Sample 5  
(n = 50) 

.315 .878 .793 .479 .503 .608 -.237 -.134 -.063 -.199 

Note: ru and Rc are the uncorrected and corrected validities, respectively. VE + AR (Verbal + Arithmetic 

Reasoning) is the explicit selection variable. The other ASVAB tests applied as explicit selection variable in 

the correction are Mathematics knowledge (MK), Auto and Shop Information (AS), General Science (GS), 
Electronics Information (EI), Numerical Operations (NO), and Coding Speed (CS). Mechanical 

Comprehension (MC) is the criterion. Raw score weights were derived from a stepwise multiple regression 
procedure.  
a147,288 Navy applicants. 
b13,684 Navy applicants selected by VE + AR at the .10 selection ratio. 
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To explain the negative-to-positive sign change, we examined the three-variable 
correction case of one explicit selector variable (VE + AR [VEAR]) and two incidental 
selector variables (the criterion, MC, and a candidate replacement composite, VE + NO 
+ CS [VENOCS]). The three-variable formula commonly encountered in the literature is  

1] - )s/S[(r + 11] - )s/S[(r + 1
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(Case 3 from Guilford, 1965, p. 343; Case C from Thorndike, 1982, p.213), where z is 
designated as the incidental selector composite, and x and y are designated as the 
explicit selector and incidental criterion variables, respectively. As with the criterion, 
population values for z are unavailable (at least treated mathematically so). As in the 
bivariate case, Equation 11-8 can be conceptually simplified to Equation 11-2 and further 
to the multivariate case using matrix notation. (see Horst, 1963, for matrix algebra 
applications for social scientists.) However, CXY, the corrected VE + NO + CS and MC 
covariance (individual composite test covariances summed for the composite covariance 
term), is taken from the CYY matrix of derived incidental variance/covariance terms, as 
is the criterion standard deviation (square root of the diagonal variance term). 

The potential for a negative-to-positive sign change for the incidental selection 
composite validity can be evaluated from the equation 

 )c - C(w + c = C xyXY
/
yxyyYY   (11-9) 

derived from the homoscedasticity identities.  

Conceptually it is simpler to illustrate the inappropriate positive to negative range 
corrected validities graphically as in Figure 11-1 where the two predictors/selection 
instruments are not highly correlated in the unrestricted population. 

 

Figure 11-1. Bivariate predictor/criterion plot for the explicit and incidental selector 
variables. 
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We take from Figure 11-1 that complete truncation of the explicit selector at the 
stringent acceptance cutscore assures that at least a few high criterion outliers will exist 
for at least a few low-performing incidental selector scorers. Conversely, at least a few 
low outliers will exist for at least a few high-performing incidental selector scorers. If the 
incidental selector correlated highly with the explicit selector, the two graphs would be 
more similar. In fact, for this study, no negative restricted validity estimates were found 
for other composites that were more highly correlated with VE + AR. 

The data used to generate the two graphs in Figure 11-1 are from Sample 1 of this 
simulation study. Note the stable regression weights for that sample (Composite scores 
are sums of standardized test scores: M = 50, SD = 10 in the ASVAB normative 
population). The restricted validity estimates of the explicit selector, VE + AR and the 
incidental selector, VE + NO + CS, are .145 and -.242, respectively. The restricted 
intercorrelation of the two selectors is .188. The unrestricted validity estimates for VE + 
AR and VE + NO + CS are .678 and .420, respectively. The unrestricted intercorrelation 
of the two selectors is .700. The explanation for the second graph and the obvious 
negative predictor/criterion relation stems from the rather low unrestricted validity of 
the incidental selector compared to the moderate validity of the explicit selector, and the 
moderate intercorrelation of the two selectors.  

An Example Problem 

The following is a simplified presentation of the multivariate correction for 
incidental range restriction for the three-variable case graphed above using the data 
from Sample 1 (see Table 11-2). 

CXX = [210.05] (unrestricted VE + AR SD); cxx = [3.31] (restricted VE + AR SD) 

cxy = [1.43 3.78] (restricted VE + AR covariances with MC and VE + NO + CS) 

cyy =  [ 29.53 -14.52 ] (restricted MC/VE + NO + CS incidental variable) 

[-14.52 122.01] (variance/covariance matrix) 

wxy = c-1
xxcxy = [1/(3.31)][1.43 3.78] = [0.43 1.13] 

CXY = CXX wxy = w/
yx CXX = [210.05][0.43 1.13] = [90.32 237.36] 

CYY = cyy + w/
yx[CXY - cxy] = (corrected MC and VE + NO + CS variance/covariance 

matrix) = [ 67.75  85.92 ] [ 85.92  385.96 ], and thus the estimated population validity 

coefficient RXY = 85.92 / (19.65  8.23).  

The two denominator values, 19.65 and 8.23, were derived from CYY as, respectively, the 
square roots of the MC and VE + NO + CS variance terms (in the diagonal). The 
corrected validity of VE + NO + CS is .530, which deviates from the actual value of .420 
but is of the correct sign. 
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The Potential for Small Sample Stable Results: A Navy Study 

It is not necessarily the fact that actual ASVAB multivariate corrected validity 
coefficients involving small samples at very stringent selection ratios will produce 
erratic regression weights as demonstrated in simulation studies involving multivariate 
normal distributions. In working with Navy schoolhouse grading systems, we note that 
much effort goes into the development of a high integrity criterion measure. Multiple 
progress tests are administered during the course of training that, for the most part, 
affect the final school grade. The progress tests and final test are developed to address 
the recruit abilities resulting from the ASVAB standard. In contrast, the underpinnings 
of the range correction formulas assume bivariate normality in the explicit selection 
two-variable case (x,y) and multivariate normality in the more than two variable case 
(e.g., x1, x2, y or x, y1, y2). Figure 11-2 illustrates the schoolhouse predictor/criterion 
situation where the full range ASVAB distribution is apparent, but not final school 
grade.  

 

Figure 11-2. Bivariate predictor/criterion plot not fully mapped. 

Figure 11-2 does not reflect a bivariate normal distribution in a full range population 
prior to selection even though the elliptical shape suggests it does. If the elliptical shape 
applied, the lowest scores of the final school grade distribution would stretch to the       
y-axis origin (as does the ASVAB score distribution on the x-axis). At this point in time, 
the Navy does not include school failure data (academically related or otherwise) in the 
validity analysis because (a) we may not have the exact reason(s) for failure, (b) the 
criterion data for graduates are considered high quality, and (c) the correction for range 
restriction equations would not know that the left tail of the y distribution is missing.   
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To illustrate the high integrity criterion data used in Navy ASVAB validation/ 
standards studies, Table 11-3 shows the ASVAB regression weights with final school 
grade as the criterion for two Navy Air Traffic Controller (AC Rating) A-School samples 
(initial technical training), each of very different sample size (n = 269 and n = 71) (Held, 
2006). 

Table 11-3 
Unstandardized Regression Weights used in a Nine Variable Multivariate 
Range Correction for Two Navy Air Traffic Controller Training Samples 

 Weights 

Sample 
Size 

GS AR MK EI AS MC VE AO CS Sum 

n = 269 .031 .113 .099 .031 .038 .073 .008 -.012 .132 .513 

n = 71 .086 .049 .248 -.095 .131 .006 .055 -.004 .166 .643 

Unlike Table 11-2, which showed erratic regression weights for some of the small 
samples, Table 11-3 shows relatively stable weights, although different for each sample. 
Most importantly, the sums of the weights for the two samples are not highly dissimilar 
even though the sample sizes are. The sums of the regression weights across small 
samples, and not the signs of each variable in a sample, have been shown to be 
somewhat of an indicator of correction stability (Held and Foley, 1994). Table 11-4 lists 
the multivariate range corrected validities for a number of candidate ASVAB composites 
derived for each of the two AC samples whose regressions weights are listed in Table 11-
3. (Coding Speed [CS] test is a former ASVAB test now a Navy special classification test.) 

Table 11-4 
 Similarity of Multivariate Range Corrected Validities and Validity Differences 

for Two Navy Air Traffic Controller Training Samples  

Predictor 

AC Rating  

Sample #1 
(N = 269) 

AC Rating  

Sample #2 
(N = 71) 

VE+AR+MK+CS               .74 (largest) .78 (largest) 

VE+AR+MK+MC .72 .75 

AR+2MK+GS .72 .76 

VE+AR+MK+AO .72 .76 

VE+MK+GS .70 .75 

VE+AR                .67 (smallest) .71 (smallest) 
Note. Samples were taken several years apart (Held, 2006).  
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As can be seen from Table 11-4, both Navy Air Traffic Controller (AC Rating) A-
School samples, taken several years apart, yielded rather stable multivariate corrected 
validity results despite the disparity in their sample sizes (n = 269 vs. n = 71). The 
largest validity coefficient for each sample was for the VE+AR+MK+CS composite (.74 
and .78 for the larger and smaller samples, respectively) and this stability in results was 
related to the stability in the sum of the regression weights (Table 11-3).  

Concluding Remarks 

This chapter described several conditions under which sign changes can occur when 
correcting validity coefficients for range restriction using the multivariate method. In 
general, the negative-to-positive sign change when all selector variables and the 
criterion are positively correlated in the unrestricted population is a function of the 
intercorrelations of the selectors and criterion in the restricted data set and cannot be 
viewed as an abnormal outcome. The positive-to-negative sign change may merely be 
due to a highly stringent selection ratio combined with a small and/or inadequate data 
set and should be viewed as an unrealistic outcome.  

Even though the methodological issues revealed in this chapter’s study and Chapter 
10 on assumption violations, we may not have to be overly cautious about applying the 
multivariate correction formulas if the samples are not extremely small because of the 
Navy’s high integrity process for developing the training performance criterion. Also, 
whereas the selection ratio in the simulation study was extremely stringent (top 10% 
qualification rate), they are much more moderate for most of the Navy’s (and other 
Services’) military occupations.  

The next chapter departs from the range correction topic and addresses several 
topics that are commonly considered when estimating the relation between a selection 
or classification instrument and a performance criterion.  

Chapter 11. References 

Booth-Kewley, S. (1985). An empirical comparison of the accuracy of univariate and 
multivariate corrections for range restriction (NPRDC-TR-85-19). San Diego: Navy 
Personnel Research and Development Center.  

Guilford, J. P. (1965). Fundamental statistics in psychology and education. NY: 
McGraw-Hill. 

Gulliksen, H. (1950). Theory of mental tests. New York: John Wiley & Sons. 

Held, J. (2006). Armed Services Vocational Aptitude Battery (ASVAB) standards: Air 
Traffic Control rating (NPRST Letter Report Ser 3900, PERS-1/00047 31 May 
2006): Millington, TN: Navy Personnel Research, Studies, and Technology. 

Held, J. D., & Foley, P. P. (1994). Explanations for accuracy of the general multivariate 
formulas in correcting for range restriction. Applied Psychological Measurement, 18, 
355-367. 



 

138 

 

Horst, P. (1963). Matrix algebra for social scientists. NY: Holt, Rinehart and Winston, 
Inc. 

Lawley, D. (1943). A note on Karl Pearson’s selection formula. Royal Society of 
Edinburgh, Proceedings, Section A, 62, 28-30. 

Lord, F. M., & Novick, M. R. (1968). Statistical theories of mental test scores. Reading, 
MA: Addison-Wesley. 

Novick, M. R., & Thayer, D. T. (1969). An investigation of the accuracy of the Pearson 
selection formulas (ONR-RM-69-22). Princeton NF: Educational Testing Service.  

Pearson, K. (1903). Mathematical contributions to the theory of evolution - XI. On the 
influence of natural selection on the variability and correlation of organs. 
Philosophical Transactions of the Royal Society, London, Series A, 200, 1-66. 

Ree, M. J., Carretta, T. R., Earles, J. A., & Albert, W. (1994). Sign changes when 
correcting for range restriction: A note on Pearson’s and Lawley’s selection formulas. 
Journal of Applied Psychology, 79, 298-301. 

Thorndike, R. L. (1949). Personnel selection. New York: Wiley. 

Thorndike, R. L. (1982). Applied psychometrics. Boston: Houghton Mifflin Company. 



 

139 

 

Chapter 12. 
Partial Correlation, Hierarchical and Logistic Regression, 

and Power 
Thomas R. Carretta and Janet D. Held 

Introduction 

This chapter addresses several topics that are commonly considered when estimating 
the relation between a selection or classification instrument and a performance 
criterion: (a) partial correlation to remove a variable’s influence, (b) hierarchical 
regression to estimate a variable’s influence (e.g., variables fixed in the study such as 
demographics, or variables whose measures have been taken at different points in time), 
(c) logistic regression when continuous criterion measures are not available, and (d) 
power analysis. We note that non-linear relations are not addressed in this manual, but 
there are methods fully addressed in the literature.  

Partial Correlation: The Effect of a Third Variable 

Validation research is generally correlational in nature. The interpretation of 
correlations, although straightforward on the surface, can be fraught with hazards. 
Consider the correlation of an ability test with supervisor ratings of job performance. It 
would not be unusual to find low correlations, which could lead to inappropriately 
abandoning predictive measures. The Principles for the Validation and Use of 
Personnel Selection Procedures (SIOP, 2003) noted that the relation between ability (or 
any other measure) and occupational criteria is best understood with the effect of job 
experience removed. That is, those individuals who have prior experience with 
performing the job tasks, or tasks that are similar to those involved in the current job, 
will naturally perform at higher levels, at least in the beginning, all other things being 
equal. Removing, or controlling for, this “experience” variable can easily be done by 
“partialing out” experience from the relation between ability and the criteria. Partial 
correlation, in a more general sense, measures the degree of association between two 
variables with the effect of one or more variables removed. The partial correlation is 
computed with the following formula: 
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where 
12 xyxr   is the correlation between y and x2, while partialing out the effects of x1; 

2yxr  is the correlation between y and x2; 
1yxr  is the correlation between y and x1; and 

21xxr  

is the correlation between x1and x2 (Crocker & Algina, 1986). Using our example, y is job 
performance ratings, x2 is the ability test, and x1 is job experience. 
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Carretta, Perry, and Ree (1996) provided an example when they correlated ability 
test scores with ratings of situational awareness (SA) for 171 F-15 pilots. The zero-order 
correlation (zero-order is the term used to indicate that no partialing out has been done) 
of ability and SA was .10. However, when F-15 flying experience (i.e., number of flying 
hours) was partialed out, the correlation was .17. In this instance, it would be incorrect 
to report the correlation between ability and SA as .10. 

More broadly, the idea of partial correlation can be subsumed under the statistical 
concept of mediation. Mediation means that one variable acts through another to exert 

its influence on a third variable. For example, “A B C” indicates that variable A acts 
through variable B to exert its influence on variable C. Note that there is no direct 

influence of A on C in this model specification. That is, we do not specify “AC” 
although that relation can occur.  

Hunter (1986) provided an informative model of mediation in the area of job 
performance. Hunter demonstrated for numerous jobs that job knowledge mediated the 
relation between ability and job performance. Similarly, Ree, Carretta, and Doub 
(1998/1999) showed for 83 U.S. Air Force enlisted jobs that prior job knowledge (JKP) 
mediated the relation between ability (the general ability g factor) and the acquisition of 
subsequent job knowledge (JKS) during training. In this case both ability and prior job 
knowledge were directly related to the acquisition of subsequent job knowledge during 
training, but ability also had an indirect influence on subsequent job knowledge through 
prior job knowledge. The path diagram is shown in Figure 12-1. 

 
Figure 12-1. An example of mediation: Ability (g) and prior job knowledge 
(JKP) have a direct effect on the acquisition of subsequent job knowledge 

(JKS); ability also has an indirect effect on JKS through JKP (Ree et al., 
1998/1999). 

The effect of mediation also was demonstrated by Ree, Carretta, and Teachout (1995) 
for pilot trainees. In the Ree et al. (1995) study, general cognitive ability (g) had both 
direct and indirect influence on the acquisition of aviation job knowledge and on hands-
on flying performance during pilot training. Several other studies have shown the 
mediating effect of job knowledge between ability and performance (Borman, White, & 
Dorsey, 1995; Borman, White, Pulakos, & Oppler, 1991; Lance & Bennett, 2000; 
Schmidt, Hunter, & Outerbridge, 1986). 

g JKP JKS 
.84 .29 

.64 
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In closing, to know the “true” relation of a predictor with job performance (assuming 
perfect reliability) it is necessary to partial out the effect of experience, such as job 
experience (i.e., years, training). The variable to be partialed out, however, depends on 
the purpose of the study. Most importantly, partialing out the effects of a variable 
should be considered when the objective is to confirm one’s theory about the variables 
that contribute to performance. One possible military application of the partialing, or 
control, procedure would be for reclassifying enlisted members when they are required 
to do so (e.g., due to military downsizing or reprioritization in staffing occupational 
fields). One could control for the number of years in service when examining the 
relation between ASVAB scores and re-training outcomes. For example, the Air Force 
takes into account the experience of pilots manning aircraft when selecting candidates 
for training on Remotely Piloted Aircraft (RPA). In this case, the control variable would 
be number of flying hours.  

Hierarchical Regression 

One of the Navy’s analysis tools applied in some ASVAB validation/standards studies 
is hierarchical regression. This tool, or method, is used primarily to evaluate the validity 
contribution of existing or candidate tests that serve as a second stage classification 
screen (multiple hurdle). Hierarchical regression analysis is also a useful method for 
controlling for the effects of variables, like demographic variables, that are hypothesized 
to relate to the dependent variable of interest but that are not in realm of control (i.e., a 
variable available in the dataset but not a variable manipulated via an experimental 
design or considered a suitable basis for rejecting candidates). Unlike stepwise 
regression where the variable accounting for the most variance in the criterion variable 
automatically enters into an equation first, and so forth, until a single model is 
developed, in hierarchical regression, the researcher determines the order of variable 
entry. Each entry step produces a regression equation and associated statistics, building 
up the models to account for the added variables at each step.  

We refer to hierarchical regression as linear in this section with variable entry 
sequentially stepped so that the multiple R2 and change in R2 can be evaluated for every 
added variable.  Note in this case that “R” in fact refers to a multiple correlation whereas 
in past chapters, aside from a specific application in Chapter 10, “R” stood for the 
unrestricted (population) validity coefficient. Note also that non-linear models may 
apply that may have complicated interpretations due to unaccounted multiple hurdle 
selection systems (that we do not address here). 

In the Navy ASVAB validation/standards context, hierarchical analysis has been 
used to assess whether the Defense Language Aptitude Battery (DLAB) contributes 
validity above the ASVAB in predicting final school grade in language training. The 
method also has been used to assess whether the Nuclear Field (NF) community’s Navy 
Advanced Placement Test (NAPT) contributed validity above the ASVAB in predicting 
final school grade in highly technical training courses. Both of these tests are expensive 
to develop, update, administer, and maintain (not to mention examinee testing time, as 
each test can take 2 hours to complete).  
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We refer the reader to the Nuclear Field (NF) study (Appendix B of the Introductory 
Manual) for an example of a hierarchical regression analysis. Briefly, the analysis was 
conducted for the three NF Ratings (Electronics Technician, Electrician’s Mate, and 
Machinist’s Mate) (Table 8 in Appendix B) to determine the significance of the NAPT’s 
incremental validity to the ASVAB. NAPT was entered as a second step in the 
hierarchical analysis after the ASVAB and the incremental validity of the NAPT was 
statistically and meaningfully significant for all three Ratings. Also significant was a 
subsequent entry step, waiver type (e.g., education), and for two Ratings, the following 
regression step in the hierarchy, the interaction term of two different types of waivers 
(education and civil).  

We refer the reader to Lautenschlager and Mendoza (1986) for the type of 
hierarchical analyses described in this section and to Raudenbush and Bryk (2002) for a 
complete treatment of hierarchical/multilevel analysis. We close this section by noting 
that partial correlation and hierarchical regression (linear in both cases) essentially 
address the objective of controlling for variables or isolating their effects from other 
variables and that the “experience variable” discussed in the partial correlation section 
could just as well have been entered into a hierarchical regression analysis. The 
difference is the focus of the analysis: eliminating an influence or establishing its 
importance. Power analysis (Cohen, 1988) can be applied to both methods and also to 
logistic regression, which is discussed in the next section. 

Logistic Regression when the Criterion is Binary 

Raju, Steinhaus, Edwards, and DeLessio (1991) suggested that a two-parameter 
logistic regression (LR) model could be used for several personnel functions that involve 
selection instruments, most notably in setting cutscores conditional on ability. The 
outcome of interest in this application of LR is not the magnitude of the validity 
coefficient but the predicted probability of success (e.g., passing training) conditional on 
the selection instrument scores (e.g., the ASVAB). Raju et al. noted the usefulness of LR 
in that the validity coefficient that results from the correlation of two continuous 
measures in isolation does not have practical value in setting cutscores (or assessing 
utility for an organization – see Chapter 3) unless used with the Taylor-Russell tables 
(Taylor & Russell, 1939). We note, however, that the Taylor-Russell tables are an 
integral part of conducting ASVAB validation/standards studies (discussed earlier in 
Chapter 3). We are reminded that these tables allow us to estimate expected 
improvements in military training success rates conditional on validity magnitude, 
selection stringency, and current success rates under different scenarios. The interest 
here is in aggregate success rate of individuals in a training course, not how likely it is 
that any individual will pass. 

The LR predicted probability of success (or failure) is not without merit or place in 
ASVAB validation studies, but only when the performance outcome is not measured on 
a continuous score scale. For example, the ASVAB validation/standards study 
conducted for the Navy SEALs (Sea, Air, and Land special warfare combat forces) 
provided in Appendix A of the Introductory Manual illustrates the use of LR when a 
continuous criterion variable is not available, just a pass/fail binary outcome. The 
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SEALs conduct mentally and physically challenging training and there are many reasons 
for not completing training (e.g., medical issues that arrive in training). The 
performance measure to date is not scored on a continuous scale. The most frequent 
reason for not passing SEAL training, at least in the initial BUD/S course, is self-
elimination (drop on request – cannot meet the physical or mental challenge). 

The SEAL ASVAB study was an attempt to establish which of a number of ASVAB 
composites was most predictive of a successful training outcome comparing the LR 
procedure with the Lawley (1943) multivariate correction for range restriction 
(discussed in Chapter 5 and elsewhere). The validity coefficient rankings (magnitude) 
among a number of candidate ASVAB composites were compared across the two 
methods recognizing that the (a) the binary criterion variable suppressed the validity 
coefficient in each case and (b) only the Lawley procedure would adjust for the 
downward bias of the validity coefficient due to ASVAB selection effects (SEALS had two 
alternative standards at the time) without the correction (i.e., the LR procedure).  

In LR, there are several reported pseudo validity coefficients, one of which was used 
in the validity coefficient comparison, the Nagelkerke R (square root of the reported 
Nagelkerke R2). The Nagelkerke R2 is recognized as inappropriate for comparison to the 
OLS R2 on theoretical grounds but perhaps useful in comparing models (Hosmer & 
Lemeshow, 2000). Our goal in the SEAL study was just that – that is, for each method 
(multivariate range correction vs. LR), to determine whether the ASVAB composites 
were ranked the same, which they were, but with lower validity magnitudes for LR.  

We note that another shortfall in the comparison study was that the corrected 
validity coefficient obtained from the Lawley procedure was not really a multiple R, but 
rather an estimated Rho for a particular integer-weighted ASVAB composite. The 
Ordinary Least Squares (OLS) equation weights (that result in a multiple R in the 
sample) are merely applied in the multivariate range restriction correction (Chapter 5).  

The magnitude of the “population” validity coefficient is important in ASVAB 
validation/standards studies, and when a binary (pass/fail) score implies an underlying 
continuous score distribution, a correction for this artificial dichotomization (not 
applied in the SEAL study) should be applied, as described in the next section.  

Correction for Dichotomization: An Alternative Approach to Logistic 
Regression When the Criterion Is Binary 

LR is most appropriate when the criterion variable is a genuine dichotomy, such as 
“crashed the airplane” versus “landed safely,” or most commonly in the study of disease 
interventions where the patient either died or lived. The question of whether a student 
passed or failed, however, implies an underlying performance distribution where a 
decision point or cut-point on the final school grade establishes how the student is 
categorized. Did the computer technician pass or fail the information network 
certification test? A “yes/no” answer may be the only type of available performance 
information. When the grades that determined pass/fail disposition are available, they 
should be the criterion measure of choice and we then deal with range restriction to 
estimate the validity coefficient (past chapters).  



 

144 

 

Logically, we can think of an individual who barely passed the course as not being as 
knowledgeable as one who passed with flying colors. In the Navy SEAL ASVAB study 
(Appendix A in the Introductory Manual), the training disposition available was either 
pass the grueling mentally and physically challenging regimen, or drop on your own 
accord. We could think that even the dropped students had some differentiation in 
“What it takes to be a SEAL”, but there is no measurement instrument used to 
differentiate students who drop. 

Dichotomization of a continuous criterion variable (yielding an artificially 
dichotomized variable, as opposed to a truly dichotomous variable) not only loses 
information, but causes the correlation between it and a continuous variable to appear 
lower than it theoretically should be. If we compute a simple correlation between a 
continuous predictor variable (say a cognitive test score) and a dichotomized dependent 
variable (say pass/fail in a training course), we are computing a point-biserial 
correlation. (For SPSS/SAS users, the point-biserial is merely the Pearson correlation 
between the continuous variable and the dichotomized variable – artificially 
dichotomized or a true dichotomy.)   

We learn in basic statistics that when the proportions are 50-50 for each category of 
the dichotomized variable (e.g., 50% pass and 50% fail), the variance is maximized 
relative to other splits. Because variance is maximized, so is the correlation coefficient.  
The more extreme the splits, the more downward is the biasing effect on the correlation. 
For example, if the correlation between two variables is .50 before dichotomization and 
the proportions are 50-50 in the dichotomized criterion, the correlation after 
dichotomization will still be .50. However, if the proportions are 60-40, 70-30, 80-20, 
and 90-10, the correlations from dichotomization will be .39, .38, .35, and .29, 
respectively. If the correlation before dichotomization is .25, the after-dichotomization 
correlations for the proportions 60-40, 70-30, 80-20, and 90-10 would be .20, .19, .17, 
and .15, respectively. We see that the lower the correlation to begin with, the lower the 
downward biasing effect when one of the two continuous variables is dichotomized. 

Cohen (1983) reminds us that early test construction practices (before the 
computational efficiency that computers provide) involved dichotomizing the total test 
score into high/low (analogous to pass/fail for training) to simplify the computation of 
test item/total test score correlations. Cohen did not object to this practice when the 
only purpose was merely to decide which items to keep and which to toss. From Cohen’s 
article, the rank ordering of items based on the point-biserial correlation does not 
appear to be affected by this total test score dichotomization. However, to correct for the 
correlation underestimate (assuming an underlying continuous distribution), Cohen 
(1988) and Cohen and Cohen (1983) provide the statistical correction obtaining the 
biserial from the point biserial, which involves the ordinate (height) of the normal curve 
at the point of dichotomization (assuming a normal distribution of underlying 
scores/abilities/etc.).10  
  

                                                      
10

 The ordinate value (the height of the normal distribution at the cutpoint) is available in some statistical 

appendices, including Cohen and Cohen (1983) Appendix Table C. 
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The Air Force has long recognized the dichotomization problem and potential ways 
to deal with the complication of restriction in range. The Air Force applies the correction 
for dichotomization (e.g., when pass/fail in training is all that is available) after 
correcting validity coefficients for range restriction in order to provide a better estimate 
of the predictive validity of personnel selection methods. The Navy has not applied the 
procedure only because, at this point, only the Navy SEALs have been found to only 
have a dichotomous training outcome variable. We illustrate the correction for 
dichotomization (that is, obtaining the biserial correlation) subsequent to a multivariate 
range correction for a .34 ASVAB validity reported in Table 6 of Appendix A of the 
Introductory Manual (SEAL study): 

,
h

pq
rr pbb   

where br  
is the Biserial correlation and pbr is the Point Biserial, in this case, corrected for 

multivariate range restriction (.34), pq = .30 X .70 (30% pass rate for SEALs) and           
h = .352 taken as the height of the normal curve (symmetrical for .30 and .70) from 

Appendix C in Cohen and Cohen (1988). The br  value turns out to be .443. Of course it 

will never be known whether these two corrections (for range restriction and 
dichotomization) yield an accurate estimate of the ASVAB’s validity in the ASVAB 
normative youth population (PAY97) in predicting SEAL training outcomes.  

Finally, Cohen (1983) cautions us against artificially dichotomizing the criterion 
variable because not only is the correlation coefficient diminished, but so is statistical 
power, a topic discussed in the next section.  

Statistical Power 

Background 

Statistical power is the probability of detecting a statistically significant difference in 
a sample when in fact it exists in the population. More formally, power is the probability 
of rejecting the null hypothesis (Ho) when it is false and therefore accepting the 
alternative study hypothesis (H1) when it is true (Cohen, 1988). Almost all statistics 
courses include the topic of statistical power (Cohen; Cohen & Cohen, 1983), but 
relatively few published studies report power to accompany the various statistical tests 
to which power can be applied(e.g., r, t, Z, or F tests). Two surveys of a prestigious 
applied psychology journal showed that the average statistical power for studies 
accepted for publication was only .46 and declined to .37 two decades later (Sedlmeier & 
Gigerenzer, 1989). In other words, researchers could only expect to detect an existing 
effect 46% of the time (37% for the more recent survey). Conversely, researchers could 
expect to fail to detect the existing effect 54% of the time (63% for the more recent 
survey)!  
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Low statistical power is not unique to psychological research and has been reported 
in reviews of management research (Cashen & Geiger, 2004; Mazen, Graf, Kellogg, & 
Hemmosi, 1997), software engineering (Dyba, Kampenes, & Sjoberg, 2006), and other 
fields such as medicine (Halpern, Karlawish, & Berlin, 2002). Low statistical power in 
the field of personnel selection research means that we are inclined to make incorrect 
conclusions about the psychological phenomena we study. In the case of the military’s 
ASVAB validation/standards studies, an incorrect decision in recommending an ASVAB 
candidate composite for classifying recruits into a particular occupation would not have 
a dire consequence because there already is an operational ASVAB composite with a 
cutscore in place (with the exception of newly formed occupations). Further, the 
candidate ASVAB composites evaluated for an occupation are generally highly 
correlated due to the rational composite development process that maps the underlying 
ASVAB constructs to the curriculum (although there is also an empirical approach that 
might produce less highly correlated composites).  

In contrast, there can be a lot at stake in falsely rejecting a potentially effective 
medicine when the effect is real in the population. For example, making a false decision 
to not submit a drug to the FDA for approval because of low power may have substantial 
negative impact on those in the population who would have benefited from the drug. We 
stress that just because an effect is not detected in a sample taken from a population 
does mean the effect does not exist. In ASVAB standards validation work, sample size 
has a lot to do with detecting a real effect and it, out of all the other influential factors 
(including development of best practice criterion measures), may be the only variable 
within the practitioner’s control.  

Power analysis involves many moving parts. As Cohen (1988) notes, statistical power 
is a joint function of the Type I error rate, effect size, sample size, and degree to which 
the sample values reflect their true values in the population. We refer the reader to 
Cohen for the many power applications and merely review some fundamentals that 
apply in general. Researchers set a statistical significance level, alpha (α), for rejecting 
the null hypothesis, Ho, and thereby accepting the study hypothesis, H1. Generally, a .05 
α level in personnel psychology research is sufficiently stringent for us to reject the null 
hypothesis (Ho) and accept the alternative hypothesis (H1). If the effect does exist in the 
population, increasing α will increase the probability that we detect that true effect (e.g., 
α = .10 rather than a more stringent .05) and thus increase statistical power. However, 
in sampling theory, we are bound to observe statistical significance some proportion of 
time over the long haul even when the effect is not there. The probability of doing so is 
called a Type I error and is the α level.  

Establishing a more stringent statistical test (e.g., α = .01 rather than .05) reduces 
the Type I error but increases the probability of a Type II error (β), given the effect exists 
in the population. A Type II error is the probability of failing to reject Ho when in fact, 
the effect exists in the population and H1 should be accepted. The cost of committing 
each type of error is weighed by the organization conducting the research. Of particular 
concern in the practical world is that extremely large samples will demonstrate an effect 
when the magnitude of that effect will have trivial consequences (Murphy, Myors, & 



 

147 

 

Wolach, 2009). Murphy et al. suggested considering a “minimum” effect size in 
determining sample size requirements in power analysis. 

The calculation of power is simply 1 minus the probability of failing to appropriately 
reject Ho (Type II error β), or 1 – β. Increasing power is mainly about reducing β by 
limiting the overlap of the two distributions that are being compared for the effect. 
Diminishing the overlap can be achieved, basically, in three ways. First, increasing α 
reduces distribution overlap by moving the critical significance test value (in effect, a 
vertical cutscore) to the left on the x-axis. (We are assuming that the control group’s 
distribution is to the left of the experimental group’s distribution, with some overlap in 
the two). Second, moving the two distributions apart reduces overlap, which means 
somehow increasing the effect. Third, increasing sample size reduces overlap by 
narrowing the two distributions’ spread (variance), thereby reducing overlap.  

Power’s Relevance for ASVAB Test Validation 

We have so far stressed the importance of the following factors in ASVAB 
validation/standards studies: (a) applying the multivariate correction for range 
restriction in estimating ASVAB composite validity coefficients in the unrestricted 
ASVAB population, (b) assessing (to the extent possible) the sample’s adherence to the 
underlying assumptions of performing the correction, (c) using (if not proactively 
helping to develop) meaningful and reliable performance criteria, and (d) having an 
adequate sample size to produce more accurate and stable range-corrected validity 
estimates. Of these factors, only adequate sample size pertains to the traditional 
calculations presented in power analysis.  

Four questions logically arise about adequacy of sample size in conducting ASVAB 
validation/standards studies: 

1. Is the sample at hand considered representative of the ASVAB population from 
which it theoretically was drawn; thereby leading us to believe that an effect 
found in the sample generalizes to that population?  

2. Should we rely on historical studies in considering the actual effect size in the 
population (correlation coefficient/validity)? 

3. If we refer to historical studies for a “pre-estimate” of validity magnitude and 
therefore sample size requirement, do we refer to the restricted or unrestricted 
ASVAB validity? 

4. What magnitude of the validity difference should be considered sufficiently large 
to recommend one ASVAB composite over another? 

Regarding the first question, the sample at hand is all we have, and we must 
therefore assume that it is representative of the ASVAB population. The question 
becomes which ASVAB population and whether the choice influences which parameter 
values (means, standard deviations, and correlations) are appropriate to apply in the 
range correction procedure. The Navy applies the PAY97 ASVAB population in the range 
correction procedure, so it assumes representativeness. We could decide that the most 
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recent military applicant population (or the Service-specific applicant populations) is 
closest in attributes to our sample. However, this produces at least two unintended 
consequences: (a) the inability to generalize validity coefficients over time due to 
changes in economic conditions that may lead to differing applicant compositions and 
(b) the inability to generalize validity coefficients across the Services’ same occupations, 
which might be an issue under budget constraints that lead to more joint-service 
training and operations. 

Regarding the second question, the American Psychological Association (APA) Task 
Force on Statistical Inference (Wilkinson, 1999) endorsed the approach of referring to 
high-quality historical studies for pre-estimating population effect sizes in power 
analysis. Regarding the third question, if we do refer to historical studies, do we refer to 
the restricted or estimated unrestricted ASVAB validity? If we refer to the estimated 
unrestricted validity, the ASVAB validation/standards study researcher must first 
complete the study—not at all helpful in the preplanning stages that involve estimating 
sample size. Regarding the fourth question, the comparison of ASVAB composite 
validity coefficients must involve the range-corrected state. Otherwise, the comparison 
will be biased (as we saw in the Chapter 5, Thorndike example - Table 5-1). 

Determining the necessary sample size for sufficient power in an ASVAB 
validation/standards study is a complicated matter, and we look to others for advice in 
this area. We first look to regression analysis, because all of the ASVAB tests are used in 
sample-based regression weights that are then applied (via the linearity assumption 
along with the homoscedasticity assumption) in the derived multivariate range-
corrected validity estimates. Green (1991) reviewed various “rules-of-thumb” presented 
in the literature regarding multiple regression and noted that the most conservative 
sample sizes came from Nunnally (1978). Nunnally applied a multiple regression 
shrinkage formula (p. 180) in his sample size analysis and recommended 300 to 400 
cases for 9 or 10 predictor variables. Green (1991) took the position that if power is to be 
considered, the more complicated “rules of thumb” (that he reviewed) produced lower 
sample size requirements, but there was no specific endorsement at the time of a most 
appropriate integrated power/regression procedure. 

Because the Navy applies all nine ASVAB tests in the multivariate correction for 
range restriction, we might consider a reasonable regression-based sample size estimate 
based on Nunnally’s (1978) advice of 35 cases X 9 variables = 315 cases as a general rule. 
We would have to recognize, however, that we need a good understanding about factors 
that might influence regression weight stability (as described in previous chapters). We 
could also posit that being able to detect a real difference in the validity of ASVAB 
composites in the population is almost as important as detecting that the composites 
have a certain magnitude of validity (effect size). Cohen (1988) addressed both of these 
magnitude concerns, stating that “these (statistical power) tables are not valid under 
conditions of range restriction such as may occur in personnel selection” (p. 100). 
However, we could stretch our perspective a bit and refer to Cohen’s Table 4.3.2 to test 
whether a .03 validity difference could be detected with sufficient power given different 
sample sizes, different validity magnitudes, and different validity differences between, 
say, two ASVAB classification composites. 
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Cohen’s (1988) Table 4.3.2 (one-tailed α = .05 significance test) applies to the 
population effect size. However, the two correlations to compare are independent, 
coming from different populations (pp. 119-120). This is not the case in our ASVAB 
validation/standards studies; nevertheless, we proceed. The effect sizes of the difference 
are expressed as “q” and are listed across the top ledger row. The “qc” values listed in the 
table column just to the right of the first column (with Ns) apply if we are conducting 
significance testing for the correlations obtained from our samples. A further 
modification can be made for the case of paired correlations compared in one sample 
(section 4.5.4, p. 142). 

For simplicity and illustrative purposes, we use Cohen’s (1988) Table 4.3.2 to 
demonstrate a power planning scenario that would be useful to us if not for the 
restriction in range problem. We also note that the table applies only to correlations 
derived in independent samples (which apply to independent populations). Cohen 
specifies the effect size of the difference in correlation coefficients as “q”, which is 
calculated as the difference in the Fisher Z transformation values calculated for each of 
the comparison correlations. Cohen assumes small, medium, and large effects sizes for 
correlations are associated with q values of .10, .30, and .50 (p. 129). 

We first refer to Cohen’s (1988) Table 4.2.1 after deciding that a small effect (q = .10) 
is sufficient to recommend one ASVAB composite over another. With simple 
calculations, we can determine the correlation differences needed to attain q = .10 for 
three baseline correlations that we specify as representative of the ASVAB validity for a 
range of Navy occupations. The three correlations are .30, .55, and .80, and the 
increments in validity required for q = .10 are .08, .05, and .03, respectively. We see 
right away that our specified .03 validity difference at the planning stages of the study 
deemed acceptable for an ASVAB composite replacement does not apply across the 
spectrum of validity magnitudes (i.e., if we were to assume the unrestricted validity 
coefficients for ASVAB composites were the target validity values to use to conduct the 
power analysis). More specifically for the reader, “q” is calculated from Cohen’s (1988) 
Table 4.2.1 for the following comparisons: (a) .80 compared to .83 for a .03 difference 
(similar to our Nuclear Field study reported in Appendix B of the Introductory Manual), 
(b) .55 (Navy average) compared to .60 for a .05 difference, and (c) .30 (a bit larger than 
observed for the SEALs) compared to .38 for a validity difference of .08. The q values for 
these values are all slightly below .10 (.089, .075, and .090 for the baseline .80, .55, and 
.30 correlations, respectively). 

Assuming the q values derived for our three correlation pairs are close enough to 
Cohen’s (1988) q = .10 value, we enter Cohen’s Table 4.3.2 at the .10 q column and look 
to see what sample size is required to achieve the power level we specified in the ASVAB 
validation/standards study planning stages (power of .80). A sample size of 1,000 is 
required to achieve the highest power level entered in the table entry (.72). We note that 
validity differences of as large as .08 (for the .38 - .30 comparison) are never observed 
in ASVAB validation/standards studies because of the substantial correlation between 
ASVAB composites that occurs through the rational composite development process of 
mapping ASVAB constructs to the curriculum constructs (complementing the empirical 
regression-based process). 



 

150 

 

We remind ourselves again that the power/sample size analysis we conducted using 
Cohen’s (1988) Table 4.3.2 is inappropriate for ASVAB use in that the table applies to 
independent correlations, not related correlations derived in the same sample. We refer 
the reader to Cohen’s modification for a pair of correlations (p. 142) and note that 
Equation 4.5.6 applies for testing the statistical significance (once the sample values are 
found) as opposed to research planning purposes.  

Next, we look to others who have explicitly considered the range restriction issue. 
Schmidt, Hunter, and Urry (1976) were concerned with the legal issues surrounding use 
of a selection instrument with zero validity and so addressed the role of power in the 
personnel selection framework. Schmidt et al. acknowledged the complication involved 
in violating the assumptions underlying range correction and so conducted their 
research under the assumption that all had been met. The authors addressed explicit 
selection only, acknowledging that the incidental selection case is also important. In this 
regard, Sackett and Wade (1983) extended the Schmidt et al. power formulas and tables 
to include the incidental selection case, which they recognized as the typical personnel 
researcher’s case of interest (i.e., evaluating new measures). We direct the reader to 
Raju, Edwards, and LoVerde (1985) for their comments on both articles.  

We refer only to Schmidt et al. (1976) because the Navy treats all ASVAB tests as 
explicit selection variables in the multivariate correction for range restriction (applying 
all ASVAB regression weights derived in the sample). Schmidt et al. melded power, 
restriction in range, and criterion unreliability into their complex of equations and 
derived restricted validity estimates for 10 selection ratios and 8 criterion reliability 
estimates. Again, the objective for their personnel selection issue was only to establish if 
the observed validity was greater than zero in the unrestricted population. Schmidt et al. 
provided tables with sample size requirements for two unrestricted validity levels (.35 
and .50), two power levels (.50 and .90), and various significance levels for one- and 
two-tailed statistical tests.  

We refer to Schmidt et al.’s (1976) Table 4 that applies to the unrestricted validity of 
.50 (close to the Navy average of .55 across Ratings), a power level of .90 (higher than 
the Cohen’s .80), a one-tailed α = .05 test, and a criterion reliability of .80 (perhaps 
reasonable to assume across Navy schools). At a fairly unrestricted selection ratio of .70, 
a known unrestricted validity of .50 is reduced to .33 with a sample size requirement of 
75. At a much more stringent SR of .30, the unrestricted validity of .50 is reduced 
further to .25 with a near doubling of the sample size requirement to 134. If we specify 
the .50 power level (flip of a coin) commonly found in cited historical literature and 
seemingly unacceptable in the personnel selection realm, then the sample size 
requirement is substantially reduced (Ns = 26 and 44, respectively). 

We close this section by saying that it is not clear in our minds what methods are 
appropriate for determining the sample size requirement for a specific ASVAB 
validation/standards study. The situation is complicated by practical issues such as the 
(a) urgency of the standards requirement that might preclude waiting for a sufficient 
sample size to form; (b) ability to detect obvious idiosyncrasies of the sample that might 
lead us to wait for more data; (c) complications of ASVAB restriction in range effects 
that are not simple to address, especially when selection ratios are stringent and the 
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criterion score distributions appear skewed; and (d) actual integrity of the criterion 
(which is not known until a full study is in progress). The best we might be able to do is 
to wait as long as possible within the practical parameters of the study for an adequate 
sample size to analyze, recognizing that prior validity studies for the same or similar 
occupations might provide some useful technical parameters. 
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Chapter 13. 
Weighting Variables: The Tradeoff between Validity and 

Adverse Impact 
Jeff W. Johnson 

Introduction 

With the exception of the Army, the Services use integer (unit) weights to construct 
their ASVAB occupational classification composites, which involve two to four tests (the 
Army uses full-least squares regression weights using all ASVAB tests). Several reasons 
have been proposed for using simple or unit weights, including simplifying computation 
(Stahlnaker, 1938), improving robustness (Dawes, 1979), reducing shrinkage under 
cross-validation compared to regression weights (Wainer, 1976, 1978), and providing 
better generalizability to future samples theoretically coming from the same population. 
This and the next chapter deal with issues to consider when weighting variables in 
prediction equations with this chapter focusing on a heuristic that organizations can use 
to assess the specific tradeoff of maximizing validity while minimizing adverse impact. 
We do not specifically address the methods used to assess adverse impact (a limited 
discussion is provided in Chapter 15) and so we refer the reader to the vast literature on 
the topic (e.g., Linn, 1973; Thorndike, 1971) some of which includes the military context 
(e.g., Wise et al., 1992).  

To Weight or Not to Weight? 

It is reasonable to ask if there is any point to differential weighting of tests in a 
composite. There is a large literature that suggests that unit or simple weights yield 
nearly the same results as regression weights (Aiken, 1966; Ree, Carretta, & Earles, 
1998; Wainer, 1976, 1978; Wilks, 1938). Three factors are important for determining the 
expected correlation between composites of a set of tests – the average correlation 
among the tests, the number of tests, and the relative variability of the weights. Under 
typical circumstances, differently weighted combinations of the same tests into 
composites will yield results that are very highly correlated (Wilks, 1938).  

For example, Ree et al. (1998) cited published examples of nearly identical rank 
orderings of individuals for composites that were based on regression weights, unit 
weights, policy-capturing weights, and factor weights. The more highly correlated the 
tests are, the more similar the rank-ordering of the individuals will be, even though the 
composites were formulated to weight the tests differentially (Ree et al., 1998). Because 
military enlistment and classification composites are based on the ASVAB, which 
consists of moderately intercorrelated tests, different weighting schemes are likely to 
make very little difference in the rank-ordering of individuals or the amount of criterion 
variance explained (i.e., R2). If top-down selection is used, the same individuals will be 
selected regardless of the weights. 
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Prediction vs. Explanation 

Multiple regression analysis has two distinct applications: prediction and 
explanation (Courville & Thompson, 2001). When multiple regression is used for a 
purely predictive purpose, the regression equation derived within a sample is used to 
predict scores on a criterion variable from a weighted combination of variables (i.e., test 
scores). This same equation can be applied later to test scores for a similar sample, or a 
future sample not yet available. The issue in the prediction application becomes whether 
the original equation is optimal in the new sample.  

The elements of the equation are least-squares regression coefficients, which 
indicate the amount by which the criterion score is expected to change as the result of a 
unit increase in a given predictor score, while holding the other predictors constant. 
These regression coefficients minimize the sum of squared errors of prediction about the 
linear regression line and are optimal for maximizing prediction in the sample in which 
they were developed. Of greatest interest in the prediction application is the extent to 
which the criterion can be predicted by the predictor variables (indicated by R2), with 
less interest in the relative magnitude of the regression coefficients. 

When multiple regression is used for explanatory or theory-testing purposes, the 
interest is in the extent to which each variable contributes to the prediction of the 
criterion. For example, if theory suggested that one variable was relatively more 
important than another, we would expect this to be reflected in their relative regression 
weights. Interpretation of the regression weights is the primary concern, such that 
substantive conclusions can be drawn regarding one predictor with respect to another.  

Least-squares regression coefficients are not designed to be interpreted in this way 
and are uninterpretable in terms of relative importance when predictor variables are 
correlated (Johnson & LeBreton, 2004). In this case, the appropriate procedure is 
dominance analysis (Budescu, 1993) or relative weight analysis (Johnson, 2000). These 
procedures partition the predictable variance in the criterion (represented by R2) among 
the predictors according to the proportionate contribution each predictor makes, 
considering both its direct effect and its effect when combined with the other variables 
in the regression equation (Johnson & LeBreton). 

Relative Weight Analysis 

Johnson and LeBreton (2004) recommend two alternate methods for measuring the 
relative importance of predictors - Budescu’s (1993) dominance analysis and Johnson’s 
(2000) relative weight analysis (RWA). Both methods (a) yield importance weights that 
represent the proportionate contribution each predictor makes to R2

,
 (b) consider a 

predictor’s direct effect and its effect when combined with other predictors, and (c) 
result in estimates of importance that make conceptual sense. The two methods also 
produce almost identical results despite using very different approaches to evaluate the 
importance of the predictors (Johnson, 2000; LeBreton, Ployhart, & Ladd, 2004). 
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The advantage of RWA over dominance analysis is that relative weights can be 
computed much more quickly than dominance analysis weights, both in terms of 
researcher time and computer processing time. RWA takes the same amount of time 
regardless of the number of predictors, but the time required to run a dominance 
analysis increases exponentially as the number of predictors increases. Dominance 
analysis requires that regression analyses be conducted for all possible combinations of 
predictors, so a 10-predictor model requires 1,023 separate regression analyses. Even 
with modern high-speed computers, this can take significant CPU time. Dominance 
analysis requires that code be written or edited, whereas RWA requires only syntax that 
specifies the included variables. Choosing RWA over dominance analysis could therefore 
result in considerable cost and time savings, especially when multiple analyses are 
required. For these reasons, empirical studies comparing relative importance weights to 
regression weights have used RWA. Thus, this chapter focuses on RWA. 

RWA is based on the observation that most statistical measures of predictor 
importance yield the same results when predictors are uncorrelated. For example, 
squared zero-order correlations, squared standardized regression coefficients, 
Hoffman’s (1960) product measure, and Darlington’s (1968) usefulness are all 
equivalent and sum to R2 when predictors are uncorrelated. Therefore, the first step in 
RWA is to transform the predictors (e.g., specific attributes measured on a survey) to 
their maximally related orthogonal counterparts. In other words, a set of new variables 
is created that are as highly related as possible to the original set of predictors but are 
uncorrelated with each other. Gibson (1962) describes this relatively simple RWA 
mathematical process. 

Conceptually, the RWA process could be likened to a principal components analysis 
in which the same number of components as number of predictors is extracted and 
rotated to the point where no other rotation would yield higher correlations between 
each original predictor and its associated orthogonal variable. The criterion (i.e., some 
overall evaluation measured by the survey such as overall customer satisfaction or 
overall employee satisfaction) is then regressed on the new uncorrelated variables. The 
squared standardized regression coefficients unambiguously represent the relative 
importance of the new variables.    

The relative importance of the new variables is an approximation of the relative 
importance of the original predictors. To arrive at an estimate of the relative importance 
of the original predictors, there must be some mechanism by which information on the 
relations between the new variables and the criterion is combined with information on 
the relations between the original predictors and the new variables. Johnson (2000) 
showed that the appropriate way to do this was to regress the original predictors on the 
new orthogonal variables. Because regression coefficients are assigned to the 
uncorrelated variables, the relative importance of the uncorrelated variables to the 
original predictors is unambiguous.  
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By combining the indices representing the relative importance of the uncorrelated 
variables to the criterion and the indices representing the relative importance of the 
uncorrelated variables to the original predictors, we can compute an index representing 
the relative importance of the original predictors to the criterion (i.e., relative weights). 
In practical terms, the output of RWA is a weight for each predictor that represents its 
relative contribution to the dependent variable. Larger weights indicate a stronger 
association with the outcome.11  

Using Relative Weights for Prediction 

Least-squares regression coefficients that maximize the prediction of a criterion have 
long been considered inadequate as measures of predictor importance, especially under 
conditions of multicollinearity (Budescu, 1993; Green & Tull, 1975; Hoffman, 1960). 
Conversely, there is some question as to whether relative importance indices are 
appropriate for use as weights in situations where the primary concern is prediction. 
Least-squares regression coefficients yield the highest possible R2 in the sample in 
which they were derived. The question of ultimate interest, however, is how well these 
regression coefficients predict when they are applied to data in another sample. Two 
primary factors (sampling error and multicollinearity) influence the extent to which 
regression coefficients derived in one sample will predict in another. Both suggest that 
relative importance weights may have an advantage over least-squares regression 
weights in some circumstances. 

Sampling error makes least-squares regression weights prone to inaccuracy, 
especially when sample sizes are very small. Therefore, unit weights (i.e., all predictors 
weighted equally) are often superior when applied to population data (Schmidt, 1971). 
In other words, regression weights in a small sample could be so different from the 
optimal weights in the population that it is better not to weight the predictors at all. 
Even when sample sizes are large, unit weights are often applied in practice because 
organizational stakeholders perceive them as easy to explain and maintain over time. 
The simplicity and interpretability of unit weights very often trump the better prediction 
of regression weights. 

High multicollinearity (i.e., intercorrelations between predictor variables) leads to 
instability in regression weights, making them less applicable outside the sample in 
which they were derived (Wainer, 1978). Dominance analysis and RWA are designed to 
provide estimates of relative importance precisely under conditions of multicollinearity, 
so they are more likely to be stable across samples. Greater stability of relative 
importance weights under conditions of multicollinearity makes it reasonable to 
hypothesize that sample-based relative importance weights may sometimes provide 
better prediction in the population than do sample-based least-squares regression 
weights. This is especially likely in small samples where regression weights are 
dependent on the idiosyncrasies of the sample data.  

  

                                                      
11

 See Johnson (2000) for mathematical formulas detailing the derivation and calculation of relative weights. 
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In addition to the statistical rationales for using relative importance weights for 
prediction over regression or unit weights, there are also conceptual considerations that 
give importance weights an advantage. Relative importance weights can be expressed as 
the percentage of predictable criterion variance attributed to each predictor, so these 
indices may be easier to present to decision makers (e.g., managers, executives, board 
members) when compared to regression coefficients or increments in R2 (LeBreton, 
Hargis, Griepentrog, Oswald, & Ployhart, 2007). For example, it is likely much easier to 
convince organizational decision makers to invest money in a new selection instrument 
when it is described as accounting for 25% of the predictable variance in overall job 
performance than when it is described as increasing R2 by .03. On the other hand, as 
was demonstrated in Chapter 3, an R2 translates into a validity coefficient. The increase 
in R2 of .03 translates into an increment in validity of .17 which, with much explanation, 
can be used to project expected improvments in, say, military training success rates and 
the cost savings by not having to (a) re-recruit individuals to fill the slots of those failed 
(b) reassign failed students to another occupation, (c) transport them to other training 
sites, and (d) realize a much-diminshed time in productive status (during their first term 
of enlistment). 

Empirical Studies 

At least two studies have compared the predictive power of relative importance 
indices to least-squares regression coefficients. Oswald, Johnson, and Oliver (2000) 
compared relative weights (Johnson, 2000) to regression weights, unit weights, and 
rational weights (rational weights were estimates of the relative importance of 
predictors made by 26 industrial-organizational psychologists). Using correlation 
matrices between 9 predictors and each of 11 criteria as the population correlation 
matrices, these authors conducted a Monte Carlo study in which least-squares 
regression weights and relative weights were computed within 1,000 replications of each 
of four sample sizes (n = 50, 100, 200, or 500). These weights were then applied to the 
population matrix, and R2 was computed in each instance. 

Oswald et al. (2000) also computed R2 when applying unit weights and rational 
weights. Results indicated that, on average, (a) relative weights were less biased than 
least-squares regression weights, (b) relative weights were more stable than least-
squares regression weights, (c) relative weights tended to be more similar to rational 
weights than were least-squares regression weights, and (d) sample-based relative 
weights tended to yield a higher R2 in the population than did unit weights and rational 
weights. Sample-based relative weights also tended to yield a higher R2 in the population 
than did least-squares regression weights with smaller sample sizes (less than about 
100). 

Oswald (2001) followed up this study with another Monte Carlo study in which the 
number of predictors, extent of multicollinearity among the predictors, and sample size 
were varied. Further, range restriction and criterion and predictor reliability artifacts 
were built into some of the conditions. Oswald found that relative weights tended to 
provide better prediction than regression weights for sample sizes of 100 or less when 
multicollinearity was relatively low but not when multicollinearity was high. The 
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superiority of regression weights under high multicollinearity conditions was explained 
by the presence of suppressor variables. Suppressor variables have low zero-order 
correlations with the criterion but large negative regression coefficients because they 
suppress error variance in the other predictors, thereby improving prediction. 
Suppressor variables are common when all predictors are highly intercorrelated. 
Multiple regression analysis is designed to take advantage of suppressor variables to 
enhance prediction, but relative weight analysis is not. Multiple regression had less of an 
advantage when range restriction and unreliability artifacts were added. When there 
were few predictors and sample sizes were small, relative weights demonstrated better 
prediction despite the presence of suppressor variables. 

Adverse Impact of a Composite 

A common problem faced by personnel selection researchers and practitioners 
involves choosing a set of predictors from a larger set of potential predictors for the 
purpose of creating a selection test battery. There are usually two primary 
considerations when creating a test battery: maximizing the criterion-related validity of 
the test battery while minimizing adverse impact against protected groups. By adverse 
impact we refer to majority and minority mean differences in test scores on a selection 
instrument favoring the majority group such that the majority group is hired at a higher 
rate. (Adverse impact is discussed in the Chapter 18). Creating a composite of several 
valid predictors is a common strategy for reducing the degree to which a selection 
procedure produces group differences (Campbell, 1996; Sackett & Ellingson, 1997; 
Schmitt, Rogers, Chan, Sheppard, & Jennings, 1997). The problem is that the most valid 
predictors of performance tend to also produce the largest group differences (Sackett & 
Ellingson, 1997), so adding a predictor that increases the validity of the composite will 
often have the simultaneous effect of increasing adverse impact.  

Compounding the problem is the fact that adding a predictor with little adverse 
impact to a predictor with large adverse impact typically does not reduce the adverse 
impact of the composite to the extent that generally would be expected (Sackett & 
Ellingson, 1997). Sackett and Ellingson provided an example of two uncorrelated 
predictors. One predictor had a standardized mean subgroup difference (d) of 1.00 and 
the other had a d of 0.00. Most researchers would expect that the two predictors would 
offset each other, so the d of an equally weighted composite of the two predictors would 
be 0.50. In fact, the d of this composite would be 0.71. The composite d approaches the 
mean of the individual test d’s as the correlation between the tests increases. Thus, 
reducing adverse impact by adding predictors to a composite is not as easy as it seems at 
first glance. 

Considering Both Validity and Adverse Impact 

When stakeholders value both maximizing validity and minimizing adverse impact, 
the dilemma of the researcher evaluating alternative composites is determining at what 
point the gain in validity is offset by the increase in adverse impact. The problem is 
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exacerbated when there are many predictors from which to choose. The number of 
possible composites that can be created from p predictors is 2p – 1.12 With just 5 
predictors, there are 31 potential composites to evaluate. It is difficult to compare 31 
composites to determine which is best at balancing validity and adverse impact. With 
just a few more predictors, the number of potential composites increases rapidly. With 8 
predictors, the number of potential composites is 255. With 10 predictors, it increases to 
1,023 (we are reminded that the ASVAB has 9 tests at this point). Although some 
composites can be rejected immediately because they are obviously inferior, there 
usually will be a large number of composites among which it could be difficult to choose. 

It would be desirable to have an automated procedure for choosing among 
composites that considers both validity and adverse impact. This would make the 
process of choosing a composite much less complicated, take much of the subjectivity 
out of the process, and make the selection procedure easier to defend. Johnson, 
Abrahams, and Held (2004; see also Johnson & Abrahams, 2003) proposed a procedure 
to select predictors for composites that considers both criterion-related validity and 
standardized mean subgroup differences. This procedure was flexible enough to allow 
the user to adjust the parameters depending on the relative value placed on validity and 
adverse impact. 

Johnson et al. (2004) recognized that a larger increase in validity should be required 
to justify increasing adverse impact when adverse impact is already relatively high than 
when it is low. For example, an increase in the standardized mean subgroup difference 
(d) from 0.00 to 0.10 is not as damaging as an increase from 0.50 to 0.60. The increases 
are of the same magnitude, but in the first case, adverse impact is still low and in the 
second case it is becoming less acceptable. A small increase in validity is worthwhile if 
adverse impact is low, but a larger increase in validity should be required if it is already 
high. The solution was to create a formula that could be applied to d that would 
transform it to a value that decreases exponentially as d increases. Less adverse impact 
results in a higher transformed score. By adding the validity coefficient to this 
transformed d value, a choice can be made between alternative composites by choosing 
the one that has the highest combined validity/transformed adverse impact sum. The 
idea behind the transformed d score is that, as adverse impact increases, it takes a 
progressively larger increase in validity to justify choosing the composite. 

After experimenting with several transformation formulas, Johnson et al. (2004) 
determined that the following formula best represented their conceptualization of the 
relative value of validity and adverse impact at different levels of d: 








 


25
1

2bdad
d t . (13-1) 

                                                      
12

 Note that p of these “composites” will comprise just the single tests (i.e., they will involve just one measure). 
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Parameters a and b are similar to the constant and slope in a regression equation. 
Parameter a, like the constant, affects the starting point for the increase in validity 
required to offset a given increase in adverse impact. Parameter b, like the slope, affects 
the rate at which the required increase in validity increases as d increases. Users of this 
procedure can adjust these parameters to reflect their personal or institutional 
preferences for the relative weight that should be placed on adverse impact and validity 
when choosing test composites. 

As an example of the use of Equation 13-1, set a = 4 and b = 5. Suppose adding a 
subtest increases the adverse impact of the composite from 0.10 to 0.20. For the sum of 
dt and validity to increase beyond the sum for the previous composite, validity would 
have to increase by at least .022 – that is, the difference in dt values calculated at d = .10 
(.982) and d = .20 (.960). Similarly, if adverse impact increased from 0.50 to 0.60, 
validity would have to increase by at least .038. This takes into account the fact that 
increases in adverse impact when there is very little adverse impact are more acceptable 
than increases in adverse impact when adverse impact is more severe. To determine the 
combined validity/adverse impact score (VAI) for a particular composite, Johnson et al. 
(2004) used the following equation: 

VAI = rc + dt,   (13-2) 

where rc is the validity of the composite and dt is as defined in Equation 13-1. The best 
composite is the one in which VAI is at its maximum. Johnson et al. noted that dt can be 
replaced by the mean dt across different subgroup comparisons (e.g., Black-White, 
Hispanic-White, Male-Female) if more than one comparison is of concern. A weighted 
mean dt also can be computed if certain types of adverse impact are of greater concern 
than are others. 

Although a great deal more research is necessary in this area, the Johnson et al. 
(2004) procedure has some promise as a starting point in automating the selection of 
composites when considering both validity and adverse impact. This procedure has been 
used operationally in a study in which one of many possible predictor composites had to 
be chosen for each of several criterion variables (Johnson, Paullin, & Hennen, 2005). In 
this study, VAI was computed for each possible composite for each criterion and was 
one piece of information used in choosing the final composite for each criterion. Future 
research should be directed toward further refining the VAI formula and identifying 
more objective ways of placing relative value on validity and adverse impact. 

Concluding Remarks 

Given the mixed results regarding weights, it is not clear under what conditions 
relative weights provide better prediction than least-squares regression weights. Given 
the distinct advantages that relative importance indices have over regression coefficients 
in terms of communicating to decision makers, it might be worth exploring the 
possibility that relative weights have predictive advantages. Also, considering both 
validity and adverse impact simultaneously is feasible but involves policy makers and 
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technical information about minority group score barriers that result from the current 
set of selection instruments. The other strategy for reducing score barriers, as adopted 
by the Navy, is to offer alternative ASVAB composites that, with appropriate cutscores, 
form standards that apply to everyone. This way the Navy can capitalize on the prior 
experience/knowledge in the technical areas that some recruits have, but maintain a 
classification system that maintains diversity across most Ratings. The next chapter 
focuses on the calculation of weights with a focus on a composite of criteria that can be 
used in test validation research.  
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Chapter 14. 
More on Weights: Forming a Composite of Multiple 

Performance Criteria  
Rodney A. McCloy 

Introduction 

This chapter extends the discussion on weights in the last chapter with a slightly 
different emphasis and computational framework. Methods of determining weights for a 
set of components that are to be combined to form a composite (whether a predictor 
composite or a criterion composite) can be thought of as falling into two primary 
categories – rational and empirical weights. Rational weights are developed by judges 
who provide numeric weights based on their views about how the components should 
contribute to the composite (often based on each judge’s notions of what organizational 
policy is or should be). Empirical weights are developed when quantitative techniques 
are applied to yield a set of weights that achieve some pre-determined goal (e.g., 
maximize the reliability of the resulting composite). Sometimes, empirical weights are 
obtained after performing mathematical operations on data provided by 
judges/stakeholders, thus representing both categories to a degree. This chapter 
provides a discussion of two rational weighting approaches and one empirical method 
that uses judgments as data. It concludes by identifying additional weighting goals that 
might lead one to compute empirical weights. Also, the shift is from training 
performance as the criterion, which has been the focus of the Navy’s approach in ASVAB 
validation/standards studies, to the dimensions of job performance as the “criteria.” 

Rational Weights: Direct Estimation 

When creating a composite variable (assume for now we are creating a composite of 
performance measures), component weights often can be provided with relatively little 
muss and fuss. An individual or group of policy makers can simply agree that all the 
components in the performance composite should be weighted equally. If so, the 
components are said to be “unit-weighted” (as discussed in the previous chapter). A 
unit-weighting scheme most often arises when there is an explicit desire to treat all the 
components as equal to one another in importance, although it can sometimes arise 
when there is no clear policy for how best to assign weights to the components. 

Another common approach is to assemble a group of expert judges and have them 
allocate 100 percentage points across the components. Sometimes judges will make the 
point assignments individually and then review the results as a group before arriving at 
a final set of weights, which is most often the mean across judges (sometimes a second 
round of individual weighting is conducted following the group session). Unit weights 
can be viewed as a special case of percentage allocation, with all the components 
receiving an equal percentage contribution to the composite (i.e., each weight is 
equivalent to 100/k, where k is the number of components to be weighted). 
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Whatever the weights, the purpose of these a priori weighting schemes (Wang & 
Stanley, 1970) is to reflect the policies of the judges participating in the weighting 
exercise. Perhaps the most important point regarding weights obtained via direct 
estimation is that the weights allow the composite to be defined as desired. That is, the 
weights are not driven by statistical realities or limitations, but rather by policy makers 
and other stakeholders who have the opportunity to define the reality they envision (by 
creating a composite score that reflects their overall view). 

Rational Weights: Policy Specifying 

Another means of developing rational weights involves a procedure known as “policy 
specifying” (Ward, 1977). Policy specification is “a decision-modeling technique by 
which variables identified as pertinent to a decision-making process can be combined to 
derive a single predicted payoff value” (Piña, Emerson, Leighton, & Cummings, 1988, 
p.5). The U.S. Air Force used this procedure to weight and combine 10 variables deemed 
critical to the assignment of enlisted personnel to Air Force Specialties into a single 
score (payoff function) that the Air Force then used with their Processing and 
Classification of Enlistees (PACE; Piña et al., 1988) system used to quantify the efficacy 
of the Air Force’s person-job matching decisions. 

Policy specification is a form of “policy capturing”, a general term that describes 
methods for obtaining policy information from stakeholders and decision-makers, and 
describing the relations between that information and the judgments based on it 
(Rogelberg, Ployhart, Balzer, & Yonker, 1999). With regard to PACE, the procedure 
began with the assembly of a group of subject matter experts (classification experts, 
policy makers) who held weekly meetings during which they discussed and eventually 
identified the variables they deemed most important to making sound assignment 
decisions. The variables included enlistee aptitude, training preferences, gender, 
training cost, probability of completing the first term of enlistment, and the fill priorities 
of the available jobs. 

Having identified 10 such variables and selected measures of them, the Air Force 
judges then combined these measures into groups in a bottom-up agglomerative 
process. For example, they formed a trainability score that comprised intellectual ability 
and academic background. The aggregation continued until all 10 variables had been 
combined into a single score that served as the index upon which the value of various 
classification decisions were based. The grouped variables were weighted by importance 
at each step.  

Piña et al. (1988) did not describe how the importance weights were determined. 
Regardless, the importance weights and the groups of variables formed by the expert 
panel serve as rationally-weighted representations of the policies of the panel. The 
policy-specifying technique could serve as a basis for judgmentally determining the 
underlying value stakeholders ascribe to multiple criteria that need to be combined to 
form a single composite criterion. 
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Empirical Weights: Conjoint Measurement 

Another policy-capturing approach develops empirical weights for the components; 
however, these empirical weights are derived from expert judgments about the relative 
importance/worth of the components. Conjoint scaling (Green & Srinivasan, 1978; 
Johnson, 1974) (sometimes called conjoint measurement) requires judges to evaluate 
(e.g., rank-order, rate) groups of stimuli that differ systematically with regard to the 
dimensions in question. The stimuli may differ on all the dimensions of interest 
simultaneously (full-profile conjoint scaling) or on just two dimensions (two-factors-at-
a-time conjoint scaling). 

As an example of the latter approach to conjoint scaling, Sadacca, Campbell, White, 
and DiFazio (1989) sought to determine the relative importance of weights that should 
be assigned to the five job performance constructs developed during the Army’s Project 
A (Campbell, 1990; Campbell & Knapp, 2001) to yield a composite representing overall 
job performance. The five constructs of interest were Core Technical Proficiency, 
General Soldiering Proficiency, Effort and Leadership, Maintaining Personal Discipline, 
and Physical Fitness and Military Bearing (Campbell, 1986). 

In the Sadacca et al. (1989) study, non-commissioned officers and company-grade 
and field-grade officers representing 20 Army occupations served as judges. The judges’ 
task was to rank 15 hypothetical Soldiers in terms of overall job performance. The judges 
provided rankings for 10 sets of 15 Soldiers. The 15 Soldiers within each set differed in 
terms of their relative standing on two of the Project A performance constructs (e.g., 
Effort and Leadership vs. General Soldiering Proficiency). If Soldiers who scored higher 
on a given performance construct (say, Effort and Leadership) than another (say, 
General Soldiering Proficiency) were ranked higher than Soldiers who had the opposite 
scoring pattern, then the construct with the higher score among the more highly ranked 
Soldiers was deemed more important (and thus received a larger empirical weight) than 
the other construct.  

Conjoint scaling produces weights that are based on the ratio of the dimension (here, 
construct) regression weights obtained when predicting a given judge’s ranking of the 
stimuli (here, Soldiers) (see Torgerson, 1958). Sadacca et al. (1989) found that the 
weights applied to the five performance components differed significantly across the 20 
jobs (consistent with differential assignment theory, which is discussed in the last 
chapter). Conjoint scaling could assist the Navy and other Services with determining a 
reasonable set of weights to apply to multiple components of a composite performance 
measure.  

Empirical Weights: Other Goals 

As with selection and classification goals, there may be many goals to consider in 
weighting components in a performance composite. Wang and Stanley (1970) present 
many options for weighting components in a composite, including weighting (a) to 
achieve equal correlations of the components with the resulting composite, (b) to 
achieve minimum variation of the composite, (c) to achieve maximum reliability of the 
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resulting composite, (d) by difficulty (of test/measure), and (e) by length (of 
test/measure). The choice of the appropriate weighting scheme depends on the purpose 
of the composite itself—in particular, whether it is to be viewed as a psychological 
construct or else as a statistical conglomerate that might embody multiple dimensions 
for the purpose of encompassing as many relevant factors as possible when yielding a 
score that will serve as a decision index. 

What You See Is (Probably) Not What You Get: Nominal Weights and 
Effective Weights 

Frequently, the assignment of a set of desired weights to multiple components 
(whether predictors or criteria) does not yield the intended weighting scheme. Rather, 
these nominal weights specified by the weighting scheme (e.g., equal weights, 
differential weights assigned by expert judges) will contribute to, but not equal (and 
likely will not even be proportional to), the effective weights that result when the 
composite is formed (Wang & Stanley, 1970). That is, the nominal weights transform 
into a different set of weights. The transformation is a function of the variances of and 
covariances among the elements constituting the composite. This occurs because the 
variance of a composite is a function of the sum of the variances of the components and 
their covariances, as shown in Equation 1 (p. 664) from Wang and Stanley: 

 

When nominal weights (w) have been assigned to the various components, the variance 
of the weighted composite is thus 

 

(Wang & Stanley, Equation 3, p. 665). This, in turn, means that the contribution of any 
single component from that composite to the variance of the composite is 

 

(Wang & Stanley, Equation 4, p. 665). Thus, although the nominal weights certainly 
contribute to the resulting effective weights, they do not equal them unless the 
components are uncorrelated or correlate with one another to the same degree. Further, 
the formula indicates that as components are added, the variance of the composite is 
increasingly a function of the covariances rather than of the variances. 
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Wang and Stanley (1970) pointed out that this discrepancy between nominal and 
effective weights will occur whenever normative scoring is in effect—that is, when the 
meaning of a given test score is interpreted relative to scores from others on the test 
(e.g., percentiles, standard scores). If a criterion-referenced scoring process is used (e.g., 
percent correct), then effective weights typically will be proportional to nominal weights.  

Fortunately, given a set of nominal weights, one can solve for values for the empirical 
weights that, when applied to the variances and covariances, will yield effective weights 
for the components that equal the desired, intended nominal weights. To demonstrate, 
assume we have scores on five performance dimensions with the following variance-
covariance (VCV) and correlation (Corr) matrices (Tables 14-1 and 14-2, respectively):  

Table 14-1 
Variance/Covariance (VCV) Matrix for Five Performance Dimensions 

 1 2 3 4 5 

1 32     

2 20 27    

3 12 4 41   

4 16 6 22 36  

5 6 10 7 13 15 

Table 14-2 
Correlation (Corr) Matrix for Five Performance Dimensions 

 1 2 3 4 5 

1 1     

2 .68041 1    

3 .33129 .12022 1   

4 .47140 .19245 .57264 1  

5 .27386 .49690 .28227 .55943 1 
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Also assume that we would like these five dimensions to receive equal weight when 
forming a performance composite. The task of obtaining empirical weights becomes one 
of solving a system of five equations for five unknowns that, when applied to the 
variances and covariances as specified in the equations that follow, will yield effective 
weights that are equivalent to the desired magnitude expressed by the nominal weights. 
The five equations are as follows: 

X1: 1 = (w1) 2*Var(X1) + (w1*w2)*Cov(X1,X2) + (w1*w3)* Cov(X1,X3) + (w1*w4)*Cov(X1,X4) + (w1*w5)*Cov(X1,X5) 

X2: 1 = (w2) 2*Var(X2) + (w2*w1)*Cov(X2,X1) + (w2*w3)* Cov(X2,X3) + (w2*w4)*Cov(X2,X4) + (w2*w5)*Cov(X2,X5) 

X3: 1 = (w3) 2*Var(X3) + (w3*w1)*Cov(X3,X1) + (w3*w2)* Cov(X3,X2) + (w3*w4)*Cov(X3,X4) + (w3*w5)*Cov(X3,X5)  

X4: 1 = (w4) 2*Var(X4) + (w4*w1)*Cov(X4,X1) + (w4*w2)* Cov(X4,X2) + (w4*w3)*Cov(X4,X3) + (w4*w5)*Cov(X4,X5) 

X5: 1 = (w5) 2*Var(X5) + (w5*w1)*Cov(X5,X1) + (w5*w2)* Cov(X5,X2) + (w5*w3)*Cov(X5,X3) + (w5*w4)*Cov(X5,X4) 

where  X1 through X5 are the five component scores to be weighted and w1 through w5 
are the empirically determined weights for which we seek a solution.  

When not constrained to equal 1.0 (as is specified for these five equations), the 
formula on the right side of the equals sign in these equations yields the effective weight 
for the particular component under consideration, given application of the nominal 
weights (here, w1 = w2 = w3 = w4 = w5 = 1.0) to the variances and covariances (and is 
equivalent to Wang and Stanley’s [1970] Equation 4 presented earlier). In the present 
example, each component’s sum is simply the sum of the variance and covariances for a 
given component (because all weights equal 1.0). Thus, for component X1, applying 
weights of 1.0 yields an effective weight of 86, which is the sum of 32 (its variance) and 
20, 12, 16, and 6 (its covariances with the other four components). 

Table 14-3 presents the effective weights for all five components in this example, 
along with the nominal (desired) weight for each component (“Nominal Weight”) and 
the percentage contribution to the composite that the nominal weights specify each 
component should have (“Nominal %”). 
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Table 14-3 
Nominal, Effective, and Empirical Weights for Five Performance 

Components: Equal Nominal Weights and Unstandardized Variables 

Component 
Nominal 
Weight 

Nominal 
% 

Effective 
Weight 

Effective 
% 

Empirical 
Weights 

X1 1 20 86 22.5 0.104 

X2 1 20 67 17.5 0.124 

X3 1 20 86 22.5 0.107 

X4 1 20 93 24.3 0.097 

X5 1 20 51 13.3 0.160 

In Table 14-3, dividing each component’s effective weight by the sum of all of the 
effective weights yields the percentage contribution of each component to the composite 
(the “Effective %” column in Table 14-3). These percentages clearly do not equal the 
desired apportionment of 20% (1/5) to all five components.  

Because of the differing variances and covariances among the components, the 
weights that need to be assigned to the components to obtain equal effective weights 
would not be 1.0 across the board (as the nominal weights might suggest). Rather, the 
solution for this system of equations given the variance-covariance matrix (Table 14-1) is 
listed in the “Empirical Weights” column of Table 14-3.13 Applying these empirically 
determined weights to the components X1 through X5 will yield effective weights for the 
components that match the desired nominal weights of w1 = w2 = w3 = w4 = w5 = 1.0. 
Thus, applying the empirical weights to the variances and covariances will result in each 
component contributing equally to the composite. 

A similar analysis can be achieved if the nominal weights specify that some 
components should contribute more to the composite than others. Assume that an 
expert judgment exercise yielded the following set of weights for the five components: 

w1 = 20%, w2 = 10%, w3 = 10%, w4 = 40%, w5 = 20%. 

With this weight specification, the equations to solve would be as follows: 

  

                                                      
13

 The weights were obtained using the “Solver” add-in from Excel 2007. Other linear programming software also 

could calculate the weights that solve the specified system of equations. 
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X1: 2 = (w1)2*Var(X1) + (w1*w2)*Cov(X1,X2) + (w1*w3)* Cov(X1,X3) + (w1*w4)*Cov(X1,X4) + (w1*w5)*Cov(X1,X5) 

X2: 1 = (w2) 2*Var(X2) + (w2*w1)*Cov(X2,X1) + (w2*w3)* Cov(X2,X3) + (w2*w4)*Cov(X2,X4) + (w2*w5)*Cov(X2,X5) 

X3: 1 = (w3) 2*Var(X3) + (w3*w1)*Cov(X3,X1) + (w3*w2)* Cov(X3,X2) + (w3*w4)*Cov(X3,X4) + (w3*w5)*Cov(X3,X5) 

X4: 4 = (w4) 2*Var(X4) + (w4*w1)*Cov(X4,X1) + (w4*w2)* Cov(X4,X2) + (w4*w3)*Cov(X4,X3) + (w4*w5)*Cov(X4,X5) 

X5: 2 = (w5) 2*Var(X5) + (w5*w1)*Cov(X5,X1) + (w5*w2)* Cov(X5,X2) + (w5*w3)*Cov(X5,X3) + (w5*w4)*Cov(X5,X4) 

(note how the nominal weights serve as constraints on the left side of the equals sign). 
The effective weights for these specified nominal weights again are not as desired. Once 
more (a) applying the desired weights to the right side of each equation, (b) calculating 
the sum for each component, and then (c) dividing that sum by the total of the sums of 
all five components, we see the extent to which the application of the nominal weights to 
the five components “as they are” yields effective weights that differ from what is 
desired, shown in Table 14-4.  

Table 14-4 
Nominal, Effective, and Empirical Weights for Five Performance 

Components: Unequal Nominal Weights and Unstandardized Variables 

Component 
Nominal 
Weight 

Nominal 
% 

Effective 
Weight 

Effective 
% 

Empirical 
Weights 

X1 2 20 344 19.4 0.153 

X2 1 10 115 6.5 0.102 

X3 1 10 171 9.7 0.080 

X4 4 40 920 51.9 0.243 

X5 2 20 222 12.5 0.222 

As before, Table 14-4 shows that there is a departure from the desired 
apportionment of components to the composite. To recapture the desired nominal 
weights, we need to apply empirically determined weights (Footnote 13) to the variances 
and covariances of the components.  

The problem regarding differences between desired nominal weights (e.g., those 
specified by expert judges) and effective nominal weights (those that actually exist 
because of the influence of the components’ variances and covariances) does not vanish 
if one standardizes the components prior to weighting. Standardization will obviate the 
complicating problem of unequal variances across components, but unequal covariances 
will almost certainly remain, thus providing a similar (if somewhat lesser) problem. 
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For example, assume that we treated the correlation matrix (Table 14-2) as the 
variance-covariance matrix. As such, it means that we are using standardized variables. 
The problem of effective weights that stray from the desired specified weights remains, 
although the differences between desired and actual contributions of components to the 
composite are not as great as in the unstandardized case (Table 14-3). The standardized 
case with equal nominal weights is presented in Table 14-5. 

Table 14-5 
Nominal, Effective, and Empirical Weights for Five Performance 

Components: Equal Nominal Weights and Standardized Variables 

Component 
Nominal 
Weight 

Nominal 
% 

Effective 
Weight 

Effective 
% 

Empirical 
Weights 

X1 1 20 2.76 21.3 0.589 

X2 1 20 2.49 19.2 0.646 

X3 1 20 2.31 17.8 0.683 

X4 1 20 2.80 21.6 0.581 

X5 1 20 2.61 20.2 0.618 

Although standardizing the components prior to weighting reduced the discrepancy 
between nominal and effective weights (see Tables 14-5 and 14-6), as noted, it still did 
not produce the equal weighting we were seeking to achieve. As Wang and Stanley 
(1970) pointed out, “using nominal weights with standard scores probably comes closest 
to achieving equal effective weighting, particularly if the average correlation of each 
variable with the others is nearly constant” (p. 666). The empirically determined weights 
are still necessary to faithfully reproduce the desired weighting of the components. 

Finally, to complete the comparison, Table 14-6 presents the results that would be 
obtained by applying the expert judges’ nominal weights to standardized components.  
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Table 14-6 
Nominal, Effective, and Empirical Weights for Five Performance 

Components: Unequal Nominal Weights and Standardized Variables 

Component 
Nominal 
Weight 

Nominal 
% 

Effective 
Weight 

Effective 
% 

Empirical 
Weights 

X1 2 20 10.89 18.7 0.863 

X2 1 10   4.24 7.3 0.530 

X3 1 10   4.64 8.0 0.515 

X4 4 40 27.10 46.9 1.458 

X5 2 20 11.13 19.1 0.861 

 

Concluding Remarks 

The weights required to yield desired nominal weights are almost never the nominal 
weights. Achieving a desired allocation of influence of components on a composite 
therefore requires more than development of nominal weights. The nominal weights 
must be appropriately transformed into new weights that, along with the variances and 
covariances of the components, yield the desired nominal weighting for those 
components. 

Below are a couple of summary points to keep in mind when creating a composite 
variable—whether a criterion composite (as discussed in this chapter using job 
performance as the example) or a predictor composite. Following these suggestions will 
enhance the interpretability of the composite and ensure you are using a variable that 
has the properties you desire it to have.  

 If forming a single composite criterion meant to represent “overall” job 
performance, think carefully about how to weight the components that constitute 
the composite. Several methods are available that allow the composite to reflect 
stakeholders’ policy valuations.  

 Keep in mind the distinction between nominal weights and effective weights. 
Applying equal weights to a set of components will almost certainly result in 
unequal contributions of the components to the composite. In most instances 
involving rationally determined weights, alternate empirical weights need to be 
calculated and applied to the components to obtain effective weights that will 
produce the desired weighting indicated by the nominal weights. 
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Chapter 15. 
Multiple Hurdles and the Correction for Range Restriction 

Norman M. Abrahams 

Introduction 

The main objective of conducting a predictive validity study in the personnel 
selection context is to determine the value or effectiveness of the selection test in 
screening job applicants. However, many validation strategies do not take into account 
that there may be more than one selection stage in an organization's hiring process. 
That is, typically, we deal with a single decision point. Multiple hurdle selection systems 
have more than one. In this chapter, we describe several sequential testing or multiple 
hurdle selection systems and the technical problems that may lead to inaccurate 
estimates of test validity (downward bias) when a hurdle is not taken into account, or is 
inappropriately dealt with. We also explore some of the literature on multiple hurdles 
and several remedies, some of which involve the correction for range restriction 
formulas described in earlier chapters.  

Multiple Hurdle Selection Systems 

In general, the range restriction problem is not unique to the field of personnel 
selection, nor is the problems of accurately estimating the unknown unrestricted 
correlation when there have been violations of the underlying Pearson-Lawley 
assumptions, such as curvilinearity. For example, the range restriction problem arises in 
other fields such as health (e.g., participants in a clinical trial drop after the first phase 
because they did not reach a critical level of improvement), econometrics (e.g., there are 
unobservable lower wage earners in a wage comparison study involving all occupations), 
and education, where, for example, college applicants may be rejected because they do 
not meet an official score on the Scholastic Aptitude Test (SAT) or the Academic College 
Testing (ACT) (a range restriction situation similar to military qualification on the 
ASVAB). As another example, students who qualify for a high ranking university may 
not even bother to apply to a lower tier college resulting in restriction in range in high 
scores (see Sackett and Yang, 2000, for more types of restriction in range). 

Besides these obvious cases of range restriction, there are others that are not so 
obvious. For example, a structure interview may be used in college admissions but the 
instrument may not be scored and so, not used in validity analysis. If the institution 
wants to estimate the validity of the SAT/ACT in predicting first year grade point 
average for the applicant population, the omission of the interview instrument scores 
may cause the range corrected validity of SAT/ACT to be downward biased. The use of a 
structured interview may also be used to eliminate candidates from employment 
consideration. Generally the interview is administered after a general cognitive test has 
screened applicant out and so acts as a second stage assessment, part of a sequential 
testing or multiple hurdle selection system. 
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Multiple hurdles, as opposed to multiple cutscores, are sequential screening/ 
selection systems that are formally structured in stages so that not all applicants are 
administered all of the tests or instruments. Essentially, an applicant must meet the 
cutscore on the first screen to progress to the second screen. For example, the Federal 
Aviation Administration (FAA) administers a general cognitive ability test to Air Traffic 
Controller applicants in an initial screening stage and those failing the test are 
eliminated from further employment consideration. In a second stage of testing, those 
passing this first stage of testing are administered a more expensive battery of 
comprehensive and time-consuming tests. Those applicants who survive both stages 
(and any other hurdles) are eligible for employment consideration. Multiple hurdle 
selection systems provide practical benefits to both the organization and the applicants. 
From the organizational perspective, the most expensive personnel selection procedures 
are conserved. From the applicants’ perspective, time spent in a fruitless effort to gain 
employment is minimized, freeing those rejected in the first stage to pursue other 
employment opportunities.  

There are at least two examples of multiple hurdle cognitive screening systems in the 
military involving the Armed Services Vocational Aptitude Battery (ASVAB).  The first 
example is the use of a subset of the ASVAB tests, the ASVAB math and verbal tests—the 
Armed Forces Qualification Test AFQT) for military service eligibility (see Chapter 2 in 
the Introductory Manual). Of course, other military screens are applied that include 
education and non-cognitive screens such as physical fitness, medical, and moral status. 
If all of the military eligibility screens are passed (hurdles), the ASVAB is again used in a 
second stage of cognitive screening for occupation qualification. Technically, because all 
military applicants must take the full ASVAB for both enlistment and occupational 
classification, the ASVAB use can be thought of as a multiple cutoff system. The only 
differentiating factor that makes this screening system a hurdle and not a multiple 
cutscore system is that the selection and classification decisions are separate processes.  

Another example of an ASVAB multiple hurdle situation that is often not recognized 
as such is when the criterion that the ASVAB is targeted to predict is job performance. 
The first hurdle, of course, is the ASVAB standard for military eligibility, but technically 
is not considered so because the scores for both enlistment and job classification are 
available for all applicants. So, we say the second hurdle screen is passing the training 
course to “qualify” for reporting to the job. Just as many military enlisted members do 
not meet the ASVAB standard for a specific occupation, many who do qualify and attend 
the training course do not meet the training standard and therefore fail the training and 
do not report to the job. In this multiple hurdle case, measures of training performance 
serve the same purpose as the ASVAB classification standard – to screen out individuals 
from the job who are at an unacceptable risk for failure. Ignoring a screening hurdle has 
analytical consequences when validating the ASVAB, discussed in the following sections.  

Technical Issues with Multiple Hurdles 

Earlier chapters introduced the Pearson-Lawley correction for range restriction 
formulas. We recall that the assumptions for applying the formulas for the simple 
bivariate case are (a) linearity in regression of y on x throughout the unrestricted 



 

178 

 

bivariate distribution and (b) homoscedasticity of y error variance conditional on the 
values of x. An additional assumption is that explicit selection has occurred only on x. 
We can consider the assumptions (a) and (b) as “distribution assumptions” and the 
explicit selection on x assumption as a “selection assumption.” Lawley (1943) relaxed 
the distributional properties of x and y for the multivariate case (i.e., the formal 
properties of test score normality) but maintained that linearity and homoscedasticity 
should hold. For the multivariate case, the selection assumption is that yi covariances 
are unconditional on xi. As a reminder, the three-variable case of one explicit selection 
variable and two incidental variables (commonly, one explicit selector, one experimental 
predictor, and one criterion variable) is a specific case of the general multivariate 
formulas (see Chapter 5). 

It is well recognized and thoroughly discussed in previous chapters that the 
underlying assumptions for correcting for range restriction in the two-variable (x,y) 
bivariate normal case is linearity of y regressed on x across the total x-score range with 
homoscedasticity of error variances. Bivariate normal distributions are not always 
attained, however, and it is left to the researcher to assess the state of the only partially 
observable data (due to a selection standard in our illustration). Much research has been 
conducted on violations of the linearity and homoscedasticity assumptions and why 
these violations occur (some discussed in Chapter 11). We refer the reader to Dunbar 
and Linn (1991), Linn (1983), and Sackett and Yang (2000) for graphical 
representations of the non-linearity relations between two variables that can occur when 
a third “selection” variable selection has not been accounted for. As our visual aid, we 
first refer to Figure 15-1 for the depiction of the relation between two hurdle variables, 
H1 and H2, before and after a cutscore has been applied to H1. 

 

Figure 15-1. Non-linearity relation between two hurdle tests (H1 and H2) 
resulting from the H1 cutscore. 
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Figure 15-1 shows the linear regression line (H1 on H2) before a cutscore has been 
applied to H1, and also the slightly curvilinear line above that results from a cutscore 
applied to H1. We can see clearly that the linear regression line (roughly drawn to go 
through the mean of the H1 distribution observed at each H2 score) becomes curvilinear 
because in the very low H2 score range, most of the low scores on H1 are eliminated due 
to the H1, H2 correlation. Obviously, to the extent that scores on H2 are highly correlated 
to scores on the performance measure, say Y (now substituting for H2), the curvilinear 
relationship between H1 and Y also will be observed and the validity of H1 in predicting Y 
will be downward biased (as the slope of the line is flattened). We could say for Figure 
15-1 that H1 is the ASVAB, H2 is training grade, and Y is a measure of job performance. 
We can see how the ASVAB’s predictive validity will be underestimated with job 
performance as the criterion if we ignore the training hurdle.  

A Constructed Two-Hurdle Example 

This section describes the technical aspects of estimating the validity of ignored, not 
recognized, or inappropriately dealt with hurdles. A hypothetical case was constructed 
in which we predetermined the correlations, means, and standard deviations for two 
hurdles (H1 and H2) and a performance criterion (Y) in an applicant population drawn 
from a trivariate normal distribution. For convenience, we limited this population to 
1,000 cases. The three variables were standardized to have means of 0 and standard 
deviations of 1. In the first scenario, an inappropriately dealt with hurdle, H1 is a 
recognized formal hurdle whereas H2 is also a hurdle but ignored. The objective of our 
investigation was to compare the accuracy of the validity estimations for both H1 and H2 

for the scenario where the true validity coefficients are known for both variables.  

Table 15-1 shows the correlation matrix constructed for a hypothetical applicant 
population with means and standard deviations for the three variables just described. 

Table 15-1 
Hypothetical Applicant Population (N = 1,000) H1, H2, and Y 

Means, Standard Deviations (SD), and Intercorrelations 

 H1 H2 Y Mean SD 

H1 1.00 .45 .46 0.00 1.00 

H2  1.00 .53 0.00 1.00 

Y   1.00 0.00 1.00 

Next, we assume that the top 28% of applicants scoring highest on H1 in Table 15-1 
were administered H2. The Y variable would not be known at this point. Table 15-2 
shows the resulting H1 and H2 correlation matrix, determined analytically. 
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Table 15-2 
Hurdle 1 Selectees (n = 280) with H1 and H2 Means, Standard 

Deviations, and Intercorrelations 

 H1 H2 Mean SD 

H1 1.00 .25 1.20 0.51 

H2  1.00 0.54 0.92 

Table 15-2 shows that the range restriction that occurred by selection on H1 
attenuates the H1H2 correlation (initially .45 to a now much lower .25). Consistent with 
range restriction effects, the mean scores are higher for both H1 and H2 (than the initial 
standard score mean of 0) and the standard deviations lower (than the initial 1.0). 

Finally, we assumed that 160 of the 280 applicants who scored highest on H1 scored 
highest on H2 (16% of the original applicant population). The 160 final selectees went on 
to the training program to be scored on the performance variable Y. Table 15-3 shows 
the resulting H1, H2, and Y correlation matrix from the fabricated two-hurdle selection 
system, also determined analytically. 

Table 15-3 
Hurdle 2 Selectees (n = 160)  with H1, H2, and Y Means, 

Standard Deviations, and Intercorrelations 

 H1 H2 Y Mean SD 

H1 1.00 .19 .23 1.28 0.54 

H2  1.00 .31 1.17 0.59 

Y   1.00 0.83 0.87 

Table 15-3 shows that the range restriction that occurred by selection on both H1 H2 
further attenuates the H1H2 correlation (.25 in Table 15-2, after the first hurdle; .19 in 
Table 15-3, after the second hurdle). Consistent with increased range restriction effects, 
the mean scores are even higher for both H1 and H2, and at least for H2, the standard 
deviation is lower. Further, because the Y variable, observed for the first time, is 
correlated with both H1 and H2 in the population (.46 and .53, respectively), these 
correlations are also reduced in magnitude (.23 and .31, respectively). 

We remind ourselves that H2 was erroneously thought to be an experimental 
predictor, not a formal selection instrument with an applied cutscore. As often occurs in 
the evaluation of an experimental predictor, we might assume that it is appropriate to 
apply a conventional Pearson-Lawley correction that treats H2 as an incidental selection 
variable (Pearson’s Case III, which is Equation 5-19 in Chapter 5 and Equation 7, p. 174, 
in Thorndike, 1949). This correction procedure is not technically appropriate, however, 
because H2 was a formal explicit selection instrument. Table 15-4 shows the estimated 
applicant population matrix resulting from misapplication of the Case III formula. 
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Table 15-4 
“Corrected” Applicant Population H1, H2, and Y Means, Standard 

Deviations, and Correlations 

 H1 H2 Y Mean SD 

H1 1.00 .33 .39 0.00 1.00 

H2  1.00 .37 0.91 0.61 

Y   1.00 0.37 0.92 

The Table 15-4 values differ markedly from the known applicant population values in 
Table 15-1. The inappropriately used Case III formula produced corrections that not 
only underestimated the H1 and H2 applicant population validities, but also “reversed” 
their relative standings in predictive effectiveness. In the applicant population, H2 has 
higher validity than H1 (.53 vs. .46, respectively), but Pearson’s Case III correction 
erroneously produced .37 versus .39, respectively.  

Sequential use of the Pearson-Lawley Formulas  

In two studies of multiple hurdles (only a part of which is reported in this chapter), 
Abrahams and Alf (1998; Alf & Abrahams, 1998) investigated and compared several 
variations of the Pearson-Lawley formulas for their potential to solve the multiple 
hurdle validity estimation problem. The authors found that applying the standard 
Pearson-Lawley formulas in a sequential manner yielded the exact population values 
(Table 15-1). Specifically, the H1, H2, Y matrix for the final selectee sample (Table 15-3) 
is used with the Pearson-Lawley multivariate formulas to estimate the missing Y for the 
Hurdle 2 matrix (Table 15-2) that contains only H1 and H2. In turn, the now complete 
three-variable Hurdle 2 matrix is used with the correction formulas to estimate the 
missing H2 and Y applicant population data (Table 15-1).  

Abrahams and Alf (1998; Alf & Abrahams, 1998) noted in their investigation of 
Lawley’s (1943) original exposition of the multivariate correction procedures that a 
single statement supported the use of the sequential corrections. Specifically, Lawley 
noted that “Since the conditions (linearity and homoscedasticity) refer to relations 
existing between the y and x variables and take no account of the form of distribution of 
the x alone, it is clear that the selection formulas, if once applicable, may again be 
applied when a second selection is performed on the already selected population” (p. 
29).  

The use of the sequential Lawley correction assumes that data for those selected and 
rejected are available at each hurdle stage. Having complete data might not normally be 
the case. For example, those at the Hurdle 2 stage will have H1 and H2 scores, but those 
rejected on H2 will not appear at the next stage where the Y measurement is taken. 
Another kind of “missing data” situation applies to those selected at both hurdles but 
some of whom fail on the criterion variable, in which case the failures’ Y scores will be 
missing or, if entered, highly suspect. These two types of missing data must be imputed 
somehow to legitimately use the sequential Lawley correction method.  
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Abrahams, Alf, and Neumann (1993) provided an imputation procedure to compute 
Y performance scores that do not rely on predictor scores (i.e., Y scores for missing cases 
are not based upon regression equations that use the predictors). This imputation 
procedure has had application for scoring failures for large-scale ASVAB validation/ 
standards studies (Wise et al., 1992). However the procedure could just as well be 
applied to missing hurdle scores for those rejected at a hurdle and therefore not arriving 
at the stage where performance Y scores are taken. The “Scoring of Failures” procedure 
is based on the observed criterion distribution that is then anchored to the theoretically 
normal distribution. Because the method is not based upon regression analysis 
involving the predictors, the imputations may dampen the predictor validity 
coefficients. On the other hand, the procedure does have the potential to inflate validity 
estimates due to the direct tie to predictor scores (regression-based).  

Some Psychometric and Econometric Methods 

Alf and Abrahams (1998) explored not only the Pearson-Lawley formulas but also a 
variety of other correction methods (including Maximum Likelihood) for potential use 
in multiple hurdles selection systems. The methods can be categorized as either 
psychometric or econometric. The psychometric methods are variants of procedures 
developed by Pearson (1903) and Lawley (1943) and assume linearity of regression and 
homoscedasticity, as discussed earlier in this chapter and in previous chapters. The 
econometric methods (e.g., Heckman, 1979; Muthén & Joreskog, 1983) typically model 
the single-stage selection process developing a regression equation for y on x that 
includes a binary term to account for the range-restricted group. Typically, the numeric 
value of 1 is assigned to members of the unselected population, and 0 to the selected 
group. Some approaches use probit analysis as the first stage in the process of 
parameter estimation to account for the effects of sample selection.  

The next step in a probit analysis is to include the probit values along with x in a 
least squares regression to predict y for all cases. The validity coefficient then becomes a 
straightforward calculation. The applicability of some of the econometric methods has, 
to a certain extent, been studied in psychometric settings. Nelson’s (1984) research, 
however, suggests that the econometric methods are least effective where they are most 
needed—that is, where the sample selection is most stringent. In the case of selection 
stringency, the Pearson-Lawley procedures were more accurate than the econometric 
procedures. After reviewing several studies, Dunbar and Linn (1991) were not optimistic 
about the application of econometric methods to test validation methods. The relative 
ineffectiveness of the econometric methods may be due, in part, to their failure to use all 
of the available information available for use by the Pearson-Lawley procedures. 

An important difference in the econometric and psychometric methods is that, 
although their intentions are identical, their assumptions differ. The econometric 
methods assume a strict cutscore or “threshold value” (as referred to by 
econometricians). All applicants below the cutscore are rejected and all above are 
selected. The psychometric methods, on the other hand, do not require the strict 
cutscore assumption and therefore are flexible in permitting the real-world possibility of 
a variety of reasons leading to selection or rejection. Further, the selection and rejection 
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can occur from any point in the predictor distribution. The restrictive assumption of the 
econometric methods, coupled with increased standard errors of their parameter 
estimates may, in combination, contribute to their relative ineffectiveness compared to 
the Pearson-Lawley methods.  

It is important to note that neither the econometric nor psychometric approaches 
(without sequential corrections) deal specifically with evaluating multiple hurdle 
selection systems. For example, Linn (1983) demonstrated the inadequacies of both 
models in estimating conditional means and variances as a result of an unaccounted 
hurdle that resulted in a curvilinear regression of y on x.  

Concluding Remarks 

The importance of applying the appropriate procedures for correcting for range 
restriction in multiple hurdle selection systems cannot be overstated. There are real 
consequences in the applied setting for either not acknowledging a hurdle or 
inappropriately estimating a hurdle instrument’s validity. The consequences of 
misestimating the validity of multiple hurdle selection instruments will most likely be 
reflected in an inappropriate setting of cutscores with a corresponding negative impact 
on the organization. The next chapter provides information about mainstream methods 
for dealing with multiple hurdle data considered within the framework of a missing data 
problem.  
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Chapter 16. 
Multiple Hurdles as a Missing Data Problem 

Jorge L. Mendoza and Janet D. Held 

Introduction 

In the previous chapter, we were able to visualize and understand the downward bias 
in the validity coefficient resulting from ignoring a selection hurdle. We also saw that 
when all of the required data are available, the Pearson-Lawley procedures can be used 
in a sequential process starting from second stage data working back to the first stage. 
In this chapter, we take the position that a multiple hurdle selection system can be 
placed within the general framework of the missing data problem. Procedures such as 
Maximum Likelihood (ML) and Multiple Imputation (MI) are discussed, which have 
additional benefits over Pearson-Lawley in that the methods provide standard errors of 
prediction. For a full discussion of the problems in the context of selection test 
validation, we refer the reader to Dunbar and Linn (1991). The broad topic of missing 
data theory is more fully discussed by others (e.g., Little & Rubin, 2002; Rubin, 1976, 
1996; Schafer, 2000, Schafer & Graham, 2002). 

Some Missing Data Terminology 

Missing Completely at Random (MCAR) 

Data that are missing completely at random (MCAR) are exactly that—data that are 
not observed due to chance alone. MCAR data result from completely random processes 
(e.g., the inability or neglect of a data recorder). We do not address MCAR data in the 
single or multiple hurdles selection design other than to say they should not influence 
the regression of Y or X or the correlation between the two variables because there is no 
systematic pattern of missingness.  

Missing at Random (MAR) and Missing Not at Random (MNAR) 

Data that are missing at random (MAR) arise from the situation when performance 
Y scores are missing strictly due to selection on X, assuming X and Y are correlated to 
some degree. In personnel selection, factors such as applicant self-selection or rejection 
of job offers are factors that do not correlate with the reasons why some of the Y scores 
are missing. If they were correlated, then the situation would be missing not at random, 
or MNAR. For example, a MNAR situation would be when a selection process was based 
solely on a cognitive measure but job performance was related not only to cognition, but 
also to being able to get along with others. Further assume that those who cannot “get 
along” with others were fired. This situation would yield MNAR data, because some of 
the job performance Y scores are missing due to not being able to get along – that is, a 
factor that is related to Y scores and cannot be eliminated by controlling for the 
cognitively based X. 
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In personnel selection and the conduct of validity analysis, we are hoping for a MAR 
situation and we note that a MAR assumption is consistent with the Pearson-Lawley 
assumption of selection having occurred solely on X. Missing not at random (MNAR) 
means that some other selection mechanism besides X is responsible for the missing Y 
scores. This “other selection mechanism” might or might not correlate with X but must 
correlate with Y after controlling for X, thereby biasing the validity correction. MAR is a 
confusing term, because we intuitively think of the term “random” to mean just that – 
missing completely at random (MCAR). 

Monotone Data 

A monotone pattern of missing data means that all individuals having Y scores also 
have X scores. In a multiple hurdle selection system, we have labeled X as H1, which is 
followed by H2. In the multiple hurdle case, all individuals with Y scores will also have 
H2 scores, and all individuals with H2 scores will also have H1 scores. A monotone data 
pattern is typically depicted as a set of stair steps, each decreasing in height going from 
left to right (e.g., see Mendoza, Munford, Bart, & Siew, 2004 and their stair step 
depiction for various test validation designs with ML estimation using the Estimation-
Maximization Algorithm). Monotone patterns of missingness are a special case of the 
MAR assumption. 

Ignorable and Non-ignorable Missingness 

The ignorable missingness assumption (Rubin, 1976) means that the selection 
mechanism is known and the data are available. Ignorable missingness, consistent with 
MAR, is also equivalent to the Pearson-Lawley assumption of selection having occurred 
solely on X. The selection situation is ignorable in that the Y data are missing strictly 
due to the correlation of X with Y, not due to some unobserved selection mechanism 
that is correlated with Y after controlling for X. The ignorable selection situation applies 
to the multiple hurdle selection system when all hurdles are accounted for; if not, there 
is non-ignorable missingness. Adjusting regressions and correlations for non-ignorable 
missingness (such as the unaccounted-for institutional decisions based upon factors 
that correlated with both X and Y, and self-selection decisions that eliminate high 
aptitude/achievement youth from some low-tier colleges) affects the unrestricted 
population regressions and correlations. Both ignorable and non-ignorable missingness 
can be consistent with a monotonic data pattern; however, non-ignorable missingness is 
consistent not with MAR, but with MNAR. The terms MAR and “ignorable” are used 
interchangeably in the literature.  

Censored Data 

The term censoring is used in several fields to describe data that are missing due to 
the upper or lower limits of the measurement instrument, such as what psychologists 
would observe when an aptitude test has a ceiling effect, or what an economist would 
observe when an aptitude standard causes range restriction. The concept of censored 
data is not the same as truncated data, which introduces some confusion in our 
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personnel selection test validation designs. For example, ASVAB composite scores will 
be left truncated in a Navy school’s data set due to a cutscore applied to the Navy 
Rating’s operational ASVAB classification composite, whereas other ASVAB composite 
scores will be censored because all ASVAB composites are correlated (to varying 
extents). In either case, direct (explicit) selection or incidental (indirect) selection, we 
can deal with the downward bias in ASVAB validity coefficients when estimating them 
for the unrestricted population with the traditional formulas presented in Chapter 5. 

Heckman (1976, 1979), as an economist, refers to censored data in the broadest of 
terms in that the data can be censored due to either an organization’s decision-making 
process (some of which might or might not be accounted for) or a self-selection process 
(that cannot be accounted for). Censoring, unless purely random, violates the MAR 
assumption and the data are therefore MNAR. Heckman represents a MNAR selection 
model by depicting an organization’s decision-making process that is not taken into 
account (our unaccounted for hurdle depicted in Chapter 14).  

Addressing the Non-Ignorable Missing Data Problem   

Researchers in academia have long been concerned with the non-ignorable 
missingness problem. For example, Linn (1968) pointed out the problem of establishing 
the validity of a career guidance test battery in making future decisions (e.g., further 
education or career choices) when those who take the battery are self-selected. Linn 
provided valuable insights into the problem: 

“In situations such as those encountered in attempting to validate a 
guidance test battery, the nature of the process of self-selection is very 
difficult to model and the true explicit selection variables are difficult to 
identify and/or to measure. It may be that the most reasonable approach 
to the problem of correcting for bias due to selection in such cases is to 
include as many measures which are thought to have relevance for the 
selection processes as is reasonable within the practical constraints of the 
situation” (p. 72). 

More recently, Ryan, Sacco, McFarland, and Kriska (2000) pointed to such self-
selection factors as an applicant’s perceptions of the organization and motivation to 
obtain the job, as well as employment alternatives or offers from higher tier colleges. All 
of these self-selection factors are considered non-ignorable selection mechanisms that 
are difficult to model. The following subsections provide brief discussions about the 
salient points of research attempting to solve the standard range restriction problem 
and the non-ignorable missingness problem, some of which make comparisons to the 
Pearson-Lawley method.  

Muthén and Yang Hsu (1993) 

Muthén and Yang Hsu (1993) were concerned about the missing data problem in 
college or graduate school admissions. Muthén and Yang Hsu were most interested, 
however, in using structural equation modeling to find the structure and correlations 
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between the underlying latent factors in a test battery (not relations from observable test 
scores). Muthén and Yang Hsu pointed out that the Pearson-Lawley approach is not 
designed to deal with latent variables. (In simple situations, we can achieve similar 
results by correcting for the Pearson-Lawley estimators for unreliability.) We do not 
discuss the complexities of the study or findings here other than to say that the Pearson-
Lawley and ML procedure are comparable under multivariate normality and full data 
availability. The benefits of the ML procedures are that they are theoretically supported 
and in principle are more flexible than the Pearson-Lawley corrections. Another 
advantage of the ML approach is that in many situations it gives estimates of standard 
errors that apply to the full information maximum likelihood using the observed 
information matrix. We refer the reader to Muthén and Yang Hsu or Enders (2010) for a 
full discussion of the ML procedures.  

Mendoza, Bard, Mumford, and Siew (2004) 

Mendoza et al. (2004) provided an algebraic extension of Pearson-Lawley. They also 
pointed out that the multiple-hurdle situation in many contexts is a monotone missing 
data problem and that the algebraic extensions under the assumption of multivariate 
normality and ignorable data provide ML estimates. The ML estimates can be more 
easily obtained using the EM (estimation maximization) algorithm. Although the EM 
algorithm provides ML estimates, it does not provide standard errors because it does 
not find the derivative in the maximization of the ML function. When the EM algorithm 
is used to find the ML estimates, the standard errors can be obtained using one of the 
many available bootstrap methods. Mendoza et al. covered three test validation designs 
(concurrent, predictive, and multiple-hurdle) and their EM solutions under the 
assumption of MAR and an ignorable selection mechanism. (The authors refer us to 
Sackett & Yang, 2000, for a complete taxonomy of correction procedures.) 

For context, Mendoza et al. (2004) provided a citation for a multiple-hurdle 
selection system used to employ airport screeners (Kolmstetter, 2003). In the first stage, 
an online application was administered. Those who passed the first stage completed a 
computer-administered test battery in the second stage. A third stage consisted of a 
structured interview, followed by a physical ability test and a medical evaluation. The 
final stage was a security background check. 

Three methods were applied to estimate (recover) the known unrestricted regression 
parameters and variable correlations: (a) the appropriate sequential correction formulas 
developed and described in the Mendoza et al. (2004) study, (b) the ML Expectation 
Maximization (EM) algorithm (Dempster, Laird, & Rubin, 1977), and (c) Bayesian 
multiple imputation (MI) (Rubin, 1976). The results showed that the MI method was 
most accurate in estimating the known unrestricted regressions and correlations in the 
limited context when compared to the EM algorithm and the formulas, but that all three 
procedures (given large samples from a multivariate normal population) produce 
similar results. We note that the formulas developed by Mendoza et al. are extensions of 
Rubin’s missing data algorithm and yield comparable results in the multiple-hurdle 
context that applied to the Pearson-Lawley sequential corrections.  
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Mendoza et al. (2004) took the position that even under the ignorable selection 
situation, there are some advantages to using either the EM or MI approaches over the 
formulas. Formula use requires exact specification of the test validation design, which is 
a function of how many hurdles are present, whereas the EM or Full Information 
Maximum Likelihood (FIML) procedures do not. Also, the EM algorithm “…yields ML 
estimators under a variety of missing data structures and is not limited to the monotonic 
missing data structure…” (p. 430). The MI procedure has the added advantage over EM 
in that it provides a facsimile to a formula-based standard error. Mendoza suggested 
that procedures that augment EM with bootstrap standard errors may also be useful for 
conducting test validation. We refer the reader to some of the bootstrap literature that 
suggests accurate standard errors of the range-corrected correlation coefficient (Chan & 
Chan, 2004; Li, Chan, & Cui, 2010; Mendoza, Hart, & Powell, 1991).  

Olson and Becker (1983) 

Olson and Becker (1983) graphically portray another non-ignorable selection 
situation that applies to the military setting where many high aptitude/achievement 
youths opt for college rather than the military service (particularly in times when there 
is a large supply of high paying private sector jobs that require a college education). 
Figure 16-1 is the opposite situation displayed by Figure 15-1 (Chapter 15) where low 
aptitude/ability individuals are screened out of the selection process. 

 

Figure 16-1. Non-linearity and heteroscedasticity resulting when high 
aptitude youth select out. 
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Figure 16-1 represents a regression situation (say the ASVAB as X and final school 
grade as Y). Assuming a substantial correlation between X and Y, there will be missing 
or sparse data in the upper X,Y score range if many high ASVAB youth chose college or 
high paying jobs over military service. The missingness effect will be a downward bias in 
the population regressions and correlation. We note for Figure 16-1 that the X cutscore 
is not shown and that the displayed Y cutscore is notional not reflecting accuracy or at 
what point the line would cross the y-axis.14  Olson and Becker (1983) also noted that 
complete truncation on Y is not in reality a situation experienced by organizations, and 
psychologists’ formula to correct for complete Y truncation, presented by Thorndike 
(1949) as his Case 1 (p. 173), would never be used in application. Further, the Thorndike 
Case 2 solution (p. 173) that corrects for incidental selection on Y due to explicit 
selection on X is not appropriate because in a nonignorable selection situation (either 
low or high score missingness), the explicit X variable in the equation is not the only 
explicit selection mechanism. 

Organizations that conduct utility analysis to evaluate their personnel selection 
systems should realize that if a non-ignorable selection mechanism is not accounted for 
(either low or high score missingness), there may be under prediction of the 
performance Y scores due to smaller regression weights (a lower slope). We refer to the 
quotation by Linn (1968) about the need to include all variables that are relevant in the 
estimation of a selection test’s validity coefficient (this chapter) and add a partial quote 
from Thorndike provided by Olson and Becker (1983). 

“When selection is based, as it often is, on a clinical judgment which 
combines in an unspecified and inconstant fashion various types of data 
about the applicant, and when this judgment is not expressed in any type 
of quantitative score, one is at a loss as to how to estimate the extent to 
which the validity coefficient for any test procedure has been affected by 
that screen” (Thorndike, 1949, p. 176). 

Olson and Becker proposed, as others have, an analytical method based on the 
econometric literature to address the special case of “…omitted variable bias” (p. 143). 
We discuss the method in the next section as developed by Heckman (1976, 1979) 
(mentioned in Chapter 15) and applied to our more familiar academic selection context.  

Gross and McGanney (1987) 

Gross and McGanney (1987) were concerned about the non-ignorable missing data 
problem in the academic setting and the shortfalls of the traditional correction formulas 
(i.e., Pearson-Lawley). “The traditional correction formula approach can be viewed as 
the special case of the general model in which one assumes a priori no interrelation” (p. 
605). Gross and McGanney acknowledged that the Heckman (1976, 1979) econometric 
missing data model could be used as part of a solution. The Heckman model, compared 

                                                      
14

 We refer the reader to Chapter 3 about the cautionary note from Smith (1948) on using the Taylor-Russell (1939) 

tables when the assumption of bivariate normality in the X/Y relation is not upheld.  
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to the Pearson-Lawley (traditional correction formulas), allows specification of the 
relation between the non-ignorable selection process and Y. Gross and McGanney 
described a potentially useful statistical model that has three components:  

“… (a) a regression model that expresses the xy relation, (b) a selection 
model that describes the selection process (i.e., the basis for the missing y 
scores), and (c) an assumption concerning the relation between the two 
former models” (p. 605). 

Gross and McGanney (1987) started their discussion of the first model component with 
the basic population-based regression model,  

yexBBy  10

  

(16-1) 

and pointed out that the correlation regression parameters p(x,y) can be expressed from 
regression analysis terms (their Equation 2) as: 
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(16-2) 

Gross and McGanney (1987) started their discussion of the second model 
component, that is, the process of selection that explains observable and unobservable y 
scores, by defining ys as observable only if a threshold value is exceeded on the selection 
mechanism. A regression model for ys that parallels Equation 16-1 (their Equation 3) is, 

sss exy  '0 
     

(16-3) 

where xs, the actual selection variable(s), could be (a) the same as the predictor x 
variable of interest, (b) other than the x variable, or (c) a mix of both. Given some 
distribution normality assumptions that Gross and McGanney, an equation can be 
developed (shown as their Equation 4, the normal ogive or probit function) that 
estimates the probability of selection and thus has an observed y, given xs. The variable 
ys is therefore only partially observable to the extent that all of the xs are observed.  

Gross and McGanney (1987) started their discussion of the third component of the 
model, the relation between the regression and selection models, with an assumption of 
bivariate normality between x and xs, and between y and ys, with the primary interest in 
the correlation between y and ys conditional on x and xs,   p(y, ys|x, xs). The authors state 
“This correlation is a key parameter of the model because it determines whether the 
selection process is ignorable (i.e., whether there is a relation between y and the 
probability of selection)” (p. 606). That is, if [p(y,ys|x, xs) = 0]), then the traditional 
Pearson-Lawley correction will suffice (to the extent that all underlying assumptions for 
performing the correction apply).  Conversely, if the yys correlation is not zero (ys 
modeled as a latent variable), then there has been a latent unobserved selection 
mechanism and an additional regression parameter must be included in the corrected 
validity estimation model.  
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Gross and McGanney (1987) evaluated two procedures for estimating the 
unrestricted x,y correlation, a two-step process (Heckman, 1976, 1979; Olsen & Becker, 
1983) and ML (comparing the results with the Pearson-Lawley range correction). We 
refer the interested reader to the article for the details and merely mention that there 
appeared to be mixed results but favoring the ML procedure. However, the authors in 
their summary section expressed general concerns about the adequacy of sample size, 
potential multicollinearity issues between the x and xs variables, the bivariate normality 
assumption for y and ys, and the possibility that high ability individuals as well as low 
ability may be missing from the data due to nonignorable selection processes.  

Concluding Remarks 

We refer the reader to Enders (2010) for an applied approach to dealing with 
missing data and full discussions of the newer methods considered as state-of-the-art. 
Enders provided an employee selection data set that he used to demonstrate the pros 
and cons of the various methods. He also discussed software packages and provided a 
list of recommended readings after each chapter and a website where some syntax can 
be obtained (www.appliedmissingdata.com). However, Enders reminded us of several 
important points: “A missing data handling technique is only as good as the veracity of 
its assumptions…” and “Until more robust MNAR analysis models become available 
(and that may never happen), increasing the sophistication level of the MAR analysis 
may be the best we can do” (p. 344). We also refer the interested reader to the 
recommendations of The National Academies Panel on Handling Missing Data in 
Clinical Trials (National Research Council, 2010). First, the panel emphasized the role of 
design to limit the amount and impact of missing data. Two of their 18 
recommendations were of special interest to personnel researchers. 

 Recommendation 3: “Trial sponsors should continue to collect information on 
key outcomes on participants who discontinue their protocol…” (p. 3), and 

 Recommendation 15: “Sensitivity analyses should be part of the primary 
reporting of findings from clinical trials. Examining the sensitivity of the 
assumptions about the missing data mechanism should be a mandatory 
component of reporting” (p. 5). 

These two recommendations echo the comments made here and elsewhere about the 
importance of collecting additional data that could be helpful in understanding 
missingness, and also the importance of carrying out several different analyses if the 
MAR assumption is suspected.  
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Chapter 17 
Setting ASVAB Cutscores  

Janet D. Held  

Introduction 

Chapter 3 introduced us to the various ways we can interpret the correlation 
(validity) coefficient. One of those ways is obviously tied to the magnitude of the validity 
coefficient that applies to a given selection instrument and, as a result, the extent to 
which we can improve a given inadequate success rate by raising that selection 
instrument’s cutscore. Chapter 3 showed us how to construct an empirically-based 
expectancy (cutscore) table and also the theory-based Taylor-Russell (1939) tables. 
When conducting ASVAB validation/standards studies, we should recognize that there 
are limitations with empirical-based expectancy tables in that they are only appropriate 
for the operational selection/classification instrument upon which explicit selection has 
taken place and not for a candidate replacement because there is a floor of 
aptitude/ability already established due to the operational standard. Also, the empirical 
expectancy analysis cannot be used to assess performance impact from lowering the 
operational cutscore because individuals with scores below the cutscore would not be 
qualified. If such data points were observed below the cutscore, ASVAB waivers would 
have been given and we would not know the basis of the waiver decision (and even if we 
did, the sample size would be typically too small to include in an analysis). In this 
chapter on cutscore setting, we assume that (a) point waivers are not considered in 
cutscore analysis (although we provide guidance later in the chapter) and (b) the 
estimate of the population validity of a selection instrument is accurate.   

Three Approaches in the Literature to Setting Cutscores 

Two common approaches to setting cutscores for hiring decisions discussed in the 
literature are banding and top-down selection (e.g., Aguinis, 2004; Truxillo, Donahue, & 
Sulzer, 1996). The banding approach explicitly recognizes that there is measurement 
error in everyone’s observed test scores. Banding undifferentiates individuals who score 
slightly lower or higher on a selection instrument’s cutscore and therefore affords 
opportunity to consider, or place more emphasis on, other selection factors, such as 
community service, education, job experience, race/ethnicity, etc.  

In contrast, the top-down approach takes the position that hiring candidates with the 
highest scores on the selection instrument will benefit the organization in terms of 
optimal job performance (see Sackett & Roth, 1991 for a comparison of the top-down 
and banding cutscore approaches). In the military enlistment context, a top-down 
ASVAB score approach is never taken and, in fact, the Navy’s operational classification 
algorithm has a curtailment component for largely overqualified recruits for specific 
Ratings (discussed in the next chapter).  
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Besides the banding and top-down approaches to setting cutscores, a third approach 
is to use experts’ judgments to come to a cutscore consensus: a content-based approach 
as opposed to a criterion-based approach. The Angoff (1971) method is most frequently 
evaluated against other content-oriented approaches (e.g., Truxillo, Donahue, & Sulzer, 
1996) and involves deciding what constitutes a “minimally qualified” individual. In the 
military context, meeting training objectives constitutes a minimally-qualified graduate 
(See Chapter 5 in the Introductory Manual for information on Navy training).  

Cascio and Aguinis (2005) stated that “It is unrealistic to expect that there is a single 
‘best’ method of setting cutoff scores for all situations” (p. 227). We address other 
approaches and situations more in-depth in the following sections. 

The Approach of Minimizing Classification Decision Errors 

One also can set cutscores by deciding to minimize classification errors. Ghiselli, 
Campbell, and Zedeck (1981) described two classic examples (e.g., Cureton, 1957) for 
setting cutscores (p. 308) that would in every case minimize the two false classification 
errors: accepting those who would have failed and rejecting those would have passed. 
Both types of classification errors are of concern to the military but the emphasis shifts 
with changing recruiting environments (e.g., enlisting youth having a high risk of failing 
may be a tolerable position in a difficult recruiting environment if many would still be 
expected to succeed). Figure 17-1 shows two score distributions of one selection 
instrument - one for Failures and one for Successes - and the optimal cutscore that 
minimizes the two classification decision errors.  

Figure 17-1. Optimal cutscore for minimizing classification decision errors. 
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The cutscore is set in Figure 17-1 so that it intersects the two distributions at the 
point at which the right tail for Failures and left tail for Successes intersect. The reason 
that any other cutscore would not minimize the sum of the two classification decision 
errors is that the tails of a normal distribution contain relatively fewer cases than at any 
other segment demarcated by an equal interval test score distance. This fact is readily 
seen by the normal test score distribution depicted in Figure 17-2.  

 

Figure 17-2. Partitioned areas under the normal curve. 

With reference to Figure 17-1 and Ghiselli et al. (1981), any cutscore adjustment that 
moves either to the left or right would either be ascending or descending a “hill.” In 
either case, the gain in cases from ascending the hill would be greater than the loss of 
cases to the counterpart tail. Therefore the cutscore intersecting the two distributions 
minimizes classification decision errors, no matter the extent of overlap in the Success 
and Failure distributions. As can be seen, this and the three previous approaches 
discussed about setting cutscores do not consider the correlation coefficient. Ghiselli et 
al. noted that in diverting attention from the correlation coefficient to, in essence, 
prediction error, the method “…makes no assumption about the form of the distribution 
and takes advantage of the nonlinear as well as linear components of association 
between the two variables” (p. 310). 

There are two major issues with the “minimizing classification error” approach to 
setting ASVAB cutscores that make it inapplicable for the military. First, it is always the 
case that the military must trade off recruiting and training resources, and so the value 
of reducing each type of error would never be equal and may quickly reverse in changing 
recruiting environments. Second, there is more than one occupation to consider in a 
total cutscore system, which adds another dynamic - an occupation’s value to the Navy 
(i.e., lowering the cutscore for one Navy Rating so that the cutscore can be raised for 
another).  
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Anchoring Cutscores to the ASVAB Normative Distribution 

In Chapter 7 of the Introductory Manual (Synthetic Validity), we discussed the 
situation where a new Navy Rating is stood up and school performance data are not yet 
available to conduct validity or cutscore analyses. If the ASVAB validation/standards 
team is fully versed in the difficulty of training and graduation rates across Navy Ratings 
and also, the ASVAB validity, an educated/informed decision can be made about an 
interim ASVAB standard. One can gauge an ASVAB standard by anchoring it on a 
generic normal curve relative to relevant Ratings’ ASVAB standards, as depicted in 
Figure 17-3.  

 

Figure 17-3. Four Ratings’ ASVAB cutscores positioned on a normal test score 
distribution. 

Figure 17-3 shows a rough placement of four Ratings’ ASVAB standards (composites 
with cutscores) on a normal test score curve notionally applying to the PAY97 ASVAB 
normative population (Segall, 2004). The Ratings are Boatswain’s Mate (BM), 
Quartermaster (QM), Operations Specialist (OS), and Nuclear Field (NF), which actually 
comprises three Ratings (see Appendix B of the Introductory Manual). The underlying 
principle for using the normal curve approach is that, even though the ASVAB 
composites differ in composition, the cutscore on each reflects the same level of 
aptitude/ability/skill/experience. Setting an ASVAB standard in this manner assumes 
that we understand (a) the underlying constructs measured by the composite and the 
linkage to the training content, (b) the expected or known difficulty of the curriculum 
and time allowed to train, all assessed relative to other Ratings that have operational 
ASVAB standards that can be evaluated for effectiveness, and (c) that eventually we will 
be able to confirm the effectiveness of the standard we operationalize.  
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Cutscores using the Taylor-Russell (1939) Tables 

In Chapter 3 (about interpreting the validity coefficient), we discussed the Taylor-
Russell (1939) tables and how they can be used in theoretically-based cutscore analysis. 
(Chapter 3 also provides particulars about the empirically-based cutscore table.) The 
way the Navy ASVAB validation/standards team uses the Taylor-Russell tables requires 
an estimate of the unrestricted in range validity coefficient that applies to the PAY97 
ASVAB normative population (Segall, 2004) because the tables are based on bivariate 
normal distributions and the PAY97 scores are full range.  

We also saw in Chapter 3 that the expected improvement in the success rate 
(training graduation rate in our case) from raising a cutscore is tied to, all other things 
being equal, the magnitude of the validity coefficient. In this section we illustrate how 
the tables can be used to assess the expected positive and negative impact on success 
rate from cutscore adjustments. Table 17-1 is taken from the Nuclear Field (NF) study 
(Appendix B in the Introductory Manual) and is used here to illustrate some important 
points about the use of the Taylor-Russell (1939) tables. 

Table 17-1 
Drop in Taylor-Russell (1939) Table Success Rates When Predictor 

Unreliability Lowers ASVAB Validity 

Taylor 
Russell  

Base Rate 
Table 

 
 

Validity 
 

VE+AR+MK+MC Cutscore Applied to the  
ASVAB Normative Youth Population 

257 245 236 229 223 

Qual(SR) = 

.05 

Qual(SR) = 

.10 

Qual(SR) = 

.15 

Qual(SR) = 

.20 

Qual(SR) = 

.25 

.15 .85 .88 .76 .66 .58 .51 

.20 .80 .89 .79 .71 .65 .59 

.25 .75 .89 .81 .74 .69 .64 

.30 .70 .89 .82 .76 .72 .67 

Note. The base rate is the success rate that would be observed if all individuals in the population of 
interest were selected for a job (or training, in our case) without applying an aptitude standard. Each line 

in our table references a different Taylor Russell base rate table. Qual(SR) refers to the qualification rate, 
or selection ratio associated with a particular cutscore.  

Table 17-1 was constructed using four different Taylor-Russell (1939) base rate tables 
(.15, .20, .25, and .30 - listed in the first column). The base rate that best fits the NF 
study parameters is .20 (shown in bold). That is, a .20 base rate table obtains, better 
than any other base rate table, the study’s observed 89% success rate at the intersection 
of the .80 validity (the conservative population validity estimate from the study), and a 
.05 selection ratio (SR) (not exactly, but close). The ASVAB cutscore associated with the 
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.05 qualification rate, Qual(SR), is 257 ASVAB cutscore, again not exact, but close 
enough for a robust interpretation of expected success rates at various SRs and 
associated cutscores. Table 17-1 shows that the very stringent 257 cutscore, qualifying 
only the top 5% of the ASVAB normative population, results in an 89% success rate and 
that lowering the cutscore to qualify only 5% more of the population (a total of 10% at 
the score of 245) results in a 10% lower success rate (89% - 79%). 

The obvious advantage of using the Taylor-Russell (1939) tables for cutscore analysis 
is that we can legitimately evaluate the expected negative impact of lowering the 
operational cutscore.  As mentioned earlier, we cannot legitimately evaluate a cutscore 
lowering impact on expected success rates from the empirical cutscore analysis without 
making some dubious assumptions about any observable cases with ASVAB waivers 
(scores below the cutscore having been waivered as exception to policy without known 
reasons). We simply move across the SR row that is associated with specific cutscore 
developed from knowledge of the means and standard deviations in the PAY97 ASVAB 
population and find the internal table success rate values associated with the estimated 
population ASVAB validity. In this case, we hope for an accurate estimate of the PAY97 
ASVAB composite validity from our study data. Another obvious advantage of the tables 
is that they are appropriate for use with a measure that is found to have higher validity 
than the one used operationally. In this case, one merely finds the best fit base rate table 
as usual for the operational composite, and then move down the validity column to the 
appropriate validity estimate for the candidate replacement to the expected success rate, 
which would always be higher or just the same if the validity increment is marginal. Of 
course if the recruiting environment is poor, one can establish point-waiver tolerances if 
lowering the operational cutscore does not hugely impact the success rate. 

We can also use the Taylor-Russell (1939) tables in a reverse procedure to back out 
an estimate of the unrestricted validity, if for some reason we do not have the 
continuous performance variable to correlate with the ASVAB. For example, we might 
have just the dichotomous pass/fail outcome, though and we note that Chapter 12 
provides a brief discussion about the correction of the range corrected validity for 
dichotomization. However, what if the only data available are a published empirically-
based expectancy table without reference to the validity coefficient? In that case, the 
researcher can establish the relevant parameters from the expectancy table to find the 
best-fit Taylor-Russell table. That is, three parameters can be established from the 
expectancy table - selection ratio, success rate, and improved success rate by increasing 
the stringency of the selection ratio. With those three values known, the value of the 
validity coefficient is fixed.  

Table 17-2 is used to illustrate this additional advantage of the Taylor-Russell (1939) 
tables. The context is the Defense Language Aptitude Battery (DLAB) for which a 
passing score is required for entry into the Defense Language Institute, Foreign 
Language Center) to study foreign languages, and the only available data is an 
expectancy table developed through a complex missing data procedure that addresses 
both multiple-hurdle and missing applicant data issue (Segall, 2007). We also present 
this example that applies to one Taylor-Russell table as Table 17-1 is comprised of data 
from four tables. 
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Table 17-2 

Taylor-Russell (1939) .20 Base Rate Table Corresponding to a DMDC 
Generated DLAB Study Cutscore Table 

 

Table 17-2 is one of any number of possible mathematically generated Taylor-Russell 
(1939) tables (by Ms. Rebecca Hetter, formerly of Navy Personnel Research and 
Development Center to augment the published 10 tables). This particular “best fit” .20 
base rate table shows that a validity coefficient of .55 corresponds to the pass/fail rates 
observed in the DMDC cutscore analysis table for four different selection ratios (5%, 
10%, 20%, and 30%), which are tied to four DLAB scores (111, 102, 92, and 85, 
respectively), which in turn are tied to four different success rates (63%, 56%, 47%, and 
41%, respectively). We intuitively know that learning a foreign language can be very 
difficult, especially given the time constraints that the military allows for training, and 
so the .20 base rate table seems appropriate. We can also see that DLIFLC has virtually 
no latitude in raising the already stringent DLAB cutscore of 100 (that applied to the 
second hardest language category) to 110 (that applied to the hardest language category) 
for all languages without severely limiting the DLIFLC qualified pool of applicants.  
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On the other hand, if not enough qualified recruits meet the 110 cutscore on the 
DLAB, other measures could be taken to improve the DLIFLC success rate at any 
cutscore level by simply (a) allocating more resources to recruiting DLIFLC candidates 
including screening for those who are highly motivated to learn languages, (b) 
increasing the time allowed to bring students to proficiency and improving other aspects 
of the course, or (c) adding other predictors that more closely link to the course 
performance and ensure that these predictors have high levels of reliability. 

We note that the DLAB is a multiple-hurdle test for DLIFLC qualification in that 
each candidate must first meet an ASVAB standard that applies to the specific military 
occupation that requires foreign language training (other qualifiers include security 
clearance eligibility). As we know, each screen has its own selection ratio, and as we add 
more, the consequences are to further limit the qualified pool of applicants.  

Multiple Cutscores  

We discuss multiple cutscores before multiple hurdles because the multiple-cutscore 
topic has many interesting features, including the impact of test score unreliability on 
cutscore decisions. As we know, psychometrically, reliability caps validity (but reliability 
is not sufficient for validity) and the question becomes how unreliable was a decision to 
reject an individual based upon a test that has reported low reliability.  Lord (1962) was 
concerned that perfect reliability typically is assumed on two predictor instruments each 
having an operational cutscore. Through extensive statistical development, Lord offered 
a formula that could be used to portray the expanded surface on a bivariate distribution 
that qualified individuals due to the unreliability of two selection instruments.  Figure 
17-4 is a rough portrayal of Lord’s published graphic (p.28).  

 

Figure 17-4. Expanded qualification surface due to measurement error. 
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From Figure 17-4, we see that the reliabilities of the two selection instruments will 
affect the quality of the individuals selected for the job as the surface thought to contain 
the qualified applicants (bounded by the right angle formed by the X1, X2 cutscores -  
upper right quadrant) expands to a larger coverage with the contoured line. Lord (1962) 
advised practitioners to consider the reliability of the instruments in setting multiple 
cutscores and reconsider use of the instruments if the contour line resulting from his 
procedures looks more like a straight line than lines at a right angle. Alternatively, if one 
of the two instruments is more reliable than the other, some sort of offsetting cutscore 
on the most reliable instrument could be considered. Another approach is to shift the 
contour lines upward and to the right to be more assured that the majority of those 
qualified would have the requisite level of the constructs. It should be noted that Lord 
did not consider the criterion or validity coefficient in this particular multiple cutscore 
focus.   

Other experts have provided insights into the multiple-cutscore selection model.  For 
example, with regards to setting effective multiple cutscores, Thorndike (1949) stated, 

“There is no really analytical way of establishing the two critical scores 
below which an individual shall be disqualified. Different combinations of 
score values for X1 and X2 must be tried. For each of the selected 
combinations the research worker must determine (1) the percentage of 
cases disqualified by using this combination of cutting scores and (2) the 
amount of difference in average criterion score for the accepted group and 
the rejected group. That combination of cutting scores will be chosen 
which (1) yields the proportion of accepted applicants which fits the supply 
of candidates on the one hand and the demand for job placements on the 
other hand and (2) makes the sharpest discrimination in criterion score 
between those who are accepted and those who are rejected” (p. 197). 

Thorndike went on to describe that there is an advantage of multiple cutscores if one of 
the instruments demonstrates a dramatic non-linear relation with the criterion (e.g., 
where some amount of the measured construct is clearly indicated). Thorndike also 
suggested that a clinical approach might serve the purposes as well as an empirical 
approach. Cronbach (1949) cited a legitimate case for applying multiple cutscores that 
appears to have been determined by a clinical assessment: 

“At one time during World War II, Naval recruits were selected for 
training in the operation of antisubmarine listening gear on the basis of 
their combined scores on tests of auditory discrimination and mechanical 
comprehension. As a result, a number of college-trained men who excelled 
in mechanical comprehension but happened to be deficient in the essential 
auditory skills were assigned to the training, with subsequent failure. 
Standard Navy procedure required that those failing in the training be 
transferred to general sea duty as apprentice seamen. The loss of potential 
specialized service resulting from such a misclassification is apparent. 
Further analysis of the situation led in time to the substitution of a 
multiple-screen procedure for this selection purpose” (p. 475).  



 

204 

 

We note here that classical test theory (CTT) discussed in previous chapters tells us 
that we can establish with some probability the range of scores that bound a true score. 
However, for any individual’s observed score that equals the cutscore, we cannot know if 
the true score is above or below that cutscore.15 

A Navy Example of Too Many Cutscores 

Table 17-3 shows a multitude of multiple ASVAB cutscores that were in place for the 
Nuclear Field community before they were dealt with in the late 1990s (Held, 1999) (a 
situation we do not want to repeat).   

Table 17-3 
The Nuclear Field’s Prior Multiple Cutscore Qualification System 

ASVAB  Cutscore 

Fiscal Year 1997 
recruits qualified 

(%) 

1a  VE+AR 113 30 

1b  VE+AR 103 60 

2    AR+MK+EI+GS 218 39 

3    MK+EI+GS 156 54 

4    MK+AS  96 75 

5    AR+2MK+GS 196 76 

6    VE  41 99 

   

All ASVAB requirements  26 

   

1a requires NAPT   49        unknown 

1b requires NAPT  55        unknown 

Note. NAPT is the Navy Advanced Placement Test, a 2-hour test of advanced mathematics and 
physical science.  

It is obvious from Table 17-3 that with so many correlated cognitive ability tests and 
overlapping composite components, many Navy recruits would not qualify for the 
Nuclear Field (NF) simply based on the many ways to be disqualified – largely based 
upon the compounding of test measurement error. 

                                                      
15

 Widely published are the formulas for deriving the confidence interval for an individual’s observed score that 

would contain the true score with some reasonable expectation. These formulas are worked through by Harville 

(1991) in a web accessible paper, which is one of a series of NCME Modules dealing with educational measurement 

topics. www.http://ncme.org/linkservid/6606715E-1320-5CAE-6E9DDC581EE47F88/showMeta/0/ 
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For NF, missing any cutscore – even by one point, disqualified a candidate. The 
solution for the NF community was to establish a two-pronged ASVAB/NAPT 
qualification system that addressed the issues experienced by the community: (a) not 
enough Navy recruits qualified for NF due to the strict adherence to the multiple 
cutscores, and (b) the mandatory requirement for passing the two-hour Navy Advanced 
Placement Test (NAPT). The administration of the test was a major qualification 
roadblock, not just because the test is difficult, but also because it required a Navy 
certified test administrator to administer the test (to over 3,000 Navy NF candidates a 
year).  

The two-pronged classification system operationalized two ASVAB composites 
estimated as having the highest validity for predicting NF school grades (replacing the 
VE+AR composite that had the lowest validity) and allowed those that met a very high 
cutscore to by-pass the NAPT.  We refer the reader to Appendix B of the Introductory 
Manual for the updated evaluation of the two-pronged NF classification system. 

Figure 17-5 has been used for illustration purposes to inform Navy policy-makers at 
a very non-technical level about the excessive screening out of Nuclear Field candidates 
due to the extensive set of  multiple cutscores on correlated cognitive measures.     

 

Figure 17-5. Excessive screening out due to overuse of cutscores. 
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Multiple Cutscores or Compensatory Model 

Figure 17-6 illustrates one of the dilemmas faced when deciding whether to use a 
composite of measures with a single cutscore, the compensatory model, or a cutscore on 
each measure, the multiple cutscore model.  The graph in Figure 17-6 (somewhat 
following Thorndike, 1982, Figure 9.1) depicts two uncorrelated selection instruments – 
somewhat like Figure 17-4, except in Figure 17-6 the two measures are uncorrelated and 
each is assumed to be perfectly reliable. To simplify matters, we assume equally 
weighted X1 and X2 variables in the compensatory model. We might consider that X1 is a 
Navy Rating’s ASVAB classification composite and X2 is a personality composite that 
reflects, say “Agreeableness” traits (as might be useful in selecting 
empathic/sympathetic Hospital Corpsman). We would not expect X1 and X2 to correlate 
(many personality traits do not correlate with cognitive measures).16  As with Figure 17-
4, the criterion is not explicitly considered; however, we assume there is at least a slight  
increment in validity in order to consider the compensatory model to be of benefit (say, 
personality provides a .05 validity increment to the ASVAB’s .70 for predicting training 
grades).  

 

Figure 17-6. Rejected applicants from multiple cutscores vs. composite score. 

                                                      
16

 The more highly correlated the measures, the more overlap in qualified applicants for the two systems, all other 

things being equal. 
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Each cutscore model in Figure 17-6 qualifies the same number applicants, and 
therefore the same number of disqualified applicants. The diagonal X1+X2 composite 
(compensatory) cutscore score line allows higher scores on X1 to compensate for lower 
scores on X2, and vice versa. The compensatory model disqualifies those in the mid-
section segment of the bivariate surface (dots) who would have qualified under the 
multiple-cutscore model.  Conversely, the X1 and X2 individual cutscores (like the 
Nuclear Field multiple cutscore model – Table 17-3) disqualifies those in the extreme 
segmented surfaces who would have qualified under the compensatory model. Figure 
17-6 and Thorndike (1982) suggest that among the issues to consider in the comparison 
of a multiple cutscore and multiple-regression model is the value we place on those 
disqualified by each model.  

From earlier citations from Thorndike (1949) we know that setting cutscores on a 
multiple cutscore model is mainly subjective, hit/miss, and iterative, but also, grounded 
in the position that both attributes are required for the job. Add to this complex web of 
considerations for the military: (a) not dealing with just one occupation, but a system of 
many occupations, (b) changing recruiting environments that can dramatically change 
the supply of applicants with high levels of one or the other attribute (the military is 
most concerned about ASVAB score distributions and education), and (c) personality 
may really matter most for job performance whereas the ASVAB may matter most for 
training performance (upon which ASVAB is currently validated).   

We note that the operational qualification model is multiple cutscore for both the 
NAPT (for the Nuclear Field Ratings) and the DLAB (for foreign language required 
military occupations), but that these instruments are only administered to those 
qualifying on occupational ASVAB cutscores, and thus follow a multiple-hurdle model.   

Cutscores for Multiple Hurdles 

As discussed in Chapter 16, with multiple-hurdle selection systems, applicants must 
pass one screen to proceed to the next and so forth until all of the hurdle screens have 
been passed. For simplicity, we do not discuss the more expensive second-stage hurdles 
such as personnel interviews, background security checks, and assessment centers, but 
only measures that are administered either on the CAT-ASVAB platform or by other 
testing means (e.g., by test control officers or their test administrators in the case of the 
NAPT). The multiple-hurdle model is efficient to both the organization and the 
individual (see Chapter 15). However, just as with multiple cutscores, multiple-hurdle 
cutscores are complicated. Hunter, Schmidt, and Le (2006) considered the multiple-
hurdle topic important but complicated and pointed out the many possible cutscores 
that could be assigned to each hurdle instrument, depending upon the order and validity 
magnitude of each. (Because the ASVAB is a given to all military applicants, it makes 
sense that it should be the first selection/classification hurdle.) 
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Sackett and Roth (1996) noted that the ultimate selection ratio resulting from two 
hurdle cutscores is the product of the two separate hurdle selection ratios. We consider 
that this principle applies to instruments that are uncorrelated such as the near zero (or 
zero) correlation of the ASVAB with many facets of a personality instrument. The 
ultimate (or net) selection ratio principle being the product of the two is obvious when 
we consider that contributions to the multiple correlation for uncorrelated measures in 
regression analysis are additive. We also note that with correlated measures (such as the 
multiple cutscore model formerly used by Nuclear Field, the reduction in the selection 
ratio is not so severe and is ascertained by merely cutting the recruit data on all ASVAB 
requirements (as all recruits have ASVAB scores). The task is more complicated when a 
second hurdle instrument is correlated with the ASVAB (e.g., NAPT and DLAB) and not 
all recruits have been administered the test (Segall, 2007, used Monte Carlo Markov 
Chain to estimate DLAB scores for an applicant population).  

For example, consider the situation where a personality measure (say achievement 
traits) has a known small validity coefficient for predicting training performance, but 
zero incremental validity to the ASVAB. Because of personality’s small validity 
coefficient (say rxy = .20), a very lenient cutscore is set—one that qualifies 80% of the 
applicant population. Now, say, as in the Navy’s Nuclear Field (NF) situation, the 
predictive validity of the ASVAB is large (rxy is estimated at about .80 - .85 in the 
Appendix B study of the Introductory Manual). For NF, the training is extremely 
difficult, and there is a larger proportion of failures historically observed when the 
ASVAB cutscore is set even only slightly lower (say qualifying the top 10% of youth 
rather than the current top 5%). The effective selection ratio according to Sackett and 
Roth (1996) using the ASVAB cutscore qualifying the top 10% of youth and a cutscore on 
the personality instrument qualifying the top 80% is .80 X .10 = .08 for a lower 8% 
qualification rate. A 2% loss in qualified recruits seems small until you consider that (a) 
2,500 NF candidates are required out of less than 40,000 Navy accessions each year and 
(b) many other Ratings also require high ASVAB-scoring youth. Of the 2,500 NF annual 
recruiting goal, a two-percentage-point reduction due to the “personality hurdle” would 
result in 800 fewer recruits qualified for NF out of the 40,000 accession population. 

Establishing a cutscore for an instrument used in a multiple-hurdle selection system 
in predicting performance in Navy training would require evidence that the instrument 
(a) had a direct linkage to the underlying performance constructs and provided stability 
of measurement (i.e., was not an unreliable measure), (b) had a relation with the 
training measure that was confirmed over time (e.g., not subject to sample fluctuations 
and statistical significance by chance), (c) was a measure of a relevant construct not 
measured by the ASVAB or if measured, not measured well (such as extremely high 
aptitude/ability levels as was the case with the NF Ratings, (d) does not inordinately 
reduce the ability of the Navy to fill the occupation (as was the case for the NF with the 
strict requirement of the NAPT hurdle), and (e) is well monitored to protect against test 
item security issues (i.e., items put on the internet) and test compromise (cheating in 
various ways).  
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Managing ASVAB Cutscore Waivers 

During a poor military recruiting environment (e.g., from a positive U.S. economy 
with an abundance of good jobs), it becomes more difficult for the military to recruit a 
large number of very smart youth. It may become necessary to issue ASVAB score 
waivers, if not military qualified, depending upon the Service, and also for certain 
complex/high aptitude/ability military occupations.  Without significant offsets such as 
high bonuses, fewer ASVAB scores will be observed in the upper tail of applicant and 
recruit ASVAB score distributions.  In this case, we must be cautious about setting 
cutscores or advising on cutscore waiver score points using the Taylor-Russell (1939) 
tables because we may not meet the underlying bivariate normal distribution (ASVAB 
and performance distributions). Smith (1948) discusses the issue of not meeting 
distribution assumption in use of the tables.  

At this time, it is unclear what policy will be issued to Navy Recruiting Command for 
allowing ASVAB score point waivers for Navy Rating classification. The current 
prolonged recruiting environment will not last forever (at least if history repeats itself), 
and there will be tensions between recruiting and training about filling goal and filling 
Fleet requirement with adequately trained Sailors. We note that a 12-point waiver (3-
points per ASVAB test or about, 1/3 of a standard deviation – the largest allowed waiver 
applying to four-test composites) does not have the same negative impact across 
Ratings, all other things being equal including a substantial course fail rate.  

We have two anecdotal stories to tell about lowering ASVAB standards, which is in 
essence what is done when an ASVAB point-waiver is issued. The first applies to the 
Mineman (MN) community when it was allowing Sailor conversions into its Rating 
during a period when the Navy required growth in the community to address a long-
term mission spike for minesweeping capabilities (detection and avoidance of mines at 
sea). Some Sailors were allowed to convert to the MN Rating from low-tech occupations. 
As a result, ASVAB point-waivers were given, the Sailors shipped to shore-based 
training, and such extreme learning issues resulted that NPRST was asked to “raise the 
ASVAB standard” and provide a separate Electronics Information (the ASVAB EI test) 
cutscore. The study is provided in Appendix C. 

The other anecdote occurred during the time that the ASVAB Coding Speed (CS) test 
was eliminated from the battery (in 2002 when the ASVAB Assembling Objects test was 
added). The Navy, the only Service that supported CS, was able to retain it for 
classification testing (on the CAT-ASVAB platform) because it demonstrated that the 
test (a) offers incremental validity to otherwise optimally-formed ASVAB composites for 
a substantial number of Ratings, (b) reduces adverse impact because it is a relatively 
culture-free test, and (c) increases the proportion of recruits in any given year who are 
qualified in the aggregate across military occupations. Eliminating CS would have 
negative impacts in all three areas. 

The Marine Corps addressed the negative impact of CS’s removal from the ASVAB in 
the ability to fill all of their occupations by lowering their ASVAB classification 
composite cutscores by 5-score points across all occupations. (The Marine Corps’ 
ASVAB composite scores are standardized to have means of 100 and standard 
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deviations of 2o, so this amounted to a .25 standard score lowering of the cutscore.)  
Naturally, an across-the-board lowering of the qualification cutscore would be expected 
to have differential performance impacts depending upon the training parameters 
(difficult, time constraints, observed academic failure rate) and ASVAB validity 
coefficient. These factors were not taken into consideration. The Navy and Marine Corps 
train together for the occupation of Air Traffic Controller (ATC). As it happened, the 
Director of Training at the schoolhouse called for an ASVAB validation/standards 
review shortly after the elimination of CS from the ASVAB to better understand the 
jump in academically-related failure rates in the schoolhouse. As it turned out, a visit to 
the schoolhouse revealed that the uptick was due to the lowering of the Marine Corps 
ATC ASVAB standard. 

Guidance for Issuing ASVAB Cutscore Waivers 

 Another complicating factor involving ASVAB cutscore point-waivers is that many of 
the Navy Ratings have alternative ASVAB standards. For example, candidates for the 
three Nuclear Field Ratings and the Mineman Ratings (see Appendices B and C of the 
Introductory Manual) can qualify on the VE+AR+MK+MC or AR+MK+EI+GS 
composites (Mineman Rating having a lower cutscore than the Nuclear Field Ratings). 
Although a model permitting alternate ASVAB standards has definite merits in opening 
the aperture for occupational qualification, the model also increases the potential for 
applicants to qualify on chance factors. Just as the Nuclear Field initial multiple 
cutscore model excluded many applicants based upon measurement error, qualifying on 
alternative standards includes some applicants based on that same measurement error. 
It is easy to see that a candidate who only qualifies on one of the two standards by just 
one score point may be only marginally qualified; others should be considered better 
choices. Unfortunately, during recruiting downturns, the military cannot be assured that 
waiting for the more qualified candidates will result in meeting a fixed yearly goal for 
highly technical occupations. 

The following factors should be considered when recommending leniency of an 
ASVAB cutscore waiver policy for any Navy Rating involved in an ASVAB validation/ 
standards study: 

1. alternative ASVAB standards or single ASVAB standard; 

2. cost of training resources wasted when students fail (highly dependent on course 
length); 

3. training methods and remediation capacity that would allow students having 
difficulty to recycle; 

4. criticality of the Rating to Fleet operations where at-the-margin students might 
cause accidents or risks to other Sailors; 

5. yearly input requirement, which if a large number, could produce stress in filling 
the Rating; and 

6. a changing recruiting environment. 
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Concluding Remarks 

This chapter provided a brief background of various methods and models for setting 
cutscores, some of which apply directly to the Navy. All Navy Ratings have an ASVAB 
standard and so we are not at square one in setting cutscores, unless a new Rating is 
stood up. Even at that, we can obtain a lot of information about that Rating and its 
proposed training and apply an initial cutscore using an ASVAB normative process. 
Cutscores for the military are set in a fluid environment as resources wax and wane over 
time, leading the ASVAB validation/standards program to be considered a necessary 
operational maintenance requirement. This requirement will become more evident as 
more joint-service training occurs and the varying ASVAB cutscores come into question. 
Both the Army and Navy have simulation software applications that incorporate 
cutscores for assessing the requirement for ASVAB waivers. Two of the Navy 
applications are described in the next chapter, one of which allows, for any given Navy 
Rating, the designation of ASVAB points and the percentage of allowed waivers.  
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Chapter 18. 
Assessing ASVAB Standards Adequacy through Simulation 

Janet D. Held 

Introduction 

As discussed in the last chapter, setting cutscores is a complicated matter, even for 
one job. The process is even more complicated for the military when there are many jobs 
and variations in the recruiting environment. As one thread of ASVAB validation/ 
standards research projects, the Navy partnered with industry in the development of 
two job classification/assignment applications to help assess the impact of ASVAB 
standards changes on the Navy’s ability to fill all Navy Ratings. This chapter describes 
the two applications and their research use in the evaluation of the classification 
effectiveness of two tests, Assembling Objects, which was added to the ASVAB in 2002, 
and Coding Speed, which was eliminated from the ASVAB at the same time.  

The Focus on Opening the Aperture for Occupational Qualification 

There is an extensive literature on adverse impact (e.g., Sackett, Laczo, & Lippe, 
2003) (with additional context and references cited in Chapter 13), including the 
concept and how various terms like “fairness” evolved (e.g., Lawshe, 1987). The Navy 
recognizes that the ASVAB technical tests present occupational barriers  (adverse 
impact) to women and some minority groups that are not familiar with the technical 
knowledge-based test content (e.g., Electronics Information and Auto/Shop 
Information). However, when combined with more academic tests, these tests are highly 
valid in predicting performance in a wide range of technical Ratings and the thought is 
not to penalize those with high technical test scores by removing the tests from the 
battery. The Defense Manpower Data Center (DMDC) in the early 1990s led a joint-
service evaluation of the fairness of the ASVAB technical composites for technically 
oriented jobs (Wise et.al, 1992). The study concluded that although the ASVAB was not 
biased in predicting training success for minority groups (equal regression weights for 
majority and minority groups), but that some effort should be made to reduce ASVAB 
score barriers (adverse impact). Wise et al. recommended that score barriers be 
addressed by adding a fluid intelligence test (Carroll, 1993; Cattell, 1943) from the 
Enhanced Computer-Administered Test (ECAT) battery (Alderton, Wolfe, & Larson, 
1997) to complement the ASVAB tests, which were mostly measures of crystallized 
intelligence at the time.  

The Navy responded to the Wise et al. (1992) recommendation by conducting further 
ASVAB predictive validity studies involving Assembling Objects (AO) (Held, Fedak, 
Crookenden, & Blanco, 2002; Held, Fedak, & Johns, 2004). The validation studies 
resulted in the inclusion of the AO test in two Navy ASVAB composites (see Table 6-1 in 
the Introductory Manual). Primarily, the Navy uses AO in ASVAB composites used to 
classify recruits into mechanical (and engineering) oriented Ratings, which is consistent 
with prior studies on AO (e.g., Carey, 1994).  
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AO was officially added to the ASVAB at the same time that the two ASVAB speeded 
tests, Numerical Operations (NO) and Coding Speed (CS), were removed. Because NO 
and CS load on a speeded ASVAB factor, their elimination increased the average 
intercorrelation of the remaining ASVAB tests, thus reducing the potential to 
differentially assign recruits to occupations for which they are best aptitude/ability  
suited. The average ASVAB intercorrelation of the battery’s tests for the Profile of 
American Youth 1980 (PAY80) study was .593 when the ASVAB included the NO and 
CS test (the PAY80 matrix was taken from Maier & Sims, 1986). Removing NO and CS 
increased the average test intercorrelation to .655 (the AO test was not a part of the 
ASVAB for this intercorrelation assessment). 

The Navy provided evidence through the Manpower Accession Policy Working 
Group (MAPWG) to support the continued inclusion of CS in the ASVAB, but evidence 
was not sufficient for the NO test. Inclusion of the CS test (a) provided incremental 
validity to the existing ASVAB composites when validated against training performance 
for relevant Navy Ratings (Held & Wolfe, 1997); (b) lowered the average intercorrelation 
of the ASVAB tests in a large Navy recruit population, implying increased differential 
assignment capability; and (c) lowered score barriers for women and some racial/ethnic 
minority groups (Alderton et al., 1997; Held et al., 2002).  

Although the Navy found clear support for the CS test, the problems of maintaining 
the tests were considered non-trivial for the long term, and so CS along with NO were 
eliminated from the ASVAB (Segall, 1997). However, because the Navy had sufficient 
evidence to retain CS, the Navy was able to retain the test as a Navy special test with 
administration to Navy applicants immediately (seamlessly) after completion of the 
computerized version of the ASVAB (CAT-ASVAB). The latest hardware effects study of 
the CS test shows no score differences between groups that input CS answers via the 
specially configured CAT-ASVAB keyboard, and a mouse so the test is considered stable 
(Pommerich, 2013). There also were efforts underway to further eliminate hardware 
effects so that the test could be administered on other computer platforms (e.g., 
internet-based proctored CAT-ASVAB) (Segall, 2010). The Navy assumes that at some 
point, the Army will be favorable to re-using the CS test, as they developed it (Held & 
Carretta, 2013). At least two Army reports support use of CS (Scholarios, Johnson, & 
Zeidner, 1994 in the capability to increase differential assignment capability; Zeidner, 
Johnson, Vladimirsky, & Weldon, 2004 for increasing the slopes of minor group 
regression lines).  

As part of the evidence-gathering for lowering ASVAB score barriers, NPRST 
calculated ASVAB test effect sizes for gender and some clearly defined racial/ethnic 
groups having adequate sample sizes. The effect sizes were calculated as the majority 
group mean minus the minority group mean, the result then divided by the groups’ 
population standard deviation. Table 18-1 (taken from Held & Carretta, 2013, 
originating from Held et al., 2002), shows the effect sizes (positive values favoring the 
major group) from a year 2000 recruit population.  
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Table 18-1 
ASVAB Effect Sizes for a Year 2000 Navy Recruit Population 

Male 

Caucasian Reference Group   

   N = 22,230 

Female 

Caucasian Reference Group   

   N = 4,454 

 

 

ASVAB/n 

Af. Am. 

6,117 

Hisp. 

4,049 

Asian 

1,777 

Native 
Am. 

1,523 

Af. Am. 

1,911 

Hisp. 

1,005 

Asian 

383 

Native 
Am. 

410 

GS 0.93 0.68 0.78 0.03 0.87 0.68 0.53 0.16 

AR 0.70 0.31 0.09 0.03 0.62 0.29 -0.07 0.10 

VE 0.65 0.59 0.73 -0.01 0.66 0.57 0.45 0.12 

MK 0.19 0.04 -0.42 0.05 0.11 0.02 -0.41 0.06 

MC 0.93 0.43 0.43 -0.01 0.83 0.42 0.34 -0.03 

AS 1.13 0.73 1.04 -0.11 1.09 0.84 0.94 0.01 

EI 0.76 0.52 0.46 -0.01 0.68 0.61 0.39 0.14 

AO 0.58 0.18 -0.04 -0.05 0.58 0.22 0.02 -0.03 

CS 0.21 0.10 -0.08 0.06 0.17 0.18 -0.10 0.07 

Note. Effect sizes were computed as the Caucasian (majority group) mean minus the minority group 

mean divided by the pooled standard deviation for both groups. VE is a weighted composite of the 
Word Knowledge (WK) and Paragraph Comprehension (PC) tests. (See Chapter 2 of the Introductory 

Manual for ASVAB test descriptions.) 

Table 18-1 shows that, for both men and women, similar effect size patterns emerged 
for the racial/ethnic groups, suggesting cultural differences. Only effect sizes greater 
than 0.5 are discussed here, as Cohen (1988) considers half a standard deviation (SD) 
difference in group means to be a medium effect size (0.2 small, 0.5 medium, and 0.8 
large). Table 18-1 shows the largest ASVAB test effect sizes were for African Americans, 
followed by Hispanics and Asians. No substantial effect sizes using this 0.5 SD criterion 
were found for Native Americans for either males or females, so comparisons involving 
the Native American group were not considered further. That said, Auto and Shop (AS) 
had the largest effect size (favoring Caucasians) for all majority and minority group 
comparisons. Mathematics Knowledge (MK) had the only negative effect size, which 
favored Asians over Caucasians but was a little below the 0.5 “moderate effect” 
threshold. Coding Speed (CS) had the lowest effect sizes across all race/ethnicity groups 
and within gender. Assembling Objects (AO) had a meaningful 0.5 effect size for only 
African Americans, but this effect size was much lower than for, the technical knowledge 
subtests (e.g., AS was slightly above 1.0 for both men and women). 

We note that DMDC tracks ASVAB subtest effect sizes over time for gender and 
ethnic groups and that item screening processes are in place to address bias and adverse 
impact. The Navy considers both validity and adverse impact, however, not with test 
weighting schemes, but by offering alternative standards for all applicants that are 
equally valid (if not more with use of the neutral test, like CS).  
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The data used to develop racial/ethnic effect sizes within gender reported in Table 
18-1 also were used to develop ASVAB gender effect sizes. Figure 18-1 graphically shows 
the gender effect sizes, again using the groups’ pooled standard deviation in the 
denominator and the male minus female mean score difference in the numerator. 

 

Figure 18-1. Male-Female ASVAB effect sizes for a year 2000 Navy recruit 
population. 

Figure 18-1 clearly shows that for gender, the largest ASVAB test effect size (slightly 
over 1.0) was for the ASVAB Auto and Shop Information test (AS) favoring males. The 
AS test also showed the largest effect size favoring Caucasians in the race/ethnic 
analysis (Table 18-1). The effect sizes for the two other ASVAB technical tests, 
Mechanical Comprehension (MC) and Electronics Information (EI) were above the 0.5 
threshold (between 0.5 and 1.0). The only tests that favored females, but not reaching 
the 0.5 threshold (with negative signs), were Coding Speed (CS) and Mathematics 
Knowledge (MK). The CS test, which measures processing speed and accuracy, in a 
detailed oriented clerical context, is consistent with the literature (e.g., Majeres, 1988).  

We make a point at not disparaging the ASVAB technical tests for their gender effect 
size differences because (a) those who perform high on these knowledge-based tests 
may gravitate to military service where they know that many of the occupations are 
more technical than academic and (b) the incremental validities documented for the 
technical tests are substantial when added to the ASVAB academic tests for many 
military occupations, thus substantiating the tests’ utility. 
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Although the Navy provided adequate evidence for supporting the use of CS (and 
later, AO), there was not sufficient evidence that differential assignment capability 
would be negatively impacted if the CS test were eliminated from the ASVAB. That is, 
just because we could point to a lower average intercorrelation of the ASVAB tests 
minus CS, we could not know how, operationally, the Services would be impacted in 
filling all of their jobs on newly configured ASVAB classification composites that did not 
contain the CS test. Thus, the Navy took further steps to illustrate the potential negative 
classification impact by applying two simple classification algorithms (in contrast to its 
then complicated utility index that integrated six utility functions, such as attrition and 
job complexity).17 Two Navy-sponsored applications that incorporated the simple 
algorithms and their application to the CS and AO tests are described in the two 
following sections. 

The Navy’s Selection and Classification of Recruits Evaluator (SCORE) 

When it became apparent that the ASVAB speeded tests, CS and NO, were to be 
eliminated in 2002, the Navy (and other Services) became concerned about the impact 
on being able to differentially assign recruits to their best-fitting jobs. Two applications 
were developed for this use, sponsored by the Navy’s Selection and Classification office. 
The first application to be developed was called the Selection and Classification of 
Recruits Evaluator (SCORE), a stand-alone application incorporating the Navy’s new 
and current classification algorithm, Rating Identification Engine (RIDE; Crookenden & 
Blanco, 2002; EDS Federal, 2001; Watson, 2004, 2010). RIDE/SCORE incorporates a 
sequential assignment algorithm that ranks jobs for each individual (randomly drawn) 
based on, mainly, two utility functions, each of which uses ASVAB data. The first utility 
function is developed from logistic regression with the Rating-specific ASVAB composite 
predicting first-pass pipeline success (no academic failures or academic setback 
incidents).  

This first SCORE utility function (utility functions developed specifically for this 
application, not to be confused with the Brogden-Cronbach-Gleser utility model 
discussed in Chapter 3) adds points for individuals who have high ASVAB composite 
scores. The second utility function is a counterbalance and subtracts points (based upon 
AFQT, see Chapter 2 of the Introductory Manual) for individuals who are clearly 
overqualified for a particular job and therefore would not be optimally challenged. We 
note that the RIDE algorithm is more complex than just stated and includes several 
constraints; however, NPRST’s use of the SCORE application that incorporates some of 
the functionality had utility for specifically studying the narrow impact of ASVAB 
changes on Navy Rating fill.  (For both models/applications described in this chapter, 
the assignment output files can be used to predict training performance from ASVAB 
scores.)   

  

                                                      
17

 RIDE (Rating Identification Engine) replaced CLASP (Classification and Assignment within PRIDE) for 
the Navy in 2011. Most publications comparing the Services’ classification/assignment systems refer to 
CLASP, so we provide several references (Kroeker & Folchi; 1984; Kroeker & Rafacz, 1983). 
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For the simulations, four sets of composites were formed for assigning recruits 
(input file) across Navy Ratings (sometimes referred to as jobs in the table because 
assignments were actually made to different programs within Ratings). Composite Set 1, 
the baseline set, did not apply AO or CS in any of its composites. Composite Set 2 
included two composites with AO, but none with CS. Composite Set 3 included two 
composites with CS, but none with AO. Composite Set 4 included both the AO and CS 
composites formed from Composite Sets 2 and 3. All composites that contained AO and 
CS had been validated in previous work as adding incremental validity to the ASVAB. 
None of the composites contained both AO and CS. Over 150 Program/Rating (“jobs”) 
were involved in the simulation analyses.  

Improved classification from the simulated assignment using composites with AO 
and CS was defined in two ways: (a) an increase in the percentage of the recruit 
population classified to jobs in the aggregate and (b) a decrease in the standard 
deviation (SD) of the fill rate among different types of Ratings (stability in assignments 
to jobs). Separate simulations were performed for males and females because some 
Navy jobs are closed to females. Table 18-2 lists both male and female results.  

Table 18-2 
SCORE Classification Simulation Results 

 Composite Set 

 

Set 1 (neither 
AO or CS) 

Set 2  

(with AO) 

Set 3  

(with CS) 

Set 4  

(with AO 

 and CS) 

Scenario #1: 1.7% less female jobs than females (8,134 jobs; 8,275 females) 

Unassigned Recruits 

 

Job Fill Standard Dev.  

469 

 

16.1%  

413 

 

15.1% 

389 

 

14.6% 

288–303 

(range with 4 runs) 

13.7–14.8% 

Scenario #2: 2.5% more female jobs than females (8,484 jobs; 8,275 females) 

Unassigned Recruits 

 

Job Fill Standard Dev. 

501 

 

20.2% 

440 

 

18.7% 

279 

 

16.7% 

279–300 

(range with 4 runs) 

16.4–17.4% 

Scenario #3: 6.2% more male jobs than males (38,402 jobs; 36,154 males) 

Unassigned Recruits 

 

Job Fill Standard Dev. 

938 

 

13.8% 

661 

 

13.4% 

785 

 

13.0 % 

492–555 

(range with 4 runs) 

12.6–14.4% 

Scenario #4: 13.4% more male jobs than males (40,995 jobs; 36,154 males) 

Unassigned Recruits 

 

Job Fill Standard Dev. 

387 

 

15.9% 

71 

 

15.6% 

213 

 

15.6% 

0 for all 4 runs 

(range with 4 runs) 

18.2–19.3% 
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Table 18-2 shows the four composite sets listed across the table header row: (a) 
Composite Set without AO or CS (baseline); (b) Composite Set with AO; (c) Composite 
Set with CS; and (d) Composite Set with AO and CS. Table 18-2 also shows two scenarios 
for females and two for males and the simulation results listed in blocked rows. For 
females, Scenario #1 specified slightly less female jobs (1.7%) than females available to 
fill them, and Scenario #2 increased that percent a bit (2.5% more female jobs than 
females available to fill them). For males, Scenario #3 specified substantially more male 
jobs (6.2%) than males available to fill them. Scenario #4 increased the stress on 
recruiting specifying 13.4% more male jobs than males available to fill them. For the 
stability of assignment outcomes, the index reported was the standard deviation of fill 
rate (across all jobs). Scenario #4 involved four assignment simulation runs, but only for 
the Composite Set that included both AO and CS and so the table shows the range of 
standard deviation values.  

Table 18-2 shows that, for every classification simulation scenario, providing an 
ASVAB composite set that included some composites with the AO or CS tests and 
especially with both where the benefits are additive, resulted in fewer recruits 
“unassigned” to jobs. We highlight that although both male and female assignments 
were increased with just the addition of AO; the benefit of AO was largest for Scenario 
#4, the stressed recruiting environment scenario. That is, in Scenario #4, the baseline 
composite set without either AO or CS left 387 males unassigned. By adding AO to some 
composites (where validity warranted AO use) there was a substantial (316) reduction in 
the number of unassigned males (to 71), which shows that AO has high utility for filling 
jobs. There was also a female assignment improvement with the AO test (Composite Set 
2) but the improvements were not as great as for males most likely because many of the 
male types of mechanical/engineering jobs that were billeted on ships were not open for 
females during the study timeframe. 

Finally, the standard deviation of the fill of jobs (indicating evenness of the 
distributed assignments) tended to decrease going from the baseline composite set to 
the composite set that included both AO and CS. The obvious exception was for Scenario 
#4 (13.4% more male jobs than males available to assign) where everyone was assigned to a 
job. Obviously with more “job choices”, there was a less even fill as there was more flexibility 
in who got assigned to what job (standard deviations ranged from 18.2% to 19.4% for the 
four simulations compared to about 15%-16% for the three other composite set single runs). 
There is more good news than bad with the larger standard deviations under the 
stressed recruiting scenario as AO and CS clearly demonstrate enhanced differential 
assignment capability.   

The Navy’s Selection and Classification Cost Effectiveness Model (SCCEM) 

The Selection and Classification Cost Effectiveness Model (SCCEM) (Hogan & 
Simonson, 2004a, 2004b) is simple in concept but with some useful functional features. 
As with SCORE, the SCCEM incorporates a sequential assignment algorithm, and also 
similar to SCORE, considers only the Navy Ratings’ ASVAB standards (composites with 
cutscores) and each recruit’s ASVAB scores (for ASVAB validation researcher use).  
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The SCCEM algorithm matches every Navy Rating’s ASVAB standard (composite 
with cutscores) to that of a randomly drawn recruit (from a data file containing data for 
a recruit population) and assigns that recruit to the Rating that yields the lowest ASVAB 
score difference between recruit and Rating. (Rating ties are broken with a random 
assignment subroutine.) The SCCEM’s “just barely qualified” algorithm, a bottom-up fill 
strategy, results in adequate ASVAB distributions across Ratings, and not just everyone 
at the margin of all Ratings’ ASVAB cutscores, because small delta scores are used up in 
the early assignment stages (remembering  the ASVAB, like most test batteries, exhibits 
somewhat normal test score distributions properties in unrestricted populations).  

The SCCEM application has two adjustment features that allow the user to (a) input 
ASVAB score point waiver tolerances for any specific Rating and the proportion of 
recruits that can have a waiver or (b) alternatively, fixed input waiver parameters that 
are applied across all Ratings. A Rating can be split into two smaller Ratings (e.g., NFa 
and NFb) with half of their annual recruiting goal numbers assigned to each to account 
for the use of alternative ASVAB standards (e.g., VE+AR+MK+MC or AR+MK+EI+GS 
in the case of Nuclear Field).  

Finally, the application calculates recruiting costs for the required “quality” across 
Ratings where quality is defined by high school diploma status and AFQT score. Figure 
18-2 shows a DoD matrix that defines the “quality” cell combining AFQT and Education. 

 

Figure 18-2. Recruit ASVAB and education quality cells.  
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Figure 18-2 shows that an AFQT score of 50 or above and a high school diploma 
graduate (HSDG) are considered A-Cells. A-Cells are the most expensive to recruit 
because these individuals generally have other than military options to choose from, 
such as high-paying jobs or college opportunities. Those with AFQT scores of 50 or 
above but without HSDGs (B-Cell) are the second most expensive to recruit, but the 
number of non-HSDGs is constrained due to DoD policy.18 Those with AFQT scores 
from 31 to 49 and a HSDG (C-Cell) are the least expensive to recruit, at least during the 
period of the SCCEM’s development.  

An additional functionality resulting from the SCCEM application, and also SCORE, 
as we have seen, is the ability to study the potential for diversity in race/ethnicity/ 
gender spread across Ratings from the Rating assignment simulations from adding tests 
such as AO and CS to the ASVAB. Indirectly, lowering adverse impact by adding these 
tests lowers recruiting costs because the AO and CS tests are less correlated with the 
AFQT (CS less correlated than AO) that is tagged to recruiting costs. To illustrate the 
point, Figure 18-3 displays the results of one SCCEM simulation applying the ASVAB 
Composite Set 1 (baseline without AO or CS) from the SCORE study and Composite Set 
4 (including both tests).   

 

Figure 18-3. SCCEM simulation results (from Hogan & Simonson, 2004b). 

                                                      
18

 The National Defense Authorization Act, 2012 (NDAA2012) included some previous educational credentials 

educational that were not considered A-Cell high school diploma graduates in a revised “Tier” system. In this 

revision, for all intents and purposes, some previous Tier II classifications are now Tier II without limits on 

recruitment.  
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Figure 18-3 shows that using AO and CS in ASVAB composites resulted in some less 
expensive C-Cells filling Navy Ratings that otherwise would have to have been filled with 
more expensive A-Cells. Although this was not the case for B-Cells, B-Cells become 
irrelevant because there are relatively few of them recruited (at the time).  

Hogan and Simonson (2004) adopted a conservative cost assumption for the 
simulation: $12,000 for A-Cells, $4,000 for B-Cells, and $3,000 for C-Cells. Of the 
46,731 recruits available to fill 32,884 Rating slots, the baseline ASVAB composite set 
resulted in 19,702 A-Cells, 2,859 B-Cells, and 10,323 C-Cells for a total recruiting cost of 
$278,829,000. By comparison, the AO and CS augmented composite set resulted in 
18,931 A-Cells, 2,703 B-Cells, and 11,250 C-Cells for a total recruiting cost of 
$271,734,000. Use of the augmented composite set with AO and CS resulted in a savings 
of $7,095,000 using the recruiting costs at the time (all 32,884 slots were filled in each 
case). Recruiting costs have grown over the years and the model outcomes could be 
updated if policy makers doubt the cost effectiveness of the two tests. 

Concluding Remarks 

The two Navy Rating assignment simulation applications are important tools that 
can be used during an ASVAB validation/standards study’s cutscore setting process. As 
we know, changing an ASVAB standard for one Navy Rating is not done in a vacuum 
and we recognized there can be an impact on the fill and quality of recruits for the whole 
system of Ratings when other Rating’s ASVAB standards are changed, and most 
importantly, when recruiting environments deteriorate. Typically stress in filling 
Ratings occurs only during a poor recruiting market (at the time of this writing, the 
recruiting environment seems to be slipping as Delayed Entry Program (DEP) time is 
now less than one year). As personnel research psychologists, we can help recruiting by 
continuing applied research efforts in the identification of selection tests that (a) 
improve the ASVAB’s differential assignment capability, (b) reduce adverse impact, and 
(c) improve the predictive validity (or at the least, maintain it).  

The next chapter expands on the much more complicated classification models 
developed for the “allocation” of personnel to military occupations – all of them striving 
to improve military classification effectiveness.  
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Chapter 19. 
Classification Effectiveness  

Janet D. Held 

Introduction   

The last chapter described two simulation tools used by ASVAB validation/ 
standards researchers to assess the impact of changing an ASVAB standard for one Navy 
Rating (or an occupational group of Ratings) on the Navy’s ability to fill all of their 
Ratings. The tools intentionally have simple understandable algorithms with only two 
inputs (ASVAB standards and recruits’ ASVAB scores). The predictive validity of an 
ASVAB composite is not a parameter input, so it is up to the ASVAB validation/ 
standards researcher to fully understand all of the dynamics of a particular study and 
how to set an effective cutscore (Chapter 17). This chapter provides a discussion of some 
personnel allocation models developed for the military that are much more complicated, 
including the use of the validity coefficient, either explicitly or indirectly. We can 
consider these models important in selection and classification as they are intended to 
optimize classification gains, which we refer to as “classification effectiveness”.   

Military Service Work in Augmenting Utility Models 

Chapter 3 provided a discussion on interpreting the validity coefficient in terms of 
utility (cost savings) to the organization from use of a valid selection or classification 
instrument. Chapter 18 provided a discussion of some simple personnel allocation 
models. Sands (1973) developed a more complicated model that captures many 
important military costs and outcomes. A Navy-developed model called the Cost of 
Attaining Personnel Requirements (CAPER) incorporated the Taylor-Russell (1939) 
tables discussed in Chapters 3 and 17. The CAPER model takes into account the 
magnitude of the validity coefficient and includes the following factors:  

Quota = # of graduates required from training to report to the job 

Base Rate = the observed success rate 

Proportion Qualified = for graduates and failures separately at each score on the 

predictor 

Cost_1 = cost of recruiting 

Cost_2 = cost of selection 

Cost_3 = cost of induction (processing) 

Cost_4 = cost of training 

Cost_5 = cost of erroneous acceptance (failures) 

Cost_6 = cost of erroneous rejection (taking into account recruiting environments) 
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Although the validity coefficient is not explicitly listed in the Sands (1973) CAPER 
model, it is incorporated in the empirical cutscore outcomes (Base Rate, Proportion 
Qualified). Sands provided the necessary equations for trading off all of the costs, as well 
as the formulas for calculating the erroneous acceptance and rejection numbers (which 
can also be directly derived from the Taylor-Russell (1939) tables – discussed in Chapter 
3 with a worksheet example provided in Appendix B).  

Sands (1973) noted that although many assumptions underlying the model’s 
accuracy might not be tenable, the model is a more complete representation of what 
policy makers must evaluate to judge their selection systems and states: 

“In the tradition of classical test theory, the correlation model focuses 
upon the accuracy of measurement. In contrast, the CAPER model is 
decision oriented and recognizes the necessity of taking into account the 
utility or cost of various decision-outcome combinations” (p. 226). 

As with some utility models, the CAPER model involves a single occupation and thus 
does not take into account that the military must fill many occupations with able 
recruits. Nevertheless, the CAPER model addresses the need to efficiently evaluate 
which in an array of cutscores applied to predictors produces the least cost to the 
personnel system – including cost factors through training. Other military classification 
systems such as the Navy’s former Classification and Assignment within PRIDE 
(CLASP) (Kroeker & Folchi, 1984; Kroeker & Rafacz, 1984) take the operational cutscore 
as fixed and predetermined through the ASVAB validity/standards studies.  

The Air Force conducted research using the Taylor-Russell (1939) tables to extend 
the model to more than one job (Alley, Darby, & Cheng, 1996). However, the research 
was constrained to a single selection ratio (reflected in the cutscore) limiting the 
method’s use. Cheng and Darby (1997) also studied the classification efficiency problem 
by extending the Brogden (1959) table of allocation benefits to more than one job. The 
assumption, however, was that the jobs were equally correlated (based upon the jobs’ 
predicted performance scores). Alf and Abrahams (1996) for the Navy extended the 
Brogden allocation table to deal with up to 1,000 jobs and with a wide range of 
“rejection” rates (0 to 90%). However, as with all of the approaches just discussed, the 
cutscore setting process did not consider (a) the benefit or impact of a particular job to 
the organization (clerical vs. cyber network troubleshooting) or (b) the cost of training 
(e.g., one year for a Nuclear Field occupation vs. three months for an Administrative 
occupation). 

For the Army, Schmitz and Holz (1987) reviewed the person-job matching problem 
from an operations research and computer science perspective but recognized that the 
optimum person-job matching algorithm involves an interdisciplinary team that 
includes personnel psychologists. Therefore, Schmitz and Holz incorporated into their 
model aspects of selection, differential classification, and assignment, making note of 
the simplicity in most job assignment algorithms as they evaluate each job separately 
and then aggregate gains to the organization (productivity) across jobs (p. 441) in a 
batch strategy. In reality, person-job fit and assignments are made sequentially, and it is 
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not assured that candidates further out will be sufficiently qualified for critical jobs. 
Conversely, a marginally qualified applicant may be accepted for the Nuclear Field on a 
particular day not knowing that one week later a more qualified applicant could have 
filled that final year’s allocated contract.  

Schmitz and Holz (1987) noted the increasing need at the time for more predictors 
that measure the important multidimensional criterion space of each job and also the 
recognition that there are differences in selection and classification: 

“Selection focuses on the differences among individuals, generally using a 
single scale of value or utility. Applicants are classified into two categories: 
those satisfactory for employment and those not…. 

Differential classification deals with differences within an individual with 
respect to various skills. A particular individual may have a high aptitude 
for mathematics but poor writing skills. Another may have considerable 
talent for electronics jobs but poor communication ability. Classification 
requires the use of two or more different performance predictors” (p. 440). 

We note here that predicting both training and on-the-job performance are 
important goals for the military because there are costs associated with personnel 
failures at either point. And, even though the ASVAB was developed to predict training 
performance, it does predict job performance to some extent because the ASVAB tests 
were developed from the linkage of training Knowledge, Skills, and Abilities (KSAs) 
requirements that are fundamentally derived from job analysis. The extent of ASVAB’s 
prediction of job performance depends upon what aspects of job performance are 
measured. For example, the ASVAB predicts measures of job knowledge fairly well, but 
not organizational citizenship or discipline. The next section provides a discussion about 
the “goals” of a prediction system, and what critical performance constructs one needs 
to consider as the predicted criterion variable. 

Goals for Improving Classification Decisions 

Improving military enlisted classification decisions in general has been a topic of 
interest for a long time and has been viewed in the context of selection as well as 
classification. One consideration for quantifying what is an “improvement” would be to 
first identify what are the improvement goals. Rosse, Campbell, and Peterson. (2001, p. 
456) highlight Wise’s (1994) description of numerous potential military goals for 
improving selection and classification decisions, not all of which can be addressed by 
adding new cognitive tests to the ASVAB (non-cognitive measures are now being 
considered by the military services). Among Wise’s stated goals, three are directly 
pertinent to setting of ASVAB classification standards for Navy classification. The first 
goal is to maximize the percentage of training seats filled with qualified applicants, 
which improves with lowering the average ASVAB test intercorrelation – that is, adding 
tests that uniquely measure person and job attributes for clusters of jobs that are 
different in job dimensions than others (just as we saw occurred in the last chapter from 
use of the Assembling Objects and Coding Speed tests).  
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The second goal for improving classification that applies directly to Navy ASVAB 
validation/standards studies is to improve the rates of training success. Training failure 
is a costly loss for the Navy and as we have seen in Chapters 3 and 17, we can mitigate 
those costs by improving ASVAB classification composite validities and setting effective 
cutscores. The third goal pertinent to the Navy (and the other Services) is to improve the 
social benefits, which means lowering adverse impact occurring from overuse of highly 
academic tests that are not the only credible predictors of training and occupational 
success. We note here DoD’s current efforts in considering measures of personality, 
working memory, and non-verbal reasoning, and other constructs as additions or 
adjunct to the ASVAB (cited in Chapter 1 of the Introductory Manual. 

Rosse et al. (2001) recognized Wise’s (1994) position that it is impossible to 
simultaneously optimize all of the many possible selection and classification goals. It 
becomes a complicated matter for an organization to choose which goals to emphasize 
because they all are worthy. Table 19-1 lists the array of classification goals from Wise. 

Table 19-1 
List of Selection and Classification Goals (Wise, 1994) 

1: Training seat fill 7: Total career performance 

2: Training success 8: Total MOS performance 

3: Attrition reduction 9: Performance utility 

4: Job proficiency 10: Unit performance/readiness 

5: Job performance 11: Adverse impact reduction 

6: Months of service qualified 12: Preference accommodation 

As we see from Table 19-1, there are several potential classification goals (and more 
not listed, such as retention) addressed by Wise (1994). In the military context, a 
predictor screen that would predict the goal of attrition reduction may not correlate with 
the ASVAB so, in effect; we would be layering a cutscore screening system that 
systematically reduces the military eligible youth population. We recognize that 
attaining selection and classification goals further out in time in an upfront selection 
and classification system would also be influenced by organizational factors such as pay 
and benefits, promotion potential, organizational climate, quality of the leadership, and 
possibly the propensity of youth to enlist (maybe more so in an economic downturn 
when jobs are scarce, but also through periods of high patriotism). These organizational 
factors can be “moderators” of the ASVAB’s relation to performance, especially the 
further out goals. The risk of incorporating predictors of further out goals is that they 
influence performance predictions in some recruiting periods and not others.  
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We refer the reader to Laurence and Hoffman (1993) for an evaluation of the 
Services’ classification systems and to Schmitz and Holz (1987) and move on to discuss 
differential assignment capability and classification efficiency.  

Differential Assignment and Classification Efficiency 

Of all the Services, the Army has been the most involved during past years in 
conducting research that shows improvements in classification considering the optimal 
person-job match. Classification improvement or classification efficiency (CE) considers 
both increased predictive accuracy from (a) full least squares (FLS) predictor regression 
equations and (b) the unobstructed ability to differentially classify individuals to their 
best-fit occupation (which, in reality, we do not have in the operational day-to-day 
classification of enlisted recruits).  

Horst (e.g., 1954, 1955, 1956) and Brogden (1946, 1951, 1955, 1959) were early 
pioneers of classification effectiveness and CE, and the Army adopted their methods 
with further application. Johnson and Zeidner (1991a; 1991b, 1995) developed the 
principles of “Differential Assignment Theory” that considered the tenets of Brogden’ s 
(1959) measure of CE capturing both predictive validity and the intercorrelation of the 
ordinary least squares (OLS) equation estimates of performance (job or training). The 
formulas are presented succinctly by Statman, Gribben, Naughton, and McCloy (1998, 
p. 7) as follows: 

MPP = R (1-r)1/2 Zm where, 

Mpp =  the mean predicted performance standard score of a group of 
applicants assigned to m jobs, 

R =  the average predictive validity of ordinary least squares (OLS) 
estimates for all jobs, 

r =  the average intercorrelation of the OLS estimates, and  

Zm = the mean criterion standard score of the group after assignment to the 
m jobs with equal vacancies (called quotas).  

Statman et al. (1998, p.7) point out clearly that R is the predictive validity function 
that is positively related to CE but that to maximize the CE index of MPP, one needs to 
lower the intercorrelations of the prediction equations across occupations. Lowering the 
average intercorrelation of the ASVAB tests would enable this goal as did the AO and CS 
tests discussed in the previous chapter.  

The Air Force sponsored interesting work conducted by Statman et al. (1998) that 
involved transporting optimal classification methods to training evaluation and fit. The 
point was that, as with occupations, not all individuals would be expected to thrive in all 
training formats. The Statman et al. work is of high interest as the Navy and other 
Services deal with iterations of training formats/platforms in a resource constrained 
fiscal environment.  
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We direct the reader to Scholarios, Johnson, and Zeidner (1994) for a capsulated 
presentation of how differential assignment theory (DAT) should be considered when 
forming ASVAB classification composites and the implications for augmenting the 
ASVAB to make it more classification effective. We also note that Schmidt, Hunter, and 
Dunn (1987) showed cost savings for the Navy by adding a perceptual accuracy and a 
psychomotor test to the ASVAB. With regard to the former ASVAB Coding Speed (CS) 
test (now a special classification test for Navy), Scholarios et al. (1994) studied optimal 
test battery composition for the Army (from Project A measures). It is interesting that in 
a full-least squared regression equation, the CS test entered in first place under the 
specified objective of optimizing differential assignment capability (for the instance of 
18 jobs – the most Army occupations included in the study). It is also interesting that 
over time, CS test scores have been shown to relate to earnings level for moderately 
complex civilian occupations, like many in the military, and that most likely; part of the 
reason is due to measurement of a degree of intrinsic motivation (Segal, 2012).  

Under the assumption of job relevance and uniqueness, the Enhanced Computer-
Administered Test (ECAT) psychomotor test, Two-Hand Tracking, showed incremental 
validity to the ASVAB in the late 1980/early 1990 time frame for certain Army tank jobs 
(Abrahams et al., 1993; Wolfe, 1997). Others have found that psychomotor tests 
measure a relevant unique construct but only trivial incremental validity to the ASVAB - 
most likely because of the mismatched occupation (mechanical) (Mayberry & Divgi, 
1992). Psychomotor tests, although good candidates for military classification, have 
traditionally required computer hardware peripherals that would not be cost effective to 
maintain in large-scale testing programs. Getting past the need for computer 
peripherals to measure psychometric ability seems to be a fruitful military classification 
research project (email communication from Dr. Phillip Ackerman April 6, 2013).  

In closing, to further make the case for ASVAB tests that add differential assignment 
capability and may by their nature increase classification effectiveness and CE (as 
measured by mean predicted performance (MPP), Abrahams et al. (1994) showed that 
some of the tests in the ECAT battery added utility to the ASVAB (focus on Brogden’s 
[1959] measure of CE that incorporated the differential assignment function). Also, 
Alley and Teachout (1995) applied a linear programming algorithm with optimally-
weighted ASVAB/experience variables for a constrained number of Air Force job 
assignments comparing Least Squares Estimates (LSEs) with the then current 
operational assignment method, but under a random assignment strategy. The 
improvement in the average expected performance gains over the baseline was one third 
of a standard deviation, which translated to 14 months of technical experience.  

Both the Army and Air Force have used measures of job performance as the criterion 
for their research. The Air Force performance criterion was developed as in-depth 
hands-on tasks/procedures tailored to each of the training specialties included in the 
study. Although the research did not focus on CE as measured by MPP, the results 
suggest, along with Army research, that there is merit for the Services to consider their 
full ASVAB regression equation development as part of the DAT principles. Alley (1994) 
discussed advancements at an earlier time in classification from the Air Force 
perspective. 
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Concluding Remarks 

In this chapter, we discussed various methods (algorithms) applied to sometimes 
different variables for the purpose of optimizing the classification (and assignment) of 
people to jobs. The chapter was intended to give a broader context to ASVAB 
validation/standards studies and the final threading together of how selection and 
classification tests in the military personnel setting are evaluated and valued (utility). 
The next chapter summarizes the key points in each of the technical manual chapters.  
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Chapter 20. 
Summary of Key Chapter Points and Future Concerns 

Janet D. Held 

The intent of the Introductory and Technical ASVAB Validation/Standards manuals 
is to provide comprehensive guidelines for sponsors, policy makers, and researchers in 
conducting ASVAB validation/standards studies. It is recognized that not all statistical 
methods associated with criterion related test validation have been addressed in the 
manuals, but that what is provided serves as a sound basis for further exploration. We 
also note that it is not the ASVAB per se that we validate, but our use of the scores. 
Unfortunately, because the ASVAB is not a perfect predictor of military performance, 
there will always be a tradeoff in how many recruits qualify for the Services’ occupations 
and the success rates of those recruits in training, all in the context of changing military 
recruiting environments and fluxuations in training resources. This chapter summarizes 
some of the key points in the chapters of each manual in hopes of presenting a logically 
flowing coherent bigger picture of why and how we set ASVAB standards. 

The Introductory Manual 

Chapter 1: Introduction. This chapter established that the purpose of the 
Introductory Manual is intended to provide general guidance to policy and researchers 
on conducting ASVAB validation/standards studies. The main Navy stakeholders are the 
sponsors of the program, the Navy’s Selection and Classification Office, Navy Recruiting 
Command, Navy Training, and Enlisted Community officials who manage their Rating 
communities and who develop policy. Ultimately the Fleet is also a stakeholder as the 
integrity of all three of these entities benefit from effective ASVAB standards. The 
Technical Manual (volume 2) is introduced and its purpose is described.  

Chapter 2: An Overview of the ASVAB.  This chapter provided a brief history of the 
ASVAB and a description of the aptitudes, abilities, and knowledge constructs that the 
ASVAB measures. It also described a large-scale joint-service test development and 
validation effort that was intended to augment the ASVAB with tests that are more 
representative of fluid intelligence (i.e., the ability to reason abstractly and solve 
problems) rather than crystallized intelligence (i.e., the ability to apply accumulated 
knowledge, skills, and abilities). A list of criteria were proposed for use in evaluating 
candidate tests for the ASVAB noting that recent revisions to this list have been made 
and approved by the Manpower Accession Policy Working Group (MAPWG) that 
oversees ASVAB development. 

Chapter 3: Mapping the predictors and Criteria. This chapter was a discussion of a 
framework for understanding the predictor and criterion relations as overt measures 
captured by measurement instruments, but also of their underlying constructs. The 
chapter distinguished the military’s operationally-oriented setting of ASVAB standards 
from theory-based research. 
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Chapter 4: Issues in Predicting Job Performance. This chapter highlighted issues 
involved in predicting job performance, including the sparse literature on the criterion 
compared to that dedicated to predictor development. A discussion of the well-known 
but seldom-addressed “Criterion Problem” and the difficult decisions about whether to 
consider single or multiple criteria was provided.  

Chapter 5: Navy Training and Best Practice Performance Measurement. This chapter 
focused on the criterion as training performance and described the evolution of Navy 
training from instructor-led group-paced classroom courses with hands-on laboratory 
demonstrations to self-paced computer-based training. Guidelines are provided for best 
practice performance measurement in training, in particular for simulation-based 
training. Also provided are lessons learned from the literature on successful and 
unsuccessful computer-based training, which has guided the Navy’s evolution to a 
blended training solution.  

Chapter 6: The Navy’s ASVAB Validation/Standards Process. The process and steps 
for conducting Navy ASVAB validation/standards studies were laid out. Although the 
process generalizes for each Navy Rating, each study is tailored to the particular issues 
that either directly or indirectly relates to the effectiveness of a Rating’s ASVAB 
standard. The overall goal of any ASVAB validation/standards study is to provide 
standards that minimize academically-related failure and setback rates (that result in 
high costs to both the Navy and individual) while at the same time addressing the Navy’s 
need to fill all jobs with qualified Sailors. 

Chapter 7: Applications of Synthetic Validity.  An overview was provided of an 
indirect approach to estimating test validity when sample sizes are too small for a robust 
analysis or, in the case of the Navy, a new occupation (Rating) is stood up and 
researchers do not yet have performance data. Synthetic validity is in the class of validity 
generalization methods. The Navy has its own approach to suboptimal validation 
situations; however, synthetic validity is of interest and various aspects of it may be 
considered as part of the ASVAB validation/researchers tool box in the future if 
performance data for one reason or another become generally unavailable.  

Appendices A, B, and C of the Introductory Manual contain examples of Navy 
ASVAB validation/standards studies to demonstrate that one size does not fit all. That 
is, the three studies (Navy SEALs, Nuclear Field, and Mineman Ratings) are provided to 
(a) demonstrate the dynamic issues that can differ for each Navy rating, (b) show how 
the study methods are tailored to address them, and (c) demonstrate the wide range of 
ASVAB composite predictive validity coefficient magnitudes. 

The Technical Manual 

Chapter 1: Introduction. This chapter was a discussion about the need to develop 
general and specific technical guidance for the Navy and the other military services in 
conducting ASVAB validation/standards studies. Each of the Services plays a major role 
in improving the selection and classification outcomes of their enlisted members 
through the Manpower Accession Policy Working Group (MAPWG). The MAPWG deals 
with the ASVAB, with each Service taking major roles in different related areas. For 
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example, the Army is the lead in demonstrating the value of non-cognitive measures and 
the Air Force in the development of a Cyber Test. The Navy has the lead in developing 
ASVAB validation/standards guidance and the Defense Manpower Data Center, 
Personnel Testing Division (DMDC-PTD) as ASVAB Executive Agent, develops and 
maintains the battery and hosts/monitors all new candidate ASVAB tests. 

Chapter 2: Predictor-Criterion Relations: A Brief Statistical Overview.  A brief 
statistical overview was presented of correlation and regression analysis. Regression 
analysis is used to identify a linear trend in the data, and the correlation coefficient is 
used to quantify the fit of the data to the trend. We discussed the importance of creating 
a scatter plot to examine the data for outliers and nonlinearity and ways to test for 
statistical significance with one or more predictors. We observed that the precision of 
estimates of r, b, and y depend on the size of both the correlation coefficient and the 
sample size in addition to other factors that affect correlation and regression analysis. 
We also reviewed classical test theory, measurement error, confidence intervals, 
restriction in range of test scores used in selection and the need to correct for range 
restriction due to the selection/classification standard. We also reviewed ways to 
estimate associated errors in the resulting corrected correlation (validity coefficient) 
recognizing that sample size is an important factor.  

Chapter 3: Interpreting the Correlation (Validity) Coefficient. This chapter was about 
interpreting the validity coefficient and the utility of a valid selection instrument. For 
the Navy, the ASVAB validity coefficient is developed using the continuous final school 
grade variable as the criterion whereas training completion (pass/fail) status is used for 
cutscore analysis. Interpreting the benefits of a valid selection instrument typically has 
been shown over random assignment, but in the military case involving the ASVAB, the 
improvements are shown from optimizing the combination of ASVAB tests used in an 
occupational classification composite. In this case, utility analysis can address benefits 
as the gain in average expected improvements in performance from replacing a 
suboptimal composite. Another way to interpret the validity coefficient is in terms of 
classification decision accuracy where, all other things being equal, the magnitude of the 
validity coefficient generally will improve the likelihood of making correct decisions 
(selecting individuals who succeed and not selecting those who would fail).  

Chapter 4: Measurement Error and Reliability Estimators. This chapter reviewed 
measurement error and the derivation of the formulas that lead to a correction for less 
than perfect reliability. We discussed the types of reliability estimation methods and, to 
broaden the context, two common ways of measuring job performance (interrater and 
intrarater). Examples from the literature highlighted the appropriate conceptions and 
applications of a correction for measurement error. ASVAB reliabilities were cited for 
paper-and-pencil forms with a DMDC website link for information about the CAT-
ASVAB method of reliability estimates. We also provided reliabilities from the military 
Job Performance Measurement (JPM) project and some from meta-analysis of non-
military developed job performance criteria. We acknowledge that in setting ASVAB 
standards, the Navy does not correct either the ASVAB or the training performance 
criterion for unreliability because of the operational focus on enlistment 
qualification/standards setting.  
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Chapter 5: Correcting for Restriction of Test Score Range. Derivations were provided 
for correcting the validity coefficient for explicit and incidental restriction in range. 
Restriction in range of test scores occurs when, from the application of a 
selection/classification standard, the result is to curtail variance and therefore the 
correlation (validity) coefficient. We show an example of the biasing effect of range 
restriction taken from an early Army Air Force study. The Navy, in validating the 
operational and candidate replacement ASVAB composites for a specific Navy Rating, 
applies the multivariate correction for range restriction, also described in the chapter, 
because all ASVAB test scores are available for the normative and applicant populations.   

Chapter 6: Joint Corrections for Measurement Error and Range Restriction. This 
chapter reviewed the basic underpinnings of the correction for measurement error and 
range restriction as review and background for the complicated joint correction. The 
order of the joint correction is an important consideration and the availability of 
reliability estimates has typically been the determinate. We stressed that the joint 
corrections are most appropriately applied in theory-based research when the objective 
is to estimate the underlying relation between variable constructs.  

Chapter 7: More on Joint Corrections. This chapter brought a slightly different 
perspective to the joint corrections and showed that in the case of direct/explicit 
selection, the unrestricted reliability of the explicit selection variable is downwardly-
biased. The downward bias is the result of a negative correlation between true and error 
scores that, from classical test theory, is assumed to be zero.  A remedy is developed that 
involves (a) retest of the explicit selection test in the selected sample and (b) formula 
modifications. The chapter stresses that the criterion and predictor reliability must be 
brought to the same level for the joint correction and that the preferable sequence is to 
correct first for restriction in range, and then for reliability (assuming unrestricted 
reliabilities are available).  

 Chapter 8: Standard Errors of the Corrected Correlation. This chapter provided a 
brief review of the two major approaches reported in the literature for estimating 
standard errors of corrected correlations due to range restriction: (a) asymptotic 
sampling variance formulas and (b) bootstrapping. The formula approach is based on 
asymptotic sampling variance theory and therefore the standard error can be used for 
computing confidence intervals or testing for significance. The bootstrap is a non-
parametric approach not tied to distribution assumption.  

Chapter 9: A Monte Carlo/Bootstrap Study of Range Corrected Validity Accuracy. 
Some key findings were reported from an ASVAB Monte Carlo simulation study with the 
bootstrap method applied to the Monte Carlo generated samples. The objective was to 
study the accuracy of the multivariate range correction procedure under varying study 
conditions – selection ratio, predictor/criterion skew, and sample size. Two ASVAB tests 
served as surrogate training criteria. Over and underestimates of the population 
validities were observed with degree of bias related to extremes in the conditions. Most 
notably for ASVAB validation/standards studies, the larger skew values imposed on the 
criterion resulted in large validity bias. However there was small bias, if any, when the 
skew was applied progressively in magnitude to the ASVAB predictors, reinforcing the 
importance of the psychometric integrity of the criterion variable. 
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Chapter 10: Assumption Violation Effects on Range Corrected Accuracy. A 
discussion was provided on the nature of violations in the assumption for performing 
the correction for range restriction. Assumption violations can lead to largely biased 
estimated population validity coefficients, or they offset each other and yield accurate 
results. Even in the best of circumstances, however, we can never accurately extrapolate 
a sample’s characteristics to the unrestricted population to assess assumption violations. 
There is, however, more certainty about the situation when the selection ratio is large 
(lenient selection) than when it is small – most of the Services’ selection ratios for their 
occupations are not extremely stringent – the exception is for jobs with high aptitude 
requirements such as the Navy Nuclear Field and crypto linguist specialties. 

Chapter 11. The Potential for a Negative Range Corrected Validity. This chapter 
described the conditions under which a validity coefficient’s sign changes when 
corrected for range restriction. The negative-to-positive sign change is a usual 
expectation with very stringent selection ratios. On the other hand, the positive-to- 
negative sign change is unusual and is a function of a small data set, severe selection 
stringency, and use of multivariate range restriction formulas (that allows regression 
weights to wildly offset each other). The positive-to-negative sign change should be 
viewed as an unrealistic outcome and suggests that in ASVAB validation/standards 
studies, we  should evaluate our sample as best we can, including an examination of the 
full least squares regression weights that are applied in the multivariate correction. 

Chapter 12. Partial Correlation, Hierarchical and Logistic Regression, and Power.  
Two regression methods were reviewed – hierarchical and logistic –often used in 
predictor/criterion research and test validation studies. ASVAB validation/standards 
studies utilize these methods selectively dependent upon the objectives and the nature 
of the available performance variables. Statistical power was explored as a complicated 
requirement for planning sample size when the ASVAB data are restricted in range due 
to an ASVAB standard.  

Chapter 13. Weighting Variables: The Tradeoff between Validity and Adverse Impact. 
A general discussion was provided of methods for establishing weights for the 
independent variables in a prediction equation, such as least-squares regression weights 
versus relative weights. The literature shows mixed results about the conditions under 
which each method should be used. There are distinct advantages that “relative 
importance” indices have over regression coefficients in terms of communicating to 
decision makers. There are also advantages to just using integer weights when the 
sample size is small as they generalize better to new samples. The Navy and other 
Services except the Army use integer (unit) weights to form their ASVAB composites.  

Chapter 14. More on Weights: Forming a Composite of Multiple Performance 
Criteria.  The discussion was continued about methods for applying weights with focus 
on the “complete” criterion. Guidance was given with regard to distinguishing between 
desired weighting of the components of a composite (“nominal weights”) and the 
weights that actually are in play because of variances of and covariances among the 
components (“effective weights”). Equations were presented that allow one to calculate 
appropriate empirical weights that consider the variances and covariances of the 
components to yield effective weights that match the desired nominal weights.  
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Chapter 15. Multiple Hurdles and the Correction for Range Restriction.  A discussion 
was provided of multiple hurdle selection systems and a two-step correction for range 
restriction procedure to estimate the unrestricted population predictor/criterion 
correlation matrix. The application for ASVAB validation studies is when (a) the ASVAB 
is used to predict performance in advanced training (intermediate training needs to be 
taken into account) and (b) a researcher decides job performance is the ultimate 
criterion (training performance needs to be taken into account). Not accounting for a 
hurdle will result in a downward bias in the ASVAB’s estimated population validity 
coefficient. The 2-step procedure assumes the missing performance data can be filled in 
by some legitimate procedure. 

Chapter 16. Multiple Hurdles as a Missing Data Problem. This chapter drew some 
parallels to the multiple hurdle range correction issue discussed in the previous chapter 
under the umbrella of “the missing data problem”.  A major point stressed is that the 
missingness of data, either in a one or two-stage hurdle situation, is missing at random 
(MAR). That is, the missingness must be related only to the selection variable (e.g., the 
ASVAB) and not to the criterion variable after controlling for the ASVAB; otherwise, we 
have missing not at random (MNAR) and our model will be misspecified. Maximum 
Likelihood and the state-of-the-art Multiple Imputation procedures (that provide 
standard errors) are briefly discussed, but they too, as with the Lawley 2-step correction, 
must adhere to assumptions.  

Chapter 17. Setting ASVAB Cutscores.  A brief background was provided from the 
literature on methods for setting cutscores and also the impact of measurement error on 
selection decisions. Multiple cutscores were discussed in contrast to compensatory 
composite models and multiple-hurdle models. Also discussed was the use of 
empirically-based expectancy tables compared to theory-based tables, the latter are 
required for the Navy when an ASVAB cutscore is to be lowered (or waived), or the 
sample size is too small but the validity estimate seems reasonable. Waiver policy 
guidelines are provided for the Navy that takes into account various factors such as 
criticality of the Rating, difficulty in filling the Rating, ASVAB validity magnitude, and 
observed training failure rates.  

Chapter 18. Assessing ASVAB Standards Adequacy through Simulation.  This 
chapter was a discussion of two Navy simulation-based software applications that allow 
for the assessment of impact of recruit fill across Navy Ratings when the ASVAB 
standard is changed for one or more Ratings (or an occupational group of Ratings). Both 
applications were applied in a study of the differential assignment capability of the 
newest ASVAB test, Assembling Objects (AO) and the former ASVAB test, Coding Speed 
(CS). Both tests have been shown to increment the ASVAB in predicting performance in 
mechanical types of occupations (for AO) and clerical, but also other types of Ratings 
including Navy SEALs (for CS). The results for both applications show that these tests, 
that also reduce adverse impact, improve the fill across Navy Ratings when formed into 
ASVAB composites that have shown optimal validity.   
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Chapter 19. Classification Effectiveness. This chapter expanded upon the simple 
classification algorithms discussed in the previous chapter to the more complex and 
complete recruit classification/allocation models researched by the Services’. These 
models attempt to improve classification effectiveness. A discussion is provided about 
the various selection and classification goals that are so varied that they complicate the 
matter of deciding what any revised ASVAB should predict. The Navy has three main 
goals for the ASVAB to accomplish through their Ratings’ ASVAB standards. The first 
goal is to maximize the percentage of training seats filled with qualified applicants. The 
second goal is for the ASVAB to be highly predictive of training success – as failing 
training is a costly loss for the Navy (and the individuals). The third goal for the ASVAB 
is to improve the social benefits, which means lowering adverse impact, or score 
barriers, that occur from overuse of highly academic tests that are not the only credible 
predictors of training success.   

Appendix A: SPSS syntax file that executes the Pearson-Lawley correction for range 
restriction and the associated files and instructions. Appendix B: A generated Taylor-
Russell .10 base rate table. Appendix C: Worksheet to demonstrate how to use the 
Taylor-Russell tables to determine the four classification decision errors.  

Concerns for the Future 

During the writing of the Introductory and Technical manuals, the military was 
experiencing an extended positive military recruiting environment (juxtaposed to a poor 
U.S. jobs market). Military recruiting environments are cyclical and a downturn is 
expected and we are already seeing downturn signs, and it is occurring at a time when 
the U.S. government is experiencing large budget deficits. Military funding cuts will 
impact training budgets, so we in the ASVAB validation/standards community will not 
be assured of the stellar criterion measures we currently receive from the training 
commands. If training resources are severely cut, our training performance criterion 
variables may become less useful.  

Despite resource constraints the DoD ASVAB program will remain high in integrity; 
however, we caution against researchers just settling for performance criteria of 
convenience to validate the ASVAB. We must be diligent in investigating the construct 
relevance and other criterion properties addressed in these two manuals (Introductory 
and Technical). If for some reason training performance measures become unavailable, 
some could rationalize that the criterion of relevance for setting ASVAB standards is, say 
promotion status – fully documented in electronic databases and easy to obtain with the 
appropriate DON Chief Information Officer and IRB approvals. To counteract any 
counterproductive developments that may occur for the function of ASVAB standards 
setting, it will become imperative that the Services leverage the two manuals to educate 
policy makers on the importance and utility of our standards setting practices. At least 
for the Navy, there exists a Selection and Classification Office (OPNAV132G) that 
formalized the ASVAB Validation/Standards program as an operational requirement. 
The other Services may find it beneficial to do the same. Also key is the sustainment of 
the INTERSERVICE Aptitude/Ability Standards Panel (see the charter in Appendix D of 
the Introductory Manual, NPRST-TR-15-1). 
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SPSS SYNTAX as examples for setting up RANGE RESTRICTION CORRECTION matrices 

*COMPUTE ASVAB COMPOSITES TO CORRECT FOR RANGE RESTRICTION 
COMPUTE vear= ve+ar.  
COMPUTE vemk= ve=mk.  
COMPUTE ar2mkgs= ar+(2*mk)+gs . 
EXECUTE . 
 

*GENERATE THE SAMPLE MATRIX  
CORRELATIONS  
/VARIABLES=gs ar wk pc mk ei as mc ve ao vear vemk ar2mkgs fsg  
/MATRIX OUT (*). 
 

*REGRESSION PROGRAM APPLIED TO RANGE CORRECTED MATRIX  
REGRESSION  
/MATRIX=IN(*)  
/MISSING LISTWISE  
/STATISTICS COEFF OUTS R ANOVA  
/CRITERIA=PIN(.05) POUT(.10)  
/NOORIGIN  
/DEPENDENT fsg  
* The Lawley corrected matrix yields range corrected validities for unit weighted ASVAB test composites                
*where test scores are standardized in the PAY97 population to have a mean of 50 and  
*standard deviation of 10. The composites are the ones you specify in the Cormat.spx file that sets up 
*The composites are those you specify in the Cormat.spx file that sets up the samp_mat.sav file.  
*The researcher may want to run regression on the corr_mat file as well as directly on the samp_mat (or the 
*sample’s raw data) for a number of reasons. For example, R-Square is only meaningful in the corr_mat  
*recognizing that accuracy is influenced by a number of factors addressed in the Technical Manual.  
 
/METHOD=ENTER gs ar wk pc mk ei as mc ve ao. 
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SPSS SYNTAX as examples for conducting regression on the RANGE RESTRICTION CORRECTION matrix 

*REGRESSION PROGRAM APPLIED TO RANGE CORRECTED MATRIX  
REGRESSION  
/MATRIX=IN(*)  
/MISSING LISTWISE  
/STATISTICS COEFF OUTS R ANOVA  
/CRITERIA=PIN(.05) POUT(.10)  
/NOORIGIN  
/DEPENDENT fsg  
*fsg is final school grade. 
* The Lawley corrected matrix yields range corrected validities for unit weighted ASVAB test composites                
*where test scores are standardized in the PAY97 population to have a mean of 50 and  
*standard deviation of 10. The composites are the ones you specify in the Cormat.spx file. 
*The researcher may want to run regression on the corr_mat file as well as directly on the samp_mat (or the 
*sample’s raw data) for research reasons.  
 
/METHOD=ENTER gs ar wk pc mk ei as mc ve ao. 
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STEPS for USING the MULTIVARIATE RANGE RESTRICTION CORRECTION SPSS PROGRAM 

The following steps describe how to use the Lawley multivariate correction for range restriction program 
developed by CNA in SPSS. The correction is necessary in order to fairly compare the (estimated) 
population validity coefficients of ASVAB composites. The unfair comparison without the correction is 
due to the military use of only a subset of tests (in a composite) with cutscore as an operational 
classification standard.  
1) From the sample data file with all ASVAB tests, other predictor variables, and final school grade (FSG) 
(or any other criteria) compute any ASVAB composites of interest for the study (theoretical or 
empirically derived). A syntax file example is “Lawley_Compute_Composites.sps“.  

2) Use the “Lawley_Cormat.sps” file to generate a correlation matrix from the sample data set 
(“samp_mat.sav”). You will have to name that matrix output file accordingly and save it after deleting all 
but one of the “N” lines.  

3) Modify the “Lawley_Correction.sps” file to specify the list of variables as they are written in the 
“Lawley_Cormat.sps” file.  

4) In the “Lawley_Correction.sps” file, change the existing drive and path to the sample matrix to the 
one you are working with (the file handle path).  

5) Also, create a folder called “TEMP” in the drive for holding the intermediate files that are created 
during the running of the program.  

6) The “CORPOP97.sav” file is provided as a screen shot in this appendix so you will have to manually 
(one time) overwrite the “samp_mat.sav” file to get the ASVAB PAY97 unrestricted matrix) called 
“CORPOP97.SAV”.  
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THE PROGRAM GENERALLY KNOWN AS THE LAWLEY CORRECTION FOR MULTIVARIATE RANGE RESTRICTION. 

     * PROGRAM ORIGIN AND HISTORY. 

     * The program was written in 1977 and has subsequently been used and improved by researchers at CNA and NPRST. 

    * It is based on the technique originally developed by Pearson [1] and later refined by Burt [2] and by Lawley [3]. 

    * [1] Pearson, Karl, "On the Influence of Natural Selection on the Variability and Correlation of Organs, 

    *          Phil.Trans.Roy.Soc. London, A,(1902): 1-66. 

    * [2] Burt, Cyril. "Validating Tests for Personnel Selection," British Journal of Psychology 34 (1943): 1-19. 

    * [3] Lawley, D.N., "A Note on Kark Pearson's Selection Formulae, 

    *          Proc. Royal Soc. Edinburgh, Sec. A (1943), 62 Part I, pp 28-30. 

    * The program was originally written at CNA in APL and FORTRAN by Verna and Mifflin [4]. 

    *[4] CNA, Research Contribution 336. "A Method to Correct Correlation Coefficients for the Effects of Multiple Curtailment," 

    *          by Thomas L. Mifflin and Steven M. Verna, Unclassified, Aug 1977. 

    * The FORTRAN version was modified by Peter Stoloff of CNA circa 1985. 

    * The program was converted (CNA) to SPSS syntax in 1996 by Christine Baxter [5] with results verified by Cathy Hiatt. 

    * [5] CNA 96-0773, "SPSS Range Correction Program," by Christine Baxter, Unclassified, 10 May 1996. 

    * The program was further revised and commented by John H. Wolfe for NPRST, July, 2006. 

    * Instructions and sample data added by Janet Held of NPRST circa 2010. 

     * PROGRAM CODE AND COMMENTS. 

     * This version corrects MEANS as well as STANDARD DEVIATIONS and CORRELATIONS. 

     * NOTE TO USER: These 3 FILE HANDLE statements must be changed  

           to specify the path names in your particular computer. 

     FILE HANDLE SAMPCORR   /NAME =  'C:\Documents\Lawley\samp_mat.sav'. 

    FILE HANDLE POPCORR     /NAME =   'C:\Documents\Lawley\CORPOP97.SAV'. 

    FILE HANDLE OUTCORR    /NAME =   'C:\Documents\Lawley\corr_mat.SAV' . 

     * NOTE TO USER: Change VARLIST to list all of your variables in samp_mat including the study's ASVAB composites. 

    * All ASVAB tests (treated as explicit selection variables) first followed by implicitly selected. The Assembling Objects (AO) 

           test is treated by the Navy as an implicit (incidental) selection variable like final school grade (FSG)  because of changes 

           since PAY97 that have improved the applicant AO distribution (a more suitably challenging test). 

    DEFINE VARLIST () 

                          gs ar wk pc mk ei as mc ve ao vear vemk ar2mkgs fsg . 

     !ENDDEFINE . 

     * POPCORR contains the population values of the means, standard deviations, and correlations of the 

            explicitly selected variables used for correcting for range restriction, and no other variables. 

    * SAMPCORR has the sample means, standard deviations, and correlations of the explicitly 

            selected variables (in the same order as POPCORR) followed by the implicitly selected  variables. 

     * OUTCORR is the output file containing range-corrected means, standard deviations, and correlations. 
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    Get FILE SAMPCORR. 
 

    SAVE OUTFILE ='C:\Documents\Lawley\TEMP\CORSMP.SAV' 

     /COMPRESSED. 

    GET FILE = POPCORR. 

     DEFINE CRANGE(). 

     *Convert population correlation to population covariance matrix. 

    MCONVERT 

    /MATRIX=IN(*) 

    /MATRIX=OUT(*). 

     SAVE OUTFILE = 'C:\Documents\Lawley\TEMP\COVPOP.SAV' 

     /COMPRESSED. 

     *Read in sample correlation matrix. 

     GET FILE = 'C:\Documents\Lawley\TEMP\CORSMP.SAV'. 

    EXECUTE. 

     *Convert sample correlation to sample covariance matrix. 

    MCONVERT 

    /MATRIX=IN(*) 

    /MATRIX=OUT(*). 

     SAVE OUTFILE='C:\Documents\Lawley\TEMP\COVSMP.SAV' 

    /COMPRESSED. 

     * Begin matrix job. 

     MATRIX. 

     * Read in matrix file. 

       MGET   /FILE = 'C:\Documents\Lawley\TEMP\COVPOP.SAV' . 

       COMPUTE POPMNp= MN . 

    * Determine number of explicitly selected variables. 

       COMPUTE p = NCOL(POPMNp) . 

       COMPUTE Wpp = CV . 

       RELEASE CV, NC,MN,SD. 

        MGET /FILE = 'C:\Documents\Lawley\TEMP\COVSMP.SAV'  . 

        

     COMPUTE SAMPNC=NC. 

     COMPUTE SAMPMN=MN. 

     COMPUTE SAMPSD=SD. 

     COMPUTE V = CV. 
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    *Determine size of sample matrix. 

     COMPUTE n  = NROW(V). 

     COMPUTE p1 = p+1 . 

     * Reference: Lord & Novick, Statistical Theories of Mental Test Scores. 

    * Reading, Mass.: Addison-Wesley, 1968, pages 146-147. 

     * Partition sample matrix V into p explicitly selected variables and n-p implicitly selected variables. 

     COMPUTE Vpp = V(1:p, 1:p). 

    COMPUTE Vpn_p = V(1:p, p1:n). 

     COMPUTE Vn_pp = TRANSPOS(Vpn_p). 

    COMPUTE Vn_pn_p = V(p1:n,p1:n). 

     COMPUTE B = Vn_pp*INV(Vpp) . 

    * B = Regression weights for predicting implicitly selected variables from explicitly selected variables 

        Use of B simplifies Lawley's formulas. 

     * Calculate corrected partitions (W = corrected to population values). 

    COMPUTE Wn_pp =    B*Wpp. 

    COMPUTE Wn_pn_p = Vn_pn_p - B*TRANSPOS(Vn_pp) + Wn_pp* TRANSPOS(B) . 

     * Assemble corrected matrix from partitions. 

    COMPUTE W  =  {Wpp,TRANSPOS(Wn_pp);Wn_pp,Wn_pn_p}. 

     * Correct Means. 

    COMPUTE SMNp = SAMPMN(1:p) . 

    COMPUTE SMNn_p = SAMPMN(p1:n) . 

    * B0 is the row vector of constants in the regression equations. 

    COMPUTE B0 = SMNn_p - SMNp*TRANSPOS(B) . 

    COMPUTE POPMNn_p = B0 + POPMNp*TRANSPOS(B) . 

    COMPUTE POPMN = {POPMNp, POPMNn_p} . 

     * Save as a matrix file. 

     MSAVE POPMN 

     /TYPE=MEAN 

     /OUTFILE = 'C:\Documents\Lawley\TEMP\CORRECT.SAV' 

     /VARIABLES= VARLIST .   

     MSAVE SAMPNC 

     /TYPE N. 

    MSAVE W 

     /TYPE COV. 

     *End matrix job. 

     END MATRIX. 
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    *Convert corrected covariance matrix to a correlation matrix. 

     GET FILE = 'C:\Documents\Lawley\TEMP\CORRECT.SAV' . 

    EXECUTE. 

     MCONVERT 

     /MATRIX=IN(*) 

     /MATRIX=OUT(*). 

     *Output corrected correlation matrix. 

    !ENDDEFINE. 

     CRANGE. 

     SAVE OUTFILE = OUTCORR  / COMPRESSED. 

     *NOTE TO USER: You can run DELTEMP.BAT to delete temporary files in C:\TEMP. 
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Screen Shot of PAY97 Matrix used for Navy ASVAB validation/standards studies 
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Appendix B 
Generated Taylor-Russell .10 Base Rate Table 
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Appendix C 
Worksheet for Calculating Classification Decision Errors  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



Classification Decisions with Moderately Large Validity Coefficients, Stringent Selection 
(SR=.30), and a Series of High Population Success Rates (Base Rates) 

BR = Base Rate – Population Success Correct+ = Correct Acceptance 
SR = Selection Ratio – Resulting from Cutscore Correct- = Correct Rejection 
Rxy = Validity coefficient – Applying to Population Incorrect- = Incorrect Rejection 
 Incorrect+ = Incorrect Acceptance 

C-1 

70,000 30,000 

45% x 30,000 = 13,500 

Tot =100,000 

13,500 

80
,0

00
 

AFQT 30 

B A 

C D 

6,500 

63,500 16,500 

20
,0

00
 

62% x 70,000 = 44,400 

Tot =100,000 

14,400 

20
,0

00
 

80
,0

00
 

AFQT 30 

B A 

C D 

5,200 

64,400 15,600 

70,000 30,000 

Predictor Rxy BR=.20 BR=.25 BR=.30 BR=.35 

ASVAB .60 .45 .51 .55 .61 

ASVAB + DLAB .65 .48 .53 .57 .64 
Expected Success 
Improvement  +3% +2% +2% +3% 

Note. Data were taken from Taylor, H. C., & Russell, J. T. (1939). The relationship of validity coefficients to the practical 
effectiveness of tests in selection: Discussion and tables. Journal of Applied Psychology, 23, 565-578.  

 
 

BR = .20, Rxy = .60 

A = 30,000 Qual x Success Rate (45%) = 13,500 

D = 30,000 – 13,500 = 16,500 

B = 20,000 – 13,500 = 6,500 

C = 80,000 – 16,500 = 63,500, 

or 

C = [100,000 – (A+B+D)] 

 

 

BR = .20, Rxy = .65 

A = 30,000 Qual x Success Rate (48%) = 14,400 

D = 30,000 – 14,400 = 15,600 

B = 20,000 – 14,400 = 5,600 

C = 80,000 – 15,600 = 64,400 

 

 

Decisions 
Correct+ 

A 
Correct- 

C 
Incorrect– 

B 
Incorrect+ 

D 
Rxy = .60 13.5% 63.5% 6.5% 16.5% 

Rxy = .65 14.4% 64.4% 5.6% 15.6% 

 .9% 
Improvement 

.9% 
Improvement 

.9% 
Improvement 

.9% 
Improvement 
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