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Abstract 

The objectives of this work were to: (1) evaluate the influence of hydrologic processes (i.e., 
changes in soil water content) on ground-penetrating radar (GPR) signals, particularly those 
associated with landmines, and (2) investigate the potential for developing contextual GPR 
classification systems by accounting for changes in environmental state (i.e., soil water content) 
using hydrologic modeling.  The estimation of soil water content is a major focus of this work 
since this property is closely related to EM wave propagation in soils (i.e., dielectric constant, 
electrical conductivity, wave velocity), which control radar responses.  The general research 
hypothesis guiding this work is that accounting for hydrologic state in classification systems will 
allow for improved generalization of landmine classification tools to a broader range of sites 
under varying operational conditions.  The focus of the research was on two-dimensional 
imaging and simulation, though we also demonstrated the value of three-dimensional GPR 
imaging for improved object detection and characterization of flow processes in soils and around 
buried objects.  Overall we found that accurate estimates of water content can be derived from 
GPR signals and that accounting for the water content of a soil within a contextual classification 
system is likely to improve classification results.  The classification gains observed in this study 
were somewhat modest when comparing a contextual classifier to a non-contextual classifier that 
was trained over targets observed for a large set of hydrologic conditions.  Both of these 
approaches significantly outperformed a classification strategy that first attempted to correct 
GPR signals observed at arbitrary conditions to a single hydrologic reference state.  We are 
continuing to evaluate the significance of our results to scenarios representative of a broader 
range of conditions than those considered in this study.  
Key Project Outcomes: 

• Produced an advanced GPR imaging facility capable of automated three-dimensional 
investigation of radar responses of soils and objects (i.e., landmines, etc.) at field-
scales under dynamic environmental conditions (e.g., soil moisture changes).  This 
facility continues to be available to users beyond the closure of this project.   

• Illustrated that 3D GPR imaging improves discrimination of objects with weak 
reflection signatures (e.g., non-metallic landmines) compared to 2D imaging.   

• Demonstrated distinct characteristics for GPR signals (trace characteristics, phase-
velocity spectra, and amplitude versus offset responses) associated with changes in 
water content as a result of infiltration processes.   

• Demonstrated that effective medium approximations (one-dimensional flow and ray 
theory) provide reasonable approximations of a soil under non-equilibrium 
hydrologic conditions allowing for accurate estimation of water content.  

• Developed and tested methodologies for classification of GPR signals within 
contextual neural networks; results produced to date suggest that applying a data 
reduction step prior to a contextual classifier produces the best classification results. 
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1. INTRODUCTION 
 
This final report documents major results of the project “Accounting for Hydrologic State in 
Ground-Penetrating Radar (GPR) Classification Systems”.  First, a brief description of the 
capabilities of a new GPR imaging facility developed is the project is given.  An overview of 
empirical data and results follows.  The value of the new GPR facility is illustrated by showing 
how 3D GPR can be used to improve the detection of non-conductive targets having low GPR 
signal strengths.  We then provide results illustrating how water content changes influence GPR 
signals over various objects using time-lapse imaging techniques.  Associated with these 
empirical studies are evaluations of data analysis and modeling techniques for characterizing 
GPR responses under varying hydrologic conditions.  Finally, we provide results of classification 
studies that investigate how different approaches to accounting for hydrologic context affect the 
classification of landmines from GPR data.    
 
2. DEVELOPMENT OF AN AUTOMATED GPR IMAGING FACILITY 
 
We have completed construction and development of a data collection system such that ultra-
high resolution 3D GPR data can be collected efficiently and reliably.  The system integrates a 
commercial PulseEkko Pro SPIDAR (OEM-NIC) (Sensors and Software) interface with an 
automated gantry positioning apparatus for the antennas, where both the radar and positioning 
are computer controlled using software written within LabView.  This automated imaging 
system can be deployed in one of two tanks that we have built within the facility (large tank: 4m 
x 4m x 2m and small tank: 1.5m x 1.5m x 0.6m).  These tanks were constructed to complement 
each other, e.g., materials in the smaller tank are changed more easily and it can thus more easily 
be used for near-surface imaging of small objects under different soil conditions or can serve as a 
pilot-scale test volume for the larger tank.  A key advantage of the large tank is that reflection 
boundary effects associated with the tank walls are avoided, thereby providing conditions more 
representative of the field while maintaining a high degree of control of a laboratory 
environment.  Both tanks can be equipped with irrigation systems and in-situ sensors for 
simulating and independently monitoring the effects of rainfall.  Both tanks are also equipped 
with cell drains to monitor outflows and allow for accounting of water balances. 
  

a)

 

b) 

 

c)

 
Figure 1: Automated GPR imaging facility:  a) small imaging tank, b) large imaging tank, and c) 
GPR antennas independently controlled by gantry system. 

 
The facility has proven to be a substantial asset as it offers accurate, high speed 3D data 
collection over large regions, which is typically not possible in either field or lab settings.  
Currently, we are capable of collection rates on the order of 100 traces per second with the 
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SPIDAR interface.  When coupled with our high-resolution positioning system, capable of 
moving at velocities up to 0.50 m/sec, we are able to collect fully 3D data at 0.5cm grid 
resolution in both down-track and cross-track directions over a 2 m2 area in about 35 minutes.  
Furthermore, the system provides the versatility to collect data in a fully customizable way by 
programming arbitrary survey geometries.  This automation capacity allows us to optimize 
surveys for acquisition speed by balancing between quickly acquired common-offset reflection 
images, which are used for imaging the spatial continuity of soils and objects, versus much 
slower multi-offset gathers, which are needed for determining EM wave velocities and other 
contextual information.   
 
3. EMPIRICAL RESULTS 
 
Over the course of this project, we have collected a considerable amount of data, some of which 
has substantially illuminated our understanding of the hydrology of soil systems, allowed us to 
evaluate modeling and data reduction approaches, and given us directions for further studies.  
We highlight some significant findings from our data collection illustrating the capability of 
GPR to detect different subsurface targets and changes associated with hydrologic stresses. 
 
3.1 Static GPR Imaging Studies 

We have performed a variety of experiments evaluating the ability of the new radar system to 
detect and discriminate between a variety of subsurface objects.  Figure 2 shows the raw results 
(i.e., no processing) of a calibration test designed to evaluate the resolution and sensitivity of the 
radar (1000MHz) given varying contrasts in subsurface properties (i.e., electrically conductive 
water, non-conductive distilled water, and air).  Despite weak signals in some cases (e.g., due to 
the low contrast between dry sand and the air-filled bottle), the experiment demonstrates that in 
all cases the radar system can discriminate objects between 2.5-7.5cm in size, i.e., well below the 
size of concern for both anti-tank and anti-personnel mines, for a wide range of electrical 
properties.  This implies that high resolution GPR data can provide spatial detail useful for 
discriminating between mine and clutter objects.  In this particular experiment the background 
sand was kept dry, so the strongest responses are observed for the water filled bottles with a 
contrast in the response for the conductive versus non-conductive targets.  Weaker reflections are 
also apparent for the low-contrast scenario of an air-filled bottled embedded in the dry sand.   
 
Figure 2:  Schematic setup and GPR results for a calibration experiment for the new GPR system.  Targets are nine 
Nalgene bottles filled with a NaCl solution, distilled water, or air (from left to right in the images) ranging in 
diameter between 2.5-7.5cm that were buried vertically in sand.  Data were collected at 0.5cm increments in both 
the x and y direction and results are shown for one depth (i.e., timeslice) from the full 3D image. 
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A second series of images in Figures 3-5 provide similar findings for clutter objects (a pipe and 
rock) versus a simulated non-metallic anti-personnel landmine.  The metallic pipe is clearly 
identifiable with a strong response in cross-sections perpendicular to the pipe and the timeslice 
(Figures 3b and 3c, respectively).  Though more subtle due to interference with the groundwave, 
the reflection is also identifiable in the cross-section parallel to the pipe (Figure 3a). 

 

 
 
Figure 3: Cross sections obtained parallel (a) and perpendicular to an iron 
pipe, with a clear diffraction in the perpendicular section.  The pipe is also 
clearly identifiable in a timeslice (c).   

 

In contrast, the non-conductive rock is much more difficult to identify in the GPR data.  
Reflection arrivals, however, are still visible in the cross sections for this object (Figures 4a,b) 
and the rock is also clearly identifiable in the timeslice (Figure 4c).  Figure 4d illustrates that 
sufficient coherent energy is reflected from the rock to define the details of its overall 3D 
morphology – a feature that can be important for discriminating between clutter and mine 
objects.   
 
Unlike the previous two cases, results for the non-metallic landmine simulant (Figure 5) show 
that this object is practically undetectable in the GPR cross sections due to the low reflection 
strength.  The mine can be identified, however, in the timeslice (Figure 5c).  These results show 
the importance of high-resolution 3D imaging to identify and discriminate between subsurface 
objects with low reflection strengths, such as non-metallic landmines.  Obtaining this type of 
data will be even more important in noisy imaging environments experienced under operational 
field conditions.  We therefore conclude that effective utilization of 3D imaging data within 
subsurface classification algorithms is an important area of future research.  
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Figure 4: Orthogonal radar cross-sections obtained for the rock clutter object (a,b) showing a subtle, but clear 
reflection response.  The outline of the object is apparent in the timeslice (c) and the overall 3D morphology of the 
object can be reconstructed from the high-resolution GPR data (d). 
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Figure 5: The GPR response of a simulated non-metallic anti-
personnel landmine cannot be readily identified in either of the 
radar cross-sections (a,b), but can be clearly identified in the 
timeslice (c).  The ability to more readily identify reflection 
objects using 3D data is particularly relevant to improving 
target classification results in noisy environments where 
profiles can be corrupted by interference from clutter objects.  

3.2 Dynamic Imaging Studies: The Influence of Hydrologic State on GPR Signals 
 

The goal of these experiments was to evaluate the influence of hydrologic processes on GPR 
signals.  Our initial approach focused on assumptions of one-dimensional flow in soils, though 
GPR imaging experiments suggested the occurrence of substantial non-uniform flow.  Despite 
this additional complication, we found that simple radar modeling techniques along with a one-
dimensional flow assumption provided good estimates of water content within the soils that can 
be used for characterizing the hydrologic state of the soils.  Additional analyses have illustrated 
significant potential of AVO (amplitude versus offset) analysis for discrimination of landmine 
signatures, while dispersion analysis may provide a means to characterize water content changes 
in the very near surface.   
 
3.2.1 Infiltration within a Homogeneous Soil 
Results from a 900MHz multi-offset GPR imaging experiment performed during and after a 
water infiltration event are shown in Figure 6.  The goal of the experiment was to investigate 
how GPR signals changed in response to hydrologic stresses in a homogeneous porous media 
and to evaluate whether accurate transient estimates of the average water content could be 
derived from the time-lapse GPR data.  Multi-offset data were collected because these 
measurements can be used to investigate radar responses at multiple orientations relative to 
targets (Figure 6a) to estimate GPR wave velocities and soil water content.  The infiltration 
process was modeled using the software HYDRUS-1D assuming one-dimensional flow and 
given independently measured soil properties and the flow rates.  The simulated radar response 
was then generated from the hydrologic simulations to provide predictions of the GPR response 
shown in Figure 6c.  

Y Position (cm)

Tr
av

el
tim

e 
(n

s)

150 160 170 180 190 200 210 220 230 240

-5

0

5

10

15

20

270
280

290
300

310
320

330
340

150
160

170
180

190
200

210
220

230
240

0

10

20

X Position (m)
Y Position(m)

Tr
av

el
tim

e 
(n

s)

X Position (cm)

Tr
av

el
tim

e 
(n

s)

270 280 290 300 310 320 330 340

-5

0

5

10

15

20

(a) 

(b) 

(c) 



Page 8 of 32 
 

 

 

 
Figure 6: a) Conceptual model of flow experiment and GPR rays showing potential energy pathways through the 
medium, b) soil water contents measured in the experiment versus simulated by the model, c) GPR data (left) and 
simulation results (right) showing how multiple arrivals change over time and space in response to hydrologic 
influences.  The models provide a good overall representation of the observed responses. 

Experiment 

Model 

a) b) 

c) 
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The data presented in Figure 6 shows the hydrologic and geophysical response of the 
experimental tank to hydrologic forcing.  The measured changes in water content of the tank are 
directly correlated to changes in multiple arrivals on the GPR data (Figure 2c).  Upon irrigation 
of the tank (~10 min), there is a significant change in the arrivals produced in the GPR data.  
This complex response led us to investigate electromagnetic wave dispersion phenomena as well 
as the validity of normal move-out analysis and our assumptions of 1-D flow (discussed later in 
this report).   

The simulated GPR signals match the observed results well (Figure 6c).  Some minor differences 
in relative amplitudes and phase relations (trace shape) occurred between the observed and 
simulated data sets and there was substantially more noise in the empirical dataset, partially due 
to scattering by the walls of the smaller tank in which the experiment was performed.  
Regardless, the kinematics (i.e., arrival time patterns) of the observed data are captured by the 
simulations across the offsets, which suggests that a normal moveout (NMO) approach to 
evaluating the data is appropriate.   

Normal moveout (NMO) analysis is a common practice for analyzing multi-offset GPR data.  
Essentially, NMO provides a means to estimate wave velocities in the subsurface from multi-
offset data, which also allows for translation of time-domain GPR data into the spatial domain, to 
provide estimates of the depth to targets.  Once the wave velocity is known, the soil water 
content can be estimated using an appropriate petrophysical transform.  We applied this analysis 
to the transient multi-offset GPR data collected during the homogeneous tank experiment (Figure 
6) and reported the results in Mangel et al. (2012).  This work demonstrated that it is possible to 
accurately estimate water content (Fig. 7c) and quantitatively track the depth of a hydrologic 
wetting front (Fig 8b) through time using this analysis.  The important outcome of this result is 
that it demonstrated the power of simple models (one-dimensional infiltration for hydrology and 
ray theory for GPR) for characterizing the hydrologic state of the subsurface under arbitrary 
water content conditions.   

 
Figure 7: Comparison of water content determined from GPR versus that measured by in-situ moisture probes for 
(a) simulated and (e) observed data over the course of the infiltration and recovery experiment.  The depth of the 
tank was estimated consistently for both (b) simulated and (d) observed data, except during the infiltration period 
when the wetting front reflection interfered with the analysis of the reflection from the bottom of the tank. 
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Figure 8:  Estimated migration of the wetting front based on water content probe observations and 
analysis of the GPR data for (a) simulated and (b) observed experiments.  Errors occurring when the 
wetting front is past 30cm depth are associated with interference from a reflection produced by the side 
wall of the tank. 
 
3.2.2 Infiltration within a Heterogeneous Soils: Layers and Landmines 
We performed a variety of experiments to evaluate how changes in hydrologic state affect GPR 
responses in heterogeneous soils.  Figure 9 shows results for two specific cases: (i) a shallow 
subsurface soil layer, and (ii) a buried landmine surrogate.  For the layer case we embedded a 
thin (1cm) layer of silica flour within the homogeneous sand at a depth of 15cm (Figure 9a).  An 
anti-personnel non-metallic cylindrical (APNMC) landmine surrogate was constructed following 
the guidelines given by Chant et. al, (2005) and buried so the top of the mine was at a depth of 
0.05 m (Fig. 9b).  In both cases, water was then applied uniformly over the ground surface as the 
GPR data were collected in order to observe signal changes.  Apart from dry soil conditions, the 
radar responses from the layered soil are substantially different from the landmine response 
(Figure 9), which was more similar to the patterns observed for the homogeneous infiltration 
case.   

Early in the infiltration experiment (~10 min) the geophysical response of the layered soil (Fig. 
9c) also closely resembles that of the homogeneous case (Fig. 6a-d) with the groundwave (A) 
and bottom of sand reflection (B) dominating the data.  However, around 50 min elapsed time, a 
third reflection appears that is an indirect result of the thin layer.  The layer itself is below the 
resolution of the radar, i.e. the radar cannot see the layer.  After infiltration begins, however, 
water is able to build up at this interface causing a wetted zone to develop in the otherwise 
homogeneous upper layer, which causes the observed reflection.  This was expected as the silica 
flour has a very low permeability compared to the sand.  This interpretation is confirmed by 
examining the data obtained from the moisture probes embedded in the tank, which show a steep 
increase in water content of the upper layer while the lower layer probes never respond to the 
hydrologic forcing until very late in the experiment when water eventually begins to break 
through this impermeable layer to enter the underlying sand (Figure 10a).   



Page 11 of 32 
 

The observed layered soil response is significant for two reasons.  First, it demonstrates that the 
GPR signal obtained from a layered soil will be significantly different from that obtained from a 
discrete object, like a landmine.  Second, it demonstrates how changes in hydrologic state can 
affect the apparent ‘visibility’ of targets due to feedbacks on environmental controls. 

The hydrologic response of the landmine system was very similar to that of a homogeneous soil, 
i.e., a steep increase in water content was observed throughout the soil column in response to the 
irrigation.  This hydrologic similarity therefore resulted in similar patterns observed in the GPR 
data for the homogeneous soil and the soil with an embedded landmine (Figure 6 vs. Figure 9d).  
It is therefore not possible to easily discriminate the landmine responses from a homogeneous 
soil response based only on data obtained with a single fixed separation distance between the 
antennas (i.e., antenna offset).   We therefore performed further analysis of these data using 
amplitude versus offset (AVO) techniques and by performing high-resolution 3D imaging 
experiments. 
 
a)

 

b)

 

c)

 

d)

 

Figure 9:  Conceptual diagrams of ray paths expected for different GPR arrivals from a layered soil (a) and 
embedded landmine (b).  Flow restrictions caused by the layer have a major impact on the observed GPR signals (c), 
whereas the landmine signal is qualitatively similar to a homogeneous soil.  
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Figure 10: Comparison of water 
content changes observed for the 
layered soil (upper figures) versus a 
buried landmine (lower figures) during 
an infiltration event.  The influence of 
the layer as a hydrologic barrier is 
clear, whereas the landmine responds 
in a manner similar to a homogeneous 
soil.  

Results from probes placed at six 
depths in the center of the flow field to 
evaluate infiltration patterns are shown 
in the figures on the extreme left.  
Results from lateral probes placed at 
two depths surrounding the flow field 
to evaluate the influence of non-
uniform flow on the results are shown 
in the figures in the center and right.  

 

Complex wave interactions with buried targets can be captured by considering how the 
amplitude of reflections is impacted by changes in the angle of incidence of the incoming wave, 
i.e., through amplitude versus offset (AVO) analysis.  In the landmine experiment, the data 
shows substantial interference between the landmine reflection and the groundwave arrivals, 
making it difficult to isolate the landmine signal and discriminate the presence of a landmine 
from the GPR data (Figure 6 vs. Figure 9d).  A comparison of AVO responses in Figure 11, 
however, shows a distinct signature for the landmine that is not observed in the data for the 
homogeneous soil.  The effect is particularly strong during the infiltration and recovery phase of 
the experiment, when the impermeable landmine has a significant impact on the overall 
distribution of water around it.   
 
In a related experiment, we performed central midpoint (CMP) surveys where the transmitter and 
receiver antennas were centered on the landmine and the water content was controlled by 
sequential additions of water to the tank.  In this case there is again a clear AVO response shown 
in Figure 12.  The shape of the AVO response appears to be independent of water content in this 
set of experiments, suggesting that AVO could be an invariant feature of GPR signals that is 
valuable for detecting landmines in changing environments; note that the water content shown is 
for a moisture probe above the landmine simulant and that the probes below the mine showed no 
response.  These results were reported by Mangel et al. (2012b). 
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Figure 11: Typical multi-offset profiles at various times during the infiltration and recovery experiment for a 
homogenous tank (a) and a tank containing a landmine surrogate (b).  The AVO response shows a clear difference 
for the soil without a landmine (c) compared to the soil containing a landmine (d).  The average tank water content 
through each experiment (e, f). 
 
 
 
 

 
  

 
 
 
 
 
Figure 12: AVO response of a landmine under 
variable water content conditions determined from 
central midpoint (CMP) surveys.  The consistent 
shape between the curves suggests that the AVO 
response may be insensitive to changes in water 
content. 

 

AVO AVO 

Experiment Time (min) Experiment Time (min) 

(a) (b) 

(c) (d) 

(e) (f) 
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3.2.3 Three-Dimensional Imaging of Infiltration in Soils  
We have performed a variety of three-dimensional imaging experiments to improve our 
understanding of water flow in soils, how this is affected by the presence of landmines, and the 
resulting impacts on GPR signals.  Our initial experiments were conducted using a multi-channel 
PE Pro radar purchased on a previous DURIP (57714EVRIP) project before our current GPR 
facility was completed.  The system has 8 channels allowing for 16 different source-receiver 
antenna combinations and 7 parallel scans of the tank at the same offset (i.e., B scans).  At each 
survey time during the experiment, two interleaved scans were performed to allow for 14 parallel 
lines to be collected.  The experiment was conducted with an antenna frequency of 500 MHz.  
Results of the experiment are shown below in Figure 13.  These data clearly show the migration 
of the wetting front through the tank, but also suggest the occurrence of lateral variability in the 
flow system.  For example, the dipping reflection produced by the wetting front and irregularities 
across it in the GPR profile in Figure 13b (center of image), indicates that the front is not 
uniformly distributed in the infiltration zone.  Flow is instead faster on one side of the tank than 
the other and the discontinuities suggest a non-uniform front, possibly due to fingering 
phenomena.  Accounting for this type of three dimensional variability of flow is important for 
understanding how scattering caused by non-uniform water content distributions in the 
subsurface affect pattern recognition systems and our ability to constrain soil parameters needed 
for environmental calibration of detection algorithms.  The limited resolution of the surveys in 
this case prevented detailed analysis of flow processes. 

   
(a) Initial Conditions (b) 30 min. into infiltration (c) 2 hours into infiltration 

   
Figure 13: Results of 3D imaging of an infiltration test.  Upper images 
show GPR cross sections illustrating the migration of the wetting front and 
impact on the traveltime of the bottom of tank reflection (a-c). Time slice of 
the GPR data showing the distribution of amplitudes across the tank at an 
approximately constant depth (d).  The shift in colors across the tank 
represents a shift in GPR traveltimes, illustrating variability in flow 
conditions. 

(d) 

 
 
Upon completion of the GPR imaging facility, we are now able to produce detailed images of the 
subsurface at an ultra-high resolution.  For example, a comparison between the non-uniformly 
wetted area at the top of the sand tank below where an oval irrigation grid was temporarily laid 
down and the response imaged by GPR is shown in Figure 14.  A qualitative comparison of the 
images reveals that the new radar system is able to capture subtle variations in water content at a 
very high resolution, i.e., approximately centimeter scale.  The contrast in resolution is striking 
when comparing results obtained during a water infiltration test monitored with the new system 
versus those in Figure 13, despite the fact that the latter data were collected with a cutting-edge 
multichannel system. 

Bottom of tank (drains) 
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Figure 14: (left) A photo qualitatively showing variations in water content at the soil surface.  (right) The radar 
response illustrating the potential to capture these water content variations at a very high (~cm) resolution.  The 
outlined area in the photo indicates the approximate region shown in the GPR data.  
 
As discussed earlier, understanding the details of flow processes and how these are impacted by 
buried objects (i.e., landmines) is an important task for improved interpretation of GPR data for 
detection and classification problems.  In section 2.3.1 of this report, we demonstrated that there 
is little apparent difference between GPR responses produced over heterogeneous soil versus that 
containing a landmine.  To investigate this issue more closely, we performed a time-lapse three-
dimensional imaging experiment over a 
30cm x 30cm area as water was allowed to 
drip onto the soil surface above the 
landmine buried at 6.5cm depth (Figure 
15).  Our goal was to understand how flow 
occurred around the mine and how this 
impacted GPR responses.   
 
Changes in the GPR signal caused by the infiltration are clearly seen in the vertical tank profiles 
shown in Figure 16a, though flow in and out of the imaging plane make it difficult to reconstruct 
the details of flow phenomena.  It is more apparent from time slices (Figure 16b), that water flow 
over and around the landmine is non-uniform and changes through time.  Full 3D imaging 
surveys were collected every 1.1 minutes over the course of a 75 minute monitoring experiment.  
For each of these times it is possible to process the GPR data to produce a 3D isosurface image 
that captures the spatial continuity of reflections throughout the imaging volume, thus providing 
insights to flow phenomena.  Water accumulation on the mine and shifts in discharge on either 
side of the mine are apparent in three-dimensional isosurface shown in Figure 17.  While 
additional processing (e.g., migration) may improve images somewhat, this example clearly 
demonstrates the potential of radar for understanding the dynamics of in-situ flow processes.  
Likewise, characterizing these processes can in turn aid in the interpretation of GPR signals.  
 
 
 

Figure 15: Geometry of the 
3D imaging experiment of 
flow over a buried landmine.  
Drip irrigation at a point 
allowed water to flow around 
the mine.   
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Figure 16: Reflection profiles (left) and timesclices (right) obtained during a 3D infiltration imaging experiment 
above a landmine.  Moving across the columns provides images collected at different times in both datasets, whereas 
moving down a column represents slicing through the data block as vertical profiles or timeslices.     

 
Figure 17: Isosurface images derived from GPR data showing the 3D evolution of infiltration around the mine over 
time.  Shifts in flow occurring around alternate sides of the mine at different times are apparent.  This behavior is in 
contrast to expectations. 
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1. DISPERSION ANALYSIS OF GPR DATA 
 
When rainfall drives soil water infiltration to produce a near-surface wetted zone of a thickness 
similar to radar wavelengths, the wetted layer can act as a waveguide that results in the 
dispersion of radar waves.  This problem inhibited our ability to analyze near-surface 
groundwave data in an article previously published as a part of this project (Mangel et al., 
2012a).  When the waveguide is truly a layer, however, past work has shown that it is possible to 
use the phase velocity spectrum of the data to characterize the geometric and dielectric properties 
of the wetted layer.  This result has significant implications for our project given that 
understanding the environmental context of a landmine is critical for adaptive classification 
problems.  The problem with the existing prior analyses, however, is that they assumed a sharp 
boundary between the wetted zone caused by storm water infiltration and the dry zone beneath.  
In reality, the shape and sharpness of this boundary is controlled by the physical properties of the 
soil (Figure 18), i.e., the grain size distribution which controls capillary effects in the soil. 

 
Figure 18: Permittivity profiles from the simulations showing the true hydrologic model profile (blue line), 
effective hydrologic model profile for a two-layer medium with the boundary defined by the maximum GPR 
reflection coefficient, and results of zero mode (dashed red line), first mode (dashed green line), and joint 
zero/first mode inversions (dashed black line) of a layered medium.  Figures are shown for five different soil 
cases: a) infiltration occurring as a sharp front, b) low capillarity soil, n = 4.0, c) moderate capillarity soil, n = 
2.1, d) high capillarity soil, n = 1.5, and e) no infiltration (i.e., no waveguide).  As capillarity increase, the 
dispersion inversion method produces increasingly inconsistent results for the soil. 
 
To investigate the influence of soil type on the dispersion analysis, we used coupled hydrologic 
and GPR forward models to simulate the effects of wave dispersion in a variety of soil types.  
We test the hypotheses that the number of dispersive modes will decrease as the capillary effect 
of a porous media increased, effectively making it more difficult to characterize the subsurface 
properties of the near-surface soil environment.  Capillarity of the porous media was controlled 
using the n-variable of the Mualem-van Genuchten soil model, which is usually associated with 
grain size distribution. 
 



Page 18 of 32 
 

We demonstrate that the dispersion of GPR waves is strongly dependent on soil specific water 
content profiles of a precipitation induced waveguide (Figure 19).  We found that as the 
sharpness of the lower boundary of the dispersive waveguide decreases, the number of dispersive 
modes in the GPR data decreases due to the reduction in dielectric contrast causing an increase in 
the critical angle, which must be reached for dispersion to occur.  We are still investigating the 
effect of capillarity on the dispersion of GPR waves and have a publication in development.  
Evaluating whether these data could be used to capture a gradually deforming boundary is a 
problem that still requires additional evaluation, but could produce a path forward for 
generalizing our findings to characterizing the soil environment for arbitrary soil conditions. 
 

 
Figure 19: Normalized phase velocity frequency spectra of the GPR simulation results for a) shock front, b) n = 4.0, 
c) n = 2.1, d) n = 1.5, and e) no waveguide.  Vertical dashed white lines indicate cutoff frequencies for dispersive 
modes and mark the asymptote between modes.  The decreasing information contained in these spectra as the 
waveguide becomes increasingly poorly defined due to stronger capillary effects suggests that characterizing the soil 
environment.   
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5. NEURAL NETWORKS AND CLASSIFICATION 
 
An overarching goal of this project is to evaluate whether contextually adaptive pattern 
recognition algorithms can be developed to account for how changes in the hydrologic state of a 
soil influence GPR signals.  To this end we considered three types of contextual cases for 
classification systems: (i) a large database of context-dependent signals is used to train the 
classifier such that hydrologic context is not explicitly considered within the classification 
system, (ii) GPR signals are corrected to a context-independent reference state prior to 
classification, and (iii) GPR signals are pre-processed with a general feature extraction neural 
network prior to classification with a contextual classifier.  Prior to evaluating these schemes, we 
first evaluated the efficacy of using a feed-forward neural network as a forward model for 
simulating radar responses given that the ability of a network to capture the physics of radar 
responses influences its ability to transform signals between reference states.   
 
5.1 Neural Networks as a Forward Model 
We evaluated feed-forward artificial neural networks (ANNs) to serve as fast, reliable, adaptive 
forward models for simulating one-dimensional GPR responses.  Our most recent version of the 
network utilizes a vector of dielectric permittivity as input and produces a zero-offset trace of 
GPR data.  A large set of training data was generated by simulating materials with a high 
permittivity layer located at a random depth.  These permittivity profiles were then used to 
simulate the GPR response of the training data using a numerical GPR forward model (Irving 
and Knight, 2006) which solves Maxwell’s equations in 2D.   The network consists of 4600 
nodes distributed between three hidden layers and one output layer.   

We observed that one problem is that the network tended to produce unrealistic small amplitude 
events, i.e., noise (Figure 20-21).  This is partially due to the large relative amplitude of the 
groundwave controlling the sensitivity of the network to changes in nodal weights, though 
additional effort in controlling the number and magnitude of weights in the network is also likely 
to lead to improvements.  To remove this high frequency noise (Fig. 21a) we applied a band pass 
filter to the network output with a pass band of 500 MHz – 1200 MHz.  This range was 
determined by taking the radar frequency (1000 MHz) and noise frequency (>1500 MHz) into 
consideration.  Utilizing the band pass filter, we are able to more closely represent the desired 
response of the network (Figs. 21b-c).  After the filtering, the total error of all presented patterns 
was 3e-4 with the largest pattern error at 1e-4; however, there is still some noise in the network 
response that may be resolved by revising the network topology and taking a modeling approach 
that focuses on pattern adaptation rather than mimicking the numerical model.  Despite the fairly 
simple approach tested here, however, the results shown in Figures 20-21 indicate that there is 
significant promise for the neural network to act as a GPR simulator. 

 
Figure 20: Example of actual and simulated GPR trace obtained from the neural network after filtering. 
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Figure 21: Using a feed forward 
artificial neural network to 
determine the radar response of 
the subsurface using a permittivity 
vector, a) raw network output, b) 
band pass filtered network output, 
c) desired network output, i.e. 
training data. 

 
 
5.2 Neural Networks for Target Classification 
Target classification can be problematic when using radar data given that the target response 
varies, sometimes subtly, due to changes in object properties and the surrounding material.  One 
of the largest drivers of this environmental variability in the scope of GPR imaging is volumetric 
water content.  With this work, we look at the capability artificial neural networks to transcend 
the environmental variability of target response and successfully classify the target from 
contextual and non-contextual basis. 
 
5.2.1 Network Topologies for Context-Based Classification 
We studied three different network topologies for context-based classification to discriminate 
between mine and clutter objects.  In all three cases, the network takes a window of GPR data 
that has been isolated and extracted from a profile (B scan) after detection by a primary anomaly 
classifier.  The output of the network is the probability that the anomaly is a specific object (e.g., 
landmine, rock, pipe, etc.).   
 
In the first network topology case (Figure 22a), the network does not explicitly account for the 
hydrologic state (i.e., water content).  In contrast, the second network design first uses water 
content to correct the GPR signal to a context-independent reference state (i.e., reference water 
content), which is then passed to a classification network (Figure 22b).  The conceptual 
advantage of this network design is that a limited number of field samples would be required to 
train the network for a wide range of environmental conditions.  The third network topology first 
acts as a feature extraction step that does not account for hydrologic state.  The extracted features 
are then passed on to a classification network that uses water content as an input to account for 
hydrologic state (Figure 22c).  In all three cases, the overall network topology remains 
essentially unchanged, except where adding water content as an additional input, though the way 
information is passed through the network is substantially different. 
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Figure 22: Network topologies studied as 
contextual classifiers.  In all cases the basic 
topologic structure of the network remains 
essentially constant, though the action of the 
network is significantly different. 
 
a) Non-contextual network: Hydrologic state is 
not explicitly considered in the network.  A large 
training data set is therefore required to capture 
the influence of water content variability on 
GPR signals.   

 
 
 
 
b) Corrected to Reference State: GPR signals 
are first corrected to a hydrologic reference state 
prior to object classification.  This approach 
allows the classification step to remain 
independent of context. 

 
 
 
c) Contextual Network: GPR signals are 
processed through a feature extraction network 
to reduce the number of inputs to the 
classification network.  Water content is input as 
a parameter to the classification network, 
making this step dependent on hydrologic 
context. 

 
 
 

5.2.2 Neural Network Training Data Set 
To train the neural network, we developed a simple training set that accounted for changes in 
object properties and background water content, i.e., a target in a homogeneous background.  
The data set was constructed using GPR simulations (Irving and Knight, 2006) as these offer a 
way to develop the large data set that accurately captures the physics of radar required to train a 
neural network when coupled with our parallel computing capabilities on the Palmetto Cluster.  
The data set consisted of five targets: 1) an anti-personnel non-metallic cylindrical (APNMC) 
land mine (Chant et al.,2005), 2) a granitic rock the size of an APNMC mine, 3) a cluster of 
granitic rocks the size of an APNMC land mine, 4) a metallic pipe (diameter=5cm), and 5) a 
metallic version of an APNMC landmine (APMC).  These targets were inserted at a minimum 
depth (from top of target to surface) of 5cm into a homogeneous background determined by 
water content.  Water content values from 3-40% were converted to dielectric permittivity using 
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the Topp equation (Topp, 1980).  Magnetic permeability and electrical conductivity were set to 
be constant as we can expect these to be fairly negligible in most conditions (though these would 
likely effect wave amplitude and possibly wave velocities at higher values).  Examples of how 
the GPR signal varies between the different objects and water content conditions are given in 
Figure 23.  Portions of this data set were reserved for training, generalization, and validation of 
the networks.  Figure 24 shows the values of water content included in the training data set for 
each target object.  The water content values were selected to create skips and gaps in the water 
content records appropriate for testing the ability of the neural networks to interpolate and 
extrapolate to conditions not included in the training data set.  The neural networks were trained 
using the back propagation methods subject to the training data until improvements in the errors 
obtained for the training data set were balanced by increases in the errors observed for the 
generalization data set. 

 
Figure 18: Training data for the network showing the variability in the response of GPR to changes in target and 
environment.  Object variability is seen in the y-direction while representative environment variability is seen in the 
x-direction.  All data have had background subtraction performed. 
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Figure 24: Water content conditions included in the neural network training data sets for various target objects. 

5.2.3 Neural Network Validation Data Sets 
The purpose of the validation set is to present the neural network with patterns it has never been 
exposed to during the training procedure to evaluate whether the network is capturing a 
generalizable functional relationship between inputs and outputs.  For these networks, we created 
four different types of validation sets to test the capabilities of the neural network under different 
conditions: (i) equilibrium (homogeneous) water content conditions, (ii) equilibrium (non-
homogeneous) water content conditions, (iii) a non-equilibrium flow scenario, and (iv) complex 
clutter scenarios. 
   
The first validation set consisted of GPR responses calculated in a homogeneous water content 
background, similar to the case for the training data, but at water contents that were excluded 
from the training data set.  This test therefore evaluates the ability of the neural network to 
interpolate and/or extrapolate patterns between water content values the network has already 
seen in training.   

 
Figure 25: Water content conditions included in the neural network validation data sets for various target objects. 
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The second validation set is essentially the same as the original training set except that the 
influence of noise in the data is evaluated by adding variations in the background water content 
field as random Gaussian perturbations.  The network should have a more difficult time with 
classification of these patterns considering it was trained on homogeneous subsurface 
simulations.  The third validation set represents the time-lapse response of an APNMC mine 
during infiltration.  While this data set is only representative of a single target, the water content 
values around the mine are complex (Figure 26).  This case therefore tests how the network 
responds to extraneous reflections in the data associated with non-equilibrium hydrologic 
conditions, as the migrating wetting front produces a reflection on the GPR simulation results 
separate from that of the mine.  The fourth and final validation set tests how the network 
responds to 1) changes in object size, 2) the placement of objects adjacent to an APNMC mine, 
3) unknown and unclassifiable targets (i.e., no class for target), and 4) changes in the orientation 
of an APNMC mine. 
 

  
Figure 26: Evolution of the water content field around a landmine during an infiltration event to evaluate the 
influence of non-equilibrium hydrologic conditions on classification.  Results are shown early after the onset of 
infiltration (left image), while the infiltration front is near the landmine (center image), and after the infiltration front 
has passed the landmine (right image). 

 

5.2.4 Neural Network Performance in Validation Tests 
Trained neural networks with the different topologies described earlier were used to classify 
targets in each of the validation data sets using GPR data as stimuli.  The radar data was 
preprocessed using background filtering and clipping of the data to reduce the data points in each 
input pattern to around 3500.  For the classification, the networks utilize a modified version of 
the classic sigmoidal activation function called softmax, which forces the sum of all outputs to 
unity so they can be interpreted in a probabilistic manner.  Using the output of the networks, we 
can compare their performance using receiver operating characteristic (ROC) curves.  These 
curves describe the performance of classification algorithms and help to determine operating 
thresholds for maximum performance.  Furthermore, the accuracy of a classification algorithm 
can be quantified by the area under the ROC curve (AUC) (Beran and Oldenburg, 2008). 
 
The results of the first validation test, i.e., where objects were located in soils with homogeneous 
water content values, are shown in Figure 27.  Both contextual and non-contextual networks 
correctly classify the majority of patterns in the first validation set with AUC values of 
approximately 0.99, which is considered an excellent classification result.  It is emphasized that 
the non-contextual network was trained on a large set of environmental conditions, thus 
contained similar information as the contextual network.  This is in strong contrast to the case 
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where the GPR signals were first converted to a reference condition prior to classification, in 
which case the AUC was substantially lower (0.78), indicating that this approach was not as 
successful of classification strategy.  The successful networks classify the APNMC mine patterns 
successfully; however, they struggle in classifying a rock vs. a rock cluster.  Also, both networks 
exhibit some confusion when attempting to distinguish a rock cluster from an APNMC and 
APMC mines at relatively low background water content values (2.5-5.0%), indicating that small 
reflection amplitudes may pose a problem for the classification algorithms.  Considering it is not 
confusing a target that requires mitigation with one that does not, both networks are viable for 
further validation tests. 
 
 
 
 
Non-contextual Network 

 
 
 
 
 
Reference State Corrected 
Network 

 
 
 
 
 
Contextual Network 

 
Figure 27: Comparison of classification results for validation test #1 (homogeneous water content).  Note that 
though the non-contextual network performs as well as the contextual network, it was still trained on a wide range of 
environmental conditions (i.e., water content values), thus illustrating the importance of accounting for hydrologic 
state.  
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Figure 28:  Comparison of classification results for validation test #2 (average uniform water content with random 
spatial variations). 
 
The second validation test evaluated the impact of spatially variable background water content 
on the classification results by adding random Gaussian noise to the permittivity matrix of the 
radar forward model.  These simulations are more representative of empirical data collected in 
the field, as many areas rarely exhibit a homogeneous subsurface in regards to GPR responses.  
Overall, the networks have a higher level of difficulty in classifying targets, exhibiting much 
more confusion between the different classes for a given pattern.  The non-contextual and 
contextual networks again show significant performance enhancement (AUC=0.85 and 0.87, 
respectively) compared to the case where the GPR signal is corrected to a reference state prior to 
classification (AUC=0.75).   
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Figure 29:  Comparison of classification results for validation test #3 (non-equilibrium water content during an 
infiltration event).  The trial cases represent water content conditions typical of the range of behaviors shown in 
Figure 26.   
 
The third validation test used the results of a transient infiltration event to represent non-
equilibrium distributions of water content.  Conditions tested span the range shown in Figure 26 
and are representative of non-uniform water contents expected as a result of rainfall and 
subsequent soil-water redistribution processes.  Despite the likely presence of electromagnetic 
wave dispersion and reflection multiples, the classification results suggest that the networks were 
all able to perform well except at early times, which affect the near-surface EM wave velocity.  
This result was unexpected and we are therefore continuing to investigate the influence of non-
equilibrium distribution of water contents on landmine classification.   
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Figure 30:  Comparison of classification results for validation test #4 (robust validation set varying target size, 
adjacency, rotation and including unknown targets).  
 
The final validation test of the neural networks, used a robust test set to evaluate how the 
network responds to changes in object size, object adjacency, unclassifiable objects, and a non-
horizontal target. These test objects are well outside the range of targets used to train the 
network, so are expected to provide a significant classification challenge.  The performance is 
similar to previous cases, where both the non-contextual and contextual networks perform well 
compared to the GPR signal correction approach.  These networks successfully classify a land 
mine that is twice the size of the original APNMC mine.  The non-contextual network confuses 
the rock with an APNMC mine and soil lens. The contextual network follows and misclassifies 
the same target as APNMC mine. Both networks handle object adjacency well given that in the 
presence of either an adjacent rock or adjacent APNMC mine, the networks are very confident of 
the target.  The same follows for the tilted APNMC mine for both networks.  When presented 
with an unclassifiable target (not in database), however, both networks struggle.  Ideally, since 
the network does not have a class for a soil lens or a void, it should present an equal probability 
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for all targets.  In this respect, the contextual network is a more reliable network in that it 
presents more confusion when presented with the lens target, indication it may be more 
applicable to targets outside the original training set. 

 
6. DISCUSSION AND CONCLUSIONS 
 
Our empirical studies and classification tests illustrate that hydrologic state has a substantial 
impact on GPR signals and our ability to accurately classify targets, like landmines, from these 
signals.  We originally proposed two fundamentally different approaches to adaptive 
classification of GPR data to account for hydrologic state: 1) hydrologic normalization of GPR 
data to a reference state prior to classification, and 2) develop of training database that can be 
tuned to a specific hydrologic state at a particular place and time.  A third approach we evaluated 
was to include hydrologic state data (water content) within a contextual classification algorithm 
after performing a non-contextual data reduction step on the GPR data.  Accounting for 
hydrologic state within the classification algorithm – either by expanding the training data set to 
include samples representative of different hydrologic conditions or by explicitly including water 
content within a contextual network – were found to produce the best classification results.  
Extracting a unique GPR signature that is independent of the subsurface hydrologic state by 
correcting GPR signals to a common hydrologic reference state was not found to be an effective 
approach in this study.   
 
We found that coupling a data reduction and classification step within a contextual network can 
focus on the influence of contextual data being utilized to improve classification accuracy.  The 
contextual network seems to have a slight advantage over the non-contextual network when 
presented with patterns absent in the original training data.  While other validation sets did not 
show significant improvement in the accuracy of the network, the contextual network exhibits a 
modest gain in accuracy when noise is introduced into the GPR data.  This same improvement 
could be expected with empirical data as this is the most representative data set to actual GPR 
data.  Furthermore, there may be a computational advantage for the contextual network as it 
could lead to a reduced number of nodes in the network topology, faster computational 
performance, and improved adaptation for unknown conditions given the explicit and more 
efficient use of hydrologic information. 
 
Finally the high dimensionality of the GPR data was found to play an important role in the 
performance of the network in training, validation, and deployment phases.  Training of the 
network will take longer with large data sets; however, time from data collection to classification 
will be minimized as there will be few requirements for preprocessing of the data.  Improving 
implementation of data reduction steps may improve the performance of the network overall, but 
would require a different network topology and possibly correction of the GPR data, e.g. 
migration, to account for time shifts in the signals.  We therefore conclude that contextual 
classification algorithms are likely to significantly improve object classification from GPR data, 
but significant improvements in pre-processing and data reduction could likely further improve 
these classification results. 
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