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1. Introduction 

Techniques for using mobile robots to generate detailed maps of different environments, referred 
to as simultaneous localization and mapping (SLAM), have proven to possess tremendous 
potential as a result of their demonstrated performance. By building an accurate map of the 
environment, autonomous behaviors can be implemented to perform different tasks depending on 
a given situation. There are two key factors that directly affect the performance of a SLAM 
technique: 1) the sensor(s) used and 2) the environment in which the robot is operating. Sensors 
inherently have a non-negligible error that accumulates over time and adversely affects missions 
spanning long distances and durations. This is especially true for applications involving small 
mobile robots where sensor drift and inaccuracies can cause significant mistakes in the generated 
maps. 

To address the issue of map quality degradation as a result of aggregated sensor error, there has 
been a great deal of effort to solve the loop closure problem, that is, identify when a robot has 
returned to a previously visited location and then use this information to remove error from the 
generated map. One such place recognition solution is the fast appearance-based mapping (FAB-
Map) method.1 This algorithm uses a bag-of-words representation to determine the probability 
that the robot has visited the current place earlier on its trajectory. This bag-of-words model is 
paired with a Chow Liu tree to create a probabilistic framework that addresses perceptual 
aliasing, i.e., situations that appear very similar to the available sensors.2 Another loop closure 
solution, the Joint Compatibility Branch and Bound (JCBB) method, uses spatial information 
rather than appearance data.3 In this approach, the algorithm traverses an interpretation tree in 
search for the loop closure hypothesis associated with the largest number of non-null, jointly 
compatible pairings. The traversal is executed by applying the Mahalanobis distance to the 
nearest neighbor rule so as to achieve a heuristic for branching that explores hypotheses with 
higher degrees of joint compatibility first. 

While all of these loop closure solutions have successfully addressed the problem of recovering 
from sensor error in real time and one has demonstrated loop closure in an environment spanning 
an entire city, there are situations in which the environment is too complex to use any one of the 
aforementioned approaches. In this work, we seek to develop a method capable of solving the 
loop closure problem during long-duration missions in near-featureless environments, namely, in 
a system of underground tunnels (Fig. 1), in addition to general urban or natural settings. This 
specific environment is particularly difficult because nearly all locations visually appear identical 
and there are next to no distinguishable features at any given time. As a result, we have 
developed and tested a unified representation for recognizing global loop closure, which 
incorporates appearance-based techniques as well as spatial-based techniques using a laser 
scanner on a mobile robot system. 



 

2 

 

Fig. 1  The map generated from a run where a robot drives approximately 1 km along a road (on the 
left), then enters an underground facility (thin tunnels on the right), reemerges from the exit at 
the top, and reenters the first entrance near the middle. The robot has accumulated sufficient 
pose error during this 3-km trip that loop closure will be needed to correct it. The error can be 
seen in the zoomed in segment in the lower right. 

We first present the mapping system, models, and training process of our approach in Section 2. 
Next, we describe our experimental design for evaluating our loop closure method in Section 3. 
The results of these experiments are detailed in Section 4, followed by our corresponding 
conclusions and future work in Section 5. 

2. Approach 

2.1 Mapping System 

The mapping system used in this work is based on the OmniMapper library.4,5 This system is a 
front-end for the GTSAM nonlinear optimization engine,6 which provides measurements 
between places along a trajectory that is optimized by the GTSAM backend. There are two 
sources of measurements used to build maps using LiDAR: adjacent pose measurements and 
loop closure measurements. Both of these types of measurements are automatically determined 
via the generalized iterative closest point (GICP)7 implementation provided by the point cloud 
library (PCL).8  

2.2 Appearance Model 

The first component in the loop closure representation is the Appearance model. This model 
directly compares two places with the Open FAB-Map9 library included with OpenCV.10 
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Open FAB-Map is an open-source implementation of the fast appearance-based mapping 
technique.1 This technique for global loop closure detection is popular, because it has a linear 
time complexity and is accurate; it achieves nearly 40% recall at 100% precision, which is more 
than sufficient for mapping. This is achieved through the use of visual features, together with a 
first-order estimate of the joint probability of observing combinations of visual features. 

We use fast point feature histogram (FPFH) descriptors11 computed at intrinsic shape signature 
keypoints12 from three-dimensional (3-D) point clouds instead of the visual features that are 
typically used in FAB-Map. A codebook of representative FPFHs together with a Chow-Liu tree2 
is trained offline; this procedure is described in Section 3. A place descriptor vector is generated 
by vector-quantizing FPFH descriptors computed at keypoints found in a given place. Each entry 
in the place descriptor vector indicates the presence of that codeword in this place. This place 
descriptor vector is then compared to the ones already seen, as well as a null place model 
representing the average place. The Open FAB-Map library returns the likelihood of a loop 
closure to each previous place and the null place. If the largest likelihood of a previous place 
exceeds the likelihood of the null loop closure hypothesis, then this previous place is a putative 
loop closure hypothesis to the current place. 

Cummins and Newman1 were able to find a considerable number of loop closures without 
making any mistakes on very large data sets spanning an entire city using FAB-Map. This 
technique works very well on visual data; however, we were unable to get this level of 
performance on LiDAR data. This is likely due to the lower descriptiveness of purely geometric 
FPFH features over visual features, which benefit from image intensity variation due to texture 
and geometry. In the next section, we introduce an additional spatial technique to further refine 
and improve the putative loop closures to increase accuracy. 

2.3 Spatial Model 

The software presented in this report builds a metric map as loop closures are evaluated. This 
map has at its backbone a pose graph of values, which estimate the robot’s position at each place. 
Through the use of the GTSAM SLAM backend, we compute marginal distributions over each 
pose in the pose graph. These marginal distributions express the location uncertainty along the 
robot’s trajectory. We can also compute the joint marginal distribution over pairs of poses via the 
GTSAM backend; however, this is an expensive operation that requires marginalization over all 
other variables and must be performed judiciously. 

For a candidate loop closure selected by the Appearance module between pose Xi and Xj, we can 
compute via GTSAM the following: 

1. µi and µj, the mean pose estimates 

2. iiΣ  and jjΣ , the unit marginal covariances  

3. T
jiij Σ=Σ , the joint covariance between Xi and Xj 
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From these values, we can express the conditional distribution over Xj with respect to Xi as 

 ),()|( || ijijij NXXp Σ= µ  (1) 

 ijij µµµ −=|  (2) 

 jiiiijjjij ΣΣΣ−Σ=Σ −1
| . (3) 

A weighting factor S is then computed based on the error function: 

 ( )ijij
T

ijS |
1
||exp µµ −Σ−= . (4) 

S will have its largest value of 1 when µj|i = 0, corresponding to the condition when Xi and Xj are 
precisely equal. S is dependent upon the shape of ij|Σ ; it will be large when the Mahalanobis 

distance between Xi and Xj is small. 

2.4 Unified Model 

Using either that Appearance or Spatial component by itself suffers from a number of potential 
problems, which limit loop closure detection reliability. The Appearance-based loop closure 
prediction technique described in Section 2.2 makes more mistakes than visual FAB-Map due to 
lower laser feature descriptiveness, and therefore, can only be used with very high thresholds, 
which limit the number of loop closures accepted to a small number. The Spatial-based loop 
closure prediction technique described in Section 2.3 is too expensive to compute at many 
locations due to the heavy cost of repeated marginalization of the pose graph for each candidate. 
Additionally, the Spatial-based technique would have very similar values for places adjacent to 
long-distance loop closures, requiring the use of iterative closest point (ICP)-based validation at 
many loop closure hypotheses. 

Our proposed approach leverages the strengths of both techniques to mitigate the shortcomings 
presented above. For a given place corresponding to robot pose Xi, usually the robot’s current 
pose as it is proceeding through the environment or operating on a log file, the place descriptor 
vector is computed and compared to all previously mapped places in addition to the null place 
model via Open FAB-Map. For every other place {Xj} for which the likelihood of a loop closure 
exceeds that of the null hypothesis, typically no more than a few places, the Spatial model is 
evaluated. The Appearance model’s likelihood is scaled by the Spatial model and compared to a 
threshold. If the scaled likelihood exceeds this threshold, then this loop closure candidate is 
accepted. 

Determining the precise relative pose at a loop closure requires the use of a final estimation step. 
ICP-based techniques typically perform well when initialized close to the correct relative pose. 
Since a good initialization point is not available for a loop closure due to uncertainty, we have 
adopted a sampling-based strategy to test many initialization points and accept the ICP result that 
has the lowest residual error. The conditional distribution computed in the Spatial component is 
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used to generate samples for initialization conditions; the sample with the best residual error is 
accepted and the resulting relative pose is added as a constraint and solved by the GTSAM 
backend. 

2.5 Training 

Global loop closure correction involves the analysis of large data sets to find a compact set of 
salient and representative features that describe locations a robot will encounter and need to 
recognize. Selecting the right feature vocabulary is critical for systems aiming to consistently 
build accurate maps of an environment, because vocabularies compactly represent a place, which 
enables a robot to recognize the place when it is visited again and then execute the loop closure 
procedure. The optimization of this feature vocabulary requires the selection of salient features 
over a set of parameters that must be evaluated on a training set in a relevant environment. 
Ideally, this type of analysis would be conducted on several thousand individual test runs, and a 
separate trial would be used to evaluate each of the vocabularies to find the best parameter values 
for a given environment. This vocabulary could then be used for future mapping missions in 
comparable environments. In this work, we generated a feature vocabulary using the largest data 
set in each of the two testing environments. We then assessed the remaining trials in the specific 
environment using the respective vocabulary. 

3. Experimental Design 

Our novel global loop closure capability was evaluated using a customized iRobot PackBot, seen 
in Fig. 2. This man-portable robot was outfitted with a Velodyne HDL-32E LiDAR to capture  
3-D point clouds at a rate of one per second. A MicroStrain 3DM-GX2 inertial measurement unit 
(IMU) captured odometry data to provide initial estimates of ego-motion. The robot also made 
use of a processing payload that consisted of an Intel Quad-Core i7 ICOM express board and an 
802.11 wireless radio. A solid-state drive (SSD) was used to run Ubuntu 12.04, the open-source 
Robotics Operating System (ROS) and our experimental software, while a second SSD was used 
to record data. The software used in this report is a mapping system, described in Section 2.1 
which uses a global loop closure detection method described in Sections 2.2 and 2.3. 
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Fig. 2   The iRobot PackBot and Velodyne HDL-32E LiDAR used in this work 

The robot was remote-controlled along carefully constructed routes through two complex 
environments, each of which present unique challenges for long-duration mapping. The routes 
within these environments start from the same location, traverse a complete loop, and then 
retrace virtually the same route to end in the same starting location. By collecting data in this 
fashion, the starting/ending location provided a concrete point of reference and navigating the 
same route twice ensured a large number of possible locations for executing loop closure. The 
data collected by the robot were post-processed and used for assessing the performance of the 
loop closure approach.  

The first operational environment that this approach was employed in was an outdoor, urban 
setting. Designed to simulate a small city, this training facility provided buildings, vegetation, 
and realistic props that would be found in a town. The robot was driven along five routes, as 
shown in Fig. 3, ranging from 750 m to 2.2 km total distance traveled. Even though these test 
runs were completely outdoors, global positioning system (GPS) data were not used in these 
experiments. 
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Fig. 3   A satellite photograph of the urban testing facility with each of the five routes  
labeled. Loop 1 is highlighted in cyan, loop 2 in orange, loop 3 in red, loop 4 in  
light green, and loop 5 in purple. Each loop was driven twice so that the loop  
closure method could be evaluated for the respective run. 

The second environment used for testing was an underground tunnel complex. For these tests, 
the robot started outdoors near dense vegetation, maneuvered approximately 1 km, and then 
entered a long, straight tunnel. After navigating approximately 1 km through several tunnels in 
the facility, the robot exited the complex at a different location than it entered, drove outdoors to 
the starting location, and then repeated the route for a total of nearly 3 km of distance traveled. 
An overhead map of this environment can be seen in Fig. 1. These tunnels present a particularly 
challenging operating environment because of the lack of features throughout the route. In 
general, the tunnels were indistinguishable and only occasionally had salient features that would 
be useful for location recognition. An example of this austere environment can be seen in Fig. 4. 

 

Fig. 4   A photograph of the near-featureless underground tunnel environment  
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In each environment, the data were collected using the Velodyne HDL-32E LiDAR shown in 
Fig. 2. This sensor provides point cloud data with a dense horizontal resolution; however, since it 
only has 32 lasers, the vertical resolution is too coarse for 3-D interest point detection and 
descriptor extraction. To overcome this limitation, we accumulate 10 s’ worth of point cloud data 
into grouped point clouds while the robot is moving. These data are aligned via GICP to produce 
grouped places along the robot’s trajectory that have sufficient resolution. This procedure can be 
seen in Fig. 5. 

 

Fig. 5   The point cloud merge utility puts together adjacent point clouds into higher resolution places suitable for 
feature extraction. Four point clouds (top row) are combined into one place (bottom row). Four point clouds 
are shown for clarity; 10 are used in practice. 

After the point clouds have been grouped into places, we then used one of the data sets for a 
given environment to develop a vocabulary of descriptors, as described in Section 2.5. These 
descriptors represent the occurrence of some feature in the scene observed by the LiDAR. The 
remaining data sets from the respective environment were then tested using the generated 
vocabulary. In order to evaluate whether the system determines the correct location to perform a 
loop closure, we generated ground-truth data by manually selecting the optimal pairs of poses in 
each data set. We developed a ground-truthing utility that allows us to step through each data set 
and choose the best previous pose that matches the location of the current pose. An example of 
this utility is depicted in Fig 6. 
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Fig. 6   A visualization of the ground-truthing utility. The leftmost point cloud is taken from the current pose of the 
robot. The point clouds on the right are three sequential point clouds that can be chosen if any match the 
location of the point cloud on the left. The user can iterate through all of the previous point clouds and 
choose the best match. 

4. Results 

Each environment was run through the three options for the loop closure detection setup: 
Appearance, Spatial, and Appearance+Spatial. The loop closure detection under consideration 
was used to choose the best previously visited place together with a confidence level, as log data 
were processed. These predicted loop closures were compared against ground truth to determine 
precision and recall values at various confidence levels. Precision is a measure of how accurate 
the predictions are; it indicates the rate of true positive results divided by total positive results. 
Recall is a measure of what proportion of positive results are identified. A conservative 
confidence threshold will maintain high precision and may have lower recall to avoid making 
any mistakes. Loop closure is particularly sensitive to false positives, so thresholds are 
purposefully selected to maintain 100% precision despite lower recall rates. 

The first test environment consists of the five loop routes in the urban test facility shown in  
Fig. 3. All loop closure predictions with confidence were ground truthed and used to generate the 
precision/recall and receiver operating characteristic (ROC) curves shown in Fig. 7. Cummins 
and Newman1 described recall rates around 30% to 40% with visual features at full precision. It 
can be seen that our recall rate is quite a bit lower at 12% with both components of the model 
and significantly lower at 2% with either component alone. The Spatial model achieves similar 



 

10 

precision to the combined model at various recall levels; however, it makes critical high-
confidence mistakes after only a few loop closures are detected. These are suppressed until a 
higher recall level by using the combined model. It should also be noted that the mechanism for 
computing the Spatial model would be computationally prohibitive for real-time operation on 
large-scale mapping runs. In the combined model, the Spatial model is only computed for places 
where the Appearance model indicates that loop closure is possible with a higher likelihood than 
the null model. 

    
 a   b  

Fig. 7   Loop closure performance on all runs in the urban test complex, with three options for which components 
are used in proposing loop closures. a) Precision/recall graph: Loop closure is very sensitive to false 
positives and must be run at 100% precision. Appearance+Spatial can operate together at around 10% 
recall without sacrificing precision. Either technique alone has a significantly lower recall. b) ROC graph 
relating false and true positive rates. 

An example loop closure generated by the full system can be seen in Fig. 8. A threshold was 
selected from the precision/recall curve corresponding to the lowest confidence loop closure that 
was still correct across all urban loop data sets. The map shown in Fig. 8 corresponds to run 5 
from Fig. 3. The loop closure shown in Fig. 8 is found at a very distinctive place. The loop 
closure is proposed by the combined Appearance+Spatial model, and the relative pose is solved 
through GICP with sampled initial conditions from the joint conditional pose distribution.  
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c 

Fig. 8   Loop closure found in run 5 from Fig. 3 using the Appearance and Spatial models. a) Loop closure 
detected by Appearance and Spatial model: the left image corresponds to immediately before loop 
closure is inserted and the right image corresponds to after. b) Two candidate places shown in upper 
half of image have their relative poses computed through sampling initial conditions and running 
GICP; the resulting fused point cloud is shown in lower half of image. c) Detail view of loop closure. 

The second type of environment tested was an underground tunnel complex. Precision/recall and 
ROC curves can be seen in Fig. 9. This result comes from a single data set with a short 
overlapping segment at the end of the run. In this run, the Appearance model is not nearly as 
useful as in the urban complex due to the fact that the portion of the trajectory that overlaps is 
almost entirely contained within the tunnel where there are no distinctive features. When it is 
used in the combined Appearance+Spatial model, however, it is able to improve recall over the 
Spatial model by itself. In this case, the Spatial model happens to have very high recall rates; this 
is due to the good performance of the mapping system in estimating the robot’s trajectory in the 
absence of loop closure. If the mapping system had been a little further off, then the Spatial 
model would have had lower performance. This would have also affected the combined model’s 
recall, but to a lesser extent since the Appearance model would have been unaffected. 
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 a b 

Fig. 9   Loop closure performance on a run in the underground tunnel complex, with three options used in the 
proposing loop closures. Data are from a single run with a short overlapping segment at the end, with only 
17 possible loop closures, which occur at the end of the run as the robot reenters the tunnel. In this run, the 
Spatial model is clearly primarily responsible for high recall rates, but the addition of the Appearance 
model does improve recall while also reducing the number places for which the Spatial model must be 
evaluated. a) Precision/Recall graph: Loop closure is very sensitive to false positives and must be run at 
100% precision. b) ROC graph relating false and true positive rates. 

An example loop closure generated by the full system in the underground tunnel complex can be 
seen in Fig10. In this run, the robot starts 1 km away from the tunnel entrance, proceeds to enter 
the right tunnel, and exits the left tunnel before reentering the right tunnel. At this point, a loop 
closure is detected and solved by the ICP system, producing a corrected map. 
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c   

Fig. 10   Underground tunnel run with loop closure detected by Appearance and Spatial models. a) and b) Loop 
closures detected by Appearance and Spatial model, where the left image corresponds to immediately 
before loop closure is inserted and the right image corresponds to immediately after. c) Full map 
including approach trajectory. 

5. Conclusion and Future Work 

The motivation for incorporating appearance-based loop closure detection techniques into our 
mapping system was to find loop closures in difficult environments such as austere underground 
tunnels. We have applied FAB-Map to 3-D LiDAR data; however, by itself, the loop closure 
recall was much lower than the results shown for visual data in the literature. We believe that this 
is due to lower distinctiveness in 3-D LiDAR features as compared with visual features due to 
the absence of texture. We added a Spatial model to validate the loop closures coming from the 
Appearance model. This resulted in sufficient recall levels to perform loop closures, generating 
coherent maps from two diverse types of environments, austere underground tunnels and a 
simulated urban training facility. 

We plan to add a Locality model to our loop closure method, which would share information 
about neighboring places, boosting marginal loop closures if they are locally consistent with their 
neighbors. The Locality model would represent the belief that if pose xi has a loop closure to 
pose xj, then the poses near xi should tend to be good loop closures for places near xj. This is 
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especially true for the type of environments we evaluated in this report, where long corridors 
admit only two approach directions that will be adjacent to in-between poses. In cases where this 
is not necessarily true, such as large open rooms or outdoors, where we might approach a loop 
closure at xi → xj from a direction that is not represented in the neighborhood of the trajectory 
chain leading through xj, there would be a spontaneous loop closure model, which allows this 
type of loop closure to still be detected. 

Our technique extracts FPFH features from 3-D LiDAR point clouds to generate place descriptor 
vectors. This choice of feature descriptor is preliminary and could benefit from further evaluation 
of other alternatives. 

As mentioned in Section 2.5, the generation of a representative feature vocabulary is paramount 
to the performance of a global loop closure capability. The quality of the vocabulary, i.e., how 
accurately the vocabulary captures the features of an environment, can be drastically improved 
using high-performance computing. In future work, we plan to train thousands of vocabularies 
for a specific environment on a high-performance computer so that we can empirically determine 
the optimal parameter values for a robust vocabulary. Using this vocabulary, we will evaluate the 
performance of our global loop closure technique in a similar environment. 
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List of Symbols, Abbreviations, and Acronyms 

3-D three-dimensional  

FAB-Map  fast appearance-based mapping  

FPFH  fast point feature histogram  

GICP generalized iterative closest point 

GPS global positioning system  

JCBB  Joint Compatibility Branch and Bound 

PCL  point cloud library 

ROC receiver operating characteristic 

ROS Robotics Operating System  

SLAM simultaneous localization and mapping  

SSD solid-state drive  
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