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INTRODUCTION:   

The goal of this project is to advance high-altitude medical research by discovering the basic molecular 
mechanisms of acclimatization and de-acclimatization that protect soldiers from high-altitude illness. 
 
BODY:  

All major milestones have been accomplished. Now we are working on papers integrating the findings from the extensive 
physiological studies and the OMICS studies. Since no one has done that work before, we are inventing the methods and 
approaches as we go along. A major breakthrough ahs been the application of an advanced clustering algorithm called 
WGCNA to our datasets. This will allow us to condense the enormous datasets generated by the gene expression and 
epigenetics chip studies into a manageable system that can easily be tested for relationships to physiological tests. 

Accomplishments to date: 
• IRB compliance and continuing review have been completed 

• Analyses are completed for all subjects at all time points for epigenetics, gene expression, microRNA and 
metabolomics.  

• All cytokine arrays are done, with follow-up and validation ELISAs completed. Writing of those manuscripts 
is underway. 

• Six papers have been accepted for publication, three in Journal of Applied Physiology, one in Experimental 
Physiology, one in Acta Scandinavica and the overview paper at PLOS ONE 

• A seventh paper is under review at NeuroReports.  

• Nitric oxide analyses are done, adenosine and hydrogen sulfide analyses are done. Work has begun on a 
paper on NO and H2S with Drs. Roach, Kevil and Gladwin.  

• Analysis of ADP, ATP and purigenic receptors is complete, writing that manuscript is underway. Another 
paper is in the works as well with Drs. Eltzschig, Blackburn, Xia, and Davis on adenosine in AltitudeOmics.  

• The Lovering laboratory, home of our collaborators on AltitudeOmics, have two papers in preparation on 
AMS and intrapulmonary shunts, and one on gas exchange during AltitudeOmics. 

 

KEY RESEARCH ACCOMPLISHMENTS:   

1. Completed the first ever measurements of acute mountain sickness, cognitive function and exercise capacity after 
7 and 21 days of de-acclimatization. The results suggest near complete retention of acclimatization after 7 days 
de-acclimatization, and about 70% retention after 21 days. This key finding will be used in the OMICS analyses 
to help identify factors that occur with acclimatization, and are still present after de-acclimatization. 

2. Six research papers have been completed and published on the physiology of human acclimatization to high 
altitude, and another is under review. Seven additional primary papers will be completed this year. Please see 
Appendices section for a table showing the “Status of Research Papers” and for a PDF of the published papers.  

 
REPORTABLE OUTCOMES:   

1. Completed all regulatory steps to gain approval for this multi-site, multi-nation study. 

2. Safely completed data collection on 23 young healthy student volunteers, and safely transported and cared for 
them and 40 scientists to/from Bolivia. 

3. We are 100% in analysis and manuscript writing mode regarding all aspects of the study. 
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CONCLUSION:   

Humans retain acclimatization after 7 and 21 days of de-acclimatization. This was a key hypothesis of the study. Yet to be 
determined is what are the OMICS responses that can be linked to the process of gaining acclimatization, and its retention 
on descent to low altitude? 
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Amann M, Goodall S, Twomey R, Subudhi AW, Lovering AT,
Roach RC. AltitudeOmics: on the consequences of high-altitude
acclimatization for the development of fatigue during locomotor
exercise in humans. J Appl Physiol 115: 634–642, 2013. First pub-
lished June 27, 2013; doi:10.1152/japplphysiol.00606.2013.—The de-
velopment of muscle fatigue is oxygen (O2)-delivery sensitive [arte-
rial O2 content (CaO2) � limb blood flow (QL)]. Locomotor exercise
in acute hypoxia (AH) is, compared with sea level (SL), associated
with reduced CaO2 and exaggerated inspiratory muscle work (Winsp),
which impairs QL, both of which exacerbate fatigue individually by
compromising O2 delivery. Since chronic hypoxia (CH) normalizes
CaO2 but exacerbates Winsp, we investigated the consequences of a
14-day exposure to high altitude on exercise-induced locomotor
muscle fatigue. Eight subjects performed the identical constant-load
cycling exercise (138 � 14 W; 11 � 1 min) at SL (partial pressure of
inspired O2, 147.1 � 0.5 Torr), in AH (73.8 � 0.2 Torr), and in CH
(75.7 � 0.1 Torr). Peripheral fatigue was expressed as pre- to
postexercise percent reduction in electrically evoked potentiated
quadriceps twitch force (�Qtw,pot). Central fatigue was expressed as
the exercise-induced percent decrease in voluntary muscle activa-
tion (�VA). Resting CaO2 at SL and CH was similar, but CaO2 in
AH was lower compared with SL and CH (17.3 � 0.5, 19.3 � 0.7,
20.3 � 1.3 ml O2/dl, respectively). Winsp during exercise increased
with acclimatization (SL: 387 � 36, AH: 503 � 53, CH: 608 � 67
cmH2O·s�1·min�1; P � 0.01). Exercise at SL did not induce
central or peripheral fatigue. �Qtw,pot was significant but similar in
AH and CH (21 � 2% and 19 � 3%; P � 0.24). �VA was
significant in both hypoxic conditions but smaller in CH vs. AH
(4 � 1% vs. 8 � 2%; P � 0.05). In conclusion, acclimatization to
severe altitude does not attenuate the substantial impact of hypoxia
on the development of peripheral fatigue. In contrast, acclimatiza-
tion attenuates, but does not eliminate, the exacerbation of central
fatigue associated with exercise in severe AH.

altitude; respiratory muscle work; arterial O2 content; cerebral blood
flow

THE DEVELOPMENT OF LOCOMOTOR muscle fatigue during whole-
body endurance exercise is highly sensitive to the delivery of
oxygen [O2; arterial O2 content (CaO2) � leg blood flow (QL)].
Specifically, blunted O2 delivery exaggerates, and augmented
O2 delivery attenuates the rate of development of locomotor
muscle fatigue during exercise (1).

Acute exposure to hypoxia (AH) has a substantial impact on
the two determinants of leg muscle O2 delivery during stren-
uous locomotor exercise. First, despite a marked hyperventila-
tory response, arterial partial pressure of O2 [PO2 (PaO2)] and
arterial hemoglobin saturation (SaO2) fall below sea level (SL)
values and cause a significant reduction in CaO2. In addition,
inspiratory muscle work (Winsp) is increased substantially at
any given workload in hypoxia (2, 58), and these high levels of
Winsp compromise, in a dose-dependent manner, QL during
exercise (34). Each of these two determinants of leg muscle O2

delivery, namely CaO2 and QL, accounts for, substantially and
independently, the accelerated development of locomotor mus-
cle fatigue in hypoxia (2).

During prolonged exposure to altitude, a progressive, time-
dependent hyperventilation, which increases alveolar PO2, oc-
curs over the initial hours and days and advances more grad-
ually over the ensuing 1–2 wk of acclimatization (56). This
ventilatory acclimatization adds to an accompanying reduction
in the alveolar-arterial O2 gradient, which combined, substan-
tially improves arterial oxygenation during exercise by increas-
ing PaO2 and SaO2 (9, 13). Furthermore, chronic exposure to
hypoxia (CH) is accompanied by erythropoiesis, and the com-
bination of an increased hemoglobin concentration ([Hb]) plus
improved oxygenation may serve to restore resting SL CaO2 (8,
13). In contrast to this beneficial effect on O2 delivery, QL,
during intense leg exercise at a given submaximal absolute
workload, has been suggested to decline from SL to CH (8, 49,
64). The net effect of these acclimatization-induced, opposing
consequences on leg O2 delivery depends on the degree to
which the increase in CaO2 can counterbalance potential re-
ductions in QL. It has been documented previously that at a
given absolute workload, locomotor muscle O2 delivery is
reduced from SL to AH with no further changes following
acclimatization (Pikes Peak, 4,300 m) (8, 64). Therefore, given
the critical role of muscle O2 delivery in the development of
fatigue, it could be argued that peripheral fatigue during
constant-load endurance exercise is exacerbated in AH (vs. SL)
and does not improve further during prolonged acclimatization.
On the other hand, studies conducted at the same location as
the present experiments [Mt. Chacaltaya (Bolivia), 5,260 m]
document a reduction in locomotor muscle O2 delivery from
SL to AH and a full recovery following prolonged exposure,
with the net effect of similar values in SL and CH (13).
Based on these findings, it could be argued that the development
of peripheral fatigue during constant-load endurance exercise is
fastened in AH but recovers to SL values in CH.

Address for reprint requests and other correspondence: M. Amann, VA
Medical Center, GRECC 182, 500 Foothill Dr., Salt Lake City, UT 84148
(e-mail: markus.amann@hsc.utah.edu).
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In this study, we sought to quantify exercise-induced loco-
motor muscle fatigue induced by the identical constant-load
cycling trial performed at SL, in AH, and in CH (following 14
days at 5,260 m) to clarify the effects of acclimatization. We
hypothesized that fatigue is, compared with SL, exacerbated
significantly in AH and that altitude acclimatization would
alleviate this impact.

METHODS

This study was conducted as part of the AltitudeOmics project,
examining the integrative physiology of human responses to hypoxia.
All procedures conformed to the Declaration of Helsinki and were
approved by the Universities of Colorado, Oregon, and Utah Institu-
tional Review Boards and the U.S. Department of Defense Human
Research Protection Program Office. All subjects were born and
raised below 1,500 m and had not traveled to elevations �1,000 m for
3 mo before the experiments. Eight subjects (age 21 � 1 y, body
weight 69 � 11 kg, height 176 � 10 cm) were studied at SL and
following 14 days of altitude acclimatization at 5,260 m on Mt.
Chacaltaya. At high altitude, subjects did not follow a systematic
exercise-training program but were given the opportunity to partici-
pate, on a voluntary basis, in light hikes around the campsite (no
significant change in altitude).

Experimental Protocol

All participants were familiarized thoroughly with various experi-
mental procedures involved in this investigation. The SL experiments
of the present study were conducted �130 m above SL [Eugene, OR;
barometric pressure (BP) 750.0 � 2.2 Torr]. The experiments in AH
were conducted at the same altitude, while breathing a gas mixture
containing 10.5% O2 balance nitrogen, and experiments in CH were
conducted on the 14th day of acclimatization at 5,260 m (BP 408.9 �
0.7 Torr). Two participants were tested every morning. To assure that
all subjects were tested exactly on day 14 after arrival on the
mountain, the groups’ transport to the mountain was staged, i.e.,
two new participants arrived every day. SL peak power output
(Wpeak) was obtained from a maximal incremental exercise test
(70, 100, 130, and 160 W for 3 min, each followed by 15 W/min
increases thereafter) on a computer-controlled bicycle ergometer
(Velotron, Dynafit; RacerMate, Seattle, WA). The experimental
trial consisted of the identical constant-load cycling exercise (same
absolute workload and duration) in each condition. Preliminary
experiments (using different subjects), conducted to identify a
workload that causes voluntary exhaustion between 8 and 12 min
when acutely exposed to 5,260 m, revealed that a constant work-
load equal to 50% of SL Wpeak was required to reach this goal.
Based on this, the workload during the experimental trials was set
to equal 50% (138 � 14 W) of the subjects’ SL Wpeak (275 � 14
W). Since an individual’s endurance/aerobic capacity is lowest in
AH (vs. SL and CH) (13), the first trial was performed to voluntary
exhaustion in AH, and the achieved time (10.6 � 0.7 min) was then
used for all subsequent trials. A 5-min warm-up at 10% Wpeak (27 �
8 W) preceded each trial. Throughout exercise, subjects were in-
structed to maintain their preferred pedal frequency, as determined
during the practice sessions (88 � 3 rpm). Neuromuscular function
was assessed before and within 2.5 min after exercise. During these
procedures, subjects breathed ambient air at SL and in CH and a gas
mixture (10.5% O2) in AH.

Exercise Responses

Pulmonary ventilation (VE) and gas exchange were measured at
rest and throughout exercise using an open circuit system (Ultima
PFX; Medical Graphics, St. Paul, MN, and O2cap; Oxigraf, Mountain
View, CA). Arterial O2 saturation (SpO2) was estimated continuously
at rest and during exercise using a pulse oximeter (Nellcor N-200;

Pleasanton, CA) with adhesive forehead sensors. A correction factor
based on arterial blood gases was used to adjust for the nonlinearity
associated with the obtained pulse oximeter values (error between
60% and 80% saturation: 6%; error between �90% saturation: 3%).
Heart rate was measured from the R–R interval of an ECG, using a
three-lead arrangement. Ratings of perceived exertion were obtained
using Borg’s modified CR10 scale (10). [Hb] was measured (Radi-
ometer OSM-3) in resting arterial blood samples collected at SL and
on the 16th day at 5,260 m. CaO2 was estimated as 1.39 [Hb] �
(SpO2/100). During all constant workload trials, esophageal pressure
(Pes) was measured via a nasopharyngeal balloon (Cooper Surgical,
Trumbull, CT), using standard procedures (7). To estimate Winsp, Pes

was integrated over the period of inspiratory flow, and the results were
multiplied by respiratory frequency (fR) and labeled the inspiratory
muscle pressure-time product. Vastus lateralis oxygenation was as-
sessed using a multichannel near-infrared spectroscopy (NIRS) instru-
ment (Oxymon Mk III; Artinis, Zetten, The Netherlands). As de-
scribed previously (5), a NIR emitter and detector pair was affixed
over the belly of the left vastus lateralis muscle (�15 cm proximal and
5 cm lateral to the midline of the superior border of the patella), using
a spacer with an optode distance of 5.0 cm. Probes were secured to the
skin using double-sided tape and shielded from light using elastic
bandages. The Beer-Lambert Law was used to calculate micrometer
changes in tissue oxygenation [oxyhemoglobin (O2Hb) and deoxyhe-
moglobin (HHb)] across time. using received optical densities from
two continuous wavelengths of NIR light (780 and 850 nm) and a
fixed differential path-length factor of 4.95 (26). Total hemoglobin
(THb) was calculated as the sum of [O2Hb] and [HHb] changes to
give an index of change in regional blood volume (59). Data were
recorded continuously at 10 Hz and expressed relative to the resting
baseline recorded in each experimental condition. Mean cerebral
blood flow (CBF) was estimated from blood velocity (CBFv) in the
left middle cerebral artery (MCA; 50 � 4 mm deep), determined using
a 2-MHz transcranial Doppler (Spencer Technologies, Seattle, WA).
An index of cerebral O2 delivery was calculated as the product of
CBFv and CaO2. Changes in CBFv were assumed to reflect changes
in CBF, based on evidence that the MCA changes minimally in
response to hypoxia and hypocapnia (47, 54). The validity of this
assumption at altitude has been challenged recently (62). Evidence of
MCA dilation was demonstrated in subjects at altitudes above 6,400
m, but no changes in MCA diameter were observed at altitudes
comparable with the present study (�5,300 m) (63). We acknowledge
that these measurements must be interpreted with caution until defin-
itive studies of MCA diameter at altitude are conducted.

Expiratory Flow Limitations and Lung Volume Responses

Expiratory flow limitations. Subjects performed three maximal voli-
tional flow-volume (FV) maneuvers before and after exercise (after
assessment of neuromuscular function). Exercise tidal FV loops (FVLs)
were plotted within the best of the six maximal loops (MFVLs), based on
measured inspiratory capacity (IC) maneuvers (rest, 3 min of exercise,
and immediately before the termination of exercise). Acceptable IC
maneuvers during exercise required that peak inspiratory Pes match that
obtained at rest. The amount of expiratory flow limitation was defined as
the percentage of the tidal volume (VT) that met the boundary of the
expiratory portion of the MFVL (38).

Lung volumes. Functional residual capacity (FRC) was measured in
a body plethysmograph (Platinum Elite Series; Medical Graphics),
and total lung capacity (TLC) was calculated as the sum of FRC and
IC. End-expiratory lung volume (EELV) was determined by subtract-
ing the maximal IC, as measured during exercise from TLC, as
measured at rest. End-inspiratory lung volume (EILV) was calculated
as the sum of EELV and VT. Inspiratory reserve volume, during
exercise, was calculated by subtracting EILV from TLC, and expira-
tory reserve volume, during exercise, was determined by subtracting
the residual volume from EELV.
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Force and Compound Muscle Action Potentials

Knee-extensor force during voluntary and evoked contractions was
measured using a calibrated load cell (Tedea, Basingstoke, UK). The
load cell was fixed to a custom-built chair and connected to a
noncompliant cuff, attached around the participant’s right leg, just
superior to the ankle malleoli. Participants sat upright in the chair with
the hips and knees at 90° of flexion. Compound muscle action
potentials (M-waves) were recorded from surface electrodes placed 2
cm apart over the vastus lateralis muscle belly. A reference electrode
was placed over the patella. Evoked signals were amplified [gain:
1,000; force: custom-built bridge amplifier; electromyographic
(EMG): PowerLab 26T; ADInstruments (Oxfordshire, UK)], band-
pass filtered (EMG only: 20–2,000 Hz), digitized (4 kHz; PowerLab
26T, ADInstruments), acquired, and later analyzed (LabChart v7.0;
ADInstruments) for peak-to-peak amplitude.

Neuromuscular Function

Force and EMG variables were assessed before and immediately
(�2.5 min) after each trial. Before each trial, maximum voluntary
contraction (MVC) force was determined from three control contrac-
tions. Femoral nerve stimulation was delivered during each 5-s MVC,
and an additional stimulus was delivered after the MVC to determine
the potentiated quadriceps twitch force (Qtw,pot) and voluntary muscle
activation (VA) (42). Briefly, the force produced during the superim-
posed twitch (SIT), delivered within 0.5 s of attaining peak force
during the MVC, was to be compared with the force produced by the
single twitch, delivered during relaxation, �2 s after the MVC: VA
(%) � [1 � (SIT/Qtw,pot)] � 100. The contraction sets were repeated
three times, with 30 s between each set. Visual feedback of the target
force was provided via a computer monitor.

Femoral nerve stimulation. Single electrical stimuli (200 	s pulse
width) were delivered to the right femoral nerve via surface electrodes
(32 mm diameter; CF3200; Nidd Valley Medical, North Yorkshire, UK)
and a constant-current stimulator (DS7AH; Digitimer, Welwyn Garden
City, Hertfordshire, UK). The cathode was positioned over the nerve,
high in the femoral triangle; the anode was placed midway between the
greater trochanter and the iliac crest (32). The site of stimulation that
produced the largest resting twitch amplitude and M-wave was located.
Single stimuli were delivered, beginning at 100 mA and increasing by
20 mA, until plateaus occurred in twitch amplitude and M-wave.
Supramaximal stimulation was ensured by increasing the final inten-
sity by 30% (mean current, 250 � 55 mA). Muscle contractility was
assessed for each potentiated twitch as twitch amplitude (Qtw,pot: peak
force � onset force), maximum rate of force development (MRFD),
contraction time, maximum relaxation rate (MRR), and one-half
relaxation time (RT0.5). Sarcolemmal membrane excitability was
inferred from the peak-to-peak amplitude of the electrically evoked
M-wave (27).

Reliability Measures

On a separate day, measures of neuromuscular function were
repeated twice in all subjects at SL. The two assessment procedures
were separated by a 2-min walk around the laboratory, followed by a
5-min rest period. Coefficient of variation (CV) and Pearson product-
moment correlation coefficients (r) were calculated to evaluate test-
retest error (precision) and test-retest reliability of the neuromuscular
function-assessment procedure. All correlations were significant and
indicated; in combination with the CVs, acceptable degrees of repro-
ducibility include: MVC, CV � 3.1%, r � 0.97; Qtw,pot, CV � 4.1%,
r � 0.98; M-wave peak, CV � 4.8%, r � 0.98; VA, CV � 3.3%,
r � 0.77.

Statistical Analysis

A one-way repeated-measures ANOVA was performed to evaluate
differences among trials. A least-significance difference test identified

the means that were significantly different with P � 0.05. Results are
expressed as mean � SE.

RESULTS

CaO2 and Cerebral O2 Delivery

CaO2 at rest was significantly lower in AH compared with SL
and CH (17.3 � 0.5, 19.3 � 0.7, 20.3 � 1.3 ml O2/dl, respec-
tively). Acclimatization to altitude significantly increased [Hb]
and SpO2, resulting in similar CaO2 at SL and in CH (P � 0.16).
Resting CBFv was similar among SL, AH, and CH (50.5 � 3.7,
52.7 � 2.3, and 55.7 � 3.0 cm/s, respectively; P � 0.45). In all
three conditions, CBFv increased significantly from rest to the
final minute of exercise (22 � 3%, 39 � 6%, and 28 � 5% for
SL, AH, and CH, respectively; Table 1). The percent increase
was significantly greater in AH compared with that observed at
SL and in CH. The cerebral O2 delivery index during the last
minute of exercise was 18 � 5% lower in AH vs. SL (Table 1)
and 17 � 8% greater in CH vs. SL (Table 1).

Ventilatory Effects

Ventilatory response. AH increased Winsp work by 34 � 8%
above that at SL (P � 0.01) and dropped SpO2 by 36 � 3%
during the final minute of exercise. Following 14 days of
acclimatization, Winsp was increased further by 23 � 8% from
AH, and SpO2, during the final minute of exercise, was 36 �
5% higher in CH vs. AH. Breathing frequency and VE rose

Table 1. Mean responses to the final minute of exercise
(138 � 14 W, 10.6 � 0.7 min)

Sea Level Acute Hypoxia
Chronic
Hypoxia

HR, beats/min 152 � 5 174 � 4* 166 � 4*†
VE, l min�1 64 � 4 113 � 8* 133 � 10*†
fR, breaths min�1 32 � 2 50 � 3* 54 � 3*
VT, liter 2.0 � 0.1 2.2 � 0.2 2.6 � 0.2*†
V̇O2, l min�1 2.58 � 0.19 2.44 � 0.19* 2.39 � 0.16*†
V̇CO2, l min�1 2.51 � 0.22 2.81 � 0.21* 2.40 � 0.15*†
VE/V̇O2 25 � 1 50 � 4* 56 � 3*†
VE/V̇CO2 26 � 1 41 � 2* 58 � 3*†
SpO2, % 94.1 � 1.0 62.2 � 1.8* 75.6 � 1.2*†
CBFv, cm/s 59.1 � 4.8 74.2 � 3.8* 73.2 � 3.4*
Cerebral O2 delivery, a.u. 1,105 � 62 895 � 40* 1,289 � 42*†
Ti/Ttot 0.35 � 0.01 0.39 � 0.01* 0.39 � 0.01*
Te, s 1.30 � 0.08 0.74 � 0.05* 0.70 � 0.04*
Winsp, cmH2O · s�1 · min�1 387 � 36 503 � 53* 608 � 67*†
IC, liter 3.29 � 0.22 3.13 � 0.23 3.60 � 0.23*
VT/IC 0.60 � 0.03 0.68 � 0.02* 0.72 � 0.02*†
IRV, liter 1.30 � 0.14 0.99 � 0.13* 0.96 � 0.05*
ERV, liter 1.98 � 0.25 2.14 � 0.29 1.67 � 0.25*†
EILV, %TLC 80.5 � 1.6 85.4 � 1.7* 85.2 � 0.9*
EELV, %TLC 51.5 � 1.8 53.8 � 2.5 46.9 � 2.1*†
Expiratory flow limitation, n

out of 8 subjects 0/8 2/8 4/8
RPE 12.3 � 1.0 19.8 � 0.1* 17.9 � 0.6*†
Dyspnea 11.5 � 0.7 19.5 � 0.2* 19.3 � 0.2*

HR, heart rate; VE, minute ventilation; fR, breathing frequency; VT, tidal
volume; V̇O2, maximum oxygen (O2) uptake; V̇CO2, carbon dioxide produc-
tion; SpO2, arterial O2 saturation; CBFv, cerebral blood flow velocity; Ti,
duration of inspiration; Ttot, duration of entire breath; Te, duration of expira-
tion; Winsp, inspiratory muscle work; IC, inspiratory capacity; IRV, inspiratory
reserve volume; ERV, expiratory reserve volume; EILV, end-inspiratory lung
volume; TLC, total lung capacity; EELV, end-expiratory lung volume; RPE,
rating of perceived exertion. *P � 0.05 vs. sea level; †P � 0.05 vs. acute
hypoxia, n � 8.
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substantially over the time of exercise in AH and CH, and VE

was, during the final minute, 79 � 13% and 110 � 12%,
respectively, higher compared with SL (P � 0.01). Pulmonary
VE during the final minute of exercise was 19 � 4% higher in
CH vs. AH (P � 0.01). Compared with SL, O2 uptake, during
the final minute of exercise, was 5 � 2% and 7 � 2% lower in
AH and CH, respectively (both P � 0.05; Fig. 1).

Expiratory flow limitation. At SL, exercise flow rates during
tidal breathing were well within the MFVL in all eight sub-
jects. At end-exercise in AH, 6–51% of the VT in two of the
eight subjects reached flow limitation, as lung volume ap-
proached end-expiration. As VE increased further in CH, ex-
piratory flow rate became more limited, and 10–64% of the VT

in four of the eight subjects met the limit imposed by the
MFVL.

Membrane Excitability and Contractile Function

M-waves. As a measure of membrane excitability we exam-
ined pre- vs. postexercise vastus lateralis M-wave amplitudes
in conjunction with the quadriceps muscle mechanical proper-
ties. Pre-exercise M-wave amplitudes were similar in all three
conditions (10.2 � 1.0 mV, 9.4 � 0.7 mV, and 12.9 � 1.8 mV
for SL, AH, and CH, respectively; P � 0.15). Postexercise
M-wave amplitudes were unchanged from pre-exercise base-
line values at SL and in AH (10.2 � 1.0 mV and 9.6 � 0.9 mV,
respectively; P � 0.3). However, following exercise in CH,
M-wave amplitudes (7.8 � 2.1 mV) were reduced significantly
from pre-exercise baseline levels (range: 1–18%; P � 0.01).

Quadriceps twitch force. Pre-exercise Qtw,pot was similar in
all three conditions (106 � 4 N, 109 � 4 N, and 110 � 5 N for
SL, AH, and CH, respectively; P � 0.18). Exercise in both
hypoxic conditions caused a substantial (P � 0.01) but similar
(P � 0.14) reduction in Qtw,pot in all eight subjects. In contrast,
exercise at SL did not induce measurable locomotor muscle
fatigue; the postexercise Qtw,pot was similar to pre-exercise
baseline.

MVC force. Pre-exercise MVC was similar in all three
conditions (391 � 30 N, 394 � 25 N, and 372 � 30 N for SL,
AH, and CH, respectively; P � 0.21). At SL, postexercise
MVC was similar to pre-exercise baseline (P � 0.42). In

contrast, exercise in AH and CH caused a substantial reduction
in MVC in all eight subjects. However, the exercise-induced
reduction in MVC was 30 � 9% less in CH vs. AH (P � 0.05).

Muscle activation. Pre-exercise baseline values were similar
in all three conditions (94 � 1%, 94 � 1%, and 93 � 1% for
SL, AH, and CH, respectively; P � 0.19). Following the
exercise at SL, muscle activation was unchanged from pre-
exercise baseline (P � 0.88). In both AH and CH, postexercise
muscle activation was significantly lower compared with pre-
exercise baseline values. However, the pre- to postexercise
decrease in muscle activation was 52 � 12% less in CH vs. AH
(P � 0.01).

Within-twitch measurements. MRFD, MRR, and RT0.5 com-
plement the findings reported for Qtw,pot. The pre- to postexercise
changes in within-twitch measurements of MRFD, MRR, and
RT

0.5
were similar in CH vs. AH.

Vastus Lateralis Tissue Oxygenation

O2Hb was unchanged from baseline to warm-up at SL (P �
0.40) but decreased in AH (P � 0.05) and CH (P � 0.05).
Compared with baseline, O2Hb was unchanged during the final
minute of exercise at SL (P � 0.73) but was significantly lower
in AH and CH (both P � 0.01). This decrease was significantly
greater in AH vs. CH. HHb was unchanged from baseline to
warm-up at SL (P � 0.80) but decreased significantly in AH
and CH. Compared with baseline, HHb was unchanged during
the final minute of exercise at SL (P � 0.24) but similarly
increased in AH and CH (both P � 0.01). THb was unchanged
from baseline to warm-up in all three conditions. In contrast,
compared with baseline, THb was increased significantly and
similarly (P � 0.37) during the final minute of exercise in all
three conditions.

DISCUSSION

The purpose of this investigation was to evaluate the effect
of altitude acclimatization on the development of fatigue dur-
ing whole-body endurance exercise. Subjects repeated the
identical constant-load cycling exercise at SL, in AH, and in
CH. No measurable degree of fatigue was found following the
exercise at SL. However, the identical exercise in AH, char-
acterized by a reduced CaO2 and increased Winsp, resulted in a
substantial degree of both peripheral and central fatigue. Two
weeks of exposure to 5,260 m restored CaO2 to SL values but
increased Winsp further over that observed in AH. The critical
finding was that the rate of development of peripheral locomo-
tor muscle fatigue failed to recover from AH to CH and was
similar in both conditions. In contrast, the development of
central fatigue was attenuated significantly in CH (vs. AH) but
still greater compared with SL. Taken together, our findings
suggest that acclimatization to high altitude attenuates the
impact of AH on the development of central fatigue but fails to
improve the exacerbated development of peripheral fatigue
present during exercise in AH.

Peripheral Fatigue

Acute hypoxia. The cycling bout in AH was, compared with
SL, characterized by a substantially exaggerated rate of periph-
eral fatigue (Table 2 and Fig. 2). These observations confirm
numerous earlier findings using whole-body (4, 31, 57) and
single-muscle exercise (28, 39).
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Fig. 1. Inspiratory muscle pressure-time product [esophageal pressure (Pes) �
respiratory frequency (fR)] during the identical constant-load cycling exercise
performed in all 3 conditions. *P � 0.05 vs. acute hypoxia (AH), n � 8.
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Compared with SL, CaO2 was approximately one-third
lower and Winsp, �34% higher during exercise in AH. These
substantial alterations are known to contribute about equally to
the exacerbated development of peripheral fatigue in AH (2).
The impact of an acutely lowered CaO2 on muscle fatigability
is mediated via the facilitating effects of the associated reduc-

tion in muscle O2 delivery on the intramuscular accumulation
of metabolites known to cause peripheral fatigue, i.e., hydro-
gen ion and inorganic phosphate (37, 61). The Winsp-induced
exacerbation of peripheral fatigue results from the same intra-
muscular metabolic consequences associated with reductions
in locomotor muscle O2 delivery. However, in the case of the
Winsp-related impairment in peripheral fatigue, the compro-
mised O2 delivery is the consequence of a sympathetically
mediated impact on QL, secondary to the activation of the
respiratory muscle metaboreflex (34). Taken together, the com-
bined effects of a significantly reduced CaO2 and a higher Winsp

has a profound impact on leg O2 delivery and thus peripheral
locomotor muscle fatigue (1).

Chronic hypoxia. Despite 2 wk of acclimatization to altitude,
the rate of development of peripheral locomotor muscle fatigue
was similar in AH and CH (Table 2 and Fig. 2). Somewhat
conflicting data from earlier investigations suggest different
mechanisms as a potential explanation of this finding. On the
one hand, studies conducted by Reeves and colleagues (8, 64),
following 2–3 wk at 4,300 m, report similar locomotor muscle
O2 delivery during submaximal endurance exercise in AH and
CH. Given the critical dependency of the development of
peripheral fatigue on muscle O2 delivery, this similarity might
explain the nearly identical levels of end-exercise locomotor
muscle fatigue in AH and CH. On the other hand, experiments
conducted at the same location as the present study (Mt.
Chacaltaya, 5,260 m) have documented a significant improve-
ment in leg muscle O2 delivery from AH to CH, with the net

Table 2. Effects of constant-load cycling exercise on
quadriceps muscle function

Percent Change from Pre- to Immediately Postexercise

Sea Level Acute Hypoxia Chronic Hypoxia

Qtw,pot �3.1 � 1.8* �20.9 � 2.4 �18.8 � 3.4
MRFD �4.1 � 2.5* �21.2 � 4.2 �17.9 � 3.5
MRR 2.7 � 2.8* �13.2 � 3.1 �9.0 � 2.2
RT0.5 1.0 � 2.2* 9.2 � 1.3 8.2 � 1.4
MVC �1.3 � 1.2* �12.3 � 1.2 �8.9 � 1.3†
Voluntary muscle activation �0.1 � 1.0* �6.9 � 1.1 �3.7 � 1.2†
M-wave amplitude 0.7 � 2.7* 2.5 � 2.0* �7.8 � 2.1

Changes in muscle function are expressed as a percent change from
pre-exercise baseline. All exercise trials were performed for the same duration
(10.6 � 0.7 min) and at the same absolute workload (138 � 14 W).Values are
expressed as means � SE. Qtw,pot, potentiated single twitch; MRFD, maximal
rate of force development; MRR, maximal rate of relaxation; RT0.5, 1/2
relaxation time; MVC, maximal voluntary contraction force; M-wave, com-
pound muscle action potential. Percent muscle activation is based on super-
imposed twitch technique. Various variables in acute and chronic hypoxia
were, compared with baseline, altered significantly, 2.5 min after exercise
(P � 0.01). *Not significantly different from pre-exercise baseline. †P � 0.05
vs. acute hypoxia, n � 8.
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Fig. 2. Individual data illustrating the effects
of constant-load bike exercise (138 � 14 W;
10.6 � 0.7 min) on potentiated quadriceps
twitch force (Qtw,pot; top) and voluntary mus-
cle activation (VA; bottom) at sea level [SL;
resting arterial oxygen (O2) content: 19.3 �
0.7 ml O2/dl] and in AH (17.3 � 0.5 ml O2/dl)
and chronic hypoxia (CH; 20.3 � 1.3 ml
O2/dl).
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effect of similar values during submaximal bike exercise at SL
and in CH (13). It might be important to emphasize that these
latter experiments involved a greater altitude (5,260 m vs.
4,300 m) and a 9–10 wk acclimatization period vs. only a 2–3
wk period, as in the experiments by Reeves and colleagues (8,
64), as well as the present study. Regardless, based on the
findings from the earlier Chacaltaya experiments, it appears
that the similar degrees of end-exercise fatigue in AH and CH
in the present study (Fig. 2) might have occurred in the face of
a significant difference in bulk muscle O2 delivery, i.e., higher
in CH vs. AH.

QL was not measured directly in the present study. However,
changes in THb, a NIRS-derived variable, are thought to reflect
changes in regional blood volume and potentially QL (24, 59).
The previously documented similarity in resting QL at SL, in
AH, and in CH (11, 12, 36, 49, 50) is a critical prerequisite
when using THb as an estimate of potential differences in QL

and O2 delivery during exercise. Since CaO2 was comparable at
SL and CH (see RESULTS), the same exercise-induced increase
in THb (Fig. 3) suggests a similar degree of O2 delivery in
these conditions. Furthermore, the combination of a lower
CaO2 in AH vs. CH (and SL; see RESULTS) plus the similar
increase in THb during exercise (Fig. 3) insinuates a lower
locomotor muscle O2 delivery in AH vs. CH (and by extension,
SL). Both of these observations might support earlier blood
flow studies conducted at the same location as the present
experiments (13) but might contradict others performed at a
lower altitude (8, 64). However, NIRS findings obtained from
skeletal muscle need to be interpreted with caution. A signif-
icant limitation associated with NIRS is that this measurement
is confined to a finite location, and changes in THb might not
be representative of the whole muscle. Indeed, significant
blood flow heterogeneity has been documented previously in
skeletal muscle (35). Whereas heterogeneity diminishes with
higher exercise intensities and is not affected by hypoxia (36),
the exact location of NIRS probe placement from day to day is
a potential source of error. To minimize this risk, we had strict
criteria regarding probe placement (see METHODS), and at least
two investigators independently assured correct probe position-
ing before each experiment.

Assuming that the similar degrees of peripheral fatigue in
AH vs. CH occurred in the face of a greater O2 delivery in CH,
other, rather disadvantageous adaptations associated with ac-
climatization must have outweighed this benefit. A potential
candidate is the documented impairment in the capacity of
skeletal muscle to extract O2 in CH, i.e., a decreased capillary
muscle O2 conductance (41). This impact might, despite a
similar O2 delivery at SL and in CH, potentially lower extra-
cellular PO2 to or beyond a previously suggested critical value
(�30 Torr) associated with exacerbated development of pe-
ripheral fatigue (55). Alternatively, the higher O2 delivery in
CH vs. AH (13), combined with the same degree of peripheral
fatigue, might suggest that CaO2 and bulk O2 delivery, per se,
might not depict key determinants of the exaggerated fatiga-
bility in hypoxia. Important here is the fact that despite the
normalized CaO2 and bulk O2 delivery in CH, PaO2 only
partially recovers with acclimatization and remains fairly low
in CH. This could hint toward a key role of PaO2 in exacer-
bating the development of peripheral fatigue at altitude.

In CH, VE was �20% higher compared with AH. Given the
substantially lower air density at 5,260 m (0.64 kg/m3 vs. 1.18

kg/m3 at 130 m, where AH experiments occurred), it could be
argued that in terms of respiratory muscle work, the reduced
density might balance the acclimatization-induced increase in
VE, with the net effect of a similar Winsp in CH and AH.
However, Winsp was, similar to VE, �20% higher in CH vs.
AH. This observation, per se, might suggest that the lower air
density at altitude had no effect on the relationship between
minute VE and respiratory muscle work. However, it has been
shown that bronchoconstriction, associated with severe hyp-
oxia, increases the resistive component of respiratory work and
offsets the theoretical benefit of a reduced air density (22). This
results in a similar respiratory muscle work for a given VE at
altitude and at SL (18). Therefore, any increase in Winsp

Fig. 3. Vastus lateralis oxygenation at resting baseline, during the final 30 s of
a 3-min warm-up (28 W), and during the final 30 s of constant-load exercise
(131 W) at SL (A), in AH (B), and in CH (C). †P � 0.05 vs. respective
baseline; *P � 0.05 vs. AH, n � 8. O2Hb, oxyhemoglobin; HHb, deoxyhe-
moglobin; THb, total hemoglobin.
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observed in hypobaric CH is attributable to the exaggerated
ventilatory response associated with altitude acclimatization.

The increase in minute VE in the present study was mainly due
to the increase in VT; fR was similar in both conditions. The higher
VT was achieved via reductions in EELV (Table 1), which is
compared with increasing EILV to raise VT, more economical,
since higher lung volumes are associated with a reduced compli-
ance (38). We therefore conclude that the 23% higher Winsp at the
same workload in CH vs. AH resulted from the substantially
higher VE following acclimatization. Finally, this exaggerated
Winsp likely aggravated the respiratory muscle metaboreflex and
associated impact on leg vascular conductance (25) and presum-
ably blunted exercise QL more in CH compared with AH.

In contrast to our findings, it was suggested previously that
acclimatization to high altitude might eliminate the impact of AH
on the rate of development of fatigue during single muscle
exercise (adductor pollicis) and restore it to that observed at SL
(28). However, submaximal, intermittent exercise, including a
small muscle mass, does not maximally challenge O2 delivery and
use. Therefore, the observed positive effect could, at least in part,
be explained by the use of the available reserve capacity. Specif-
ically, various compensatory mechanisms, including increases in
cardiac output and muscle O2 delivery and extraction, could have
reduced the hypoxia-induced impact on the development of fa-
tigue. Such an effective compensation might not—or only to a
much smaller degree–be possible during intense, whole-body
exercise, performed close to a human’s maximal circulatory and
ventilatory capacity (14, 15).

CH had a significant impact on the effect of exercise on
M-wave amplitude. Reductions in M-wave amplitude have
been associated with decreases in sarcolemma excitability (19).
The attenuated excitability results from reduced sarcolemma
sodium (Na
)-potassium (K
)-ATPase activity (46) and can
contribute to compromised muscle force output (21). Pre-
exercise M-wave amplitudes (and Qtw,pot) in our experiments
were similar in all three conditions. This suggests that neither
severe AH nor CH impairs sarcolemma Na
-K
-ATPase ac-
tivity and membrane excitability of resting locomotor muscle.
This confirms earlier findings (40); however, it contrasts with
others (16) who report decreased resting M-wave amplitudes
following 10 days of exposure to severe hypoxia (�4,300 m).
Regardless, although M-wave amplitudes did not change from
pre- to postexercise at SL and in AH, we observed, in contrast to
Garner et al. (30), a significant exercise-induced decrease in CH
(Table 2). AH has recently been shown to have no effect on
exercise-induced changes in Na
-K
-ATPase activity, which
explains the similar M-wave behavior in SL and AH (51). How-
ever, altitude acclimatization causes a downregulation of Na
-
K
-ATPase pump concentration, and although this does not alter
resting M-wave characteristics, it likely explains the exercise-
induced decrease in M-wave amplitude observed in CH (20, 33).

The lower postexercise M-wave amplitude in CH indicates a
failure of the motor nerve/sarcolemma to propagate evoked stim-
uli to the contractile apparatus and might have masked potential
benefits of acclimatization on fatigue resistance. Put simply,
postexercise twitch forces might have been larger in CH if
M-waves had remained unchanged from pre-exercise. If so, this
would have resulted in a smaller exercise-induced reduction in
Qtw,pot in CH. Regardless, failure of neuromuscular transmission/
sarcolemmal excitability contributes to reduced force output in
response to a given central nervous activation and can therefore be

considered a key determinant of the impaired fatigue resistance
in CH.

Central Fatigue

Exercise in AH induced a substantial degree of central
fatigue, which was attenuated by �50% when the same trial
was repeated in CH (Table 2). This significant improvement,
associated with acclimatization, clearly contrasts with the ab-
sence of a beneficial effect of CH on peripheral fatigue, as
described above. Since the development of central fatigue is
highly sensitive to O2 (1), we attribute this improvement to the
effects of high-altitude acclimatization on O2 availability within
the brain. Specifically, the cerebral O2 delivery index at the end of
exercise in CH was improved from AH (Table 1) (65) and may
explain the lower degree of central fatigue in CH vs. AH.

Despite the similar CBFv and a slightly higher brain O2

delivery in CH vs. SL (Table 1), which agrees with earlier
Chacaltaya studies using the Kety-Schmidt technique to mea-
sure CBF/O2 delivery (44), exercise-induced central fatigue
was greater in CH. Two considerations discussed previously
might account for this observation. First, the significant degree
of peripheral fatigue in CH (vs. no fatigue at SL) presumably
facilitated central fatigue via increases in inhibitory neural
feedback from locomotor muscle (mediated by group III/IV
muscle afferents), which limit central motor drive (3, 6).
Second, although CaO2 and brain O2 delivery were similar/
higher in CH vs. SL, the still substantially lower PaO2 might
have contributed to the greater degree of central fatigue during
exercise in this condition. Indeed, a low PaO2 was recently
suggested to impair cerebral metabolism (48) and alterations in
neurotransmitter turnover (23), and both of these factors have
been linked to the development of central fatigue (17, 53).

Taken together, the current findings provide a global indi-
cation of the positive effects of altitude acclimatization on the
development of central fatigue during exercise. However, we
cannot comment on the specific sites of the central motor
pathway involved or the relative contribution of CaO2 and PaO2

in mediating these beneficial adaptations.

Implications of Findings for Performance-Related Questions
in CH

AH generally impairs endurance exercise performance (60).
Prolonged exposure to hypoxia is known to recover some of
this impairment (29, 52); however, SL performance is never
matched at altitude. Our current findings indicate that the
acclimatization-induced partial recovery of endurance perfor-
mance occurs independent of any improvement of peripheral
locomotor muscle fatigue from AH to CH. This insinuates that
peripheral locomotor muscle fatigability, per se, does not
contribute to the improvement of endurance performance ob-
served from AH to CH. We therefore propose that the signif-
icantly attenuated central fatigue during exercise in severe CH
likely accounts, at least in part, for the improvement of endur-
ance performance associated with altitude acclimatization.

Mechanisms underlying the hypoxia-induced curtailment of
central motor drive (i.e., increase in central fatigue) and en-
durance exercise performance have been documented previ-
ously to differ depending on the severity of arterial hypoxemia.
Specifically, peripheral fatigue might depict the dominant de-
terminant of central motor drive and thus the limiting factor
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above 70–75% SpO2. At more severe degrees of hypoxemia
(�70% SpO2), central motor drive and endurance performance
might primarily—but not exclusively—be determined/limited
by central nervous system (CNS) hypoxia (5). Since peripheral
fatigue did not change with acclimatization in the present study,
but SpO2 increased from below to above the “threshold” described
previously (5), reductions in central fatigue might be mediated
mainly by improved arterial oxygenation and associated smaller
influence of CNS hypoxia on central motor drive.

A recent Point:Counterpoint debate in this journal has fo-
cused on the potential existence/relevance of differences in
physiological responses to exercise performed in normobaric
vs. hypobaric hypoxia (43, 45). Since the present AH and CH
experiments were performed in normobaric and hypobaric
hypoxia, respectively, these potential differences, if indeed
existent, might have influenced our findings.

Conclusion

AH exacerbates central and peripheral fatigue during endur-
ance exercise. Our experiments indicate that acclimatization to
high altitude significantly attenuates the development of central
fatigue but does not improve the development of peripheral
fatigue observed during whole-body endurance exercise in AH.
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Abstract 

Aims: We asked whether acclimatisation to chronic hypoxia (CH) attenuates the level of supraspinal 

fatigue that is observed after locomotor exercise in acute hypoxia (AH).  Methods: Seven 

recreationally-active participants performed identical bouts of constant-load cycling (131±39W, 

10.1±1.4min) on three occasions: 1) in normoxia (N, PIO2, 147.1mmHg); 2) in AH (FIO2, 0.105; PIO2, 

73.8mmHg); 3) after 14 days in CH (5,260m; PIO2, 75.7mmHg).  Throughout trials, prefrontal-cortex 

tissue oxygenation and middle cerebral artery blood velocity (MCAV) were assessed using near-

infrared-spectroscopy and transcranial Doppler sonography.  Pre- and post-exercise twitch 

responses to femoral nerve stimulation and transcranial magnetic stimulation were obtained to 

assess neuromuscular and corticospinal function.  Results: In AH, prefrontal oxygenation declined at 

rest (Δ7±5%) and end-exercise (Δ26±13) (P<0.01); the degree of deoxygenation in AH was greater 

than N and CH (P<0.05).  The cerebral O2 delivery index (MCAv×CaO2) was 19±14% lower during the 

final minute of exercise in AH compared to N (P=0.013) and 20±12% lower compared to CH 

(P=0.040).  Maximum voluntary and potentiated twitch force were decreased below baseline after 

exercise in AH and CH, but not N.  Cortical voluntary activation decreased below baseline after 

exercise in AH (Δ11%, P=0.014), but not CH (Δ6%, P=0.174) or N (Δ4%, P=0.298).  A twofold greater 

increase in motor evoked potential amplitude was evident after exercise in CH compared to AH and 

N.  Conclusion: These data indicate that exacerbated supraspinal fatigue after exercise in AH is 

attenuated after 14 days of acclimatisation to altitude.  The reduced development of supraspinal 

fatigue in CH may have been attributable to increased corticospinal excitability, consequent to an 

increased cerebral O2 delivery. 
 

Key words: adaptation, altitude, exercise, transcranial magnetic stimulation 

 

Glossary 

CaO2, arterial O2 content; CSP, cortical silent period; ERT, estimated resting twitch; FIO2, fraction of 

inspired O2; fR, respiratory frequency; [Hb], haemoglobin concentration;  MCAV, middle cerebral 

artery blood velocity; MEP, motor evoked potential; Mmax, maximum M-wave; MVC, maximum 

voluntary contraction; PaO2, partial pressure of arterial O2; PIO2, partial pressure of inspired O2; 

Qtw,pot, potentiated quadriceps twitch force; rMT, resting motor threshold; SIT, superimposed twitch; 

SpO2, arterial O2 saturation; TMS, transcranial magnetic stimulation; V
.
 CO2, carbon dioxide output; V

.
 E, 

minute ventilation; V
.
 O2, oxygen uptake; VT, tidal volume.  
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Introduction 

The mechanisms underpinning impairments in exercise performance in hypoxia are not fully 

understood, but multiple peripheral and central mechanisms of fatigue have been proposed (Amann 

and Calbet, 2008, Nybo and Rasmussen, 2007, Perrey and Rupp, 2009).  The rate of development of 

peripheral fatigue is increased during intense locomotor exercise in acute hypoxia (Amann et al., 

2006b, Goodall et al., 2012).  This has been documented in numerous human studies as an increased 

decline in the force response to motor nerve stimulation after exercise and an increased rate of rise 

in electromyogram (EMG) signals during exercise (Amann and Calbet, 2008).  Amann et al. (2006a) 

suggested that the accelerated development of peripheral fatigue and associated intramuscular 

metabolic changes in acute moderate hypoxia restricts central motor drive preventing excessive 

end-exercise locomotor muscle fatigue under conditions of attenuated arterial oxygenation.  It was 

subsequently demonstrated that in acute severe hypoxia, peripheral fatigue becomes the less 

important variable and the primary limitation to exercise transfers to a hypoxia-sensitive central 

component of fatigue (Amann et al., 2007).  Less is known about the mechanism(s) of fatigue during 

locomotor exercise in chronic hypoxia.  We recently reported the accelerated development of 

peripheral fatigue after locomotor exercise in acute hypoxia to be similar after a period of 

acclimatisation (14 days) to high altitude; conversely, the level of central fatigue was attenuated 

(Amann et al., 2013).  The measure of central fatigue, however, was determined using peripheral 

stimulation and the responsiveness of the brain-to-muscle pathway after a period of chronic hypoxia 

remains unknown. 

 

Transcranial magnetic stimulation (TMS) has been used to specify the site of fatigue within the 

central nervous system in acute severe hypoxia (Goodall et al., 2012, Goodall et al., 2010).  When 

TMS is delivered over the motor cortex during a maximal voluntary contraction (MVC), it is possible 

to detect a twitch-like increment in force in the active muscle.  That is, despite maximal effort, motor 

cortical output at the time of stimulation is insufficient to drive the motoneurons maximally.  An 

increase in this increment in force after exercise provides evidence of a reduced cortical voluntary 

activation, indicative of supraspinal fatigue (Gandevia et al., 1996, Todd et al., 2003).  Further, EMG 

recordings in response to cortical stimuli (motor evoked potential [MEP]) can be monitored to assess 

changes in excitability of the brain to muscle pathway.  Descending volleys evoked from cortical 

stimulation depend on the stimulus intensity and excitability of corticospinal cells, whereas 

responses in the muscle depend on transmission through relevant excitatory and inhibitory 

interneurons and excitability of the motoneuron pool (Taylor and Gandevia, 2001).  Hypoxia affects 
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neuronal function in-vitro (Nieber et al., 1999), however, acute hypoxia appears to have negligible 

effects on resting MEPs elicited by TMS (Goodall et al., 2010, Rupp et al., 2012, Szubski et al., 2006).  

A MEP evoked during muscular contraction is followed by an interval of EMG silence, the so-called 

cortical silent period (CSP). The initial phase of the CSP has been attributed to inhibitory spinal 

mechanisms (Inghilleri et al., 1993), whereas the later period (>100 ms) represents increased cortical 

inhibition (Chen et al., 1999, Inghilleri et al., 1993, Taylor and Gandevia, 2001).  Szubski et al. (2006)  

found a shorter CSP in acute hypoxia, suggestive of a reduced corticospinal inhibition during the 

exercise.   

 

Responsiveness of the corticospinal pathway and the associated development of central fatigue 

after locomotor exercise during periods of prolonged hypoxia have not been studied.  A recent 

investigation found an increase in corticospinal excitability (increased resting MEP) after a period of 

prolonged acute hypoxia (Rupp et al., 2012); however, the mechanisms for this response and the 

associated effects upon the development of central fatigue during locomotor exercise have not been 

studied.  We have recently related the development of supraspinal fatigue during exercise in severe 

acute hypoxia to a reduction in cerebral O2 availability (Goodall et al., 2012).  Acclimatisation to 

altitude not only brings about improvements in arterial oxygenation, but also improvements in 

cerebrovascular function (Ainslie and Ogoh, 2009, Lucas et al., 2011).  It is unknown how 

haematologic (e.g., hemodynamic and cerebrovascular) adaptations might serve to impact 

corticospinal excitability and the development of supraspinal fatigue during locomotor exercise in 

chronic hypoxia.  Accordingly, the aim of the present study was to assess corticospinal excitability 

and supraspinal fatigue after locomotor exercise in chronic hypoxia.  We hypothesised that altered 

cerebrovascular and corticospinal responses after a period of acclimatisation to high altitude would 

reduce the severity of supraspinal fatigue compared to that observed in acute hypoxia. 

 
 

Methods 

Ethical Approval 

All procedures conformed to the Declaration of Helsinki and were approved by the Universities of 

Colorado Denver, Oregon and Utah Institutional Review Boards and the US Department of Defense 

Human Research Protection Office. 
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Participants 

This study was conducted as part of the AltitudeOmics project examining the integrative physiology 

of human responses to hypoxia (Subudhi et al. under review at PLoSOne).  After written informed 

consent, seven (five male) recreationally active sea level habitants participated in the study (mean ± 

SD age, 21 ± 1 yr; stature, 1.78 ± 0.10 m; body mass, 69 ± 11 kg; maximum O2 uptake [V
.
 O2max  ], 46.4 ± 

8.2 ml·kg–1·min–1 [participant IDs: 1,2,3,5,6,7,10]).  The participants were non-smokers, free from 

cardiorespiratory disease, born and raised at <1500 m, and had not travelled to elevations >1000 m 

in the 3 months prior to investigation.  Participants arrived at the laboratory in a rested and fully 

hydrated state, at least 3 h postprandial, and avoided strenuous exercise in the 48 h preceding each 

trial.  They also refrained from caffeine for 12 h before each test, while alcohol and prophylactic 

altitude medication were prohibited for the entire duration of the investigation.  All of the subjects 

participated in a companion study investigating the acclimatisation-induced effects on peripheral 

measures of neuromuscular fatigue (Amann et al., 2013); while the data were obtained from the 

same protocol described below, the primary TMS and cerebral oxygenation related outcome 

measures in the current study do no overlap with previous analyses.      

 

Experimental design 

Participants completed a preliminary trial and three experimental trials.  Each trial was conducted at 

the same time of day, and separated by at least 5 d during a 12 wk period.  During the preliminary 

trial, participants were thoroughly familiarized with the methods used to assess neuromuscular 

function and performed a maximal incremental exercise test in normoxia for the determination of 

V
.
 O2max and peak workload (Wpeak); further maximal incremental tests were performed in AH and CH 

(Subudhi et al. under review at PLoSOne).  During the experimental trials, participants performed 

constant-load exercise at a workload equal to 50% Wpeak  obtained in the preliminary trial: 1) to the 

limit of tolerance in acute normobaric hypoxia (AH: FIO2 = 0.105; Eugene, Oregon, barometric 

pressure [BP] = 750 ± 2 mmHg; PIO2 = 73.8 ± 0.2 mmHg); 2) for the same absolute intensity and 

duration as in trial 1, but in normoxia (N: Eugene, Oregon, BP = 750 ± 2 mmHg; PIO2 = 147.1 ± 0.5 

mmHg); and 3) for the same absolute intensity and duration as in trial 1, but after 14 d at 5,260 m 

above sea level (CH: Mt. Chacaltaya, Bolivia, BP = 409 ± 1 mmHg; PIO2 = 75.7 ± 0.1 mmHg).  

Participants were flown to La Paz, Bolivia where they spent two nights at low altitude (Coroico, 1,525 

m), before being driven to the Chacaltaya Research Station at 5,260 m.  Before and within 2.5 min 

after each exercise trial, twitch responses to supramaximal femoral nerve stimulation and TMS were 

obtained to assess fatigue.  During AH, the post-exercise measurements were made while 
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participants continued to breathe the hypoxic gas.  Cerebrovascular, cardiorespiratory and 

perceptual responses, as well as EMG activity of the vastus lateralis (VL), were assessed throughout 

each trial.      

 

Force and EMG recordings 

Knee-extensor force during voluntary and evoked contractions was measured using a calibrated load 

cell (Tedea, Basingstoke, UK).  The load cell was fixed to a custom-built chair and connected to a 

non-compliant cuff attached around the participant’s right leg just superior to the right ankle.  

Participants sat upright in the chair with the hips and knees at 90° of flexion.  EMG activity was 

recorded from the VL and biceps femoris (BF).  Surface electrodes were placed 2 cm apart over the 

muscle bellies and a reference electrode was placed over the patella.  The electrodes were used to 

record the compound muscle action potential (M-wave) elicited by electrical stimulation of the 

femoral nerve and the MEP elicited by TMS.  Signals were amplified (gain 1000; Force: custom-built 

bridge amplifier; EMG: PowerLab 26T, ADInstruments Inc, Oxfordshire, UK), band-pass filtered (EMG 

only: 20-2000 Hz), digitised (4 kHz; PowerLab 26T, ADInstruments Inc), acquired and later analysed 

(LabChart v7.0, ADInstruments Inc). 

 

Neuromuscular function 

Force and EMG variables were assessed before and immediately after each exercise trial.  Prior to 

each trial, MVC force was determined from three, 3 s contractions.  Femoral nerve stimulation was 

delivered at rest ∼2 s after the MVC to determine the potentiated quadriceps twitch force (Qtw,pot).  

TMS was delivered during brief (∼5 s) maximal and submaximal voluntary contractions for the 

determination of cortical voluntary activation.  Each set of contractions comprised 100, 75, and 50% 

MVC efforts separated by ∼5 s of rest.  The contraction sets were repeated three times, with 15 s 

between each set.  Visual feedback of the target force was provided via a computer monitor.   

 

Femoral nerve stimulation 

Single electrical stimuli (200 µs) were delivered to the right femoral nerve via surface electrodes 

(CF3200, Nidd Valley Medical Ltd, North Yorkshire, UK) and a constant-current stimulator (DS7AH, 

Digitimer Ltd, Welwyn Garden City, Hertfordshire, UK).  The cathode was positioned over the nerve 

high in the femoral triangle; the anode was placed midway between the greater trochanter and the 

iliac crest.  The site of stimulation that produced the largest resting twitch amplitude and M-wave 

(Mmax) was located.  Single stimuli were delivered beginning at 100 mA and increasing by 20 mA until 
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plateaus occurred in twitch amplitude and Mmax.  Supramaximal stimulation was ensured by 

increasing the final intensity by 30% (mean current 253 ± 60 mA).  

 

Transcranial magnetic stimulation 

TMS was delivered via a concave double cone coil (110 mm diameter; maximum output 1.4 T) 

powered by a mono-pulse magnetic stimulator (Magstim 200, The Magstim Company Ltd, Whitland, 

UK).  The coil was held over the vertex to preferentially stimulate the left hemisphere (postero-

anterior intracranial current flow), and was placed in an optimal position to elicit a large MEP in the 

VL and a small MEP in the antagonist (BF).  The optimal coil position was marked on the scalp with 

indelible ink to ensure reproducibility of the stimulation.  Resting motor threshold (rMT) was 

determined at the beginning of each experimental trial.  Briefly, TMS was first delivered with the coil 

placed over the optimal site of stimulation at a sub-threshold intensity of 35% maximum stimulator 

output.  Stimulus intensity was then increased in 5% steps until consistent motor evoked potentials 

(MEPs) with peak-to-peak amplitudes of more than 50 µV were evoked.  Thereafter, stimulus 

intensity was reduced in 1% steps until an intensity was reached that elicited an MEP of at least 50 

µV in 5 out of 10 trials (Groppa et al., 2012).  The stimulation intensity that elicited rMT was 

increased by 30%; thus, the experimental stimulation intensity was 130% of rMT.  This stimulation 

intensity elicited a large MEP in the VL (area between 60 and 100% of Mmax during knee-extensor 

contractions ≥50% MVC; Figure 1); indicating the TMS stimulus activated a high proportion of knee 

extensor motor units, while causing only a small MEP in the BF (amplitude <20% of MEP during knee-

extensor contractions).     

 

Constant-load exercise 

Participants sat on an electromagnetically-braked cycle ergometer (Velotron Dynafit Pro, Racermate, 

Seattle, WA) while baseline cardiorespiratory and cerebrovascular data were collected for 3 min.  

The participants warmed-up for 5 min at 10% Wpeak (26 ± 8 W) before the workload was increased to 

50% normoxic Wpeak (131 ± 39 W).  This intensity was chosen to maximise the tolerable duration of 

exercise in the hypoxic conditions.  The participants remained seated throughout exercise and 

maintained a target pedal cadence equivalent to that chosen during the incremental exercise test 

(88 ± 3 rpm).  Task-failure was reached when cadence dropped below 60% of the target rpm for >5 s.  

Constant load exercise was performed firstly in AH; the achieved time (10.1 ± 1.4 min) was then 

replicated in N and CH. 
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Tissue oxygenation and cerebrovascular responses 

Cerebral oxygenation was assessed using a multi-channel NIRS instrument (Oxymon III, Artinis) 

(Subudhi et al., 2009, Subudhi et al., 2011).  Changes in oxygenated , deoxygenated  and total 

cerebral haeme concentrations (µM) were expressed relative to the resting baseline recorded in 

each experimental condition.  Arterial oxygen saturation was estimated using forehead pulse 

oximetry (SpO2; Model N-595, Nellcor, Pleasonton, CA).  Excellent agreement between the pulse 

oximeter and arterial O2 saturation across the range of values in the present study has been 

published (Romer et al., 2007).  Hemoglobin concentration [Hb] was measured (OSM-3, Radiometer, 

Copenhagen, Denmark) in resting arterial blood samples.  Samples were collected during the primary 

physiological protocols at sea level (2-4 d prior to the first exercise trial in the present study) and on 

the 16th day at 5,260 m (2 d following the constant load exercise trial in the present study) (Subudhi 

et al. under review at PLoSOne).  Arterial O2 content (CaO2) was estimated using the equation: ([Hb] 

× 1.39 × SpO2 / 100).  Resting [Hb] in combination with the measured SpO2 during the exercise 

protocol were used to obtain Cao2 throughout exercise in all conditions.  Blood velocity in the left 

middle cerebral artery (MCAv) was determined using transcranial Doppler (Spencer Technologies, 

Seattle, WA).  The custom-made NIRS headset was modified to hold a 2 MHz probe positioned over 

the left temporal window.  Measurements were optimised at an average penetration depth of 50 ± 3 

mm.  An index of cerebral O2 delivery was calculated as the product of MCAv and CaO2.  It was 

assumed that changes in MCAV would reflect changes in cerebral blood flow based on evidence that 

the middle cerebral artery diameter changes minimally in response to hypoxia and hypocapnia 

(Poulin and Robbins, 1996). 

 

Cardiorespiratory and perceptual responses 

Ventilatory and pulmonary gas exchange indices were assessed using an online system (in AH & N 

Medical Graphics PFX, St. Paul, MN, USA; & in CH Oxigraf O2cap, Mountain View, CA, USA).  Heart 

rate was identified from the peak MCAv envelopes.  Ratings of perceived exertion for dyspnea and 

limb discomfort were obtained using the CR10 scale at baseline and every minute throughout 

exercise (Borg, 1982).  In CH, symptoms of acute mountain sickness  were assessed on the day of a 

trial using the Lake Louise Score (Roach et al., 1993). 

 

Data analysis 

Cortical voluntary activation was assessed by measuring the force responses to motor-cortex 

stimulation during submaximal and maximal contractions.  Corticospinal excitability increases during 
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voluntary contraction (Rothwell et al., 1991); thus, we estimated the amplitude of the resting twitch 

evoked by TMS (ERT; Goodall et al., 2009, Sidhu et al., 2009a).  Cortical voluntary activation (%) was 

subsequently quantified using the equation: (1 – [SIT / ERT] × 100).   

 

The peak-to-peak amplitude and area of evoked MEPs and Mmax were measured offline.  To ensure 

the motor cortex stimulus activated a high proportion of the knee-extensor motor units, the area of 

vastus lateralis MEP was normalised to that of Mmax elicited during the MVC at the beginning of each 

trial (Taylor et al., 1999) (Figure 1).  The duration of the CSP evoked by TMS during MVC was 

quantified as the duration from stimulation to the continuous resumption of post-stimulus EMG 

exceeding ± 2 SD of pre-stimulus EMG (>50 ms prior to stimulus).  VL EMG signals during exercise 

were rectified and smoothed (15 ms), then quantified as the mean integrated area during each cycle 

revolution and averaged over each minute of exercise.  A computer algorithm identified the onset 

and offset of activity where the rectified EMG signals deviated >2 SD from baseline for >100 ms.     

 

Reliability coefficients 

On a separate day, the responses to TMS, femoral nerve stimulation and MVC were repeated twice 

in all participants.  The two assessment procedures were separated by a 2 min walk followed by 5 

min of rest.  Coefficient of variation (CV) and intraclass correlation coefficient (ICC) were calculated 

to evaluate test-retest reliability.  All correlations were statistically significant and indicated, in 

combination with the CVs, a high level of reproducibility: cortical voluntary activation, CV = 1.4%, ICC 

= 0.82; CSP, CV = 7.1%, ICC = 0.93; ERT, CV = 10.2%, ICC = 0.84; MEP/Mmax, CV = 9.6%, ICC = 0.66; 

Mmax, CV = 11.4%, ICC = 0.98; 100% MVC MEP, CV = 14.1%, ICC = 0.96; 75% MVC MEP, CV = 10.2%, 

ICC = 0.98; 50% MVC MEP, CV = 7.2%, ICC = 0.99; MVC, CV = 4.7%, ICC = 0.94; Qtw,pot, CV = 4.8%, ICC = 

0.97. 

 

Statistical analysis 

Data are presented as means ± SD in the text and means ± SE in the figures.  A 3 × 2 repeated 

measures ANOVA on condition (3 [AH, N, CH]) and time (2 [pre, post]) was used to test for within-

group differences.  When ANOVA revealed significant interactions, post-hoc comparisons were made 

using the least significant differences test.  Statistical significance was set at P < 0.05.  All analyses 

were conducted using SPSS (v19, IBM Corporation, New York, USA). 
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Results 

Exercise responses 

The exercise workload was 131 ± 39 W (50% N Wpeak), which equated to 83% Wpeak in AH and 74% 

Wpeak in CH.  Cerebral oxygenation data are shown in Figure 2.  During N, oxyhaemoglobin was 

unchanged from baseline to warm up and total haemoglobin was increased during the final minute 

of exercise (P = 0.658 and 0.007, respectively).  During AH, deoxygenated haemoglobin increased 

from baseline to warm up (P = 0.006); this response was exaggerated towards end exercise (P < 

0.001).  During CH, deoxygenated haemoglobin increased at end exercise (P = 0.015) in line with 

increased total haemoglobin (P = 0.043).  Overall, these results demonstrate that the degree of 

cerebral deoxygenation (Δ deoxygenated haemoglobin) in AH was greater than that observed in N 

and CH (P < 0.05). 

 

SpO2 and MCAv data are shown in Figure 3.  Acute exposure to hypoxia decreased SpO2 at rest (Δ7 ± 

4%; P = 0.009) and during the final minute of exercise (Δ34 ± 10%; P < 0.001).  Resting SpO2 in CH was 

85 ± 2% (P < 0.001 vs. N; P = 0.330 vs. AH), and in the final minute of exercise had fallen to 78 ± 5% 

(P < 0.001 vs. N; P = 0.002 vs. AH).  No changes in SpO2 were apparent in N (P > 0.702).  Resting MCAv 

did not differ between conditions at baseline (pooled average, 54 ± 9 cm·s−1; P = 0.544).  MCAv did 

not increase from rest at any time point in N (P > 0.108).  MCAv increased from rest to the final 

minute of exercise in AH (40 ± 15%; P < 0.001) and CH (25 ± 14%; P = 0.016), but did not differ 

between conditions (Figure 3).   

 

Hemoglobin concentration was 1.42 ± 0.03 g·L−1 in N and 1.63 ± 0.31 g·L−1 in CH (P = 0.005).  Resting 

PaO2 was reduced in AH compared to N (39.1 ± 4.8 vs. 103.3 ± 8.7 mmHg, P < 0.001), was increased 

in CH relative to AH (58.8 ± 3.2 mmHg, P < 0.001), but was still lower than N (P < 0.001).  CaO2 was 

lower at rest in AH vs. N (19.8 ± 1.9 vs. 21.5 ± 2.9 ml·dl−1; P = 0.013); during the final minute of 

exercise CaO2 in AH was 36 ± 8% lower than N (P < 0.001) and 22 ± 9% lower than in CH (P = 0.001).  

CaO2 was lower at rest in CH vs. N (19.4 ± 2.6 vs. 21.5 ± 2.9 ml·dl−1; P < 0.001) and during the final 

minute of exercise (17.6 ± 2.9 vs. 21.2 ± 2.9 ml·dl−1; P = 0.725).  Consequently, cerebral O2 delivery 

index (MCAv × CaO2) was 19 ± 14% lower during the final minute of exercise in AH compared to N (P = 

0.013) and 20 ± 12% lower compared to CH (P = 0.040).  No differences were evident between N and 

CH at rest (P = 0.783) or during the final minute of exercise (P = 0.797) (Figure 3). 
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Cardiorespiratory data are shown in Table 1.  Respiratory frequency and minute ventilation (V
⋅
E) rose 

substantially over time in all conditions.  V⋅E/ V
⋅
CO2 during the final minute of exercise in AH and CH was 

approximately twofold greater than in N (P < 0.001); V
⋅
E/ V

⋅
CO2 during the final minute of exercise was 

28% higher in CH compared to AH (P < 0.001).  During the final minute of exercise, whole body V
.
 O2 

was not different across the three conditions (P = 0.411).  Dyspnea and limb discomfort at end-

exercise were higher in AH compared to N (P < 0.001 and P = 0.048, respectively), but were not 

different compared to CH (P = 0.714 and 0.549, respectively).  Integrated EMG activity at end 

exercise was higher in AH compared to N (32%; P = 0.029), but not CH (16%; P = 0.303).  There were 

no reported symptoms of acute mountain sickness during CH. 

 

Pre- and post-exercise responses 

Peripheral and central measures of excitability are shown in Table 2. 

  

Neuromuscular responses 

MVC did not differ between conditions at baseline (AH, 392 ± 77 N; N, 386 ± 90 N; CH, 376 ± 39 N; P 

= 0.942).   MVC was reduced post-exercise in AH (339 ± 77 N, P = 0.011) and CH (346 ± 93 N, P = 

0.032), but not N (387 ± 87 N, P = 0.684).  The reductions in MVC were not different between 

conditions (P ≥ 0.119).  Qtw,pot did not differ between conditions at baseline (AH, 107 ± 13 N; N, 105 ± 

12 N; CH, 110 ± 16 N; P = 0.752).  Qtw,pot was  reduced post-exercise in AH (84 ± 14 N, P = 0.005) and 

CH (90 ± 18 N, P = 0.011), but not N (102 ± 12 N, P = 0.692).  On average, resting Mmax in CH 

displayed a twofold increase compared to AH and N (P < 0.019); however, the change in Mmax during 

MVC was not statistically significant (P > 0.058).  Neither measure of Mmax changed pre- to post-

exercise in any condition (P ≥ 0.610).  Pooled across conditions, pre-exercise ERT (mean r2 = 0.95) 

was 70% of the pre-exercise Qtw,pot and did not differ between conditions (mean ERT 75 ± 25 N; P = 

0.811).  Post-exercise ERT was reduced in AH (52 ± 27 N, P = 0.049), but was unchanged in N and CH 

(P ≥ 0.107). 

 

Corticomotor responses 

rMT in AH, N and CH was 54 ± 5, 53 ± 3 and 51 ± 6% maximum stimulator output (P = 0.276), 

respectively.  During CH, resting MEP amplitude was twofold greater compared to AH (P = 0.014) and 

N (P = 0.014).  Exercise elicited a reduction in resting MEP amplitude in CH (P = 0.022), but not AH (P 

= 0.346) or N (P = 0.369).  MEPs evoked during brief knee extensor contractions at 100, 75 and 50% 

MVC pre-exercise were higher in CH compared to AH (P < 0.020) and N (P < 0.030) (see also Figure 
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4).  MEPs evoked during the brief knee-extensor contractions (50-100% MVC) post-exercise were not 

significantly different from pre-exercise values in any condition.  MEP amplitude, however, was 

higher post-exercise during CH compared to AH (50% MVC, P = 0.018; 75% MVC, P = 0.030) and N 

(50% MVC, P = 0.034).  The MEP/Mmax ratio increased for within contraction responses during CH (vs. 

AH 50 and 75% MVC; P ≤ 0.014 and N 50% MVC; P = 0.019) (Table 2).  The CSP did not differ between 

conditions pre-exercise (pooled average, 186 ± 47 ms; P = 0.880) or post-exercise (pooled average, 

185 ± 50 ms; P = 0.760).  Baseline cortical voluntary activation did not differ between conditions (AH, 

93 ± 5%; N, 97 ± 3%; CH, 93 ± 6%; P = 0.310) (Figure 5).  Cortical voluntary activation was reduced 

post-exercise in AH (Δ11%, P = 0.014), but not in N (Δ4%, P = 0.298) or CH (Δ6%, P = 0.174); the 

decrease in AH was greater compared to N (P = 0.022) (Figure 5). 

 

Discussion 

The aim of the present study was to assess corticospinal excitability and supraspinal fatigue after 

locomotor exercise in chronic hypoxia.  The main finding was that exercise-induced supraspinal 

fatigue, as quantified via changes in cortical voluntary activation, was attenuated after two weeks of 

acclimatisation to high altitude whereas it was exacerbated in AH vs. N.  Importantly, the diminished 

level of central fatigue in CH occurred in parallel with improvements in cerebral haemodynamics and 

arterial oxygenation (increased CaO2 and SpO2) brought about by the two weeks at altitude.  

Moreover, the attenuated development of central fatigue occurred in line with a substantial 

increase in corticospinal excitability.  This latter finding suggests that a period of acclimatisation 

modifies the integrity of the corticospinal tract.  We confirm our hypothesis that acclimatisation to 

altitude reduces the level of exercise-induced central fatigue and that this is attributable, at least in 

part, to an increased overall excitability of the brain to muscle pathway. 

 

Supraspinal Fatigue 

A key aim of the present study was to determine the effect of acclimatisation on the development of 

central fatigue assessed after exercise.  We hypothesised that improvements in cerebral oxygenation 

known to occur after a prolonged stay at altitude would bring about positive modifications on the 

development of central fatigue.  We show that the development of supraspinal fatigue during 

locomotor exercise is recovered after 2 weeks at high altitude and similar to that observed in 

normoxia.  Thus, the adaptive processes that take place during acclimatisation to high altitude 

seemingly protect healthy humans against the development of supraspinal fatigue.  
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Corticomotor responses 

The present study found no change in corticospinal excitability (Δ resting MEP) in AH, a finding which 

is in line with literature utilising varying severities of hypoxia (FIO2 = 0.14 – 0.10; resting SpO2 = 93 - 

74%) for as little as 10 min to 1 h (Goodall et al., 2010, Rupp et al., 2012, Millet et al., 2012).  

However, Szubski et al. (2006) reported increased corticospinal excitability, expressed as a reduced 

rMT (not ΔMEP), after ~30 min of breathing hypoxic air (FIO2 = 0.12; resting SpO2 = 75%).  Moreover, 

the present study found a twofold increase in corticospinal excitability after 14 d acclimatisation to 

severe altitude (5,260 m, equivalent to FIO2 0.105; resting SpO2 = 91 ± 2%) with accompanying 

increases in the MEP/Mmax ratio, suggesting that the increases in MEP size were due to adaptive 

mechanisms within spinal and/or supraspinal sites.  Similarly, Rupp et al. (2012) found a 26% 

increase in corticospinal excitability (ΔMEP amplitude) after 3 h of exposure to normobaric hypoxia 

(FIO2 = 0.12; resting SpO2 = 86%), demonstrating a time-dependent, hypoxia-induced modification in 

the brain-to-muscle pathway.  Thus, a prolonged stay at altitude modifies the integrity of the 

corticospinal pathway which may contribute to reduce the level of central fatigue; however, a 

duration-dependent adaptation cannot yet be established with certainty. 

 

TMS over the motor cortex preferentially activates corticospinal neurons trans-synaptically through 

excitatory interneurons and corticocortical axons (Di Lazzaro et al., 1998).  The response to TMS 

critically depends on membrane excitability of motor cortical neurons and ion-channel function 

(Boroojerdi et al., 2001, Rothwell et al., 1991).  In vitro investigations using isolated cerebral neurons 

from rats demonstrate that ion-channel function is affected by O2 availability and that neuronal 

hyper-excitability is the consequence of chronic hypoxia (Donnelly et al., 1992).  A heightened neural 

response is necessary to maintain membrane integrity and ionic homeostasis that occur from a 

period of insufficient metabolic activity (Nieber et al., 1999).  Thus, the twofold increase in MEP 

observed in the present study might be due to facilitated cortical neurons acting to restore the loss 

of neuronal activity associated with a prolonged exposure to altitude.  Additionally, an increased 

level of muscle sympathetic nerve activity (peroneal microneurography) has been reported during a 

prolonged stay at the same altitude as in the present study (Hansen and Sander, 2003).  That study 

showed a significant increase in muscle sympathetic nerve activity just 3 days after exposure to high 

altitude, suggesting that the prolonged stay induced a striking and long-lasting sympathetic over-

activity.  More recently, Buharin et al. (2013) found that a transient increase in sympathetic nerve 

activity (induced via lower body negative pressure) enhances corticospinal excitability as identified 

using TMS.  The mechanism responsible for the increase in corticospinal excitability was postulated 
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to be due to an elevated concentration of noradrenaline, a monoamine that is known to increase 

exponentially during sustained periods at altitudes exceeding 4,000 m (Cunningham et al., 1965, 

Mazzeo et al., 1994).  Thus, the increased corticospinal excitability observed following 2 weeks of 

acclimatisation in the present study might be attributable, at least in part, to a heightened 

sympathetic nerve activity and associated increases in corticospinal excitability as well as hyper-

excitable cerebral neurons.  The increased corticospinal excitability in this investigation occurred in 

line with no symptoms of mountain sickness, a finding that opposes that of Miscio et al. (2009).  

Miscio et al. (2009) found that exposure to high altitude changes cortical excitability by affecting 

both inhibitory and excitatory circuits and that this is reflected in acute mountain sickness 

symptoms.  This conclusion was based on a group of participants who resided at 4,554 m for only 3-5 

days, a time frame in which acute mountain sickness is said to be most prominent (Hackett and 

Roach, 2001) and much shorter than the present study.   

 

Despite substantial differences in end-exercise peripheral fatigue, CSP duration immediately after 

exercise (i.e., pre-to post-exercise change) was similar in all conditions.  This suggests that locomotor 

exercise in N, AH and CH does not influence intracortical inhibition.  These findings are in agreement 

with investigations using locomotor exercise in N and AH (Goodall et al., 2012, Sidhu et al., 2009b).  

However, Oliviero et al. (2002) reported decreased intracortical inhibition and CSP duration in 

chronic hypoxemic patients with COPD.  These changes, mediated by cerebral GABA receptors, were 

reversed after 3-4 months of O2 therapy, demonstrating that the changes were O2 sensitive.  

However, factors other than chronic hypoxaemia might influence intracortical inhibition in patients 

with COPD making it difficult to quantify the influence that chronic hypoxaemia has on cortical 

inhibition. 

 

On balance, we judge the increased corticospinal excitability in CH noted in the present study to be 

the result of adaptations in ion-channel function and elevations in circulating catecholamines serving 

to facilitate neurotransmission rather than mechanisms related to intracortical inhibition (Buharin et 

al., 2013, Nieber et al., 1999, Palange, 1998).   

 

Hematological and cerebrovascular responses 

Upon initial exposure to high altitude, acute hypoxia dilates cerebral arterioles thereby overriding 

the vasoconstrictive effect of hyperventilation-associated hypocapnia (Iwasaki et al., 2011).  During a 

prolonged stay at altitude, hypocapnia further develops and arterial hypoxaemia is ameliorated, as 
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reflected by increases in arterial [Hb], PO2 and O2 saturation (Figure 3).  Furthermore, the increase in 

PaO2 and further decrease in PaCO2 with acclimatisation causes relative vasoconstriction reducing 

CBF down to SL values (Subudhi et al. 2013).  We estimated an index of cerebral O2 delivery using the 

product of MCAv and CaO2.  Our data demonstrate a reduced cerebral O2 delivery index during 

exercise in AH compared to N; however, an improved cerebral O2 delivery index was evident after 

two weeks of acclimatisation (Figure 3).  The data in AH support a relationship between cerebral O2 

delivery and supraspinal fatigue (Goodall et al., 2012).  The calculation of CaO2 during exercise from 

resting [Hb] should be interpreted with caution as a hemoconcentration could have impacted this 

measure.  At sea level, the hemoconcentration accompanying maximal exercise for approximately 

10 min is counterbalanced by the concomitant exercise-induced arterial hypoxemia with the net 

effect of similar CaO2 at rest and during exercise (Amman et al., 2006a).  At altitude, despite 

significant hemoconcentration, CaO2 actually falls from rest to submaximal/maximal exercise by 10-

25% (Calbet et al., 2003).  This would suggest that exercise CaO2 calculations, based on a resting CaO2 

measure, might actually overestimate CaO2 measured during exercise at altitude.  Furthermore, we 

assumed that MCA diameter would remain constant in hypoxia (Poulin and Robbins, 1996, Serrador 

et al., 2000).  While there is evidence of MCA dilatation at rest in hypoxia (Willie et al., 2012, Wilson 

et al., 2011), there is currently no evidence of MCA dilatation during intense exercise accompanied 

with substantial exercise-induced hyperventilation and associated hypocapnia.  We acknowledge, 

however, that our measurements of blood velocity (rather than flow) must be interpreted with 

caution.  

 

We found acclimatisation-induced increases in O2 saturation and content (Figure 3).  Furthermore, 

arterial O2 tension increased from AH to CH (~39 mmHg to ~59 mmHg).  Subudhi et al. (2013) has 

shown resting cerebral O2 delivery to be maintained at levels observed in N during AH and CH, 

although it is presumed that the delivery of O2 to the mitochondria within the parenchyma will be 

reduced because the driving gradient for diffusion from capillary to tissue is the PO2 difference 

between capillary and tissue (Xu and Lamanna, 2006).  The tissue PO2 would be close to zero; thus, 

the driving force is essentially the PaO2.  In the present study the PaO2 increased in line with 

acclimatisation, thereby improving the gradient for diffusion and perhaps restoring brain tissue O2 

tension to pre-hypoxic levels (Dunn et al., 2000).  Thus, we postulate that the lack of central fatigue 

in chronic hypoxia may be related to increases in brain tissue O2 tension.  However, the link between 

increases in PaO2 and CaO2 and the reduction in central fatigue that occurs after a period of 

acclimatisation warrants further investigation. 
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Technical Considerations  

Exercising in a hypobaric environment was not feasible for the trials in AH.  Thus, the two modes of 

hypoxia (normobaric [AH] vs. hypobaric [CH]) differed.  The literature concerning the responses in 

normobaric and hypobaric hypoxia is equivocal and readers are directed elsewhere to a 

point:counterpoint debate (Girard et al., 2012).  Briefly, it was proposed that evidence is growing, 

suggestive that hypobaric hypoxia affects responses (ventilation, fluid balance, acute mountain 

sickness and performance) to a greater extent than normobaric hypoxia (Girard et al., 2012).  

However, this argument was opposed by the fact that in terms of O2 sensing, hypobaric hypoxia does 

not induce different responses compared to normobaric hypoxia (Mounier and Brugniaux, 2012).  

Moreover, it is unknown how any such differences which might exist between hypobaric and 

normobaric hypoxia may affect indices of exercise-induced fatigue.  We set the FIO2 (0.105) at sea 

level to obtain the same PIO2 (~74 mmHg) that was expected at the subsequent altitude in Bolivia 

(5,260 m).   

 

In line with other investigations that have measured exercise-induced fatigue of the knee extensors 

(Goodall et al., 2012, Goodall et al., 2010, Sidhu et al., 2009b, Rossman et al., 2013), measurements 

were made within 2.5 min after exercise termination.  Corticospinal excitability associated with 

maximal single muscle contractions recovers within 1 min post-exercise (Taylor et al., 1999).  Thus, 

the present experimental design, utilising whole body exercise, might not have captured all 

elements of central fatigue.  However, the methods and time to assess fatigue after exercise in all 

three conditions were identical and even though our measurements were made more than 1 min 

post-exercise, significant differences were observed, testifying to the strength of our data.   

 

Conclusion 

The novel finding was that supraspinal fatigue, present after exercise in acute hypoxia, was 

attenuated after a period of acclimatisation to high altitude.  Importantly, the reduced development 

of central fatigue in chronic hypoxia occurred in parallel with an increase in the excitability of the 

brain to muscle pathway consequent to an increased cerebral O2 delivery.  The attenuated rate of 

development of central fatigue in chronic hypoxia might explain, at least in part, the improvements 

in locomotor exercise performance that are commonly observed after acclimatisation to high 

altitude.   
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Figure Legends 

Figure 1.  Mean area of motor evoked potentials (MEP) recorded from the vastus lateralis (VL) in 
response to stimulation over the motor cortex during varying contraction intensities pre- (○) and 
post-exercise (●) (mean for all conditions).  The TMS responses were compared to the area of the 
maximal M-wave (Mmax) evoked by peripheral stimulation of the femoral nerve.  Data are means ± 
SE for 7 participants.   

Figure 2.  Cerebral oxygenation at resting baseline, during the final 30 s of a 3 min warm up (28 W) 
and during the final 30 s of constant-load exercise (131 W) in normoxia (N; panel a), acute hypoxia 
(AH; panel b) and chronic hypoxia (CH; panel c).  Data are means ± SE for 7 participants.  † P < 0.05 
vs. respective baseline; ‡ P < 0.05 vs. respective warm up; * P < 0.05 vs. AH; # P < 0.05 vs. CH.  
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Resting baseline in AH denotes the value after 10 min wash in of the hypoxic gas.  O2Hb, oxygenated 
haemoglobin; HHb, deoxygenated haemoglobin and THb, total haemoglobin. 

Figure 3.  Arterial oxygen saturation (SpO2) (a), cerebral blood flow velocity (MCAv) (b) and middle 
cerebral artery O2 delivery index (MCAv × CaO2) during constant-load exercise (131 W) in normoxia 
(N), acute hypoxia (AH), and chronic hypoxia (CH).  Values are plotted for the duration of the 
shortest trial (8 min) and extrapolated to the group mean exercise time (10.1 min).  Data are means 
± SE for 7 parƟcipants.  † P < 0.05 vs. rest; * P < 0.05 vs. N; # P < 0.05 vs. CH. 

Figure 4.  Representative MEPs evoked during knee extensor contractions at 50% MVC before 
exercise in each condition.  Traces are shown from a representative participant in each condition; 8 
stimuli were delivered from which an average value was obtained.  Note the increase in MEP 
amplitude (corticospinal excitability) after acclimatisation. 

Figure 5.  Cortical voluntary activation measured before (open bars) and immediately after (<2.5 
min; closed bars) constant-load exercise (131 W) in normoxia (N), acute hypoxia (AH), and chronic 
hypoxia (CH).  * P < 0.05 pre- vs. post-exercise. 

 
 
Table 1.  Cardiorespiratory and perceptual responses at rest and during the final minute 
of constant-load cycling (131 W) in normoxia, acute hypoxia and chronic hypoxia. 

 
 

 Normoxia Acute Hypoxia Chronic Hypoxia 
          

HR (beats min–1) Rest     81 ± 7† 90 ± 9       104 ± 16 
Final Min 150 ± 16* 173 ± 14       167 ± 16 

        

V
⋅
E  (l min–1) 

Rest 14.3 ± 2.4 20.0 ± 2.6 24.5 ± 5.4 
Final Min 60.0 ± 9.6*†      108.8 ± 24.7†    128.5 ± 30.0 

    

fR (breaths min–1) 
Rest   15.6 ± 3.6         17.5 ± 4.5 13.0 ± 3.4 

Final Min   31.4 ± 4.9*†         51.6 ± 8.7†   54.8. ± 9.9 
        

VT (l) Rest 1.07 ± 0.37 1.30 ± 0.34 1.47 ± 0.63 
Final Min 2.00 ± 0.45 2.07 ± 0.43      2.41 ± 0.58 

    

V
⋅
O2 (l min–1) 

Rest 0.49 ± 0.10 0.45 ± 0.08     0.45 ± 0.12 
Final Min 2.45 ± 0.51 2.34 ± 0.58      2.07 ± 0.50 

        

V
⋅
CO2 (l min–1) 

Rest 0.44 ± 0.09 0.55 ± 0.09 0.39 ± 0.08 
Final Min 2.32 ± 0.51         2.69 ± 0.62†      1.94 ± 0.50    

    

V
⋅
E / V

⋅
O2 

Rest 30.7 ± 2.7*† 47.4 ± 6.5† 55.9 ± 14.9 
Final Min   25.2 ± 2.4*†        51.2 ± 15.0†  62.9 ± 9.2 

        

V
⋅
E / V

⋅
CO2 

Rest   33.9 ± 2.7†         37.9 ± 6.5† 63.4 ± 6.8 
Final Min    26.2 ± 2.6*†         41.7 ± 6.9†   67.1 ± 9.1 

        

RPE, dyspnoea Rest 7.0 ± 0.0 7.3 ± 0.5 7.1 ± 0.4 
Final Min 11.4 ± 2.4*† 19.4 ± 0.8      19.1 ± 10.7 

    

RPE, limb Rest 7.1 ± 0.4 7.1 ± 0.4 7.0 ± 0.0 
Final Min 12.3 ± 3.3*       19.9 ± 0.4  17.6 ± 11.7 

        

Values are means ± SD for 7 participants.  Resting values were measured during the 5th minute of 
breathing the test gas mixture.  HR, heart rate; V

⋅
E, minute ventilation; fR, respiratory frequency; 

VT, tidal volume; V
⋅
O2, oxygen uptake; V

⋅
CO2, carbon dioxide output; RPE, ratings of perceived 

exertion.  * P < 0.05 vs. acute hypoxia; † P < 0.05 vs. chronic hypoxia.   
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Table 2. Peripheral and central measures of excitability assessed before and after constant-load 
cycling (131 W) in normoxia, acute hypoxia and chronic hypoxia. 

Values are means ± SD for 7 participants.  Mmax, maximal motor response; MEP, motor evoked potential; CSP, 
cortical silent period.  † P < 0.05 vs. chronic hypoxia; # P < 0.05 vs. Pre.    

 

 

 

 

  Normoxia Acute Hypoxia Chronic Hypoxia 
Rest     

Mmax amplitude (mV) 
Pre        6.9 ±  2.0†          8.6 ± 3.7† 14.9 ± 8.3 
Post         6.7 ±  1.7          9.0 ± 4.1 14.0 ± 8.2 

MEP amplitude (mV) 
Pre       0.19 ±  0.12†        0.19 ± 0.11† 0.41 ± 0.28 
Post     0.11 ±  0.06         0.11 ± 0.10 0.21 ± 0.18# 

MEP/Mmax (%) Pre      2.6 ±  1.3 2.7 ± 1.9 4.1 ± 4.2 
Post      1.8 ±  1.2 1.5 ± 1.3 2.6 ± 3.4 

Within contraction        

Mmax amplitude 100% (mV) 
Pre        8.9 ±  1.7           9.9 ± 3.2 13.0 ± 6.1 
Post       9.0 ±  1.9          10.0 ± 3.3 11.9 ± 5.4 

MEP amplitude 100% (mV) Pre       3.8 ±  1.5           3.1 ± 1.0† 7.1 ± 4.7 
Post       4.0 ±  2.7           3.2 ± 1.0 6.5 ± 4.4 

MEP amplitude 75% (mV) Pre       3.9 ±  1.5†           2.9 ± 1.4† 7.6 ± 4.9 
Post       4.3 ±  2.6           3.3 ± 1.2† 6.9 ± 3.9 

MEP amplitude 50% (mV) Pre     2.54 ±  0.87†        2.16 ± 0.52† 6.5 ± 4.8 
Post     2.99 ±  2.01†        2.56 ± 0.95† 6.4 ± 4.5 

MEP/Mmax (%) 100% MVC Pre        35 ±  17           33 ± 14 52 ± 17 
Post       39 ± 20          37 ± 15 52 ± 19

MEP/Mmax (%) 75% MVC 
Pre       40 ±  15           34 ± 19† 58 ± 18 
Post        42 ±  17            38 ± 18† 57 ± 13 

MEP/Mmax (%) 50% MVC 
Pre        28 ±  14†           26 ± 10† 50 ± 21 
Post        30 ±  15†             31 ± 17† 54 ± 23 

CSP (ms) 
Pre      198 ±  58         174 ± 46 186 ± 36 
Post      188 ±  64         171 ± 35 196 ± 51 
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What is the central question of this study? 

Hypoxia associated with ascent to high altitude may threaten cerebral oxygen delivery. 

We sought to determine if there are regional changes in the distribution of cerebral 

blood flow that might favor oxygen delivery to areas associated with basic homeostatic 

functions to promote survival in this extreme environment.  

 
 

What is the main finding and its importance? 

We show evidence of a “brain sparing” effect during acute exposure to high altitude, in 

which there is a slight increase in relative oxygen delivery to the posterior cerebral 

circulation. This may serve to support basic regulatory functions associated with the 

brain stem and hypothalamus.
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Abstract 

Cerebral hypoxemia associated with rapid ascent to high altitude can be life 

threatening; yet, with proper acclimatization, cerebral function can be maintained 

well enough for humans to thrive. METHODS: We investigated adjustments in global 

and regional cerebral oxygen delivery (DO2) as 21 healthy volunteers rapidly 

ascended and acclimatized to 5260m. Ultrasound indices of cerebral blood flow 

(CBF) in internal carotid and vertebral arteries were measured at sea level (SL), 

upon arrival at 5260m (ALT1; Pbar = 409mmHg), and after 16 days of 

acclimatization (ALT16). Cerebral DO2 was calculated as the product of arterial 

oxygen content (CaO2) and flow in each respective artery and summed to estimate 

global CBF. Vascular resistances were calculated as the quotient of mean arterial 

pressure and respective flows. RESULTS: Global CBF increased ~70% upon arrival 

at ALT1 (P<0.001) and returned to SL values at ALT16 as a result of changes in 

cerebral vascular resistance. A reciprocal pattern in CaO2 maintained global cerebral 

DO2 across acclimatization, although DO2 to the posterior cerebral circulation was 

increased by ~25% at ALT1 (P=0.032). CONCLUSIONS: Cerebral DO2 is well 

maintained upon acute exposure and acclimatization to hypoxia, particularly in the 

posterior and inferior regions of the brain associated with vital homeostatic 

functions. This tight regulation of cerebral DO2 was achieved through integrated 

adjustments in local vascular resistances to alter cerebral perfusion during both 

acute and chronic exposure to hypoxia.
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Introduction 

Although the brain represents only about 2% of body weight, it is a highly metabolic 

tissue that receives ~15% of cardiac output and accounts for ~20% of total body 

oxygen consumption at rest (Wade & Bishop, 1962). Maintenance of cerebral 

oxygen delivery (DO2) is essential for vital cerebral functions associated with 

homeostasis. In the face of severe hypoxemia, such as experienced during rapid 

ascent to extreme altitudes (> 8,000 m), reduction in cerebral DO2 results in loss of 

consciousness within seconds (Luft et al., 1951; Luft & Noell, 1956) and death 

within minutes (Bert, 1943). However, with staged acclimatization to progressively 

higher elevations, cerebral DO2 can be maintained well enough for humans to reach 

the summit of Mount Everest (8,848 m) without supplemental oxygen. The 

mechanisms responsible for this remarkable plasticity in cerebral DO2 are complex 

and not completely understood. 

 

Cerebral DO2 is the product of cerebral blood flow (CBF) and arterial oxygen content 

(CaO2). It is well established that CBF rises upon acute exposure to high altitude and 

returns to near sea-level values with acclimatization (Severinghaus et al., 1966; 

Huang et al., 1987; Jensen et al., 1990), while CaO2 decreases in acute hypoxia and 

returns to sea-level values with acclimatization. These opposing CBF and CaO2 

responses to altitude appear to offset one another and maintain cerebral DO2 across 

acclimatization (Severinghaus et al., 1966; Wolff et al., 2002). The pattern of CBF 
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change in response to hypoxia has been attributed to the relative balance of hypoxic 

vasodilation and hypocapnic vasoconstriction in the brain (Xu & Lamanna, 2006; 

Brugniaux et al., 2007).  During acute, severe hypoxia, vasodilation typically exceeds 

vasoconstriction, resulting in greater CBF (Mardimae et al., 2012; Willie et al., 2012). 

With acclimatization, increased ventilatory drive reduces PaCO2 and improves PaO2, 

tipping the balance in favor of vasoconstriction and restoring CBF to pre-exposure 

values. Changes in the PaO2/PaCO2 ratio have been shown to account for ~40% of 

the variation in global CBF over acclimatization (Lucas et al., 2011), with other 

biochemical (e.g. pH, HCO3-, nitric oxide) and hematological (e.g. hemoglobin, 

hematocrit, blood viscosity) factors presumably accounting for the rest of the 

response (Todd et al., 1994; Tomiyama et al., 1999; Severinghaus, 2001) to maintain 

global cerebral DO2. 

 

Recent data demonstrate that acute normobaric hypoxia (i.e. breathing hypoxic gas) 

affects the regional distribution of CBF within the brain. Data from positron 

emission tomography (PET) studies show greater perfusion of the brain stem, 

hypothalamus, thalamus and cerebellum during acute hypoxia, with (Binks et al., 

2008) or without (Buck et al., 1998) controlled levels of PaCO2. Regional differences 

in cerebrovascular reactivity to O2 and CO2 have been postulated to control the 

distribution of CBF. Vascular Doppler studies of the major tributary vessels of the 

brain suggest that a greater percentage of blood flow may be directed towards the 

posterior cerebral circulation, including the brain stem, in response to controlled 

levels of hypoxia and hypocapnia (Sato et al., 2012). From a teleological perspective, 
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this could help preserve vital homeostatic functions at the expense of higher 

cognitive processing; however, it is unclear whether regional distribution of CBF is 

similarly affected in hypobaric hypoxia (i.e. high altitude) or if it changes with 

acclimatization, as not all studies report significant regional differences (Huang et 

al., 1987; Willie et al., 2012; Willie et al., 2013). 

 

Despite the importance of O2 supply for cerebral function, longitudinal studies of 

cerebral DO2 at high altitude are sparse. In a secondary analysis of data from 

Severinghaus et al.’s original study of CBF at high altitude, global cerebral DO2 in 

four subjects appeared stable and in excess of oxygen demand after 6-12 hours and 

3-5 days of exposure to 3,810m (Severinghaus, 2001; Wolff et al., 2002). Using 

similar methodology (Kety-Schmidt technique), no differences were found in global 

cerebral DO2 measured after 5 weeks at 5,260 m and return to sea level (Moller et 

al., 2002).  Unfortunately, these two studies were based on a limited number of 

observations, which makes it difficult to detect small differences if they existed 

(type II error), and utilized methodology that can only measure global cerebral DO2. 

A more recent MRI study with a larger sample size reported a tendency towards 

elevation of cerebral DO2 after subjects returned from 2 days at 3,800 m (Smith et 

al., 2013), but no measurements of regional cerebral DO2 were made. Based the 

limited data to date, it is uncertain if global or regional cerebral DO2 varies over time 

at high altitude.  
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In this study we used vascular Doppler technology in conjunction with arterial 

blood sampling to allow us to quantify global and regional changes in CBF and 

cerebral DO2 in the field as healthy people rapidly ascended and acclimatized to high 

altitude (5,260 m). We tested the hypothesis that upon acute exposure cerebral DO2 

would be maintained to regions of the brain associated with homeostasis at the 

expense of other tissues, but that these changes would normalize with 

acclimatization. 

Methods 

Subject recruitment and screening  

This study was conducted as part of the AltitudeOmics project, for which a detailed 

description of the protocol is published elsewhere (Subudhi et al., In Review). 

Briefly, following institutional ethics approval from the Universities of Colorado and 

Oregon and the US Department of Defense Human Research Protection Office, 

young, healthy sea-level residents were recruited from the greater Eugene, Oregon 

area (elevation 128 m). Potential subjects were screened to exclude anyone who 

was born or had lived at altitudes >1,500 m for more than one year or had traveled 

to altitudes > 1,000 m in the past 3 months. After obtaining written consent, 

physical exams and the Army Physical Fitness Test (push ups, sit ups and 3.2 km 

run) were performed to verify health and fitness status. A
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Study overview 

To evaluate effects of altitude acclimatization on cerebrovascular hemodynamics, 

subjects were studied on 3 occasions: 1) at sea level (SL, 130 m), 2) upon acute 

exposure to 5,260 m (ALT1), and 3) after 16 days of acclimatization (ALT16). 

Specifically, ~4 weeks following SL measurements in Eugene, Oregon, subjects were 

flown to La Paz, Bolivia. They spent two nights at low altitude (Coroico, Bolivia, 

1,525 m) before being driven to the Chacaltaya Research Station at 5,260 m while 

breathing supplemental oxygen. Acute responses to high altitude were assessed 2 to 

4 hours after arrival and cessation of supplemental oxygen (ALT1). Subjects 

acclimatized to altitudes ranging from 3,800 to 5,260 m over the next 15 days, with 

a majority of the time (75%) spent at 5,250 m. Measurements were repeated on 

ALT16.  

Instrumentation 

Subjects were studied in an upright, seated position with feet on the floor. Arterial 

blood pressure (ABP) was monitored via a fluid filled pressure transducer (Utah 

Medical, Salt Lake City, UT, USA) positioned at heart level and attached to a 22-

gauge catheter in a radial artery. Blood flow velocity in the left middle cerebral 

artery was measured by transcranial Doppler (MCAvelocity: 2MHz probe, Spencer 

Technologies, Seattle, WA, USA, affixed to a custom-made headset) at depths ranging 

from 43 to 54 mm. Signal quality was optimized and an M-mode screen shot was 

recorded to facilitate subsequent probe placements. Arterial saturation was 

measured on the right side of the forehead by pulse oximetry (Nellcor N-200, 
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Mansfield, MA, USA). Limb lead electrodes were used to measure ECG 

(ADInstruments BioAmp, Colorado Springs, CO, USA and Sonosite Micromaxx, 

Bothell, WA, USA). Metabolic variables, including expired ventilation and gas 

concentrations were assessed via breath-by-breath (Medgraphics PFX, St. Paul, MN, 

USA and Vacumed UVM, Ventura, CA, USA) and mixing chamber (Oxigraf O2cap, 

Mountain View, CA, USA) systems, calibrated with the same 3-L syringe and known 

concentrations of O2 and CO2 prior to each test. Additionally, core temperature was 

monitored by telemetry pill (CorTemp HQInc., Palmetto, FL, USA) Analog data were 

sampled and recorded at 200Hz (ADinstruments Powerlab 16/30, Colorado Springs, 

CO, USA).  

Cerebral Blood Flow  

After verification of signal quality, resting data were recorded for 10 min while 

subjects breathed room air. At 6 min, 2 ml of arterial blood was drawn anaerobically 

for blood gas analysis (described below). During the last 4 min of the resting period, 

diameter and blood flow velocity in the left internal carotid (ICA: 1.5 cm distal to the 

carotid bifurcation) and vertebral arteries (VA: between spinous processes of C4 

and C5) were recorded over a minimum of 5 cardiac cycles by a registered 

diagnostic sonographer (SonoSite Micromaxx L25 probe, Bothell, WA, USA). Briefly, 

vessel diameter from a longitudinal view was identified and measured with digital 

calipers in synchronization with the ECG tracing to identify systole and diastole.  

Velocity was measured in the center of the vessel with an insonation angle < 60 

degrees and a sample volume maximized for vessel diameter. The peak velocity 

tracing across cardiac cycles was used for calculation of mean velocity (time 
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averaged peak) and volumetric flow.  This procedure was used to verify accurate 

tracing of the spectral envelop during data collection and results in higher values 

than the time averaged mean method (Schoning et al., 1994). All data were 

downloaded in DICOM format for verification of measurements offline (Sante 

DICOM Editor, Athens, Greece).  

Regional blood flow (ml/min) in the ICA and VA (ICAflow and VAflow) was determined 

using standard, validated ultrasound techniques (Hoskins, 2008), where: 

XFlow = π*(diameter in cm/2)2 * time averaged peak velocity in cm/s * 60 s.  

Average coefficients of variation determined from three repeated measurements of 

ICA and VA flow measurements in 7 subjects at SL were 4.0 ± 2.6% and 4.0 ± 2.1%, 

respectively. Global CBF (gCBF) was estimated assuming symmetrical bilateral flow 

in the major tributary arteries of the brain (Ogoh et al., 2013; Willie et al., 2013) as: 

  gCBF = (ICAflow + VAflow)*2.  

Regional and global measurements of CBF were also expressed relative to estimates 

of cardiac output (%Q) derived from simultaneous intra-arterial blood pressure 

tracings (Bogert et al., 2010).  Cerebral vascular resistance index (CVRi) was 

calculated as: 

 CVRi = mean ABP/Xflow 

Cerebral Oxygen Delivery 

Arterial blood was immediately analyzed for PaO2, PaCO2 (Siemens RAPIDLab 248, 

Erlangen, Germany), [Hb], SaO2 (Radiometer OSM3, Copenhagen, Denmark) and Hct 

(M24 Centrifuge, LW Scientific, Lawrenceville, GA, USA). Blood gases were 
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temperature corrected (Kelman & Nunn, 1966; Severinghaus, 1966). CaO2 (vol%) 

was calculated as: 

CaO2 = 1.39 x [Hb] + PaO2 * 0.003 

Regional and global cerebral DO2 were calculated as the products of CaO2 and 

ICAflow, VAflow, and gCBF. 

Data Analysis 

After verification of normality, mixed repeated measures ANOVA’s were used to 

analyze the interaction of time by sex for each variable of interest (α = 0.05). 

Subsequent estimation-maximization and multiple-imputation (5 trials) analyses 

verified negligible effects of missing values (SPSS 20, IBM, Chicago, IL, USA). Paired 

t-tests (without imputation of missing values) were used for post hoc comparisons 

with the Holm procedure to control for Type I error. A priori power calculations (α = 

0.05, β = 0.20) were integrated into the study design to limit Type II error. Pearson 

product moment correlations were used to describe shared variance between 

variables. Data are presented as mean ± SD.   

 

Based on the hypothesis that increased CBF may play a role in the pathogenesis of 

acute mountain sickness [AMS (Jensen et al., 1990; Baumgartner et al., 1994; 

Baumgartner et al., 1999)], a secondary analysis was performed to evaluate 

potential relationships (Spearman correlations) between changes in CBF and DO2 

with the severity of Lake Louise Questionnaire (LLQ) symptoms scores reported in 

these subjects on ALT1 (Subudhi et al. – in review). Paired t-tests were used to 
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evaluate differences in CBF and DO2 between those with severe AMS (LLQ ≥ 6 

including headache) and those remaining healthy.  

Results 

Subject Characteristics 

 Detailed baseline characteristics of the 21 (12 males and 9 females; 21 ± 1 years 

old) subjects participating in AltitudeOmics are presented elsewhere (Subudhi et al., 

In Review). Males exhibited greater [Hb], CaO2 and DO2 than females over the 

course of the study (all P < 0.05), but since no interactions in CBF or DO2 were 

detected across acclimatization, combined data are presented below. 

Cerebral Blood Flow and Oxygen Delivery 

Acute exposure to 5,260 m (Pbar = 408 ± 1 mmHg) decreased PaO2, SaO2 and CaO2 

by 66.1 ± 5.4 mmHg, 22 ± 6%, and 4.1 ± 1.2 ml/dl, respectively (all P<0.001; Table 

1). This severe degree of hypoxia increased heart rate 14 ± 11 bpm (P < 0.001) 

without affecting mean ABP (P=0.380). CBF increased 74 ± 81% in the ICA (P = 

0.018), 59 ± 54% in the VA (P = 0.001), and 69 ± 57% globally (P = 0.003). 

Respective CVRi values fell (all P< 0.001; Table 2), allowing a larger percentage of 

cardiac output to perfuse the brain (P = 0.010). Increased ICAflow was characterized 

by increased ICA velocity (P = 0.004) without a change in diameter (P =0.068), while 

increased VAflow was explained by an increase in VA diameter (P = 0.005) without a 

change in velocity (P=0.120). MCAvelocity was unchanged (P = 0.953). Increased gCBF 

offset the decrease in CaO2 to maintain global cerebral DO2 (Figure 1), although a 
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small increase in VA DO2 was observed (P=0.039, Figure 2). Observed changes in 

measures of regional and global CBF and DO2 were not correlated with LLQ scores 

of AMS (r = -0.07 to -0.23, P = 0.38 to 0.78), nor were they different between those 

reporting severe AMS and those remaining healthy (P = 0.57 to 0.97).  

 

Following acclimatization, a 32 ± 36% rise in ventilation was accompanied by a 5.5 

± 2.7 mmHg decrease in PaCO2 and 9.2 ± 4.1 mmHg increase in PaO2 (ALT1 vs. 

ALT16; all P < 0.001). SaO2 and [Hb] rose 6 ± 5% and 1.8 ± 0.9 g/dL, respectively, 

improving CaO2 by 3.1 ± 1.2 ml/dl (all P < 0.001; Table 1). ABP was unaffected by 

acclimatization (ALT1 vs. ALT16; P=0.211). ICAflow, VAflow and gCBF returned to SL 

values (SL vs. ALT16; P = 0.810, 0.977, 0.620, respectively; Table 2). Respective CVRi 

values increased as both ICA and VA diameters decreased from ALT1 to ALT16 (all P 

< 0.020) and restored the relative distribution of cardiac output back to SL values 

(SL vs. ALT16; P = 0.121). Cerebral DO2 fell from ALT1 to ALT16 (ICA DO2 P = 0.028, 

VA DO2 P = 0.020, global DO2 P = 0.011) as the reductions in CBF outweighed the 

increase in CaO2 (Figure 1); however, neither global nor regional cerebral DO2 

values fell below that measured at SL (all P > 0.420; Figures 1 & 2). 

Discussion 

 This is the first study to assess regional cerebral oxygen delivery in the field over a 

period of acclimatization to high altitude. Our findings confirm that global cerebral 

DO2 was preserved across acclimatization through a changing balance between CBF 

and CaO2, but there was slight increase in relative DO2 to the posterior cerebral 
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circulation during acute exposure. Although changes in CBF and DO2 were not 

associated with the incidence or severity of AMS, regional regulation of CBF may 

serve to support vital homeostatic cerebral functions in hypoxia.  

Preservation of Cerebral Oxygen Delivery  

The increase in CBF upon arrival at high altitude and decrease back to sea level 

values with acclimatization was opposed by changes in CaO2 (Figure 2). These 

responses preserved cerebral DO2 close to sea level values and affirm that 

components of CaO2 (PaO2, SaO2, [Hb]) outweigh the influence PaCO2 in regulating 

CBF in severe hypoxia. Increased CBF upon arrival at high altitude resulted from 

reduced cerebral vascular resistance rather than increased blood pressure (Tables 

1&2). Although reduction in vascular resistance is commonly attributed to dilation 

of pial and parenchymal arterioles in the brain (Fog, 1938), we observed increased 

diameter of larger tributary arteries, supporting a global vascular response to this 

degree of hypoxia (Heistad et al., 1978; Faraci & Heistad, 1990; Willie et al., 2012). 

Mechanisms governing hypoxic vasodilation are complex, involving local (e.g. 

astrocyte regulation, nitric oxide) and diffuse (e.g. central chemoreception, 

autonomic nervous system) mechanisms, but all stem from a reduction in PaO2 

(Severinghaus, 2001; Xu & Lamanna, 2006). When PaO2 is above 60 mmHg, little 

vasodilation is evident (Mardimae et al., 2012; Willie et al., 2012). Below this 

threshold, the degree of vasodilation increases exponentially and outweighs the 

degree of hypocapnic vasoconstriction (Mardimae et al., 2012; Willie et al., 2012) - 

presumably to provide greater blood flow in a time of need. While the correlation 

between changes in gCBF and CaO2 was not significant, the change in CaO2 from SL 
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to ALT1 was similar among all subjects and may not have afforded an appropriate 

range of values to detect the relation that has previously been shown with 

progressive hemodilution (Korosue & Heros, 1992).  Qualitatively, the ~70% 

increase in gCBF was within the expected range during acute hypocapnic hypoxia 

(Severinghaus, 1966; Jensen et al., 1990; Severinghaus, 2001; Brugniaux et al., 2007) 

and proportional to the ~60% reduction in PaO2 that was responsible for the 

reduction in CaO2. This reciprocal relationship, whether evolved or serendipitous, is 

advantageous for survival in these extreme conditions as it mitigates negative 

consequences of cerebral hypoxemia.  

 

Although increased CBF has been suggested to play a role in the pathogenesis of 

AMS (Baumgartner et al., 1994), our results were more similar to those refuting the 

hypothesis (Jensen et al., 1990; Baumgartner et al., 1999). Regional and global CBF 

and DO2 measurements were not correlated with AMS symptoms scores and did not 

differentiate between those with severe AMS and those who remained healthy after 

rapid ascent to high altitude. Nonetheless, our data should be interpreted with 

caution since it is possible that increased CBF contributes to the development of 

AMS when other, yet to be described, factors are present.  

 

Increased PO2 and decreased PCO2 after 16 days at high altitude are hallmarks of 

ventilatory acclimatization that are addressed elsewhere (Fan et al. in review). As a 

result, PaO2-mediated dilation was reduced and PaCO2-mediated vasoconstriction 

was increased, thereby lowering CBF. Assuming a cerebral O2 reactivity of 3% CBF / 
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% SaO2 and a CO2 reactivity of 4% CBF / mmHg CO2 from a previous duplex 

ultrasound study (Willie et al., 2012), we could account for the entire decrease in 

gCBF across acclimatization. Specifically, the 5% increase in SaO2 could be expected 

to reduce CBF by ~15% and the 5.5 mmHg decrease in PaCO2 could be expected to 

reduce CBF by ~22%, thus accounting for the 36% decrease in gCBF we observed 

from ALT1 to ALT16 (Table 2). We acknowledge that increased cerebrovascular CO2 

reactivity with acclimatization in our subjects (Fan et al. in review) may account for 

an even greater proportion of the net effect on CBF at ALT16. Also, the relative 

influence of other hematological factors, such as increased hematocrit and blood 

viscosity (Sorensen et al., 1974; Todd et al., 1994; Tomiyama et al., 1999) from 

erythropoiesis and plasma volume contraction, may have contributed to the 

reduction of CBF across acclimatization (data to be presented elsewhere). Yet our 

data suggest that the inherent vascular reactivities to O2 and CO2 are sufficient to 

maintain tight control over cerebral DO2 in hypoxia. Consistent delivery of oxygen 

may help offset the decreased PO2 gradient (plasma to mitochondria) and support 

the cerebral metabolic demand for oxygen at this altitude (Severinghaus et al., 1966; 

Moller et al., 2002) to preserve cerebral function. Together, our data demonstrate 

that integrated mechanisms controlling cerebral blood flow are well suited to 

preserve global cerebral oxygen delivery at 5,260 m.  

Regional Cerebral Oxygen Delivery 

We observed a small increase in DO2 through the posterior cerebral circulation 

upon arrival at high altitude (Table 2) that dissipated with acclimatization. The 

acute increase in DO2 was characterized by an increase in VA diameter and supports 
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recent findings of greater VA (vs. ICA) vasoreactivity during acute hypoxia (Willie et 

al., 2012; Ogoh et al., 2013). Of note, Ogoh et al. (Ogoh et al., 2013), showed that 

acute hypoxia (~15 min) increased VA, but not ICA, blood flow. Since the areas 

perfused by the VA include the brainstem, and posterior aspects of the thalamus and 

hypothalamus, increased blood flow and DO2 to these regions during acute hypoxia 

(Buck et al., 1998; Binks et al., 2008) may be seen as necessary to maintain vital 

homeostatic functions (Sheldon et al., 1979; Bilger & Nehlig, 1993). Since increased 

cardiorespiratory drive with acclimatization was not associated with a continued 

elevation of VA DO2, we speculate that the increased VA DO2 during acute hypoxia 

was protective, to defend against a potential threat in oxygen supply, rather than to 

merely support neuronal metabolic activity associated with heightened autonomic 

activity (i.e. neurovascular coupling). Although such hypothetical explanations for 

regional differences in the regulation of CBF and DO2 are intriguing, our results must 

be interpreted with caution since measured differences were small and are not 

consistently reported in the literature (Huang et al., 1987; Willie et al., 2013). Future 

studies with more focal measurements of DO2 (e.g. PET and MRI) and neuronal 

activity in key regulatory regions of the brain, as well as measurements of 

neurovascular coupling (as an index of neuronal plasticity) during acute and 

prolonged hypoxia are needed to yield further insight into this question. 

Brain Sparing 

Reduced cerebral vascular resistance associated with vasodilation upon arrival at 

altitude can explain the proportional increase in CBF and greater allocation of 

cardiac output. This effect could be magnified if there is net constriction in other 
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vascular beds at rest. Previous studies have shown that superior mesenteric and 

renal artery blood flow decrease in acute hypoxia and could allow for greater 

perfusion of the brain (Greene & Roach, 2004). With acclimatization, cerebral 

vascular resistance and blood flow returned to sea-level values. These results are 

similar to fetal ‘brain sparing’ effects (Campbell et al., 1967; Peeters et al., 1979; 

Sheldon et al., 1979) that are presumed to preserve vital homeostasis during 

hypoxia in utero (Pearce, 2006; Salihagic-Kadic et al., 2006). Similar effects have 

also been shown in newborn dogs (Cavazzuti & Duffy, 1982), piglets (Goplerud et al., 

1989), and premature infants (Daven et al., 1983). The largest response to hypoxia 

tends to occur in the brainstem during the early postnatal period and decreases 

with age (Bilger & Nehlig, 1993). We are the first to demonstrate that such a ‘brain 

sparing’ reaction exists in healthy human adults exposed to acute hypoxia and 

recedes with acclimatization. Preferential distribution of cardiac output to the brain 

upon acute altitude exposure may represent a conserved mechanism that protects 

against hypoxic brain damage in mammals, particularly in regions associated with 

basic cardiovascular and respiratory control during periods of acute hypoxia. 

Measurements of regional cerebral metabolism are needed to determine if ‘brain 

sparing’ effectively matches DO2, or if the increase in CBF represents a protective 

form of overcompensation. 

Limitations 

Our rapid ascent profile in combination with supplemental oxygen during transport 

from low to high altitude was designed to induce an abrupt change in PaO2, similar 

to that which can be achieved in laboratory studies with hypoxic gas or hypobaric 
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chambers. As such, our results must be interpreted in this context and thus may be 

expected to be different from other field studies that have followed more traditional 

progressive ascents (Huang et al., 1987; Jensen et al., 1990; Baumgartner et al., 

1994; Willie et al., 2013).  

 

We used duplex sonography primarily because it is a non-invasive technique that 

can be utilized in field settings. This technique yields volumetric measurements, in 

terms of ml/min, which, based on first principles, can be multiplied by CaO2 to yield 

DO2. Our low CVs were in line with a previous study showing similarity between 

duplex sonography and both PET and xenon inhalation methods of measuring gCBF 

(Schoning & Scheel, 1996). Nevertheless, we acknowledge that all these techniques 

are limited by the lack of an absolute standard for validating CBF. Our gCBF 

measurements were based on unilateral, left-sided measurements of the ICA and VA 

– the main arteries perfusing the brain. While left VA flow has been reported to be 

~20% higher than the right (Schoning et al., 1994), this was not expected to have an 

effect on global measurements since ICA flow represents the majority of gCBF 

(Schoning & Scheel, 1996). Yet, unilateral VA measurements may have influenced 

our finding of increased VA DO2. Future studies are needed to determine if ‘brain 

sparing’ effects are attenuated when independent measurements of left and right VA 

flow are summed.  

 

Since the ICA feeds the MCA, we expected that changes in ICA flow would be 

reflected in MCAvelocity.  This was not the case: ICA flow increased ~70% while 
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MCAvelocity was unchanged throughout the study. A similar discrepancy between ICA 

flow and MCAvelocity has been previously described by Willie et al. (Willie et al., 2012) 

and argued to support dilation of the MCA in hypoxia (Wilson et al., 2011).  We 

calculated that a 12% increase in MCA diameter could explain the measured 

discrepancy between ICAflow and MCAvelocity. This exact degree of vasodilation has 

recently been demonstrated at high altitude with a color-coded ultrasound 

technique (Willie et al., 2013), yet because additional studies are needed to clarify 

artery-specific responses to hypoxia and validate MCA-diameter measurement 

techniques, we chose to refrain from further interpretation of MCAvelocity.  

Summary & Implications 

Overall, our findings highlight the integrative nature of responses that preserve 

oxygen delivery to the brain at high altitude. Regional cerebral vasoreactivity to O2 

and CO2 may favor oxygen delivery to posterior and inferior regions of the brain 

during acute hypoxia to sustain vital cerebral functions associated with 

homeostasis. Whether these mechanisms evolved to promote survival in conditions 

provoking cerebral hypoxia is not clear at present, but further research in this area 

may yield important insights into human tolerance and adaptation to chronic states 

of hypoxemia. 
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Table 1. Cardiopulmonary and hematological values [mean ±SD (n)]  

     

Variable   SL ALT1 ALT16 

     
VE l/min 12.05 ± 2.50 (21) 11.93 ± 2.92 (17) 14.88 ± 2.65 (21)*# 
PaO2 mmHg 102.2 ± 5.5 (21) 36.1 ± 2.8 (18)* 45.3 ± 3.2 (20)*# 
PaCO2 mmHg 38.1  ±  4.4 (21) 26.5 ± 3.1 (18)* 20.9 ± 2.5 (20)*# 

SaO2 % 98 ± 1 (21) 76 ± 6 (18)* 82 ± 3 (20)*# 
[Hb] g/dl 13.9 ± 1.4 (21) 14.2 ± 1.5 (18)* 16.0  ±  2.0 (20)*# 
CaO2 ml/dl 19.4 ± 1.9 (21) 15.2 ± 2.1 (18)* 18.4 ± 2.4 (20)*# 
     
HR bpm 76 ± 12(21) 90 ± 16 (16)* 96 ± 13 (20)* 
SV ml 91 ± 27 (21) 85 ± 20 (16) 83 ± 21 (20) 
Mean ABP mmHg 79 ± 8 (21) 76 ± 13 (16) 80 ± 10 (20) 

          

* Different from SL    
# Different from 
ALT1    
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Table 2. Cerebrovascular values [mean± SD (n)]   

     

Variable   SL ALT1 ALT16 

     
ICA Dia cm 0.51 ± 0.08 (21) 0.54 ±  0.07 (16) 0.50 ± 0.07 (20)# 
ICA Vel cm/s 29.8 ± 8.2 (21) 38.9 ± 8.1 (16)* 32.1 ± 5.4 (20)# 
ICA Flow ml/min 384 ± 197 (21) 556 ± 203 (16)* 379 ± 97(20)# 
ICA CVRi mmHg/ml/min 0.25 ± 0.12 (21) 0.16 ± 0.09 (16)* 0.23 ± 0.07 (19)# 
     
VA Dia cm 0.36 ± 0.06 (20) 0.41 ± 0.06 (16)* 0.36 ± 0.06 (19)# 

VA Vel cm/s 21.4 ± 4.4 (20) 24.4 ± 6.4 (16) 19.3 ± 7.1 (19)# 
VA Flow ml/min 133 ± 47 (20) 206 ± 98 (16)* 122 ± 55 (19)# 
VA CVRi mmHg/ml/min 0.66 ± 0.24 (20) 0.46 ± 0.28 (16)* 0.84 ± 0.58 (19)# 
     
gCBF ml/min 1057 ± 413 (20) 1524 ± 456 (16)* 981 ± 223 (19)# 
gCBF CVRi mmHg/ml/min 0.09 ± 0.03 (20) 0.05 ± 0.02 (16)* 0.08 ± 0.02 (19)# 
     
DO2 ICA ml/min 75 ± 37 (21) 84 ± 32 (16) 68 ± 19 (19)# 
DO2 VA ml/min 26 ± 10 (20) 31 ± 16 (16)* 22 ± 11 (19)# 
DO2 gCBF ml/min 206 ± 79 (20) 230 ± 74 (16) 181 ± 51 (19)# 
     

MCAv cm/s 59.5 ± 10.3 (21) 61.1 ± 13.3 (17) 57.7 ± 7.1 (21) 
MCA CVRi mmHg/cm/s 1.36 ± 0.25 (21) 1.28 ±  0.32 (17) 1.41 ± 0.24 (20) 
     
ICA %Q % 5.4 ± 2.7 (21) 7.6 ± 2.7 (15)* 4.8 ± 1.4 (18)# 
VA %Q % 1.9 ± 0.8 (20) 2.6 ± 1.1 (15)* 1.5 ± 0.7 (18)# 
gCBF %Q % 15.0 ± 5.8 (20) 20.4 ± 6.2 (15)* 12.6 ± 3.4 (18)# 

          

* Different from SL    
# Different from ALT1    
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Figure 1. Reciprocal changes in global cerebral blood flow (gCBF) and arterial 
oxygen content (CaO2) maintained global cerebral oxygen delivery (DO2) across the 
study. * Different from sea level (SL). # Different from arrival at altitude (ALT1). 
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Figure 2. Regional oxygen delivery (DO2) increases in the vertebral artery (VA), but 
not internal carotid artery (ICA) at ALT1. Regional DO2 is reduced with 
acclimatization, but not below sea level (SL) values. * Different from SL. # Different 
from arrival at altitude (ALT1). 
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 2

Abstract 25 
The present study is the first to examine the effect of high altitude acclimatisation and re-26 
exposure on the responses of cerebral blood flow and ventilation to CO2. We also compared the 27 
steady-state estimates of these parameters during acclimatisation with the modified rebreathing 28 
method. We assessed changes in steady state responses of middle cerebral artery velocity 29 
(MCAv), cerebrovascular conductance index (CVCi) and ventilation (Vሶ E) to varied levels of CO2 in 30 
21 lowlanders (9 females; 21 ± 1 years), at sea-level (SL), during initial exposure to 5,260m (ALT1), 31 
after 16 days of acclimatisation (ALT16) and upon re-exposure to altitude following either 7 32 
(POST7) or 21 days (POST21) at low altitude (1,525m). In the non-acclimatised state (ALT1), MCAv 33 
and Vሶ E responses to CO2 were elevated compared to SL (by 79±75% and 14.8±12.3 L/min, 34 
respectively, P=0.004 & P=0.011). Acclimatisation at ALT16 further elevated both MCAv and Vሶ E 35 
responses to CO2 compared to ALT1 (by 89±70% and 48.3±32.0 L/min, respectively, P<0.001). The 36 
acclimatisation gained for Vሶ E responses to CO2 at ALT16 was retained by 38% upon re-exposure to 37 
altitude at POST7 (P=0.004 vs. ALT1), while no retention was observed for the MCAv responses 38 
(P>0.05). We found good agreement between steady-state and modified rebreathing estimates of 39 
MCAv and Vሶ E responses to CO2 across all three time points (P<0.001, pooled data). Regardless of 40 
the method of assessment, altitude acclimatisation elevates both the cerebrovascular and 41 
ventilatory responsiveness to CO2. Our data further demonstrates that this enhanced ventilatory 42 
CO2 response is partly retained after 7 days at low altitude. 43 
 44 



 3

Introduction 45 
The ability to maintain adequate oxygen transport to the brain by cerebral blood flow 46 

(CBF) in hypoxic environments is vital. The CBF responsiveness to CO2, termed cerebrovascular 47 
CO2 reactivity, provides a useful, non-invasive index of cerebrovascular function (3, 19). To date, 48 
only a handful of studies have investigated the effect of acclimatisation to high altitude on 49 
cerebrovascular CO2 reactivity (1, 16, 17, 24, 30, 49). The interpretation of findings from these 50 
studies is difficult due to the timing of measurements at high altitude (1, 16, 17, 24, 25), the 51 
confounding effects of previous high-altitude exposure (1), artificial normobaric hypoxia (28, 46), 52 
and the method used to assess reactivity (24, 30, 49). Data from Fan et al., (16, 17), obtained on 53 
subjects at different stages of altitude acclimatisation, suggest that cerebrovascular CO2 reactivity 54 
is elevated with prolonged exposure to high altitude when using a modified rebreathing 55 
technique. In contrast, Lucas et al., (30) reported a reduced cerebrovascular CO2 reactivity in the 56 
same subjects that at the end of a 14 day stay at 5,050 m, when assessed with a steady-state 57 
technique (poikilocapnic hypoxia). More recently, Rupp et al., (49) reported a reduced 58 
cerebrovascular CO2 reactivity during steady-state hypoxic hypercapnia following 5 days at 4,350 59 
m. Thus, the effect of altitude acclimatisation on cerebrovascular CO2 reactivity remains unclear.  60 

In addition, it is unknown if and for how long changes in cerebrovascular CO2 reactivity 61 
from acclimatisation persist after descent. Repetitive seven-month exposures to high altitude 62 
were reported to improve arterial O2 saturation (SaO2), lower resting heart rate (HR) and decrease 63 
susceptibility to acute mountain sickness (AMS) upon subsequent re-exposures (59). Remarkably, 64 
these prior-exposure adaptations persisted despite a five-month deacclimatisation period. The 65 
specific effect of high altitude re-exposure on cerebrovascular and ventilatory responsiveness to 66 
CO2 has yet to be examined.  67 

Changes in cerebrovascular CO2 reactivity with high-altitude acclimatisation depend on the 68 
method of assessment. At sea level, the steady-state method results in higher cerebrovascular CO2 69 
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reactivity (40-42) and lower ventilatory CO2 sensitivity (6, 18, 23, 55) compared to the modified 70 
rebreathing test. These differences have been attributed to the presence of a PCO2 gradient 71 
(between alveolar, arterial, and cerebrospinal fluid compartments) during the steady-state 72 
method, which is supposedly abolished or minimised during rebreathing (6). Meanwhile, elevated 73 
basal Vሶ E and subsequent underestimation of the ventilatory CO2 sensitivity has been proposed as 74 
one possible explanation for lower steady-state estimates (34). No studies have directly compared 75 
the steady-state and modified rebreathing test estimates of cerebrovascular and ventilatory CO2 76 
responsiveness following ascent or acclimatisation to high altitude.  77 

The purpose of the present study was therefore two-fold: first, we wished to assess the 78 
effect of altitude exposure on cerebrovascular and ventilatory responsiveness to CO2 in acute 79 
conditions, after acclimatisation and upon re-exposure to high altitude after a period spent at low 80 
altitude; second, we wished to compare the steady-state and modified rebreathing methods for 81 
assessing the ventilatory and cerebrovascular responsiveness to CO2 at high altitude. 82 
 83 
 84 
Methods 85 
Subject recruitment and screening 86 

This study was conducted as part of the AltitudeOmics project. Following institutional 87 
ethics approval, young (19-23 years old), healthy, sea level residents were recruited from the 88 
greater Eugene, Oregon area (elevation 130 m). Potential subjects were screened to exclude 89 
anyone who was born or had lived at altitudes >1500 m for more than one year or had travelled to 90 
altitudes >1000 m in the past 3 months. A detailed description of subject recruitment procedures, 91 
including inclusion and exclusion criteria have been presented elsewhere (54). 92 
 93 
Ethical approval 94 



 5

 The study was performed according to the Declaration of Helsinki and was approved by the 95 
Institutional Review Boards of the Universities of Colorado and Oregon and by the Human 96 
Research Protection Office of the U.S. Department of Defense. All participants were informed 97 
regarding the procedures of this study, and written informed consent was given prior to 98 
participation.  99 
 100 
Experimental Design 101 

After familiarisation with the experimental procedures outlined below (visit one), the 102 
subjects underwent experimental trials near sea level (SL: 130 m, barometric pressure: 749 103 
mmHg) and three times at high altitude (5,260 m, Mt Chacaltaya, Bolivia; barometric pressure 406 104 
mmHg); on the 1st and 16th days at high altitude (ALT1 and ALT16) and again after either 7 (POST7; 105 
n=14) or 21 (POST21; n=7) days at low altitude (1,525 m, barometric pressure: 639 mmHg). An 106 
overview of the entire experimental design and protocol has been described in detail elsewhere 107 
(54).  108 
 109 
Experimental protocol  110 

For each subject, all ALT measurements were carried out around the same time of day to 111 
minimise any confounding effect of circadian rhythm. Measurements were taken upon arrival at 112 
ALT1 to minimise the influence of AMS. Likewise, no symptoms of AMS were observed at ALT16 or 113 
POST7. 114 

For this study, following 10-15 min of quiet rest in a seated position, each experimental 115 
testing session comprised of: a) instrumentation; b) 10 min room air baseline; and c) 116 
cerebrovascular CO2 reactivity tests. The cerebrovascular CO2 reactivity tests consisted of: i) 10 117 
min with end-tidal PCO2 (PETCO2) clamped at 40 mmHg; ii) 3 min voluntary hyperventilation to 118 
lower PETCO2 to ~20 mmHg; iii) the modified rebreathing test (details below); and iv) 3 min with 119 
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PETCO2 clamped at 50 mmHg. The entire cerebrovascular CO2 reactivity protocol was carried out 120 
in background of hyperoxia (end-tidal PO2 [PETO2] > 250 mmHg). 121 
 122 
Experimental setup 123 

Throughout the protocol, the subjects sat upright and breathed through a mouthpiece 124 
attached to a two-way non-rebreathing valve (Hans-Rudolph 2700, Hans-Rudolph Inc., Shawnee, 125 
KS, USA). The breathing circuit allowed switching from room air to either an end-tidal clamping 126 
system or a rebreathing system. The end-tidal clamping setup used in the present study is a 127 
modified version of the system previously described by Olin et al., (39). The setup allowed 128 
stabilising PETCO2 at 40 and 50 mmHg. Throughout the end-tidal PCO2 clamping, we maintained 129 
PETO2 at >250 mmHg by titrating 50% or 100% O2 into the inspiratory reservoir at SL and ALT, 130 
respectively.  131 
 132 
Modified rebreathing method 133 
  The modified rebreathing method is a well-established method for assessing both 134 
ventilatory and cerebrovascular CO2 reactivities (14, 16, 34, 41). By using hyperoxia (PETO2 > 250 135 
mmHg) the test minimises peripheral chemoreceptors’ output (11, 21) and the ventilatory 136 
response to the modified rebreathing method can thus be interpreted as the ventilatory CO2 137 
sensitivity primarily from the central chemoreflex. The details of the modified rebreathing method 138 
have been previously described in Fan et al., (16, 17). The rebreathing bag was filled with gas to 139 
achieve inspired PCO2 and PO2 of 0 mmHg and 300 mmHg, respectively, at each altitude. Subjects 140 
were instructed to hyperventilate for 3 min (part ii) to lower and then maintain PETCO2 at 20 141 
mmHg at both sea level and 5,260 m (in background PETO2 > 250 mmHg). Subjects were then 142 
switched to the rebreathing bag, and following two initial deep breaths to mix the gas from the 143 
bag with that in the respiratory system, they were instructed to breathe ad libitum (part iii). The 144 
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rebreathing tests were terminated when PETCO2 reached 50 mmHg, PETO2 dropped below 200 145 
mmHg or the subject reached the end of his/her hypercapnic tolerance.  146 
 147 
Measurements 148 

Cerebrovascular variables: Middle cerebral artery velocity (MCAv, an index of cerebral 149 
blood flow) was measured in the left middle cerebral artery using a 2-MHz pulsed Doppler 150 
ultrasound system (ST3, Spencer technology, Seattle, WA, USA). The Doppler ultrasound probe 151 
was positioned over the left temporal window and held in place with an adjustable plastic 152 
headband (Marc 600 Headframe, Spencer technology, Seattle, WA, USA). The signal was acquired 153 
at depths ranging from 43 to 54 mm. Signal quality was optimised and an M-mode screen shot 154 
was recorded to facilitate subsequent probe placements. Peripheral saturation was measured on 155 
the right side of the forehead by pulse oximetry (N-200, Nellcor Inc., Hayward, CA, USA). 156 

Cardiovascular variables: Beat-to-beat mean arterial blood pressure (MAP) was measured 157 
from an arterial catheter inserted in a radial artery, and connected to a calibrated, fluid-filled, 158 
disposable pressure transducer positioned at the level of the heart (DELTRAN II, Utah Medical, Salt 159 
Lake City, UT, USA). Heart rate (HR) was determined with a three-lead ECG (ADInstruments 160 
BioAmp & Micromaxx, SonoSite Inc., Bothell, WA, USA). Cerebrovascular conductance index (CVCi) 161 
was calculated using the equation CVCi = MCAv/MAP and normalised to values obtained at a 162 
PETCO2 of 20 mmHg and expressed as percentage change. 163 
  Respiratory variables: Vሶ E was measured using a pneumotachograph (Universal Ventilation 164 
Meter, Vacu•Med, Ventura, CA, USA; Ultima™ series, Medgraphics CPX, Minneapolis, MN, USA) 165 
and expressed in units adjusted to BTPS. PETO2 and PETCO2 were measured using fast responding 166 
gas analysers (O2Cap Oxygen analyser, Oxigraf, Mountain View, CA, USA). The pneumotachograph 167 
was calibrated using a 3-L syringe (Han-Rudolph 5530, Kansas City, KS, USA) and the gas analysers 168 



 8

were calibrated using gas mixtures of known concentrations of O2 and CO2 prior to each testing 169 
session.  170 

Arterial blood gas variables: A 20-22 gauge arterial catheter was placed into a radial artery 171 
and blood samples (2 mL) were taken over approximately 5 cardiac cycle periods. Core body 172 
temperature was telemetrically recorded from an ingestion pill (CorTemp, HQInc, Palmetto, FL, 173 
USA). All samples were analysed immediately for arterial pH, PO2 (PaO2), PCO2 (PaCO2) (Rapidlab™ 174 
248, Siemens Healthcare Diagnostics Inc., Henkestrasse, Germany), haemoglobin concentration 175 
([Hb]) and O2 saturation (SaO2) (Radiometer OSM3, Radiometer Medical ApS, Copenhagen, 176 
Denmark). The blood gas values were analysed in triplicate and temperature corrected (26, 53). 177 
Arterial bicarbonate concentration ([HCO3

-]) was subsequently calculated using the Henderson-178 
Hasselbalch equation. 179 
 180 
Data acquisition 181 

All analog data were sampled and recorded at 200Hz on a PC for off-line analysis 182 
(ADInstruments Powerlab 16/30, Bella Vista, Australia). 183 
 184 
Data analysis 185 
Steady-state responses 186 
  Since the subjects could not tolerate PETCO2 clamping at 50 mmHg at ALT16, the steady-187 
state MCAv-CO2, MAP-CO2 and CVCi-CO2 slopes were estimated from the difference in mean 188 
MCAv, MAP and CVCi at the end of 20 and 40 mmHg PETCO2 clamp (20 sec averages), plotted 189 
against the change in PaCO2 between these two conditions across all time points (SL, ALT1, ALT16, 190 
POST7 and POST21). The absolute value of Vሶ E at clamp 40 mmHg was used as an estimate of 191 
steady-state Vሶ E responsiveness to CO2, since voluntary hyperventilation was necessary to reduce 192 
PETCO2 to 20 mmHg. 193 
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 194 
Modified rebreathing 195 
  The rebreathing data were first reduced to one-second averages across the entire 196 
rebreathing period. The Vሶ E-CO2 slopes were analysed using a specially-designed programme 197 
(Analyse Vሶ E Rebreathing programme rev11, University of Toronto, Toronto, Canada), as previously 198 
described (15, 16, 34). The MCAv-CO2 slopes were analysed using a commercially available 199 
graphing programme (Prism 5.0d, GraphPad Software Inc., San Diego, CA, USA), whereby 200 
segmental linear regression (least squares fit) was used to estimate the MCAv-CO2 slope during 201 
the modified rebreathing. For comparison, we plotted the MCAv-CO2 slopes using a sigmoid curve 202 
as described by Battisti-Charbonney et al., (4), using the Prism programme. To minimise the sum 203 
of squares for non-linear regression (Levenberg-Marquardt algorithm) we used the equation: 204 
    MCAv = a + (b/(1 + exp(-(PETCO2 – c)/d))) 205 
Where MCAv is the dependent variable in cm/s, PETCO2 is the independent variable in mmHg, a is 206 
the minimum MCAv determined from the mean MCAv of the hypocapnic (hyperventilation) 207 
region, b is the maximum MCAv value, c is the mid-point value of MCAv, and d is the range of the 208 
linear portion of the sigmoid (inverse reflection of the slope of the linear portion).  209 

We found good agreement in the MCAv-CO2 slope obtained from these two models 210 
(R2=0.71). However, due to the range of PETCO2 used in this study, segmental linear regression 211 
generally provided better fit across all conditions, whereas the sigmoidal curve model was the 212 
preferred model for only 12 out of 58 trials. As such, only the MCAv-CO2 slopes obtained using the 213 
segmental linear model are presented.  214 
 215 
Statistical analysis 216 
 Due to logistics impacts on planning and transportation, not all subjects were able to 217 
participate in all high-altitude studies, please see the Figures and Table for complete sample size 218 
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reporting for each procedure. Most data are reported as the improvement over the time of 219 
acclimatization (change from ALT1 to ALT16) and as the amount of that improvement that was 220 
retained after time at low altitude, calculated as % retention  = (POST7 or POST21 – ALT1)/(ALT16 221 
– ALT1)*100 (5). The effects of altitude acclimatisation and re-exposure (between SL, ALT1, ALT16, 222 
POST7 and POST21) on the steady-state MCAv-CO2 slope, CVCi-CO2 slopes and Vሶ E at 40 mmHg, 223 
were analysed using mixed model linear regression (IBM® SPSS® Statistics version 21, IBM® 224 
Corporation, Armonk, NY, USA). To assess the effects of altitude acclimatisation (between SL, ALT1 225 
and ALT16) on the rebreathing estimates of MCAv-CO2 and Vሶ E-CO2 slopes, we used mixed model 226 
linear regression analysis (Diagonal repeated covariance assumed). The interactions between 227 
variables of interest were assessed using correlational (Pearson) analysis (IBM® SPSS®, Statistics 228 
version 21). Data are shown as mean ± SD. Results were considered significant at the alpha level 229 
<0.05. Trends were consider at the alpha <0.10 level. A priori power calculations (α = 0.05, β = 230 
0.20) were used to determine sample size and limit Type II error. 231 
 232 
 233 
Results 234 

Detailed baseline characteristics of the 21 (9 females; 21 ± 1 years old) subjects 235 
participating in AltitudeOmics are presented elsewhere (54). All 21 subjects completed the 236 
protocol at SL. Due to logistical issues, 4 of 21 subjects were unable to complete the entire 237 
experimental protocol at ALT1. Upon re-exposure to altitude, 14 of 14 subjects completed the 238 
protocol at POST7 and 5 of 7 at POST21. Due to low n, no comparison was carried out between 239 
ALT1 and POST21 240 
 241 
Resting variables  242 
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The resting variables across acclimatisation and re-exposure have already been reported in 243 
detail elsewhere (54) and will not be reproduced in this paper.  244 
 245 
Steady-state method (Table 1) 246 

Acclimatisation: Compared to SL, the steady-state MCAv-CO2 slope was elevated at ALT1 247 
(by 79 ± 70%, P<0.001), and was further elevated at ALT16 (by 89 ± 70% vs. ALT1, P=0.001). 248 
Similarly, the steady-state MAP-CO2 slope was elevated at ALT1 (by 256 ± 265%, P=0.013) and 249 
further elevated at ALT16 (by 164 ± 1370% vs. ALT1, P<0.001). The steady-state CVCi-CO2 slope 250 
was elevated at ALT1 (by 82 ± 79%, P<0.001), and remained higher at ALT16 (by 93 ± 81%, P<0.001 251 
vs. SL, no difference with ALT1). Vሶ E at 40 mmHg was elevated at ALT1 compared to SL (by 14.8 ± 252 
12.3 L/min, P=0.011), and further elevated at ALT16 (by 48.3 ± 32.0 L/min vs. ALT1, P<0.001).  253 
Re-exposure: Upon re-exposure to altitude, it appears that the acclimatisation gained in the 254 
steady-state MCAv-CO2 slope was not retained at POST7 (P=0.145 vs. ALT1). Compared to ALT16, 255 
the steady-state MCAv-CO2 slope was lowered at both POST7 and POST21 (P=0.029 & P=0.003, 256 
respectively), but nevertheless remained higher compared to SL (P<0.001 & P=0.024, 257 
respectively). Similarly, 49% of the acclimatisation gained in the MAP-CO2 slope was retained at 258 
POST7. Specifically, the MAP-CO2 slope remained higher at POST7 compared to ALT1 (P=0.005). 259 
When compared to ALT16, the MAP-CO2 slope was lowered at both POST7 and POST21 (P<0.001 260 
for both). Nevertheless, MAP-CO2 slope were higher at POST7 and POST21 compared to SL 261 
(P<0.001 & P=0.020, respectively). In contrast, no difference was observed in the CVCi-CO2 slope 262 
at POST7 when compared to ALT1 or ALT16 (P=0.980 & P=0.804, respectively), but it remained 263 
higher compared to SL (P<0.001). Likewise, CVCi-CO2 slope tended to remain higher at POST21 264 
compared to SL (P=0.058), but was not different from ALT16 (P=0.715).  265 

Upon re-exposure, the effect of acclimatisation on the Vሶ E at 40 mmHg was retained by 266 
38% at POST7 (P=0.004 vs. ALT1). Compared to ALT16, Vሶ E at 40 mmHg was lower at POST7 and 267 
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POST21 (P=0.001 & P<0.001, respectively), but these values remained higher when compared to 268 
SL (P<0.001 & P=0.001, respectively). 269 
 270 
Modified rebreathing method (Table 1) 271 

Similar to the steady-state method, the rebreathing MCAv-CO2 slope was elevated at ALT1 272 
(by 137 ± 117%, P<0.001), and further elevated at ALT16 (by 35 ± 33% vs. ALT1, P=0.040). The 273 
rebreathing Vሶ E-CO2 slope was elevated at ALT1 compared to SL (by 1.61 ± 1.14 L/min/mmHg, 274 
P=0.038), and further elevated at ALT16 (by 2.86 ± 2.61 L/min/mmHg vs. ALT1, P=0.004). The 275 
ventilatory recruitment threshold was lowered at ALT1 (by 4.4 ± 4.0 mmHg, P<0.001 vs. SL) and 276 
further lowered at ALT16 (by 4.4 ± 3.2 mmHg vs. ALT1, P<0.001).  277 
 278 
Acid-base buffering capacity correlations (Figure 2) 279 

Based on previous findings (16), we performed correlations between the pooled steady-280 
state data with [HCO3

-] and found resting [HCO3
-] correlated with steady-state MCAv-CO2 slope 281 

(R=-0.771) and Vሶ E at 40 mmHg (R=-0.723, P<0.001 for both).  282 
 283 
Steady-state vs. modified rebreathing (Figure 3) 284 

We observed correlations between the steady-state and rebreathing MCAv-CO2 slope at SL 285 
(R=0.609, P=0.003), ALT1 (R=0.817, P<0.001) and ALT16 (R=0.596, P=0.007), while the pooled 286 
MCAv-CO2 slopes (combined SL, ALT1 and ALT16) between the two methods also correlated well 287 
(R=0.860, P<0.001). Likewise, there were significant correlations between Vሶ E at 40 mmHg and the 288 
rebreathing Vሶ E-CO2 slope at SL (R=0.476, P=0.029), ALT1 (R=0.506, P=0.038) and ALT16 (R=0.927, 289 
P<0.001), while the pooled ventilatory data across all time points were also correlated (R=0.904, 290 
P<0.001).  291 
 292 
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 293 
Discussion 294 

The present study is the first to assess the effect of altitude acclimatisation and re-295 
exposure on cerebrovascular CO2 reactivity using both the steady-state and modified rebreathing 296 
methods. We demonstrate that cerebrovascular CO2 reactivity was elevated immediately upon 297 
arrival to 5,260m and is further elevated following 16 days acclimatisation, regardless of the 298 
method of assessment. In addition, we found that cerebrovascular and ventilatory responsiveness 299 
to CO2 remains elevated upon re-exposure to altitude, despite 7 or 21 days at low altitude. Since 300 
these changes in cerebrovascular and ventilatory responsiveness to CO2 correlated with the 301 
changes in resting arterial [HCO3

-] across all time points, we speculate that these changes might be 302 
partly due to an altered pH buffering capacity associated to exposure high altitude. Our data thus 303 
demonstrate that the changes in cerebrovascular and ventilatory control gained due to altitude 304 
acclimatisation over a period of 16 days are partially preserved upon subsequent exposure to 305 
altitude, at least for up to a period of 3 weeks spent at low altitude.  306 
 307 
Effects of acclimatisation on cerebrovascular CO2 reactivity 308 

Our findings extend those from Fan et al., (16, 17) by demonstrating that the MCAv-CO2 309 
slope is elevated upon arrival at 5,260 m and further elevated following 16 days of acclimatisation 310 
(Fig. 1A). Importantly, previous studies by Fan et al., (16, 17) assessed MCAv-CO2 slope in subjects 311 
whom spent 8 days ascending to 5,050 m, while the subjects in the present study ascended rapidly 312 
to altitude (•3 hours), thus making direct comparison difficult. Our findings contradict those of 313 
Lucas et al., (30), who found that the MCAv-CO2 slope was initially elevated at 5,050 m, but had 314 
returned towards sea level values following two weeks at 5,050 m. However, because PETO2 was 315 
not controlled, the MCAv-CO2 slopes reported by Lucas et al., (30) reflect MCAv changes from 316 
hypoxic hypocapnia (room air breathing at 5,050 m; PETO2 •48 mmHg & PETCO2 26-22 mmHg) to 317 
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hypercapnic hyperoxia (PETO2 > 310 mmHg & PETCO2 •30 mmHg), and thus do not represent 318 
isolated reactivity to CO2. Rupp et al., (49) recently found the MCAv response to steady-state 319 
hypoxic hypercapnia (PETO2 = 55 mmHg) to be reduced following 5 days at 4,350 m. Therefore, 320 
discrepancies between findings Rupp et al., (49) and those of the present study can be attributed 321 
the differences in PETO2 (55 mmHg vs. >200 mmHg), altitude (4,350 m vs. 5,260 m), and the 322 
acclimatisation state of the subjects (5 days vs. 16 days). The results from the present study 323 
demonstrate, for the first time, that cerebrovascular CO2 reactivity per se is enhanced with 324 
acclimatisation to high altitude when studied using a background level of hyperoxia. Furthermore, 325 
discrepancy between studies highlights how methodological differences can yield vastly different 326 
results. Thus future studies are warranted to clarify the effect of hypoxic and hyperoxic 327 
background on assessing cerebrovascular functions at both sea-level and following ascent to high 328 
altitude. 329 
 330 
Altered acid-base buffering capacity? 331 

During altitude acclimatisation, there is a progressive and parallel reduction in arterial and 332 
cerebrospinal fluid (CSF) bicarbonate concentration which serves to compensate for the changes 333 
in pH associated with hyperventilation-induced hypocapnia (12, 13, 20). These changes in acid-334 
base buffering capacity, in both the arterial and CSF compartments, would lead to a greater rise in 335 
arterial and CSF [H+] for a given rise in PaCO2. In support of this notion, lowering CSF bicarbonate 336 
concentration elevates the cerebrovascular CO2 reactivity in an anaesthetised dog model (27), 337 
while bicarbonate infusion increases cerebral perfusion pressure in post-traumatic head injury 338 
patients (9), elevates cerebral blood volume in preterm infants (57), and lowers ventilation in 339 
healthy exercising humans at sea-level (44). As such, it has been suggested that the MCAv 340 
responses to CO2 at high altitude are linked to changes in arterial acid-base balance (16, 25). In the 341 
present study, we observed concomitant increases in cerebrovascular and ventilatory 342 
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responsiveness to CO2 with acclimatisation to high altitude and re-exposure (Fig. 1), which 343 
occurred in parallel to the changes in [HCO3

-] (Fig. 2). While it should be acknowledged that such 344 
correlations do not imply causality, the possible role for acid-base status changes on 345 
cerebrovascular and ventilatory responsiveness to CO2 at high altitude remains to be further 346 
studied.  347 
 348 
Interaction between cerebrovascular and ventilatory responsiveness to CO2 349 

Interaction between cerebrovascular CO2 reactivity and the central chemoreceptor 350 
activation was first alluded to by Heyman et al., (22) and has been subsequently expanded upon 351 
by others (10, 16-18, 38, 43, 60-62). It was postulated that changes in cerebrovascular CO2 352 
reactivity affect the stability of ventilatory response to CO2 by modulating the degree of H+ 353 
washout at the level of the central chemoreceptor (38). Accordingly, a blunted cerebrovascular 354 
CO2 reactivity would lead to less central H+ washout and subsequently greater central 355 
chemoreceptor activation. Conversely, an enhanced cerebrovascular CO2 reactivity would result in 356 
lower central [H+] and therefore lower ventilatory CO2 sensitivity. In agreement with previous 357 
altitude studies (16, 17), we observed concomitant increases cerebrovascular and ventilatory 358 
responsiveness to CO2 (Fig. 1). These findings seem to contradict the modulating role of 359 
cerebrovascular CO2 reactivity on central chemoreceptor activation, possibly due to other 360 
overriding factors such as enhanced central chemosensitivity and changes in acid-base balance 361 
associated with ascent to high altitude. Future work is necessary to further unravel the interaction 362 
between the regulation of cerebral blood flow and ventilation. 363 
 364 
Going back up 365 

Despite the large body of literature regarding high altitude acclimatisation over the past 366 
century, the effect of prior exposure on physiological parameters during subsequent exposures is 367 
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not well documented. Most attention focused on the effect of a recent altitude exposure on the 368 
risk for AMS (7, 31, 45, 51), or the rate of ascent (56). However, the dose of previous altitude 369 
exposure and acclimatisation were generally not controlled in these studies. Wu et al., (59) found 370 
a progressive reduction in the incidence of AMS, lower HR and higher SpO2 in lowland railroad 371 
workers over the course of several seven-month exposures to high altitude interspersed with 5 372 
months spent at low altitude. Similarly, MacNutt et al., (32) found faster rate of ascent, lower AMS 373 
and higher SpO2 in trekkers with a recent altitude exposure compared to altitude naive trekkers, 374 
despite a 7-30 day de-acclimatisation period. In the present study, we compared the 375 
cerebrovascular and ventilatory responsiveness to CO2 with acclimatisation and upon re-exposure 376 
to 5,260 m following a period of either 7 or 21 days at low altitude. We found that 38% of the gain 377 
in ventilatory response to CO2 over acclimatisation was retained at POST7 (Fig. 1C), while 378 
essentially none of the gain in MCAv-CO2 reactivity over acclimatisation was retained at POST7 379 
(Fig. 1A). Regardless of the underpinning mechanism(s), our findings suggest that the effect of 380 
previous altitude acclimatisation over 16 days on ventilatory response to CO2 is partially retained 381 
after 7 days at low altitude, while it is reversed in the cerebrovascular response to CO2. Our data 382 
extends those by Muza et al., (36) which showed that ventilatory acclimatisation gained at 4,300 383 
m is retained following 8 days spent at low altitude. Since we found the CVCi-CO2 slope to be 384 
consistently elevated by 60-80% across all time points (Fig. 1D), while the changes MAP-CO2 slope 385 
closely follows the changes in MCAv-CO2 slopes (Fig. 1B), we speculate that the changes in MCAv-386 
CO2 slopes at high altitude can be primarily accounted for by an enhanced sensitivity of the 387 
cerebral vessels to CO2, whereas the remainder can be attributed to an enhanced perfusion 388 
pressure response.  389 
 390 
Steady-state or modified rebreathing method? 391 



 17

There has been much debate over the use of the steady-state or the modified rebreathing 392 
method for the assessment of cerebrovascular and ventilatory control, and attempts at consensus 393 
have produced no uniform agreement [(18, 40), also see (2, 14) for reviews]. The steady-state 394 
ventilatory responses to CO2 were found to be either similar (34, 37, 40-42, 47) or lower (6, 18, 23, 395 
55) when compared to rebreathing estimates., while steady-state cerebrovascular CO2 reactivity 396 
has been shown to be consistently higher than rebreathing values (18, 40-42). The present study 397 
demonstrates that the changes in cerebrovascular and ventilatory CO2 responsiveness with 398 
altitude acclimatisation were similar between the steady-state and the modified rebreathing 399 
method (Table 1) – possibly due to tight control of arterial PCO2 and PO2 with our end-tidal 400 
clamping setup. Moreover, we observed strong correlations in these parameters between the two 401 
methods across all time points (Fig. 3). We therefore conclude that both methods can be used to 402 
assess the changes in cerebrovascular and ventilatory responses to CO2 with high altitude 403 
exposure and acclimatisation, provided that the level of CO2 is comparable across all the 404 
conditions, under identical level of background O2. 405 
 406 
Limitations 407 

Although the present study provided the opportunity to assess the effects of 408 
acclimatisation and re-exposure to 5,260 m on the cerebrovascular CO2 reactivity, an important 409 
methodological consideration should be acknowledged when interpreting our findings. In the 410 
present study, transcranial Doppler ultrasound (TCD) was used to measure the MCAv, as an index 411 
of global CBF changes during initial exposure, acclimatisation and subsequent re-exposure to 412 
5,260 m. This is based on the assumption that: i) the MCA carries approximately upwards of 80% 413 
of the overall blood flow to the respective hemisphere (29); ii) changes in MCAv reflect changes in 414 
global CBF (8, 52); iii) the changes in MCAv in response to PaCO2 changes are comparable to the 415 
changes of internal carotid blood flow (50); and iii) the diameter of the MCA does not change 416 
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during the observed changes in arterial blood gases (52). In support, MCAv has been shown to 417 
reflect changes in CBF assessed with the direct Fick method, at least during initial exposure to high 418 
altitude (33, 35, 48).  419 

Recent findings by Wilson et al., (58) indicate that the diameter of MCA, as measured using 420 
TCD, vary, depending on the altitude (e.g., 5.30 mm at 75 m, 5.51 mm at 3,500 m, 5.23 mm at 421 
5,300 m and 9.34 mm at 7,950 m). Importantly, the results from Wilson et al., (58) demonstrate 422 
that the MCA diameter remains relatively unchanged up to 5,300 m. It should be noted that the 423 
MCA diameters measured with TCD in that study were 80-90% greater than the values obtained 424 
using magnetic resonance imaging in the same subjects. Since our measurements were carried out 425 
in background hyperoxia (PETCO2 > 300 mmHg), it seems unlikely that our cerebral blood velocity 426 
values would be confounded by any effect of hypoxia-induced vasodilation of the MCA. Further 427 
studies are needed to evaluate MCAv responses to CO2 while holding PETO2 at consistent levels of 428 
hypoxia.  429 
 430 
Conclusion 431 

Findings from the present study clearly show that both cerebrovascular and ventilatory 432 
responsiveness to CO2 is elevated upon arrival at high altitude and further elevated with 433 
acclimatisation. We demonstrate, for the first time, that this effect of high altitude acclimatisation 434 
on the ventilatory response to CO2 is partially retained after a period at low altitude, while prior 435 
acclimatisation has no effect of the cerebrovascular response to CO2. Our data suggest that the 436 
increased cerebrovascular CO2 reactivity with acclimatisation may be accounted for by the 437 
changes in acid-base balance in the blood and possibly the cerebrospinal fluid compartment.  438 
 439 
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Table 1. Cerebrovascular and ventilatory reactivities parameters during the steady-state and modified rebreathing (mean ± SD). 642 
 643 

* different from SL (P<0.05); † different from ALT1 (P<0.05); § different from ALT16 (P<0.05).  644 
 645 
 646 

 SL 
(n=21) 

ALT1 
(n=17) 

ALT16 
(n=20) 

POST7 
(n=14) 

POST21 
(n=5) 

Steady-state                
MCAv-PaCO2 slope 

(cm/s/mmHg) 
1.19 ± 0.42 2.16 ± 1.05* 3.39 ± 0.89*† 2.68 ± 0.88*§ 2.06 ± 0.57*§ 

CVCi-PaCO2 slope 
(%/mmHg) 

3.35 ± 1.21 5.87 ± 2.60* 5.75 ± 1.85* 5.89 ± 1.23* 5.41 ± 1.78* 

MAP-PaCO2 slope 
(L/min) 

0.03 ± 0.24 0.28 ± 0.19* 1.06 ± 0.45*† 0.56 ± 0.29*§ 0.32 ± 0.18*§ Vሶ E at 40 mmHg 
(L/min) 

19.15 ± 4.89 34.06 ± 12.23* 80.05 ± 32.32*† 49.03 ± 13.68*§† 43.25 ± 7.56*§ 

Modified rebreathing           

MCAv-PETCO2 slope 
(cm/s/mmHg) 

1.34 ± 0.60 2.95 ± 1.11* 3.67 ± 0.87*† - -  Vሶ E-CO2 slope 
(L/min/mmHg) 

1.90 ± 0.81 3.49 ± 1.51* 6.28 ± 3.56*† - -  Vሶ E recruitment 
threshold (mmHg) 

38.7 ± 3.4 33.7 ± 3.7* 29.2 ± 2.1*† - -  
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Figure legend 647 
Figure 1 Changes in steady-state estimates of cerebrovascular, cardiovascular and ventilatory 648 
responsiveness to CO2 with acclimatisation and re-exposure to 5,260 m. Values expressed as mean 649 
± SD. * different from SL (P<0.05), † different from ALT1 (P<0.05), § different from ALT16 (P<0.05). 650 
 651 
Figure 2 Relationship between standard basic excess and steady-state cerebrovascular, ventilatory 652 
and cardiovascular responsiveness to CO2 with acclimatisation to altitude. * significant 653 
correlations (P<0.05). 654 
 655 
Figure 3 Comparison of steady-state and rebreathing estimates of cerebrovascular and ventilatory 656 
responsiveness of CO2 with acclimatisation to 5,260 m. * significant correlations (P<0.05). 657 
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Abstract 46 
Cerebral autoregulation (CA) acts to maintain brain blood flow despite fluctuations 47 in perfusion pressure. Acute hypoxia is thought to impair CA, but it is unclear if CA is 48 affected by acclimatization or related to the development of acute mountain 49 sickness (AMS). We assessed changes in CA using transfer function analysis of 50 spontaneous fluctuations in radial artery blood pressure (indwelling catheter) and 51 resulting changes in middle cerebral artery blood flow velocity (transcranial 52 Doppler) in 21 active individuals at sea level (SL), upon arrival at 5,260 m (ALT1), 53 after 16 days of acclimatization (ALT16), and upon re-exposure to 5,260m after 7 54 days at 1,525 m (POST7). The Lake Louise Questionnaire (LLQ) was used to evaluate 55 AMS symptom severity. CA was impaired upon arrival at ALT1 (P<0.001) and did 56 not change with acclimatization at ALT16 or upon re-exposure at POST7. CA was not 57 associated with AMS symptoms (all R < 0.50, P > 0.05). These findings suggest that 58 alterations in CA are an intrinsic consequence of hypoxia and are not directly 59 related to the occurrence or severity of AMS.  60   61 



 3

Introduction 62 
Cerebral autoregulation (CA) is a general term used to describe dynamic myogenic, 63 neurologic and metabolic responses that adjust cerebrovascular resistance to 64 maintain relatively constant cerebral blood flow across a wide range of perfusion 65 pressures (25). Dynamic CA is said to be impaired if fluctuations in mean arterial 66 blood pressure lead to concurrent fluctuations in mean cerebral blood flow. 67 Impairments in CA are associated with cerebrovascular disorders (3, 24, 31), yet the 68 relative importance of CA in the development and course of certain pathologies is 69 unclear.  70  71 Our initial interest in CA stemmed from the hypothesis that impaired CA may be 72 involved in the development of acute mountain sickness (AMS), high-altitude 73 headache and cerebral edema (5, 7, 9, 16, 37). Conversely, we showed that 74 impairments in CA upon acute exposure to hypobaric hypoxia preceded, but were 75 not associated with, the development of AMS (2, 33, 35). Furthermore, since several 76 cross-sectional studies demonstrated that impairments in CA persist from 1 to 30 77 days of high-altitude exposure (1, 2, 11, 12, 17) - when AMS is not present – and are 78 evident in healthy, permanent high-altitude residents (12, 13), it seems reasonable 79 to suggest that a shift in CA may be an inherent and relatively benign consequence 80 of hypoxemia. 81  82 To date, no longitudinal studies have characterized CA and tested its relation with 83 AMS during acute and chronic high-altitude exposures. Previous studies have either 84 
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omitted CA measurements upon arrival at high altitude (7, 11, 17), or followed slow 85 ascent profiles that allow for partial acclimatization prior to initial measurements 86 (1, 12, 39). In this study, we present novel data from sea-level residents who rapidly 87 ascended to high altitude (5,260 m), acclimatized for 16 days, and were 88 subsequently re-exposed to high altitude after spending 7 days at low altitude 89 (1,525 m). Specifically, we tested the hypotheses that CA would be: 1) impaired 90 upon rapid ascent to high altitude, 2) unaffected by 16 days of acclimatization, 3) 91 unaffected upon re-exposure to the same altitude, and 4) unrelated to the 92 occurrence or severity of AMS.  93   94 
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Methods 95 
Study overview 96 This study was conducted as part of the AltitudeOmics project. Briefly, institutional 97 ethics approval was obtained from the Universities of Colorado and Oregon and the 98 US Department of Defense Human Research Protection Office. Young, healthy sea-99 level residents were recruited from the greater Eugene, Oregon area (elevation 128 100 m) and screened to exclude anyone who was born or had lived at altitudes >1,500 m 101 for more than one year or had traveled to altitudes > 1,000 m in the past 3 months. 102 After obtaining written consent, physical exams and the Army Physical Fitness Test 103 (push ups, sit ups and 3.2 km run) were performed to verify health and fitness 104 status. Approximately 4 weeks following sea-level (SL) measurements in Eugene, 105 Oregon, subjects were flown to La Paz, Bolivia. They spent two nights at low altitude 106 (Coroico, Bolivia, 1,525 m) before being driven to the Chacaltaya research station at 107 5,260 m while breathing supplemental oxygen. Acute responses to high altitude 108 were assessed ~4 hours after arrival and cessation of supplemental oxygen (ALT1). 109 Subjects acclimatized to altitudes ranging from 3,800 to 5,260 m over the next 15 110 days, with most of the time (75%) spent at 5,250 m. On the 16th day (ALT16), 111 measurements were repeated at 5,260 m before subjects were driven down to 112 Coroico for either 7 or 21 days. Subjects were driven back to the laboratory at 5,260 113 m for POST 7 or POST 21 re-exposure measurements.  114  115 
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This report focuses on novel data regarding resting CA evaluated immediately prior 116 to a series of cerebrovascular, respiratory and exercise interventions, as outlined 117 elsewhere (32). We have carefully avoided replication of data between reports, 118 except where common variables were necessary to describe subjects’ basic 119 physiologic status at the time points of interest (e.g. heart rate, blood pressure, 120 arterial blood gases). 121  122 
Physiology Protocol 123 All subjects were familiarized with study procedures during a practice session at 124 least 48 hours before experimental testing at SL. Subjects followed standardized 125 exercise and dietary regimens for 24 hours prior to each measurement period. At 126 each time point, a 22-gauge catheter was inserted into a radial artery at least 1 hour 127 prior to instrumentation. Subjects were seated in an upright position for 15 min 128 while sensors were placed to measure physiologic variables of interest. Limb lead 129 electrodes were used to measure ECG (BioAmp, ADInstruments, Colorado Springs, 130 CO, USA). Arterial blood pressure (ABP) was monitored via a fluid filled pressure 131 transducer (Deltran II, Utah Medical, Salt Lake City, UT, USA) attached to the radial 132 artery catheter. Core temperature was telemetrically recorded from an ingested pill 133 (CorTemp, HQInc, Palmetto, FL, USA). Cerebral blood flow velocity (CBFv) in the left 134 middle cerebral artery was measured by transcranial Doppler (2MHz Spencer 135 Technologies, Seattle USA) at depths ranging from 43 to 54 mm. Signal quality was 136 optimized and an M-mode screen shot was recorded to facilitate subsequent probe 137 placements and insonation angles.  138 
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 139 After verification of signal quality, resting data were recorded for 6 min while 140 subjects breathed room air to assess CA at each altitude. Continuous analog data 141 (ABP, CBFv, ECG, O2 and CO2) were recorded at 200 Hz (ADInstruments Powerlab 142 16/30, Colorado Springs, CO, USA) for offline analysis. Core temperature and 143 arterial blood samples (2 ml) were taken during the last 30 s of measurement 144 periods. Blood samples were taken from the radial artery catheter and blood gases 145 were analyzed for PaCO2 and PaO2 in triplicate (RAPIDLab 248, Siemens, Erlangen, 146 Germany) and corrected for body temperature (15, 29). 147 
Acute Mountain Sickness 148 Self reported sections of the Lake Louise Questionnaire (LLQ) were used to assess 149 AMS on ALT1 and POST7 (~12 hours after arrival). Moderate and severe AMS were 150 defined as LLQ ≥ 3 and ≥ 6, including headache, respectively (27).  151 
Data Analysis 152  Transfer function analyses were used to assess dynamic CA, based on spontaneous 153 fluctuations in the raw ABP and CBFv signals, as previously described (33, 34). 154 Briefly, 6-min recordings of instantaneous ABP and CBFv were reduced to beat-by-155 beat averages, resampled at 5 Hz and transformed from the time to frequency 156 domain using fast Fourier transformations (512 points per segment with 40% 157 overlap). The transfer function from mean ABP to CBFv was expressed in terms of 158 coherence, gain, and phase shift in the very low frequency range (0.02 - 0.07 Hz), 159 where dynamic CA is most active (21, 22), as well as in low (0.07 to 0.20 Hz) and 160 
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high (0.20 to 0.35 Hz) frequency ranges. All data were used in subsequent statistical 161 analyses. Reduction in phase shift was considered the primary criterion for 162 impaired CA because it signifies shorter delay in transmission of pressure (ABP) 163 into flow (CBFv), or a reduction in the ability of the cerebrovascular system to buffer 164 changes in ABP and maintain consistent blood flow. Yet, since increases in gain 165 (increase in CBFv relative to a change in ABP) and coherence (linear correlation 166 between ABP and CBFv) may also suggest CA impairment (8, 24, 41), all three 167 transfer function metrics are reported. To address difficulties in interpreting 168 possible permutations of these three variables, the inverse transfer function of the 169 resulting gain and phase shift was used to express results in the time domain as a 170 step function that could be fitted to one of 10 curves representing a single 171 autoregulation index (ARI) score (36). An ARI score of 0 indicates complete lack of 172 autoregulation and 9 indicates perfect autoregulation.  173 
Statistics 174 After calculating descriptive statistics (mean ± SD) and verifying normality 175 (D’Agostino and Pearson Test), variables were analyzed by repeated measures 176 ANOVAs to evaluate the effect of time on CA metrics with Fisher’s LSD post hoc tests 177 and the Holm procedure to correct for multiple comparisons (α = 0.05).  178  179 Spearman rho correlations were run to evaluate relations between CA metrics and 180 the severity of LLQ symptom scores. Specifically, we tested the ability of CA 181 assessments, measured at SL and upon arrival at ALT1, to predict ensuing 182 symptoms of AMS (7). Also, because AMS classification is dichotomous (i.e. positive 183 



 9

vs. negative), we used receiver operating characteristic (ROC) analyses (14, 18) to 184 evaluate the sensitivity (true positive rate) and specificity (true negative rate) of 185 ARI scores’ ability to detect mild and severe AMS. The ROC area under the curve 186 (AUC) statistic was used as an indicator of test accuracy. An AUC of 1.0 signifies a 187 perfect test, with no chance of false positive or false negative results, while an AUC 188 of 0.5 signifies a meaningless test, where the probability of identifying a true 189 positive result is only 50%. 190 
Results 191 
Subjects 192  193 We studied 21 subjects at SL (12 males and 9 females; 21 ± 1 years old). Because of 194 logistical problems upon arrival in Bolivia, complete data sets were not obtained on 195 the first 7 subjects upon arrival at ALT1. Since the first 7 subjects comprised the 196 cohort studied at POST21, longitudinal assessments of CA were limited to the 197 remaining 14 subjects who completed the study at POST7. 198  199 
Effect of Rapid Ascent to High Altitude 200  201 At SL, resting cardiovascular (HR, ABP, CBFv) and CA measurements (coherence, 202 gain, phase shift and ARI scores) were characteristic of young, healthy individuals 203 with intact CA (Table 1, Figure 1). From SL to ALT1, PaO2 and PaCO2 decreased (65 204 and 26%, respectively, P< 0.001, Table 1). This degree of hypoxia increased HR (P < 205 0.001), but did not affect mean ABP or CBFv. Very low frequency power spectral 206 
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density (PSD) of ABP and CBFv were unaltered, but increases in transfer function 207 coherence (P < 0.001) and decreases in phase shift (P < 0.050) and ARI score (P < 208 0.001) were consistent (in 13 of 14 subjects) with the definition of impaired CA at 209 ALT1.  210  211 
Effect of Acclimatization to High Altitude 212 Acclimatization increased resting PaO2 (27%) and decreased PaCO2 (22%) from 213 ALT1 to ALT16 (both P<0.001), without affecting HR, ABP or CBFv. Measures of CA 214 at ALT16 were unchanged from ALT1 and remained impaired relative to SL in the 215 very low frequency range (all P < 0.010, Table 1, Figure 1). 216 
Effect of Re-exposure to High Altitude 217 
Resting PaO2 and PaCO2 at POST7 fell between ALT1 and ALT16 values (all P<0.050 218 vs. ALT1 and vs. ALT16), indicating that the degree of acclimatization achieved at 219 ALT16 was partially maintained at POST7. Assessments of CA at POST7 were similar 220 to those at ALT1 and ALT16 and remained impaired relative to SL in the very low 221 frequency range (P < 0.050, Table 1, Figure 1).  222  223 
Association between CA and AMS 224  225 Of the 21 subjects, 17 reported symptoms of at least moderate AMS at ALT1 (LLQ = 226 6.4 ± 2.2), 10 of who met the criteria for severe AMS (LLQ = 7.8 ± 1.7). Correlations 227 between CA metrics preceding the development of AMS symptom were weak (all 228 r<0.50, P>0.050, Figure 2). The ROC analysis revealed that ARI scores measured at 229 
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SL were not sensitive or specific predictors of moderate (AUC=0.54, P=0.788) or 230 severe AMS (AUC=0.69, P=0.139). Additionally, the degree of impairment in CA 231 (measured as the change in ARI from SL to ALT1) was not a sensitive or specific 232 predictor of moderate  (AUC=0.53, P=0.881) or severe AMS (AUC=0.72, P=0.124). 233 None of the 14 subjects studied at POST7 reported symptoms of AMS, thus 234 associations with CA could not be tested. 235 
Discussion 236 
The key findings of this study were that cerebral autoregulation, as assessed by 237 transfer function analysis, is 1) impaired upon rapid ascent to high altitude, 2) 238 unaffected by acclimatization, or 3) subsequent re-exposure to the same altitude, 239 and 4) not a sensitive or specific predictor of AMS. Based on our results we question 240 whether the so-called impairment in CA that persists at high altitude is 241 characteristic of pathological insufficiency in cerebrovascular regulation (16), or 242 alternatively reflects a relatively benign relaxation in autoregulation. 243  244 
Effect of high altitude on CA 245 This is the first longitudinal study of CA at high altitude, from rapid ascent through 246 acclimatization and upon re-exposure after a short period at low altitude. We show 247 that impairment of CA was a consistent characteristic across this high-altitude 248 exposure profile.  249  250 
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Increased transfer function coherence and gain along with reduced phase shift and 251 ARI score upon rapid ascent were all consistent with the classic definition of 252 impaired CA (Table 1) and outside the normal range of expected variability (6), 253 implying that changes in ABP were more readily transmitted into the cerebral 254 circulation as changes in CBFv at high altitude. Our finding of impaired CA after less 255 than one day of travel from low to high elevation is consistent with our previous 256 findings after 4 hours in a hypobaric chamber (35) and fills an important gap in the 257 literature between studies conducted in laboratories with hypoxic gas mixtures, 258 where normobaric hypoxia was achieved in a matter of minutes (5, 10, 26, 34), and 259 studies of trekkers, where several days of progressive ascent preceded initial high-260 altitude measurements (1, 2, 12, 37). Impaired CA at rest in acute hypoxia is a 261 consistent finding among all but one study (26), suggesting that neither the mode 262 nor rate of ascent appears to affect the general assessment. 263  264 By evaluating CA upon initial exposure and after 16 days at high altitude, we were 265 able to determine if changes in CA occur with acclimatization, as might be expected 266 with increased PaO2 (2, 35), decreased PaCO2 (19, 23, 26), and further 267 sympathoexcitation (1). On the contrary, we found no change in CA over the course 268 of acclimatization (Table 1). Our longitudinal findings are consistent with other 269 cross-sectional studies demonstrating impaired CA at various time points after 270 arrival at high altitude (1, 2, 7, 11, 12, 37) and in permanent high-altitude residents 271 (12, 13). These results may indicate that assessments of CA are less sensitive to 272 changes in PaO2 and PaCO2 near their respective extremes. Alternatively, a slight 273 
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improvement in CA due to increased PaO2 (2, 35) may have been masked if the 274 opposing effects of PaCO2 (19, 23, 26) and/or sympathoexcitation (1) on CA were 275 heightened over time at altitude. Further testing with manipulation of arterial gases 276 and sympathetic activity is necessary to determine the relative influence of arterial 277 gases and neural stimulation on CA at high altitude, yet impaired CA remains a 278 consistent functional consequence across time at high altitude. 279  280  As an additional test of the hypothesis that impaired CA is a consistent response to 281 hypoxemia, we sent subjects down to low altitude for 7 days and re-evaluated their 282 CA response after a second rapid ascent back to high altitude. Upon re-exposure, the 283 measured impairment in CA was similar to that observed upon the first ascent 284 (ALT1) and after acclimatization (ALT16). Together, these results demonstrate that 285 impaired autoregulation was a consistent characteristic of hypoxemia across our 286 study and imply that slow fluctuations in arterial pressure were less effectively 287 dampened by the cerebral vasculature regardless of the state of acclimatization. 288 What remains to be determined is if such a tenuous pressure-flow relation may be 289 potentially harmful. 290  291 
Relation of CA to AMS 292 Impairment of CA has been suggested to play a role in the development of AMS by 293 either permitting cerebral overperfusion and mechanical disruption of the blood 294 brain barrier (i.e. vasogenic cerebral edema) when mean ABP is elevated, or by 295 cerebral under-perfusion and exacerbation of cerebral hypoxia/ischemia when 296 
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mean ABP is lowered (9, 16). In the present study, we found no correlation between 297 measures of CA and subsequent AMS symptom scores (Figure 2), which opposes the 298 notion that lower CA predisposes people to AMS, or conversely, that higher CA 299 confers protection from AMS. Our additional ROC analyses of AMS status, confirmed 300 that ARI scores were neither sensitive nor specific indicators for the development of 301 moderate or severe AMS upon arrival at high altitude. These findings are congruent 302 with our previous report following the time course of changes in CA and AMS 303 symptoms over the first 10 hours of exposure to hypobaric hypoxia (35), where we 304 found similar levels of CA impairments in subjects who eventually developed AMS 305 or stayed healthy, but are at odds with other studies showing some association 306 between CA and AMS symptoms (5, 37). Our data also counter a recent finding that 307 sea-level assessments of CA predict ensuing severity of AMS (7).  308  309 Discrepancies between studies may be explained by the various methods used to 310 assess CA (transfer function vs. leg cuff – see Limitations), the questionnaires used 311 to assess AMS (LLQ vs. Environmental Symptoms Questionnaire), and the statistical 312 approach used to evaluate the relation between CA and AMS (correlation vs. ROC). 313 We acknowledge that caution should be exercised when interpreting correlations 314 with an ordinal level variable, such as the LLQ score, because by definition the scale 315 has limited mathematical meaning. For example, an LLQ score of 6 does not imply 316 symptom severity is exactly twice that of a score of 3. Due to the intrinsic level of 317 measurement, we believe that LLQ scores are best restricted to dichotomous 318 classification of positive or negative AMS status, and thus place more emphasis of 319 
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the negative results of our ROC analysis. We encourage others to consider this 320 method of analysis for future AMS studies. 321  322 Overall, given the similarity in CA responses among individuals with a wide range of 323 AMS scores, we do not believe that changes in CA cause AMS. This assertion is 324 further supported by the complete lack of association between impaired CA at 325 POST7 when no symptoms of AMS were reported and previous reports 326 documenting impaired CA in healthy high-altitude natives (12, 13). Nonetheless, we 327 must acknowledge that the alteration in CA upon acute altitude exposure may set up 328 a tenuous pressure-flow relation which could permit AMS to develop, if other, yet 329 unidentified, factors are present at the same time.  330  331 Since impairment of CA appears to be a consistent physiological response in hypoxic 332 environments and unrelated to AMS status, it is tempting to speculate that the 333 underlying change in the cerebral pressure-flow relation may actually promote 334 successful acclimatization or adaptation to chronic states of hypoxemia (4). It is 335 possible that impairment of CA could promote cerebral oxygen delivery in a time of 336 need since it allows greater cerebral perfusion for a given increase in ABP. This 337 potentially beneficial consequence of impaired CA during hypoxemic stress might 338 outweigh the relative risk of reduced cerebral perfusion if ABP were to drop. We 339 therefore raise the possibility that the term impaired CA may be a misnomer 340 because it implies an association with pathology that has yet to be substantiated in 341 acute or chronic hypoxemia. We suggest that relaxation of CA might be a more 342 
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accurate term to describe changes in the cerebral pressure-flow relation from 343 normoxia to hypoxia in the absence of pathology. 344  345 
Limitations 346 One major limitation affecting the field is the lack of a gold standard method to 347 assess CA. We have chosen to evaluate rhythmical fluctuations in CA via transfer 348 function analysis, primarily because we believe it captures the natural cerebral 349 pressure-flow relation over time and thus has greater practical relevance over 350 methods which induce larger, more abrupt changes in ABP, as with leg cuff 351 inflation/deflation, rapid tilting, or more sustained changes in ABP, as with 352 pharmaceutical interventions. Still, we acknowledge that transfer function analysis 353 of resting data monitors relatively subtle fluctuations in ABP and CBFv, which, if 354 amplified, may not show impairment in CA (39). These factors may limit the 355 generalizability of resting CA assessments and lead to overstatement of the clinical 356 relevance of the findings. Additionally, there are no universal standards for the 357 parameter settings used in transfer function analysis or interpretation of 358 subsequent results, which makes comparisons between studies problematic. Future 359 work is needed to clarify differences in methods used to assess CA in hypoxemic 360 states and evaluate if these changes are generalizable to clinical settings.  361  362 Most CA studies rely on transcranial Doppler measurements of flow velocity and 363 assume that vessel diameter is unchanged, yet there is evidence to suggest that this 364 assumption may be invalid at extreme altitudes (39, 40). Dilation of the MCA at 365 
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ALT1 may explain why MCAv did not follow the expected increase in CBF upon 366 acute exposure to high altitude (30). We do not believe potential MCA dilation 367 affected our interpretation because the phase shift - our primary criterion for 368 assessing changes in CA – measures the relative timing of oscillations in ABP and 369 CBFv and thus is largely independent of absolute flow. However, since small changes 370 in diameter can have profound affects on flow (flow ~ radius4), future studies must 371 consider the use of continuous flow measurements, instead of velocity 372 measurements, to accurately assess CA in hypoxia.  373  374 Finally, our measurements of CA were limited to the MCA and relied on pressure 375 measurements taken in the radial artery. Since regional differences in 376 cerebrovascular regulation have recently been reported (20, 28, 38), more specific 377 measurements of regional pressure and flow are needed to fully characterize CA. 378 
Conclusions 379 Our data demonstrate that the initial impairment of CA upon acute exposure to high 380 altitude is invariant with acclimatization and re-exposure, suggesting that relaxation 381 in the regulation of the cerebral pressure-flow relation is a characteristic response 382 to hypoxia that is unaffected by the degree of acclimatization. Since changes in CA do 383 not follow the progression and resolution of AMS, we question the clinical relevance 384 of impaired CA at high altitude.  385 
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Figure Captions 530  531 Figure 1. Arterial blood pressure to cerebral blood flow velocity transfer function 532 metrics (mean ± SD from 0 to 0.5 Hz) at sea level (SL), upon arrival at 5,260 m 533 (ALT1), after 16 days of acclimatization (ALT16), and upon re-exposure to 5,260 m 534 after 7 days at low altitude (POST7).  Similar impairments in cerebral 535 autoregulation (increased coherence and gain and decreased phase shift) from SL 536 were seen in the very low frequency (0.02 to 0.07 Hz – shaded area) at ALT1, ALT16, 537 and POST7 (P < 0.05).  * Different from SL. & Different from SL. 538  539 Figure 2. Scatter plots showing no relation (P > 0.05) between autoregulation 540 indices (ARI), measured at sea level (SL, top) and as the change from SL to arrival at 541 high altitude (ALT1, bottom), and AMS symptoms scores from the Lake Louise 542 Questionnaire at ALT1.  543 



Table 1. Resting Data (n=14, mean ±SD) Variable   SL ALT1 ALT16 POST7 

PaO2 mmHg 103 ± 5 36 ± 3* 45 ± 4*# 42 ± 4*#& PaCO2 mmHg 37 ± 4 28 ± 2* 21 ± 3*# 24 ± 3*#& HR bpm 73 ± 9 90 ± 18* 95 ± 12* 85 ± 15*& ABP mmHg 77 ± 6 76 ± 14 81 ± 10 76 ± 8 CBFv cm/s 62 ± 9 63 ± 14 59 ± 7 57 ± 9 PSD ABP mmHg2/Hz 11 ± 13 9 ± 4 9 ± 5 6 ± 4 PSD CBFv (cm/s)2/Hz 13 ± 19 14 ± 16 10 ± 6 11 ± 8 Coherence 0.42 ± 0.12 0.64 ± 0.15* 0.70 ± 0.16* 0.55 ± 0.12*& Gain %/% 0.64 ± 0.24 0.88 ± 0.35* 0.85 ± 0.25* 0.97 ± 0.33* Phase Shift radians 0.48 ± 0.28 0.17 ± 0.21* 0.27 ± 0.09* 0.25 ± 0.19* ARI  4.4 ± 1.0 2.8 ± 0.9* 2.8 ± 1.0* 3.3 ± 1.6*             * Different from SL # Different from ALT1 & Different from ALT16   
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r = -0.37, P = n.s . 
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