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Abstract—There has been a growing interest in passive radar
systems in the research community over the last decade because
of the several merits they offer, including ease of deployment,
low cost, and non-detectability of the receivers. During the same
period, the idea of distributed MIMO radar and its advantages
under the coherent and non-coherent operating scenarios has
been extensively studied. Keeping these benefits it mind, in this
paper, we consider a UMTS-based passive multistatic radar with
distributed antennas. We compute the ambiguity profiles of this
radar system under both the coherent and non-coherent modes.
The non-coherent processing mode improves the target detection
performance by obtaining spatially diverse looks of the target.
On the other hand, coherent processing enhances the resolution
of target localization. We use numerical examples to demonstrate
our analytical results.

Index Terms—Ambiguity function, coherent processing, dis-
tributed, multistatic, passive radar, resolution, UMTS signals.

I. INTRODUCTION

HE concept of passive radar systems or passive coherent

location systems has been in existence since the 1930s
[1]-[3]. This topic has drawn much research attention only
during the last decade [4]-[6]. When compared with conven-
tional monostatic systems that have the transmitter and receiver
colocated, these systems often rely on signals of opportunity
as the transmitted waveforms and the receivers are completely
passive and located away from the transmitters [6], [7]. There-
fore, the receivers are not detectable and the system to be
deployed does not require expensive transmitting hardware.
Passive radar systems do not have control over the transmitted
waveforms but receive a copy of them directly from the trans-
mitter and this will be used as a reference signal. Signals of
opportunity can be from several sources including television
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[1]-[9] and audio broadcast signals and FM radio [10], [11],
satellite-based [12], and mobile communications systems [13].
In this paper, we consider a passive radar system based on
universal mobile telecommunications systems (UMTS). These
UMTS signals are known to provide high resolution and low
sidelobes and hence are of particular interest to the passive radar
community. Further, with the rapid increase in their usage glob-
ally, the coverage areas for mobile communications systems has
increased several-fold in the recent years. Earlier, performance
of mobile communications-based passive coherent location sys-
tems has been studied using experiments [13] and simulations
[14]. More recently, in [15], the authors derived analytical ex-
pressions for the monostatic and bistatic ambiguity functions
using these UMTS downlink signals. Further, they computed the
modified Cramer-Rao lower bound (CRB) for these systems.

Conventional passive radar systems operate in a bistatic con-
figuration. However, very recently, there has been a growing
interest in using passive radar systems in multistatic configu-
rations. This is motivated from the several advantages of dis-
tributed multiple input multiple output (MIMO) radar systems
demonstrated in the last decade [16]-[20]. When operating in
a non-coherent configuration [21] these systems exploit spa-
tially diverse looks of the target to improve the detection per-
formance [17]. This goal is accomplished by employing widely
spaced transmit and receive antennas. When the target reflec-
tions are weak between particular transmitter-receiver pair, it
is highly likely that these will be compensated by some of the
other pairs that have stronger returns. Further, when there is per-
fect phase synchronization between all the transmitters and re-
ceivers, MIMO radar can operate in a coherent processing mode
to enhance the target localization resolution [17], [22]. How-
ever, note that when the antennas are too far apart, phase syn-
chronization may not be achievable and in such scenarios, we
have to resort to non-coherent processing. It is natural for pas-
sive radar systems to benefit from the same reasons by oper-
ating in multistatic configuration. In [23], the authors presented
a single-stage non-coherent processing approach that performs
target detection, localization, and de-ghosting for passive mul-
tistatic radar.

In this work, we compute the ambiguity functions for passive
multistatic radar systems using UMTS signals (See also [24]).
The ambiguity function is an important performance metric for
radar systems because it describes the global performance (local
accuracy and sidelobes). We consider both the coherent and
non-coherent operating scenarios in the Cartesian domain. The
delays and Doppler shifts associated with a multistatic system
are non-linear functions of the geometry. Therefore, the ambi-
guity functions are also geometry-dependent. We use numer-
ical examples to study the achievable performance of these sys-
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Fig. 1. Passive multistatic radar system (graphic for antennas from [25]).

tems. The rest of the paper is organized as follows. In Section II,
we present the transmitted signal model for passive multistatic
radar. In Section III, we present the non-coherent measurement
model, followed by the detector and the ambiguity function.
Similarly, in Section IV, we consider the coherent scenario. In
Section V, we present numerical examples of our analytical re-
sults. Finally, we provide concluding remarks in Section VI.

II. SIGNAL MODEL

First, we describe the radar setup in this section, followed
by the target models under both the non-coherent and coherent
operating modes in the following sections. We consider a pas-
sive multistatic radar system consisting of M transmitters and
Mg receivers that are widely separated (see Fig. 1). We assume
that there is always a line-of-sight component between all trans-
mitter-receiver pairs. In Fig. 1, we have also marked the illumi-
nated scene of interest, the reference paths and the target echo
paths for a multistatic system with 3 transmitters and 2 receivers.
Let the sth transmitter be located at t_g = [tas, tyi, t2]. Simi-
larly, the jth receiver is located at ¥; = [ru;,7,;,72;]. We as-
sume the transmitters and receivers are stationary but the results
can be easily extended to the scenario when they are moving.

We represent the target location and velocity as

?:pr;pyvpz]v (l)
V= [va, vy, 0. )

Therefore, we can define the target state vector
"= [pm7py~,pzv'v$n'”yv1)z]- (3)

Under this set up, the direct or reference path delay between the
¢th transmitter and the jth receiver is

1,—
e R @)

Similarly, the delay and Doppler corresponding to the target
echo path between the same transceiver pair can be given as
[26]

= (17 = &1+17 - 71), (5)
I, = f7 (7. @) — (7. %4)) 6)
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where ¢ denotes the speed of wave propagation in the medium
and f. denotes the carrier frequency; H)t” ﬂ)r]. denote the unit
vector from the +th transmitter to the target and the unit vector
from the target to the jth receiver, respectively; ||.|| represents
the £3 norm; and (, ) is the inner product operator. Clearly, the
dependence of the delays and Doppler shifts on the multistatic
geometry is non-linear in nature.

As in [15], we consider downlink UMTS signals as our illu-
minators of opportunity. Let u;(¢) denote the baseband signal
corresponding to the sth transmitter. Then

N-1

’llli(t) = \/LN Z Cing’i(t - nT)7 (7)

n=0

where ¢;,, are the transmitted quadrature phase shift keying
(QPSK) symbols from the ¢th transmitter. N is the number of
symbols and T is the inverse of the chip rate. All the QPSK
symbols are independent and identically distributed across both
the transmitter and symbol indices.

1, 1=¢.,n=n/;
E CinCiln! | = ’ . ’ 8
{emean) { 0, otherwise. ®

The pulse g;(t) is defined as delayed root-raised-cosine
(RRC) pulse g;(t) = h; (t — £), where the delay D is selected
as

hi(t)

-l (@) (2o ()

The roll-off factor «; lies in the interval [0,1] for all transmit-
ters. Further analysis on the properties for these waveforms for
different parametric values are give in [15]. We skip it here be-
cause it is not the main focus of our work. We choose «v; = 0.22,

= 0.26 us, and NT = 0.1 s. These are typical values for
UMTS systems. Having presented the transmit signal model and
the radar geometry, we now move on to the two different oper-
ating scenarios in the following sections.

III. NON-COHERENT PROCESSING
A. Measurement Model

Non-coherent processing is useful to fully exploit the spatial
diversity gain. Under this operating mode, we assume the target
consists of several individual isotropic scatterers, similar to
the model in [17]. We assume the target RCS varies with the
angle of view and the different antennas are sufficiently spaced
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apart to decorrelate these RCS values. In other words, these
RCS values are uncorrelated zero-mean complex Gaussian
random variables. If the target RCS values corresponding to
certain bistatic pairs are weak, it is highly likely that they will
be compensated for by other pairs with strong returns. Let the
target RCS corresponding to the +th transmitter and the jth
receiver be denoted by g;;. Using a narrowband assumption on
the waveforms, we can express the received signal at the jth
receiver after down conversion from carrier frequency as

Moy . . .

72w (f’ t— ‘r fer! ¢ )

= Z Bijui (t —7f;) e B, (t75)- + nij(t).
i=1
Expressing in terms of the RRC pulses, we have
My N-1
D

DI (SRR

g2 fE o t—Ti“]. —f‘iT;Lj)
xe' ( b, (1) )4 ng(t).

The reference or direct path signal from the sth transmitter to
the 7th receiver is given as

y,d](f) (f—Td)e j2mfer; —|—7L ( ).

n;(t) and ng J( ) denote the additive noise terms. We assume
that all the direct path and echo signals from different trans-
mitters are separable at each receiver. This is a reasonable
assumption as the different transmitters in a UMTS system
would not interfere with one another by using separate spectral
resources. Next, we will describe the target detector for this
problem. We will use this detector to compute the ambiguity
function expression.

B. Matched Filter Based Detector

Given this measurement model, the matched-filter based de-
tector reduces to computing the non-coherent test statistic (log-

likelihood) corresponding to a state vector w1 [17], [27]
My Mg

Liy) o YD [uf

=1 j5=1

; (€))

where

d* dy —d2mff
yfj = /yf(t)y” (t — T,/; + Tij) it de.
Expressing the reference signal in terms of the transmitted
signal, we obtain

.Uf:;':/?}g(t) ( (t TJ) pﬁﬂjc g+ 77t1d(t)> ¢’ Jrfl)” dt.

The noise term

@d(f) = n?j* (t—7h+ TS) .

Please note that the test statistic does not depend on the phase
term e /™7l and there are no 1n;erference terms from the
other transmitters. Even ¢ *- P does not influence the
test statistic. Therefore, phase synchronization is not necessary
between transmitters and receivers for this detector. Even
though matched filter based detector is the most well-known
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and a simple way to approach this problem, no claims can be
made about optimality because the detection problem is no
longer a point hypothesis testing due to the noisy nature of the
reference signal and instead becomes a composite hypothesis
testing problem. Other more complex signal processing ap-
proaches like GLRT may be used but again optimality cannot
be claimed. However, note than when the signal to noise ratio
of the direct path or reference signal is high, asymptotically the
matched filter detector does tend towards optimality because
the reference signal will tend towards the transmitted signal.

C. Ambiguity Function

We compute the average ambiguity function corresponding
to two target states u = [pu, Py, Pz, Vs, Uy, Us] and g =
[]’ p; p’, 177);,7)/] as A" or APy Py Prs Vi Vyy Uz, Pl
Diys Vs Uy w vl,). 14 denotes the true target state and we are
are comparing with the state p’. The averaging is done over
the transmitted QPSK symbols. As we mentioned earlier, these
symbols are independent across the transmitter and symbol
indices. Using the above detector, we define the average ambi-
guity function

My My
A = B ‘ pup ‘ (10)
MT W - Z Z
where
y ’
! — 2w fl ’ o fI
oo

Substituting the expressions for the transmitted waveforms, we

get
N-1N-1 <% D
TEES 33 / 7(f_nT___T)
n=0 n'= ()oo

D !

Y 127rfn b (t”LITETZ-)e _]27Tf dt
Define xp,(.) as the monostatic ambiguity function corre-
sponding to the individual RRC pulses from the ith illumi-
nator. Using the expressions we derived in the Appendix for
E{|¢l |}, we have the average ambiguity function

Mt Mg

A = M MRN2 Z >

=1 j=1
N2
sin (THVTAfSZ) N2
X ; ! ‘Xh”' ( T’I;H A Si)‘
sin (rTAfDl_j )
N-1

+ ). ¥

n#0n=—N+1

~ Inl)

7 ; 2
X ‘X!u (ATZ.M + nT, Af]gi ) ‘

The values of |xp, (ATZ»I;»M, : Af]’ﬁ?!)‘ can be easily computed
using the result on monostatic ambiguity function in [15]. Note
that the dependence of bistatic delay and Doppler terms on the
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target positions and velocities is non-linear as we observe from
the expressions in Section II. Further, the ambiguity function de-
pends on the multistatic geometry of the passive radar system. In
other words, an ambiguity function centered around the origin is
no longer sufficient to completely assess the performance of our
system. There are two parts in the average ambiguity function
summation we presented above. While the first part denotes the
self-ambiguity of the pulses, the second part denotes the impact
of the interaction between the different pulses on the ambiguity
function.

From [15], we observe that the monostatic ambiguity func-
tions corresponding to the individual RRC pulses can be ex-
pressed as

I m
Xh; (Arij A]L >

- / hi(t)h; (t — ATZ”,) JZTFAf““ tdf

—00

(o)

(Afp/l ) JQ‘n'Af”“ AT““
where H;(Af,

b ’) denotes the Fourier transform of the RRC
pulse h;(#) and & is the convolution operator. Using the above
expression, when the delay AT““ = 0, the term representing
the inter pulse interaction becomes .

s (Agg) R

X, (nT, Af]gjj’) —H, (A fgf%j') ®

Therefore, we compute the zero-Doppler cut for the non-co-
herent ambiguity function [see the equation at the bottom of the
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where \Hl(Afgi/) ® ]-L:(Afgil )| is computed in equation (18)
of [15]. Using numerical simulations, we will plot the zero-
delay and zero-Doppler cuts computed above to study the am-
biguity performance, later in the paper.

IV. COHERENT PROCESSING

A. Measurement Model

In the non-coherent processing mode presented above, the
target induces uncorrelated phase shifts across the different
bistatic transmitter-receiver pairs due to the widely separated
nature of the antennas. As a result, it is impossible to coher-
ently combine the outputs at the different receivers. Now,
we consider a different scenario under which such coherent
processing is possible [16]. In this set up, the target consists
of a single point scatterer that has an isotropic complex re-
flectivity denoted by /3. This arrangement preserves the phase
information across the different bistatic pairs since there is no
multiple scatterer interaction. From now on, when we mention
to coherent processing, we refer to this target model. Note that
perfect synchronization (phase, time, and frequency) to ensure
coherent processing is possible only when the antennas are
not too far apart. Otherwise, we have to resort to non-coherent
processing described in the previous section. In this paper, we
are computing the expressions for both these cases.

Under a narrowband assumption, the baseband received
signal at the jth receiver

v =u vy = v =0,

1
WZZ N2 |sinc

40(2A‘r“"’/~
i 2T

page]. The zero-delay cut of this ambiguity function
A/L/L/ .y
T 1 1 7
Pa=p' o py=p",:P==D", . J j2m (fl’)iy_(tffr,{_y)ffc‘r;j>
Mr Mg yi(t) = Zﬂuz b—Th) e : +ng(1),
= My MR]\/ MtMpN? Zl Z Ml N D
j=1 2 :Z Z(’m L<t—77/T—§—Tfj>
sin (TFNTAfD ) 2 VN S
X o ‘H (argYom(as: )‘ , S
sin (WTA]‘“” ) ‘e W(TD (t- )*.fcrij> —
N-1 ' ' '
+ Z (N — |n|) The reference path signal y]‘-i remains the same as in the non-
n£0m— N+1 coherent processing mode since the only difference between the
' ) two scenarios stems from the target echo
) oy’ ) pop’ j?'rAf”“ nT
H; (Awa) o H (AfDU) d dy —jenford | d
yi;(t) = wi (t—75) e T+ ng(t).
2
azTFATiUJ“
, M Mg AT‘/L‘;L/ COos (#) N-1
A ( 1'&3 ) ) n Z (N = |n))
1—

=1 jy=1

X |sinc

S n#0n=—N-+1

2
, (_v;,ﬂ(AT;L].P',-‘r‘ILT)
(artr war)) oo (22
X

T 1_ -1(vf (AT;]‘;I;/+HT)2
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B. Matched Filter Based Detector

The coherent test statistic for a matched filter based detector
corresponding to the target state y is given as

2
‘\IT .[\IR

Hy) o DOyl

1=15=1

(11)

where

' *
e = / g O (8= Tl + )

—ﬂ“(fﬂi( (e ’d’))dt.

Xe

We substitute the expression for the reference signal to get

vy = [ (ut (6 - ) + )

,jQW(fI/;L (T ‘r )_|_fr N)

Xe dt

)

where
nd(t) = n?j (t =75+ 7 1) e a2 ferly

The dependence of this detector on the phase term is evident
from the test statistic.

C. Ambiguity Function

For this case, the ambiguity function must reflect the coherent
combination of the different bistatic pair components instead of
just combining the amplitudes or energies. Therefore, we define
the average coherent ambiguity function as [17], [27]

Mt Mg 2
AM = B i’ 12
Wit 2o 2 v (12)
=1 j=1
where
o
ZHI = / u; (tf’rfj) €J2 f“w uy (t*Tfj/>

—rl )+ T 1,

o

After expanding the absolute value of the coherent summation,
we can express the average coherent ambiguity function as

.
—j2m it JQﬂ(fc 7]
Xe Diie (

Mt Mr M7t Mg

o iy L3 S5 e )

=1 j=1¢=1j'=
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Using the derivations we made in the Appendix, we compute
the coherent ambiguity function

My Mg N2 A#

Mt Mn Mt Mg

=222,

i=1 j=14=15'=1
. ! e et n D
2m\ fotfn | JATHL e Afpl —AfYT 5
X e K e J v
g (Aff; y / /
; Hp B
X e Xh; (ATz:j A Dq-j)
I ’
’ ’ —j2n (fc—‘,-f]g”)A‘rlH.“
X Xh, (ATﬁ;ﬁ JASEE _,) e i ’
; i

sin (ﬂ'NTAfS“’) sin <7TNTA fD ' /)

fD o >T(N71)

X

sin (WTA]‘““ ) sin (WTA,}"SH,",)

My My Mg N— N—

HEEES Z

i=1 j=1 j'=1 n=0 k'#n.k’'=

. I ; !
% €]2W (fc+fl)ij’ AT,ijl

7 ’ 7 I
jQ-:r(Afg: 7Af15w,,) L j27r<AfS:Lj —AfEH ,>nT
X e el € ’J

—jom( fot st ) ar
e Y "

X X7, (AT{LJ-”/ + (K" —n)T, Afg”l/)
xon, (AT + (K — )T, A L")

Using the results in [15], it can be easily verified that the
zero-delay cut of the coherent ambiguity function

M Mg N2 A#

P==p,.,py=p",.P:=P",
Mr Mg Mt M, o’
T R T R ( e 7Af’ / ) g

zzzzf

=1 j=1¢=

:iTr(AfS“ f““,)T(N—l)
X e

< (m (s o 1 (s55))
ACANTREVACN)

y sin (WNTA]““‘ ) sin (WNTA)‘S“, ,)

sin (wTAfo]/) sin <7rTAfﬂﬁj,)

V[T f\[R AIR N-—-1 N—

WD Z

=1 =1 j'=1 n=0 k’#n.k'=

7277(Af1) 7Af1) ,)%
[

jQW(Af]’D"” Af”“ ) T

(Af““ ) pﬁﬂAff;fj’(k’n)T) *

(Af”” ) JQﬂAf“" (,’n)T>

X e

(o)
(Hl (ass))e
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Fig. 2. |xn(nT 4+ 7,0)| for different » as a function of 7.

Similarly, the zero-Doppler cut of the coherent-ambiguity
function

My Mg N2ARE

—— e —ayf
vy = v, = v =

My My Myp Mg

1333 R

i=1 j=14=

=N?

j27r<fr+f ) T
X e i !

1
fp s
X sinc ATij sinc il vy
T T
o TAT‘“/I o TFAT;;?,/
COS T COSs — T

2

42, ATHE
7:, i/j/
Te T2

My Mp Mp N—1

HEEYY ¥

1=1 j=1j3'=1 n=0 k'#n,k’=0

7
jZTr(fC+fS’U/)AT:Lj;/U . AThE
X e o SINC
T

| (Ar;f;s’ (K —m)
X sinc T

a;,ﬂ(ATi“f”‘,—i-(k’—n)T)
Ccos T

el )
€

-l—(kITL)T)

X -
-L(v;) (A‘r;‘j“’/ +(k:’7n)T) 2
1- -
™ CY,,:/TI'(ATq,’j?,’#’(klfn)T)
cOs T
X

2
4&?, (A‘rl“,’]',l +(k’7n)T)
T2

1-—
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Fig. 3.

|5 (nT.v)| for different n as a function of .

Note that unlike the non-coherent scenario, it was not
possible to express the average ambiguity function for the
coherent case as a summation of just the amplitude-squared

terms |x#, (AT“" Afp )|2 due to the presence of the phase
terms. Therefore we expressed in terms of the complex mono-
static ambiguity function. The second summation term in the
average ambiguity expressions above represents the interaction
in between the different pulses of different symbol intervals.
Further, even in the coherent case, the ambiguity function
depends on the multistatic radar geometry, i.e., the locations of
the transmitters, receivers,and the target cell of interest.

V. NUMERICAL EXAMPLES

We first examine the impact of the terms denoting the inter-
action between the pulses in the zero-Doppler and zero-delay
cuts, i.e.,

[xn(nT +7,0)| =

(7— + nT) cos <oz77(7;i—nT))
sine ( )

T 1_ 4o (7;1;71T)2

|X}L(”T;l/)| = |H(l/) 2 Hi(l/)ej?ﬂ'VnT| 7

for varying n. From Fig. 2, we observe that the cross-terms do
have peaks around 7 = —nT. This is because at those de-
lays, the two pulses in the ambiguity function from different

: |
symbol exactly overlap. However, the scaling factor

N will
attenuate these peaks heavily. Since the integration time for
passive radar is typically large, the value of N causes severe
attenuation to these cross-pulse peaks making them insignifi-
cant in computing the ambiguity function. From Fig. 3, we no-
tice that the impact of the cross-pulse terms is more significant
at very high frequencies. However, typical Doppler frequen-
cies are present at the lower end of the spectrum. Around the
zero-Doppler point, the contribution of these cross-pulse terms
is negligible. This contribution is further attenuated when we
multiply by . Therefore, we ignore these terms for the
simulations.
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We use numerical simulations to demonstrate the ambiguity
performance of distributed passive multistatic radar systems.
For simplicity, we consider the targets and antennas to be
present in the x-y plane but the results will hold true even for
the three dimensional case. We consider 5 transmitters and 5
receivers (See Fig. 4) located at

& =[0,2 ki 77 = [3,0] km;
t, =[0,3 kin; 75 = [5,0] km;
t; = [0,5] km; 73 = [0,3.5] km;
t, =[2,2 km; 75 = [1,1] km;
t: =[6,0] km; 7¢ = [4,4] km.

We compute the ambiguity function in the Cartesian domain
centered around the position [3,4] km and velocity [30,50] m/s.
We chose the same system parameters as in [15] for the simu-
lations; observation time NT' = 0.1 s, T = 0.26 pus, o = 0.22,
and the center frequency f. = 2100 MHz.
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A. Non-Coherent Processing

First, we begin with the non-coherent operating scenario. In
Fig. 5, we plot the zero-Doppler cut of the ambiguity function.
We clearly observe that the peak corresponds to the true target
position that we are testing. Note that unlike a monostatic or
a bistatic configuration, we get a unique peak for the two di-
mensional ambiguity function instead of a peak circle or ellipse,
respectively. Further, when multiple targets are present, mul-
tiple peaks corresponding to different targets will be present at
the final output of the matched filter processing. In order to ob-
serve the resolution in each dimension, we further fix the target
location in each dimension to the true value and plot the am-
biguity profile in the other dimension (see Fig. 6). We define
resolution as the distance between the 20% drop-off points in
the main lobe. We observe that the level drops by 20% in the
x-dimension at 2850 m and 3150 m. Therefore the position res-
olution in the x dimension is approximately 300 m. However,
in the y-dimension, the level drops below 20% at 3930 m and
4070 m, respectively. Therefore, the resolution is much better in
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the y dimension (approximately 140 m). Note that these resolu-
tions depends on the geometry of this specific example and will
change depending the locations of the transmitters, receivers,
and targets.

Next, we plot the zero-delay cut of the ambiguity function in
Fig. 7. The peak corresponds to the true values of the target ve-
locities that we are testing, i.e., [30,50] m/s. Just as we did for
the target positions, we fix the target velocity in each dimen-
sion and compute the ambiguity profile in the other dimension
(see Fig. 8). The velocity resolutions in the x and y dimensions
are approximately 5.5 m/s and 2.5 m/s, respectively. Therefore,
both the position and velocity resolutions are better in the y di-
mension for this example.

B. Coherent Processing

Now, we present the coherent-ambiguity function for the
same example as the non-coherent case. We expect the ad-
ditional information in the form of phase will give enhanced
resolution performance when compared with non-coherent
processing. First, in Fig. 9, we plot the coherent zero-Doppler
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cut. We notice that the ambiguity function is much sharper
when compared with the non-coherent case. Please note that
we have zoomed into the ambiguity plot by changing the scales
on the x and y axes to capture the exact resolution.

We fix the y-position to the true value and plot the ambiguity
function along the x-dimension in Fig. 10. We observe that the
resolution for the coherent case is 0.06 m as opposed to 300 m
for non-coherent case. We used the same 20% drop-off defini-
tion for the resolution. In Fig. 11, we plot the ambiguity func-
tions in the y-dimension. The coherent resolution is 0.1 m com-
pared to 140 m using non-coherent processing. Even though the
resolution is slightly poorer in the y-dimension when compared
with the x-dimension, we observe that the side-lobes immedi-
ately surrounding the main lobe are suppressed to a larger extent
in the y-dimension for this example. Note that even though there
are significant sidelobes in the coherent processing mode, the
peaks of these sidelobes still have a much lower value than the
corresponding ambiguity on the mainlobe of the non-coherent
processing mode.
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Fig. 12 plots the zero-delay cut of the coherent ambiguity
function. We observe that the peak coincides with the true target
velocity values. In Fig. 13, we plot the coherent ambiguity func-
tion in both the velocity dimensions by fixing all the other pa-
rameters to the true values. We noticed that the resolutions for
the coherent case are approximately 1.5 m/s and 1.6 m/s in the x
and y dimensions, respectively. Clearly, the resolution has im-
proved when compared with the non-coherent case.

Note that the coherent and non-coherent ambiguity functions
represent the matched filter based detectors under two different
target models. Therefore, even though coherent processing
offers the enhanced resolution, it is not applicable when the
target consists of multiple individual isotropic scatterers,
leading to uncorrelated phase shifts across different bistatic
pairs. Further, phase synchronization between all the transmit-
ters and receivers is critical for coherent processing and this
may not be possible always due to several physical limitations
like inaccurate knowledge of the antenna locations and local
oscillator characteristics [28]-[30].
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VI. CONCLUDING REMARKS

We considered a passive distributed radar system using
the UMTS downlink as the signals of opportunity. First, we
described the multistatic measurement model for this system.
Next, we presented the matched filter based detectors under
two different operating scenarios; non-coherent and coherent.
Then, we computed the ambiguity functions under both these
scenarios to analyze the performance. We used numerical
examples to demonstrate our analytical results. We observed
that passive multistatic radar systems offer sharp resolutions
when operating in coherent processing mode.

Since the ambiguity analysis we derived in this paper is
geometry-dependent, in future work, we will use these results
along with our Cramer-Rao lower bound analysis in [31] to
optimally select the illuminators of opportunity from amongst
several possible choices. Further, we will extend our analysis
beyond UMTS signals to include other classes of illuminators.

APPENDIX

For the non-coherent processing scenario, we need to com-
pute the amplitude-squared terms
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Since the QPSK symbols are independent at different symbol
periods,

1, n=n', k=F,
Efcinciypcipcu =<1, n=k n' #n,n =k,
0, otherwise.

Let xp,(.) denote the monostatic ambiguity function corre-
sponding to the individual RRC pulses from the ¢th illuminator.
The summation can be split into these two conditions as below
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Expressing the transmitted waveforms in terms of the indi-
vidual constituent RRC pulses, we obtain the following
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Note that the second part of the summation denotes the impact
of the interaction between the different pulses on the ambiguity

function.
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For the coherent processing case, instead of the amplitude-
squared terms, we need to compute the following terms
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